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ABSTRACT

Analysis of Edge Problems in Statically-Loaded
Fiber-Reinforced Laminated Plates
by Linear Rlastic Theory

W. Michael Lucking, Ph.D.
Concordia University, 1988

Plates constructed of laminated continuous aligned
fiber reinforced composite materials have been observed to
delaminate at edges while under static and fatigue loads.
Using a linear elastic homogeneous anisotropic material
model and solving resulting equations of elasticity, the
three dimensional stress states occurring near central
circular holes and straight edges of laminated plates
are investigated. Shortcomings in the theory and analysis
are discussed. For holes, standard three-dimensional finite
elements were used in a straightforward procedure to obtain
approximate numerical results. For straight edges, a
solution procedure is developed within this work based on a
weighted residual method.

Specifically, holed plates having [0/90]’,[90/0]',

and [90/0] configurations of Graphite/Epoxy laminates with
hole radius/plate thickness over a range of 1-25 under
uniaxial uniform normal loading were modeled. Estimates of
the maximum stress concentration for thick and thin plates
using plane stress and plate theory formulas compared very
well with FE results. Reinforcement of the hole with an
isotropic ring of varying thickness and rigidity was found
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to mitigate the boundary layer stresses and to reduce stress
concentration in the plate. Measurements of hole surface
deformations using miniature strain gages were done for
(0,/90,), and [90,/0.], plates. Results indicate that the FE

and measurement results agree well except at locations very
close to the intersection of the layer interface and the
edge where stresses have been surmised to possibly be

singular.

For problems where the stress state does not vary
along one cartesian axis (e.g. 30/3x=0) a family of
exponential functions are derived which satisfy the internal
equations of elasticity. Particular solutions are then
obtained by a Least Squares Boundary Collocation procedure.
Comparison shows that this approach has advantages over

methods appearing in literature.

Using the developed approach, the effects of axial,

bending and twisting loads on the edge stresses of
symmetric, antisymmetric, and asymmetric angle-ply and
crossply laminates for shuffled and unshuffled layer
sequences are investigated. The results show that the
determination of the depth of the edge boundary layer and
stress state within it requires solution of the complete

boundary value problem for accuracy.
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CHAPTER 1

INTRODUCTION

The combining of two or more distinct phases to
obtain a composite material has long been a successful
approach to materials design. Composite laminates have
emerged as very successful structural material system, not

least, in particular, for plates and shells.

Continuous fibers of high stiffness and strength
aligned in and bonded to a surrounding matrix are used to
make layers in a composite laminate. As part of a
mechanical system, each layer of the laminate having its
fiber direction aligned with purpose in respect to a global
frame, contributes to the system's response.
Load-deformation response is tailored and can be such that
conventional response (isotropic and homogeneous) is
obtained from certain configurations, but this is a subset

of the infinite bounded set of responses possible.

In any case, the system's behaviour must be
understood and predictable. For innovative radical designs,
analytical models may begin to provide useful information

for all configuations.

As shown in Figure 1.1, structures may frequently
contain holes, ply drops, and various joints. These details
generally will cause stresses in their vicinity to be much
above that of the surrounding material making them likely

sites for initiation of damage.
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The main objective in this work is to study the
mechanical behaviour (i.e. the initial stress state) of
some simple structural problems like circular holes and
straight free edges. The work is comprised of investigating

this mechanical behaviour by:

i) mathematical modelling based on the classical approach
from infinitesimal displacement theory of linear elasticity
and the approximate solution of equations from elasticity;

and
ii) measurements of deformations.

In so doing, a contribution is made to the understanding of
failure processes of composite laminates and the solution
procedures. The material is modelled so that thLe response
is linear and elastic. Only the initial geometry, material

and loading are investigated.

In Chapter 2 the equations of elasticity are
presented and examined. Indefinite aspects of the theory

are discussed.

In Chapter 3 laminated plates with a central circular
hole are studied both by finite element solution of the
elasticity equations and measurements of hole surface
strains using miniature foil resistance strain gages.
Boundary layer stresses in specially orthotropic laminates
are studied for the effects of varying of R/t and of

reinforcing the hole with a bonded isotropic ring.

For straight edge problems a mode of solution is



developed based on a method which is valid for problems
where 30/3x=0 in Chapter 4. The procedure is qualified by
comparison with other available solutions. Results are
generated to study various straight ed¢: problems of
angle-ply and crossply laminates in symmetric, unsymmetric
and antisymmetric configurations with shuffled and
unshuffled ply groups under normal, bending and twisting
loads.

Chapter 5 summarizes the objectives, conclusions,
and contributions made and includes recommendations for

future work.



CHAPTER 2

THEORETICAL EQUATIONS FOR LINEAR ELASTIC ANISOTROPIC
MATERIALS

2.1 Stress,Strain, and Hooke's Law Relation

In this chapter the mathematical theory to be used
for the analysis of composite laminates modelled as layered
homogeneous anisotropic linearly elastic solid media is
presented. Although these same equations may be found
elsewhere (e.g. Lekhnitskii(1977)) notations may diifer;
hence the concerned work is reviewed. 1In closing, there is

2 brief discussion on limitations of the theory.
In the mathematical analysis of continua the two
quantities of stress and strain may be represented by

cartesian tensors (see Jaeger(1966)). The nine components of

stress are given by

04 4 i,i=x.,v.2z (2.1.1)

and the strains in terms of the displacements are

£33 =4 (uy,5+uy43) i,3=xv,2 (2.1.2)

Both the strains and stresses defined in this way constitute



symmetric second order cartesian tensors. The strains
differ from the commonly used engineering strains in

the definition of the shear strains but are related by

Yij = 2 £4§ O ziy¥egy i,3=x,y.z i#j. (2.1.3)

While the engineering strain eliminates redundancy it has
a disadvantage in that it is not directly amenable to

manipulation by tensor algebra.

From the theory of elasticity the linear relations
between stress and strain for an anisotropic homogeneous
material under certain conditions are represented by Hooke's
law. Hooke's iav is expressed, in the most general form,

in compact tensor notation by

055 = Cijk1 k1 i.3.k.1=x,v.z , (2.1.4)

vwhere Cijkl' the 81 stiffness coefficients, are the elements

of a fourth order tensor. It is understood that for this
notation any subscript which appears twice on the right hand
side indicates that a summation over its range of possible

values must be performed.

The stress,strain and stiffness tensors must be
defined in a coordinate system, however, they may easily be
transformed to any other coordinate frame which is rot.uted

with respect to the original (see Figure 2.1). Given the

components of vectors ¢ and ¢ in tne original frame and the

direction cosines between the two frames, the components of




coOs

Figure 2.1 Examples of direction cosines for tensor
transformation.



o' and ' in the rotated frame are given by

ol . A Az g
13 7 “ik 91 %kl § jext,yt,z' k,lex,y,z  (2.1.5)
Lo a2

i5= Mk 1 "

where, for example, A\ is the cosine of the angle between

z2'z
the z axis (in the first frame) and the z'axis (in the
rotated frame). In general, the order of suffixes is

important; for example,
x'y y'x .

The transformations may be »resented in matrix form

' =32 & 3T - (2.1.6)

Xz

= | %x %y

at

where Yz P

similarly for o' , T, <©' ;

and X = | v'x Ny

The elements of the C tensor after a rotation of coordinates



are represented by

Cabcd™*ai’pj2ck*a1 Cijk1 { i.3.k/1=x ,y ,2 (2.1.7)
a,b,c,d=x"',y',2'

It is impractical to express this in matrix form since it
requires a 3x3x3x3 matrix. For a homogeneous material, pure
translation of the coordinate system will have no effect on

the C tensor.

The strain energy density is a mathematically
homogeneous positive definite quadratic scalar function
defined by

- 3 - -
U= —— Cispy %4ij°k1 i.3/-kK/1=X,v,2 (2.1.8)

Since U is a scalar it is invariant with repect to a

change of coordinates; it is related to stress by

oij

Because the stress and strain tensor. are symmetric
only 36 coefficients are required to give the six discrete
stresses in terms of the six discrete strains. The six
stresses may be represented by a vector and obtained by the

matrix multiplication

al
[}

(o] ]
ol

(2.1.10)

where now we redafine



i Cxxxx cxxyy cxxzz Cxxyz cxxxz cxxxy 1
Cyvvyy Cyvzz Cyyyz Cyyxz Cyyxy
czzzz czzyz szxz szxy
¢ - symmetric Cyzyz Cyzxz Cyzxy
szxz szxy
5 cxyxy o
[ Oxx | [ Txx |
Oyy “yy
Ozz fzz
and o = *ya , T = Tyz
Txz Txz
| Txy | | Txy |

The matrix C must be symmetric for reciprocity to occur.
That is, given 2 arbitrary states of strain z® and ©2 then

1 .2 1 .2
since cijkl”ij”klgcklij°k1°ij we nust have Cijkl'cklij' The

strain energy U can be represented by

u=13T ¢ 3 (2.1.11)

and so C is also positive definite since

U220 for any ¢ # {0}
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in order for the body to remain stable.

The number of independent elements remaining may be
further reduced by considering the elastic symmetry of a

material. A material is said to have elastic symmetry when E
remains invariant under a coordinate transformation. For

.=Ayy.=1 with all other direction

cosines zero, then if C remains invariant it has reflexive

example, if “Agg i =mA

symmetry across the plane z=0. Hashin(1972) has shown that
a uniaxially fiber reinforced composite material with random
positioning of the fibers in the yz plane as shown in Figure

2.2 can be represented as being transversely isotropic (one

in which E is invariant for any rotation about the fiber

axis) in the yz plane. The following elements must vanish:

szyz'cyyyz'Cxxyz'Cyzxy'cyzxz'cxzxy'czzxy'cyyxy'czzxz'
nyxz' cxxxy'cxxxz and the stiffness matrix then bacomes
rcxxxx cxxyy Cxxzz © 0 0 ]
Cyvyy Cyyzz ° ° 0
Czzzz © 0 0
¢ B symmetric cyzyz 0 0
Cxzxz O
I nyxy ]
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ng= total volume of fibers

total volume of composite

Figure 2.2 Cross section of semi-random fiber reinforced
material as described in Hashin(1972).
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o C Cc =C

=C XXYY ="XX2ZZ' “XZXZ CXYXy'

Further, cyyyy zz22z'

Cyzyz'i(cyyyy' nyzz) must hold reducing the number of

independent coefficients to five. This stiffness
mutrix holds for a specifically oriented coordinate
system, often called the principal coordinate system where

the x axis aligns with the fiber direction.

In general, each layer of a laminate has its
principal coordinates differing from some global system for
the laminate by a rotation about the z' axis, as shown in
Figure 2.3. To express the stiffness matrix coefficients in
the coordinate system of the laminate requires that the
tensor be transformed and then the independently rotated
coefficients be used to populate the matrix. To simplify
the notation the suffixes in each term are redefined as

follows:
l1-xx; 2-yy; 3-zz; 4-zy.yz; 5-xz,2zXx; 6-Xy,yx

In unprimed coordinates the direction 1 is the fiber
direction. Using Equation (2.1.7) with the angle between
the primed global coordinates and the unprimed principal

coordinates equal to « such that

= | Mvx Myy Mz sin(a) cos(a) 0 . (54 13

Ao A

X ZYZ

Merx Mxt Y 'z cos(a) sin(a) 0
0 1
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/

X

Figure 2.3 Lamination parameters: angle of orientation
of layer's principal coordinates in laminate

system and the layer thickness.
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the non-zero primed coefficients of the T matrix in the new

notation are:

Cci,=C, cos*(a)+C__sin*(a)+ 2(C _+2C,, )sin?(a)cos®(a)
ci =(C + C__-4C  )cos® (a)sin®(a)+C _(sin*(a)+cos*(a))
Ci,= C,,co8?(a) + C_ 8in?(a)
' e 4¥C, o+2C ) cos? (a)sin(a)
+(-C, _+C__-2C_ )sin?(a)cos(a)
Cho= Cpco8*(a)+ C  sin*(a)+ 2 (C,_+2C,, )sin?(a)cos®(a)
23 C,,8in%(a) + C_,cos?(a)
Cpe=(-C, +C _+2C ) cos(a)sin®(a)
+(-C, *+C .—2C_,)sin(«)cos?(a)
1= Cyy (2.1.14)
Cie™ (C,5~C,,lcos(a)sin (o)
C,,= C, 8in?(a)+ C_ cos?(a)
C,s™ (C,,~ Cyg)sin(alcos(a)
Ci= C,, 8in?(a) + C,  cos?(a)
Cle=Cgqlsin*(a)+cos*(a) )+(C, +C_ _-2C _-2C, )sin®(a)cos?(a)
and C| =C, 4™C;™C25"C34™C3s=Ce™Cse=0"

The stiffness matrix then becomes populated as follows
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[ Cia Cia Cia 0 0 Cie |
Caz  Cay O 0 Cae
C;, 0 0 C;.
¢ - symmetric C;‘ C;u 0
Cas 0
_ e |
so that

The unprimed coefficients in the principal coordinates can

be expressed using the engineering notation as

¢,,= B, (1~ v_ v, )/DET

Cia™ Ega(vyp* v gVy,) /DET

Coa= Byplv ,* v, v,) /DET (2.1.15)
c32= Eza(l- vza":t)/DET

Caa™ Eggvya*tvy,Vya) /DET

Coy™ Eygpfll-v v, )/DET

Cee™ C23

Css™ C1a

Coe™ C12

where E22=E v

23’ Y12™V12'612%C1qr Goa™Egy/2(14v, ),
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E and v__=v (leaving five

E 11’ 23 32

v =y v =y
13732 31714 12722 21

independent constants as before) and

bd - - 174 - v v -y 74 v .
DET=1-v Vo, ViaV31 V23Ys2"Y21Y12"32" V31Y12 23

and v shows transverse

The relation between G

23’ 22'

isotropy of the material.

2.2 Displacement Equations of Equilibrium

For a body at rest under the influence of only
surface tractions the stresses must satisfy the three

equations of equilibrium

93,5 =0 i,j=x,v.2 (2.2.1)

where the subscript(s) after a comma denotes partial
differentiation with respect to that variable. On the

surface

i, j=x,y.z (2.2.2)

must be satisfied, where T is the surface traction vector
and n is the outward normal vector of the surface.

The general equilibrium equations in terms of the
displacements are obtained by substituting Equations (2.1.2)
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into (2.1.4) and this into (2.2.1) to get

(Cijkafuy, x * U,1)),53 =0 1i.3.k.1=x,v,2 (2.2.3)

in compact tensor notation. This yields three linear
homogeneous elliptic second order coupled partial
differential equations with constant coefficients. The
surface tractions are represented in terms of the

displacements by

=1 s _
Ti = = Cijkl(uk,l+u1,k) nj i,j.k.1=x,v,2 (2.2.4)

For some problems a cylindrical coordinate system may
be more suitable. The cylindrical coordinates are r,0,z.

Rotating primed coordinates by 6 we get

X'=r , y'=6 , and z'=z.
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The strain-displacement relations are then given by

Y Y
£z ® VYz',2
(2.2.6)
u Uy
X, 0 - X
Tro = ¥t Uy r T
Yrz = Y,z YUz, r
You = Uy +Y2' .0
20 y':.2 -——r‘.—
and the equations of equilibrium are
Spr * Trg,0 t Trz,zt (9 = gl= 0
Y r
rz,r t7ze,06 ‘Y 92,z * rz =0 (2.2.7)
r r
wo,r * %,06 * "ze,z*? 27,9 =0
r r

The cylindrical stresses and strains are equal to the
rotated cartesian stresses and strains and the equations of
equilibrium may be expressed in terms of the rotated
displacements. However, the stiffness coefficients of these

[ L.
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equations will then be periodic functions of @ obtained by

rotating C through the angle 6-« using Equation (2.1.14)
rather than constants. It can be seen that if the surface
tractions and displacements and the geometry of a body have
the same rotational symmetry as the stiffness(i.e. period
of 2n) then the displacement functions which are solutions
in these coordinates will also be periodic functions of ¢
with period 2n. This property of the solution may be used
as a boundary condition to reduce the size of the domain, a
factor which is often important to the effort requirsd in
analysis.

2.3 Dimensional Analysis

For every mathematical-physical problem a partial
formulation of the solution in dimensionless parameters may
be had by dimensional analysis. Further, by making the
parameters non-dimensional, their number may be reduced
thereby generalizing the results and avoiding investigation

of redundant parameters.

Within the theoretical framework already described,
the following material, geometry, and loading parameters are
relevant to laminated composite plates with holes. As

depicted they are Rx,Ry,t,w,l (for a circular hole Rx-Ry-R)

as the structure's geometric parameters (see Figure 2.4) ;

r,z,0 or X,y,z as the coordinates ; Nx' Ny, ny. Mx' My, "xy
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Figure 2.4 Plate geometric parameters.
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which are defined as

t/2 t/a
Nij = .f“ijdz' Mijj = ,f oy52dz  i,J=x,y,z (2.3.1)
-t/ﬂ —t/z

as the edge loads (Figure 2.5); «;,hy as the lamination
parameters (Figure 2.3); a and Mg as the microstructural
geometric variables (Figure 2.2); and Eg,'Eg /Vg, Vga:Gg.

as the engineering constants for transversely isotropic
fibers as well as Em'"m for the isotropic matrix material.

By using the Effective Modulus (EM) approach, the
elastic moduli of the constituents and mg are replaced by

their equivalent effective moduli Eil, E G‘a,G

22" V12'Vaa’ 23’
Because the problem is linearly elastic, using standard
methods the solution for any component of the displacement
in a plate with an elliptical hole, for example, can be

expressed in the form

= Ny g, + Ez_-z + Nyy g, +

Exx E11 E11

M, - M, 5 Mev g

X d,4+ X9Ig 4+ XX G, (2.3.2)
tE11 tE11 tESl

where E‘,Ez.aa...aa are all vectors of dimensionless

functions of the variables
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s

I/

A
/ Nyy
T < N .Y
N

Figure 2.5

Plate loading parameters.
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E’L, X, ¥, 1, Mg _thv Xy r_li: E_'.Bo V‘av".,ti}.!
R t t

X 114 Et!

In this solution there are 2 fewer variables than there were
at the outset. The stresses and strains are expressed
similarly since they are linear combinations of the

displacement first partial derivatives.

'&=l_"_3_ft+§!fa+§§y_f3+
t t t
M M
%— fc'.' E%- £5+ _%y_ fe (2.3.3)

where fi are vectors of dimensionless functions. These

relations exhibit the linear relation between load and
response and disclose the possibility of superposing the
solutions from linearly independent combinations of the

loads.

2.4 Discussion of the Theory

All of the previous material in this chapter, and
indeed, all the other works which use the presented model
have bgen presented with the tacit assumption that some
napping exists between field variables in the classical
approach and those of models in which the individual phases
(microstructure) are accounted for directly. It is beyond
the scope of this work to assess the limitations of this
theory, but some understanding of the verity of the model is

possible without too much detail.
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One interpretation discussed by Hashin(1983) is that
of replacing field variables in a material having
statistically homogeneous material properties by moving
averages. In this approach a representative volume element
(RVE) is used over which the field variables (e.g.
displacement) are averaged. To be statistically homogeneous
the average material properties (e.g. the relation between
stress and strain) do not change as the RVE is moved through
the body. So long as the size of the composite body is much
larger than the RVE, and in turn the RVE is much larger than
the unit cell (see Figure 2.2) then the classical relation
{Equation (2.1.4)) between averaged stress and strain is
valid for most practical problems. Therefore, replacing the
composite with an equivalent homogeneous body is usually
adequate. For example, in Equation (2.3.1) where the

constituent material's moduli are replaced by the effective
moduli, the geometrical p-rameter th/a2 does not vanish and

still has some effect on the problem. However, soc long as
this parameter is large *then for averaged field variables
using a suitable RVE the two models will approximately
agree. However, the classical approximation is based on the
assumption of negligible strain gradients (see Hashin(1983))

and so is questionable for very high strain gradients.

When is the model invalid? For instance Pagano(1976)
modeled a symmetric laminate having finite width and
thickness with one reinforced and one unreinforced layer
which included discretely modeled regularly arranged fibers
surrounding the interface at the free edge. 1In the
homogeneous model stress singularities and so high strain
gradients are surmised to occur at the intersection of the

interface between layers and the unloaded edge of the



laminate. [Bven near the singular point, averages over a
unit cell's dimension in the micro-model were found to agree
increasingly with the EM model as the relative fiber

diameter decreased (i.e. as Wt/a® increased) and all other
relative parameters remained constant. Encouragingly,
these results show that EM validity can improve as the
fibers become relatively small.



CHAPTER 3

ANALYSIS OF PLATES HAVING A CENTRAL CIRCULAR HOLE

3.1 Introduction and Literature Survey

Stress concentration around cutouts in homogeneous
plates is a well known phenomena. In regard to laminates,
as has been observed in straight edge problems, it is
expected that Classical Lamination Theory (CLT) will suffice
at some distance from the hole edge i.e. outside the
boundary layer. For this region numerous exact and
approximate solutions have been compiled for a variety of
problems in anisotropic homogeneous plates under edge
loading; e.g. Green and Zerna(l954), Lekhnitskii(1968),
Lekhnitskii(1977), and Ssavin(1961). In particular, Savin
presents a comprehensive collection of plane stress and
plate theory solutions for plates with holes. Using the CLT
approach these solutions can be used to approximate stresses
in composite laminates; Gresczcuk (1972), for example,
obtained the stresses in multilayered laminates symmetric

about the midplane (i.e. no bending-membrane coupling).

As for the straight edge problem, boundary layer
interlaminar stresses are implied in delamination damage and
possibly intralaminar matrix cracking(e.g. Brinson and
Yeow(1981)). For ultimate strength the effect of hole
radius on ultimate strength of specimens has been reported(
e.g. Pipes(1979)) and strength is predicted from a limited
number of experimentally determined parameters; most

researchers agree that this is an undesirable departure from
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rational models.

Numerous studies of the elastic stresses within the
boundary layer have been done. What follows is a brief
synopsis of those most recent and most often referred to in

the literature.

For a curved free edge, Tang (1977) used a boundary
layer theory formulated in cylindrical coordinates to
analyze infinite cross-plied laminates with a circular hole.
He presented results for plates with very large ratios of
the hole radius to laminate thickness ( R/t>33 ) which
predict finite values for the all interlaminar stresses on

the hole surface.

Many solution methods have been polynomial-based
formulations of the Finite Element Method (FEM). Some of
these analyses suffered from either poor modeling or the use
of too coarse meshes which resulted in incomplete or
innaccurate solutions (Rybicki and Hopper (1973), Levy et al
(1971), Rybicki and Schmeuser(1978), Dana(1973), and
Lee(1982,1980)). These analyses were untimely since the
power and availability of computing machines has increased

dramatically in recent years.

Raju and Crews (1982a,1982b) studied the behaviour of
[90/0]s and [0/90]B graphite-epoxy laminates with R/t=5

using displacement formulated three dimensional finite
elements. They used an extremely dense mesh of finite
elements radially surrounding the interface at the hole
surface. The solution, requiring 19000 degrees of freedom,

showed behaviour consistent with an expected singularity at
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the interface. Raju and Crews(1981) also obtained solutions
for é=constant planes using the two-dimensional finite
element formulation from the uniform extension problem with
tg imposed from the exact two-dimensional solution. These

solutions showed good agreement with the full three
dimensional solution at the singularity, but disagreed
elsewhere on the free edge. Since 30/36 #0 for the hole
problem, the uniform extension solution should not be
expected to agree. The order of the singularity was

estimated using the equation
o=a(0) r¥ t+o(rl¢-2)) @ <1

and A and ¢ were determined from the FE results at small
distances r from the singularity. « was observed to be

constant.

Lucking et al(1984) obtained comparable results with
standard quadratic isoparametric elements by substructuring
the boundary layer in two stages after the initial model of
a finite width [0/90], plate with a central circular hole.

The model had fewer degrees of freedom than that of Raju and

was used to show that the interlaminar normal stress o, at

the hole surface on the midplane depends strongly on R/t.

Altus and Bar-Yoeseph(1983) used a 3-D finite
difference code and presented results for a ['.NS]s plate

with a central circular hole. Bar-Yoeseph(1985) presented a
variational-perturbation approach for elliptical holes in
angle and cross-plied laminates and studied the effects of
lay-up angle and hole aspect ratio for material properties
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representing boron-epoxy and graphite-epoxy composites
claiming accuracy for only very large ratios of diameter to
plate thickness.

Wwang (1986) used hybrid-stress finite elements which
enforced the free edge conditions exactly with the Lagrange
iMultipliier technique to enforce displacement continuity at
the interface. Using a coarse mesh results for [0/90]. and

[90/0]s Graphite/Epoxy laminates with central circular holes

having R/t=.625 were presented.

Many of the different approaches are claimed in some
aspect to be superior. Numerical results have been
concentrated on practical "benchmaxk problems"” (e.g.

balanced (Aiaso, see appendix A) symmetric flat laminates

with central circular holes) while assessing and developing
methods. The problems are simple in geometry but are three
dimensional and so have not been as accessible to many
approximate mechods as the two dimensional problems.
Methods of determining the order of possible singularities
directly have not been developed for curved free edges.

In this chapter the finite element technique used by
Lucking et al(1984) is evaluated. For two crossplied
synmetric Graphite/Epoxy composite plates in uniaxial
tension, measurements of the strains on the hole surface are
taken using miniature strain gages and compared with the
model. Using the FE technique the effects of R/t and hole
reinforcement are studied for problems having two or three
perpendicular planes of reflective symmetry in the geometry,
material and loading.



3.2 Formulation and Solution Procedure

3.2.1 Introduction

The FE method is used to obtain approximate numerical
strains and displacements from the theoretical model. FE
methods, which have largely superceded Finite Difference
(FD) methods in recent years enable point by point
investigation in the space of input parameters; it easily
accepts geometric, material, and loading data, and provides
information, which is possibly quite dependent upon
computational parameters, in a semi-discrete numerical form.
Analysis becomes machine dependent and often cumbersome.
There may be little opportunity in the process for

mathematical insight.

Despite shortcomings, it does provides information
which might otherwise be found only with great difficulty
and expense by measurement or other more dialectical
mathematical analysis. In the present work, it serves in
providing approximate solutions in numerical form to the
theoretical equations for comparison with measurement and to

explore the model's behaviour for specific problenms.
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3.2.2 Finite Element Formulation

The problems studied are expected to contain a
singularity; they are usually dealt with in several ways.
Singular functions could be included in the approximation
functions or the singularity can be ignored by using
additional mesh refinement in that region and hoping that
the non-singular functions will be adequate. Standard
isoparametric polynomial-based finite elements are commonly
available in well developed packages while singular three
dimensional elements for this problem have not yet appeared.
Another element or alternative method was not developed,
instead a standard package was used and some degree of

accuracy was obtained through mesh refinement.

There are many good texts which present and discuss
the formulation of the finite elements to be used here, (e.g.
Zienkiewicz (1977) and Cook(1974)). Briefly, for aspects of
the method to be used here, the formulation is reviewed.

Displacements inside an elemental part of the domain
(see Figure 3.2.1) are given by, for example,

T N N a°® (3.2.1)
U= Q. = a . .
i.-!. 171

where “i' u: are the values of N,u at the node i, (N are

i
termed shape, interpolatory, or trial functions) and strain
in general is

=LNa =B a® (3.2.2)
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Pigure 3.2.1

20 node isoparametric finite element with

local and global coordinates
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where E is an appropriate partial differential operator.

The shape functions, Ni(n,t,e) for a 20 node element,

shown in Figure 3.2.1 are:

for corner nodes (¢=%l1, ¢=%1,7=%1)
} .
Ny= & (1+¢ ) (1+m ) (1+¢ ) (¢ +m +¢ -2);
for midside nodes

Ny= $(1-¢%) (149) (14¢ ) for ;=0 my=tl ¢ =11

Nis %(1-{‘2) (1+€o) (1"“']0) for 4‘1=0 ﬂiﬂtl Gi-tl (3.2.3)

Ni= 3(1-9%) (1+¢) (14¢ ) for my=0 ¢ =21 ¢ =41;

where
To™114 fo'f(’i fo'ffi-

Based on the principle of minimum potential energy,
and assuming no body forces, initial stresses or strain, the
finite element statement is then

g% = K® a® (3.2.4)
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where Kt = I B'C B Ao and @ is the volume domain of
(43

the element. g%, K®, and a®, are known as the element force
vector, stiffness matrix, and displacement vector
respectively. The integral is evaluated by Gauss-Legendre

quadrature.

The solution for the entire domain is obtained by
solving the global set of linear equations

(3.2.5)

Ql
]

o] ]
-1

where q and a are the nodal force and displacement vectors

and K is the global stiffness matrix. K and q are obtained
by summing the contributions from the element stiffness
matrices and force vectors for each node in the global

model. K is a square matrix that is banded, symmetric, and

positive definite.

It is usual to impose force boundary conditions in
an approximate manner by setting the nodal forces to

%= - NTE ar (3.2.6)
re

where t is the prescribed surface traction and I'® is the
boundary surface ot the element. These equivalent nodal
forces are derived by equating the work of the nodal forces
through a virtual displacement to that of the surface
tractions.
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The easiest boundary condition to impose directly on
the nodes is the nodal value of displacement. Compatibility
is satisfied between elements; on the interface the
displacement continuity is satisfied exactly while all
stress boundary conditions and continuity conditions (i.e.
the stresses required to be continuous may not be) are
satisfied approximately. The displacement derivatives could
be constrained; but the approximate solution, without
special problems, wi.l converge to the unique solution
(where the solution exists) without constraints.

3.2.3 Problem Domainsg

The domain of a problem may be reduced by imposition
of symmetry requirements. As was noted in Chapter 2, the

elastic symmetry of laminates is such that the & tensor
varies with period 2 w.r.t. @. If the loading and geometry
share this periodic symmetry then soc must the solution and
only one half of the total domain ne;d be modelled with
periodic boundary conditions. In the special case of a
crossplied laminate where all the layers have their
principal axes in some sense aligned with the laminate

axes (i.e. rotated by zero or n/2) the material prcperties
also have reflective (or mirror) symmetry about the planes
x=0, y=0. If loading and geometry share this property then
so do the displacements. In cylindrical coordinates the
displacements u and w are even functions of 6 and v is odd;

further, u and w are even functions of 0 £ n/2 while v is
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odd (the same as if u,w=cos(2¢6) and v=sin(20)); in a
laminate which is symmetric across the midplane, w is odd

w.r.t. 2z while u and v are even.

Such configurations are fundamentally important;
their symmetry facilitates and so enhances the analysis. In
this chapter only laminates possessing reflective symmetry
about the planes x=0,y=0 are analyzed. The problem is
depicted in Figure 3.2.2.

3.2.4 Solution Procedure

Finite elements are required in a very dense mesh for
accuracy in regions where the solution is poorly
approximated by a low degree polynomial, especially near
singular points in the solution domain(Strang and
Fix(1973)). Mesh density comes at a cost in computer

resources.

In the following problems, high stress gradients are
expected to occur in a region surrounding the cutout. 1In
order to increase the density of elements in this region the
problem was broken down into 3 parts as shown in Fig.3.2.3.
Solutions were obtained in stages using a technique that is
similar to substructuring (Cook(1974)). By imposing the
displacements taken from a cylindrical surface at a constant
radius of a coarse mesh on the corresponding surface of
subsequently generated finer mesh, greater accuracy in the
region of interest, near the hole, can be achieved. 1In
general, the number of elements on the surfaces were
different so the nodal displacements imposed on each
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Figure 3.2.3 Depiction of substructuring technique.

Displacements from a cylindrical surface

at r-R=3t,t are imposed on the

next mesh.
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subsequent mesh were values interpolated from the previous
mesh using a bicubic spline for each layer. The second
derivative was set to zero where the slopes were not known
from symmetry.

Loading was imposed on the first stage as pressures
applied to each ply group on the surface x = L/2. The
magnitudes of the pressures were determined using Classical
Lamination Theory for the case of uniform strain in an
infinite laminate with no hole; by the principle of St.
Venant, the effect of the hole on the laminate stresses
should become negligible away from the hole edge in all
directions. Therefore, given that the dimensions of the
model are sufficient, this loading is appropriate to
approximate the case of an infinite laminate with a central
circular hole. Displacement was not imposed because the
effect of the hole on the displacements dies away less

quickly than for the displacement gradients ( the reason for

this can be seen in the functional form f£(r®)
n=-1,-2,-3,.... of the plane stress solutions for plates
with holes).

The Finite Element Method as formulated previously
is included in a general purpose linear problem computer
program encoded in Fortran entitled SAP IV ( see
Bathe (1974)).

3.2.5 Qualification of Method

The FE results are accurate depending upon how

'close' they are in some sense to a solution which satisfies
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all conditions of the model exactly. In this subsection
accuracy is discussed and results are compared with high
accuracy solutions and relevant exact solutions to the plane

stress model for individual layers.

Convergence of gsoclutions for the present formulation
is expected to be problem dependent (for example, it will
depend upon R/t). However, away from the singularity the

rate of convergence of the displacements will be O(h®), and

O(h®) for the stresses(Zienkiewicz(1977)).

In the first of the three stages, the region outside
the boundary layer must be accurate for following stages to
be accurate. In Figure 3.2.4 for R/t=25 the present FE
method for an orthotropic plate using properties shown in
Table 3.1 and W/R=10 is compared with the exact solution for
an infinite plate. For a single orthotropic layer, a
formula for o4 on the hole surface is given by

Lekhnitskii (1968) as

E
2 1{_ 2
0™ Oy E_ [ V’Ex7ﬁy cos™o
X

[ V][

)

+[ 1402 By/B, +B,/Gyy=2v, )2 ] sin?e ] (3.2.7)

where

¢ 2v .
1/89- ’_iB_...Q +[ l-. - _,‘L]’inge cosae + SM
Ex ny Ex Y

and Ex'Ey'"xy'ny are the orthotropic elastic moduli( where,

for example, E,=E when a=0°, E,=E,. when a=90°). The

1
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Table 3.1 Effective Elastic Moduli of Graphite/Epoxy

E ,= 145 GPa (21.0 Msi) E,,= 10.7 GPa (1.55 Msi)

v =.31 G = 4.5 GPa (.65 Msi) v ,=.49

(from Sandorff(1982))




4

small difference between the curves in Figure 3.2.4 can be
accounted for by the finite width of plate in the FE model.
Since stresses are a degree lower in order of convergence
the displacements predicted by this mesh should be adequate.

Within the boundary layer in the vicinity of the
expected singularity due to the interface intersection, the
solution will be dominated by the singularity. Although it
is at present unknown, if the asymptotic form of the

singularity is surmised to be
u =a_(6)r+o(r**t) w2 (3.2.8)

(where r is the radial distance from the singular line; « is
the order or power, a constant depending only on the

material properties for the problems considered here while
the strength, or intensity A _(6) of the singularity is

problem dependent (i.e. the material and loading). The rate
of convergence near the singularity can be dominated by its
order . The asymptotic expression for the stresses would
be

a=A_(0) r’"*+0(r®). (3.2.9)

Tong and Pian(1973) have shown that a reasonable expression

for the order of convergence is
g-g"= 0(h®"1/2) (3.2.10)

where o" is the FE stress, o is the exact solution. 1In
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theory, o could be found at some small r by refining the
mesh to the point where

o = Ar“? (3.2.11)

then fitting log(o) vs. log(r) to a straight line as done by
Raju(1981) to find A and «. Alternatively, by fitting data

(a nonlinear procedure) from various meshes to
o-¢"=K (@) h¥"1/2 (3.2.12)

at some small r to determine K,« and ¢, then A could be
found from Equation (3.2.11). However, since K and A are
presumed to be problem dependent this might require the
procedure for each case. Further, the previous expressions
are asymptotic and so are accurate only for values of A
smaller than is practical with the present scheme
(considering error introduced by the polynomial
interpolation between stages and limited computing
resources). The nonlinear procedure was not attempted on
this basis.

The effect of h on the results can be demonstrated.
Results were generated for two cases using R/t=5, W/L=1.4
and W/R=6 with the material properties shown in Table 3.2
for [90/0}5 and ([0/90]4 plates. Based on the observation

made in previous work by the author and others that the
three dimensional boundary layer stresses become negligible
outside of one laminate's thickness radially from the hole
surface into the plate, the last two meshes in each case
were generated for distances of three and one laminate
thicknesses from the hole surface. Raju et
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Table 3.2 Approximate! Effective Elastic Moduli of

Graphite/Epoxy
E,,= 138 GPa (20 Msi) E,,=B,,= 13.8 GPa (2.0 Msi)
Vg™ g™V 9™ 21 G,,"G,,"G ,~ 5.9 GPa (.85 Msi)

1) In general, shear moduli and Poisson's ratioc are not all
equal for actual materials.
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al(1982a,1982b) obtained solutions for these two cases using
a mesh which was highly refined towards the singularity
having about 19000 degrees of freedom. The elements
bordering the interface had the radial dimension of about
h/125 while in the present it is h/10. The mesh had a polar
arrangement in the 6-plane progressively refined towards the
singularity. The present solution took less than 8500 CPU
seconds on a CDC series 179 830D mainframe computer (this
number is typical for all solutions in this chapter since,

the same or smaller meshes were used throughout).

The results of both solutions are shown in Figures

3.2.5-10. The stresses in the present problems are of most
interest on the surface of the hole on the midplane (where

due to symmetry aozlaz=0) and the interface levels where the
singularity is expected. On each 6-plane inplane stress P

will be maximum on the hole surface. In Figure 3.2.5 the
distribution of % through the thickness is ~ompared with

Raju et al. The distribution is uniform except near the

interface, especially near 6=90°. At the interface (see

Figures 3.2.6,7) the stress o, and T, 8re continuous and so

z
are presented as averages between layers, the results in

Figure 3.2.6 show that 7, in both laminates differs only in

magnitude between the two solutions; this can be seen by the

identical zero crossing points. In Figure 3.2.7 o_ at the

z
interface shows similar behaviour but not as definitely as
for T20° From both solutions, it appears that the T20

singularity is stronger than o, and that g, is compressive

everywhere except near e=90°,
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r=R from present and Raju et al(1982a,b).
Comparison shows the effect of mesh

density as increasing the strength of the
surmised stress singularity.
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The interlaminar stress o, displays sharp variation

through the thickness. Shown in Figure 3.2.8 are comparisons

for ¢, through the thickness between the present model and

z
Raju et al. The distributions are similar but are smoothed

by decreasing mesh density. This effect appears to be

greatest at 6=90°, Away from the singularity, the solutions
are expected to converge with less refinement than at the
interface; there the agreement between the present solutions
and Raju et al is much better. Their mesh was more refined
towards the interface but still had a more dense mesh near

the midplane than the present. Shown in Figure 3.2.9 is Oy

from the present solutions where it is at a maximum in

compression.

The effect of mesh refinement on the difference
between the interlaminar stresses is apparent only near the
expected singularity. Small disagreement elsewhere could
theoretically be due to roundoff or discretization error, or
the effect of the substructuring in the present method. At
the singularity, the magnitude of the stresses are affected
without severely altering distribution. Therefore, to its
favour, the present method correctly predicts the sign and
and shows a very similar distribution near the singularity
with far fewer degrees of freedom than was used by Raju et
al. In both solutions it was observed that the inplane
stresses compare well to results obtained using the plane
stress formulas for orthotropic homogeneous plates.

For designers it would be desirable to make use of
the very accessible plane stress formulas (Equation 3.2.7)
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for laminates. There are two apparent methods for obtaining
comparable solutions using the two-dimensional solution for
an orthotropic plate (the crossplied laminate is not

quasi-isotropic although Q,,=Q as for [O/tSOJs,

[0/£45/90] etc):

s’

1) The far field stresses in the laminate predicted by CLT
may be applied as edge loads to each layer; in this case the
layers are loaded separately and so can deform
independently. This will be referred to as the unbonded
method.

2) The laminate is replaced by a single homogeneous plate
loaded by the gross applied load having elastic moduli
obtained from the laminate stiffness matrix (as done by
Greszczuk (1972) and Raju et al) to obtain strain for the
laminate from which stress in the layers can be found. The

equivalent plate moduli are

=A /AL, Vyy™A, /A

Yxy yx *12/%414

E, = A, (1

% ) E tlza(l

¥ ) G

“VxyVyx “VxyVyx xy™Aee-

where Aij i,j=1,2,6 are elements of the laminate stiffness

matrix defined in Appendix A. This will be referred to as
the bonded met™.od. This approach is basically the same as
Classical Lamination Theory. The name is somewhat artificial
since surface tractions would have to be applied to the hole
surface for it to deform according to Kirchoff's hypothesis.
This is one of the ways, as has been pointed out in early
work in edge problems, in which Classical Lamination Theory



-56~

fails near free edges.

Bquation (3.2.7) may be used with the principle of
superposition to calculate P by either of the two nethods.

Shown in Figure 3.2.10 are the Og determined from the two

methods and the present FE solutions. It can be seen that
the results of the unbonded method agree slightly better

with the FE results in the 0° layers while the bonded method

is better in the 90° layers. Overall, the bonded solution
shows better agreement except that it is about 20% less

in maximum stress concentration. In part, the difference is
again due to the finite width of the laminate in the FE
model. It can also be observed that debonding of the plies

raises the stress concentration at o=90° in the 0° layer;
this may be relevant to the situation after interface
delamination indicating an increased likelihood of complete

failure over the integral plate.

3.2.6 Summary and Conclusions

Standard finite elements can be used with a
substructuring technique to obtain solutions which compare
well with results of a very high density mesh. The
interlaminar stresses are dependent on mesh density near the
singularity but their sign and distribution on the hole
surface wvere largely unaffected. The computer resources
required for a three dimensional problem are relatively high
such that ignoring the singularity in the solution may be
costly.
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Two different schemes to estimate the inplane
stresses in a laminate using plane stress formulae for
orthotropic layers are presented. The methods yield
different results since they roughly model the laminate
having bonded and unbonded layers.
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3.3 train Meagsurement and lysis

3.3.1 Introduction

Some confidence in the results of the present model
will be justified if they agree with results measured from
actual composite laminates of practical utility.

In the past, strain analysis by measurement has been
done by Daniel, Rowland, and Whiteside of surface strains on
the faces of fiber-reinforced plates using strain gages,
Moire grid , and birefringent coatings and compared to
two-dimensional linear elastic finite element and exact
solutions(e.g. Daniel et al(1973,1974,1978,1980)). There
was excellent agreement observed except in the small region
surrounding the hole, i.e. the boundary layer. This
indicates that the methods used to measure strain,
characterize the material, and mathematically model the
problem are satlstacto}y at the level of analysis used

outside the boundary layer.

To the author's knowledge, measurements of hole
surface strains have not previously been taken with the
intent of investigating the boundary layer phenomena. For
straight edges it has been the interlaminar shear strain
which has been measured while the interlaminar normal
strains were not. Note that in all methods, some additional
material was bonded to the specimen surface.
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3.3.2 Preliminary Problem and Methods Analvsis

3.3.2.1 Analysis of Hole Surface Strains and Stresses

Since on the hole surface

O) *Tro™Trz™0 (3.3.1)

the reraining stresses may be expressed in terms of the
strains by using the Hooke's law relations

*z Sz~ "9 Sas
oz = (3.302)
- 2
S22 Saa Sga
reg Saa” "z 52,
oo - (3.3.3)
- a2
Sga Sis Vaa
Y
See

where

S_.= 8% E  + c'/ B__+ 2(-v / B, +1/(26,_))c"s*

22 22

s..=1/ B

1 " (3.3.5)
S2." _"a:ca/ Eza’"::’g/ E,,

2 2
Seemc’/ Gog+ 87/ G,



-61-

and c=cos(6-a) s=sin(6-a).

Using these equations Gy and Oy may be determined
from measured values of the two strains L and *e while T20
requires Yz0™ aw/rd3e+3dv/3z be measured. For holes with

R/t>1 the term aw/rd6 was found in the FE results to be less
than 5% of the strain Tz0°

Of the two locations considered (i.e. the midplane
and interface), the midplane is the most favourable for

measurements. At the midplane Tea and 7, are both zero due
to symmetry while more importantly £q is maximum (so

anz/az-O). Theresfore, "y and rg are the principal strains

and o, and oy are the principal stresses.

Since the strains measured are inevitably affected by

extraneous influences to some degree, and considering the

complexity of the Equations (3.3.2-5) it seems prudent to
investigate what influence differences in the stresses will
result from differences (e.g. between FE and measured or
actual and measured etc.) in the strains. Beginning with
Equation (3.3.2) and assuming the difference between 2 sets

of scrains » and »' to be bounded by

o= <y + | o | (3.3.6)
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where "o and m, are constants (no is in strain units).

A bound on the error in o, may be found from

ol < Mg (iSga #1810 +n (IS, s 1+15,,%6l)
z z (3.3.7)

_ 2
| $225323%2s '

jo

Purely for demonstration, the low values no-l pr and "~ .05

were used with » from the FE model at z=0. Figure 3.3.1

shows °z/°o and the bounds from equation (3.3.7) for both

laminates. While bounds are always conservative they do
show tnat small differences in the strains may cause larger

errors in 0, -

3.3.2.2 Measurement by Strain Gages

After surveying the available methods, miniature
strain gages were chosen to measure the hole surface strains

r, and r4. For the normal strains this well-developed

technique offers accuracy and convenience without requiring
a direct line of access to the hole surface. The usual
method of strain rosettes was deemed unfeasible in the
presence of large predicted gradients in the region of
interest near the interface for the scale of the problem.
Unfortunately, strain gages which measure transverse
gradients are not apparently available. The strain gage
principle of operation requires elongation in the foil

direction; using parallel foils to measure a transverse

gradient would approximate 3v2/r363z rather than av/az.

Shear strain measurement on actual laminates requires a
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Figure 3.3.1 Interlaminar normal stress at r=R, z=0 from
FE models of plates without gages (broken
lines) and error bounds from Equation (3.3.7)

using n°=1 p#e and n1=.05.
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different approach.

It would be a mistake to consider strain gages with
too much familiarity for the present problems. From other
studies (Beatty (1979) and Stehlin(1972)) the materials used
in this application of strain gages should not have any
gpecial problems such as rcinforment effects, but there are
other aspects to consider. Although the material interface
discontinuity in the FE model is artificial it remained to
be seen what behaviour exists in the actual laminate. The
singularity arises because the lines of material
discontinuity form a sharp corner: placing a third material
over the singularity will conceivably have the same effect
and alter the behaviour. PFurther, high gradients expected
near the singularity may not transfer well through the two
materials and the variation of strain under the gage length
will cause the measured value to differ from the point value
at the gage center and also may make the measured value
sensitive to the gage position.

The gage positioning has three possible errors of
which translation in the z direction is most suspect. An

approximate expression for the change in the average strain

;z of a gage centered at z=z, due to a shift Az, is

or z°+%
- ‘ 2
L ar, = £ (z)az+ % ;;z Az, ] (3.3.8)
20" 2

i.e. the jump of -, and acz/az across the gage length.

When considered as a single foil element of initial
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length t, perfectly bonded to the surface of the gspecimen

and aligned in the 2z direction (see Figure 3.3.2), , a

‘strain' gage centered at position z would actually measure

l -! ° VI a a2 2
LY Sl J "(1+3w/3z) *+(av/az) *+ (3u/z)® 4, _ ,

[ 4
=] 0 o

0
7/
% J V{(1+422w/32z) 47 - 3 (3.3.9)
0 %o

where lo' !f are the initial and final length ; also note

that

lim at .,
L

t +0 z

for continuous ry when 3v/3z and 3u/3z are omitted. From

the FE results it is observed that gradients in the o
direction are relatively small in relation to the 2z
direction and the dimensions of the gages. In the z
direction, the transverse displacement w as well as the
circumferential and radial displacements v and u all vary in
the z direction. Although these z direction gradients may
all exist in large magnitude at the singularity, the
approximate expression should be accurate since the squares
of the gradients in Equation (3.3.9) should be negligible.
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Figure 3.3.2 Single foil element represented as a line.
A point A located at (0,0,z) on the undeformed
length L, will have the position

(u(z),v(z) ,z+w(z)) on the deformed length Le.

The final length is then

L
e -I ov/fdu/dz)3+ (du/dz) 2+ (1+4dw/dz)? dz.
0
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3.3.2.3 Specimen Analysis

Comparisons between macro and micro models (i.e. on
the macro and micro structural levels) are made with volume
and surface averages i.e. minivariables. The minimum strain
gage length is fixed at a present limit of about 15 graphite
fiber diameters. An advantage of this is that random
variations due to fiber position are likely to be mitigated.

Since the ratio t/a is fixed Rt/a? must be set for the
specimen. High Rt/a? provides a workable surface area and

more information on the distribution. Low Rt/a® is of
interest since the theory is expected to be less accurate as
this decreases. The commercial material is a tape of which
seven plies were used in each layer of the specimens.
Therefore, the measured results are for a relatively thick
laminate and should be regarded in this light which is

favourable towards the theory.

To model the experimental specimens the FE meshes
were generated in the same manner as in the previous section
except that for the third stage where two additional
elements on the hole surface were placed as depicted in
Figure 3.3.3 to represent the strain gages. These elements
covered the entire hole surface and had one of three sets of
properties: either adhesive, backing or a comblnation cof
foil and backing. This coarse mesh crudely models the

actual instrumented plates.

The assumptions about the geometry of the plates may
have some bearing on the results. The layer thicknesses, in
contrast with homogeneous materials, determine the effective

moduli. Specifically, for two plates having fiber volume
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contents g and thickness t,

"txtx'"tatz' a constant. {(3.3.10)

The layers follow the same relation. If the plate thickness
or layer thicknesses varies, so do the material properties.
It is assumed in the model that the layer thicknesses are
equal and that the plates are symmetric, also that the
material is integral. Asymmetry would cause bending
deformations to occur. Bending of the plate was measured but
was found to be insignificant. In fact, the total thickness
of the plates varied about 18% in a wavy manner.

Presumably, the layer thicknesses vary accordingly though
not neccesarily such that their relative thicknesses were
constant. If the results are very sensitive to the material

properties this could be a source of scatter.

3J.3.2.4 Summary

Two normal strains on the hole surface can oe
measured by strain gages to yield the two normal streasses.
It was shown by a simple analysis that the calculated
stresses may be sensitive to changes in the strains. Strain
gages measure the average over the gage length and should
not be sensitive to other gradients. Because material is
adhered to the hole surface across the singularity, the
gages are included in the FE model of the relatively thick
specimen.

In this subsection, the problem methods have been

analyzed to reveal possidble sources of error which have beea
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discussed and some expressed mathematically. While all
these errors are possible, it remains to be seen if they are
significant in magnitude.

3.3.3 Specimen Preparation and Experimental Procedurys

Two specimens were prepared having the dimensions and
properties shown in Table 3.3. All plates were cured in an
autoclave according to manufacturer's specifications. After
trimming the specimen edges and glueing fiberglass tabs to
the ends the central and grip holes were drilled with a
diamond drill. The holes were finished by boring with a
carbide boring tool without fluid at 250 rpm, a feed rate of
12.7mm/ninute, and with a depth of cut of .127mm. This left
a smooth clean surface on the hole except in quadrants where
the tool point travelled directly against the fibers and
some tearing occurred, as well some fiber splitting occurred
on the exiting side of the plate. Before mounting gages the
surfaces were lightly sanded rnd prepared according to the
manufacturer's guidelines (see also Tuttle and
Brinson(1984)).

Gages were installed on the hole surface using a
special jig (see Figure 3.3.4) in a pattern such as is shown
in Figure 3.3.5. The symmetry of the specimens provides up
to eight equivalent sights for some measurements. The
positioning of the gages through the thickness was in error
on average about .127mm from the desired location. Three
gage lengths, .203mm, .381mm,.787mm (hereafter referred to
only by these numbers without units) were used to measure

the transverse normal strain while .381lmm gages measured the
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Table 3.3 Geometric Dimensions and Material Properties

of Test Specimens

Lay-up:
Material:

iriber Content:
Overall Length:
Length of Tabs:
Overall Width :

2Avg Thickness :

Hole Diameter

11

<
(1]

12

12

Specimens

[90,/0,1,

67.8% by volume
482.6 mm

25 mm
254.0 mm

3.66 + .13 mm

27.94 mm

Elastic Moduli?

137.5 GPa
10.1 GPa
0.29
0.48

5.4 GPa

[0,/90,1,

Hercules AS4/3501-6 Hercules AS4/3501-6

71.2% by volume
482.6 mm

25 mm
254.0 mm

3.48 +.1 mm

27.94 mm

144.2 GPa

10.6 GPa
0.29
0.48

6.0 GPa

(1) A common error in the measurement of "¢ using

the standard procedure ASTM D-3171-76
is the reduction of weight in water due to

bubbles on the specimen. This decreases Mgt
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Table 3.3 cont'd

(2)

(3)

so that for duplicate measirements, the higher g

was chosen. Evidence that the »g chosen are

correct can be seen in the fact that the product:
fiber volume x thickness

is very nearly equal for both plates.

tolerance is range of variation in thickness,

not measurement accuracy.

From symmetry and transverse isotropy it is

assumed that v -Egz,G‘ssGta, and

 _B74
12 19'Eas

623'333/2/(1+"a3)‘
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Table 3.4: Strain Gage Dimensions and Properties?

Adhesive : Ex 2,76 GPa v= 0,35

Polyimide Backing E= 2.96 GPa ve 0,35
Epoxy/Phenolic Backing E= 10.34 GPa ve 0.35
E= 158.6 GPa ve 0,30

Constantan Foil

2polyimide Backing/Foil 9,90 GPa v= 0.33

3.203mm Epoxy Backing/Foil : E= 13.43 GPa va 0,35
Overall Gage Thickness : .0279 mm
Foil Thickness . .0025 mm

Adhesive Thickness .0254 mm

(1) Dimensions and properties were obtained from the

manufacturer by private communication.

(2) Assuming isotropy and using rule of mixtures.
The foil is assumed to cover 50% of the gaze
area. Therefore, the foil volume content is
(.5 x .0001)/(.001 + .0001)=.04545.

(3) Assuming isotropy and using rule of mixtures.
Foil volume content is (.5 x .0001)/.0024=.02083
See note (2).
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Figure 3.3.4 Strain gage mounting jig. Gage is aligned with
marks and lightly adhered to the mounting face

of the slider as shown in the exploded
section. The needle is level with the
horizontal mark and can be referenced at the
interface. Positioning is done by rotating the

table and the micrometer head.
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circumferential strain in equivalent positions. The .381mm
and .787mm gages have very similar construction while the

.203mm gages were made with a different backing material.
The properties of the gages are listed in Table 3.4. The
hole surfaces were instrumented two times to obtain the data
presented here. Between runs less than .13mm was machined
from the hole radius to clear the surface for
reinstrumentation. This small change in R/t is assumed to
have a negligible effect on the results and so the data are
mixed from the two replications of the experiment.

The specimens were mounted in a load frame as shown
in Pigure 3.3.6 The 'Whipple-tree' grip mechanisms are
designed to apply four equal loads to the specimen; the
distribution is somewhat less than uniform. The loading
rate was less than 5mm/minute in all cases.

During the tests the gages were excited with 150 mv
for the .38imm and .787mm gages and 80 mV for the .203mm
gages as is recommended by the manufacturer for optimum
accuracy {(Micro-Measurements 1979). The specimens were
loaded through four cycles while strain data were recorded
using a digital acquisition systenm.

The strain data were analyzed by linear regression
(e.g. see Mandel (1964)) to obtain the slope of the
stress/strain response curve for each gage. The intercepts
and variances were also calculated to detect anomalous
behaviour. The final averaged slopes were corrected for the
effects of the transverse sensitivity of the gages taking




Figure 3.3.6 Specimen loading and data acquisition
equipnent.
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into account the fact that Kt is different for the three

types of gages used (Micro-Measurements (1982)). The
.381mm circumferential gages were used to correct all of
the transverse gages and to obtain the results listed in

Appendix C.

For comparison with the measured results data
representing the specimen's material elastic constants,
geometry and loading are required. Geometry and loading are
straightforward. To obtain sets of effective elastic
constants for the two plates, the fiber volume content for
each was determined from a sample. Two further plates [0 ]

and [tdsg], were made from the same batch of material used

to make the holed plates, and characterized. The fiber
volume content of each plate from which specimen's were cut
was determined using the ASTM standard procedure D 3171-76.
The elastic moduli in Table 3.3 were determined using this
data and Hashin's equations in the manner described in

Appendix B.

3.3.5 Results and Discussion

The results of the measured strain data from Tables
Cl,2 are plotted with FE solution results in Figures
3.3.7-9,11,13.
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3.3.5.1 Midplane Strains

In Figures 3.3.7,8 are shown the results at the
midplane. For both cases the FE model shows little effect
of the gages. The measured results are in excellent

agreement for both r, and rg4 in the [90/0]8 case; for L in

z

the [0/90]s case the agreement is fair. 1In the (0/90] the

’I
discrepancy increasingly occurs towards the axis
perpendicular to the load axis where the strains are, in

general, the highest.

One difference between the two laminates is the
orientation of the middle plies. The [0/90], has a 90° ply

on the midplane so v and E__ increasingly govern the

23
strain near 6=90° where re is highest, while in the [90/0],,

E,, and v, JOvern the strain. The determination of the

latter two moduli (a simple rule of mixtures) is a much less

complex and more accurate process than for the former; Vo

required measurement on the edge of a specimen using a
miniature gage. The material properties were derived from
approximate formulas using measured data. Before
questioning the model, the procedures by which the effective
moduli were obtained should be investigated.
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3.3.3.3 Interface Circumferential Strains

The circumferentiul strain from the interface is
shown in Figure 3.3.9. Agreement is good except for the one
unexplained point for the [0/90]}, case at o=67.5°. At this

point, first the higher reading was measured. The gage was
then removed and another gage was applied and the measured
strain was again high indicating that the cause was in the
plate (the measurement system was thoroughly checked).

After the hole was resurfaced in preparation for new
measurements and a new gage was applied in a different but
equivalent location; the lower reading was obtained.
Cracking between fibers under the gage may have occurred but
was not observed (a closed crack would not be detected
visually). Because of the order of procedure, the cause of

the first reading is unknown.

3.3.5.3 Interface Transverse Strain

The PFPE results indicate that the measured transverse

strain (or interlaminar strain) at the interface is modified
by the presence of gages in the model. Thigs strain, taken
from different radii of the model is shown in Figure 3.3.10

(for the uninstrumented plate the £y is discontinuous and so

shown is the average between adjacent elements bordering the
interface). The difference in z, between the instrumented

and uninstrumented models at r=R shows that the coating
influences the surmised singularity. Further, the

differences in the instrumented model between z_ on the
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hole/adhesive, adhesive/gage, and gage surfaces show that
the strain is poorly transferred to the gage surface.
Overall these predicted effects significantly alter the
strain intended to be measured.

Figure 3.3.11 shows comparison between the measured

and FE results. Between 45° and 90° the results do show
definitely better overall agreement between the FE models
with the gages included than with the uninstrumented model
in both cases. These effects were predicted by the model
and are for the present case a shortcoming of the
measurement system, but since one important aspect of the
work is to investigate the validity of the model the
experiments were carried out. The transfer effect on the
strain may be reduced by decreasing the relative thickness
of the gages and adhesive layer, i.e. using a thicker
specimen to reduce the gradients under the gage. It is not
shown, but the strain measured by the ideal gage from
Equation (3.3.9) evaluated at the interface was negligibly

different from ry in the FE results, as expected.

Shown in Pigure 3.3.12 is the gage surface

distribution of L through the thickness of the FE model

with a polyimide gage coating for both plates( the
distributions from the epoxy gage model are negligibly
different). Not shown is *o which is nearly uniform through

the thickness except near 6=90° where the strain in each
layer differs and so is sloped across the interface. For

detail near the interface - is shown discontinuous although

in the gage it must be continuous. The average strain
measured inside each gage length must fall within the two
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models. These plots show the effect of
instrumenting the hole surface on the layer
interface of the plate and on
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extreme values in that interval. The measured strain will
be sensitive to the gage position depending upon the

distribution of r,. From the distributions, the .203mm

gages are expected to be the most sensitive to positioning.
From a visual inspection Azo for the .203mm gages are as

shown in Table 3.5. The jumps (i.e. difference) in », and
aaz/az across the gage length are expected to change near
the ringularity with mesh refinement. L is expected to be

conmplex and error due to positioning makes accurately
fitting an approximating function to the limited data

unpromising.

At 0=0° the jump is small and the strain is nearly
uniform, in agreement with the magnitude and distribution of

the measured results in Figure 3.3.11.

The strain is small at 6=18°,27° but the distribution
changes between these two angles. The measured result. at 6=

22.5° agree very well in both cases except the .381mm gage
in the [90/0]s case. Tne .381lmm gage is wider than the

.203mm and so would be more sensitive to the greater change
with 6 in this case.

The .381mm gage measured a lower average than the

.203mm gage in both plates at é=45°; this is not compatible
with FE results. Since the distribution is nearly symmetric,
if the magnitude near the surmised singularity is greatly
increased any shift of the .203mm gage will lower its
average; this is much less so for the .381mm gages. This
explanation is correct in trend but it is doubtful if the
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magnitudes even in a refined mesh will confirm this. The

.203mm gages were well positioned. The FE results give no
indication of a sign change near the singularity while it is
clearly indicated in the measured results. This could be
evidence of influence of the microstructure. Angles between
fibers do not change, the influence of the microstructure
could deperd upon the angle at which fibers intersect the
edge.

At o=§39,72° A%, can be large, increasing or

decreasing the average from a shift in position, and it
increases as the gage length decreases. For example, for

the [0/90]s case (using =#_ from Figure 3.3.12)

_ Az az?
A%, = -39 —2 - 275 —-g and
h h

AZ -

—}-19- =1.117 inches yields a7, %—6,+3 from Equation (3.3.8),
The average is increasing inversely to gage length which the
[0/90]s measured results agree but not the [90/0]'. Very
poor positioning of the .203mm gage explains the [90/0]'

case. The strain at the actual shifted position is about
-20 pe/MPa which is just what the gage measured. In the
[0/90]s case, the strain measured by the w2ll positioned

.203mm gage is very large and in agreement with the present
FE distribution if the effects of mesh refine.ient are
alloved.

ar, is small but the slope changes in sign at e=90°

approaching the interface from either side in the same
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Table 3.5 Positioning error of .203mm Strain Gages in mm
8z

o

;] [90.,/0.,] [01/90719

] -.025 -.025

22.5 +.102 -.076

45 -.025 +.025

67.5 +.127 ~.025

90 +.051 +.025
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manner as for Oy The .203mm gages which measured this

strain were well positioned. 1In both cases can be seen that

the average £, measured is a much larger negative value for

the longer .381mm gage. The change is much larger than the
distribution from the present FE results show. The sharper
distribution which is surmised to occur with higher mesh
density would be more compatibie.

To summarize the results for £, at the interface, the

measured t, agree within reasonable limits with the
present results from the model. The distribution through the

thickness at 6=45° does not, in either case, agree in a
manner which can, beyond the assumptions considered to be
salient, be accounted for here. 1In support of the present
results from the modei the measured distributions are
compatible elsewhere; moreover agreement improves

when the surmised influence of mesh density is allowed.

The situation very near the interface is apparently
more complex than the present methods can predict with great
numerical accuracy ; more detailed work is necessary before
any conclusion can be made about the adequacy of the model
in this region.

3.3.5.4 Stresses from Strains

Finally, shown in Pigure 3.3.13 are comparisons of
the stresses calculated from FE and measured strains. As
expected, oy shows excellent agreement at the midplane while

o, is sensitive to the difference in strains.
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3.3.5.5 Discussion

Regarding the overall success of the analysis it must
be emphasized that due to the predicted behaviour of the

measurement system for :, at the interface agreement was

z
achieved only after that effect was accounted for and not
directly as was desired. Some evaluation of the measurement
system and general approach in light of the results is
appropriate.

The measurement system suffers from problems of
scale. The results indicate that due to high macro-strain
gradients positioning accuracy of the gages became a
significant factor and the strain would not transfer
unaltered through a relatively thick gage. Also, the minimum
gage length available will not measure over a single fiber
diameter as would be desirable to guide and verify the
theory. Because of these effects the gages were
approximately represented in the model. This is cumbersome,
contributes further to error, and further discourages more
rigorous methods of obtaining solutions. While awaiting
further theoretical developments in analysis at the
microstructural level of composites or measurement
tecnniques of higher resolution which do not interfere and
could be applied to this problem, it would be useful to

construct enlarged models for measurements.

By increasing the absolute diameter of the fiber, for
example by a factor of ten, while maintaining the relative
material (by using a cheaper linear elastic material),
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loading and geometric parameters constant for relevant
problems, the observed effects of scale could be mitigated
without great expense. This recommendation is based not
only on the results observed here, but also on the reading
done in preparation for the present work. As was mentioned
in the introduction to this section such work has been
conducted, but none sufficiently relevant to the material

system of concern in this work.

3.3.6 Conclusions and Recommendations for Future Work

Strain gages can give accurate measurements of the
circumferential strain, and the interlaminar normal strain
away from the interface. At the interface, the

discrepancies in ry between the instrumented model and

measurements are attributed to h-dependence of strain in
the PE results and effects of scale in the measuring system.

Comparison improves after accounting for these factors.

From what has been learned in the present analysis,
to obtain more detailed measurements without influence of
the measurement system nea&r the interface, enlarged
fiber-reinforced models could be used.

For a straight edge, Kriz(1977) determined using a
perturbation solution that the interlaminar stress
distributions of Gr/Bp [t45]s laminates were particularly

sensitive to the Ggos modulus. While this study used a

questionable method of solution it was feasible because the
computational efficiency of the method facilitated the work.
In future work on the present problem, some analysis of the
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sensitivity of the boundary layer behaviour to the material
properties using a more efficient method of solution should
be performed to determine if errors in the experimentally
determined elastic moduli will significantly influence the
behaviour and effect comparison with measured results.
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3.4 FE_Analysis of Selected Probienms

3.4.1 The Influence of R/t on [0/90]8,[90/0]s Laminates

It can be seen in the literature survey in Section
3.1 that all prior analyses apart from Lucking et al (1984)
which had reasonable solution accuracy were done for a fixed
or very large value of R/t. In this subsection the model is
used to study [0/90]s and [90/0]5 laminates hawving the

material properties listed in Table 3.1 for R/t varied over

a range of 1-25.

To vary R/t the thickness parameter was varied while
R remained fixed. The same number of elements were used for
each mesh with the distribution of elements in the 6-plane
of the third stage for each case as shown in Figure 3.4.1;
this mesh models the 3-D interlaminar stress boundary layer.
In comparing the results using this scheme, because the mesh
density varies and the effect on solution accuracy near the
singularity is significant but unquantified, the
interlaminar stresses near the singularity cannot be
compared between solutions. Specifically, on a é=constant
plane h/t is constant but h/R varies directly with R/t being
lowest for R/t=25; therefore the mesh density relative to
the radial dimension of the inplane stress boundary layer
varies directly with R/t. This precludes definite
comparison between the interlaminar stresses at the

interface for different R/t values.

The interlanminar stresses at the interface on the



-Apnas 3/¥ I0J POsSN T9pouw jJOo 3bels [RUTI ayl
UT S3USWST® 93TUTJ JO UOTINQTIAISTIP dueyd-¢ T p°f ¥InbBIJ

OI/4 = |=—




-98-

hole surface are shown in Figure 3.4.2 and 3.4.3. 1In the
solutions Ta0 increases with R/t. Stacking sequence

reverses the sign but otherwise has a negligible effect so

only the [0/90]s case is shown. o, averaged between layers

in Figure 3.4.3 is small and shows little change with R/t.
In Figure 3.4.4 the distribution through the thickness for

the extreme R/t values is shown. T26 is the stronger of the

two interlaminar stresses for all R/t shown. (not

rz
shown), which must vanish on the hole surface, did not

exceed 10% of the applied stress.

In Figure 3.4.5 ¢, on the hole surface at the

midplane is plotted for varying R/t. These results are
expected to be accurate since little change was observed
between each stage of the solution and the midplane is

furthest from the singularity on the hole surface. The
distribution is greatly affected by R/t and is radically

different for the two stacking sequences. o, on the

midplane may be maximum in tension depending upon R/t and
stacking sequence; for maximum in tension the two stacking
sequences show reversed trends with R/t. It should also be
remembered that the signs of the stresses will be reversed
for applied compressive stress amd that stresses from the
two stacking sequences can be superposed for biaxial
loading.

In Figure 3.4.5 the change in ¢, between increasing

z
increments of R/t is decreasing. For example, in both cases
it changes far more between 1.00 and 12.5 than it does

between 12.5 and 25. A similar trend, although affected by
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Figure 3.4.2 Interlaminar shear stress at r=R,z=h from FE
model of [0/90]5. The distribution for the

[90/0]’ case is nearly identical except in

sign.
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Figure 3.4.3 Interlaminar normal stress at r=R, z=h for
thick and thin laminates (R/t=1,25) shows
little difference in magnitude
between these two extreme cases.
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Figure 3.4.4a) Interlaminar normal stress at rsR through the
thickness of the [0/90]’ case for thick and

thin laminates.
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Figure 3.4.4b) Interlaminar normal stress at r=R through the
thickness of the [90/0]s case for thick and

thin laminates.



-103-

25

fo/eg

90

Figure 3.4.5 Interlaminar normal stress at rsR, z=0 for

R/t varving from 1-25.
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h-convergence, appears in T,0° It appears that a three

dimensional state is approached asymptotically.

The distribution of o, through the thickness is shown

z

in Figure 3.4.6. The characteristic slope reversal in the

0=0° is evident at 6=90° in both laminates for R/t=25.

Overall, o, is low, i.e. less than 20% of the applied

z
stress. Although the values predicted here are low for

composite laminates or even unidirectional plates this
stress acts on one of the planes of lowest strength. For

isotropic plates Sternberg(1949) found that ¢, was dependent

upon the Poisson's ratio and rapidly approached the plane

strain value of oz/oo=2v as R/t decreased. 0g Was affected

negligibly by R/t.

The inplane stresses show an interesting comparison
with the two methods of using the orthotropic layer formulae

(Equation (3.2.7)) described Section 3.2. In Figure 3.4.6 it
can be seen that all curves are close except at 6=0° in the

0=90° layers and at 6=90° in the a=0° layers. At 6=90° it
appears that the unbonded formula is closest for low R/t
while the bonded formula is closest for high R/t. In either
case the bonded method agrees better at the interface where
the layers are bonded; the thicker layers may deform without
high interlaminar shear strajin required in the thinner
layers. By this heuristic reasoning, for very low R/t plane
strain solutions for individual layers may be required,

although the plane strain stresses may not be significantly

different. At 6=0° the a=90° layer appears to be more
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Figure 3.4.6 Circumferential stress at r=R for thick and

(R/t=1,25) from the FE model
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formula.
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influenced by the deformation of the «=0° layer than by its
own loading and is stressed closer to the bonded case. For
designers, this method could be a nfactical way of
estimating bounds for the maximum inplane stress

concentration which depends on R/t.

In summary, an FE solution having a constant number
and distribution of elements within the boundary layer was
used to investigate the effect of R/t on [0/90]s and [90/0]S

laminates under uniform uniaxial loading. T, Was the
strongest interlaminar stress in all cases. o, has extrema

on the hole surface at the midplane where its distribution
is greatly affected by R/t and stacking sequence but its
maximum magnitude is less than 20% of the applied load.
Interlaminar stresses near the singularity are h-dependent
while h varied with R/t for the scheme used. At the

interface o, is again small and did not appear to be

z
significantly affected by R/t and stacking sequence. The
maximum stress concentration at the hole surface appears to
be bounded w.r.t. R/t by the bonded and unbonded plane

stress formulae.
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3.4.2 The Influence of R/t on [90/0] Laminates

In this subsection plates similar to those in the
previous section are investigated in the unsymmetric
configuration. Unsymmetric laminates, due to their layered
heterogeneity, deform in part by curving in response to
membrane loading. That is, in terms of Classsical

Lamination Theory

B = [0].

For a [90/0])] configuration ([0/90] is the mirror image) when

N

%' Mx #0 the model is changed from the symmetric case only

in that °iz=° replaces the symmetry boundary condition along

z=constant. Results were generated for R/t=2,10,50.

The FE model was largely unchanged from the symmetric
case. The boundary layer in which the inplane stresses are
affected by the hole in a plate in bending is roughly the
same size as for a plate in extension (see Savin (1961) pg.
349) so W=10R was used as for the symmetric plates. Far

field 0, from CLT which varies linearly across the thickness

of each layer (see Figure 3.4.11) was applied at x=L/2. The
same substructuring scheme was used. A first observation on
the results was that the depth of the boundary layer in
these laminates is again occurring only to a depth of one
laminate thickness (2h in this case) radially from the hole
surface so the meshes used were less dense in relation to

the boundary layer dimension than for the symmetric
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laminate. Again the interlaminar stresses were maximum on

the hole surface and ~ was negligibly small.

rz

T20 is plotted through the thickness on the hole

surface in Figure 3.4.7. The distribution and magnitude of

T, At the interface shown in Figure 3.4.8 is near what was

found in the symmetric laminates although it is slightly

stronger at the interface than in the symmetric case.

o, on the hole surface is shown in Figures 3.4.9,10.

As seen in Figure 3.4.9 the shape of the curves through the
thickness is similar to what was observed in the symmetric

plates but since ¢, must vanish at z=0,2h it is of most

z

interest at the interface. 1In Figure 3.4.10 o, along the

z
interface does not exhibit much change in distribution
between R/t=10 and 50. However, while the distribution of

o, on the hole surface along the interface is very similar

to that of the symmetric plates, the magnitude is nearly

doubled for the same mesh. Because 0, is broadly

distributed with 6 having a maximum on the interface near

6=55° a biaxially loaded plate would have a maximum, for

exanple when R/t=50, of near =-o although buckling would

o’
obviously also be considered, delamination would be a

concern for compressive Og -

Similar to the symmetric case, comparable results for
o On the hole surface may be obtained from superposing the

exact plane stress solutions for orthotropic plates in

uniform tension and an approximate solution for a thin holed
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Figure 3.4.8 Interlaminar shear stress at r=R, z=h for

R/t=2,10,50. The difference between
curves decreases with increasing R/t.
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Figure 3.4.9 c¢) Interlaminar normal stress at r=R,

0=0°,45°,90° through the thickness for
R/t=50. The change in distribution diminishes
with increasing R/t.
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Figure 3.4.10 Interlaminar normal stress at r=R, z=h for

R/t=2,10,50. The difference between
curves decreases with increasing R/t.




-115-
/“bx
6:; = Oo
(=]
NX =90
< Q=0"

Figure 3.4.11 Far field CLT stresses in [90/0] laminate.
The normal stress in each layer can be given

by Oy=OoxtHoxZ S° that the net force and

bending moments are N=o_ . h and M-poxh’
respectively. 4
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plate in cylindrical bending due to Lekhnitskii(1968). The
net bending moments for the laminate M, and My are zero but

the far field CLT distributions of Oy and Oy may be resolved
into a net applied uniform stresses %ex’ %oy and linearly

varying stresses Pox ' Poy in each layer such that

+ pox(z-zo) Oy™ Ooy + noy(z-zo) (3.4.1)

g, .= 0 y

X oxX

where zZ, is the center of the layer and
h/2 > z-z, >-h/2.

So the moment per unit length in the center of each layer
is

? 2
M= loxh M= loy (3.4.2)
ox 12 °Y 12
(see Figure 3.4.11)).

0g ON the hole surface can be determined

From %ox and “oy'

for each layer using Equation (3.2.7). The bending moment
on the hole surface is given by Lekhnitski(1968):

DD
Mg=M + M !L—ﬁ—i— (aosin‘e + atsinﬂe cos?e
r

+ a_ cos*e)/(k+4g) (3.4.3)

where M is the applied moment; and
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E_h? E_h® G.., h?
D1= X , D2= Y . D3= _’SY,_._" +D1,uyx
12(1=vy vy 12(1- ) 6

L‘xy lr‘yx

= 4 - <4
Dr—Dicos o + 20351n ocos9 + Dzsmn e

k= J/D./D. , g= ny/Ey where

E are the elastic moduli:; and

x Byt VyyeVyx1Gxy

- =l e & = -
a.=n, al—k n-n 1+4g(1+vyx)(1+n), aa-k(l k 4g(1+uy

o ))

X

n=-z(si+sz) and s,:S, are roots of the equation

2
+ 2 _
D_s +2Das +D1-0. (3.4.4)

Simplified expressions are

o (Ey-4vy By
at 6=0 Mg=M =M & (3.4.5)
(V/ lExEyi +4ny)
Vv (E_E_) (1+2B8) +4G
at 6=90° M g=M, =M XYy Ry (3.4.6)

X ox \/lExEyS + 4 Gy

where p is the imaginary part of the roots of the equation

Q,,8% + 2(Q, +2Q..)s® + @ =0 (3.4.7)

since

S,= ¢ +¢f s =-¢+if 8, ,=¢-1f 8 =-¢-:f.

Using these equations the distribution of Gg Can be found
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through the thickness of each layer. This method is termed

the unbonded method.

For a bonded method an equivalent homogeneous plate
will not display bending-membrane coupling as does the
heterogeneous plate. For this reason no stress moment is
predicted on the hole surface by this method. As for
symmetric plates the elastic moduli of the equivalent plate
are derived from the laminate stiffness matrix to be used in

the plate formulas.

The inplane stress Gg On the hole surface from all
results are plotted in Figures 3.4.12,13. In Figure 3.4.12
Cq plotted against 6 from the a=0° layer shows that the

concentration is highest at the interface at a value of

about 17; more than twice what was observed in the symmetric

case. In the «=90° layer, the maximum stress concentration
is nearly five in compression for R/t=10, so the progression

with R/t is not monotonic.

In Figure 3.4.13 Og varies linearly through the

thickness towards the maximum stress concentration at 6=90°

in the «=0° layer for high R/t and slightly less so for

lower R/t towards the interface; as R/t decreases 0g near

the interface tends slightly towards that of the higher R/t

and bonded cases as was observed in the symmetric laminates.

As was observed in the symmetric plates, the unbonded
and bonded methods bound the maximum stress concentration
over the range of R/t and show fair agreement for all R/t

elsewhere. As bounds are in direct agreement, the plane
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Figure 3.4.12 Circumferential stress at r=R from FE models

with R/t=2,10,50 and unbonded method of using

the plate theory and plane stress formulas.
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Figure 3.4.13 Circumferential stress at r=R from FE
models with R/t=2,10,50 through the thickness
with unbonded method of using the plane stress
and plate theory formulas.
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stress/plate theory results are worst at 6=0° in the aw90°
layer. For very low R/t thick plate and plane streain
solutions would be more appropriate for the unbonded case.

In summary, the unsymmetric configuration of the

plates in the prev.ous subsection were investigated.
Asymmetry resulted in a much higher maximum concentration of

the stresses on the hole surface. Interlaminar stresses Oy

and T2 o show very similar distribution and variation due to

R/t at the interface to the symmetric laminates but are

stronger, especially o,. The distribution through the

4
thickness is such that the interface stress state is very
severe. The FE and plane stress/plate theory results show
fair agreement overall and the bonded and unbonded methods
are observed to bound the FE results over the range of R/t

as for the symmetric cases.

3.4.3 Reinforced Hole in a [0/90]s Laminate

A small influence of an adhesively bonded third
material on the interface behaviour of the plate was
observed in Section 3.3. Beyond the implications the
effect had on the measurement of interlaminar strains, it
invites a study of coatings to determine the effect on
stresses in the boundary layer. Hole reinforcement, which
has been investigated for conventional plates, is compelling
for composites since it is congruous with the philosophy of

tailoring structural properties by combining phases.

To the author's knowledge, no three-dimensional study
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of laminates with reinforced holes has been reported in the
literature. In Savin's book "Stress Concentration around
Holes" (1961) plates with circular holes reinforced by
welded isotropic elastic rings under membrane loading are
treated as plane problems with the following among the

conclusions:

- it is possible to choose a ring of such rigidity that Te

in the perforated plate is considerably lower than in the

continuous plate( without a hole);

- with increasing radial thickness of the ring the stress Og

will diminish in both the ring and plate;

- the oo Stress concentration from intermediate ring

materials will fall between those of no ring and an

absolutely rigid ring.

To investigate these statements for laminates and

further see what effect reinforcement has on the
interlaminar stresses [0/99]4 plates with R/t=5 and the

properties in Table 3.1 were modeled. In the FE model the
third mesh had five elements in the plate and two in the
ring (coating) as shown in Figure 3.4.14. The isotropic
rings had the elastic properties to cover the complete range
of rigidities:

E_./E

" -—
c “- 0' 048, 1-43, ~5x1° ’ &nd Vc—-35.

Also, the ring thickness was varied so
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t./t= 0, .05, 1 .

gy on the plate/ring interface {(r=R) for thick rings

is shown in Figures 3.4.15; the thin rings had a negligible
effect. It can be observed that for Og the maximum is

rapidly reduced as the rigidity of the ring increases to
where O is low but still slightly more than o, even for the

very rigid ring (Ec/Elt=5x10'); these results do not

contradict statements by Savin since Oy in the «=0° layer is

greater than o, away from the hole where stresses are

o
uniform. In the «=90° layer 0g Was eliminated for a very
rigid ring, but the progession with varying Ec/E11
contradicts Savin's third statement. However, the shift in
0g to tension at 6=0° for the intermediate rings is such

that the fibers bear the load.

Stresses may develop on the plate—-ring interface of a

plate with a reinforced hole. is low but o

rz and 7,4

r

develop on the ring/plate interface for thick rings. Maximum

o, occurs in the a=0°® layer for the very rigid ring at e= 0°

which stresses along the fibers. Tro in Figure 3.4.16 shows

that this stress will have an extremum with respect to
rigidity of the ring.

A detail that is overlooked in the plane stress
approach is that the situation at the intersection of the
ring/plate interface and the plate surface z=2h is similar
to that in the plate at the interface on the edge. It was
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Figure 3.4.15 Circumferential stress at r=R in plate with
a thick reinforcing ring (tc/t-l) for
varying rigidity (EC/B“).
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Figure 3.4.16 Inplane radial stresses in plate with a
thick reinforcing ring of varying

rigidity (E,/E_ ,). Both normal and shear

stresses increase rapidly at low BC/B“.
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observed in the results that orand Tro show some local

stress concentration at this location for thick rigia

reinforcement.

For both thick and thin rings the interlaminar
stresses at the ring/plate interface intersection line
(z=h,r=R) show evidence of only a very weak singularity.
For a perfectly rigid ring, on the plate/ring interface

Lg=ty=7,9%0. (3.4.8)

Immediately from this we know L is very small since Cos 1

typically small. o, is uniform throughout most of the

z

thickness for thick rings due to the constraint on L

so ozzc;acr since typically c;.zo.

For the very rigid ring a small tensile g, develops. For
thin rings g, is low and stepped across the interface until

the ring becomes very rigid.

In Figure 3.4.17 it can be seen that T, 8t the

interface is rapidly mitigated as rigidity increases
relatively independent of the ring thickness. This result
indicates T, Can be avoided by the use of thin flexible

coatings.

It i3 concluded from these results that the maximum
stress concentration can be reduced in the plate with
the emergence of radial inplane stresses on the plate/hole
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Figure 3.4.17 Interlaminar shear stress at r=R, z=h of
plate with reinforcing ring of varying
rigidity and thickness. This stress rapidly
decreases as the ring rigidity increases

for both thick and thin rings.
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interface. The singular interlaminar stresses can be
mitigated by even thin non-rigid rings. The optimum
reinforcement material in the case of a laminate will be
determined by the directional strength tensor of the
composite material; reinforcement could be tailored to
optimize strength of the composite.
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3.5 Summary and Conclusions

The effect of a central circular hole in a relatively
large laminated plates has been studied. Problems with two
or three planes of symmetry, because of importance
facilitating and improving the analysis in several ways,

were analyzed.

Finite elements provided approximate solutions to the
classical model; comparisons with other solutions and
measured results showed that the present solutions are
reasonably accurate at least to the extent of predicting
trends in behaviour; results on several problems of interest

were generated.

The measurement of hole surface strains, many aspects
of which share much in common with any laminate edge, was
attempted. A relatively unsophisticated technique was chosen
and results overall were good apart from, unfortunately, in
the region of most interest where this method, and for the
same reasons cther methods, will fail due to the
interference of the measurement system on the behaviour of
the specimen and systematic error in the results. A simple
solution, namely the elimination of scale problems by

enlarging the scale of the specimen, is proposed.

Beyond the scope of this work are the development of
measurement or tractable mathematical methods which work
accurately on the microstructural level; because the
randomness of the present analysis is limited to the
distribution of the fibers analytical methods are most

desirable. Measurements will answer some questions now and
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may stimulate development in future.

The effects of R/t, unsymmetric lay-up, and hole
surface reinforcement were studied. The plane stress
solutions for orthotropic plates showed at least fair
agreement with the present model in both of the first cases
but were unavailable for the last. In general for symmetric

laminates o, is everywhere low relative to the applied gross

stress; it has been shown to depend greatly upon R/t and

stacking sequence at the midplane on the hole surface. T20

is generally the much stronger stress at the interface. The
interlaminar stresses were most severe in the case of the

unnsymmetric laminate where the magnitude of o, was double

z
what was observed in the symmetric cases. The interlaminar

stress Typ Was observed to be small and is of least interest

since it vanishes on the hole surface and as a shear stress
is less likely to cause fracture of a brittle matrix. All
the hole surface stresses may be altered by reinforcement to
improve strength; application of suitable failire criteria

and subsequent experimentation should follow this work.
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CHAPTER 4

PROBLEMS WHERE STRESS DOES NOT VARY AXIALLY

4.1 Introduction and Literature Survey

Analysis of laminate edges using linear elasticity
has been concentrated on the problem which is relatively
simplest: the straight free edge. Salamon(1980) prepared a
comprehensive summary of work on free edge problems up to
1980; what follows is a brief survey of work to the present

which is relevant to this chapter.

Most attention has been focused on the square free

edge problem for which

u=¢x + Uly.z)
v = Viy,z)
w= Wy, 2z)

is the functional form of the displacements; this was termed

"uniform extension". For symmetric laminates when £, is set

the problem corresponds to the middle region (x=0) of a very

long strip under a net axial load.

Pipes and Pagano(1970) used a finite difference

method to solve the displacement equilibrium equations for
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several laminate configurations. Unfortunately, the
solution accuracy was low because the uniform grid of points
was not dense enough. Later, based on obgservations of the
FD solutions, a Fourier series solution based on an
approximate formulation (it was assummed that o

z' Tyz ' Oy "0

and C‘5=0) specifically for [te}s laminates was presented

by Pipes(1972). As in many papers which followed, equal

shear moduli were used so that Ces vanished. However,

because it was subsequently shown that -~ is the strongest

Xz
singular stress this solution has some validity; but i

which has nearly the strength of is neglected in this

xz'

solution and so it may not be acceptable in practice.

In another solution for [:te]s laminates, using a

perturbation method with non-singular exponential functions
Hsu and Herakovich(1977) obtained approximate stresses along
the interface. Kriz(1977) modified their solution so that
unequal shear moduli and Poisson ratios could be used and

studied the effects of material properties on [145]s

laminates. It was found that the interlaminar stresses in

the solutions were sensitive to G,, so the commonly used

approximation G;z=G G which s not realized, is

13 23’
questionable. Further, a fiber volume content of 80%
produced the highest interlaminar stresses for realistic
properties. The perturbation method solutions predicted a

tensile value of o, for [t45]s graphite/epoxy not in

z

agreement with solutions from most other methods.

Bar-Yoesph(1981,1983) developed a perturbation-

variational solution for uniform extension free edge
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problems of [te]s laminates using non-singular functions.

Both these solutions depend upon a vanishing value of h/w
for accuracy. Although the free edge problem has a simple
domain shape in two dimensions and is accessable to more
analytical methods, numerous solutions to investigate the
interlaminar stresses using quasi-three dimensional
displacement formulated finite elements have appeared in the
past literature and are still appearing (e.g. Wang and
Crossman(1977), Raju et al (1981), Herakovitch et al(1985)).
In the region of the singularity FE solutions show slow
h-convergence. Tong and Pian(1973) showed that the rate of
convergence of a polynomial-based finite element solution is

often controlled by the order « if there is an r ¢

singularity, ie.

u-u°=o(h“) not o(nP*?)

where h is an element dimension, p is the order of

polynomial used for a two dimensional domain. To obtain

accuracy conmplex FE meshes having many DOF are generated.

Raju and Crews(1981) used a mesh of quadratic
elements (p=2) distributed radially about a lone singularity
having about 3600 degrees of freedom (DOF) to obtain

reasonable results. They fit their results for =~ (the

Xz

strongest singular stress) from .001<r/h<.01 to the

expression T zzh(o)r_“ to get «=.17 (later, Wang(1982) and

X
Zwiers(1982) obtained w=.02558 by direct calculation). As
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rredicted by Tong, the FE solutions appear to converge very
slowly in the vicinity of singularities. In order to reduce
the size of the two elements nearest a singularity one must
resort to complex meshes or substructuring techniques
avoiding large element aspect ratios or distortion and
computational error. Only for very few DOF optimal meshes
for minimum stationary potential energy have been generated
by Wang(1983a). The problem of convergence and complex mesh
generation increases with the number of singularities and

the dimension of the domain.

Comparing results from different methods Whitcomb et

al({1982) ncticed a discrepancy primarily in sign of o,

predicted between the various methods used in pri>r results
for [145]s laminates. They undertook an investigation of the

accuracy of standard eight node isoparametric finite
elements for laminate free edge problems. h-convergence of
quadratic elements was determined by comparison with exact
solutions for problems having stress discontinuities and
singularities. Based on these experimental results they
made the conclusion that finite elements are accurate
despite very slow convergence except in a region of two
elements around the singular point and point out that this
region can be made arbitrarily small. In regard to the
boundary conditions near the singularity they showed in a
very simple calculation that for the uniform extension
problem when the traction iree edge and displacement
continuity conditions are satisfied exactly using a

symmetric stress tensor (with nonsingular functions}), g,

must be tensile at the singular point in the approximate
solutions. They claimed that the stress tensor is asymmetric

at this point and the enforcement of symmetry along with the
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exact enforcement of the boundary conditions is the downfall
of several methods. Further, they claim that finite

elements succeed because displacement continuity is exactly
satisfied while stress continuity and the traction free edge

are left approximately satisfied.

Wang(1982) presented an eigenfunction expansion
solution to problems for which 30/3x=0 based on
Lekhnitskii's stress function formulation. A set of
functions which satisfied the traction free edge condition
as well as the interface continuity conditions yielded the

“ gsingularity at the interface; this is an

power « of an r
important analytical quantity and is included in the
solution. The results showed that the singularity of the
square laminate free edge is generally weak in comparison to
that at a delaminated edge with w=-.05 typical for
graphite/epoxy. Wang's solution proceeds in two stages.
Obtaining the eigenvalues requires that a 12x12 system of
equations having terms with o in transcendental form must be
solved by a numerical method for every interface between
plies of unlike orientation and depends upon the
intersaction geometry and material properties. Particular
solutions are then obtained using boundary point collocation
on the remaining boundaries with added polynomial functions
to approximate the far field solution. This is a

tedious approach; especially for multilayer laminates or

when material properties are varied.

Zwiers et al(1982) showed that Wang's solution is not

complete in general since 1ln(r) and possibly other singular

terms (i.e. (lnr)2, (lnr)®, etc.) belong to the complete

solution for adjacent layers having orientation angles other
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than 0/90,6/-6,90/0 and t6/%+é where 6 is small. The 1lnr
gsingularity was strongest for 90/15 and 90/-15 pair for
graphite/epoxy. Further, Zwiers showed that while individual

“ gsoiutions,

stresses may or may not be singular for r
depending on the complete boundary conditions of the
specific problem, when present all stresses have the lnr
singularity. Notably, Raju and Crews(1981) using their

highly refined finite element model found for [9/90-618
laminates, that the [15/—75]s configuration developed the

highest ~ values. This is compatible with Zwiers (1982)

Xz
since the strength of the 1ln r singularity is near maximum
for this lay-up. Presumably Wang's singular solution would

be approximate for these cases.

Wang demonstrated his method on example problems of
delamination fracture(Wang(1984)), the central plane of

adhesive bonded joints and hygroscopic stresses in [-.te]s

laminates (Wang(1982)). The effect of the geometric angle at

the intersection was studied for material fiber angles of

+45%nd a 45° ply intersecting with aluminum and results

were given for [:te]s laminates and not for other

configurations. A paper proposed to study the influence of

lamination variables never appeared (Wang(1983b)).

A finite element was developed by Wang(1983c)

containing the r “ singularity and shown to agree with the
eigenfunction collocation solution when used with
non-singular surrounding elements. Determining the singular
functions in the solution requires effort and calculation.
Afterwards, for utility it is still required to solve the

boundary value problem in order to determine the actual
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stresses since the presence of singularities in the general
solution does not imply their contribution to the specific

solution.

On a new tangent, Bar-Yoeseph and Siton(1984) used an
asymptotic-variational approach with non-singular functions

to solve problems of [19]5 laminates with material

nonlinearity in transverse and shear moduli. The model
showed that material nonlinearity can have significant but

not radical effect on the interlaminar stresses.

From the aspect of laminate configuration and loading
most serious work appearing in the literature has been done
on several “benchmark" problems for straight edges in
attempting to sort out the difficulties involved with the
singularity in computation. Other configurations and
loadings have not been presented even though the

interlaminar stresses are known to be problem dependent.

Examples are recently more apparent in the literature
for problems with more than 4 layers in the solution domain.
Pagano(1974) was able to predict the normal stress on the
midplane only of symmetric laminates. Later, a global-local
model which replaced parts of the laminate with an
equipollent system was presented by Pagano and Soni(1982);
the results were sensitive to the substructuring scheme used
however. Kassapoglou and LaGace(1986) presented a method
for rough estimates of stresses in symmetric laminates in
uniform extension; it requires prior knowledge of the stress
state to select assumed exponential functions for the
stresses. In most practical studies, low accuracy solutions

are obtained using standard finite elements attempting only
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to determine the sign of the interlaminar stresses in the
layers or the strain energy release rate by the
Rybicki-Kanninen(1977a) method(e.g. Whitcomb and
Raju(1984)). The bearing the calculated results have on the
real micro-deformations of fiber reinforced materials is not

apparently an issue.

Few attempts at measuring the deformations relevant
to the free edge effect of fiber reinforced laminates have
been made. Small fiber laminates are typically very thin
(.005 inches per ply) for graphite/epoxy making measurement
of the high gradient deformations and strains difficult.
Pipes and Daniel (1971) obtained patterns of axial

displacement on the face of [:te]S laminates using Moire

grids and showed good correlation with the FD solution.
Oplinger et al(1974) used Moire interferometry on the thin

edge and the face of [ie]S laminates. Later, Herakovitch et

al(1985) used a similar method in comparison with results
from a linear elastic solution using standard isoparametric
finite elements in a highly refined (1028 degrees of
freedom) mesh. However, the comparisons were not concrete:
rather, the measurements were used to determine the FE mesh
density for best agreement at the singularity without
questioning the accuracy of measurements. Both of these
methods used thin plastic coatings on the surface of the
edge but did not consider what effects this may have had
upon their measurements. Depositing a third material on the
edge face will alter the response to some degree since it is
a an intersecting wedge problem with three dissimilar
intersecting materials instead of two. Also, transfer of
the strain through the coating will depend upon the

distribution of strain on the objective surface; worsening
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as strain curvature increases. Post(1987), using a new
moire technique on [0/90/145]es graphite/PEEK beam under 3

and five point loading showed very sharp peaks in Tz ©OD

the edge. The possible attenuation due to the coating
is termed shear lag but is not accounted for in the results.
In general, results show that the very high and localized

strain Tyz does exist in a manner predicted by the EM

solutions.

Various other relevant studies have appeared in the
literature including the use of cord rubber models (Ford et
al (1982), Lou and Walter(1978)) and enlarged models of
photoelastic materials( Alderholdt and Berhaus(1976),
Berghaus and Alderholdt(1975)) but did ac. produce results

relevant to current research in composite laminates.

In summary, a survey of the literature shows that
much attention has been devoted to the effective modulus
model for investigating the elastic behaviour of composite

laminates. The [:te]s configuration has received by far the

most attention with many solutions developed specifically
for this problem. For more general methods such as finite
elements using polynomial approximating functions seems to
account for the slow convergence observed in the vicinity of
singularities. Methods containing singular functions
require knowledge of the type of singularity which depends
upon material properties and global orientation of each
adjacent pair of plies. After determining the functions it
is still required to solve the boundary value problem to
determine the actual stresses. Largely neglected are
multilayered laminates, even though low-accuracy solutions

are frequent in the literature, and configurations and
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loadings outside of uniform extension, i.e. most of the
laminate system. Also, very little work has been done on
measurements with the intention of verirying the complete
stress state.

What follows in this chapter is the development of a
procedure for obtaining approximate numerical solutions to
laminate problems for which 3¢/3x=0. A displacement
formulation and exponential non-singular trial functions are
used with a weighted residual method. To avoid complex
grids, a boundary method is used. The method developed is
flexible with respect to specifying problem materials,
geometry, loading and boundary conditions. Further, there
is flexibility in specifying the continuity and stress
boundary conditions at the singular point. Numerical
results are presented for rectangular strips in a variety of
configurations and loadings. Finally, multilayer laminates

are handled.
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4.2 Formulation and General Solution Procedure

4.2.1 Equations of Linear Elasticity

From Section 2.2 the equilibrium equations when the

stresses do not vary in one direction, i.e. let 30/3x=0, are

°ij,j=° for i=x,y,z Jj=y.z (4.2.1)

or in terms of the displacements (see Equation(2.2.3))

L =
2Cijk1 vk, 1%y k), 5 =0 I,z (4.2.2)

These are the general equations, for the special case of
laminates with rotated orthotropic layers having the C
tensor properties discussed in Chapter 2 the general
equations expressed in three linear differential
operators become

z, (Q)=2_(0)=2, (7)=0 (4.2.3)
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where
81(u)= cssv'xy+cssw'xz+cxsu’xy+casv'yy+(C45+Cao)w‘zy
+Cssu'yy+c45v'zz+c55“'zz
82(u)=ciau,xy+c22v,yy+(c23+c“)w,yz+c2su,yy+c“v,xy
+C o a¥rxat TC g ptC (Vigys (4.2.4)
83(u)=C13u,xz+(C23+C*‘)v,zy+C33w,zz+(C‘5+C36)u,yz
*CasV xztCasWixytCiMryy

The conditions on the surface of the body are likewise

and

For a unique solution each of the three elements of the
vector on the surface must be prescribed, corresponding to
the three chosen coordinates, as either a displacement or

surface traction.
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4.2.2 Homogeneous Solutions-Trial Functions

4.2.2.1 Derjvatio or Quasi-Three Dimension

To obtain approximate solutions, using the method of
Weighted Residuals (also known as error distribution
principles ( Collatz(1960))), the trial functions used to
approximate the solution may satisfy certain conditions
exactly. Trial functions which satisfy the equations in the
interior of each layer are used for the so -ralled
boundary methods. The boundary equations wiil generally not
be satisfied exactly so there is a residual difference to

be minimised.

Because the internal solution satisfies the internal
equations identically and since every linear boundary value
problem has a unique solution, the approximate solution is
the exact solution for a prcblem with the residual boundary
and interface conditions. This fact may give further
meaning to the residual as an indicator of error. At least
intuitively in cases such as boundary error which resembles
a point load, that region would be in question.

The internal equations for this class in terms of
displacements are

Y
Ql
ap

(4.2.5)

O’IO’
% o
H
o
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Since the determinant of E cannot be zero this equation must
have the trivial solution

ar . 0 or (“k,1x+“1,kx)= 0 k,l1=x,y,.2

ax

The general solutirn for these 6 differential equations can
be expressed in the form

u.=u = Uo(y,z) +n1xy +n8xz +n‘x

= V,(y,2) +m xz - %"1“2 +n x+n_ (4.2.6)

e
]
<

|

i

2 _
nax nsxy +ﬂ.x+n8
where uo,vo, and Wo are arbitrary functions; LI i=1,2,3..8

are arbitrary constants; and rotations which cause no strain
are neglected. The uniform extension problem sets the value

n =c mE; this is set as input.

The three functions u-Uo, v-Vo, and w-wo do not
immediately satisfy the three operator equations zi(ﬁ)-o

exactly when substituted into the u vector unless the ny are

suitably defined; this will be dealt with later. If it is

assumed true then since the operators are linear, if

Z, (U)=2_(U)=Z,(U)=0 (4.2.7)
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where GT-[ Uo.vo,wo] then u is a +>lution to the

displacement equations of equilibrium for this problem.

The selection of the trial functions U is at the
heart of the method. Polynomial functions are avoided
because they show very poor convergence in approximating
non-analytic functions. Exponential functions are usual for
linear problems, so we begin by seeking exponential

functions as follows.

Let
= (v, z+vy,y)
U=k, 'Yz yY
- (y_z+ ) (4.2.8)

= (y z+ )
W=k, e Y22+ ¥y Y

where vy,vz,ku,kv,kw are all arbitrary constants. We can

operate on U with ¥ to get
(U= el¥2Z*¥%Y¥) [ k = (0]
t
where kb =[ ky « kg ok, 1.

The equations £i=0 are elliptical so the 3x3 matrix E

is symmetric and positive definite and has as its elements
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2 a
L,;1=Css Vy +Casvz

2 2
L, s™Cae¥y *Cys¥z

L‘3=(C3°+C.B)¢y¢z

(4.2.9)

2 2
Laa=caavy +C¢4vz
Lns(c“+c“) ¢y¢z

= 2 2
Las'c44¢y +caa#’z

If these equations do not have the trivial solution k=@ (the

null vector) then det(E)=0. Defining @=[¢y/¢z] and dividing

all the elements of L by v: the determinant results in a

polynomial in ¢2of degree three (i.e. ¢* is raised to the
highest power of 3, ¢ is raised to 6 and there are¢ no odd

powers of ¢)

- 2 _q2 _r 2 -
L11L23L33 inLzs L12L3: +2L12L13Laa szLzz 0 (4.2.10)

Solving for the three roots of this polynomial yields three

values of ¢2 for which Z(U)=0.
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Some knowledge of the roots ¢; can be obtained. Most
obvious, there must be at least one real root; if there are
two complex roots, they must be conjugate. We can prove

that ¢:¢O. If wi = 0 then

- X-J 48

o |
[
o

23

and because the E matrix must be positive definite and f is

a principal submatrix it too must be positive definite in

this case so det(f) # 0 (see Ayres (1974)). We can also

prove that if ¢§ is real then ¢§ < 0. First, we break E

into the sum of two matrices

H
>1
+
wi

where

2 2
c68¢8 C86¢2 C38¢
A= C86¢ cazw C23¢
CSGq’ C23¢ c33
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- c85 CQB CQB‘P
B= CQS C{G c‘ﬁwa
CQEQ Ciiw CC.‘P

The three principal minors of A are

(o) c
= 2 =0 * es 2s
p,=[C,,1¢% p_=0 det[ C.s Cap ]

. Ces Cae Cas
and P, ¢  det| C, . C_. 23
3s a3 33 J.

The determinants on the right hand sides are all principal

minors of c and so are always positive definite. Since E is
positive definite all principal minors are positive,

therefore K is positive definite if ¢® > 0. In the same way

B is singular with rank 2 but the first and second leading

principal minors are positive so B is positive

semi-definite. Now since, by definition,

kX Ak >0and kP! Bk 2 0 if k#0

then
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meaning E must be positive definite since matrix

multiplication is distributive. Therefore det(f))O if ¢%>0
and so no roots wf are non-negative. This inequality is

useful in checking numerical results.

When ¢2 =¢; and det(E)=0 there are an infinite number of

; vectors which satisfy E k =0. The elements of k are

related by

k szEg;—Lxsbzz

u - 2
kw L11L22 le

=

(4.2.12)

k L ob,s~b,,boy
v _ 2
k L, L2l

|
<
t

These ratios are functions of the material properties (i.e.
the components of E and the roots wg of the polynomial while

one of the elements of E is arbitrary. If ¢;<0 both N

and the values of x and x_  are imaginary numbers; the

u A4

sign of ¢4 makes no difference in the wvalue of the

displacements.
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To demonstrate. if we choose the trial functions as

sums of products of exponentials
v, =k, sin(wyy)sin(wzz)
v, =k, sin(¢yy)sin(vzz) (4.2.13)

and W, =k, cos(vyy)cos(vzz)

then corresponding to the three roots ¢7,¢2,¢5 and the

three k vectors having ratios K1t ®uz’ fus’ v “var “va-

Setting kw=1 there are three solution vectors

xuisin(wivzy)sin(wzz)
xvisin(¢ivzy)sin(¢zz) i=1,2,3 (4.2.14)
cos(vifzy)cos(vzz)

vt =

Because each vector is a solution anad zi are linear then a

vector kxﬁ‘+kaﬁz+k36’ where k; are arbitrary constants is

also a solution. So long as the 3 roots are distinct and

”ui+‘vi¢° for i=1,2,3 it can easily be shown that the 3

vectors are linearly independent and so form a basis at any
point in y,z where none of the three are zero. Moreover,
vectors formed from such linear combinations will be

linearly independent over y,z for different values of *z‘
Therefore, since Y, is arbitrary linear combinations from

this family of solutions will also be solutions and will be
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linearly independent.

A special case occurs when « in Equations (2.1.14) is
equal to nn/2 n=0,1,2..... . 8ince then L12=L1’=0; the first

equation becomes szku’o' and Kyi=" Laa/Laa for i=2,3.

Three solutions for the vector k are

where ku,kw are arbitrary.

2
One root corresponds to L11=0 and is ¢1=-C55/C8.. In this

case the solution is lku_O 0}. The other two roots are found

by satisfying

L L
22 23 :
det [ ] =0 and yield LIy e

L83 L33

If the laminate has all specially orthotropic
layers then with proper loading x=0 is a plane of reflective
symmetry and the solution does not include displacements in

the axial direction and so we can say ku=0. If the material

is isotropic then ¢f=¢:=¢:=-1 so that the solutions vectors

are no longer independent.
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In laminates containing plies so oriented there may
be axial displacement. In these cases kg will be arbitrary

as well as kw‘ Therefore, complete solutions can be

obtained in the same general manner as before except that

now the Uo component of the displacement solution is

independent of Vo, and Wo-

The above solution set satisfies the internal, or
governing equations of the problem. The constants *z'kw and

in special cases k,, may be arbitrary. In the next section

methods of evaluating these parameters to obtain approximate

particular solutions are discussed.

4.2.2.2 Extension to Fully Three-Dimensions

Following nearly the same procedure for the complete

governing equations would lead to a similar solution set.

Choosing

VX Y¥ ¥,2
= y z
Uo ku e e e

Y X ¥ v,z
V. =k ¥ e of e %

o Ky ©

Y, X Y,y ¥.,2
e * eV o 2

would lead to an L matrix such that, for example, there




-154-

would be three roots for each pair vklvy selected. If we set
vx-vy then a solution set would be generated, etc. As for

two dimensions the solutions would be linearly independent.
This method would be potential be useful for holes, beams,
etc. It would be worthwhile investigating this boundary
method.

4.2.3 Particular Solutions-Weighted Residual Methods
4.2.3.1 General

For a particular problem the boundary conditions may

be expressed
Bi(u)=fi i=1,2-onm (4-2.15)

(fi is a defined function) on portion(s) Ij of the boundary;

if we use an approximation for u defined over the whole

domain including r

) (4.2.16)

KT = T=
where k*=[ kw;' sz, ....... kwn] $i=] Ygor *z:""""*zn]
then on ry Equation (4.2.15) will not, in general,

be exactly satisfied so




-155-

Bi(ﬁ)-fizki 1-1.2.. .M

where Ri' called the residual or error, is not zero unless u

is the exact solution. Weighted residual methods yield

approximate solutions by minimizing the magnitudes of all Ry

in some way with respect to arbitrary parameters. The
solution obtained is exact fcr a problem with the necessary
residuals applied as boundary conditions; viewed from this
aspect intuition and experience can be used to judge the
deviation from the desired solution due to the residuals
imposed. For example, a sharp change in stress on the
boundary would be expected to cause a local disturbance in

the interior.

For minimizing the residual w.r.t. ; there are many
methods which fall under the heading of weighted residual
methods. Findlay(1966), Collatz(1960), Crandall(1956). and
Ci-Da(1985) presented reviews of the methods. Among these
methods The least squares method is easily formulated and
leads to symmetric matrices. In the following paragraphs
various least squares methods are reviewed.
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4.2.3.2 Integrated lLeast Squares Method

For an approximate solution which satisfies

j' Rz dr; = a mininum; (4.2.17)
i 1

ry
the well known condition(s) for a minimum w.r.t. l-c' are

2

Rl
f — dl" =0 for 3Jj=1,2...n;
131
w3
"i
this is satisfied if
j‘ -—l R dry=0 for j=1,2...n. (4.2.18)

1‘1

In this method R; is weighted by aRi/akwj. Given the

residual for the ith boundary condition in the matrix form

(it will be shown how later)

Gyk-r ;=0 (4.2.19)

where Ef (3) is a vector having n elements, then the weighted

residual statement becomes
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[ 645(Gik-rj)ar;=0 for j=1,2...n  (4.2.20)
r

(elements of the present family of trial functions are
easily computed and operated on by differentiation and
integration). After summation, this leads to a set of n

linear algebraic equations

6k="R
where
6® = T ' 6] 6;ar; and RUW = T [ 67 rjar,
ry Ty

3 is a symmetric square matrix. This requires that all

products GijGil j,1=1,2,...n be integrated. Unfortunately,

although this appears to be a good approach, as the

dimension of square matrix E increases beyond about 10 this
matrix rapidly becomes algorithmically singular( e.g. see
Lawson(1974)).

The minimum w.r.t. ; of the integrated residuals can
be sought directly using optimisation techniques rather than

by equating the derivatives to zero. Given the residual

Equation (4.2.19) the total square residual is
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R= T (K [ U6 651 ary k
ry
-2 ry j [ §; ary) Kk + r?) (4.2.21)
ry

and an element of the gradient vector of Rz w.r.t. kl is

n - -
_ =r
akzlakl—zifi( j [G] G; ) ary k

Ty

- 1y f G4,dr;) (4.2.22)

Ty

Finding the kK vector for which this positive definite

quadratic equation is a minimum is a straightforward task
using readily available computer optimisation routines such
as the conjugate gradient method. It requires low storage

for the squaive symmetric matrix in R,. However, an initial

estimate of ; is required and the time to find a minimum can

depend heavily upon this. Further, K often requires scaling
by uvonstants to accelerate convergence. In its favour this
method conveniently yields the exact total residual.
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4.2.3.3 Collocation Least S~uare Methods

A simple alternative to the weighting factor
axi/akwj used in Equation (4.2.18) is the delta function 8.
which has the value

x=x1

1
81= { when (4.2.23)
0

X # Xy

This is equivalent to setting

at points on the boundary to yield one linear algebraic

equation per bouadary condition per point on the boundary.

There must be at least n equations to solve uniquely for the

n unknowns which will constrain the residual to vanish at

all the points. If more than n equations are used, say m,

; may be found which minimizes the L, norm w.r.t. k

hGk-RYJ,=7%(Gik - R;)2 (4.2.24)

where a row of 6 is Equation (4.2.19) evaluated for some
boundary condition at some point on it's domain. This
method shall be referred to as the least squares boundary
collocation (LSBC) method. The minimum norm of the
overdetermined set of equations corresponds to the solution

of the square symmetric positive definite set of equ~tions




-160-

G' Gk =G' R (4.2.25)

which again for n»>10 becomes algorithmically singular.
Scaling rows or columns may improve the stability somewhat;
scaling columns changes the problem. However, by using
transformation methods on the original set of equations the
solution may be found without significant computational

problems (Lawson{1974)) or error.

Subdomain collocation can be used similarly. The

domain of Bi is broken in subdomains Fi-. The residual is

then evaluated over the segment and set to zero i.e.

j Ry dlyg = j G;ary4 k-r; =0 . (4.2.26)

The advantages of the LSBC methods are that only the

functions in 5 need to be evaluated and not integrals of
their products, and that complex geometries and boundary
conditions are as easily represented as the functions which
describe them. A potential disadvantage is that the
distribution of points affects the solution. However,
complication from discretization is often present in other
methods such as finite elements and finite differences and
may not be a problem if it can be handled systematically.
Alsc, the final system of equations is generally .
overdetermined and no longer symmetric requiring more

storage for the initial equations than the normal equations.

Because the homogeneous solutions apply within the
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individual layers and interface conditions are approximated
the matrix G is populated in a block diagonal pattern as
depicted in Figure 4.2.1. Using a transformation method & is

transformed to the block diagonal upper triangular matrix R&.

The algorithm is simple, to eliminate Gyi where k>i then

For j=1,2.......q9

szij
w=ij
Gij= Cv + Sw

ij=-CV + Sw

where there are q columns in &

If Gki=o
then
C=1 and S=0
else
if |Gy 121641
then
9=G;4/Gy 8=1/(149%)%/2 c=3g9
else

- - 2\1/2 .
,—Gki/Gii C=1/(1+9%) 8=C9

Elements below the diagonal are elimnated row by row from
the second row. In this way the transformation is done

without any intermediate fill-in. That is, only the union
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Figure 4.2.1 Matrix & (below) for a three layer domain is
transformed from block diagonal form to upper
triangular block form R (above). Storage

required is the union of these two matrices.
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of populated areas of G and R are required for storage as
depicted in Figure 4.2.1. The housekeeping operations are
minimal and the program is simple, stable and efficient.
Further, as the number of layers increases, the block sizes
do not necessarily increase if the number of DOF in each

layer is held constant.

There are many variations of LS methods devisable.
For example, multiplying a residual by a weight value such
as the length of the boundary between points will change its
relative contribution to the total residual and so thu
degree to which it is satisfied in the final result.
Weights could be spatial functions and could be applied to

any of the residual equations.

Overall, the BLSC me*hod using transformation methods
is most attractive for large systems and it is desired that
the method be flexible w.r.t. boundary conditions and

geometry.

4.2.3.5 Selection of ¥

The arbitrary parameters ¥, must be known or set

before G can be determined to minimize the residual w.r.t.
E. The object is to determine E to yield the best LS

approximation. 5 may be found algorithmically from some
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initial Qo' assuming the absolute minimum can be found, and

there will be no more degrees of freedom than if E were set

to the best possible. The limitation to searching for ¥ is

the "curse of dimension" (Fletcher 1980)ie. the time to

search increases rapidly with the dimension of ¥ if each
element is sought. In order to reduce the number of unknowns

a sequence dependent upon fewer unknowns can be used to

generate ¥. In a later section, this approach is taken

successfully.

4.2.4 Summary

A simple, flexible method of solution for a large class

of laminate problems has been presented in this section.

The two conditions which define this class are 99¢/3x=0, and
that the rotation of the principal axes for each material be
about only one of the two axes perpendicular to the x axis.
This places no restriction on the geometry and locading in
the problem d-main i.e. the plane section normal to the x
axis. The object is to obtain a minimum LS residual
evaluated on the boundary by evaluating k and ¥ for specific
problems. Particular solutions are to be obtained using a
BLSC method and.Given's method (Given (1958)) on the final
system. After solving, the residual is used as the basis for

evaluating convergence.

In the next section a procedure for obtaining

solutions to specific problems by this method is presented.
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For benchmr~rk problems convergence w.r.t. computational
parameters is examined and results are compared with those

from other successful methods appearing in the literature.
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The steps in formulating a BLSC solution are:

i) select the trial functions in each layer,

ii) select ¥,

iii) set a distribution and weighting scheme

for the collocation points.

A unique series of the trial functions is chosen in
each layer, so that each layer has a unique set of k. Nn
boundaries with certain symmetry (u,v odd and w even; or u,v
even and w odd) only functions with the same symmetry are
required. The conditions on the laminate boundaries and
layer interfaces are satisfied exactly by the selection of
the trial functions or approximately by minimizing the sum

of the residuals of these equations.

When the residual involves displacements directly, as
along the interface, boundary weighting is required. The
conditions of compatability and continuity along the

interface are
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while the other stresses may be discontinuous across this

plane. The magnitude of a displacement's contribution to

the residual (i.e. (uI-u;)a) will be relatively small

unless the displacements are suitably weighted. Matching of
the interface displacements was achieved by weighting the
displacement's residual such that its magnitude is the same
order as the stress residuals. The same weight is used in

all solutions of about half the elastic modulus: z“/z.

The frequencies ¥, have nonzero finite values. By
trial a simple distribution was found to be suitable; i.e.

fzt¢z= ™, 27, 37", ..c..e...n1T (4.3.1)

where the value of n is used merely to show that tz-l may

not be optimal.

The distribution of collocation points is chosen to
avoid what is often called the aliasing error. For exanmple,

when the number of collocation points is

th /m +1

over the interval along the free edge then the residual can
have zeroes at the collocation points as in Figure 4.3.1.
To avoid this kind of error, the condition

# points > ty /nm + 1 (4.3.2)

Z max

is satisfied; 2ty /n+1 or more may be necessary in

Z max
practice. Along z=constant boundaries a density of

collocation points sufficient to prevent oscillations in the
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Figure 4.3.1 Zero collocation residual due to inadequate
point spacing.
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solution is adequate; further, from obcervations spatially
varying the density within the boundary layer (eg. grading
the point spacing towards the singularity) eventually causes
oscillations away from the singularity; in general, a near
uniform density is required which prevents oscillation and
is high enough to estimate the residual with sufficient
accuracy. A satisfactory scheme was found to be a uniform
distrution according to the inequality(4.3.2) along y=b and
half as many points with slight grading along z=constant

boundaries as in Figure 4.3.2.

The CLT strains for a desired loading are used to

evaluate the L in Equation(4.2.6). The complete CLT

solution for each case is imposed (including cz) by setting

the appropriate T; SO that Equations(4.2.4) are satisfied

exactly. This is based on the assumption that for edge

phenomena the CLT solution is regained away from the edge.

Given an adequate representation of the integrated

residual error by the collocation values the best value of

fz in Equation(4.3.1) can be found by seeking the minimum of

the sum of squared residuals (for a low #DOF for
efficiency). The integrated residual is necessarily
monotonically nonincreasing w.r.t. increasing n for a

constant value of fz.

In the final analysis solutions to the simple free
edge problem can be evaluvated by several checks beyond the
residual average. Since CLT stresses are assumed outside the

boundary layer to satisfy equilibrium it must be true tuat

g T T R BRI A <
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Figure 4.3.2 Collocation point distribution for four layer

symmetric laminate.
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b

| ogav=0,

0
t b t b
‘r Ty dz= I Txz QY ,and I Oy dz= J‘ Tvz dy
z 0 z 0

As well, point checks on the satisfaction of boundary

conditions may disclose error.

4.3.2 OQualification of the Method and Procedure

In this section soluticns obtained by the above
procedure arc oxamined for convergence and are compared with
results in the literatire from other qualified methods. As
mentioned in Section 4.1 the problems which hawve to this
time received most attention in the literature, are

[145]5,[90/0] and [0/90]s laminates in uniform extension.

s’
The domain and boundary conditions for these problems
are shown in Figure 4.3.3. For the present method the
displacement boundary conditions on the surfaces y=0 and z=0
are satisfied exactly by the choice of trial functions in
which u and v are even exponential functions of y and odd
exponential functions of z while w is the opposite. In the
upper layer both odd and even functions of z for the
displacements are necessary since the boundary condition is

matching the lower layer.
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&0, ,=0
u,v odd
z= Py, =u,-
w even
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Figure 4.3.3 Uniform ~xtension problem for [tels, [0/9013,

and [90/0]s laminates.




-173-

4.3.2.1 Angle-ply Symmetric Laminates

For the [to]s laminate the displacement functions

are:

us= p) K [(k-sinh(w (v,) . yicos( (v, )., . 2)
i=1,7,13..n[ ui 1 1'72 1:1 4 1:1

+ k

i+, SiDR(Q (¥)5,, ¥Isinl(,) 4, 2)]

2 2

+ ko[ (kiey SiRBl0,(¥) 50, ¥) cOS((¥,)4,, 2)
2 2

Sinh (e, (¥,)5,, ¥) Sin((¥,)5,, 2) ]
2 2

+ .
k1+3

+ kuo[(kie, SiRR(0 ()4, ¥) cOSI(¥y) 5, 2)
2 2

+ Kj4q sinh(o (¥, )3, . ¥) sin(h«'fz)i:__g z)]]
2 2

v=i=;,1?;3..n[xv‘[(k15inh(w1(v )J_:1 y)cos((vz)_;lz)

+ kji, sinhle (¥p) 34, ¥isin(ly )4, 2)]
2 2
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+ ”va[(ki+a sinh(¢a(vz)i:l y) co&((*z)it! z)
2 3

+ Kypq Sinh(@ (¥,) 140 ¥) 8in((¥;) 4y, 2) ]
2 2

+ sz[(ki+ﬁ sinh (¢, (¥z) 544 ¥) cos((vz) z)
a

+ Ky, Si“h(ws(wz)iii y) sin((vy )1_2 z)]]
2

w= z (k;cosh(e (v,)y y)sin((y_):, 2)
i=1,7,13..n[[ 1 s 1:1 z l%l

i+s c08h(o (V)54 ylcos((¥;) 54, z)]
2 2

+ ”z[(ki+z cosh(¢3(¢z)iil y) sin((*z)iti z)
2 2

* iy, cosh(o,(¥)5,, ¥) cosliVy)s,, 2)]
2 2

+ ”s[(ki+4 cosh(¢ (¥,) 54, ¥) sin((¥ )i__ z)
2

j+5 CO8hl9 (¥, )i, ¥) cosl(y )1_1 z)]]
2




in the upper layer and

u==

i=1,4,7..

i=1, ¢,7..
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n[ ©,, (kg Sinh(¢1(¢2)ii; y) cos((iz)_i_._,._l z)
2 2

+ ey, (kyy, sinh(¢z(¢z)i:£ y) cos((’{/z)ii_21 z)
2 2

+ kyalkis, sinhio (¥) 5,4, ¥) cosl(¥y) i,y z)]

n[ ey (kg sinh(o (¥,)5,, ¥) cos((¥)y, 2)

2 2

+ x. (k

va sinh{g,(v;)j4, ¥) cosl(v¥y)i,, 2)

2 2

i+

+ kyalkyy, sinhle, (¥ )5,, ¥) cosl(¥y)i,, z)]
2 2

[ ki coshle, (9050, V) sinli¥y)g,, 2)
2 2

* Kiy, coshle (¥y) 44, ¥) sinl(¥,) 4,4, 2)
T2 2
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+ Kiyo c:osl'x(q’,(-\(vz)i__.__2 ¥) sin(ly;)s,, z)]
2 8

in the middle layer. The matrix T is formed from linear
combination of these displacements and their partial
derivatives and then summing terms for each k.

The average residual is the root mean square value of
the total residual from the collocation points. All
applicable boundary conditions are used at each point for
simplicity. Collocation allows a choice of the conditions
to be applied at the singular point. In practice, it appears
that imposing more than displacement continuity, the
difference is seen only very near the singularity (e.g.
r/h<.1) with no set of conditions greatly superior. It was
decided that only displacement continuity be imposed. In
fact, this will be appropriate for the majority of problems
which will be undefined at this point. Because of the point
distribution, the average residual taken from these points

is strongly weighted at the edge y=b.

In Figure 4.3.4 the average collocation residual is
plotted against fz for n=5,10,20 in both layers. It shows a

flat minimum for fz 2 1.3 . Essentially, it appears that
the minimum residual w.r.t. fz (x1.3) establishes the

fundamental frequency which is present in the solution smso
that increasing fz has little effect. In Figure 4.3.5 the

residual is plotted against n for 12-1.3. The residual

decreases slowly for n>25. The rate of convergence appears
to be about 0(1/n) for both cases. It is not proven that
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Figure 4.3.4 Average collocation residual vs. fz for

varying number of DOF.
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Figure 4.3.5 Average collocation residual vs. number of
DOF.
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the residual will asymptotically approach zero but does

reach a very low value.

In Figures 4.3.6,7 the stresses from various
solutions show that solutions are sensitive to changes in

the total residual due to varying fz and n. Most important,

it can be seen that although increasing n lowers the

residual, it can also be seen that for fz=.8 the solutions
behave badly. For fz>fz opt (>1.3) the solutions are

acceptable. The results appear to be stable with respect to

small changes in the residual but using a value of fZZfz opt

seems vital. Fortunately, for this problem at least the

minimum region is very flat for fz>fz opt’ and in fact a
higher value of £, is desirable since fewer collocation

points are required for a solution. From the asymptotic
approximation of the convergence the exact stresses o could

be approximated from two solutions from different n, i.e.

n,.n, by
o = (o‘—naoz/ni)/(l-nz/ni). (4.3.3)

Without using equation(4.3.3) solutions obtained are

compared with those of other workers in Figure 4.3.8 a-e).

The others are:
- a finite difference by Pipes(1970),

- a constant strain 3 node

finite element solution by Wang and Crossman (1977),
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Figure 4.3.6 Influence of fz on interface stresses for 5
DOF with fz=.8,1.5,2.0; and 20 DOF with
fz=.8,1.3,2.0.
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Figure 4.3.7 Intexface stresses for 5 and 25 DOF with
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comparison with singular, FD, FE

solutions.
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- and a collocation solution with singular
functions by Wang(1982).

The material properties are listed in Table 4.1.

The finite difference solution used a uniform grid of
points throughout the domain and was not dense enough to

obtain reasonable accuracy resulting in o, and Oy negligible

everywhere. 1In Wang's(1982) solution all stresses except
Tyz are singular. Using n=30 the present method is in

excellent agreement with Wang(1982) except very near the

singular point for Oy and Txy ° Using a special storage

technique Wang and Crossman's solution required 18 seconds
on a Univac-1108 for 678 degrees of freedom (DOF). The
results shown for the present method are for 270 DOF and
required 243 seconds on a Digital Vax 8800 machine. For
results having accuracy comparable to Wang(1977), 108 DOF

and 22 seconds on a Vax 8800 were required.
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TABLE 4.1 Material Properties and Dimensions

for Problems in the Literature

E = 20.0 Msi ( 137.9 Gpa )

11
Via = Yia = Yaa ° -21
Eza = Ess = 2.1 Msi ( 14.48 GPa )
G =G =G = .85 Msi ( 4.98 GPa )
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4.3.2.2 Crossplied Symmetric Laminatey

For the [0/90]s and [90/0]s laminates the

displacement functions are:

u= z £,,| (kssinh(g_(¥,); Yecos((¥,):, z)
i=1,4,a..n[ “2[ i 2''z L%A y z l%;

+ ki, sinh(wz(vz)iiA Y)Sin((vz)i+x 2)]
2 2

+ xm[(ki+2 sinh(¢ (¥,)i4, V) cos{{¥z)i,, 2)

2 2
+ kjy, sinhle (¥y)4,, ¥) sin((vz)ii_z)]
2 2
v=i=1 *28 n{xvz[(kisinh(wz(vz)i+1 ylcos((¥,),, 2)
’ 1 O 2 2

+ kg, sinhlo, (¥,)i, visinl(v)y, 2)]
2 2

+ ”vs[(ki+2 sinh(o (v,) ., ¥) cos((s(«z)?.ig z)
2

+ kj,, sinhlo (¥5)54, ¥) sin((¥;) 44, z)]]
2 2
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W= > (k;cosh(o (v,):,., y)sin((vy,):, . 2)
i=1,4,8..n[[ i P1'¥2 l%i z l%i

cosh (g, (¥,) g4, ¥Icos((¥,)s,, 2)]
2 2

+ k.
k1+1

+ ‘a[(ki+z cosh(9,(¥;) 4, ¥) 8in((¥,)54, 2)
2 2

cosh(¢,(¥;) 4, ¥) C°3((¢z)iig,2)]
2 2

+ o
Ki+a

in the upper layer and

(ks

u= z i

i=1,3.8..n[ “ua sinh{g, (¥,);,, ¥) cos((¥;)4,, 2}

2 2

+ kyglkiy, 8inh(9,(¥y) 44, ¥) cos((¥5)444 z)]
2 2

v= z (k; sinh(¢_(¥,); ) cos((¥vy,); z)
i=1,3,5..n[ “va'ti $2'Yz i%i Y Yz ;%1

+ kyalkyy, 8inh(g, (¥ 144, ¥) cos((¥;)i4, 2 )]
2 2

i+ z)

e n[ ki cosh(g,(¥,)i,, ¥) sin((¥,)
2 2

i=g, s,
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+ Kiy, COSBIG,(¥,) 3, ¥) 8iR((¥,)5,, 2]
2 2

in the middle layer.

For crossplied laminates the convergence is

demonstrated in Figure 4.3.9. It was found that fzz1.9

yields the lowest residual and a flat minimum. The average

residual is low in comparison to the [145]s initially and

reduces at roughly the same relative rate of 0(1/n).

Raju and Crews (1981) presented solutions from
8-noded quadrilateral finite elements in three meshes having
about 400, 1400 and 3600 DOF. The densest mesh was graded
in a radial pattern towards the singularity. The results

showed rapid convergence in this respect along z=h for 0,

in the [0/90]s case; results of all three meshes were ot
presented for the [90/0]s case. In Figure 4.3.10 a) results

from the present method are shown and compare well with
Raju's densest mesh except near the singularity for n=5.
Plotted for y=b the same results show excellent agreement
except for n=5. It can be seen in this Figure 4.3.10 b) that

the magnitude of o, near the singularity depends upon the

z

direction of approach. For [90/0]8 in Figure 4.3.11 again

there is excellent agreement with Raju except for n=5 which
is fair. For n=30 (180 DOF) the solution required 61 CPU

seconds.

Wang and Crossman(1977) presented similar FE results
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present method in comparison with FE solution.
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using 3 node triangular elements in a mesh having 678 DOF.

For [90/0]s o, in Figure 4.3.12 from the present for n=30

z
agrees well with Wang except near the singularity where the
difference is large; in fact Wang's solution does not show a

singularity and o, is compressive. The only difference

z
between this laminate and that in Raju(1981) is w/t which
should not affect results in the boundary layer. This
result demonstrates the extreme refinement that is required

for FE accuracy near the singularity.

There is an inherent formulation advantage in using
the present method when u»0 as in these problems. The
redundant computation of u displacements is easily avoided
in the present method resulting in fewer DOF.

4.3.3 Discussion

The method complements other methods in
several aspects. Wang's(1982) laminate elasticity
collocation solution is believed to be highly accurate and
directly yields the order &6 of the singularity. As
mentioned, it does not include the lnr singularity shown to
exist by Zwiers(1982) in the majority of configurations.
Wang's method is similar to the present in that it requires
collocation. Although Wang's method satifies the free edge,
for problems with more than one singularity, collocation
points have to be on the same boundaries as in the present.
Wang's formulation is more complicated and inflexible for
other problems since the boundary conditions across zs=h and
y=b are formulated exactly for specific geometries. For

example, it would require reformulation for a coated edge
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problem. The same applies for singular hybrid elements. 1In
both, the order of the singularity which is approximate for
most laminates must be calcuiated beforehand depending upon
the intersection angle and the properties of adjacent plies.

This would be cumbersome for modeling multilayer laminates.

k Standard' £inite elements require complex highly
refined meshes and show extremely slow h-convergence in the
vicinity of the singularity. Tong and Pian(1973) showed
that p-convergence may not be better than h-convergence in
the vicinity of the singularity. According to Tong and
Pian's(1973) estimates the order of convergence will worsen
as o increases, such as for a reentrant corner at the
interface. To eliminate complex meshes, optimisation by
computer algorithms is a poor approach because of the 'curse
of dimension' as more nodal points are included. Further,
for multilayer laminates the bandwidth of the final matrix
increases. The increase is limited but if complex meshes
are used node numbering schemes would be used to minimize
the bandwidth.

It has been observed that the FE method requires
increasing mesh density towards the singularity. For some
three dimensional problems it will not be necessary to have
a high element density along the line of the singularity;
e.g. for an unloaded hole in the previous chapter. If, for
example, there is a line load intersecting the singular line
(e.g. a bearing load in a hole) presumably the FE density
will have to increase in three dimensions increasing the DOF
and complexity of the mesh by an order of magnitude. The
rule of discarding two elements adjacent to the singular
point will eliminate 32 elements! The FE method will then

be computationally inefficient. The present method is
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potentially better.

The present method offers many problem dependent

advantages over other methods.

~ The collocation points are simply distributed on the
boundary alone which simplifies discretisation over FE

and FD procedures.
- The residual provides a meaningful measure of accuracy.

- Relative storage requirements increase only proportional

to the number of layers,

- Optimal ¥ may be sought for improved performance.

- trial functions are chosen to satisfy symmetry and only

for active DOF easily eliminating redundant DOF.

- extension to three dimensions will potentially amplify

the advantages over FE methods.

Foremeost, it is flexible in formulation for material,

geometry and loading.

4.3.4. Summary

A simple systematic solution procedure has been
developed and examined for performance and compared for
common problems with other methods. The results show O(1/n)
rate of convergence and lower DOF than the FE results. The

present is not a rigourous comparison between methods. The
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present approach appears to be competitive with other
methods depending upon the problem. There also appears to
be potential for improvement. On the basis of the
demonstrated accuracy and solution checks available the
method may be used to study problems other than the test

problems.
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4.4 Solution of Selected Problems
4.4.1 Description of Problems

In this section the stress state of plates with
square free edges is investigated. Selected are problems
with straight free edges as in Figure 4.3.3 where CLT
stresses are assumed to exist outside the boundary layer.
The object is to expand the range of observation, further
understanding of edge stresses, and in so doing gain
experience and confidence in the mode of solution.
make up the loading basis. It should

Nx, Hx and Mxy

be remembered that CLT bending deformations are for thin
plates and do not include the effects of transverse shear.
Unless otherwise noted in all the following problems the
material properties used are from Table 3.2 for
graphite/epoxy. Since the stresses vary across the width
actual resultant load would be obtained by integration over

the entire domain. However, the CLT value is a good average
estimate waich improves with increasing width/thickness.

Aspects to study are the effects of ply shuffling and
heterogeneous antisymmetric stacking sequences. Ply
shuffling (e.g. from [0“)/90“)]s to [0/90]105) is attractive

to designers because shuffled laminates behave more closely
to homogeneous materials having no deformation coupling and
effects due to stacking sequence. On the other hand, if
coupling is desired heterogeneous laminates must be used.
The CLT stresses are affected by changes in stacking
sequence; they must equilibrate with interlaminar (IL)
stresses in some manner.

The IL stresses equilibrate with the CLT stresses as
depicted in Figure 4.4.1. Outside the boundary layer the
moment due to Oy is evaluated; this couple must be balanced

by o,. Further, equilibrium of Txy and Oy directly must be

balanced by the net load due to Txz and Tyz respectively as

shown. This analysis does not apply to holes since 3¢/36520
in general; ignoring this may result in grossly innaccurate
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and unpredictable estimates.

4.4.2 Crossply Laminates

4.4.2.1 [90/0]ns, [0/90]ns Laminates

Shuffling the plies of a symmetric crossply laminate
changes the CLT inplane ply stresses without affecting the

CLT inplane stiffness matrix & (see Appendix A). In
response to a load N, the effect of shuffling plies on the

interlaminar edge stresses (at y=b) can be seen in Figure

4.4.2 by comparing [90/0]s and [90/0]35 laminates. The

difference between laminate and sublaminate stresses is
barely changed on the edge.

Using the equilibrium analysis it can be seen that
the couple on individual plies reduces for repeating
sublaminates and the total couple on the midplane is also
reduced. If a symmetric laminate in uniform extension has a
couple at y=0 on the upper half, then if the symmetric
laminate is divided into 2n sublaminates with the same total
thickness as in Figure 4.4.3, then the total moment on the
upper half becomes 1/n of that in the single sublaminate.

In this case the response to the decreased moment is
a decrease in depth of the boundary layer by 1/n (see
Figure 4.4.4). The shuffled laminate provides more stress
concentration sites which conceivably provides more
opportunities to initiate delamination. In both cases G, is

low (less then 5% of the gross applied stress: Nx/Zt).

For a bending load Mx the stresses for both crossply
stacking sequences [0/90]s and [90/0]s are shown in Figure

4.4.5. The displacements w.r.t. z are: u,v - odd and w -
even. The two stacking sequences represent highest and
lowest bending stiffness for crossply symmetric (i.e.
maximum Dl‘). It can be seen in Figure 4.4.5 that the

flexible [90/0]s laminate has the larger interlaminar
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Note: gross applied stress oo-lezt.




-201-

F, a=0°
| [0/90],

t/2 T t n,=

-F, —-L> a=90°

symmetric

e— =
€

<

-
S~
(& ]

a=0°
a=90°
a=0° [0/90],,

ﬂz=3

t/6

LTL1 A

a=90°

symmetric

Figure 4.4.3 Shuffling plies from [0/90]s (n‘=1) to
[0/90333 (nass) reduces the net couple at y=0

on a ply pair by (n,/n_)2 and the couple on
the upper half by nI/n2 for N, applied.



MUK

-202-

0.005 o

0
0 ‘490/0],‘
I b z/t=.5

0 0.2 0.4 0.6 0.8 1
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laminates. Boundary layer depth is reduced by
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stresses. Although not shown, it was noted that the boundary
layer in both cases is one laminate thickness, i.e. 2t.

As the layers are shuffled to [90/0]35 and [0/9°]:s

the bending stiffnesses move closer to those of a
quasi-homogeneous lay-up. The edge stresses (see Figures
4.4.6,7) behave in a straightforward manner w.r.t. the CLT
stresses. The decreased moments on the interfaces are
responded to (see Figure 4.4.8) by a decrease in the BL
depth while IL stress maxima increase proportional to the
distance from the midplane. Overall, no stacking sequence
appears to be clearly superior for reducing the maximum
magnitude of the interlaminar stresses relative to load;
but, there does appear to be some advantage in having the

outer ply oriented 90° to reduce o, near the outermost

interface. In all cases the boundary layer depth throughout
the laminate was about 4h.

4.4.2.2 [0/90], and [90/0]n Laminates

From the class of laminates having equal numbers of

alternating 0° and 90° layers of equal thickness the [0/90]

exhibits the greatest coupling between bending and extension
deformation (i.e. maximum B;x)' For this problem the

displacement functions used in both layers are the same as
was used in the upper layer for the symmetric crossplied

laminates since there is no symmetry across the midplane.
The total thickness of the laminate is denoted by t.

For load N, the IL stresses are shown in Figure

4.4.9. The interlaminar stresses closely resemble the
tension side of the [90/0]4 laminate for My applied. This is

understandable since their deformation is similar.

For a load Mx the stresses appear in Figure 4.4.10.

In this case the IL edge stresses shift from what they are
for Nx applied towards compression pcssibly dQue to Ly being

lower on the midplane than for Nx applied.
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4.4.2.3 Summary

Overall, crossply laminates exhibit weak interlaminar
stresses at the interface of less than 10% of the gross
average stress. In bending and extension, shuffling the
plies alters bending stiffrniess and reduces the depth of the
boundary layer proportional to the decrease in ply
thickness. The IL edge stress peaks increase in magnitude
roughly proportional to the distance from the midplane.

4.4.3 Angle-Ply Laminates

4.4.3.1 [ie]ns Laminates

For this laminate in pure bending (Mx¢0) the

displacements w.r.t. z are: u,v - odd, w - even so the trial
functions are chosen accordingly in the middle layer. The
configuration is as in Figure 4.4.3 with different a«'s.
Shown in Figure 4.4.11 are the results for a [14518. As for

pure tension o, is compressive on the tension side so

z
indicating that delamination would initiate on the
compression side. In this case it would be interesting to
determine if the delamination would propagate causing
buckling of loose plies.

As the configuration is changed to [145]38 the

coupling terms B and st decrease in magnitude. 1In Figure

16
4.4.11(bottom) it shows that the singular interlaminar
stresses on the edge are affected by bending in a
straightforward manner. The distributions on the
sublaminate edges show IL stress magnitude increasing
roughly in proportion to the distance from the midplane. The
maximum interface averages are roughly the same in both

cases. Shuffling causes a change in the distribution of T,

along the interface at z/t=.5: there are two zero crossings
in the boundary layer. The depth of the boundary layer (see
Figure 4.4.12) remains at roughly 4h in both cases
decreasing absolutely due to shuffling.
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Angle-ply laminates yield a high bss stiffness and so

are often used to resist torsion or twisting loads.

Symmetric laminates also have a fully populated D matrix and
so exhibit bending coupling in response to pure twist loads;
the coupling diminishes as the plies are shuffled. The CLT
stresses for a 1‘4515 with Mxy¢0 are shown in Figure 4.4.13.

In this prob.iem, Txz reapproaches zero near the singularity

and is maximum near the midplane.

As the plies are shuffled to [.t45]ss so that D16 and

D,, are reduiced to one third of their wvalue for [i45]s; the

CLT stresses become as shown in Figure 4.4.14. The

distribution of Txz is similar to the unshuffled la-ninate

except that since -~ at y=0 redistributes slightly

Xy
t
reducing the value of ffxydz the extremum of Txz at the
0

midplane is lower in magnitude. At z/t=.5 however, the
z=t

difference in f rxydz is negligible so the BL depth and
z=.,5¢t

distribution of =~ on the interface do not change (see

Xz
Figure 4.4.15). Shuffling redistributes o, at y=0 so that

Y

the maximum of o, and the BL depth are reduced.

z

4.4.3.2 [te]n Laminates

Antisymmetric angle-ply laminates have coupling
between extension-twist and bending-inplane shear for a

finite number of plies i.e. Bxs'st¢°’

The displacements are: u,w - even w - odd. For this
problem the solution functions for both layers are the same
as for the upper layer in the [ier problem. It is possible

to model only the top layer imposing u,,w.,V,V 0 on z=0;

z'¥z zz"
but the entire laminate was modeled so t denotes the
laminate thickness. In Figure 4.4.16 for tensile N, applied
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Txz is strongest, o, is compressive on the free edge, and

Tyz is small as in the symmetric laminate.

For M, applied the results are shown in Figures

4.4.17,18. In this case the displacements across z=0 are:
u,v - even and w - odd. Interestingly, in this case near

the singularity Tvz dominates while all the other stresses

inclusing the inplane stresses vanish. The other
interlaminar stresses increase only in the region away from
the singularity. For laminates of the same size the

maximums of o, and Txz for the antisymmetric dimensions are

less than one quarter of the singular stresses of symmetric
laminate.

For Mxy applied the displacements w.r.t. z are: u,v

~ odd and w - even. The B,, term couples twist to extension
in this laminate. 1In Fiqgure 4.4.19 it can be seen that the
IL tensile normal stress at the midplane/interface is very
large and dependent upon the sign of Mxy' This configuration
appears to be very susceptible to delamination for a
twisting load which causes a negative £y by coupling.

4.4.3.3 Summary

The IL edge stresses increase in proportion to the
distance from the midplane in shuffled laminates. The BL
depth is strongly related to the CLT forces and moment at
y=0. Antisymmetric [t45) show IL stresses similar to
the symmetric case for Nx applied, much lower for

bending, but are worse for twist.

4.4.4 OQuasi-Isotropic Laminates

As a replacement for conventional materials this
class of laminates is heavily used. The angles in the
laminate progress in a =n/n increment e.g. [0/60/-60....]8,
[0/45/90/—45....]5,[0/36/72/—18/-54...]5.. ([0/90...]8 is

orthotropic). Stacking sequence does not influence inplane
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stiffness or CLT ply stresses for Nx applied but does affect

the moments at y=0. These laminates have also received much
attention for uniform extension of symmetric laminates using
FE solutions(e.g. see Whitcomb{(1984)). In this brief
subsection the effects of stacking sequence for Nx applied

are examined.

n/3 laminates exhibit negligible free edge stresses
in uniform extension so n/4 are investigated. In order to
minimize the midplane moment the plies can be stacked in a
"spiral" sequence i.e. [0/+45/90/-45]S {but not

[45/90/—45/0]5) which minimizes the pure couple due to Oy
By this measure the worst possible case would be [145/0/90]s
for a n/4. These and various other cases are shown in

Figure 4.4.20 with the inplane couples and the free edge
stresses are shown in Figure 4.4.21.

The Iy couple influences the midplane edge value of

o, predictably. In Figure 4.4.22 the midplane distributions

of G, show boundary layer depth and maximum stress predicted

by the magnitude and sign of the couple. Unless the 90°
ply is placed on the upper surface, the edge magnitude is
not greatly influence by stacking sequence. The BL depth
changes in response to changing moment.

There are two basic stacking sequences distinguished

by whether the 45° layers are adjacent. When they are

adjacent vz is significant while it is negli¢gible when they

are not grouped. Also, Tz is stronger at 145 interfaces
than at 90/45 or 90/-45 interfaces even though the net shear
force is the same.

The couple at y=0 predicts the sign ¢f o0, at y=b and

Z

it's magnitude is a balance of the magnitude of o, and the

depth of the boundary layer. The maximum IL edge stress
depends upon the orientation of the adjacent layers. It is
better to consider the possible interaction between adjacent
plies due to poisson and shear coefficient mismatch (e.g.
'n”=ca/t1 for Nx¢0) than the couple at y=0 to estimate IL
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edge stresses.

4.4.5 Piscussion and Conclusions

From a simple equilibrium analysis it can be seen
that both the maximum IL stress and depth of the boundary
layer change to equilibrate the CLT stresses occurring
outside the boundary layer. Laminate and sublaminate
thickness determines boundary layer depth only insofar as it
affects the far field CLT stresses; IL stresses are highly
problem dependent. Equilibrium analysis has only limited
use for predicting the IL stresses since, for example, the

o, couple depends upon maximum stress. the BL depth and also

the number of zero crossings in the BL which is often more
than two. This equilibrium aralysis cannot be used for
circular holes without potentially gross error since 3a/ae#0
for holes.

For all loads and cases, the maximum stresses on the
edge of shuffled laminates were not reduced. For bending and
twisting the stresses of shuffled laminates increased in
proportion to the distance from the midplane so that the
maximum was shifted towards the laminate surface.

The boundary layer depth was less than 5 laminate
thicl.nesses in all cases.

Finally, on the mode of solution, shortcuts to
accurate solutions are not obvious. From observations,
solutions to the complete boundary value problem without
assumptions beyond those made here will consistently yield
results of sufficient accuracy.
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CHAPTER 5

CLOSURE

Using the classical linear elastic material model of
a fiber-reinforced composite, the stresses in composite
laminates near edges have been investigated by approximate
solution of the equations of elasticity for static loads and
by measurement. The investigation was undertaken based on
the assumption that free edge stresses play a significant
role in the failure processes of laminates and will
contribute to the understanding and prevention of free edge

failures.

Finite element solutions for plates with holes using

standard displacement-formulated isoparametric elements
showed h-dependence of stresses in the region near the
surmised singularity but using a substructuring scheme
acceptable results overall in the boundary layer were
obtained with reasonable computer resources. However, the
h-dependence ¢f stresses near the singularity cannot be
neglected for the effect on magnitude while distributions

{or shape) were less dependent.

Measurements of hole surface normal strains were in

good agreement with FE results for the plates investigated

having large values of Rt/a®. For ¢ near the singularity

zl

the measured strains were shown in FE solutions for models



of instrumented plates to have been significantly influenced
by the mechanical behaviour of the gages. From limited data,
the measured strains support the predictions of the model
only when the gages are included. From these results, any
method using coatings in a similar situation should be

suspected of effects on the measuvements.

FE solutions showed on the hole surface of [0/9015,
[90/0]5, and [90/0] Graphite/Epoxy plates that LN is the

strongest interlaminar str:ss and is maximum at the
interface but everywhere less than the applied stress. The
interlaminar stresses do not vanish as R/t increases but, in
fact, can increase although a state appears to be approached
asymptotically with increasing R/t; very thick plates were
not modeled so no similar statement can be made for very low

R/t. The [90/0] plates had the largest maximum of o, for

all cases. R/t did not appear to significantly alter g, at

the interface in any case. R/t and stacking sequence

dramatically affects the distribution of ¢, on the midplane

z
of symmetric plates although the maximum on the hole surface
was observed to be less than 20% of the applied stress.
Overall the most severe hole stress state occurred for the
[90/0] 1laminate where the hole surface intreface stresses

were very large.

From observations on the FE results a method of
estimating the circumferential stress on the hole surface of
a la.vinate using plane stress and plate theory formulas for
single layers is proposed. When compared with FE results
for both symmetric and unsymmetric plates, the two

dimensional solutions bounded the maximum o4 for the range
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of R/t 1-25. An heuristic explanation is that the methods
roughly model bonded and unbonded layers and the effects of
bonding are relatively more localized near the interface as
R/t increases. This method, after further verfication, may
provide easy estimates, increase understanding and so

benefit designers.

Reinforcement of a hole with an elastic ring can
mitigate the interlaminar stresses and reduce the maximum
stress concentration in the plate. In the process the
overall stress state is altered as radial stresses emerge.
The stress state in the plate may be tailored by varying

ring thickness and rigidity.

A procedure for solving protlems involving laminates
with certain anisotropy of the layer material properties
valid for cases where 3o0/8x=0 was developed and used to
investigate angle-ply and cross-ply; shuffled and
unshufffled; symmetric, asymmetric, and antisymmetric Gr/Ep
In comparis«n

laminates for CLT loadings M, . N, and Mx

X y*
to other approaches successfully taken in the literature
this method is very competitive in terms simplicit.,

flexibility, and computing resources.

While interlaminar stresses must satisfy equilibrium
with stresses outside the boundary layer, the BL depth and
stress distribution are too variable and problem dependent
for estimates using the CLT stress resultants to be
accurate. Therefore, IL stresses are adequately determined
at present only by solution of the complete boundary value

problem.
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5.2 Recommendations for Future Work

Although the severity of the stress state is
determined by failure criteria which is material dependent
generally the high stresses at the surmised singularity
appear to be most serious. Paradoxically, it is in this
region that the verity of the model and measurements are
most doubtful. From what has been observed in the present
investigation, more detailed work in measurement, more
solution accuracy in modeling, and better interpretation of
the results will be required to understand and predict the

behaviour at the interface/edge intersection.

Although the results were valuable, the FE method cf
solution used in Chapter 3 was inefficient and so is of
limited use. Therefore it is not recommended that any
further work (e.g. convergence studies) be done in
developing the method for three-dimensional laminate edge

problems.

Enlarged models is the approach recommended for

measurement. Measurement of Y26 which was not
feasible in the present work, should be attempted since T20

is observed to be a significant stress.

Prevention of delamination may be possible by
mitigating the stress state in the boundary layer. Hole
reinforcing rings appear promising. Experimental work could
be based on the results presented here. Coatings should be

investigated for straight edges as well. Coatings could be
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used for configurations which might otherwise be avoided due

to severe free edge stresses.

The mode of solution in Chapter 4 requires: further
work on the use of the residual as an error estimate,
analysis of the homogeneous solution functions as
approximation functions, and to exploit the low number of
degrees of freedom in solutions in terms of computing
resources. As a suggestion, cother collccation point
distribution schemes and frequency distributions may lead to

a reduction in the computing resources required.
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ations of Classical Lamination Theory

Appendix A: Eg!

|
{
!

Following Kirchoff's hypothesis that in any
deformation plane sections remain plane the laminate

displacements are given by

(=4
]

UO‘Z Wx

v= VO‘Z WY

where u,,v, are the displacements at z=0. The strains are

0

then
'x~ ®xo”Z Ky
‘y" fyoZ Ky
7xy= Txy -2 kxy
where
K= Won ky= L kxy= 2WXY

And finally, the stresses are related to the strains by
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T_
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i3 7 32
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(Q:4) " (2z2y- )
. Q5 k™ %k-1

and A,B,D are called the laminate stiffnesses. Compliances
are given by
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a=k* B=F ' &=D°.

For a symmetric laminate §=0 {a 3x3 matrix of zeroes)
and there is no bending-membrane coupling. If for every a
there is a -a included then Ai°=0.




Appendix B: Evaluation of Specimen Effective Moduli

In order to make the FE results relevant to the
experimental work EM constants were determined for the
specimen plates. [08] for E V.57 [9081 for E_,.v,,. Vgt

and [1452]s for G,, strips were characterized to oixtain the

values listed in Table 4.1. Along with fiber volume content
of the characterization specimens these moduli are used for
evaluating the EM properties as a function of the fiber
volume. The relations between the constituent and composite
properties are given by the following equations due to
Hashin(1972)

B81) Exx”"mEm + g Efl + 6e

B2) Y2 VmTm *t Mg Ve1 t 6,

B3) G - Gm(Gmnm +Gf1(1+ﬂf)))
12 (Gm(1+"f)+cfl"m)

GE(1+(1+ﬁ1)ng}

B4) G,,=
(R-ng (1438 29.2/ (ang®+1)))
4K _G
B5) E = ——S.23

22
KgtMG, ,



where the matrix properties are V' Ep and Gm-Em/2(1+vm),
the fiber properties are E¢,,vs, and Gee=Egp/2(14ve,) in
the transverse plane so that the fiber is transversely
isotropic , and Egy., vgy and Ggy in the longitudinal

direction. Also

(A(vgq-v, )2 (ng ~ ) (1 - 1/K,)
. = £1"Vm "f:m s, = 22 7 ") /K — £) e
My Mmoo, - Tm M 4 -
Kf Km Gm Kf Km Gm
which are almost negligible, and
E G G
Gm= m Km= _m Kf=_.._:.f_§__
2(1+vy) (1—2vm) (1-2vg,)
K
ﬂ1= Km ﬂ2= :
(K, + 2Gp) (Rg + 2G4,
G = Ggy . < (ﬂ,- G ﬁz) R = (G + ﬂt)
Gp (1 + 6 8,) (6 - 1)

_ (Ep(Rg+Gy) my +Kg (Rp+Gyp) me 2

4K
s M= 1+ .__ELG.
((Kf+Gm)nm+(Km+Gm)nf) E

11

The unknown values of the constituent moduli

satisfy these equations when the EM values and g in each

are fixed. After finding the constituent moduli equations

Bl-5 yield the EM values as functions of ¢ only.
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There are seven constituent properties while only five
EM properties were measured. At these high fiber volume
contents the matrix properties have very little influence
on the calculated composite properties. Therefore, the

manufacturer's values for Em and vm Were estimated so that a

numerical search could be made for the other constituent
properties. A simple manual routine was used which searches
for the minimum of the sum of squared differences between
the measured EM values and the values calculated using the

equations.

To begin the procedure initial values of the fiber

properties are required. Beyond this, since E /v and

12/

G,2 are , aside from the matrix properties, weakly coupled

to each other an.! to Vas and Ezz, then wusing the

manufacturer's values for v and E, and the experimental

m

data for E11' v and G, the constituent properties Gfl'

12'

Efl' and vey can be determined approximately. Further, by

setting Vet and Gee simultaneously the properties Ezz,st,

and v, €an be estimated. These are the values used to

initialize the numerical method.

After reducing the error in B1-5 to less than the number
of decimal places shown in the EM properties it was observed
that changes of up to 10% in the matrix properties
influenced, at worst, the 4th floating point digit in all
the resulting final EM properties for the test plates.
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Appendix C: Experimental Measurement Data

In the following tables Cl1l and C2 the slopes of
stress/gage output curves are presented as the raw data.
The measurements identified in the tables by gage length in
thousandths of an inch (the gages are classified in Imperial
units by the manufacturer) , angular position 6, direction
of measurement ( T-transverse, C-circumferential), and
position through the thickness (i-interface, m-midplane).
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Table Cl: Slopes in pe/MPa for [0/90],. specimen

Gage Replication #
Gage position 1 2
length & type measured jcorrected| measured{ corrected

031 22.5 Ti 1.45 1.47 1.33 1.34
031 45 Ti -3.81 -3.52 -4.19 -3.89
031 67.5 Ti -29.25 -28.38 -30.18 -29.30
015 90 cm 46.24 46.28 46.08 46.11
015 67.5 Cm 44.58 44.54 44.64 44.59
015 45 cm 21.39 21.33 21.40 21.34
015 22.5 Cm -4.99 -5.01 -4.27 -4.29
015 0 cm -22.50 -22.47 -22.59 -22.55
7.01 7.21 5.54 5.74
2.31 2.52 2.08 2.30
015 0 Ti 3.33 3.54 0.03 0.25
015 22.5 Ti -1.22 -1.17 -1.05 -1.00
015 45 Ti -11.42 -11.70 -11.45 -11.73
015 67.5 Ti -29.68 ~-30.58 -29.41 -30.30
015 90 Ti -52.79 -53.54 -52.87 -53.62
015 90 Tm -17.81 -18.42 -18.41 -19.03
015 67.5 Tm -4.67 -5.32 -4.94 -5.59
015 45 Tm 4.07 3.73 4.16 3.82
015 22.3 Tm 5.61 5.35 4.84 4.89
015 0 Tn 0.75 1.08 1.12 1.45
015 90 Ci 63.76 63.97 64.13 64.34
88.82 88.85 89.56 85.59
015 67.5 Ci 46.56 46.66 46.66 46.76
26.63 26.66 26.40 26.43
| 20.90 20.94 20.14 20.18
015 45 Ci 22.66 22.69 23.01 ] 23.04
015 22.5 Ci -2.31 ~-2.30 -3.41 -3.40
015 0 Ci -15.05 -15.04 -15.46 -15.45
5.46 5.69 6.12 6.35
088 0 Ti 4.61 4.85 2.20 2.45
3.65 3.68 3.32 3.35
008 22.5 Ti 0.95 1.00 0.24 0.29
-5.23 -5.59 -5.51 -5.87
onsg 45 Ti -7.48 -7.83 -9.,40 -9.73
008 67.5 Ti .1 -44.92 -45.84 -46.44 -47.35
-28.17 -29.14 -29.35 -30.31
008 90 Ti -19.27 -20.30 -18.65 -19.69




-254-

Table C1l cont'd
Gage Replication #
Gage Position
|length & type measured Jcorrected |{measured [corrected
031 22.5 Ti 1.28 1.30 1.99 2.00
031 45 Ti -4.23 -3.93 -2.51 -2.22
031 67.5 Ti -29.97 -29.10C -29.97 -29.10
015 90 Cm 46.03 46.06 46.06 46.09
015 67.5 Cm 44.55 44.50 44.94 44.90
015 45 Cm 21.03 20.91 22.01 21.95
015 22.5 Cm -4.39 -4.42 -4.51 -4.54
015 0 Cm ~-22.84 -22.81 -22.07 -22.04
6.24 6.44 5.13 5.33
2.55 2.76 4.34 4.55
015 0 Ti -0.77 -0.54 -0.77 -0.54
015 22.5 Ti -1.15 -1.10 -0.65 -0.60
015 45 Ti -11.87 -12.16 -11.75 -12.03
015 67.5 Ti -29.84 -30.74 -29.89 ~30.79
015 90.0 Ti ~-53.14 -53.89 -52.70 -53.45
015 90 Tm ~-18.54 ~-19.15 -18.45 ~19.07
015 67.5 Tm -4.57 -5.22 -4 .55 -3.20
015 45 Tm 4.07 3.73 4.20 3.86
015 22.3 Tnm 4.90 4.94 5.00 3.05
015 1] Tm 0.78 1.11 1.15 1.48
015 90.0 Ci 64.94 65.15 66.28 66.49
85.71 88.75 89.14 88.17
015 67.5 Ci 47.52 47.62 49.35 49.45
26.40 26.43 26.67 26.69
20.70 20.74 22.11 22.14
015 45 Ci 22.99 24.02 24.04 24.07
015 22.5 Ci -2.85 -2.84 -3.45 -3.43
| 015 0.00 Ci -14.86 -14.85 -14.63 ~14.62
5.12 5,35 5.01 5.25
008 0 Ti 4.72 4.96 5.94 6.17
2.74 2.78 2.74 2.78
008 22.5 Ti 2.54 2.58 -2.91 -2.84
-5.79 -6.15 -5.77 -6.13
008 45 Ti -6.63 -6.98 -4.82 -5.19
008 67.5 Ti -44.23 -45.15 -42.94 ~43.87
-26.83 -27.81 -25.76 -26.75
008 90 Ti -20.,08 -21.11 -19.30 -20.33
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Table Cl cont'd
Gage

Gage position corrected|corrected] Std.
length & type average | average |variance ldev'n
031 22.5 Ti 1.51 1.83 0.10 0.32
021 45 Ti -3.68 -3.39 0.64 0.80
031 67.5 Ti -29.84 -28.97 0.16 0.40
015 90 Cm 46.10 46.14 0.02 0.10
015 67.5 Cm 44.68 44.63 0.03 0.18
015 45 Cm 21.46 21.40 0.16 0.41
015 22.5 Cm -4.54 -4.56 0.10 0.32
Cl5 0 cm -22.50 -22.47 0.10 0.32

5.98 6.18 3.21

2.82 3.03 0.31

0.45 0.68 3.53
015 0.00 Ti 3.08 3.30 7.05 2.65
015 22.5 Ti -1.02 -0.97 0.06 0.25
015 45 Ti -11.62 -11.91 G.05 0.22
015 67.5 Ti -29.71 -30.60 0.05 0.22
015 90.0 Ti -52.87 -53.62 0.04 0.19
015 90 Tm -13.30 -18.92 0.11 0.33
015 67.5 Tm ~4.68 -5.33 0.03 0.18
015 45 Tm 4.12 5.78 0.00 0.07
015 22.5 Ta 5.09 5.13 0.12 0.35
015 0 m 0.95 1.28 0.05 0.21
015 30.0 Ci 64.78 64.99 1.24 1.11

89.06 89.09 245.72

47.52 47.62 246.37
0153 87.5 Ci 58.29 68.36 492.09 22.18

26.52 26.55 6.80

20.96 21.00 0.74

23.43 23.46 0.68
015 45 Ci 22.19 22.23 8.22 2.87
015 22,5 Ci -3.00 -2.99 0.29 0.54
015 0.00 Ci -15.00 -14.99 0.12 0.35

5.43 5.66 0.26

4.37 4.61 1.19
008 0.00 Ti 4.90 5.13 1.46 1.21
3.11 3.15 1.28 1.13
0.20 0.26 3.41 1.85
008 22.5 Ti 1.66 1.70 4.68 2.16

~5.58 -5.94 0.35

-7.08 -7.43 1.85
008 45.0 Ti -5.33 -6.68 2.20 1.48
008 67.5 Ti -44.63 -45.55 2.10 1.45

-27.53 ~-28.50 24.54

-19.32 -20.36 22.46
008 90.0 Ti -23.43 -24.43 23.50 4.85
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Table C2: Slopes in ge/MPa for [90/0], Specimen
Gage Gage Replication #
Length Position 1 2
& type measured} corrected measured corrected
0.r2 0.13 -0.44 -0.32
-3.96 -3.32 -4.1¢ -4.05
031 22.5 Ti
-10.74 -11.42 11.97 -12.64
-13.51 -14.17 —13.72 -14.38
| 031 45 Ti
-19.25 -20.55 -20.05 -21.35
~-18.67 -19.97 -18.80 -20.190
031 67.5 Ti
015 90 Cm 77.82 77.78 77.23 77.19
015 67.5 Cm 63.25 63.27 61.95 61.97
015 45 Cm 25.59 25.62 24.49 24.53
015 22.5 Cm -6.05 -6.01 -7.33 -7.30
015 0 Cm -12.09 -12.10 -12.79 -12.80
015 2.5 Tm ~-2.88 -2.76 -3.94 -3.82
015 45 Tm -12.10 -12.41 -12.02 -12.33
015 67.5 Tm -20.20 -21.03 r20.41 -21.24
015 g0 Tm -12.88 -13.98 -13.42 -14.52
015 0.00 Ta 5.68 5.97 5.1 5.90
-29.07 -28.88 -29.09 -28.89
-23.99 -25.381 —26.20 i—26.02
| 015 22.5 Ti =
-19.78 -20..9 ~—20.18 I-2G.538
-17.97 |-18.33 }18.35 i-13.76
015 45 Ti .
-3.35 -4.27 -3.54 -4.46
-6.27 -7.17 ~6.44 -7.34
015 67.5 Ti
015 90.0 Ti -27.28 -28.24 -27.67 -28.63
013o 0 Tm 6.96 7.12 5.82 5.99
015 90.0 Ci 73i.60 71.65 71.45 71.50
68.823 68.75 69.33 69.25
55.81 55.75 55.24 55.19
ov < 67.5 Ci
45 Ci 33.57 33.64 33.58 33.64
-5.52 ~-5.39 -5.14 -5.02
-3.44 -3.32 -4.22 -4.10
015 22.8 C3
015 0.00 Ci ~21.29 -21.29 -21.46 -21.46
008 0.00 Ti 6.58 6.91 6.77 7.10
008 22.5 Ti -0.50 -0.41 -0.59 -0.50
008 45.0 Ti -13.36 -13.85 -13.12 -13.62
008 67.5 Ti -19.33 -20.31 -18.90 ~-19.89
008 90.0 Ti ~15.26 -16.45 -15.47 ~16.66
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'Table C2 cont'd

Gage Gage Replication #
Length Position 3 B 4
& type measured|corrected measured| corrected
0.49 0.60 0.09 0.20
-3.88 -3.74 -4.27 -4.13
031 2z.5 Ti
-12.58 |-13.25 F12.60 }13.27
-13.62 |-14.28 }13.59 }14.25
031 45 Ti
=20.58 |-21.87 F21.58 F22.87
-19.42 |-20.72 }19.22 }20.52
031 67.5 Ti
015 90 Cm 76.06 76.02 76.07 76.03
015 67.5 Cm 60.29 60.31 60.37 60.40
015 45 Cm 23.61 23.65 23.35 23.239
015 22.5 Cm -7.89 -7.86 -8.38 -8.34
015 0 Cn -12.40 |-12.41 [~14.07 }[14.08 .
015 2.5 Ta -4.64 -4.53 -5.45 -5.32 ;
015 45 Tm -13.38 |-13.69 |-13.91 F14.21 g
015 67.5 Tm -21.48 |-22.31 |}21.91 F22.74 !
015 96  Tm -14.58 |-15.67 [|-15.12 }i6.20 :
015 0.00 Ti 5.98 6.27 5.29 5.58 :
=39.65 |-29.78 |-30.81 30.61 !
-27.00 |-26.81 |-26.72 }26.54 '
015 22.5 Ti
220.65 |-21.03 |-21.48 [-z1.38
-18.87 |-19.28 [-18.31 [-1i8.72
915 45 Ti ;
-4.64 -5.55 ~5.24 -6.15 .
-7.32 -8.22 -7.26 -8.16 !
015 67.5 Ti ;
015 90.0 Ti -28.59 |-29.55 |-28.00 [-28.96 g
015 0 Tm 5.32 5.49 4.42 4.59 f
015 90.0 Ci 72.65 72.70 71.87 71.92 i
69.21 69.13 69.16 69.08
55.05 55.00 53.62 53.56
o~ 67.5 Ci
| 015 45 Ci 31.99 32.06 31.38 31.44
-4.97 ~4.85 -4.74 -4.62
-6.04 -5.92 -5.13 -5.01
015 22.5 Ci
015 0.00 ci -20.67 |-20.67 [-20.66 [-20.66
008 0.00 Ti 5.84 6.18 5.92 6.26
008 22.5 Ti -1.17 -1.07 -0.34 -0.25
008 5.0 Ti -13.92 |-14.41 [|-13.17 [|-13.67
008 67.5 Ti -20.75 |-21.72 |~20.15 |~21.13
008 90.0 Ti -16.35 |-17.53 15.77 |[-16.95
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Table C2 cont'd
Gage
Gage Position corrected |corrected ! Std.
length & type average| average |variance |dev'n
0.04 0.15 2.45
-4.08 ~-3.94 2.40
031 22.5 Ti -2.02 -1.89 4.85 2.20
-11.97 -12.64 0.70
-13.61 -14.27 0.38
031 45 Ti -12.79 -13.46 1.08 1.04
-20.37 -21.66 0.66
-19.03 -20.33 0.30
1 031 67.5 Ti =19.70 -20.99 0.96 0.98
015 90 Cm 76.79 76.75 0.77 0.88
015 67.5 Cm 61.46 61.49 1.99 1.41
015 45 Cm 24.26 24.30 1.02 1.01
015 22.5 Cm -7.41 -7.38 1.01 1.00
015 0 Cm -12.84 -12.85 0.76 0.87
015 22.5 Tm -4.23 -4.10 1.18 1.09
015 45 Tnm -12.85 -13.16 0.88 0.94
015 67.5 Tm -21.00 -21..83 0.63 0.82
015 90 Tm -14.00 -15.09 1.08 1.02
015 0.00 Ti 5.64 5.93 0.08 0.28
-29.74 ~29.54 1.80
~26.48 -26.30 1.60
015 22.5 Ti -28.11 -27.92 3.39 1.84
-20.52 -20.92 0.88
-18.36 -18.77 0.72
015 45 Ti -19.44 -19.85 1.60 1.27
-4.20 -5.11 1.32
~-6.82 -7.72 1.10
n15 67.5 Ti ~5.51 -6.41 2.42 1.56
015 90.0 Ti -27.88 ~28.84 0.30 0.55
015 0 Tm 5.63 5.80 1.11 1.06
015 90.0 Ci 71.89 71.94 0.28 0.53
69.13 69.05 28.74
54.93 54.88 29.09
o1& 67.5 Ci 62,03 | 61.96 57.83 7.60
Q15 45 Ci 32.63 32.69 1.25 1.12
-5.09 -4.97 0.07
-4.71 -4.59 0.56
018 22.5 Ci -4.90 -4.78 0.63 0.79
015 0.00 Ci -21.02 -21.02 0.17 0.42
008 0.0C Ti 6.28 €.61 0.21 0.46
008 22.5 Ti -0.65 ~0.56 0.13 0.36
008 45.0 Ti -13.39 -13.89 0.13 0.36
008 67.5 Ti -19.78 ~20.76 v.68 N.82
008 90.0 Ti -15.71 ~16.90 0.22 0.47
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Appendix D: Listing of Computer Program and I/0 Files for Chapter 4

The following pages contain the program and input files used in
Chapter 4 for the method of weighted residuals solutions. The program is
coded in Digital Vax Fortran v 4.0 language.
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'00#040#00000#00000+0#00¢¢0#0#00#*0000#0000#40000000000004#0####000000###040+¢4c

C METHOD OF WEIGHTED RESIDUALS PROGRAM c

c#00#4#*##0000#0#00###00###*00#¢¢+0+¢00#0##0400000###0#40##00#04000##044#0#¢¢4¢c

¢

implicit real*8 (a-h,o0-2)

integer n,iprint, intype,maxcal, ibound, 1h,istate(100),iw(100),
+liw,lw,ifaii,mt(100 .md2100 ,mn{100)

real*8 gx(801,3003),9y(3003,501),
+a(6,6),q(6,6),

yy(100)

common/stuff/ 2(3003),y(3003),THeta(100),ex(100,12),50(100),
+g3(19001),b(19001),wkarea(6),
+f2(100),el1l,022,033,q912,913,¢23,v12,v13,v23,

+rts 100.3),RL(3.3).CKm(100.3g.clm(100.3),cmm(100,3).

*R{l 001);Qb§616;9
+¢(100,6,6),FW(8),thick,width

common/int/ N2(2,12,11),N3(19001),n4(100),N5(100,3),Nb(2,15),
+n51(100),nb(100),nf(100,2),np31(10,100),n5j(100),
+np3,npd,np3d,npdd,npl,nc,kn,nfz

COMMON e(1,2100),PK(2.4,3003),PM(2.4.3003).PL£2.4,3003),
+g1(1,3003),c11,C12,C€13,C23,C22,C33,C66,c55,c4

open (unit=1, file='mwrin.dat’', status='old’)
open (unit=5, file="mwr.dat', status='01d"')
open (unit=2, file='file2.dat', status='old'
open (unit=3, file="Tile3.dat', status='old’
open (unit=6, file="mwrout.dat', status='old')

input data for housekeeping tasks from file mwr.dat

read(5,90)(((N2(K,I,J),J=1,11),I=1,12),K=1,2)
read(5,91)((N6(K,J),J=1,18),Ks1,2)
read(5,92)((Q(1,j),i=1,6),j=1,6)
read(5,93 CKMgi,j;,j=1,3§,i=1.5;
read(5,93)((CLM(i,]),J=1,3),1s1,5
read(5,94 r](i,jg,j-1,3),i-1,3g
read(5,93)((rts(i,j),j=1,3),i=1,5)
read(5,95)(MB(1),I=1,10)
read(5,96)((NP3L(I,J),J=1,6),I=1,10)

read(5,97) ((NF(1.K),k=1,2
+),1=1,10

read(5,99)((ex(i,j),j=1,12),1s1,2)

PI=3.14159265358979323846D00
format§245/11i32)

format 2% 1513))
format(2(/18f3.0))
format(/1513.0)




605

992

+

+
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format(/913.0)
format(/10i3)
format(3(/1813),/6i3)

format(1
format(2

NP3D=501
NFUNC=0

NP4D=8(1
N5D=2001
NP1D=100
NCD=300

NG=50000
NEQ=2100

NQl=l
REWINDG

(

}

2(12&1114/

WRIT

a2} el 10

/213))
1213.0))

computat ional dimensions

NO1.EQ.1)WRITE(6,604)(((N2(K,1,J),du1,11), I=1, .
604 Foé q ,0 ) ( A&((( ( ):d=1,11),1=1,12) ,K=1,2)

g)(ﬁs(r) I=1,10), ((NF(I,K)

¢é8NP3L 1,J), J-l 2).1-1,10)

+
+
+

RMAT§/

NBOTTOM /11013//

" NFUNCTION '//10(/313,4X,313)//

' NP3L
' NP

REWIND1
readEl.*
READ(1,*

cont inue

read(l,*
READ(1,*

//1o§/213)//
/110(/213,4X,213,4%,213))

> Input problem data from mwrin.dat

;NPI
do 992 i=1,10
do 992 j=1,npl
np21(i, J)-O

)

N
N

PTY
P12z

READ(1,*)(N5I(1))

n5x-n51(

1)

ﬁNPl.GT.NPlD)GOTO 1004
IF( Pl*Zl GT.NEQ)GOTO 1006

READ
READ
READ
READ
READ
READ
read
READ
READ
READ

et alaielalalalalle
I E R EEEREE] t

(

THETA(I),I=1,NP1)

WIDTH

S
T
E
3
E
E

K

HICK

Xx
s0(i),i=1,6)

22
3



67
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READ(1,*)V12

READ(1,*)v23

READ(1,%)V13

READ(1,%)612

READ(1,%)623

READ{1,%)613

READ(1,*)FWEIGHT

READ(1,*)NC

IFéN (NC,1).EQ.2.AND.NC.EQ.1.AND.N5I(1)/2
¢§EA6F&0§T(NSI(1))/2.)GOTO 1200

READ(1,% (nglz.l-l.s)
READ(1,*)MWRSOLY
READ(1,*)N5J(1),n5j(2)
read(l,*)ffz
Read(1,*)es

ex(1,1)sexx
RATT=WIDTH/THICK .
RATW=THICK/WIDTH
nptz=nptzz*nplel
ZHsTHICK/(nptz-1.)
yy(1)=0

Ji=2

yx(gj)z((jj-l.)/(nptzz/Z.-l.))**sk*width
+*

%ggyg(f'-1).lt.width)goto 67

yy jjt.gzwidth

npty=jj-1

print*,npty

HRI;§%6,234)THETA(1),THeta(IOG).width,THICK.ex(l.l)

234 FOR

+«/' THETA(1)s',E12.5,' THeta(100)=",E12.5,
«/! W=',E12.5,' T=',E12.5,' EX=',E12.5)

----- EVALUATE STIFFNESS MATRIX IN PRINCIPAL COORDINATES

CALL STIFF

------ > Get stiffness matrices for layers and calculate

roots of charateristic egquations

kns2
do 412 %-l,npl
IF(THETA(J).ne.0.and.theta(j).ne.90)KNel

412 continue

45

D0 411 Js1,NP1

CALL EDGE(J

IF(NQ1.EQ.1 HRITE$6,45)((CSJ.KK.LL%.LL-I,6),KK.1,5)
FORMAT(/' C MATRIX 116(6E12.4/)/)

IF(NSISI%.EQ.O)GOTO 411
CALL ROOTS(J)




411 C

443 FO
WR
444 FO
WR

w5 "

00
23

NR
446

CA
if
do
do
ex
453 co
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ONTINUE

RMAT(/' L 1J MATRIX'/3(/3E12. 5)2

115# 444)&33&15(!1 JJ&) ,JJs1,3),11s1,NP1)
RMA TS1°/5(/3E12.5

1TE(6,446)((( cxnixx JJ}) ,Jd=1,3),1I=1,NP1),
éCLM i1, JJ&) ,JJel,3),11a1, NPI;

MAT(/'  CKM AND CLM '/10(/3E12.5))

23 Is1,NP1

IF§¥?§6é1)+N5(I.2)0N5(I.3)*NP3L(NC.I).GT.NSD)GOTO 1018

ITE(6,446) ( (N5(KK,L -1 3),KK=1,NP1
FORAT() R8T

-=> Get laminate strains and stiffness matrices

LL FLEx(a,q)

(np31(nc, 1) eq.0)goto 454
453 kk=2,12

453 jg-l ,npl

e

(1,1)=exx

454 continue

SI
IF
WR
PR

WR
47 FO

WR
186 FO

Né

IF
183 FO

GMAXO=ex(1,1)*E22

{MNRSOLV .EQ.2)GOTO 998

TE(6,47)ex(1, 1% » SIGMAXO

INT47,ex(1,1),SIGMAX0

ITE§6 ,»47) exél »1) A(l 1), SIGMAX0

RMAT(® EXs',E12.5,' A(1, 1)-'.512 5, SIGMA X0=',El12.5)

> Generate collocation points

ITE%G +186)NPTY NPTZ
RMAT(/' NPTYa',15,10X,' NPTZs',I5/)

> Calculate total number of points: npts

2-$NPTZ -NP1-1)/NP1

NPTZ.EQ.0)N62s0
%NPIoNB(NC%é*NPTY+NPTZ -NP1-NB(NC)

§NP Z.EQ.O)NPTS«NPTS+«NP1+NB(NC)

TE§6 »183)NPTS

RMAT(/' NPTS=',I5/)

=> Fil11 N4 Matrix

NA(1)a2*RPTY NG2
N9 -N4(1&
IF(NP1.EQ.2)6070 43



42
43

6789

68
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00 42 1Js2,NP1

N4(1J)sNPTY+N62
IF(1J.PE.NP1)N99=N99+N4 (1J)
CONTINUE

CONTINUE
N43NP1)-N62+1¢NB(NC)*(NPTY-I)
N99=N93+N4 (NP1)

PRINT6789,NPTS,N99

FORMAT( //' NPTS=',I5,' N99=',I5)

IF(SK.GT.0)X0aWIDTH/((1+SK)**(NPTY-1)-1)/SK

Zhhazh
%;(qPTZ.EQ.O)ZH-THICK/np1

Z1=THICK/(NB(NC)~1.
DO 69 I=1,NP1+NB(NC
Y1s0.
YH-wigthl(npty~1)

ﬂ =npty
68 Js=1,NPTY-1
F$SK.le.0)Y(IS)-Y1
5)swidth-yy(Jjj)

I
ANt

Yisv1eYH

2(15)s11

ib=iBe+l

CONTINUE

2(15)=Z1
Y(I5)=WIDTH

1521541
IF(N62.EQ.0)GOTO 79
DO 71 J=1,N62
21=21-2H
Y(I5)=WIDTH
2(15)=21
IF(I.EQ.NP1+NB(NC).AND.NB(NC).NE.0)GOTO 826
151541
CONTINUE
CONTINUE
Z1l=Z1-ZH
CONTINUE
YﬁNPTS;-HIDTH
Z(NPTS)=0.

CONTINUE

------- > Fi1l N3 matrix-equations at a point

70

N3(1)=9
DO 70 Is2.NPTY-1

N3(1)=2

CO#T}NUE

N3(NPTY)=5
mt(1)snb(kn,9)+(npty-2)*n6(kn,2)+n6(kn,5)+
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onﬁékﬂ 3% n62
&NPT EQ.O0)NI(NPTY)=2
I5sNP

IF(N62. EQ 0)60T0 86
DO 74 I=1,N62
N3(I5)e3
I6alb+l

74 CONTINUE

86 CONTINUE
DO 76 I=2,NP1
N3(I5)sll
I165216+1
DO 75 J-Z NPTY-1
N3(16)=4
151541

76  CONTINUE

na&xs%.s
IF(NPTZ.EQ.0)N3(I5)=4
I6al5+1

c

IF(N62.EQ.0)GOTO 87
DO 77 Ils1,N62
N3(16)=3
I5=1541
77 continue
}1 -1)=n6(kn, 11)+(npty-2)*n6(kn 4)+né(kn,6)
1{-n6(kn 3) né
76 CONT NUE
87 CONTINUE
IF(NB(NC).EQ. OgTHEN
mt(npl)smt(npl)+n6(kn,10)
N3(NPTS)=10
ELSE
N3(15)=9
mt ngl)-mt(np1)+n6(kn ,9)+(npty-2)*n6(kn,2)+n6(kn,5)
DO 181 I=2,NPTY-1
N3(I5)=2
I5=15+1
181  CONTINUE
N3(I5)=5
IF(NPTZ.EQ.O)N3(I5)=2
ENDIF

write(6, 177)(mt(JJ) jisl,npl),(md(jj),jj=1,npl),
+(mn(J3j),jj=1,npl)

Cococea- > Evaluyate the total number of equations: NP4

NP4s0
18921
DO 416 187e1,NP1
g 416 1881 Kd(187
F(N3(189). .EQ. .0)G0T0 416
P4=NP4+NG (KN ,N3(189))
RTIRTIN
416 CONTINUE

PRINT417,NP4
WRITE(6,417)NP4
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wn:rsgs 442)(N4éAJ) ,13e1, Np1g
442 FORMAT(/* N4 ARRAY-—-->',20(515/))
417 FORMAT(/' NP4s',15/)

WRITE(6,188)
188 FORMAT(/' N3 ARRAY '/
WRITE(6,187 $N3(I).I-1.NPTS
187 FORMAT(/241

WRITE(6,190)
190 FORMA 2 N6 ARRAY'/)
WRITE( 101;((N6(II ,1),1=1,15),11a1,2)
101 FORMAT 157
WRITE(6,9999
9999 FORMATS/I
WRITE (6,9999
12«1

DO 80 I=1,NPTS
gﬁl;g g.sl)I,Z(I).Y(I).IZ.N3(I).(N2(KN.N3(I),J).J-I.NG(
+Riv,
12a124N6(KN,N3(1))
80 CONTINUE
81 FORMAT(I5,2E12.5,1315)

NP3D=501
NP4D=801
ih0=0
123 continue
ihO=ih0+1
n=1

do 602 kj=1,3
DO 602 KL=1,NP1l
n5§kl.kj)-0
if kj.ge.kn)NS(KL.KJ)-NSI(l)
602 continue

do 603 kj=1.3
n5(npl, kJ)-n51(1)/(2 -nb(nc))
603 continue

Cocmema- > Evaluate the total number of DOF: NP3

NP3=0

DO 41 Is=1,NP1
mn(ia-O
DO 40 Js1,3

NP3-NP3¢N5(I
mn(i)-mn(i)onS(i j)

40 CONTI \ {)onp3! H
mn(i)smn(i)+np3i(nc,
NP&-NP3¢§P3L(NC.§)

41 CONTINUE
1f§mn(1g*2 gt .np3d)guto 2031
PRINT18
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903
660

12

456
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133

124
1056
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format(/' mt'/1015/'md*'/1015/'mn*/1015)
WRITE(6,185)NP3
FORMA sl' P3=',15/)

IF(NP3.GT. NPSD)GOTO 1002
1f(n61(1).09.0)goto 660

---> Set initial frequency vector

sl
&YZ-iPI/Thick/i .=nb(nc))/ffz*npl)
do 31 ksl1,nbi(1)/nf(nc,l
fz(k)sk*ryz

cont inue

nfzsnbi(1)/nf(nc,l)

nanfz

--=> Got initial G matrix and r vector

DO 904 I-1,NP3
Gaél%-o.o
CONTINUE

DO 903 Is1,iP4

-RSI%-0.0

CONTINUE
roantinue

call funct(itlag,n,mt,md,mn,gx,gy,xran,zh,yh)
cont inue

--> Minimize r2 with respect to the k vector

do 991 1=1,npd
b(i)=r(i)

continue

callzgavens(mt,md,mn.gx,gy)

r2=0.

do 456 ii=np3+1,npd

r2sr2+r(ii)**2

continue

r2ssqrt(r2/np4)

printl33,r2

printl133, sqrt(sig**z*(np4 ir)/npd),ir
format(//‘ residual :',f10.5, ' rank'.i3)
ff2uffze.l

1f§ih0 .1e.0)goto 123

WRITE(6,124

FORMA é/‘ R VECTOR iOUTPUT) /)

WRITE .iOS{gB(KO),KO- NP3)

FORMA gEZZ. /)

rewind

WRITE(3,.*)(B(I),I=1,NP3

1f$2f%3no)é %:%to ? *)(;§(i) isl,nfz)
= al.n

ijk-:pty+zngtz- Pty
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ite(3,* i),i=npty, ijk)
¢Y;(17( .1$§f§ply. n:¢gpt30(n tz-1)/2)
close (unit=3, statuss'save'

(SR —— > OUTPUT TO FILE TAPE 2 FOR POSTPROCESSING

REWIND
waxrssz ,*)NP1,NPTY,NPTZ,NP3,NP4,width,SK, THICK,
+((ex( .J) fa1,npl), J=1,12)

1 X JE11,E22,E33,V12,V13, vza GIZ 613,623,
L J .‘ -

(THFTA(I),I=1,NP1Y, ((§§c§
+1,6),J21,6),1=1,NP1) x J) J-1 ©3).11,NP1),
1S(1,3)),d1,3),1=1,NP1),

+

+(((CKM(I,d)),d=1,3),Ial, NPl .
+(((CLM(I, J ,Js1,3),Is1,NP1),
+({(CMM(1.3)).d=1,3) ,1=1.NP1),
+Kuiu;u C., (NB(1),1s1,10), ((NF(1.K),
+Ks

+Isl, 13; ((NP3LSI ,J),Ja1,np1),1e1,10),
+NC,MWRSOLV , (N8J(1),1=1,2),(nfz, j=1,npl),
+(s0(1),=1,8),0,0,0,0,0

G0TO 997
998 CONTINUE

REWIND2
xnirggz ,*)NP1,NPTY,NPTZ,NP3,NP4,width,SK, THICK,ex(1,1),
&,
+S{GMAXO E11,E22,E33,V12,V13, V23 12,613,623,
+(THETA(1),I=1,NP1), ((22 (1] X)) K=
+1 ,6),J=1, 6 ,Is1,NP1), ((NS(I, J) a1 »3),I=1,NP1),
RTS I,J .J-l 3),1s]1,NP1),
CKM I.J ,J=1,3 ,I-I.NPI ,
CLM(1,J)),Jd=1,3),I=1,NPl),
+(((CLM(I,J)),Jd=1,3),I=1,NP1),
+§NiN;UNC.(NB(I).I-1 »10), ((N (I K),
+K= )]
+I=1,10), ((NP3LSI W) ,ds 1 npl) I=1,10),
+NC,MWRSOLY, (N5J(1),1s1,2)
997 CONTINUE

close (unit=2, statuss'save')
------- > Error messages

G0 TO 999
1000 FORMAT(' ERROR NOT ENOUGH EQUATIONSIIIIIIL')
2000 CONTINUE

PRINT1000

HRITESS.IOOO)

6070 999
1001 FORMAT(' ERROR TOO MANY EQUATIONSIIII1')
1002 PRINT1003,NP3,NPJD

HRITE%S 1003 NP3,NP3D
1003 Eg?gAgsg NP3 EXCEEDS DIMENSION NP3DI NP3s*,I5,' NP3Ds' »15)
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1200 HRITE%S.ZZOO)
2200 28$EA§8; ERROR  N5I(1) MUST BE EVENIII')
1004 PRINT1005,NP1,NP1D
HRITE%B.IOOS?NPI.NPID
1005 28¥3A§§;NP1- »I5,' EXCEEDS DIMENSION NP1D=',I5)
1006 PRINT1007,NP1*21,NEQ
HRITE$6.1007)NP1*21.NEQ
1007 Eg%gAgg; NP1*21=',I5,' EXCEEDS DIMENSION NEQ=',I5)
1008 PRINT1009,N99,NCD
HRITE#S.lOOQ N99,NCD
1009 FORMA é' # COORDINATE POINTSs',I5,
+é0T°E§9§EDS DIMENSION NCD="',15)
1010 PRINT1011.mt(13¢2'md(12.2*mn 1),NP3D,NP4D
gg%gE§g§1011)N 4,NP3,NP3D,NP4D
0% TRITE (6. 1619)Np12
1013 FORMA% I FRROR-----= NPTZa',15,' NPTZ MUST BE AN ODD #!°'/)
1011 FORMAT(/' DIMENSIONS ARE TOO SMALL: NP4,NP3s',215,
+é0¥g3gégP4D-',215)
1016 PRINT1017,NP4,NP4D
NRITESB.1017)NP4,NP4D

GOTO 999

1020 PRINT2020,NP3,110

2020 FORMAT(///' ERROR I10=',I3,' GT NP3=',I3,'III1")
GOTO 999

1018 PRINT1019
1019 FORMAT(/' ERROR N5 IS TOO BIGI!i1'/)
GOTO 999
1017 FORMATé/' ERROR! NP4=',I4,' > NP4Ds',I4/)
1021 WRITE$ ,2021)NPTZ,N51(KL%
2021 FO%MASSQI' ERROR: ALIASING ERROR....INCREASE NPTZ1!',6213)
goto
2031 write(6,1031&2*mn(1).np3d
1031 format(//' ERROR: GY EXCEEDS DIMENSION 2*MNa'
+,i5,' NP3D=',i5//)
999 CONTINUE
stop
end

c********R********t*******R*****t****************tt**********t*****

Subroutine funct(iflag,n,mt,md,mn,gx,gy,xran,zh,yh)
c*t**ttt*tt*l****t*t*t*tt**tt'********t******tt*t*tﬂ**t**ltt**tt*t*
implicit real*8 (a-h,o0-2)
integer*4 iran
real*g gx(801.3003).8y(3003.501),xran(10)
Integer md 100),mt81 0),mn8100%
common/stuff/ 1830 3),y(3003),THeta(100),ex(100,12),50(100),
063§19001).b(190 1;, area(6),
+f2(100),e11,022,032,912,913,923,v12,v13,v23,
+rts(100,3),RL(3,3),CKm(100,3),c1m(100,3),cmm(100,3),
+R(19001),qb(6,6),
+C 100,6,6@. H§8 ,thick,width
common/int/ N2(2,12,11),N3(19001),n4(100),N5(100,3),N6(2,15),
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+n51(100), nb(lOO) nf(loo 22 npal(lo 100),n53(100),
-np3, n£4.npad ,npdd,npl,nc,kn,nfz

COMMO 51 2100& PKéz 4, 3003% PM;Z 4, 3003& 32 ,4,3003),
+g1(1,3003),c11,C22,C13,023,£22,C33,C66,c55,c4

iran=12345

Ilsl

110«0

NPT=0

16s0

17=0

18s1

ixx=0

k0sl

{1min=9999999

{imaxs=0

DO 1 K=1,NP1

10s1

12«0

mdx=0

if(k.ne. &mdx-md(k 1)
DO 4 Ie1,

if%io t.mt(k).and.k.ne.npl)i2sl
NPTsNPT+1

I13=NPT

Commmnaa > LOOP FOR # EQNS FOR CASE OF POINT I3
Commmnn- » CALCULATE P MATRICES FOR POINT I3
14aN3(13)
rwlsl
if(width-y(i3).gt.4*thick/npl)rwisthick/npl/
+(width-4*thick/npl)
c if(k.ne. 1)rw1-1 /(1+i2)

D0 2 J=1,l11

if(int(z(i3)/npl).eq.2(13)/npl
+.and.yl.ne.width)then
ylay(i3)+(y(i3+1)-y(i3))/n6(kn,n3(i3))*(j-1)
alse

Y1-Y$I3)

endi

IF(N3$I3) .EQ.0) GOTO 4

z1s2(13

if(int(z(13)/npl).ne.2(13)/npl)21=z(i3)+zh*(2.*ran(iran)-1.)

CALL TFUNC(K,21,Y1)
§N2 KENI;‘Jg)EQ .0.AND.J.GT.N6(KN,I4))GOTO 4
IFSNII .LT.9.0R.N11.6T.11)60TO 668
110=110+1
¢ N10(I10)=I1
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568 CONTINUE
....... > GET & VECTOR FOR POINT CASE
N1sN2(KN,I14,J)
CALL QWS(K,N1,I1,RW,RW1,21)
102 FORMAT(4(9E8.2/)/)

....... > GET 61 VECTOR FOR POINT CASE [Gl]=[E][P]
CALL MATMULT(K)
....... > PUT G1 VECTOR INTO ROW OF G

rt=0
do 12 kk=k0,k0+mn(k)+i2*mn(k+1)-1
rtart+gl(1,kk)**2
12 continue
rtasqrt(rt)
G2=0
DO 3 K1la=k0,kOemn(k)+i2*mn(k+1)-1
if(il.le.kl)then
klyskl-int((il-.1)/mn(1))*mn(1)
g{(il.kly)-gl(l.kl)lrt
else
if(kl.gt.kO+mn(k)-1)then
ilxsil-ixx-mt(k)-mdx
else
ilxsil-ixx
endif
if(ilx.gt.npdd)goto 2031
if(ilx.gt.ilmax)ilmax=ilx
if(ilx.1t.ilmin)ilminsilx

gx(ilx,kl)=gl(1,kl)/rt
endif
G3 K1)-G3(K1)+GI(I.K1}
IF Gl(l,Kl).NE.O.gIS- 6+1
G22G2+ABS(G1(1,K1))
3 CONTINUE
17=17+1
IF%GZ.EQ.O. PRINT2002,11
IF(G2.EQ.0. HRITE;S.ZOOZ)II
2002 FORMAT(' ROW #',13,°' IS ALL ZEROES! ')
r(il)sr(il)/rt
I1=I1+1
i0=i0+1
2 CONTINUE
4 continue
ixxsixx+mt(k)emdx
k0=kO+mn(k)
1 CONTINUE
print*
print*,ilmin, ilmax

D0 5 Is=]1,NP3
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IF(63(1).EQ.0. )WRITE(6,2003)1

IFgGBin.EQ.O. PRINT 2003,I
5 CONTINU

2003 FORMAT(' COLUMN #',I5,' IS ALL ZEROES!!')
Commmmomeme > END OF [G] FORMULATION LOOP

IF(11.LT.(NP4+1))PRINT1000
IF(I1.LT.(NP4+1 HRITE 6,1000)
IF(I1.67.(NP4+1 PRINT 001
IF(I1.GT.(NP4+1))WRITE(6,1001)
66 continue

R ERROR MESSAGES
60 TO 9999

1000 FORMAT(® ~ ERROR NOT ENOUGH EQUATIONS!IIIII1')
2000 CONTINUE

PRINT1000

WRITE(6,1000)

GOTO 999
1001 FORVAT(® ERROR T00 MANY EQUATIONSI1I11')
1002 PRINT1003,NP3,NP3D

wnxrs$5.1ooagnpa ,NP3D

1003 FORMA g NP3 EXCEEDS DIMENSION NP3D! NP3=',15,® NP3D=',I5)
1200 ESI$59692200)
2200 FORMA#&’ ERROR  NBI(1) MUST BE EVENIII')

GOTO 999

1004 PRINT1005,NP1,NP1D
HRITE#S 1005)NP1 NPID

1005 FORMA 8 NP1=',15,' EXCEEDS DIMENSION NP1D=',I5)
GOTO 999

1006 PRINT1007,NP1%21,NEQ
NRITE%5.1007)NP1*21,NEQ

1007 FORMAT(' NP1*21a',I5,' EXCEEDS DIMENSION NEQ=',I5)
GOTO 999

1008 PRINT1009,N99,NCD
HRITE#G.IOOQ%NSS.NCD

1009 FORMA OORDINATE POINTS=',I5,

#
+! EXéEEDS DIMENSION NCD=',I5)
GOTO 999
1010 PRINT1011,NP4,NP3,NP3D,NP4AD
HRITESS 1011)NP4 NP3 NP3D,NP4D
GOTO
1012 PRINT1013,NPTZ
NRITE$6.1013&NPT2
1013 FORMAT(/' ERROR-===- NPTZ=',I5,' NPTZ MUST BE AN ODD #!'/)
1011 FORMAT /' DIMENSIONS ARE TOO SMALL: NP4,NP3=',21I5,
' NP3D,NP4D="',21I5)
GOTO 999
1016 PRINT1017,NP4,NP4D
HRITE;S 1017)NP4.NP4D
60TO
1020 PRINT2020,NP3,I110
2020 FORMAT(///* ~ ERROR I10=',13,' GT NP3«',I3,'I111")
6070 999
1018 PRINT1019
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|
| 1019 EgggA;;s‘ ERROR N5 IS TOO BIGII11'/)
1017 FORMAT(/' ERROR! NP4=",14,' > NP4D=',I4/)
1021 WRITE(6,2021)NPTZ,NSI KL%
2021 FO%MAQSé/' RROR: ALIASING ERROR....INCREASE NPTZI1',213)
goto
2031 writo(6,1031&11x.np4d
1031 format(//' ERROR: rows EXCEED DIMENSION FOR 6X-
+I1X=',15,' NP4D=',i5)
999 stop
9999 return
END

c****t**t**t*t'**t**!'*ﬁ*****Rk!tt.**ﬁ***ﬁl'**t**t*t****ﬂl*ﬂl**ﬁ*l**.*t*t***c

SUBROUTINE EDGE(N)

c********ttﬂﬁt*l*'***t*i'*******t*tt****"*'I*R*tll*lt!tﬂt*t***t****'*t'tﬂ**lc

IMPLICIt real?*s (A-H,0-2)

common/stuff/ z(3003),y(3003),THeta(100),ex(100,12),50(100),
+G3 19001).b(19001;,wkarea(6).
+f2(100),e11,022,033,912,913,g23,v12,v13,v23,
+rts(100,3),RL(3,3),CKm(100,3),cIm(100,3),cmm(100,3),
+R(1 001).qbé6.6 R
+¢(100,6,6) ,FW(8),thick,width
COMMON e(1,2100),PK 2.4.3003%,PM 2.4,3003&.PL52.4.3003).
+g1(1,3003),c11,C12,C13,C23,C22,C33,C66,¢55,c4
common/int/ N2(2.12.11),N3(19001).n4(100).N58100.3).N6(2.15).

+n5i(100),nb(100),nf(100,2),np31(10,100),n53(100),
+np3,npéd,np3d,npdd,npl,nc,kn,nfz

PI=3.14159265358979323846
T=THETA(N)*PI/180.
C4=cos(T)**4
S4asin(T)**4
S2a2sin(T)**2
C2=cos(T)**2

Cl=cos
Sl=sin
C3xcos
S3=sin

D0 10 I=1,6

DO 10 J=1,6

CéN,I,J)-0.0
ONTINUE

C11%C4+C22%5442%(C12+2%C66)*C2*S2
-éc11.czz-4*c55)*sz*cz.c1z*(54¢c4)
=C2*C13+023%52

- c11-c12-z*cssg=51*c3.(c1z-czz¢z*css)*53*c1
=C11%544022#C4+2*(C12+2%C66)*S524C2
=C23*C24C137S2

- ggx-c1z-z-css)*saﬁc1*(c1z-czz+css*z)*sxac3
=(C13-C23)*C 1251

=C44%C24C56%52

=-CA4%C1%S]4C55%51*C]

wCA42524C557C2

xR3
xK3

ot o —f —

10

® W Y 9 9 % v W ¥ 9 w 9
(L F W YAYRY CY XY XYy oy oy ]
* W W 9 9 9 w W 9 ¥ e =
SN OO LI ON W NI 0N LD N =

OO0
EERXREZTEZEZZTZTIZZ
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-Cl1'52*020C22'02'32-2'C12*52'02¢C66*(C4-Z*SZ‘C2+S4)
(N) EO 90 ) THEN

-C N 2 3

0
ET
1)s
2
4-3“55
6
6
6
5

1,6)=

2, -0

3,6)s0.

4,5)s0.

gE;A(N) .NE. 0 GOTO 22
1,2)=C N.l 3
8,5 C N,6,6
06 =0

0 -0
,6)=0,
,5)=0,
NU

22

Tt P WD N

c TRANSPOSE FOR SYMMETRY

DO 1 I=2,6

DO 1 Jal.I-1

c(N,I, Jg-C(N W,1)
1 CONTINU

RETURN

END

CRARARARRARRRARRRARARARAARARRRARRRAARARRARRARARRRRRRARRARRAARRRARKKKK

SUBROUTINE EQNS(K,N1,N,RW,RW1,z1)

C**t*ttﬂ***t******’******t********************************38***

IMPLICIt real*8 (A-H,0-2)

common/stuff/ 2(3003),y(3003),THeta(100),ex(100,12),50(100),
+G3(19001), b(19001g ,wkarea(6),
+fz(100),el1,e22,33,912,913,923,v12,v13,v23,

¢rt33100 »3), RL(3 3), CKm(l a 3? cim(100,3),cmm(100,3),
+R(19001), qbéG.G

+¢(100,6, 6{ Nés ythick,width

COMMON e(1,2100 PKéZ 4 ,3003),PM(2,4,3003), PL(Z 4,3003),
+gl(1, 3003% ,c11,C12,C13, C23 €22, €33, CSS c55,c44

common/int/ N2(2,12, 11& »N3{19001), n4(100) N5(100 3),N6(2,15),
+n51(100), nbélOO) ,nf(100,2), np3l(10 100), n5j(100).
+np3,np4,np3d,npdd,npl,nc, kn nfz

nN2=(K-1)*21
RWs1. -1)

D0 22 Is}, NPI*ZI
581 ,1}20.0
22 CONTINUE
60710(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)N1
C GOVERNIN EQN #
1 E 1,0n2+5 .c K,5, 5&
E(1,nn2e1 )- (K.A. )




E(1 nn2¢1 K, 2 6
E(1 nn2¢21 -C K,3,6)+C(K,4,5)

c GOVERNING EQN #2
2 E 1.""2‘5 .CS .‘ 5)

Egl nn2¢6 -C K,6,6)

E(1,nn2+1 éK 4, 4)
E(1,nn2+6 :C

E l.nn2+1 ; K 2 2

E 1,nn2+21)=C(K,2,3)+C(K,4,4)

0 999
C GOVERNING EQN #3
3 1,nn2+19)=C(K,3,3
1,0“2#20 -c K.‘.‘
1, nn2¢7)-Cé 3, sgwéx.ms)
1,nn2+14)=C(K,2,3)+C(K,4,4)
TO 999
SIGMA a0
1,nn2+3)=c
1,nn2+8)=C
19"“2*1

(g4
o
[g]
B
—Grmmmm

mmmmm

C BC #2 TAU XZs0
5 E(1, nn2+llg-c
E 1,nn2+17)=aC(K
E(1,nn2+4 sc k
E(1,nn2+15)
RW=FW (7)
G0TO 999
C BC #3 TAU YZs0
6 E(1,nn2+11)=c(k,4,4)
E(l nn2+17)-C(K 4 4)
RH-FH(G)
Eél nn2+4g-c(k 4, Sg
E(1,nn2+15)=C{K,4
GOTO 999
C BC #4 SIGMA Y=0
7 CALL EMULT(K,2,RX,Z1)
R&N)--RX
E(1 nnzfl)-C(K.l.Z)
RW=FW(4)
E(1,nn2+3 -cgk,z.s

'o‘lon

E(1,nn2+8)=C(K,2,6
E(1,nn2+10 {K 2 2;
E(1,nn2+18)=C(K,2,3
G TO 999
C BC #5 TAU YX=0
8 CALL EMULT(K,6,RX,Z1)
R(N)=-RX
E(1,nn2+1)sC(K,1,6)
RW=FW(6
E(1,nn2+3)=c(k,6,6
E(1,nn2+8)=C(K,6,6
E(1,nn2+10)=C(K,2,6)
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Eél.nn2¢18)-C(K.3.6)

o BC'G 2U0) U-)=0
1,nn2+2)s1.0
RWsFW(1)
ESI nn2¢2102)--l 0

C BCH#T (Ve)=-(V-)=
10 Eélané¢9;-1 0

E(1 nn209021)--1 0
G TO 999

¢ 8C08 We)- sw- =0

E(1,nn2+16)s1.0

RWsFW(3)
Eél.nn2¢16¢21)--1.0

GOTO 999
C BC #9 (SIGMA 2+)-(SIGMA Z-)s0
12 E(1,nn2+3)=c(k,3,6
ElnnZ+8-CK36
E( .nnZol)-C( ,3)
RWsFW(5)
E(1,nn2+10)=C K. "3
E{1,nn2+18)sC(K,3,3
C LL EMULT(K,3,RX,21)
E(1,nn2+18)=C(K,3,3)
R N)--RX'I 0D00
E{1, nn2+3021 s-c(k+1,3,6
E(1,nn2+8+21)=-C(K+1,3,6
E(1, nn2~1+21 =-C(K+1,1,3
E(1,nn2+10+21 )=~ K+1 2.
E(1,nn2+18+21 --C Kel 3.3
CALL EMULT(K+1,3,RX, 21)
R(N)=R{N)+RX*1. ODOO
GOTO 999
C BC # 10 (TAU XZ+)-(TAU XZ-)=0
13 Eil ,nn2+11)=¢c(k,4,5
E(1,nn2+17)=C(K,4,5
RWsFW(7)
E l,nn2¢4g-c k,5, Sg
E(1,nn2e1 % (K.5 )
E(1,nn2+4+ 1)--cék¢1 5, 5%
E(1,nn2+15+421)=-C(K+1,5
E 1.nn2+11~21 n-C k+1.4,5
E(1,nn2+17+21)=-C(K+1,4,5
GOTO 999
C BC# 11 (TAU YZ+)-(TAU Y2-)s0
14 E(1,nn2+11)=c(k,4, 4;
E(1,nn2+17)=C(K,4,4
RH-FH(G)
E l.nn204g-cék.4.52
E(1,nn2+1 %- (K,4, l
E(1,nn2+4+ 1!--c ke .4,5&
E{(1,nn2+156+21)=-C{K+1,4,
E(1.,nn2+11421)=~c(k+1,4,4
Eél.nn2¢17+ 1)s-C(K+1,4,4)
6070 999
C BC #12 (SIGMA Ye)-(SIGMA Y-)=0
15 CALL EMULT(K,2,RX,21)
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sﬂ)--RX'l .0D00
nn2+1)=C(X,1,2)
RH-FH 4)
E(1, nn2¢3 sc(k,2,6
E(1,nn2+8)sC(K,2,6
E 1.nn2¢1 . K.Z,
E(1,nn2+18)sC(K,2,3
E(1,nn2+3+21)=-c(k+l,2,6
E(1,nn2+8+21)=-C(K+1,2,6
E(1,nn2+10421)=- éK+1.2. )
E(1, nn2¢1¢211--c o1 1.2;
E(1,nn2+18¢2 z K+1,2,3)
LL EMULTéKo 2.RX,21)
R(N)=R(N)+RX*1.0D00

GOTO 999
cac 413" (TAU ¥Xs)-(TAU YX-)=0

16  CALL EMULT(X,6,RX,Z1)
R%N)--Rx*l ODDO
E(1,nn2+1)=C(K,1,6)
RW=FW(6)
E(1,nn2+3)=c(k,6,6
E 1,nn2¢8 =C(K,6,6
E(1,nn2+1 K,2,6
E(1,nn2+18)sC(K,3,6
E(1,nn2+3+21)m~-c(k+1,6,6
E(1,7nn2+8+21)s~-C(K+1,6,6
E(1,nn2+10+21)=-C(K+¢1,2,6
E(1,nn2+18+21)=-C(K+1,3,6
CALL EMULT(K+1,6,RX,21)
N)-R;N)+RX*1 ODOO

E(1,nn2+1+21)=-C(K+1,1,6)
GOTO 999
999 CONTINUE

DO 100 I=1,NP1*21

E(1,1)=RW*E(1,I)*RW1
100 CONTINUE

RéN)-RH*R(N)*RHl

RETURN

END

c*********tt***t***t*ttttttR****t*t***t**t**ﬁ*ﬁt*ﬂ*****ﬂ**tﬂ.ﬂltttl.titttkt**ltc

SUBROUTINE TFUNC(K,Z1,Y1)

CAXXRRARRRRARRRRRAARARRRARARRARNRARRARARRARARAAARNRRAAARRRRAANAAARARANRRARNARARNNANAR

IMPLICIt reai*8 (A-H,0-2)

common/stuff/ 18300'2 y(3003) THeta(100),ex(100,12),50(100),
+G3(19001),b(19001 area(6

+f2{100 .011 022.033 gle, 8 23 ,vi2,v13,v23,

+rts(100,3), RL(3 3), CKm(l 0, 3 c1u(1oo,3).auu(1oo.3).

+R(1 001) qbés ,6),
+¢(100,6,6) ,FW(8 thick.vidth

COMMON e(1,2100),PK(2,4,3003),PM(2,4,3003),PL(2,4,3003),
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+g1(1,3003),c11,(12,C13,C23,C22,C33,C66,c56,c44

common/{int/ n2(2,12,11 .N3(19001).n4(100),N56100,3),N6(2,15),
+n61(100),nb(100),nf (100, z.np3l(10.100).n51(10 )s
+np3,npé,np3d,npdd,npl,nc,kn,nfz

Pl=3.1415,265358979323846D00

yy=Y1
22s11

C INITIALIZE P MATRICES

D0 66 Is=1,2

D0 66 J=1,4

DO 66 J1=1,NP3
PK(1,J,J1)=0.
PL(I,Jd,J1)= 0.
PM(1,J,d1)=0.

66 CONTINUE

Klsl
D0 19 KKsK,K+1

Cormmmccmccncna- > LINEAR TERMS

DO 27 L=kn,3

in2s0

IF (NS KK.L(.EQ.O)GOTO 27
NNXsNb(KK,L)

kkksl

if(kk.eq.npl)kkks2

IF(NF (NC,KKKk ) .EQ.2)NNX=NNX/2

D0 1 Is=1,NNX

in2sin2el

c2=f2(in2)

CY-#S RT(abs(RTS(KK,L)))*CZ)
IF(NF(NC,KKk).EQ.1.and.nc.ne.4)G0TO 31

Asexp(-I12*CY*(yyewidth))
bBeexp(I2*CY*(yy-width))
SNH=Bb-A
SNesin(I2*CZ*22)

CSH=bB+A
CSscos(12*22%C2)
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PK(K1,2,11+IU)a-SN*SNH*(CKM(KK,L))
c U’Y
PK(K1,3,11¢IU)==12%CY*SN2CSH*
+{CKM(KK,L))
cu,z

PKéKl v4,11¢1U)=-I2%CZ*CS*=SNH
+*( KM(KK.L))

C- v
PL(K1,2,I11+IV)s=SN*SNH®(CLM(KK,L))
C V.Y
PL(K1,3,11+IV)a-I2%CYRSNACSH*
+(CLM(KK L))
cv,2

PL(K1,4,I11+1V)a-T2%CZ*CS*SNH
+*(CLM(KK, L))

CW
PM(K1,2,I1+IW)a
+CS*CSH*cnm(kk, 1)

CWY

PM(K1,3,11+IW)=I2*CY*CS*SNH*cmm(kk, 1)

C W,Z

PM(K1,4,11+IW)=-12%CZ*SN*CSH*cmm(kk, 1)

I1s11+1
IF%NF(NC.KKR).EQ.Z)GOTO 31
GOTO 1

31  CONTINUE
CZ=fz(in2)
CY=(SQRT(abs(RTS(KK,L)))*CZ)

Asexp(-I3*CY*(yyswidth))
Bbsexp(I3*CY*(yy-width))

SNH=Bb-A
SN-sin(I3*CZ*zz)
CSH=bB+A
SNssin(C2*22*13
CS=cos(13*C2*z22
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PK(K1,2,11+IU)aCS*SNH*(CKM(KK,L))
cu,Y
PK(K1,3,11+IU)aI3#CYNCSACSH*
+(CKM(KK,L))
cu,2
PK(K1,4,1141U)s-13*CZ*SN*SNH*(CKM(KK,L))
C- V
PL(K1,2,11+IV)sCS*SNH*(CLM(KK,L))
C V.Y
PL(K1,3,11+IV)aI3*CYNCSACSHA
+(CLM(KK,L))
c v,z

PL(K1,4,1161V)a-13*CZ*SNASNH*(CLM(KK,L))

‘v PM(K1,2,11+IW)a
+SNACSH* cmm(kk 1)
CW,Y
PM(K1,3,11+IW)=I3*CY*SN*SNH*cmm(kk, 1)
C W,2
PM(K1,4,11+IW)=13#CZ*CS*CSH*cmm(KK, 1)
I1eI1+1
¢ 131341
1 CONTINUE

27  CONTINUE
éi(gx.eo.np1)soro 999

19  CONTINUE

999 CONTINUE
RETURN
END

c*"l.l.'tttlt*'t'*t!t****.tl*t.IRRt.*i*k***I**tttﬁ**t****t*t*****t

SUBROUTINE STIFF

c"ﬂ.ﬂ'l'lﬁtt*ﬂ*.l*ltt'!'*****ﬂ*.*R*Q*I**ti*t*t*t**t***l*'**t*lt**

IMPLICIt real®8 (A-H,0-)

COMMON O§1.2100&.PK 2,4,3003 ,PM'2.4.30032.PL£2.4.3003).
+g1(1,3003),c11,C12,C13,C23,C22,€33,(66,¢55,c4

common/ int/ N2(2,12,11),N3(19001),n4{100),N5(100,3),N6(2,15),
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+nbi(100 ’
+:p3(:p4Zn:gglggzdnzgiogczznnpal(10 ,100),n53(100)

common/stuff/ 2z 3003),y(3003) THeta(100),ex(100,12),50(100),
063219001) ,b(19001 .vkaroc

+72(100),el1,0822,¢ 3 8 23 ,wvi2,v13,va3,

o;t; %gl)a) RL(3 3) c 100, 3 clm(loo.a).cmm(IOO.S).

+

+¢(100,6,6), u(s thick width

V32eV23*E33/E22
V31aV13*E33/E11
V21aV12*E22/E11
DET=1-V12%V21-V31*V13-V23*V32-V21*V13*V32-V31*V]12*V23
Cll=E1l* 1-V32*V23g/DET
C12=E22*%(V12+V13*V32) /DET
C13=E33*(V13+V12*V23)/DET

C222E22%(1-V31*V13)/DET
C23=E22%(V32+V31*V12) /DET
C33sE33*(1-V21*V12)/DET

C442G23

C56=613

C66=G12

WRITE(6,1)C11,C12,C13,C22, €23,C44,C55,C66

FORMA ('Cll- .512 5,' Cl2=',E12. 5,' Ci3a’ ,E12.5/
+' C22«',E12.5,' C23=',E12.5/' C44=',E12.5,

+' (55=',E12.5,' C66="',E12.5)

RETURN

END

c************************R************R********l********ﬂ*******************c

SUBROUTINE FLEx(q,a)

c**tt*t*t**tttttt*a******t*******tttt*a*t*ttn****ttta*ttt*****t**t*t**w**w*ac

C CALCULATE THE GROSS LAMINATE FLEXIBILITY MATRIX

c******t*********************t***t************R***********************t*I*l*c

IMPLICIt real*8 (A-H,0-Z)

real*8 q(6,6), 56 ,6),aq9(3, 3;

common/stuff/ z( 003),y(3003), THeta(100),ex(100,12),50(100),
+G3(19001),b(19001),wkarea(6),

+f2 100).011.022 033, gl2,g913,923,v12,v13,v23,
+rts(100,3),RL(3,3), CKm(lOO 3),¢Im(160,3),cmm(100,3),

+R(1 001),qb§6 ,6),
+c(100.56,6),FW(8 thlck width

common/ int/ N2(2,12, 11& ,N3(19001),n4(100), N5§100 »3),N6(2,15),

+n61(100),nb(100),nf(10
+np3,npés, np3d np4d npl,nc

COMMON o 1,21002 PKéZ ,4,3003), PMSZ .4, 3003g PL$2.4.3003).
+g1(1,3003),c11,€12,C13, €23,622,033,C66,c55,¢4

DO 45 Is1,3
DO 45 J=1,3
QQ(I'J)'O'

2& np31(10 100),n5§(100),
N,

nfz

C




45
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CONTINUE
V21=E22*V12/E11

Ql1=E11/(1-Vv21*V12
Q22=E22/(1-V21*V12
Q12=V21*E11/(1-V21%*V12)

166612

H=Thick/NP1

Plsasin(l.)=2

DO 1 Le1,NP1

IsNP1-Lel

CS=cos(THETA L;*PI/IOO.

SN=s in(THETA(L)*P1/180
0Q(1,1)=Q112CS**4+L*(Q12+42%Q66 ) *SNX*2¥CSF%2,Q22*SN**4
QQ(2, 2 aQl1®SN**4.2% *SN*R2RCSAR2,Q22*(C5**4
qi- (Qll#QZZ 4*Q66)*

QQ(2

Qo(1, 2 -qi

QQ(3,3)= 8011+022-z*q12 2%Q66 ) ®SN**2*CS**2,066* (SN**4+CS**4)
qi=(Q11-012 2#066 ) *SK*CS**3+(Q12-Q22+2*Q66)

QSN*Q ® s

QQ(1,3)=qi

QQ(3,1)=qi

qi-;Qll 012 -27066) *SN**3*CS+(Q12-022+2*Q66) *SN*CS**3

QQ 2,3 -qi

D0 I Js1,6

DO 1 K=1,6
IF(K.GT. 3)THEN
Kl=K-3

ELSE

K1sK

ENDIF
IF(J.GT.3) THEN
Ji=J=3

ELSE

Jlsd

ENDIF

IFgJ .LT.4)THEN

Q12+2*Q66

N**2%CS**2+Q12*( SN**4+CS**4)

+

IF(K.LT.4)THEN
Q( .K)-Q(J K)+QQ(J1,K1)*H*(2-NB(NC))

Q;J K)-Q}J K&oQQ(Jl s K1)*((I-npl/2*NRINC))**c~
4 -npl 2*NB(NC))**2
+

J,K)aQ(J,K)*(NB(NC
g'\mg) Q( »K)*(NB(NC))

ELSE
S .LT. 4)THEN
9 .K -os K .QQ(.u.m)*((I—npuz*ns(nc))"z-
1-npl/2*N8B( ucg)"z e/
(J.K)-Q(J.K)'(N (NC)

.K)=Q(J,K)+QQ(J1 ,K1)*(2-N8(NC)
éz;x:;gs)n? mgzug%"s H (-n:1$z'u&(nc) )rr3)=H23/3,

ENDIF
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1 CONTINUE
IFAIL=0
WRITE(6,122 5 éii kk; +kke1,6),1ie1,6)
6El2

122 format(///
CALL FO1AAF(Q,6,6,A,6,WKAREA, ifail)
print®,ifai
gglg5§5.122)((a(ii ,kk),kk=1,6),ii=1,6)

if(np3l(nc 1) ne.0)goto 4
do 5 k=1,npl
ex(k,I)=0.
4 continue
ox(k, T =ex (k. 1)oA(1, 1)*50(3)
eX{K,l1l)=8X(K,1l)+ .
5 CONTINUE
(1] 12 I=1,NP1
ex(i,1 )-ox 1,6)
ex{i =8X 4
ex(i,8)=ex(1,5
ex(i =ex(1,3
ex(1
ex(i
ex(i
ex( i
ex(i
i
T
1

z.—-o—wmbuc\ou
»
o

c

0i-0
1)s0
12 €O
31.1 2?% 1,3)*ex(1,1)+C(I,2, 3)
ex Be ® + x
*e‘gi gi*cil ? §)3QX(1 ? ;;C({i 2 3 *ex(1,8 i,3,6
SR Loyt

OH-v-o.o-n.

10 CON :gu%( £.4)2u1,12) i1, np1)
print*,((ex(i, i=1,np
Eg}te(s *)(§ex2 1,3), J-1 12) jal, npl)
END

Crttdttd sttt sttt st 440444444444 40 44444+ttt bbbttt bbb tbttbttsbtrtstttststtses s

SUBROUTINE ROOTS(K)

Crtatttttttt sttt sttt tttsttstdss sttt sttt st sttt ttttttttstttststsssttsssestsssss
IMPLICIt real*8 (A-H,0-1)

common/stuff/ 283003) y(3003) THeta(100),ex(100,12),50(100),
+G3(19001),b(19001) ,wkarea(6

+f2 100),011 e22,e33,912, 8 g23,v12,v13,v23,

+rts(100,3), RL(3 3), CKm(l ? clm(100.3).cmm(100,3).

+R(1 001).qb§6 »6),
+¢(100,6,6),FW(8 thick.vidth

CCMMON e 1,2100&.?& 2,4,3003 .PM§2.4.3003 ,PL‘Z.4.3003).
+g1(1,3003),c11,C12,C13,C23,C22,C33,C66,cH

common/int/ N2(2,12, 11& ,N3(19001),n4(100),N5(100,3),N6(2,15),
+n51(100),nb(100),nf(10 22 np31(10 100), nSj( 00).
+np3, np4,n93d npdd,npl,nc,kn,n



100

400

404

826
607

606

+C(FK,
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MaC(K,4,4)%C(% s 6 *c K,2,2)-
5.4) czk 2.2

BB-C K,6, 6;*Cék 2,2 'C(K 3,3)+

.‘ an
&4 iqxs
6)*

V2.%6(K. 2, é) (K 4.5) *(C(K,2,3)+C(K,4,4))-
+C(K,6.6)* .Lawxs .- )
’c K.z.z bl L K.3.6 'OC ’4 5 *'20"
+C(K,3,3)*C(K,2,6)**
amcmm4cm¢5)ukzn

IF(AA.EQ.0)G0T0 995

CCaC(K . 6,6)7C(K.3,3)
N; x. .z *C x \3)* § 6+
mx44*~ C(K.5,

4.5 (€ x.a.s

+2. *C
+f (K

ocgk 4,
C(K,4,
+2. *C(K
DD-C§K

e

4
4)*

3)
6,

*C(K.4 4)+

$3:8) +c x 4 5) *(C(K 2,3)+C(K,4,4))-
i

.”C“ASVQKZQ

13,3)*C(K,5,5)*C(K,4,4)~
CSK 4, 5&'*2
100)AA,88,CC,DD

/1'"" CHARATERISTIC COEFFICIENTS ARE:' »2(/4E12.5/))

PRINT100,AA,BB,CC,DD,1.,B8/AA,CC/AA,DD/AA
IF(THETA(K) NE.O.AND.THETA(K).NE.90) THEN

cmm
cmm

cmgk y1)sl

k,2)=l. 0
k.3 =1.0

...... > SEARCH FOR THE FIRST REAL ROOT
Xx=0.D00

DX«1.D
LL=l

7

CONTINUE
FX=DD+xX*(CC+xX*(BB+AA®XX))

IF%abs
GOT) 8

:

EX) .GT.1E-15.0R.abs(DX).GT.1E-15)GOTO 404

conrznue

IF(abs (FX).EQ.0.)60T0 826

aCC+Xx*{2. *BB+Xx*3. 2AA)
FPPXCBBRD. co. *pAmeX

Xx=
Ll=lle

IF
G0

1

DX (FXSEPK)/ (FPX<*2. -FXAFPPX)

LL.EQ.1000)WRITE(6,607)

IFgLL .EQ.1000)PRINT 607
0 400

CONTINUE

FORMAT(/'  ROOT FINDER HAS PASSED 1000 ITERATIONSI!I'/)
PRINT606,FX,DX

WRITE(6 606)FX 0X

FORMA
RTS(K,

i

/* FX,DXs'/2012. 5/)
)=xX
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CALL CHECK(K,1,R1,M,BB,CC,0D)
Crrmmemmeeaa > FIND OTHER TWO (POSSIBLY IMAGINARY!)

o > REDUCE BY SYNTHETIC DIVISION

C2=BB+Xx*AA
C3=CC+Xx*C2
C4=0D+Xx*C3
XR--CZIZOIM
XMs(C2%®2 -4 ,*AA®C3
IF(XM.LT.0.)PRINTS8801
IF(XM.LT.0.)WRITE(6,8801)
PRINT®,XR, X
HRITE(S.*?XR,XN
8801 FORMAT(/ ERROR || IMAGINARY ROOTIII1'/)
RTS(K,2 -XR-SqrtiXM 12./AA
RTS(K,3)sXR+sqrt(XM)/2./AA
CALL CHECK(K,1,R1,AA,BB,CC,DD
CALL CHECK(K,2,R2,AA,BB,CC,DD
CALL CHECK(K,3,R3,AA,BB,CC,0D
PRINT8O,R1,R2,R3
WRITE(6,80)R1,R2,R3
80 FORMAT(/' RESIDUALS'/,3E22.14)

........... > SOLVE FOR EIGENVECTORS
CALL EIGEN(K,1)

WRITE 6,3333CLM(K.1).CKM(K,I).QTS%K.I)
333 FORMA §/' LMs® ,E12.5,' CKMs',6E12.5," RTS=',El12.5)
CALL EIGEN(K,2)

ARITE(6,333)CLM(K,2) ,CKM(K,2) ,RTS(K, 2)
CALL émeu(x.a)

gggs(s,saa)un(x,a) ,CKM(K,3) ,RTS(K,3)

cmm(k,2)=1.0
cmmik,3)=1.0
if(kn.eq.1)then
cimk,1)=0.0
cmm(k,1)s0.0
ckm(k,1)=1.0
else
cim(k,1)=0.0
cmm({k,1)=0.0
ckm(k,1)s0.
andif
RTS(K.la--C(K.S.S)IC(K.G.G)*I.0000

CRuK390:0

cim(k,1)=0.0
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HRITEéG 333)CLM(K.1 »CKM(K,1),RTS(K,1)

88-C(K,2. -3 o x 3 '3 oC(K, 4,4)*%2-(C(K,2,3)+C(K,4,8))%%2
CCaC(K,3.3)*C(K, 4,4

XMSQRT  BB**2-4%AA(C)

XLs-BB/2/AA

RTS(K, z;.xuxu/zm

RTS(K,3)=XL-XM/2/AA

IF( rsgx 2) ELRTS(K,3) JNE(K. 2)=0

CLMéK % ( ;x .2, 3§¢c§x .4, 4§§*sqrt(abs(RTS(K ,2)))/

,(qé" ’%‘ °$§(§ 3ctkiae

WRITE(6,333)CLM(K,2),CKM(K,2),RTS(K,2)

WRITE(6,333)CLM(K,3),CKM(K,3),RTS(K,3
CALL éIGCHKiK.l( ) CRMCK,3) ATS(K.3)

S(K.2)+C(K,4,4
*sqrt (abs(RTS(K,3)))/ i

CALL EIGCHK(K,2
CALL EIGCHK(K,3
ENDIF

999 RETURN
END

CARRARRARRARARRARRKAERARAAARARRRARKARR AR RAARRRRARRRARRRRARARRKXRKRAR

SUBROUTINE CHECK(N,M,RR,AA,BB,CC,DD)

CARRARRRRARARARRARARRRRRRARAARRRRRRAARRRRARARARARARARARRRARARARKKRRRR

IMPLICIt real*8 (A-H,0-2)

common/stuff/ z(3003),y(3003),THeta(100),ex(100,12),50(100),
+G3(19001),b(19001), wkarea(G).
+f2(100), e11 e22,e33,912,913,923,v12,v13,v23,
+rts§100 v3), RL(3 3), CKm(lOU 3? ¢1m(100,3),cmm(100,3),

2 oo1), qbée 6;
+c(100,6,6),FW(8),thick,width

common/ int/ N2(2,12,11),N3(19001),n4(100),N5(100,3),N6(2,15),
+n51(100),nb(100), nf(100 2) np31(10, 100) nSJ(IOO)
+np3,npd, np3d np4d npl,nc,kn,nfz

Xx=RTS(N, Mg
RR=DD+Xx*(CC+Xx* (BB+Xx*AA))
RETURN

END

CRAXERRRARARARRRARARARRRRRAARARRRARAARARRARRRARRRARARRARR R XARRARR KRN

SUBROUTINE EIGEN(N,M)

CI*t*******'l‘l***R*ﬂ*'t**t**‘l*3'lt'k****t*ﬂ'l*****Rt********t**t****

IMPLICIt real*s (A-H,0-Z)

common/stuff/ 2(300"‘)( y(3003) THeta(100) ,ex(100,12),50(100),
+«G3(19001),b( 190013 area

+fz 100&.011.022,0 3, 8 23.v12.v13,v23.

+rts 10 3) RL(3 3) ¢ m(l »¢1m(100,3),cmm(100,3),

s 001
100,6, 6) H(B ~thick,width

COMMON 031 21002 PKéZ 4, 3003% ,PM 2.4.3003Z.PL£Z.4,3003),
+91(1,3003),c11,C12,013,£23,022,C33,066,c55,c4
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common/ int/ N2(2,12, 11% ,N3(19001),n4(100), N58100.3).N6(2.15).
+n5i(100),nb(100), nf(loo )» npsl(lo 100) n6j(100),
+np3, npl.np3d np4d,npl,nc, kn nfz

xX=RTS(K,M)

ris=(C{N, 6 6)*xX+C(N,5,5))
R%(l(ézi z ,6)*xX+C(N,4,5))
Fis= X+
RL(1,2)=r

R%(Z 1&‘516 C(N,4,5

Fi= *

RL(§ S )+C( ))

Rtt 3 2-:2é(n 2,2)*xX+C(N,4,4))
E(h.2,3)+6(K.4,4))

N S Rt

RL 2. )-ri

RL(3,3)=-(C(N,4, 4)*xx+csn 13,3))

*gt?gnz§z*§RL 1 2)*RL(1 )/RL(1,1)-RL(2,3))/(RL(2,2)-
CRM(N-H -%ar;§ Qgiaﬁ”i‘sbféf‘i‘z kL) Ru

o-RL§1z**z i 2( )/RL(2,2)-RL(1,3))/(RL(1,1)

CKM({N,M)=C N, M)* T
RTYasqr (agzzkrsstagggabS(R S(N,M)))

Commmmmmmm e > ERROR CHECK

ERRI-RLEI,I *cxngn,u +RL(1,2)*CLM(N,M)+RL(1,3)*RTY

ERR2=RL(2,1)*CKM(N,M)+RL(2,2)*CLM{N,M)+RL(2,3)*RTY

C NOTE NEGATIVE DUE TO IMAGINARY CONSTANTS IN RTY AND CLM,CKM
ERR3=-RTY*RL(3,1)*CKM(N,M)-RTY*RL(3,2)*CLM(N,M)+RL(3,3)

NRITE%G »400)ERR1,ERR2,ERR3
400 FORMAT(/' GOV EQ RESIDUALS' /3E22. 12/)

c*****************t**k******t****%*****k**********t*tt****t****t

SUBROUTINE EIGCHK(N,M)

c****8**********t******t*8*l************************t*t**********

IMPLICIt real*8 (A-H,0-2)

COMMON e(1,2100), PKéZ ,4,3003),PM(2,4, 3003% PL§2.4.3003).
+g1(1,3003),c11,C12,C13, C23 c22,€33,C66,c5

common/int/ N2(2,12, 11% ,N3(19001),n4(100), NSSIOO ,3),N6(2,15),
+n5i(100),nb(100), nf(loo ) np3l(10 100) n5j(100),

+np3,np4, np3d np4d npl,nc,kn,nf2

common/stuff/ z(3003 y(3003) THeta(100),ex(100,12),50(100),
+G3219001) ,b(19001), area(S).

+f2 100& ell,e22, e33 gle, 8 ,g23,v12,v13,v23,

*Eti %81)3) RL(3 3) CKm(l ,¢1m(100,3),cmm(100,3),

+

+¢(100,6,6), N(B thick width

xi'Rrg : 6)6 XeC N 5 5
Ve *xXe
EL(I( é ) ( ))
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ria-(C(N,2,6)*xX+C(N,4,5))

:tzl.zzuri

2,1)srd
ri-iC§ .3;6)»C(N-4-5))

RL
Etgi'é S LC(N.2,2)"aXeC(N,4.4))
yC)8= 16y "y X+ %y
Ld 12,3)+ %,
pir{cN.2:3).CN.4.4)
:t{g'g S LE(N.4,8) XeC(N,3,3))
RTY-;qrt(abs(ﬁfé(&.M))) -

Commmmmmmmnn > ERROR CHECK

ERR1=RL(1,1 *CKM{N.M +RL(1,2)*CLM(N,M)+RL(1,3)*RTY

ERRZ=RL(2,1)*CKM(N,M)+RL(2,2)*CLM(N,M)+RL(2,3)*RTY

C NOTE NEGATIVE DUE TO IMAGINARY CONSTANTS IN RTY AND CLM,CKM
ERR3=-RTY®RL(3,1)*CKM(N,M)-RTY®RL(3,2)*CLM(N,M)+RL(3,3)

HRITE$6.400AERRI.ERRZ.ERR3
400 FORMAT(/' GOV EQ RESIDUALS'/3E22.12/)

c*t*t*tlt*tattlRtﬂt******t***tt*t*tR*****t****************8****8*

SUBROUTINE MATMULT(N1)

c*tt***t*ltl**t*******tﬂ*t*****3******R*R***********************t

IMPLICIt real*8 (A-H,0-1)

common/stuff/ 2(3003),y(3003),THeta(100),ex(100,12),S0(100),
+63(19001),b(19001),wkarea(t),
+fz(100),ell,e22,e33,912,913,923,v12,v13,v23,
+rts§100.3).RL(3.3).CKm(100.3?,clm(100,3),cmm(100,3),
+REI 001).qbé6.6 R
+c(100,6,6),FW(8),thick,width
COMMON e(1,2100),PK(2,4,3003),PM(2,4,3003),PL(2,4,3003),
+g1(1,3003),c11,C12,C13,C23,C22,C33,C66,¢c85,c44
common/int/ N2(2,12,11),N3(19001),n4(100),N5(100,3),N6(2,15),

+nbi(100),nb(100),nf(100,2),np31(10,100),n5j(100),
+np3,npé4,np3d,npdd,npl,nc,kn,nfz
NN2=0
DO 34 I=1,NP3
5151.1)-0.000

34 CONTINUE

IF(N1.EQ.1)GOTO 109

aazlnﬁilinéz} 1)+N5(I,2)+N5(1,3))+NP3L(NC,I)
aNN2+ ,1)eNB6(I,2)+N5(1,3))+ .
1 CONTINUE
103 CONTINUE

I1s1

DO 2 KaN1,Nlo1

16=1
if(np31(nc,k).eq.0)goto 303
D0 302 E-I.N33L(NC.2)

D0 361 J=1,4
G1(1,NN2+16)=61(1,NN2+16)+E(1,(K-1)*21+J)
"P (II.JQL)
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+:E 1, {K-lz*21+J+7)*PL(Il »JsL)+E(1,(K-1)%21+144])
+
361 CONTINUE
16=16+1
302 CONTINJE
303 continue

NN2sNN2+NP3L (NC,K)
NNI-&NS&K 1 +N53K.2)+N5(K.3))
IF(N Q SIGOT
DO 4 J-l 4
II-IoNP3LéNC.Ka
61(1,NN2+1 S NZ#I%»ES %K- )*21+J)*PK(11,J,11)
0¢E éK -1) *21# +7)*PL(I1,d,11)+
S § 1)*21+J+14
% 1,J,11)
CON INUE
CONTINUE
3 CONTINUE
NN2sNN2+NN1
I1x2
IF(K.EQ. NPI)GOTO 999
2 CONTINUE
999 RETURN
END

ck*********ﬂ********tﬂ*****t****tt******t********R*R*t*t*****'k****t

SUBROUTINE EMULT(K,N,RX,Z2)

CARARRRRRRAXARRRRRARRARRRRRARRRRRRERARRR A ARRRRR AR R AR RRARRARRARRNRRANRKRRRARN

IMPLICIt real*8 (A-H,0-2)

common/stuff/ z(3003),y(3003),THeta(100),ex(100,12),50(100),
+G3(19001),b(19001), wkarea(s)
+f2 100),e11 e22,833,912,913,923,v12,v13,v23,
+rts(100,3), RL(3 3), CKm(l 0 3? ¢im(100,3),cmm(100,3),
+R§19001).qb§6 6;
+c(100,6,6) ,FW(8),thick,width

COMMON e(1,2100),PK(2,4,3003),PM(2,4, 3003% PL§2,4.3003),
+91(1,3003),cli, ciz, €13, C23 C22 €33,C66,c55,c4

common/ int/ N2(2,12,11),N3(19001),n4(100),n5(100,3),N6(2,15),
+n5i(100),nb(100), nf(100 2), np31(10 100), n5j(100)
+np3,npd,np3d, np4d npl,nc, kn nfz

RX=0

DO 1 Is1,6

RX-RX¢CEK +N,I)*(Ex(k,1)+Z2*Ex(k,I+6))
1 CONTINU

RETURN

END

ctt**3*l*ltt**t*Q*‘l***"I**’*ﬂa*’ﬁ’ﬂ*"tﬂl*********litttl*!*i

subroutine givens(mt,md,n,gx,gy)
cttt**ttttt*tt*ttt3tttttttt.ﬂt*ttﬂltlttttlﬁttttt*t*ttltt*tt*t
implicit real*8(a-h, o-zg
real*s gx(801,3003), 003,501)
integer md(100), ntél 0).n8100)
common/stuff/ 2(3003),y(3003), THeta(i00),ex(100,12),50(100),

W
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?3219001) b(190013 wluroais )

1003.011.022.0 3,012, 23,v12,v13,v23,

o;t; 381)3) Rl.(.‘! 3) Ckm(100, 3 cln(loo 3).cm(100.3).
L4

.cimo 6,6), w(a > thick,width

common/ int / nzsz »12, 11& »N3(19001), n48100) ,N6(100,3),N6(2,15),
+n51(100) ,nb(100) ,nf (10 zz p3'l(10 100) ,n6j(100),
+np3,np4,np3d, np4d.np1 nc,kn,n

10=0
k0s0
12=0
k2s0

do 10 11=1,npl

mdxs0
ir(1l.9t.1)mdx=md(11-1)

do 20 k1=1,mt(11)

et (ke 1)/n(1))*(1
=N - n

it ey

kx-k k2

11 (i0+n(11).1e.k-1)kxx=n(11)
do 21 {1l=1,kxx

1=10+il

iw-intsst- .1)/n(1))*n(1)
iiysi-

ikysi-ik

1f$k .gt. i)then
gkisgx(kx,i)

elss

endi

if(fki.eq.o.)then

CCs],

ssal,

else

if(abs(?ki; .ge.abs(gy(i,1iy)))then
tagy(i

sss], /sqrt(lot**Z)

ccagstt

else

tagki/gy(i,ii
cgl ngl('t(h{"Z)
$ssCC™t

endif
endif

doﬁz jlsi,104n(11)
kysJ=-1k



22

21
20
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jys
I y)

1f(k gt i;then
wagx(kx
else s jky)
o T

gy(i,jiy)sccrvessrw

if(k.gt. j)then

gx(kx, j)s-ss*veccrtw
else

gy(k, jky)=-ss*veccrtw
endif

continue

rise(i)

( -cc*r(i)¢ss*r(k)
k)s-ss*riscc*r(k)
continue

continue

if(11.eq.npl)goto 10
kO=k0+mt(11)

do 30 kl=1,md(11)

Teedat((k=1)/n(1))*n(1)

ik=int((k- n n

kxx=k-10-1
if(i0+n(11)+n(11+1).1e.k-1)kxx=n(11)+n(11+1)

de 31 ilal,kxx

if(il. t.n&llg)then
kx=k-k2-mt(11)-mdx
else

kx=k-k2

endif

i=i0+il
ii=int((i-.1)/n(1))*n(1)
jiysi=i

iky=i-ik

if(k.gt.i)then

gki=gx(kx,i)

else
gki-gy(k » iky)

if(gki .6q.0.)then
cc=1.
ss=0.

:}s:bs( ki).ge. abs(gy(i,1iy)))then
t-gy(i % ;}gki wih. Ty




32

3l
30

-----
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ss=1./3qrt(l+t*=2)
ccsss*t
else

tsgki/gy(i, 11y
cesl, /sqrt(lotz’Z)
sssccrt

endif
endif

do 32 jlsi,10+n(11)+n(11+1)

fy=j-1i
jk;-j tk
vegy(1,31y)
if(k.gt.j)then

kxsk-k2
if(j.gt.10en(11))kx=k-k2-mt(11)-mdx
wsgx (kx, j)

else

w-9y$k.Jky)

end i

gy(1,jiy)sccrvesstw

if(k.gt.j)then
gx(kx,j)=-ss*veccrw
else

gy(k, jky)=-ss*vscc*w
endif

cont inue

risr(i)

réi scc*r(i)+ss*r(k)
r(k)=-ss*riscc*r(k)
cont inue

cont inue

10=10+n(11)
kO=kQ+md(11
k2=k2+mt(11)+mdx
continue

-=> backwards substitution

10=npl
nx=np3
do 60 i=np3,1,-1
bsi ar(i)
int (i- l)ln(l))*n(l)
do 50 j=iel.n
b(ig-b i) oy(i J-11)*p(J)
continue
if(mx-1. ?e .n(i0)~1.and.10.ne.npl)then
nxs=nx-n(
f0=i0-1
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else
endif

if(nx-i.ge.n(npl)+n(npl-1)-1.and. i0.eq.npl)then
nx=nx-n(npl)
=i0-1
else
endif

b(1)sb(i)/gy(i,i-11)
continus

return

and



-294-

AANARARRARNARKR m I"PUT FILE RARARRARRARARARRAAARRRARNKN
2 : NP1---- HALF OF # OF LAYERS IN HALF LAMINATE

61 : NPTY

51 : NPT2
60 60 :N6I # TERMS IN SERIES/ROOT/LAYER 1ST EVEN IF NCsl
ARRAARARENRN LAY-UP mELEs RARARBARRRARAARNRRNARY
;48 45 3gogu3° 0 90 30 =30 0 90 30 -30 90 45 -45 45 -45 45 -45 45 0 90 0 90
.05 :SK DISTRIBUTION PARAMETER FOR Y AXIS

1 0 : THICKNESS

1.0E-6: UNIFORM AXIAL STRAIN AT CENTER

.00.60.01.0 .0 .0 load vector nx,ny,nxy,mx,my,mxy
21.  : Ell

1.56 : E22

1.55 : E33

31 : V12
0.49 : Va3

.31 : V13

.66 : G12
0.52 : 623
0.656 : 613
0 : FLAG FOR WEIGHTING (1 FOR WEIGHTING, 0 NOT)
3 : CASE NUMBER SEE PROGRAM HEADER NC
anawansnn WEIGHTING VALUES FOR U,V,W,SY,SZ,TXY,TXZ,TYZ #*xxxnx
1.0E2,1.0E2,1.0€2,1.,1.,1.,1.,1.
0 :MNRSOLV/O FOR COLL/2 FOR CG/3 FOR BOTH

00 00 00 :ADDITIONAL DOF FOR CG METHOD

1.4 :ffz scaling for frequencies

1.00 :exponent for frequencies (set to 1)
0 : ncoat 1 for edge coating 0 for free edge

.05 : cthick thickness of coating

.12 .3 : elastic modulus and poisson ratio for coating
9 : number of points across the coating thickness
200 : number of points on coating face

0 : maxcal max no of iterations
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Input File for Mwr Program: MWR.DAT

(=Y =]
[} =]
oo
MmN

0000000000000 0000000000 NN

12) k1 2)

COO000O00O00O00O0O0O00O00O00D0O0O0000 «Nw

I=1
2)

0000000000000 DO0O0O0O000O00O0O v

1

ooooooooooooooooooooooooVlhll

oooooooooooooooooooo0000)22

)

11

(T2
ooouooooooooooooooooo000132
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J

-4 [ ]
Lo
HMWOAHWHOOOOO-TMOOoOOROODOOOOoOOTMAN
L ] L] -4 -l

oo o o

oo o o

. .

(=R =] o o

co o o

oo o o

oo o o [ =]

[ =0 =] o [ =] o

o0 O O O

[ =X =] 0. o [ =]

[ X =) o (=] o

oo nw o o

0o (=] o o

0o o o o
E X

e N .3 ) N

OOCOCORON

I=1 10)

0.
Iel
1
0
0
0
0

0
((NP3L(I

0
0
0
0
NF(I J K) Jsl 3) Ksl 6)

et NN NOOOOO

Ng'x
(0 (1)

COO0O—NNNNNOOOOO
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