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Analysls of Mutual Coupling Effects
In a Finite Planar Circular Waveguide Array

Duy Ngoc Nguyen:

Array feeds are widely used in spacecraft antennas for generating either
multxple beams or shaped beams. Flexibility in the design of array feeds is
re‘\é;ly available; however, the des1gn can be comphcated by the effects of
multlple interactions between the radlatmg elements These interactions -
give rise to distortion of the co-polanzed radiation pattern and an increase in’
the level of cross‘polanzatlon a feature which is crucxal in dual-polarization

or in frequency re-use satellite systems.

This thesis presents a mathematical model to-analyze the mutual
. coupling effects m a finite planar array of open-ended circular waveguldes

ard terminated in an infinite ground plane\,The probfem is formulated as an

.
AL

integral equation by requiring that the transverse electric and magnetic fields
be continuous across the apertures. The integral equation is then solved by

the moment method leading to a complete description of the aperture field,

pattern of the antenna array is obtained by Fourier transfo"rmiqé the aperture
field which has included all the mutual coupling effects. By detormitxg the

contour integrals in the mode coupling expressions, the coupling coefficient

* can be computed e;lei:iently.

. Computed results compare favorably with expe/rimental and published

data, thus establishing the validity of the analysis and the computer program.

Fid

incdluding all the reflected modes, in each element of the array. The radiation |
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- CHAPTER 1

o

INTRODUCTION e

1.1 Purpose of the work

—

Current and future trends in both global and regional satellite

2 :
. communication systems require high gain spacecraft antennas of complex

ol designs which radiate either a contoured beam or a number of narrow spot

"N - beams over high density traffic areas. The objective of a contoured beam

antenna is to concentrate a high portion of the radiated power as uniformly as
possible within a desired geographic_coverage area and to mxmm:ze the
radiation to adjacent service areas. The shaping of the radiated beams can be
o achieved by the superposition of individual constituent beams .from an array
of primary feed elements ﬁluminatirig either a single or dual reflector system.

The multiple beam antenna can be realized in a similar manner but in this

case the elemental beam is considered independently and it is necessary to

maximize the isolation between beams employing either the same

polarization or the same frequency. For either application, the requirements

demand that the »eo-polar sidelobes and the cross-polar field components are
kept to minimum.
N ‘ -

Quite often contoured béam- patterns or a number of closely-spaced spot
beams are formed by weighting the amphtude and phase of each element in
the feed cluster ‘Such an exercise gives a better shaping of the radiated
footprint while mamtammg low sxdelobe”levels The' selection of primary

feed elements constitutes a major step in the design of contoured or multi-

-
- PP _ -
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beam reflector antznnas. The optimum horn geometry is depéndent upon

the reiiector to be illuminated and the overall RF performance objectives, e.g. -

‘gain coverage, gain ripple over the coverage area, sidelobes, polarization

pu’x’ities, etc. The aperture antennas such as pyraniidal and dominant or duai
mode conical horns, in general, offer many desirable features. The r.adiétion
propertles of these antennas are usually well represented and the
computatlons are in good accord with measurements. Clearly, a primary feed)’

array comprlsmg of one of these types can be considered as a good candidate

for the antenna system. f-_, ~

To avoid excessive spill-over losses due to gratmg lobest , the elements
in a feed cluster must ﬁe small - in the order 1.0 to 1.6 wavelength - and
tightly packed The inclusien of mutual coupling effects in the computation
of radiated fields from the antenna, in that case, cannot be ignored. For horns
with relanvely small aperture, a number of hxgher order modes are generated -
at the aperture due to an impedance ”mlsmatch at the aneguxde -to-air
junction. These higher order modes are then reﬂected back into the horn,

coupled to the dominant mode and alter the aperture distribution. In

{
!

addition, since the-horn is placed in close proximity to scattering objects, i.e.

-

the remaining horns of the féed cluster, both the modal content of the

aperture field and the radiation patterns will be changed. These interactions

v /

are denoted as mutual coupli"ng'.’l The mutual coupling causes the element
- . . . ) \,
factor to change with element spacing, leading to the asymmetry of the co-

polarized and significant deterioration in the cross-polarized patterns. The

t A lobe, other than tt'\e main lobe, produced by an array antenna when the .
inter-element spacing is sufﬁcienﬂy large to permit the in-phase addition of
radiated field in more.than one direction” (IEEE Standard Definitions of
Terms for Antennas, New York, 1983, p.15).

. .
* > -
LS o ¢
-, . .
4 .
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. . i . N




I 47

- | \3
- i o , _
degree ttL whleh the mutual coupling affects the performance of the array will
.+ depend upon the element type, the polarization” and excitation of tach
element and the geometry of the array. Marked effects in the radiation
patterns of an efr&bedded conical horn (surrounding elements are terminated
with matched loads) hé.s been reported by Clarricoats et al [1]. The effect of
‘mutual coupling on the cross-polarized field of three different types of active

array was also investigated by Rao in his recent e'xperimenfal study [2]. Itis

noted that the deterioration of the cross-polar pattern can. be as high as 7.5 dB

for linear polarization (LP) and 4.0 dB for circular polarization (CP) when a
_ ‘dominant mode circular horn of size 1.135 wavelengths is placed in an array

configuration. *

A knowledge of mutual coupling characteristics associated with a finite
pri;nary-féed arra}} is a clear advantage to antenna designers. Appropriate
corrections can be iricorporated\ into the overall antenna design for any
.modificatio"hs to the radiation patterns of immersed elements. Saving-in
fabrication of the feed hardware could be substantlal An ahalytlcal approach
to determine the mutual coupling effects-in"a given pnmary-feed array is

therefore considered important.

12 Review of Earlier Works

. The. problem of calculating the mutual coupling between apertures in
an array has been a topic of interest for quite some time. ‘Analytical
treatments of the problem have been reported by a number of authors, some

of these will be briefly discussed in this section.

In general, the mutual coupling effects in an erray are analyzed by



4
using the integral eqTxatioh method. The scattered field in the exterior of an
array is represented by an integral over the plane of the horn apertures,
having the tangential component of the electric field in the integrand. If an
approximation is made that the planar array. is terminated in an infinite

ground Plane, then the tangential electric field will vanish ‘everywhere on:

.

the aperture plane. except on the horn openings themselves. The original -

mtegrangn is thus reduced to only that over the physical apertures of the -

horns. In_the ir}rerior region, which is- the ensemble of all the horn
waveguide regions,‘ the field can be expanded as a summation of modal fields
which satisfy the boundary condition at the horn apertures, i.e. continuity of

the tangential electric (E) and magnetic ® field?.
“~

As the observation -point. approaches the aperture plane, the
1mpost a bourtdary contmulty condition as well as the hmlt of the

integral representation of the scattered field and of the modal fields leads to

an integral equation’ for the unknown tangential electric field. An

_ approximate solution of such an equation can be obtained by the Method of

e

Moments (MoM) [3].

Although the above proeedure is common in most of the recent works,
the partlcular formulations are quite different among authors 4-12).
Mallloux' [10], 1n his first paper found the near field touplmg between two
colhnear open-ended rectangular waveguides by forrmrlanng the problem as
a set of simtiltax?eous integral equations and solving’ the resulting equations
approxrmately by expanding the aperture field in a Fourier series. In a second

paper, Mailloux [11] found the near field coupling betweer two—clc;sely-spaced_

open-ended waveguider; by a first-order analysis which is based on the

method of moments using a single mode approximation to the aperture field.

s



An improved first order analysis is also presented using a higher order mode
solution to the self admittances. '

' ) , .
Thie works of Wu [9], Cha and Hsiao [6] and Steyskal [7] are quite similar

in nature. ’I:he integral equation is set up by imposing the continuity
condition of \the tangential field coinponepts across the apertures. Again, the
method of m\oments v‘vgs used by these authors to arrive at a s;;uﬁon for the
unknown tangential electric (Ej field. The formulation of Wu. ofiginated
from a problem of finite parailel-plate waveguide arrays, i.e. the fieldglare
indepéndent of one of the coordinate variablés. When applied to an array of
rectangular waveguides, this condition is satisfied only at two major cardinal -
planes. ' The solution is, thu§, a limited one. Suc}{ a limitation is overcome in

| ‘ the analysis of Cha and Hsiao, where the modal fields are the TE and TM

i .iwaveguide modes. Cha and Hsiao also emiphasize the computational
effxcxency The: elements of the interaction matrix have a translauonal
symmetry relation similar @that of elements in a block¢Toeplxtz matnx
Unlike other presentations, Steyskal's paper concerns 1tself with the mutual

' coupling in a finite array of circular waveguides. The unknown aperture
field is again expressed as a combination of waveguide modal fields. The
author also selects tl_me set of\ basis functions equal to the weighting fux}ctions'a'

- (i.e. waveguide modal fields) for the reason that the lower order solution '

usually is dependent on the particular location of the matching points.

For another p;rticular' formulation, Harrington [4] ‘and Fenn [5]‘
obtained the integral equation through the use of the equivalence prmcxple
and image theory, whereby the tangential electric field is replaced with a .

. magnetic surface current density backed by a perfectly conducting plane. Both

authprs employ Galerkin's version of the metiod of niomenﬁs, but Fenn (5]

hat b4
P -
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carﬁf_/s it much further by congxdermg several basis functions wnthm each
ra/c(xatmg aperture, and by allowing for couplmg of 'cross-polanzed fields as
/Well (because orthogonally polanzed basis funcnons are used).
Computanonal efﬁcxency' is of prime interest in these works, afld use is made
/ 5f a very fast algorithm to solve a system of linear equations, which is only
/ valid if the matrix of the system has bleek-Toeplitz §);1htrnetry. The array is,
thus, constrained to-a rectar;gular-grid and equal radiating elements. Any
‘other general case will require considerably more computer time and storage.
With the generation of higher order modes at relative large afnertures, a
. sufficient number of basis functions must be considered to adequately describe
the aperture field distribution. Each basis function at each aperture
corresponds to one line‘.«or one row of the admittance matrix, and it is
therefore clear that the order of the matrix may quickly become too large to be
handled [5]. i*or the internal region, Fenn [5] 1lxses the method of images to
. obtain the field due to each basis function,_ This method is found less elegant

" than the modal expansion introduced by Harrington [4].

A shghtly dlfferent integral equation is the starting pomt of

| formulations by Femez [8] and erd [12]. Galérkin's version of the method of
moments is again employed, but the basis functions now considered are the
tangentiai electric fields corresponding 'to the various waveguide modes of
propagation. The mutual coupling effect in a finite rectangular Waveguide:
array is dealt with by Fernez, [8] whilst that in a finite circular waveguide
array is dealt with by Bird [12]. Therefere, the basis functions are different, but
the method is basu:ally the same in the two formulanons In Bird's work {12], |
the mode coupling expressxons are reduced to fo,tms that are computationally .’

_quite efficient. The numerous mode CTOSS coupling between apertures is

<3
a}
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. equation into

-

handled through-the use of an asymptotic formula to speed up the

com}:utation time.

In sﬁmmary, the analytical treatment to the problém depends tf\ainly
on the particular formulation used hy each author. The formulation
gen&ally corhmencgs with an integr MNeguation which will then be solved by
the methpd of moments. The comple;dty of the resultant matrix equation, asﬂ
well as the generality‘ of the solution, depénd on the selection of the set of
basis and testing functions. This, again, varies between the authors.

However, for 'aveguide:type problems, the natural choice for the basis

(and testi nctionsjis ‘oﬁf:gen the modal fields of the associated. waveguides,
N -
required to be performed for peducing the integral
’).
attix equation can then be carried out in closed form. This

since the integrati

consideration is shared by Mittra [13]. Finally, it is noted that investigations

are generally carried out for planar arrays of identical size to ease the analysis

and computation. N ' _ ) ..

‘1.3““"‘*Outline of the Present' Work

*

The increasing demand of “clean beams” (Iow sidelobes, .lo'W Cross
polarization) frmea satellite antenna has ,profnpted efforts to 'be concentrated
in lformulating and computing efficiently the mutual coupling effects in a
finite array. Such effo.rts have been initially directed to circular waveguide
arrays. The treatment of these will be presented in this thesis. The present
analysis will be more general than earller investigations [7,12,14] in the sense
that it considers the mutual couplmg between possxble modes m/tﬁe
waveguides whether propagahng or evanescent. This is rather important,

since in a practical situation'there are a number of higher-order modes being

Q
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generated locally ét the aperture dueyto ¢ the bsundary condition. Both Barley
‘et al [14] and Steyskal {7] included only a brief description of the effect of
“modes of higher order than the domin_‘ t TE11 in the solution. The two
analyses are essentially @extensions of methods employed earlier to derive the
self-admittance of the TEj; mode in a flanged circular waveguide [15,16]. Ease
of numerical implementation is not discussed in these works. Bird [12], on
the other hand, has supplemented higher-order modes in the self;adrr\ittance
analysis. brxt has considered onl):" TE11 to TEu mode coupling in a seven—
element cluster of. qrcular waveguxdes 'The inter-element mode cross-
couplmg coefficients were handled dxfferently by these authors, ‘Bailey et al
evaluated them directly while .Steyskal ‘and Bird utilized an asymptotic h
formula. Although the use of an asymi:totic formula provides considerable
saving in computing ti‘me, it does lead to inaccuracie; when an array of
/;losely-packed large diameter feeds is considered. In this t};e.sis, the
formulation for all possible couplings and the cross-coupling coefficients in
separate apertures are put in exact expressions and then reduced to forms that

. are suitable for numerical calculation.

Formulation of the mutual coupling problem is discussed in Chapter 2.

The integral equation is first constructed through a“n identity that relates the
scattered magnetic field to the tangentia‘l electric field at the apertures. , The
method of momgnts is then employed to obtdin an approximate solution for
the ‘unknown tangential electric field. To facilitate the analysis, the
waveguide modal fields are used as basis functions ;o expand the ‘unknown
field in terms of a series. By applying Galerkin's pgcedure, the ft;nctional

- equation is reduced to a matrix equation, in which the coupling coefficients
can-be explicitly “d’efined. ‘Initial analysis of mode coupling in a single
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aperture is presented in Chaptef 3. The coupling coefficients have terms
depending upon contour integrals. These integrals can be. evaluated
efficiently by deforming the integration path in the complex plane. The

deformation procegé is also discussed in Chapter 3.

The mutual coupling between modes in separate Waveguides is dealt
with in T(_Zhapt'er 4. The resultant coupling coefficients contain contour
integraig; involving triple products of Bessel functions, or their derivatives,
whose ‘argument is not expressed explicitly in terms of the integration
variables. Graf's addition theorem is used to separate the variables associa.ted_
;n/th one of the apertures. Contour integration, as is usefl in Chapter 3, can
ag'ain: be applied to transform the oscillatory integ?a,n’ds to monotonic ones.
Fast-convergent numerical integration is thus obtained. Once the coupling
coefficients hayé been derived, the radialtion characteristics of the array are

readily developed .using the E-field mathematical model. Chapter 5 presents

the analysis and expressions of the radiation fields.

Validation of the analysis and the computer program is made through
comparison of numerical results to measureg dafa and to those in the open

literature: These comparisons are detailed in Chapter 6.

0
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 CHAPTER 2

L P et

PROBLEM FORMULATION -

My

21 Introduction

a

~ The investigation of waveguide arrays has shown that such problems
can be most effectively solved by regarding them as interface problems. In
this apbroa"ch, the whole space is viewed as consisting of two seﬁarate,
uniform regions; one of them is comp-osed of the aégregate of the w’aveguid;gw
while the other is a half space. 'f'he two regions meet at a common inferface,
i.e. the array face. Since a knowledge of either the\tangential electric or
magnetic field at the interface will suffice to «haracterize the fields
everywhere, it is desirable to formulate the problem so as to solve for one of

the quantities. The integral equation formulation is found to beyparticularly
suitable for this purpose. °

y

| oo -

22 ‘Formul:atifm of Waveguide Scattering

A combination of the eciuivalence principle and image theorem can be
‘used to obtain solutions to bo‘mda’ry-value problem fo;' witich the field in
half-space is to be determined from itsq\tangential components over’ the
bounding plané. A brief discussion in the light of these concepts is given
herein, whereas detailed treatment can be found in Harrington [17] -and Collin
ahd Zucker [18]. With reference to Figure 2.1a, let the original problem
consist of sources in z < 0 and free space in z > 0. An application of the

equivalence theorem leads to an equivalent problem in Figure 2.1b. This

s

{
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consist§ of the magnetic current Ms = E x Ti adjacent to an.infinite ground
plane. One ma;r now,image the magnetic current in the ground plane as
- shownin Figure 2.1c. :I'he image is equal in magnitude to, and essentially
coincident with, the Mg of Figure 2.1b. Therefere, as pictured in Figure 2.1d,
the magnetic current 2Mg radiating into' unbounded space proé’l’tlces -the same
field in z > 0 as do the original sources. The image. field in Zz < 0 region is of .

no interest.

.
. o , N
) 2=0 ’ - z=0 -
- = Zero S|}
. o R 4| &n _Fied B|§ EBR
. s ©
| - -
- > 8
4 gk
»d Bl Mg=E
Sources i .
o~ - (@) \ (b) '
f' )
2=0 2=0
: | E E.fA EH
) 6'
Ml i :
E Mg=Exn - . M =2Exn
©(e) A ) R
v ‘ { '
- Figure 2.1 Nlustration f the -equivalence principle and o

-

image theoty-
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The duality of the above problem is to replace the z = 0 plane by a

\
perfect magnetic conductor, i.e. a fictitious surface on which the tangential

magnetic field must vanish, In this case the magnetic current Mg is short

circuited and the field in the z > 0 region may be found from-the electric

current Js = 2 fixH on the z = 0 plane alone.
, .

The scattered field in the unbounded free space can be determined
v from the following identities; ' h

-

1-38=~-fo~‘ +-—-1-—VxV><A , : (2.1)
joe . ' :
0
%' ‘ -
i, =-VxA +_'__1_/,va,><1'= - (22
’ l - lmp0'

where A is the magnetic vector potential and F is the electric vector potential.

(2.3a)

Fa[[f, < as L " (23b)
Kj
The surface S and vecfor notations are shown in Figure 2.2 k is the

- free-space wave number. . -

b

-

12.

-

R
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) A L “ .. SField Point .
. . ¢ . P -

" Origin

L)) )
. o

_— . ‘
Figure 2.2 Vector nomenclature

Acsording to the field equivalence principle and the imaée theory
dxscussed earller, it Ifs\?pparent that the scattered field in the half space (z > 0)

. ::an be determmed in terms of electric and maﬁneuc currents Ts = fxdH, M5 =
} -an located on the aper ture ar in terms of electric current Js = 2fxH or
- magnetic current Mg = -‘EixE . In the latter two cases a perfect magnstxc or
perfect electric conducting surfacg is postulated to be placed just inside the
z=0 plane The present analysxs assumes a perfect electric conduchng surface

over the horn aperture, thus short arcultmg the current Is
-p ’ Q
It is now appropriate to consider the integral equation for the scattered

v ;
field from an m'ray.k For simplicity, the following assumptions have been
N ) .

made prior to the analysis : - ' 1 o
- (a) -all apertures are opemngs of wavegmdes (thxs is to provide a

simplified descnphon of the modal fields),

4 () all apeergé are ideptiad and may be loadeg:with dielectric, and
' v A S '
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. 2
“

* (c) apertures are located arbitrarily in an infinite electric ground plane.

. The planar array under considerations, Figure 2.3, consists of N drcular
apertures terminated in a gro'und plane. From (2.2), the magnetic field at
points on a plane perpendicular to the ground plane, at a distance R from‘the

origin is

N

Hs = 'U(VV&k ). sz G(lr-r1)ds (24)
anu C,

The tangential electric field is denoted as E; and is assumed to have

the form Ei= Eo eJ(®t +'k2); “The unit vector Z is normal to the aperture

plane, Viis the transver gradient operator. : The kernel G(I3-F' |) is given by
N

 GURFD) =expGKIFFD/EFD) - N\
. -
where r is the position vector of the field point and r' is the position vector of

the source point on the aperture.

AX

N
P (x,y,2)

A
©

Figure 2.3 Planar array with the observation field point P and
_the source’ point P' on the waveguide aperture

ot
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¢
becomes an integral equation in the flelds components tangential to the array

aperture. This equation is constrained upon all possible trial solutions to the
' 4

. aperture fields. One possible_set of trial solutions is the modal fields of the

waveguides. Furthermore, for the assumption that all apertures ,are
terminated on 'a gro'u’nd‘pla_ne, the tengential electric field E; vanishes
everﬁhere except on the Jpenings, the surface integral in equation (2.4) then
becomes a sum of integrals over the N waveguide pertires. The total

'aperture field is now composed of N discontinous field "patches” a$
‘ ) el

o =R (Y
E, = iﬂ, (2.5)

The continuity of the tangential elecmc and magnenc fields permits

quatlon (2.4) to be rewntten as : | .

t
i=1 anu j=1

in“’ i H(vv) $ 1) 2x EVGUi-Fhds . @6

This equation expresses the unknown coupled field E@); in all

waveguide apertures in terms of the known incident fields H@) The
method of moments can be used to obtain an approximate solution for the
above coupled equation. In the next Section, steps in transforming equatlon

(2.6) into a system of linear algebraic equations will be presented -
- .

23  The Method of Moments Solution o

» <

s
The unified ¢oncept in.the numerical treatment of radiation problems

- ," &

When the observation point P lies* on the plane z = 0, equatxon 24)

-
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s the method of moments [3]. This method applres the concept of linear

spaces and linear operators to the problem The solutxon proceeds by

expandmg the unknown electrlc fleld as a lmear combmatxon of a set of

expansion functions or basis functxon§’, with complex coefficients, defines a

" ‘suitable inner product over the operating domain of the operator and a set of

weighting functions or ‘testing functions. The next step in th ution is to

take the inner producf to form a matri)sc;e\quation and solve Ktrix for the °
unknown complex coefficients of tl_le electric _fiﬁe\ld expanéion. For the present ~
scattering problem, the linear operator,ip the det'errhir'fistic L(f) = g can be
identifled as _ - | - .

L ]

LE) = j (V, v, + k). 2x EGUIF - F1)ds | @.7)
mou .

Eis the unknown tangential , electric field, g is the known incident

magnetic f1e1d at the waveguxde apertures The unknown electrlc ﬁeld can be

.expanded in a series of basis fum;hons {én), :

E= Do& - e T

»
o

where ap are complex coefficxents to be defmed For exact solutlons, equation ™
(2.8) is usually an -infinite summatlon and the ep's form a complete set of
basis funcnons For approximate solutions} this summation is usually ﬁmte

Subst:tutmg equanon (28) into equation (2.7) andysing the lmearxty of [. to
get '

Yo LE) =g . * ey
- | .
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‘A set of équaticns fox:- the coefficients apy is then obtained by taking an

~ inner product of equation (2.9) with a set of weighting functions (Wn), ~
X e W, LE)> = W, 8> 210
. n.’
" m=123,...
N ) ‘ . . - ‘ " .
" " This set of equations can be rewritten-in a matrix form as
, [Cmnllon] = [gmn] (211,
, In explicit form, . ' - : ‘.
= L &R L@ <W,,LE)> ..
N I . - .; . ¢ - .
. ) . ) A , ,
) ’ <w,,L@E)> <w,, L(E)> e
C.l = | :
! 7 L . ¢ &
. A -
‘ o al . ZW] ’ g,> .
§ o, | <sW,. 8> , 3
- . ' . d'_ ' , !
© ['a n] = a3 2 . [gm] = <W3 ’ g > \~. (2.12) . ]
i . \ : d ‘ ’
- * ! . ;w
3 . I | . ' -
, If the matrix [Cmp] is nonsingular, thén its inverse [C)! exists. The

[

-}

, coefficients on are readily Abtaihed by . *

o) = [Com Mgl . . -~ . - | .

3 - . : . -

.t
K . .
N -
1 ' B N . '
i -~ -
. * - - - ~
o - « .
»‘ . - ° ' B LI
' v . Ca . .
M ¢ . ' / il ! .
ST a . ! . . . R - P - v -
' . o , . o . . o . ‘ . . . .‘. “ * * ' . : A ) N
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\ ,
The particular choice {én} equals to (Wn) is known-as Galerkin's’

_method. The choice of the sets of basis and weighting functions has

significant impact on the convergence rate of the solution and the complexity

of -the elements <Wp, , L(€y)> that must be evaluated. Fast convergence is of

. prime interest in this particular problem. The number of unknown &n and

thus the number of equations to be solved must be kept at a minimum. The

.mode functions are considered suitable basis functions since a small number

of modes usually suffices to give an accurate field représentation at the

waveguide apertures. For the we.igul.i—ting functions it is believed worthwhile . -

to sacrifice ease of evaluation and to employ a more sensitive function than
L s

the common delta function, since a Icgw order solution usually is dependent
, :

-~

on the particular }ocation of the matching point.

»*

In view of the above discussioﬁ, the tangential electric field in"the i-th

v

horn is approximated by an M-mode expansion,

=G @ MmZ G MmZ, - - S -

E, = i(ame T +b e e (2.13a)
. &\/xrpl ! . “~ . -
‘?\ . ‘ , . -

= @ Mz 0 M? ¢ g . ' :

H ' = i ta e -b e )h . _ i - (2.13b)

, . m=1 . ' . .

©

3o < , . ~, -
e ,\Vhere aly, and bl are the unknown modal coefficients of the m-th mode

propagating in the positive and negative z-direction, respectively. &m and hm

are the traAgverse electric and rAégnetic fields of mode m, and are reﬁlated‘ to

J

s - 1 e -
.hm =\-z--(zxem)

m »
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. consrderatxon It is convement to define

Zp, is the Uaneverse mode impedéﬁce which is given by
—2 : for TE modes
Z = o a7 : S . -
1 vz e .
ot -'-;;-9- s for TM modes -

k!

<

Zo is the intrinsic wave 1mpedance of"free space, ar is the relative

dielectnc constant of the waveguide mﬂdrum and Ym is the propagation

o

 constant of modg m. The field characteristics of a cr_rcular wavegurde.are
.given in Appendix A. It is noted that a sinigle subscript notation m (or n) Ais‘c

~ 'chosen to refer to the double subscript notation Ik (or pq), for the sake of

‘

convenience. . T - -
Substitution of i‘z,rsa) and (2.13b) into (2.6) leads to -
./ | .
iix B, “’/)h —’—(vv £, zx -

i=1 f=1
ii'”(a(’)+ -b(’))e G(IT - I) ds’

" ;=1 n=1 D
(2 14)

-

Addrtxo\'ral indices i and j are_used to 1dent1fy the apertures under

N R I | - o
An = al o+ b{n o '. -
A . ) &g ' ) "' ‘ (2-15)
R S S ) : | . ' '
Y Bm = am .‘bm ‘ " ) — :
° ‘
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and rewrite (2.14) as ¢
iia"’ —L—(v v+ K ) z xiiA@e GC17-71)ds
=1 mel" 2rop, je1 el

(2.16)

a

Following Galerkin's method to perform #\ inner prbduct of (2.16)

with a set of weighting functions hm (m=1,2 3, .-M) over the apertures Dj's to

amve at . ,
.

‘ -+

N_BY - —J—ii "l[ hﬁ)(VtVt+k2).5x

m 'm
o 2nok, Rl

H e G(Ir-r'1)ds’} ds - @17)
D L ' .
- . : ‘

~ + Notice that the modal fields '“Tlm are identically zero outside the

"~ appropriate waveguide region. In addition, they are orthogonal to each other

.-~ and that results in non-vanishing inner product of two similar modes.

A

*

The .constant Nm in equation (2.17) is identified as normalization

“factor and is given by

Z[J-h . (1) ~

‘~( ¥mY m) (1- -E—) ; for TE:modes

: X X2 | '
v 4 . m
- 2.18
L. ™ ) ‘ . (2.18)
g ‘
% 1 ( Z:Xr' Ym)2 C £0f TM modes
. X1, )

with

————,

¢
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- » . iV}
s

. _ -hc ,‘ N %” -
{ 1 ; whenp=0 p denotes the azimuthal variation

" Cop T ‘ofthemode -

op b

2 ;whenp>0

Xm =Ama, Ym = Jp(Ama) and Y'm= I'i,(xma). Jp is the Bessel function of the first
kind, order p and J'p is its first derivative. . '

7]
¢

After dividing both sides by Nm, a matrix equation for the unknown
%

coefficients is obtained as

The mutual coupling coefficient Clj),, relates the interaction between

mode m in the i-th waveguide and mode n in the j-th Waveguide. The

following general expression of the element Cli)),, has been extracted from

equation (2.17) as

© 7. ag . 5 L
T Ly - ) 2 T 1y g
c® - ;ol-)—-ﬁ—!j{hm(vtvﬁk ) [[R¥cur-riyas ) ds
K m D. -
0 i : /4 ]
(2.19)

4

The coupling matrix [C] deserves additional discussion. Thisyis a

complex square matrix of size NxM by NxM, where N represents the number
of wavegufdes in the array and M represents the number of modes assumed
to' be present in each waveguide. The elements of matrix [C] are arranged in

the following manner,
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N1) N1) NN)
|

.
\ )
In the above illustration, apertures are identified by superscript

»

whereas modes are identified by subscript.

o

One may characterize the array as a microwave multi-port network,
represented by a scattering matrix [S]. Themelemenis of the [S] matrix carry the
same meaning as those used in thé network theory, i.e. §;i is the reflection
coefficient seen at port i when all other ports are match terminated. Sj; is the
transmission coefficient into port i from port j. Usingothe values obtained
from equation (2.19) as the coefficients of matrix [C], the scattering matrix [S]

for a finite array can be deduced from the relation

[S] = [I+CJ! [1-C]

where {I}Hsa unitary diagomat matrixand -}t denotes matrix-inversion. The

scattering matrix [S] can be used to study the ﬁnpedance properties of each
element (self and mutual) for any amplitude and phase excitation of the
array, i.e.

[b] = [S][a]

%
4

where [a] and [b] are.column matrices for the complex amplitudes of the

. incident and reflected waveguide fields, respectively. )
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It should be noted that the coefficients Cljy,, are i:\depeﬁdent of the
amplitudes of the individual modal fields assumed in the waveguidest
However, the complex amplitude [ a ] of various waveguide modes incident
upon the apertures must be previously kﬁown' The amplitudes of the

incident ' waveguide modes are determined by a method in which the

~ waveguides are excited. Usually, the apertures are fed by long straight

sections of waveguide in -which all but one mode are well below cut off and
therefore the incident amplitude of higher order evanescent modes ' may be

neglected. However, the assumption of reflected evanescent modes (due to

" the aperture discontinuity) can have some effects on the calculation of

A

elerhents in the scattering matrix and hence the reflection coefficients of the

propagating mode.

- Our main interest is now focused on the evaluation of the coupling

coefficient Cli)y,,,. From equation (2.19), one realizes that further efforts are

required to simplify this expression to a programmable form.

Let us expand equation (2.19) as

chou

_ ____‘___:;cfm__:l——{k ”h“’ [!J-h(DG(Ir 1) ds' | ds .

ﬂds v, vt.‘UB;"" G(Ir-r'1) ds'}°
i ) , .

ad (2.20)

~ The operator V; acts upon the unprimed (field) coordinates inside the
integral over the aperture D;. By means of Green's theorem, and propérties .oft
the modal functions h'p, tg'u‘s operator can be eliminated from equation (2.20).
A detailed discussion of such process can be found in Appéndix B. Equation

*
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(2.20) can now be written in a more convenient form,

c® - l[j' | l[j KO Gair-r1) ds] ds +
' |
ymynﬂhg.[ijh;DG(lf'-f'l)dS']dS} .. e
1 i N ; . ! .
Alternatively,
% (3\,—‘:\}3{‘ ¢
S e HdSh‘” ”h‘”G(ti #1)dS + )
21t0)|.l. T
| J Y Yo i) D qels.p S '
. . 1[ dsh! l[_[h GUIE-F s 2.22)
.' | A 2nmp : ) o

For TM modes, the second term in equation (2.22) vanishes.

) ' S - -
It is convenient to introduce
" _ Ty _
vIE_f +—h 2z
m m k zm~

so that CG)_ can be fufther simplified to .

_ 0% 2 ”dS‘I‘ ”‘I’ G(l+- rl)ds",

With refeknce to Fxgure 24 for any pomt on the z = 0 plane, the
Green s function can be represented by a contour mbegral in the elgenvalue °

3

STEERN . =~

)
=L - | o




plane [19], i.e.

Glir-r'l) = G(‘Iﬁ-ﬁ.l)
Ve ~ .
£l (Ip-p Ié)
o J (2.25)
- VE -k .
A Y Di (coupled aperture)
ey
[ 4 '>
X
Figure 2.4 Geometry for determining*the coupling
2 0 between aperture i)oint Pand I
. © By means of the 5dditiomheqreh§ for Bessel functions of the first kind;
[17), L
= jso-0) o
- Io('p l&) ZI (pé)J p,8)e ’ (2.26)
t . . S=eba [ *

© or equivalently

v
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— —

Jo(1p=5,18) = Z.,;Jsgpa)15<pj§>cos<s(¢>—¢j)> @.27)
1 " =0
with g, = { when s = ¢

2 whens>0

The modification of the kernel G(I7-F'|) enables the expressiof®f the

coupling coefficient Clij ... in equation (2.24) to_be rewritten as,

c_:f(fi'p‘ - )me = Hds“’ J ”‘I’ Zel(pm(pé)

. cos (s(6 - 4,)) dS' b 225 ’
For compactnes;, let us c;efin; a veetor Fi), as
F ff A= g e.J, () lﬂ J (p,&) cos (s(0 - 0)'F, ds'
j
Equdtion (2.28) tlle:e becomes
@ . joe, Z; j‘/ﬁ H\P FU dS} - (2.29)
- k L

The vector F(l) needs be expanded before evaluating the coefficients

C(ll)m,‘ . One ‘may_ observe that there will be two different vectors F(),

correspondmg to the TE and TM modes*(thxs is due td Pn defined earlier) .

The derxvanon of F)),, is straightforward: but quxte lengthy to be presented |

here. The final expressions of G for TE and TM modes are s_umma‘nzedf

7

below. |
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- »Q -
: a. TE modes - -
N e f (3,p.) conl G100y, ot
) . an = T {-Ip-l(gp) ]P'1(§pj)]P‘1 np) cos{ {p- _\Vn)p)dpl+
n ) ¢
o, ]pﬂ(‘ip)jlpﬂ(&pj)']pﬂ(?(;pi)'cos( (p-DO-w,) P, dpj,} _
5 ' o
(2.30a)
Wt
G _ ‘ J’ o T .
By = 2 {10 (80 [T, (80 (Ap)) sinC(p-D0 -, ) iy +
. \ n 0 .
w N . .
Joe1 (80) J Jor1 (50J 15 ;) sin((p+1)@ =y, )p;dp, 2}
0 . ‘
(2.30b)
‘Zn ) N
M _ <L -
D = B, )1, o, Oggeosp@-ypdy @30
. . 0 ‘ )
'b . <]
" In equatién (2:30) above, “a” denotes the aperture,radius and K,;\ (An) is
. the cut-off wave r;&;xber of the m-th (n-th) mode.
.4’ - b.IM modes”
-~ . B .o .
“The vztor F(j), for TM modes can be obtained from that of the TE
modes using J | '
~ - (o
. i —(]) B 1 - —(]) . ~
- F' = sz[F )= g \ (231) .
| - _
% ‘ : . To this end, a thatrix solution for the. mtegral equatxon in the

' . unknown tangential electnc field at apert,pres has been presented. The matrix
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. elements are ‘éxpre“ssed in terms of intermodal and interelement cbupling
coefficients. This set of linear equations fna_y be. olved by either matrix
inversion or elimination, leading to the transmission and reflection
coefficients of various modes A knowledge of those coefficients will readily
define the apertures’ electric field. <~ - ] >
Q ‘ _

Having defined and explicitly expr—essed‘ all relevant terms, the’

computation of the coupling coefficients can now. be under:aken: Two
- . separate intermodal couplings will be examnined in the followir;g-' Secti'ons_.-

:The first of the two kinds is_ the self coupling which results when apertures .
Dj's and Dj's ‘are common (or‘coin‘cident with each other). The self-coupling
coefﬁ*nts CGD  ;, which form diagonal blocks in the (o] ‘natrix", are
evaluated in Chapter 3. The other possible coupling is between modes ih
' different apertures, i.e. when apertures 'Di's and l?i's are separated. The
resultant coefficients are termed as cross-coupling coefficients, and’ they form

the main discussion of Chaptér 4.

rr
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CHAPTER 3 -

<

° ANALYSIS OF MODE COUPLING IN A SINGLE WAVEGUIDE

3.1 Introduction

As mentioned earli)er, apart from the domingnt mode that propagates
in a waveguide, adgj:itional modes will be genera/)z at the aperture and will
travel back toward the t'hroat. These higher order modes are, however, cut off
before reaching the throat, but they do couple to the propagating mode to alter
the input impedance of tile waveguide. Single waveguide mode couplings

will be dealt with in this Chapter.

-

One may easily see that there afe four possible mode couplings in a
waveguide, they are TEj to TEpq, TEik to TMpq, TMik to TEpq, TMx to
TMpq. Nevertheless, not all fr\oqes can freely interact with one- another. ﬁy
the existence of sinusoidal functions in the analytical expréssion of Cidpn,
coupling between two modes occurs only when they have similar azimuthal'
variation and polarization, i.e. p = 1 and Yy = yn . Presentation of the detailed
analysis is deemed impractical, thus only essential steps in the deriva{ioh and |

final expressions are included herein. _

3.2 ' TheTE to TE Mode Coupling .
From equation (2.29), the mode coupling coefficient is given by

, ) | | ‘ o °

LI
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c Joey Zn [I §db !jff'(i) p“’ds] - (31)

21C /52 7
Fc;r TE mbde,‘ the Cartesian components of vector ¥ are given liy

S A e C . -
W TE - o L-]!_l(?.np) cos( -1~ ) + J;,,(A_p) f:'os( +Dé-v, ) ). -
m .
YIE = _I_Y_m_ [ J.; A, P) sin (-1) ~ ‘) + ], 1A p) sin( 1+ 1o ~ ) - -
Y my me - “1-1 mp _ Vi 141\AP) 8 ' ‘_"m 47 .
B s 3 ' .7 ' >\

Tm _° ' ‘ Lo

YE o= ThAp) cos(lo-v,) - | : - (32)

-

~ The components of vector F)TE, have béen derived previously in
equation (2.30). A generalized picture of the self coupling in a waveguide

-

between modes TEjx to TEjq is given Figure 3.1.°

(Coupled field)
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'f

In considering the TE to TE mode‘goapling, it is realized that the TEq]

modes are/cmq%hrly symmetnc, the polanzahon angles Vm and Vn'can

arbirarily be set to zero.

Let us further define

: a2x ° ‘ -
‘x_(é) = J J ¥,-F pdpdo : © (3
. o 0 . - ' . ‘ . .

L

The superscnpt is dropped smce only one waveguxde is presently

considered oo * N

€

£

Substitution of appropriate expressions and expansion of (3.3) lead to - i

3

4néy’y P AR
Kl = —

2100 - ] . =0 (3.4a)
lmlfn [k2 QOQO QIQI]’forpl 0 2

20 A

Y ST R ROIR, Sy

"Q

"L. . . forp>0

(3.4b)

In equation (3.4) above, Qb and Q'p are Lommel's integrals of order p,

. defined as '

Q, - (J)' Iy, G pdp and Q' = J 161,000y dp,

o Y . '
The evaluation of terms that involve Lommel's integral is simplified

S -

o
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by usiné. the TE mode boundary condition at the.edgea o£ the horn a_pe‘arttire,
e I'pmrﬁa) = 0 and Jp(Ana) = 0. The final expressions of Qp, Qp-1 and‘pr,l
are listed below. Those of Q'p, Q'p-1 and Q';,H can ‘h;e derfved by replaging

Xm by An wherever applicable. Py .
I Q’=°' 821 o a)] @) - | (3.5)
' P. 52_%2“ p m "°p .

P INUNNUUNS b

] ! » A a . . . . '
- Q = -—L] (A_a)] _(Ea) - 2 JA aJ (Ea) - (3.7)
+1 'm m )

"By intx:oducing the following new variables

G=ta, Xp2hna, Xo=hoa, Yo =T Y = J,0a) and K=ka.

] Vequation (3.4) can be rearranged to ' -
- : : ) . ) i ‘ —
a2y Y Y Y. ‘ | .
x(E) DR m R L 1)(J,@F ; for-p=0  (38)

T @) @-x) K

L (7 (2 Pl 4 -
= 2u2a6menYmYn[(‘L-2-2'-l)“ 2P Y 2 (p p. )2]
- - K G-x)E-x7)  EX X

cos(y_~v) ; f§p$0 (’39)

\ The TE to TE 'self-coupling coefficient is readily obtained from (2.29) as

f
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v |23y y Yf wyl (Io(Kw)) dw ; for p =0
: . -ugsi(w u

(310

. 4
1 3 i w: l-w2

- may, Y Y [ -

N K™ mm (w2 u2) (w?-ul)

1

(] (Kw)) dw +

. pKw Y2
\ - o '(xpx)szI dw]cos(\v -y); forp>0‘

mn 0wy 1-w? —
‘ ‘ (3.11)

~ In the above equations, w = é/ K, um = Xm/K and up = Xn/K.
&

Similarity in equations (3.10) and (3.11) permits C(i)__ to be combined

into one generalized form:

‘ %Gm ; for p=0

ii)
C( = --&:M YmYmYn L - .
¢ Gom * (YEX-> KE, oot 20

forp>0 © (3.12)

\ - -

: £ '
Two new terms have been introéluceéi in equation (3.12), and given as

(]
]

j "W‘/l—wz_ N (] (Kw))? dw

(w -u )(w2 uz) P . -

N T 6B)
(I(Kw)) - '

P , 2
0w ~

When m = n, the coupling coefficient CUi), " is understood as the

!
L]

L]

'q r
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input admittance of mode m. In this case, the expression of CU{ . is

simplified to

2
K Cm i forp=0

mn
L A1) 1 3
“m = N " ‘Yin [-1-G + (B2%krF ) for p>0
) K "mm X2 1 0
‘ ' m
a

.32 The TE to TM or TM to TE Mode Coupling

The following discussion focuses on the possible TE to TM or TM to TE
mode couplixig in a waveguide. A similar argument holds for the condition‘I
of mode interaction, that is two moaes can couple to each other only when
they have the same azimuthal variation. In the. following derivation,

subscript m (pq) stands for a TE mode and subscrfpt n (pk) stan'dS'\gor' a TM

J mode.

o ' The components of vector F), are derived from equation (2.31). They -

are : '

o jRY
F'I'M(x) - . n

a
o Z A [Ip-l(ﬁp)jlp_l(ipi) o1 p)) sin((p-1o - v pprdp; +
nn 0

T i@ [T, @) 40 sin(p+D0 - v,) p,dp;
o’ C

(3.14a)
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A a .
™o _ ™n ;
Fy = [ J _1(§p) IP 16&p; )Jp 1O»,\p,)cos((p-l)qb ‘l’.) P, dp +
N n
P+1(&p) IIP+1(§9 )IPH(?&,p,) cos((p+1)¢ — ) p; dp; ]
: (3.14b)"
] T™M() '
For TM mode, the pplarization angle "y, is refereﬁced to thé X a}xis.
The function (), as has been proposed in ec'ulua—tion (3.53), is
an . ‘—, y

x(&) j j‘P“ Fy " pdpdg

i
o

. T Yn . ‘
(-QP_IQ i¥ Qp+l Q'P+l sm(\lt -v.) (3.15)°

AN
ZXX

nmn

Y,

where

a ’ * a . : '
4= oflp_la,,,pnp_lﬁp) pdp and Q' = oflp-l&np) Jp1(5P) pdp

The prime is used to distinguish the cut-off frequencies between the

Tqu and TMpg modes. -

_The ékpgnsion of Lommel's integral, with the use of the boundary

conditions of both TE and TM modes, reduces equation (3.15) to
. Y

rlayy,
x(&) ’ nl,zn @) pIP(l a)I (*,a) (I (ia)) s'm(\v \4!")(3 16) ‘

.
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Subsﬁtuéng (3.16) into equation (2.29) and grouping all cohstants, the

final expression of TE to TM coupling coefficient can be expressed as

']

4
i % YmTn
D

) .
Y Y pK sin(y_ -y ) - (317
7 N Xz x mond et m 'n ,
0" 'm" m°n
" .where N .
‘ w]2 Kw) o
K = J'——-B———— w (3.18)

0 y1- (w? u)

A sine function exists in equation (3.16) since the initial electric field

v‘ectors ‘of TE and TM modes have a 90 degree phase separa"cion.

In general, the coupling matrix is not symmetric. Consequently, when

" the order of the indices m and n is reversed, equation (3.18) becomnes

Z, N ' EE

Co = 77 2Con ‘ . (3.19)
e m Nn . ) v
~ 34 The TM to TM Mode Coupling

"The remaining self coupling is between two TM rr}odes.' The derivation
is similar to those in eariier cases, it commenzes with the evaluation of
function x(§) - ' o

o ' ay
k(&) = Jjﬁm.ﬁn pdpdé
00

g

The dot product of two vectors ¥ and f"n can be performed relatively -
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in a waveguide is,
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o

simply since all components have already been defined. Making use of the

-separation of variables in the surface integral, the function k(%) can easily be

evaluated as )
2 ""Z‘men ) —
x@E) = - » (Q,1Qp +Q,,,Q,) costy,~V,)
. @-8,) Z,Z hh, Q1 Qpa * 1 U

. (3.20)

As beforé, Lommel's integrals are expanded and then simplified. The |

TM boundary ¢ondition is once again applied in the simplification process.

Equation (3.29Hs‘ now

-2y (Ea] (Ea)’
X&) = - m T E J Aa) ]'p(lna) .

@-8)2,Z Mp, @ -A2)E-A2) F

c’_os(\vm- V) (3.21)

Sop is the Kronecker delta function given as

8

1 if p=0
0p={

0 if p#0 .

- o

From equation (2.29), the coupling coefficient between two TM modes

k]

]

L
. 3
2ry a' g -
ct o AT _KY Y L costy -y) - (3.22)
.o (2-80P)Nmz§xmxn m " n o O™ ¥
where . . R C .

*



f A = (3.23)

w—m (] W . .
L wh-uDywt-ul)y1- ‘ , - '
DA :When m = n, equation (3.22) becomes the-input éamittange (or self-

 coupling coefficient) of the TM modes;

:& .. 2nYma§LK aJ Ay, a)] . " '
L @-3)N, Zy X, Lom

’

For convenié'nce, Table 3.1 summarizes expressions of the coupling
coefficients between TE modes, TE to TM or TM ta TE modes, and TM modes,

in a waveguide. Definition of constants can be found in Section 3.2.

-

AR 4

~
Ay
‘.

T (T
A
o
°



* Table3.1

2G ; 'for p=0

K “mn ¢ ;

t
]

1
--&—;ﬁa YmY Y 1 . , ) . .
[-E Gt (_;;E) Kﬁplsos(wm— Yn);

forp.>0

(w um)(w u)

4

wit _
?c ;f 1w (I(Kw))dw_ T~

2( I Kw))?

JWJ— o

b. TE to TM or TM to TE Mode Coupling

. 14 ‘ : !
Yy, ¥, 2 ' "

with ~
",n_'wJZ(KW)"“
L ()

W



c. T™M to TM Mode Coupling S
.c 3
ci x il ey ~KY Y L_cos(y -y)~
= S
- Tm Q-8 o ZoNg X x
7
with ) .
.o ' ° T, (Kw)
Lnn = J ) > dw s
0 (w-u )(w - uy

1-w 8

3£ Eviluation of Coritour Integrals In a Complex Plane

Th:IS far, dnalytical expressions for the coupling coeffi‘cients between two
modes in 2 waveguide have been derived as shown in equations (3.12), (3 17)
and (3.22). In these éxpressxons, one ter;n yet to be numerically calculated is
the' infinite mtegral along the w axis. An essential d1ffxcu1ty of numerical
iﬁtegration is the high osgillatory nature of the integrand. This comes fror;x

. the presence of produet of Bessel functions or first-order derivative of Bessel
) functions and is 111ust1‘ated in Flgures 3.2 to 3.5 which show the behavior of -
the integrands in Gmn, Fp, Kmn and Linn, resgecnvely, A loganthmxc scale has
been selected to magnify the c?egree of variation. When these functions are
numerically integrated, their convergence with an increasing number of
integration point's is quite slow. It is, therefore, conveniént to transform the
integration pafth into-a complex plané so that the integrated function is
monotonic over the new contour. The deforfnation technique suggested by .
Mishustin v[i6] and Bird (12] is adapted to these particdlax: integrals. Further

references to the integration of complex variable can be found in a text book -

by McLachlan [21]. The deformation of integration path is similar for all cases.
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A detailed proeess wih be presented only for the integral Gmp. For the

' remaining integrals, attent'ic.)n' will be focused on key steps and final

expressions. ra P
J
; . : - .
35.1 Evaluation of Gmn - . - ’
v ) - C R
*

From'(3.13), : | ‘ i .

-7 JT&"
G =f =, Kw) Y dw
™ - ud) (wh-ul)
0 f.n .

" L0 . ,

A relationship between cylindrical functions permits J'p(2) to be
resolved into a su’mmatjon of Hankel functions of the first and second kigd,
that is ‘ .

g - 1o, 2, |

@ = =[H '@ + H ‘@]

L4

The integ‘tal is then altered to ' .

1 ) N 23 o
= - ] '(z) [H "(Kw) + H 7 '(Kw) ] dw
Som 26’- (W’ - um)(w -y 2P d ’ (3:24)

= G1'+ G2 ‘ ‘ ’
We shall treat the integrals G; and Gp separately.
a. Integral G B . )

The integration contour of G, C1 in Fxgure 3.6, contams no smgulantxes,
namely, a branch point at w =1 and two sxmple poles atw = Um and w =up -
By applying Cauchy's theorem, it may be «found tiat in the plane w > 0 there

are different contours that are equxvalent to\C1. For the presence ob
- .
)



C | \ |
H(',(Kw), a suitable closed contour, as shown in Figure 3.6, in the upper half .
of the c&mplex plane w.is chosen. The contour comprising of Cq, C'y and an -
arc of radius R in the first quadrant encloses no singularities. Hence, the
integral around this enclosed contour is zero. There is no contribution to the
integral from the arc as the radius R— e since H(UP(KW) tends ‘to zero as

v lwl— o in the'sector 0 < arg(w) < %. So, the contours Cy and C'y described

positively are equivalent.

v
\
-\ 7
e \ - ’ 1 YUm Un u=Re(w)
¥ ) R “
~ 5 - %
Figure 3.6 Deformation of integration path Cj in a complex
plane
' -
¥ /
" Substituting w = jv into Gj to get .
o1t wlied 1 .
, G = -3 J' T, GKv) HY GKv) dv (3.25)
. . o(v+u)(v+u) ‘ o T » .t



From the following relationship, Ref [20]

1K) =L (KY)

J°
HOky) = 2P 2K (k)
P x . P .

/ . ‘ ) .
where I'p and K'p are derivatives of the modified Bessel functions Ip-and Kp,
2 '
I GKv) H™ (Kv) = j=T (Kv) K., (Kv)
' - P P y T p P '

As a result c;f these manipulations, the integral Gp is modified to
. ' ' '
2
WitV 1K) KKV dv ; (3.26)

2 2 2..P
+um)(v +gn)

. "1’“
6 [
. Ry

(v

-

b. Integral G>
‘ -

To evaluate Gz , a suitable contour which is eqdivaleﬁf: to Ci is
selected. This equivalent contour is shown in Figure 3.7 as C'. In the\/r'egio'n
-1 < arg(w) < 0, the Hankel function H®),(Kw) approaches‘zero for |w | =00
This leads to the vanishing of the integral aI;mg RE The integral G is then a

~summation.of the. integrals around the branch point, around the poles and
along the bran::h cut.n The integrals parallel to the Re(w) axis neutralize each

other, since they are equal but opposite when the line sep‘aration 0. Thisis

"~ due to the function being analytic and single-valued, tﬁereby\ returning to its ©

[

-

~on value after each pole is rounded. |,

L,



48
S |
A v=Imw) , - -
b
branch cut ‘
"N
S t
. Figure 3.7 Deformation of integration path Cz in a complex ‘
plane - ‘
The remaining terms of the integral along C's" are , ‘\ ) o

- =], (Ku) H(Z) (Ku) du +
u-u )(u -u 2y°P

o

- 1,’0 -
G J' quu /
2"
(
0

1f__wv'+1 J'CKv) H? (Kv) dv + ju.2, Res
20v+u)(v+u)P P

For propagating modes, 0 < u,m'<1 and 0 <up< 1, the residues have

no contribution to the total value of "Gy, As T

N . IP'(KV) ___! _j ean 12 Ipo(_ij) o R , . ‘ ‘ ”‘ '
, - .k -jpr/2 £ 4Q2) , s
and Ky (Kv) s >e H (-jKv)

“



x
- s

then, . oL : .

- j “J 1-u’ 7, &uw) H® (v du

(u? u)(u u)

i I "V" 1 (Kv) K(Kv) dv

W +ud)?+ul) P

4

When either of the'modes in the airfilled guide is evanescent, i.e. um<1
or un<1 , the value of the mtegral at the poles must be accounted for

However, for um#un, the residues are zero, as being dxscussed below

Y Res(G,) = (F® ), (K

Qv T Qe en,

for  Fw) = wyf1-w Jp'aéw) H '(Kw)

and QW) = (w’- ) (w”-6?)

AV

.

_ One may immediately realize that F(w) = 0 at w = = um and w = up,

owmg to the TE-mode boundary condition, J'pAma) = Ip(lna) 0. If um=1uyn, |

ie. seif-couplmg ¢case, then the mtegrated function has a pole of order2at w=

um. From the calculus of residues,

wJ 1 "(Kw) H"’ '(Kw)]
Res G, w—h»rf:\md [ — (w+um)

Some manipulqations. with the differentiation and the limit lead fo

’.
LN

<

i i

b
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Res 62

“ I"(X )H‘Z’ X )
= “‘ Ip'(x Y Y%, )

Finally, a complete solution of G is obtained as,

1
2
=] W LTE k) P (Ku) du
, ! |

2 2 2.°p
. (u"- um)_(u -u) !
)'f Ji et ZTP(KV)K(Kv)dv L
(vi+u )(v +u) | ”
o 2 |
- um ) 1 " ’ ' ‘
+n Tu_ Jp,(Xm) Yp (X)) du, -u) Hu, - l). (3.27)
™ & ""t
The Kronecker delta function 8(um-upn) and the Heaviside step function - .

H(um-1) are used-to signify that the residue term is present only when the

conditions um =un and um>] are met.

]

3.5.2 Evaluation of Fp

“

. The integral Fp is rewritten here for convénience, -

) " )
j‘ TA(Kvg . . |
W ,
g ow\/1--w2 o - _ ‘ s

@ , ] ’

Jp(Kw) [H“’(Kw) + HP(Kw) ] dw

. 1 1
:v ‘ zowx/’l-w ,
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Using the equivalent contodrs, as described in Section 3.5.1 above, for

each integral to arrive at_

] (K )H‘ ’(Ku) LK) K (Kv)
p:._]' - u-i'[ dv . (328)
T
u 0 v ‘{1 + v
3.5.3 Ev'aluation of Kmn _
From (3.18) . ) . )
'.'j‘ w]z(Kw) . . ' - s
dw .
mn 0 \/ (w u )
Jw J,(Kwy HY (w) 1 j’ w ] (Kw) H‘Z) (Kw)
— dw
-J w (w- -u ) ° " 3.y 1-w (w -uy )
=K + K I _ -
L . .

The deformation of the integration path of K into the upper-half of

" the complex plane #leads to,

[ - é"’:

- e '
Kl - -LJ‘ VI‘L(KV)HP (Kv) dv s

') .
ToJ1+v? (v2+u;:")

I

Due to the presence of H(Z)P(Kw) the integration path of K2 is

deformed into the lower-half of the w-plane. This gives

1 o gD oe
J- u]p(Ku) HE Jl{u) du - j vIp(Kv) K ?FKV)’ 'dv\'
T
0

l-ﬁz(uz-u:) 1+v (vz+.u:)



L N .

The residue has no contribution to K3 since

- F(W) o
%ii‘Kz B Q(W) w=\un

where Fw) = w] (Kw) H> Kw)

 Qw) =J1-W2 (w+u)

At W = un, F(up)-= un Jp(Ana) H(Z)P(Kun) = 0_,0owing to the TM-mode

boundary condition.

]

: Thus,
o], (Ku) HY? (Ky) = Vi &v) K (Kv)
K_ j lp Y du - R [ gy (329)
1- u (u u) Ta 1+v2~(v2+u:)

— ‘ | ‘

r~

354 Evaluahon of Lmn

Tth‘tegral to be evaluated in the case of ™ to TM mode couplmg is

o(w -u )(w'u)\/ ' |

As before by means of a relationship between cylmdncal funcnons, Lmn
is mod1f1ed to

w

4]
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‘ J. w® | (Kw) HY (Kw) d : S
y L = W+ .
S B P O e :
b
(Kw) Hm (Kw)
- J' dw
‘/ w2 (w?- um)(w u )
‘ = L1 + Lz

“For Ly, the equivalent i)ath to the original one is along the imaginary-
\apkis in the positive senhe( thus - .

v
-

J'-‘ VI oKV) K_(Kv)
0

1+v (v +u )(v +u )
\

For Ly, the equivalent integration path is a ¢gmposition of that passes

. —
on both sides of the branch cut, along the negative ithaginary axis and around
the poles. If the poles um and up lie on the branch cit, then - .

, - 3 . ; .
2) ' )
u’ ] (Ku) H (Ku)
I du
Iu(u u)(u u)' C e
i J‘ v IP(Ky) K, (Kv) v o ‘ S
"R Y1+ e i)+ ud) e

q

If either 0<um<1 of O<up<1, then the contnbunon of the residues to
the integral must be taken into account. Let the value of the mtegral obtained

previously be L'>. In this case,

L, =L, + jnz Residues
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o

" When unm # up, the residues are zero due to the TM boundary conditions,
i.e. Jp(Ama) = Jp(Ana) = 0. When Um 5 Uy , the integrand has a pole of order 2.
The residue at the pole can be easily g\alculated by following,

]

d [w31 (Kw) H (Kw) ] “

\/‘ (w+u)

Res = hm
w_umLz won AW

-

_ K T X Y X ‘
2 ful-1 ‘ - ~

The final result of the contour integral Lm n is a summation of Lj and -
2 T
L2. This gives,

du
u u)(u u) ?

xm

1 ix ](Ku) Hm(Kﬁ)
i

2 N I(Kv) K5(Kv)
dv
14+v° (v +u)(v +u) -
K] n \
- Ku J'(X )Y(X : o
+jn I "’) U )H(u -u ) ; | (3.30)

t e \ 2,/u-

o ‘ V4 .
One may observe that in Gmn, Fp, Kmn and Lyp, there rem’ains one

Al

integrgl along the imaginax‘y axis. The function in these integrals is,

<

however, monotomc over the mtegranon path Typical graphs of the

mod1f1ed integrands which are dependent on v are shown in Figures 3 8 to

3.11. The behavior of th’ege functions allows the use of any standard

- ¥ -’ - -
 umerical integration ‘technique, such as Simpson, Gaussian quadrature or

Romberg. Nevertheless, fast convergence is a main factor in selecting’a |

. suitable technique. S ‘
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Further ingbection of these functions reveals that‘they decrease rapidly
with increasing v. Providing *thatﬁlO/ Kg¢<Xg v,‘q fheie functions can be
evaluated approximately for the range X $v < by means of large-argument
approximation to the: product’ I'hK'p or IpKp. The augmented approxim:ate

term is named as “tail” integral in later discussion. The derivation of the

_“tail” mtegral in Gmn presented here can be a.pphed fairly easily to subsequent

caSes

)

«  From (3.27), the remainder‘pf the integral along the imaginaly axisys

&

J' w1+ I/Kv) K '(Kv) dv o (331)
X . .

v+ u)t+udy P

'I’he asymtotic expansion for large argument of I'p(Kv)K'p(Kv) is

»

‘ A
. ' - __l_[l —L— + hi herorder term] .
Ip(.Kv) K p(Kv) = - 5% 2 oK & ,

vy 1+ v IP.'(KV) KP'(KV) =

1 [‘ 1 43
l+= | . ae(1+—L )]
v 2Kv . 2(2KV)2

(3.32)
‘Forv >>1,

\
1+ -1—2- =1 +-J-; . B
2v ’ ~ .
Equation (3.33) then becomes
: o . ' v, e



A . 1T L__'3/4 _1..] (333)
v 1+v Ip(Kv)KP(Kv) = ZK[_V-'*' sz v

L} -
?

For large values of v, the term containing v-3 is neglected.

v

The integrai Gtail(X) is finally. representc;d by | ' 'y

’ \_\ . ) - - Y
1 3/4;
G . (X)) =s-= [ + _.(1 + L——) ] .
tail .-
where '
¢ v dv ' ¢ dv i
=r and L = J
n ,J: CET T TR v upt el

Analytical solutions for Iy and Ipsare directly obtained throuéh the

integral calculus. The solutions are

» d’ hd
1l
— ; foru_=u-,
20¢ +u?). Somom S
. ' C (3.34)
L = , S
1 ,
——2—[1!1(X +u ) ln(Xz-Hl 3] . foru_.#u
2(u -u) .o mn
and
i ) ' 2 : “
Sy [11 + 12 ln(xzx 2 )] ; foru =u,
L u 2u . +ug N
_' 1 [ln(X) uiln(xzi-ufn)-uzmln(xzﬂ-u:.)]l
' (umu) ) 2(ul-u) L
| | | ,forumgatu‘,l
. ‘ - . ) ) ) . (3-35)

Following the above procedure, the remainders or “tail” integrals"

P L
. . . - -
,
h »
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v
along the imaginary axis of Fp, Kmnand Lmpn are derived to be,’

2
P '1/4) dv

o sl

- X V

1 ° 2.1/4 -
41<x:[ 4x2( K. ]
. viP(Kv) K (Kv) dv. . - .

Ktail=‘[ ' .
x\/1+vz'(v2+ui) \ L

2 2 N 2 s~ s
-1 [ X4uy 1 opie1/4 11 X2 ]
oKL T gl K X u Xy

- "(3.379)
and > ' '
f VPLEN K &)
Lo = £ , — dv
tail 2.2 2,2 4
X 1+v (V +um)(v +un) e
. 5_ 1/4 o '
/ 2KI.l-——(l B?—)Iz : ’ (3.38)

-

where ]1 and I have been given in equations (3.34) and (3.35), respectively.

)} N . - s

3.6 _ Summary . : N

o

A rigorous analysis has been made ‘t‘o compute the intermodal
coupling in a waveguide. This is the fgrét step in a detailéd treatment of the
mutual coupling in a finite planar antenna array. The analysis has, at
considerable lengt'i\, considered all possible coupling between modes that
might exist in the wdv_eguic!és. The resultant self-coupling ‘coefficients

~ constitute the diagonal block majrices in the total coupling coefficient matrix



-

[C]. It was shown that only modes that have similar azunuthal period can
interact with each other. Furthermore, no couplmg is possxble between two

orthogonally polarized modes.

The self—coupli'r\gw”c-:oefficients afe derived exactly and suitable for
implementation. Integration of highly oscillatory functions is avdided by
means of a contour deforman n techmque As a result the functions of
those related integrals become|monotonic over the equxvalent integration
path and thus perxrut the use of any standard numerical integration formula
with a~ significantly smaller nun\\ber of mtegratxon points. The numerical
mtegratxon is further speeded up by reahzmg that the monotonic integrands
rapidly vanish at large arguments. Analytical expressions can then be
developed to represent the total value ‘of the remaining integrals whose
argument is tendihg toward infinity. This is the special merit of ‘the contour

deformat_ion. ’



61

CHAPTER 4 _ .

ANALYSIS OF MUTUAL COUPLING IN' AN ANTENNA ARRAY

4.1 Introduction

~

L)
’fhe~analysis ;;resented eérlie; in Chapter 3 is very useful in studying
+ « the in};ut admittance of a ciréular waveguide opening into an infinite ‘
| flange. It can also be used to obtain more accurate radiation patterns of such
an antenna. The maih objective of this research, however, has yet to be
addressed. That is, the calculation of coupled power from one waveguide to

* the others in an array environment.

The discussidn in the following Section will, therefore, be )

concentrated on extending the analysis to include more than OV

waveguide aperture. The derivation can be.commenced from equatioh

(2.28), which expresse;'. the coupling coefficient between mode m in the i-th
waveguide and mode n in the j-th waveguide. However, in following the
derivation one will realize that one of“ the Bessel functigns contains an
argument that is not expressed .explicitly in terms of the, integration
variables. To separate the variable associated with one of the apertures,
Graf's,addition theorem [20] for cylindrical functions is employed. An
elaborate review of this useful fhéorem will be given in Section 4.2.
Rigo\rous an:ilyses of 'possi‘ble mode interactions -between apertures .are
presentec)i/ in subsequent Sections 4.3 and 4.4. Contour integration is once
again found useful in dealing with infinite integrals that are present in the

expressions of cross-coupling coefficients CGij) .. The Q'scillatory nature of

e
’
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the required integrands are then suppressed. This makes numerical
integration very efficient. The deformation of a contour integration path,
that follows in a similar manner to that described in Section 3.5, i the topic

i}

of Section 4.6.

L]

42 ‘The TE to TE Mode Coupling Between Separated Apertures

' Before advancing toward the derivation of the mode cross-coupling
" coefficients, it is felt worthwhile to look at Graf's addition theorem for
Bessel functions. This brief review will find its use in later analyses. With

.
!

reference to Figure 4.1,

L]

Figure 4.1 Graf's addition theorem

.

Graf's addition theorem is given as [20]"

A
°
>

cos ; N ‘ cos PR
160 % 0 = X T @0 ) () (@1

k=-e0

[3

where the arguments are as shown in Figure 4.1.

o
L}
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Py 3

- equation (2.29),

63

»q

The restrictions |ve*®l < lul are not necessary for Bessel function

with integer or zero order. Some Uerivatives of (4.1) that will be of

k3
significance are -

ngw)cos(-Px +0) =" ;Z’..IP“‘ (u).]k (v). cos(-kfx + 6 )

LN

(4.2)

aﬁd
JoW) sin-px + 8) = ];]é* (W J, (v) sin(-px+8) (4.3)

Expanding equation (2.28) to include‘§gparated waveguides and using
v !

-

C(np _ jwe, ZJ‘ £dg J‘ l}m F‘”ds
=l el

|

Relevant components of vector F(j), and P®,, can be found in

Chapter 2 and 3, respectively. To apply Graf's addition theorem, let us reldte

2~ . .
the arguments of equation (4.1) to the present problem. For notations

shown in Figure 4.2,

¢ = 'éii -x and o = ¢-¢,~-x 4.4)
From equation (2.30), for TE modes _
E) = [ IP- (&p) QP_1 cos( -(p- 1)x+(p 1)¢,] —\y ) +
A
pﬂ(ép) Qp +1 COS(- (p+1)x+ (p+1)¢l, ~y_) | ( 452)



jn Tn . - L
g _ T[ Jp-1EP) Q. Sin(-(p-Dx + (p-1)9;; = v,) +

n

Ipﬂ(gp) Qp+1 sin(-(p+1)yx + Q’“mii —,\vm)] 50) _

Figure 42 Relevant vector notations for Graf's theorem

. k)
In the above equations, Qp, Qp-1 and Qp+1 ave the Lommel integrals of

order p, p-1 and p+1, respectively.

Let us'make the following substitutions into equatifms (4,2) and (4.3),

Y

u'--‘Rijé" v=p§ w.=p\§ and o=¢ -n-0;

. and then int_fod'uce the new formulae into equation™(4.5) giving

o

. 4 .
f " .
o ! .
- \ R , . ¢
R N -
<
- . ‘
.o - - & - -
~— .

2ny I ' o
m _. n . - : '
F, = < ]P(gp) Qp cos(-py, +.p¢ij\ v,) ) . (450

-
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' 1" R ~ -
Pg: = T-'l [ Qp_ll;‘] o1 E6R; ;) Tpy) cosC-ka+(p-1)¢;;-v,) +
n . . B
Qo DTt hER) costkrs (o100, -,
o ’ (4.6a)
, ~im 'y N 5 . | )
F:‘iy) N =‘ Jx n [Qp-lk;z_”lp+k-1(gRi i.) J,(&p,) sin(-ka + (p-1)¢, j—\yn) +
A o
Qp+‘1kz Ip#kﬂ(gRi j) JEpy) Sint-ka + (p+1)¢ij" Vi) ] ,‘
(4.6b)
t
2y, T L ,
B - kaz T @RI Ep Y cost kot by~ - (460
Now, notice that
’ cos(-kq + (P'l_)<b, i~ v,) = (—-1)k cos(k,cj)i - (k+p-1)¢i i+ V) (4.7;)
. | cos(-ka + (p+1)o, i v,) = (—1)k cos(ko, - (k+p4yl)¢i‘ itV ) | (4.7b)

. sin(-lia + (p-])(pi i Wn) = (—1)k+1 sin(k¢; - (k+p-1)¢i j+ \Iln) i (4.7C’)
sin(-ket + (p+1)¢ii—\vh) = (1! sin(k¢, — (k+p+1)¢; i+ v,)  (@.7d).

cos(-ko + p%:\\l:") = (-1)k cos(l«pi - (k-p)¢ij+ Wn) . . (4.7¢)

- 1

The use of equation (4.7), in conjunction with rearrangement of

related terms, simplifies equation'(4.6) to ( - v

'Y 7

St R
.
]



B - {2 ¥ Ik(ipi

nu

p ke 1(&Ri j) Qp-l cos(}<¢i + "’p-l) +

+1(§Ri ) Qo cos(kg, + ‘Vpn)] }
o (4.82)

‘A ’ L4
)} jn 'Yl’\ ’, " +1 v ‘ ) ' .
}::I’y = —i:- {zk, " Jk(ﬁpi)[] w11 GRy ?Q . sin(k, Y, )+,
p+k+l(gR‘]) Q1:a+i Sm(k¢ +""p+l )] >
o (4. 8’0)

&

Cn L 2RY. , ' _
FS; = TEZk"l)kQp]P+k(§Rij)'Ik(§pi) COS(k¢i+\yp) ’m “v (4.8C)

L

with yp = - (k+p)dij+¥n . ' ' ‘ ’ | - S

The integration on the scalar product W Fi), over the cdlpled -
0o _ \

aperture i—th is now ready to be calculated. As before, let us define ‘the ..

function I'(§) as

rE) = ”‘T’r(: EP pdpdo ' .
) _ o

The evaluati.on_ of I'§) is quite }éngthyh yet straightforward, Wi

. b .
convenient' to calculate the surface integral involving the

dependent terms together. This results from' the similarity of their

expressions.- The ‘z-dependent term istreated separately. In the end, a~

combination of the resultant components gives
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- [ rpeayead a1 o -
r'é) = ¢y~ 5 222 _ 72 (1'%)[51(11)7 M Dl:P-T -
: G -ADE -A0) Kk ' '
Pl [ o) M ] 1 ‘ .
“(EA L) I.p({',a) Il(ﬁa)‘ “1p* Pip | 4.9) — .
where newly-introduced symbols represent .
4
C = 2nly v, ]P(?»na) JA_2) o .
510 = D', (R, ) cos(pHDy = v~ v,)
s D=l @R eostpDO v, -,
The cross-coupling coeffigjent Cli),, for two TE modes is now
: PR o
i . 1% Z“T &dé {'Jp(ga””@a)a” 1-£)s™ 4+ p®)
2 ’p ’P

™ m Nod ooz T\@-a@-a) i

-

| R ) ) ,
. (§1.mkn)2 Ip(éa)lll(éa)[ }Sl,p + PI:P] ) | (4.10)

’

¢ . - A oo ' . ‘ ) . k.
Introduce the variables Xm, Xn, K, um, un and w, whose definitions
have been given in Chapter 3, into equation (4.10) andbregroﬁp' all constants

to get

. - 3 ¢ - ‘ ° N . . ) |
C(ij) - -na‘ ‘Ym Ip(lna) ]] ()\'ma) [~ Gmn + ) p 1 K F ‘ ] . a (4‘11) i - N
where



W 5

(9 L 3
L [ylw R N
Gmn = J‘ 2 2 2 ‘ 2 Ip'(KW) ]l'(KW) ( Sl,P + Dl,l:;) dw
0 (w 'um)QW .un) ¢ : (4.12)
and
"a |
4 o ’,
- J'Jp )]y [ s® 4 p ]dw
mn 2 Y P R .
0 wyl-w"

forl>0£mdp>0.

-
s

4,3  4The TE to TM or TM to TE Mode Coupling Between Sepa"raled
o ‘ .

Apertures - ,

[
14

~ The innermiost surface integral, i.e. T'(§),in CUpy, is evaluated by

- following the procedure presented in Section 4.2. For TE modes in the j-th

aperture, the compéner}ts of FG) are given in eqﬁaiiqns (4.8a), (4.8b) and

(4.8¢), inclusively. The vector ¥, of TM modes in the i-th aperture cah -

be derived from eciuation (2.23) using “ e
- ‘ 1 Ne) 4

e = 1 0. M TE

Y = Zm zx[‘lﬁ1 ]

with components of [ ¥y JTE are given in e;;uation (3.2).

¥

) ,)The final form of 'l'(é) is derived as \
] (5a) 1, (6a) ’

' _ p cd . @ ] o T ;
r'® C[ €y (5, +Dpp) L. (4.13) .
5 a_m ' . -
where o
~



' ] ’ - L“, . nz’? -Y a ‘ ‘ ) \\\\

. F=-§ 2 ](n)l(k A . \
- Z A -
. . . ' mnr ‘ o

’ L

R st N IR s - v Sy

- s D‘?; ‘]\(F;R )sin(;“-’i)cp +ystw) ~
: L, Pip = SN P-U%; + Vi ~ Wn) \

f 3 S » P ) -/
. - . k8 . L
. * N

. ’
Y . L] v ‘ . N
N . ’ . N 1. . .
- o Frorg equation (2.29), the.crqss-coupl}ng coefﬁqent begween a TW

'mode in the i-th aperture to'a TE mode in the j-th aperture is
- : . ’ " .
‘ > 5 . e . A d

v, B 4 4 & - .
T - W A% A o o
A i LAY O] (x _ajKs | (4.14)
N . o * mn . Z Z‘_N XZX pn 1 j
. ! oL 0 “m”" " m n""m
, - - '(fj ; ) . - $ . .. — ‘
S B Lo, N '
a " \“ 2 s " . -
« where K, is given-as N / g -
.‘. { ' . . _. 3 . (‘ Y ,J' . . . . ) LN
.. . ‘ ) wJ:(Kw) J.(Kw) ° - v )
. . ' £ N P A . 2 2 .
. v H = f= (. “ D“)dw S . .@415)
A\ SR . mn 2 7 9 ' - , T
- L a0 J1EwWT (wEeul) - : :
Y . y s \’ . . o PR 'm

c k © ‘ RS e .‘;\'A & . o’\“ )
b | - 7 o When the‘in‘dices are\}‘\-terchanged in equauon (4.14), ie. the mutual
D . ‘ﬁ"

.o couplmg B'&tween a TE mode in th,g j-th aperture and a. TM mode in the 3 th
*/ L, aperture, the cross-couplmg coefﬁcxent C(‘I) becoré\es, . -
.' ) - a . :" " 4 - » . . 1

e n LW ;-——--i—'n*a — lljla)l'(ka)K S T 416)
oo T AN XX L

] ]
1. “ ; . 3
wltere , - .
¢ ? \
- *‘ — N l
¥
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, 2 . ke |
] ‘. s ? b
' : ¢ . - #
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L} . . /
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Simple algebraic mampulatlons lead Yo -

'
’ & Ve -
. N N

2 2 Sip*
0y1-w (wz—uh) ' -

3

‘ J‘.‘ W] EKW)J (K)o

%
A

44  The TM to TM Mode Coupling Between Separated Apertures

o

_ Last’among the possible mutual couplings is between two TM_modes

in‘two apertures. The i-th ap’grture is:assumed to carry mode m whose

azimuthal variation is 1. The j-th aperture, on the other hand, is assumed

to carry mode n whose azimuthal variation is p. With reference to

equation (2.29), the surface integral over the scalar functioh W® . F()

should'be evaluated first. C : N

— ,

For TM modes, the componeqts of F(l) are derwed from equations

(3 14a) %nd (3.14b) with changes in angular notation mennoned in (4.4).

#
"

~

)7‘7

o [QP lzlwk-l(mu)lk(gpi) SO 5m(k¢ tWp1) ¥
w7 ,

o :Qp+1 le+k+1(§ )Ik(gpi) (- 1)k+1 sm(k¢ + \ij+l )z
(4.18a)

F( )

!

L}
LY

B0 - Iz, f NZ +k.1<§R>Ik<&p)< ) coslkq +v,,.;) +

,,.1 le+k+1(§R,)) ]k(gp ) ("'1) COS(k¢ +WP+1 )]

Lo e .V‘_' \ , ‘ ;—;——--~ (418b)
| 'ﬂe final exyfes§ion of T() is obtained as ) A o

4 ] . - T ‘ o ’ : N
._' Y -

70

D)dw ‘ (417)

el
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4

PR

» " ¢
‘ ' . g2 m (1)
re) = Cf S (Ga >J,(§a)<s o)) - @1
(§2=22) (&2 -A1)
where
2 Al
Y ¥nd ‘ \
. C= ————]l(l. a)]'(kna)
zmznxmxn
py \
sy 5 and D), are similar to those in the TE-to-TE mutual
couplirig.case.‘ v— =
. |/

- S
v Bty

Finally, the cross-coupling coefficient C{ij

mn 15 given by

R~ R J'f——'gy rEde . T
’ mn 21: NmO gz;kz s )
.mae Y
- - Lt KIl 0D ODL, - (4.20)
N Zoxmxn ‘~ |
/ o h Y
- Lmnis acqmp,act formof . - "
- L ,

}

“ﬁ

(5(1)4
W/ (w -u )w u)

The developme;rt of the cross-couphng cqeff1c1ents between two

modes in sepanated waveguides is now complete. For future reference,

% esséntlal expressions of the coefﬁments are’ summanzed in Table 41 “For
\defmmons of various constants, refer to Secnon 4.2.

l' '

) . ‘
D dw ' ..
Lp l,p).

L

‘e
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Table 4.1

CROSS-COUPLING COEFFICIENTS BETWEEN MODES

IN SEPARATED WAVEGUIDES

a. TE to TE‘ cross coupling -

N
6 _ P2 %I 042 Gy s pIK
Con = = N_ l (X X')Z mn
£ wyl-w? \ \ (1)
G = | 1, Kw) | ®w) (5]
o awWimu ) (w -un)
] (Kw) J,(Kw) '
F. = P !.'_('51(31)94' Dﬂ;.)dw N
0 w 1-W2 : o

{
3

b. TE to TM or TM to TE cross couplin

When mode n is TE and mode m is TM, then

4
. Z v v ‘
i) _ na 4,7, 'n )
Con = Nz Zo‘ﬁ(z P10y I 2) }<mn
)

. LI 4
]

J- WIl(KW)I Kw) S(%; + D(Z) )dw
\/ (w u )

7

When thode m is TE and mode n is TM, then

/

v

(l) ) dw



: c."TM to TM cross coupling

4.

Cmaty v
cip _ —--—-—-11 (xa)m akK
mn NZXZX e
. ,

w] (Kw) J(Kw) .
j ‘ (s{f}’, + D) dw
. 1- w (w u )

Y

: 3
‘ ra €y,
CS\?‘_ =..,...........£__'3._KI 'O a)]l (;\ a)L
ZOX‘X . »

»

3 .

w I(Kw)I(Kw) ‘
I = [ (s? + D ) dw
0 3 1-w (wz-ui‘)(wz-ui) )

' with

’

4(1) : o
S‘:P = f p+l(§R ) cos( ((p+Doy; - v = V)

[
s D:}; = Ip_l(ﬁRi i)c:os((p-l)q>ﬁ+ V. -V,) .

L ~S(2) = (-1)f ]PH(P,R”) sin((p+1)qsii-\v,'n-}|rn)

2

D,m = ]P.l(éRi? sin((p+D0;;+ v, - v,,)

73
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4.5 Evaluation of Contour Integral in a Complex Plane

* Rigorous analysis- in previous Sections\has arrived at analytical

formulae for the coupling coefficients CUD_ ... These resultant coefficients

contain one or two infinite integrals of the type found.in equatlons (3.13),

'(3.18) and (3.23). These integrals involve functions having triple products

of Bessel functions of different order. Ac:cording to the results of the earlier
finding, these functions are of a high oscillatory nature? Direct numerical
integrati‘on is not an advisable method. A more efficient 'method is to adopt
the contour integration technique, in which the integration variables are

transformed to a complex domain. As has been studied in depth in Ghapter

3, there- are equivalent contours to the original ones, when certain

conditions are fulfilled. The contour deformation in Chapter 3is applicable

to the present contours.

The first step in the evaluation of the infinite integrals is to rephrase

the Be%sel function ]p+k(§Rij) and ]p-l(ﬁRij) as a sum of Hankel functions

\of the first and second kind. Depending on the presence of the Hankel

function in the modified integrand, an equivalent contour to the original
one can be éuitably selected. A note of attention is necessary, for each
coupling integral there are two transformatxons one for the term Jp4+1(ER;)
and one for the term Jp- 1(§jo) Furthermore, in the latter case, two.
conditions should be distinguished; that is when (p-1)>0 and when (p-1)<0.

In the subsequent Sections, we shall present the calculation of thé infinite
integrals in terms of contour integration. The presentation of the process

leading to final expressions is minimized as much as possible.



K - ) 4 —~> ' - 75

| 4o501_ Evaluation of Gmn and an

In the course of computing the TE-to-TE cross-coupling coefficients,
- we shall have to integrate two integrals, namely Gmp and Fmpn. The process

of evaluating these integrals is quite similar in nature.

L4

Let us first look at Gmpn. From equation (4.12), the ofiginal form of

Gmnis

| PR PEN
| Gy = [y 2J'<1<w>1,<1<w><s‘” D) dow

5 w-ul)w?-ul) P

(1) 2 '
= G + G2 | @)

PN
At
N

\
Gy and G(Z)mn denote two mtegrals
e - '
£ . . . .

¥ -G j 1 () JKw) T, (KR, w) dw
\ W' - u )(W “uy) (4.23a) .
@ r Jl W, ‘ |
G2 - sz e T, Kw) ] (Ko ] - (<R, ) dw
(w?-u )(w -u )P b (4.23b)

v

. 3 - ‘ R
The two constants Gy and G are given by !

G, | ﬂ (-1) cos((p+1)¢, i~ \V,,[ -v,)

- Gy= coslp-Do+ v, =)

In G and G(2)mn, the Bessel functions Ip,q(kR,,w) and Jp-i(kRjjw)

are, respecnvely, rephrased as

-~
/‘



a7

»
»

1'Ip,,,(kR (W) = -[ (kR“w.) + Hp+l lew)] (4.242)
B | 150
j (kR H‘" R, ) + H | )1{
| p-1 Ip-U Ip -1l k&] (_1)1 P (p-l)<0
2 . K . (4.24b)
’ o i L

Each integral G();,, and G@),, is now regarded as a sum of two
integrals, following the substitution of (4.24) into (4.23). With'reférgnce to
Figure 3.6 and Figure 3.7, a suitable equivalent contour for the integral
mvolvmg H(1)(2) is the posmve imaginary axis, whereas that for the
mtegral involving H(2),(z) is a composition of branches along the barrier,

around the poles and the negative 1mag1nary axis.

Having defined all the terms and selected equivalent contours, the
calculation of Gy, and G@p,p can be done fairly easy. The solution of

K GO ., is first obtained as,

(u -u )(u -u 2
2 r v1/1 +v -
-} '(Kv) (Kv) K_ . (kR..v)dv
) );c-af(z+u )(v +u)p Il p+T) ]
| 4.25)

The residues at poles, i.e. when um>1 or up>1, have no contribution -

to the total value of G(,., In other words,
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. .
(i) When up# up, the integrated function has simple polés‘ at w Um .
" and w =up. The orxgmal function being : - ' ~
cow = 2 WJ—J R ) HO), (R, w
gz(w) (w+u )(w+u Nw-u Mw-u ) P ]
v

\
The residues at poles are

(-4

: (w)
"Res G(w) = B!

= (w-u) '
wey ' 4 Z(W) M lw = u
w) i
ResGw) = Sl (w-u y | .
W=q,‘ 2( ) w = un
‘ [}

Atw=uy and w=u,,
' ] P'(Kunf =] p'(lna) =0

Jy(Kup) = Jy'A2) =0

due to the TE boundary condition. The value of residues is, thus, zero

(ii) When up = up, the integrated ftxnctidr} {'xas a pole of order 2 at ‘
W = up, {or w =-up). The origihal function becomes \
Gw) = =X
: g 2(w) Twz -

T (Kw) ¢ (Kw) H?)) (<R w)

The residue is calculated by foliomng,
| o

p,




s o7

hi

[gl(w) . - 5 o
T awig,W w=u_ | : '

; . R o . ’ i
Atw =up, g'h(un) =0, dueto ]'p(Kum) = I’p(l.ma) = 0 for TE modes.

The residue of the function at its pole is again zero. - ‘
l’ )
In a anner similar to that followed above, the integral G(2)  is

alculated as

-

.‘
t
i

(21)

o v—-'/*—*————‘- - =- E( l’)}—G(n) e (p’l)>0—4~— -
2 4 (4.26)
R PG . 2 PGB ] (p-1)<o *}

1

where

(21) J’ u\/1 -u? J K ], () H® (leL) du

(u -u )(u u) P!

-

y _ C S
c® —f N LK LW Ky, (KR dv

P rudPeud) P

mn

- v L

Direct numerical integration can now be applied to terms in

- equations (4.25) and (4.26). The oscillation of the integrated functions has

¢
. been minimized by this transformation process.

We shall proceed further with the evaluation of the second integral

> Fmn. From equation (4.12)




J’J (KW)JI(KW) (1) Da) ) dw |
0 a

= F(1) + F(2)

mn mn ' : oy

N

: )
N |-| Fei
+

The new integrals D, and F?)__ are explicitly expressed as

- . v T (Kw) J,(Kw)
(1) 1
. ) an Fl j :
0 1-w

i

Ip kR ].w) dw

R F, = (1" cosltp+Dy - v, - v,,)

and 3
' T, Kw)] (Kw)
F(Z) = 1 | le w) dW
mn J W J'_E P i
: . ‘ F, = cos((p'l)¢ii+‘|’m-\|’n)

w

Without much difficulty, the solutions of these integrals are

.- ] | | |
J Ku) J,(Ky)
D - pl[J' P 2" H (KR, u) du R
-0 qu-u :
2 [ LAV (kv)
£ ’1
o

v 1+v

P,r,(kRi V) dv] @2




o . . N ) ) L2 .
: B " ‘ . ’
. , 80
N 4

~ & thl) ]__( 1)'F (p-1)>0 C
F(z) ’ ) . ' (428)

= F .
YPER . j-;(.-l)PFg]s (p-D<0

~mn . 2

where R

Fm) = I_P'_""_I T Il(Ku) p.n 1,“) du.
uy l-u . {

L]

¢ I (Kv) I,(Kv) ' '
j Kip.y (kRy;v) dv

0 +V

4.52 Evaluation of Kmn

The coupling coefficient between TE to TM or TM to TE contains one
infinite integral, namely Kmn. Little expansion is required in order to

’

arrive at a solution for this integral. Let us first rewrite the original form of

Kmn' ‘ ;
(3 51(2) + Dw)dw

wI (Kw) J,(Kw)
P

IJ (w um) ".
1) <
= K * Ko

» - The complete expressions of KMpn and K@y, are

;- ‘ k? = 1 w) dw
L | nn I T wz (w m) p+l(kR|
K - (-1)‘“sm((P+1’¢: VW)




81 -

" and
< w]Kw)] (Kw) |
#
Kow = Jp1 (KR, ;W) dw SN
‘/1 w (w um) ‘ o o
' ( . » =

. Kz = sln((p-l)q;i j + .\ym = \|rn)

A9

Followmg the procedure adopted prewously, the soluhons of KD 0

-

- and K@ . are found quite easily. For K(l)mn,

. 1 . .
- (Ku) J; (Ku)
K® = KI[I Sl Hgil(kR”u)du
0

1- u2 (u2 - um)

: ‘ ¢ vI(Kv) (Kv; ‘ .
S P Ak Ky 0R;) dv] (4.29)
' o J1+vP (v2+u2) :

The residue of the function at pole w = un, is zero. Since-

kl .
~

wpgsgen o T
Res =. H . kR w) - :
ﬂ wey 2 P+l w=u,
- + ™ V1-w (w'+um} _ \ .
Y .. .
: - For TM modes, Ji(Kum) = Ji(Ama) = 0.

The solution of K@), is separated into two cases; one represents the

condmon (p-)>0 and the other represents the condition .(p-1)<0. The ‘

IR calculation of K@), at those conditions is essentially mmxlar /Irg |

R combmmg the two solutions, we obtain a generalized expressxon as,
k -

....




7 (KD . 2 Px®] (p-l)>0

® ™ m ™ ST @A
Kmn = Kz. ) -
0 Veptrk® . ,—(-n (p-l)<0 _
where o .
- ull(ku)l (Ku) _ .
Koo = J ;—n“‘Ri,“) au \ J
0 2 ®-u ) : ‘

' T VILKWIL(Kv) - | \ , ‘,
Q2) — 'L .
J' K &R Wdv -

1+v (v +u2)

The value of Kmn is now obtamed by simply addmg those of I<mmn '

and K‘z)mn Although numerical mtegratlon is still reqmred the Tate of

convergence of these mtegrals is maximized — an aim 'that one always

- searches for in a computahon-intensxve problem such as the present one.

4.53 Evaluation of Lmn '

. ! o ) ’ . '
The integral Lmn which occurs in the TM to TM coupling coefficient
expression takes the form:

£
-

T W ](Kw)](Kw) ‘ , °
I 1 . (slm + Dﬂ; ) dw ,
0y1- w (w -u )(w -u_ ) . '
6)) (2) s . ) '
. = Lm+ L".‘“ - @ )

LM, and L@y aregiven as’ | CoT



o
o
m [ w I Kw)J, (Kw) |
L= ]p+1(kR )dw
‘/ (w -u )(w -u_ )
L, “‘(—1) cos((p+l)¢ -V, \VP) | \
and ‘ (‘\ |

w’ ] (Kw) ]l(Kw)

Lz(’!“ll (w -u )(w u)

L .= cos((p-D¢, i+ vV.o-V,)

— 7 _;(BRR‘ W) dw

=

. 4 - ;-
'The calculations of LM, and L@, is easily carried out, following
the use of equivalent conteurs to the prigir(al paths (along the w-axis)®’ The

final results are shown to be .

.3
' (Ku) J; (Ku)
L@ o [j il H? (R, w) du

lu(u u)(u u)

2 ° vBI (Kv)l (Kv)
ey
T

dv ’
4, _
014V (v +u )(v +u) @30,

When either of the modes in the airfilled waveguides is evanescent,
_ Le. up>Torup>l, the value of the function at the pc;les have contribution to.
* the total value of L(U),.. Let the function be identified as

¢ ’ 3 )
s w, (Kw) J.(Kw)
- L(W) ! }{;,23.1 § l
Jl -W (w um)(w un)f -
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— | 7
(i) When up, # uy, the function has two simple poles at w=up and

w= un The residues at the poles are - N\

W] K)o

I;ies Liw) = H;zil (kRiiw)I _
W=ln l-w (w+u )(w -u ) ‘ W=Un
v 3
v w ] (Kw)J.(Kw)
Res L(w) = I i —pu? (kR W)l

- +1
TR 1w e u u)P

J——

At w=um and w=up, Jp(Ana) = ]1(?&ma) = 0 due to the TM boundary
conditign of the corresponding modes. * Thus, the residues at the poles all’

vanish. No additional term is required in equation (4.31).
(ii) When um=up (thexi p=1), L(w) bécomes

L(w) mI},ﬂ(pv) J,(Kw) L0 S

Liw) = (kR w)

. +1
N T Lw) [ WA (W u) P

» The residue at the pole w = um, (order 2) is evaluated as follows:

3

w, (Kw) J.(Kw) -
RésL(w) = 2 [(w—u : ;fil(kR )]
W=l \/1 w (w+u ) (w- um)

-~

A  For TM modes, Jp(Kum) =Jp(Ana) = 6~ 'I;herefc;;e, the T&due . ’ /\
vanishes.
. b . 4
The final result of L@, is summarized below : ' 2

-



e

Y
!
&

—
2 '
2 2 @'t®1, b >0
b
i 12 -1, . . (432)
e . %(—1)" L2 75 (p) <0.
where
] (Ku).J kKu) -
L2 - L HY ) (KR, u) du
' T-u? (u u )(u -ug ) s
and - ' )
oo 3
VI (Kv) I (Kv)
Limm P l " pl (kR v) dv
1+v2 (v2+ul2n)(v2+u:)
% v N
b »
\ A LY
Pl ‘
I * «
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CHAPTER 5
~

RADIATION FROM AN ANTENNA ARRAY

—-
5.1 Introduction :

For the class of radiators known as ”aperturé\ anténnas", the radiated

far field is calculated in terms of the known field dlstrlbutlon over the

aperture of the antenna In all 1mportant practical cases the’ waveguxde
A

allows, propagation of only one mode, called the dominant mode. Over a

-

\ Ky ;
component of the field 1s*a vector sum of those associated with the incident

{
cross section inside the waveguide sufficiently far frop the ‘aperture, any

and the reercted waves of the dominant mode. In the aperture, however,

addxnona.l higher-mode fields exist locally, excited by the d1scontxnu1ty in
thé guide. It'is quite reasonable to assume that the higher-mode fields
contribute a smaller fraction /tf’ the total radiation field ns the aperture

. dimensions increase. Rigorous solution of the boundary problem is

* deemed necessary for aperhu@zs of a fraction of a wavelength.
d

In ‘essence, the analysxs thus far is a r1gorous one. Possxble ex1st1ng

’ hlgher modes are assumed in the computation of the couplmg coefficients -
CUpn. These coefficients are, in turn, related to the set up of the scattermg A
matrix [$], as has béen discussed earlier in Chapter 2. Havmg formed: the.[S]
matrix, the amplitudes of reflected waves (in’cludfr_l_g that of the dorninant
mode) are clirectly derived. A c:ompleteJ description of the apélture
taiygential electric fielcl distribution Eg is then évnilable for the computation *

S
. L4

of radiation fields. ». . " o .



- obvious that . -

52 Radiation Field

-

In the unbounded sourCe-free reglon (z>0), the transverse magnetic

field Hy at a pomt P(x,y,z) is given by )

H® - —J—x(vv +¥1).2 <[[E, RO Gas
T 2mop, s
5

By using equatlon (2.13) to replace the total tangential electric field
and by followmg the procedure outlined in Appendix.B to eliminate the V

operator, the above equation can be rewritten as: -

e ](1)8 (1)
H® = —2 Z 07 ”(h G+ iR v G)ds
1

k mz

~

With reference to Figur‘e 2.3

R=¢f-r1
¢ A A
A} g ¢ .

VG(Ir F1) = V,GUR = -3 GR) (xT, +yE) (140

jkR )

-
-

In a coordinate system whose orlgm is located at the center of the

aperture i-th (Xof,Yoi)s let point P'be defmed by (ri,8;, q>,) Then it is quite

4]

1

~ IR= 1E A= IE P .

[}

7\

For the far-zone flelds, the usual approximation

IRI =F -F:p' =1, - p smeicos(dti'—dz)

1

is valid, then



: -ikR -jkry -
e ik i -
CR.~ ¢ == q
Furthermore, ’
- Y o

xi +yi e T ‘ v
y . : L
- ~ sin@, (cosd, i, + smq)i.ny) :

Introducing eqtiation (5.2) and the far-zone-approximations into

' equation (5.1) to get

i e '
H, (x,y,2) = ,_EJ.ZZ AI(:‘)Z ” G(r )e ’mx sme coscb hm z)1
"1 i m ’

Tm ; - . -
+ (hm_y * sin@, sing, hm 2 ) xy ds (5.3)
) - Iv °

“ N

It is also noted that only- the first order ﬁr, is retained in the

deﬁalopment of equahon (5.3). .

e

. : y
Let f_ and f(i) be the transverse' cOmponents of fi)_,

: ok’ Ym . ¢ . -
: fgl)x = .'”G(ri)e ! (_hmx + T?smei cosq>i hmz )ds'
D . . .
aind . " R . oo

S

oy ‘ jk¥,.p' ‘ 1 -
. fg‘y = l[."G'(ri)e | (h * o — sing; sing, h )dS

v

- A

From the,general sense of the analysis, the vector fi), i's‘separated to
that of TE modes and TM Ynodes. - We shall investigate this vecter
 categorically for TE-and TM modes below. i - o



S ‘a. TE modes . . , - . / '
St_xbs;titute the components of hTE_, given in  Appendix

L

. equation (5.4) to get,'

7yl

i m

- Yy : “

Jor1Pyp?) cos((p+1)¢' -y )] +

¥ ' . ' - o)
-ku"lp(kmp') cos(p¢' - v, ) sin, cos¢i] P“”f" "ds
. | (5.5a)
EERT Y I G(riﬁiz“l[ _(_p" sin((p-1)¢ — -
. my = i Y Ip_1 P/ sin((p- ¢ -\ym)+ .
. . . Dx . m i - X
- _ Jp 1Ay p) sinCp+13¢" - w, )] + ,
1 L s ) .
~ - _kglp(lmp') cos(pd’ - v,) sin; sing, ]'e, . | ds:‘ -
N . | - (5.5b)
where w = ksin6;. ‘
Tllgse are evaluated with the help of th¢ Bessel-Fourier series
T jwplas(@-¢) - S mo : .
TN L wp) + 2 1, (W) cos mie < 4)),
’ - m=1 Co
t L . ' ’ ' ¥ ]
- and the Lommel integral formula Y , ' -
| N NP B
RS fxr 1m0 ax = (1,00 1,80 - B0 LT e0]
s 0 ' . '
« . AR N ‘& i

L



. 4"' ) . ' l L ‘ 90‘
l N . « . . '

Ry , - , .
£ = G P [0 conp1, ~ ) ~ @y CoSp 1 - v

k

glm -.' ‘ A \ > ] -
 + ——5in6,"cos, QP cos(pd, —v,) | - (5.6a),‘

”

¢ m(;;___ G(ri)j"*;ﬂ [ Qp. sinlp-1)0, ~ w,) - Qp+1 sm((p+1)¢i_ TV — -

m

e b

If VO, VO and V@),

77 S ‘ ‘
+—l-<--sm6i si‘mpi Qp cos(pcbi.—?llm)] e (5.6b)

are introduced to represent. I

vh - 'Q;;-l cos((p-1)¢i "‘Vm) = Qpyq Cos((p+1)o V.

]

Vm Qp ; sm((p—l)¢ \ym) Q sm(ip+l)¢; -v..) -

then

@ m N\
sz = TQPCOSEPQi —Wp‘\) )

L. ¥ ‘\')’
f‘- = G(r) jf, —— l [Vm + Vm sme co? ] S (5.7a)
‘ m. ‘ R .
<fn? ) G(r) ] 'y m[V (i) Vm smO sm¢i] (5.7b) .
m . o e )
. . = " ':
b.IM_mgd.ef a ‘ ‘
- , . "’ ,

We now proceed with _the calculauon of f(l) for the TM modes. Itis  °

-evidence ;hat the 'I’M-mode T
;. Recalling that .

t

k:an be derwed from that “of TE modes. |



. | | SR S S e -
_ . \ ’ ; .
r
E™ oL 5™ SRS
m T Z - _\ SN
then, ’/
) _ P Jm 1 .@) - p
£ =-Ga)j =7 Vi , (5.82) o
‘ . m | m
3 - 1t'Y 1 ‘ - ‘
(i) m o , . . s
) £9 oGP P2 Va , *(5.8b).

! . m N , " , a {
,f + ! . "

Let us now return to-equation (5.3).. The transverse components of

A

thé radiated magnetic field are :

- P w ‘ . //, \I'. - . -
' .. ' ) 1 . 4 4
H, = —-QZZA“’Z f“’\ T (59a)
"QTI'. i ) ‘ ' . N -
= —Q'ZZA‘”Z (0 P soby |
- : m mmy PR G. ') '
1 ’ N

From Maxggell's equation (continuity of magnetic flux), for a-source-

- " . free region.

.Y ‘ .- ) - lo\"

- , . . .o

It is, therefore, possible to obtain the axial component H; using this

fa

e@uation. The solution is found to be, - _ - ,

- . H ZZA“’Z tane (© o €050, + £ sing, ) . (590)
i m ' .

\
hd \ . - )
' 13

a - - ‘ \

Agam, only the f1rst~order 1/ | term is retained. This is a vahd

B con51deratxon for-far-zone fields N

-



. " : ' ‘ . g‘z.
o | /.0 0 T— -
It is convenient to express the field-in terms of its spherical

‘ 3
components; thus we have

| J’
 H =0 S — (51020 -
j(l)ﬁ 1°* . . .
, _Jue ® ) D ‘
) H6 = o z %Am z, cos, (f:‘x cosp, + f:/ny ém?i) (5.10b)
- I - ' jm Y, }’_. . . ) . . i -
O " H, = _2_9.22 ADZ, (- sing + £ coso) (5.100)
) T i m ~ :

L]

The electric field in the radiatién zone is related as in a sphefical TEM

wave’, ie by | . N\ -

. E =‘.-'Zo(ir‘xH_') . . . 4 )
which has the following components ) - T
. . ) . hd . v

E =0 - (5.122)
s E, - ,%ZZ A“’z (-£9 sm(pi + 2 cost,) . (5.12b) <
L} ' i -—— —
m . . | ,
% » . )
OB s j— 22 AYZ —— (£ cos, + ¥ sing, ) (5.120)
¢ ‘2§ m ™7 cos, IR A LY

Equatxon (5:12) states that the tota.l far fx‘ls due to tf\e combmanon
of elemental ﬁelds from all modes at all apertures. The elemental fxeld due.. Y

- tg the m-th TE or _TM mode in the i-th aperture are essentially given by
equation (5.12), wigh the substitution of appropriate components of f(b\

From equatxons (5.7), the contnbuhons from the m—th TE mode in
the i-th aperture to the total rad1at10n field can.be shown tobe



-

Lo

| \_f 93

PJ02) ] (wa)
w (lmai)

L

4

Eg = AkZo AG()[

]s n(po; = V)
S0 . (5.13a)

Ip(k @) ] (wa,)
A

m

$m

EY = -1 ZGr,) coss,

_ (5.13b)
» S

Srrmlarly, the contributions from the m-th TNMB\ode in the i~th
aperture to the total radiation field is o

o
- - PEAY A5 o y) (wa) G sind, costpo, —
om = = mT 7 Jzn)lp m) Jptwa,) G(r)) sinb, cos(pe, — )

’ ﬁf (5.14a)

2

rﬁf;: 0 w (5:14b)
. e
522 Co-polar and Cross-polar Definitions A

1 v

The radiation fields from an antenna can be coﬁ?pletely specified in
terms of two vector éornpqnents. The definition of the two components at
a point in space and their identification in terrns of a co-polarized and cross-

polanzed component.is not universally agreed upon. In his paper Ludwxgl
’{zﬂjras clanfred and discussed some of the popular chorces Ludwrgs third
defmxtron of ‘cross polarization is often preferred for antennas which are

operated in a predominantly linearly polarized mode.

Consider an antenna under test being mounted at the origin of a.

=

. model tower, as shown in Figure 5.2 (ref. [23]). This antenna radiates an

-

4



c e 9.

g

\

) electromagnehc field that has both Ex and Ey components along the ‘xxs or

. boresight dlrecnon Assummg that on-axis the radiated field is linearly

paT—

polarized along the y direction. If a small receiving dipole is moved off axis

'in any direction but is not rotated, ie, itis alv‘\rays kept oriented paralllel to

the yz. plane, then it receives.a compone\nt of the radiated field that is called.

the co-polarized field. The field component that is perpendicular to this |

polarization is called the cross-polarized field. Instead of being moved off
o

axis the receiving dipole can be kept fixed while the transmitting antenna is

rotated around x axis (i.e. varying 6'angle) at some particular angle ¢. Let

the radiated field at the point P specified by the angles 8 and ¢ be E(0,¢) =

Eg(6,9) ig + E4(0,0) iy . When the point P is rotated so it coincides with the z

axis the field E(8,4) can be resolved into x and y components, which, from .

Figure 5.2b, are readily seen to be givenby _
E = Ee cos¢p - E¢'sin¢ ) © (5.15a)
Ey = E9 sing + E¢ cosd ' , (5.15b)
T F "

— ©

*
4

The reference polarization is along .the y axis, then Ey is the cross-

polarized field, and Ey is the desired co-polarized field.
L]

N -

53  Relationship Between Spherical and Azimuth-Elevation

-

Coordinates i .

-~

The field c:oordmate system that is used in the analysis is the

spherical system (r,0,¢). For some practical apphcatxons, it is preferable to

-

}l

use the Elevation and Azimuth coordinate system. This system is

illustrated in Figure 5.3. Its relationship to the spherical system is expressed

by .
i "
:



95
8 = cos’ [ cos(El) cos(Az) ]

] ¢ = tan” [sin(Az) / tan(ED) ]

y o

Later, in the computer program, Elevation-Azimuth are used to
describe the location of the far-field point but are converted into Theta-Phi

coordinates prior to the field calculation. '
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Figure 5.1,  Ilustration of field components radiated b}‘r

R an anterina system
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Figure 5.2  Elevation and Azimuth Coordinates of arn
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CHATTER 6

NUMERICAL RESULTS

A computer program has been written based on the analysis" .

- presented in previous sections. - There is sufficient data from which it is
possiblé tq, verify the analysis. Numerical results corresponding to.var_ious

. “ ' h . - . B
array configurations will be presented in this~Chapter. The choice of

paraineters in test cases conforms with those of experiments.
- -

X

All computauons are’ performed on a DEC VAX 11/ 780 computer,
where single precrsxcm is used. . The speed availability of personal
computers also permits the qalculanon on thii
such as the admittaece of a flanéed circular waveguide. The solution for

the complex amplitudes b's of reflécted modes in . s

bl = [1+CI [1-C] [a]

is solved directly, which is faster'and mare accurate than computing the
inverse of-[1+C].

$ . . - N - . .l

6.1 TEjj Input Admittance of a Flanged Circular Waveguide

.,

Expenmental results for this case have been reported by. Balley and ‘

Sw1ft [15]. The waveguide is terminated in 4 finite ground plane in thexr

experlment However, Jater comparrson wrth computed data reveals that a

ground plane one wavelength square is sufﬁcxent for approxxmatmg an .

S

f less complicated cases

o £

[é >
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infinite ground plane For impedance measurement. The input admittance,

normalized to the waveguide characteristic admittance, is expresseq by

b
o 1-—
1-T

Y = G-jB= =
1+T 1+_;

where a and b are the amplitude of the incident and reflected waves,

respeéﬁvely." ’
+ A

The theoryhdev'eloped by these workers did not include the effe‘i:t of
the TE11 modg coupling to higher order modes, i.e. TM11, TE12, TM12, etc.
The predicted results from the present work are given in'Figureué.l. Two
sets of data are given, qone‘ obtained from a single-mode ap_broximation and
one obtained from a six-mode approximation. ItT?évidept that the latter
agrees well with experimeht and in pﬁrticular, it predicts the adm‘ittance is‘
real at only one point when d/ A = 0.765 wavelength (or K& = 2.404, which is
the cut-off wavenumber of TMpo1 mocle) This is also recorded by the
experiment. Furthermore, the six-mode approxunatlon shows that the
susceptance B is capacitive at lugher frequenaes instead of being mductwe ‘

and approaching zero monotonically in the one-mode approximation. :

-

" The assfxmmion of reflected evanescent modes is quite apparent from
-!9

B the*above result.’ These modes have some effect upon the calculation of the

scattermg matrix coeff1c1ents and hence the reflection coefﬁcxent of the .

prépagating mode._ ’ -

1 L)
\ ’
1 - ’
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6.2 \ﬁl-plane Coupling Between Two Circular Waveguides -

Two identical waveguides separated by a distance R are driven by a’

- L

TE11 mode in one waveguide and are radiating into free space. The field in

‘doth waveguides is assumed to be polarxzed in the 'x direction (vertxcal

" polarization). Flgure 6.2 deplcts the experimental arrangement. A

comparison between the meaéured results by Bailey [24] and the predicted

results by the present goftware is made in Figures 6.3 and 6.4, where the -

former represents the amplitude and the latter represents the phase. The

Y, -

scattering coefficients arﬁﬁfiined by solving
81, = m+Cr’-cl

It is obServed Ethat the computed magmtude and phase of Sp1 as a -

function of frequency, for various ‘dxstances R, agree quite well with the

measured ones. The mutual coupling ‘is ragher evident at lower
frequencies, for the apertures ‘exhibit smaller electrical size. The flat groxind
plane in the measurement was 'a_ 12-ingh by 24-inch rectarigular alurrlinium
plate, thus cliffra'ctin‘ons from the edge cause some scatter in the data.

6.3 E-plane Coupliné Between Two Circular Waveguides

Using a similar set-up as above, Bailey [25] has rgieasured the scattered

~ power between two waveguides placed side by side as shown'in Figure 6.5.

The waveguide's are excited by a y-polarized (horizontal polarizatioi\) TEn

mode. Predicted results are compared thh the experimental ones in Figure

6.6. Again, good correlauon betweén the bwo sets of data is achieved.-

In this particular invéstigatioxi; it 'is quite interesting to notice that

the magnitude of S; is significantly highet' than that in the H-plane

" . . N “
L . - -
- . 7 ° N .
v
-« . - . ,
L - - ' ' -
% s "
a2 .
: o -
\ ' '
. e > * [

1
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coupﬁng case. The difference is of the order of 10 dP The reason for this
mcrease can be attributed to the nature of the aperture field dxstrlbuhon In
contrast to a highly tapered distribution in the H-plane, the field in the E-

plane has'strong' edge illumination, causing a strong couplir;g in this plane.

The vsra\vegui'deé in the .above cases are located'quite far apart.
Practical designs usually call for a much closer spacing‘,‘i.e, slightly greater
than one diameter separat'ion.‘ A comparative study is made with_‘ the
results reported earlier by Clarricoats et al [26]. The element Spacing‘is now
set at 2.1a. Figure 6.7 s‘ho&—é‘ the mngnitude of the scattering cc;efficient Sr1
of coupling between TE11 modes as a function of hoqm radius. In the E-
plane case, the coupling decreases rapidly with-increasing horn radius until

“the r\orn supports the TM11; mode, then the coupling approaches to a
’shellpw’maximum. In the H-plane case, the trahsition occurs at a > 0.848
wavelength whex:{ the TEj2 mode is supported by the waveguide. ’In

general, good agreement between the two sets of data is achjeved.
6.4 Radiation Patterns From An Isolated and Seven-horn Antenna Array

The above experirr\ente have signified that there are strong
imeractior\s between waveguides placed in the vicinity of each other. This
mechanism is regarded as a cause for the disturbance in the antenna cross-
polar patterns The degree of cross-polar degradation will be assessed in the

‘ follqwmg.studles

6.4.1 Experiment conducted at SPAR Aerospace Ltd.

»

* A'seven-horn array antenna, whose layout is depicted in Figure 6.8,

was built.and tested at 'SPAR Aerospace Ltd, [2]. At the meesurement

[
N

S 100

.
%
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frequenCy 12.45 GHz tll diameter and spacmg between the elements -

correspond to 1.136 and 1. }Sit%avelength respectxvely The experimental

horns are comcal, however their flare angle is qulte small and it is

13

justifiable to neglect ‘the effect of phase error at the aperture in the

computation. To establish a basis for comparison, the radiation ‘patterns of

an isolated horn,arel first recorded and shown in Figure 6.9. The cross-polar-

level in the ¢ = 45 degree ﬁlane (see' Figure 5.2 for angle notation) is

referenced to the co-polar level at.the boresight 'angle. Good agreement,

within measurement tolerances, is observed for all patterns The measured

-cross-polar level is in the order of -30 dB, an expected value for a horn of

this size. | % LR

Once the isolated horn perform'ance is known, measurements were

carried out in the-array environment to quantify the mutual couplin
y q y ping

\ effects on the radiation characteristics. Recorded patterns are illustrated in

Figure 6.10. The center element of the array is driven by a TE;; mode
whereas the peripheral elements are terminated by matched loads. Both

predicted and measured results show a noticeable increase, 4 dB by

prediction and 6 daB by measurement, in the cross-polar level The high °

cross polarization component of the TEp; mode (which is supported by the
waveguldes at the measurement frequengy) is beheved to be the dormnant

:reason for this ,change. The interaction of this hlgher mode to the

"dominant mode, was included in the computa'hon. -

A -

'6.4.2 Experiment reported in publication

The radxatlon characterxstxcs of an immersed horn in a cluster

envuonment were also mvestxgated experimentally by Adatia atal in their

[

X
s
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1981 publication [27]. Althoygh the measurements were performed over a

frequency band of 14.0-14.5 GHz, particular results at 14.25 GHz, were

presented. At thls jcenter frequency, the electrical dimensions of the horn -

diameter and horn spacmg are 1.026 and 1.031 wavelength, respectively.
The contour plots of computed and measured co-polar and cross-
polar radiated fields of an isolated horn are il_lustraled in Figures 6.11 to 6.13,

inclusive. The agreeﬁxent between the two sets is considered qualitatively

similar, with the cross-polar lobes in the diagonal planes peaking at .

N

approximately -32 dB relative to the peak of the co-polar patlem.

The perfo_rmance of the elements combined in a clusler is computed
and presented in Figures 6.14 and 6.15. Measured data fo‘llows in Figure
6.16. It is initially observed that there is a slight modification to the co-polar
‘ radiated,patterlx from a near circular contours associated with an isolated
element. The resultant ellip‘ical contours are due to the difference in the
edge illumination in the E- and H-plane of the array. The predxcted change,

however is not as large as-that in Fxgure 6.16. The measurement has

A

<
as the cross- polar lobes arg concerned, the prediction shows a shift of the /

lobes toward the boresight and a raising of ‘the peak level té approxlmately
-22dB below the co-polar peak. Once again the contour plots are not in close

" correlation with those from the measurement, despite a similarity in level.

rd

In an attempt to further i improve the computed results, the mclusxon

of h1gher modes is considered. Such consideration leads to results

ptesented in Figures 6. 17 and 6.18. The additional mode is TE2. Thex'e 1s¢

slight 1mprovement with regard to the degree of co-polar contour distortion

.7
shown significant distortion, particularly with the shoulder effects. Insofar ‘J/

/

/
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bfft/ that is still far from being a close match _df thexmeasured contours.~'The
cross-polar wc:’ontours, on the dther hand, are closing on the recorded shape.
The formatxon of a -22 dB cross-polay lobe much closer to the boresxght is
clearly predicted. In’ v1ew of this positive result, it is believed that higher

modes such as TMp; (has strong Cross polanzatlon) be mcluded "Because
such computation becomes very time consuming with mcreasmg number®”~

.

of modes, it was not attempted.

»

6.5 Summary

' This Chapter has presented nume(rlcal data, in terms of the scattermg
coefflcxent dand rac’uatlon patterns, for various antenna conflguratxons The
computed results are Jcompared_egamst measured afd published data to
validate the analysis and the software. The favorable comparisons have
provided c_onfid'ence that the present work is sufficiently accuraté and it can’
be 'rega;lrded as a supplemental package to aid the design and analysis of

planar antenna arrays. - :

—

It is worthwhile to mentlon that the setting up of the coupling
coefﬁcxent matrix accounts for ne:ﬂ'ly 90 percent of the ‘total computmg
time. This i; due to the many ‘integrals involved in the formulae. The
addition of hlgher modes in the computation is a must but care should be

taken not to include arbitrary modes that w1ll result in lengthening the

’ computatmn, where their total contnbutxon to the total radiated field is

insignificant. ‘ - ‘ .
-, . } : o Lot
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\
. CHAPTER 7 .
. . .
DISCUSSION AND CONCLUSION .« °.

A detailed mathematical formulation has been presented for
analyzing the mutual coupling effects in a planar finite array of open-ended
circular -wave%’uides. The approach was to set t;.p an iritegral eciixation and
to solve it in the approximate sense. The generality of the analysis has been
highlighted by the inclusion of higher-order modes, in addition to the
dominant mode, into the coupling coéfficieﬁts. Satis\factory results applied.

to various antenna configuration_s have pfoved the validity of the analysis.

Signif?caht deterioration of the cross polarization performance for a
clc&iy—packed horn array was clearly predicted. It is evident that the
principal factor contributing fhe deterioration comes from coupling
- between the TE11 and TEpr modes. In a result d1scussmg the dependence of |
the scattermg coefficient S21 on the aperture size, it is to be expected that the
“mutual coupling effects in an array can be minimizéd Py increasing the
hp.sn size. Practically, this ‘cons(idera‘tion may be shadowed by the overall
array size and the grating lobe effect. Nevertheless, it is worthwhile to be’
taken as an initial choice in the design. In this event, 'oth;r éffgcts would
ceréaixily aonu"sate over thé mutual ¢oupling in détermihin_g the “cross- -
polar levels. Studies also reveal that polarization of the excited mode in

e

.active elements play an important role in the variation of coupled powers

——

between adjacent members in the array. The mode interaction is more,

pronounced in the li-pl&he than in the H-plane, for ’a’gi'ven geometry.

L
Y ! f
- .
.
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Generelly, in analyzing a conical horn array account must be taken of
higher-order modes that are exciteéd .at the aperture but are cut off before '
reaching the throat. These higher-order modes, on one hand alter the
' actual aperture field locally, and on the other hand cause further coupliné
a with the dominant mode when they travel back toward the horn throat.

The present study permits the inclusion of higher-order x;\odes, but does
not include a phase error in the aperture plane caused by the flare a;\gle of
the horn and also due to the ehange in phase at the cut off point. Minimal |
error would result for conical horns with small flare angle (up to 5 degrees).
Treatment of actual horn geometry is considered beyond the scope of this. -

thesis. ~

\

Particular attention has been given to the numerical accuracy and
efficiency. With regard to nixmerical integration required for the cm;plihg
_ coefficient, various techniques have been looked at. The Gaussian
quadrature is found to converge rather slowly and. does‘ not handle
.singularities efféeﬁvel‘;;. The Simpson Quadrature Used Adaptively — Noise
Killed (SQUANK) [28] is not a desbable technique despite its significance in’
. round-off errof guard (which guards against the effects of excessive round--
off error in function values). The SQUANK algorithm reqmre a rather

large number of calls to the funchon evaluating subroutme, thus it

less economic in this parncular problem ,(where numerical integrati
frequ‘ently encountered). Among the techniques ix’\‘vesﬁgated adapti

Romberg is found to be a good candxdate due to its fast convergence for/"

. requxred degree of accuracy. Thls techhique was actually 1mplemented in

the computer program. As far as solution of the matrix equation is’

concerﬁe“c‘i, Gauss elimination with partial pivoting is employed. Small

° - 4
A

“f
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residuals are obtained with this method. The numerical accuracy pbses no

critical problem, presumably due the the strong dominance of diagonal

— - . elements in the coupling coefficient matrix [C].

The computation of the elements in the coupling matrix [C] and the
solution of the matrix equation are tﬁe two most time-consuming steps in
calcllating the mutual coupling in an array, often accounting for over 90%
of the CPU time. Although the software is quite general for eyaluating the
coupling between arbitr.ary elements, nearest-coupling is found to be
dominant. It is, therefore, felt that for elements that are separated by more
than three times the normalized diameter (D/A), the coupling coefficient

'between them can take on a preset minimum value in order to reduce the
computations. A special arrangement of elements, in sa)} an equi-angular

AT

lattice fashion, may offer some advantage.

The radiation patterns of an array are easily derived since the
aperture field, with mutual coupling effects already taken into
consideration, for each waveguide is known. Radiation characteristics are

- determined with greater accuracy by this approach.l The usefulness of this
~research can be found in the synthesis of direct radiéting array patterns or of
tahe secondary patterns of single or dual reflector antennas fed by a

e

multiple—feed array. In the latter case, a possible procedure that can be
Called for is first t; treat the scattt\ering from the subreflector by either Near-

¢ field Physical Optics :or Geometrical Optics in combination with the
. Uniform-Geometrical Theory of Diffraction (UGTD) [29]. The scattered field
from the main 'reflectgr is then obtained by‘ means of Physical Optics
integration of the surface currents. The option of employing FFT with a

sampling technique may be included t3 enhance the speed. The
- - «

-y - -
»

©
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investigation of performance of offset reflector antennas with an array feed

is a very interesting research topic where further work would be productive.
*
* In conclusion, the main objective of the study has been successfully

. accomplished. An analytical formulation was derived and a computer
program was developed to e\{aiuate the mutual coupling effects in an array
~ feed. From the software that was developed, a first-hand knowledge of the
-extent to which mutual coupling will degrade overall antenna performance '
_ is obtained. Thus corrective ‘solutions to minimize the effects may be
incorporated into a design at an earlier étage. The present analysis can be
extended to investigate the mutual coupling effects in a finite ;”)’lanar array
of rectangular waveguides, Only limited difficulties are envisione;i for this
_application, but in thé moment method solution, the basis and weighting
functions would be the rettangular waveguide modal fields instead of

those of circular waveguides.

[
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APPENDIX A

LS

MODE FUNCTIONS OFA CIRCULAR,WAV]%GUIDE

LY

The fields in ‘a hollow -guide of circular cross section of radius “a” are

solutions to the scalar Helmholtz equation. The general solution is of the

“

form

¥ = Al (0008 (po-V)

t

with A'is an arbitrary constant and v is the polanzahon angle. °

.

It is well understood that there is no TEM wave in a hollow

\

waveguide. There exists only the transverse electric (TE) and transverse

magnetic (TM) waves. \

™ -
At . w\\
A. TE modes
L} Q -
- . .-

In this partichér'mode, the longitudinal component E; equals- to

zero. A solution of

2
VZih, + 'kc h =0

is reqmred such that (dhz/9z)’= 0 at p=a for all value of ¢ Thls leads to

,gharacterxsuc values of Apq that statxsfiy the relation y

ljpg2 = 0
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For each p there are a denumerably infinite number of zeros. These

then given

by

A

. The lower 6rder Zeros x'Pq are listed in Table A-1.

V4
P * xpi
0 3.832
1 1.841
2 3.054
3. 4201
4 5.317

Y
h }
mx n
~ Pq
, h'!‘)’ 22

Pq

Table A-1

‘Ordered zeros of j'p(x')
X'p2 X'p3
7.016 10.173
5.331 8.536
6.706 9.969
8.015 11.346
9282 12.6§2

Ry = T (A P) cos(pO - V)

A\

&

[y |

)

~
-

_X'p4

13.324

11.706

13.170

The Cartesian components of the magnetic field*h are

= =B ,0 qp) cos((p-l)tb W) + Jpy (g P) cos((p+l)¢ w1

4

are ordergd and designated by X'pq- The-eigenvalue (or wavenumber) 7‘1?4 is

(A-1> |

Al

i, PN N '
= =By 0, 0 sinlp-Do-¥) + T, (A p)sin(p+1 - )]

@ad

(A-3)
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The polarization angle v is relative to the y axis, as noted in Figure

N
Al L - ¥ : .
ﬁl.
by .
N
» .
X - '

- , Figlue A-1

v ° i I <

" “The iropagatlon constant 'ypq of mode pq isgivenby ¥ -
. 2 |
y; q " = K € = Ao , \
& is the dielectric constant qf the waveguide filling: : N N

N L " - N
’ The TE mode impedance qu is L
- k : . 1
T Z % ﬂ oo
Pq oy
P4

Zy is the free-space impedance. - ; -

The normahzahon factor Nm of TE waves is derived as follows~

°

" hpm denotes the transverse components- of vector h. oo :
o °
ro o 3 ‘ ’ L
o «
o . t R -

Ve



- The third integral in the expression of Ny will vanish due to the .

:—‘.“ ' :' " . I .131 ‘
Substxtutxonof hmtoget S S
"P{ " ljl ,leqp)pdpd¢ +>Ijlp+ﬁ p)pdpd¢ -
2” 1(7~ pqP) Jps1(pq P c082<p¢-'\v)'pdpd¢], S
» . -0 :

. Two separate cases are to be congidered, that is when p=0 and when * :

¥ |
qﬁ=g .-
N, = -2n—2-‘1f12(x p)pdp S S “':

pqo . N

_ By means of TE boundary condition, J'p(Apqa) =0, Nm is rg.’duced.'to‘

R . Y
: T2 STy SRR o '
Ny = = (a2 Jp A ) o ( . 46 "
LY | Y
i,pe0’ : o . o T

) ) * N v e
presence of a cosine term. The remaining integrals are simplified and

combined to give

1 "
N . “ o ~
.

-

N, = ~—— 0, a m a)’ (1- <—E—> ) - A
20, a) Aog? |
B. TM modes \ . - .
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T ~ The %o ufion for T™- mcrdes*paraﬂelrto* that for the TE m%des with
the excephon that the boundary condmons requ1re that e,=0 at p-a forall ~

¢ The charactenstms values of lpq sahsfy the relation '

L _ Jpo“pqa)_o-'

< : '
The Bessel functxons Ip(x) tave a denumerably mﬁmte number of h

zeros, which' are designated by xpq. Qe lower-order are tabulated.in ‘rable

: ' S A2,
( .
‘ Table A-2
Ordered zeros of Jp(x) -
P Xpt . Xp2 Xp3 . Xpt !
! , ’ 6 ’ N .
0 % 2405 5.520 8654 11.792
T 3,832 7.106 10173  13.324
2 5136 8.417 11620 - 1479
N _ o .
- 3 6.380 9.761 \¢ 13.015 - N
4 7.588  11.065 14372
b
S ’ N -

%,

The transverse magnenc field components are readlly denved from

" _those of TE modes. They are . _

. - 1 ,- - - S
e —r A = s—lzxh__) ‘ o (A-8)
’ l“;,.; . Zpq pa l . ' '

IS

~ where the components of hpqTE are listed in (A-l) and (A~2)
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~ It is noted that for TM modes, the polarizafjon angle vy is relative to

the x axis. .

The T™M mode impedance Zpq is

Y, . :
= 24 -
r

- -

”
1

The procedure of'evalu‘atign the normalization factor Np for TM
modes' is identical to that of TE modés. The final expression is, thus,

presented below:

N\ M - \‘
¢ Ke ;.
N = .——nR2 Lr2on a) ‘ (A-10)

m 2 P P9
e, (pad’ 7
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APPENDIX B

’

ELIMINATION OF V; IN EQUATfON 2.19)

From equation (2.19)

: Z
cW oo ._..“.[k2

™ 2mop N,

I}

@

-

hm'

D

I

D,

[

(J[Rcuz -#1yds1as +
B

,VTVt.(IJ‘fl;G(IF £ ds)as |
b ’

Consider the second term and identify it as

1= Hds‘ﬁm. A .”3{; G(7 -F1)ds'
D, b; N

In explicit form,
14

1= [[asch T+ h T (2L + 1) [[(21 + 21 ).5 cas
-!IJ’ X , my{ ax‘,‘ay)'.!;]'\axx ayy n

~ Let the inner integral be

. -‘ i_._ _? ) - . \, N
J-Q’(ax;ﬁ%.xy).hncds ( -

4 L
o
L

X r T < ’.,
L =.|£j(-aa;clx+%G1y)..hndS’

¥

From the definition of Green's function, it &n be shown that
. - . B .- )

X

-7

. by N
v *

»
- ~°

s
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- -ﬂ(—icﬁx + LGi).h ds
ox' - % oyt V- ‘

By Green's theorem:

\{‘,
L

.§'§.;{d1 = j V. Bds
S - N
r , - L
] is re-arranged as -
)
J'hnxnxccﬂ +H5i7hmcds

jhny n Gdl + J'—ih G ds

‘where C is the boundary' of Dj and n is the outvard normal vector of

AT . - -
contour C. Since the mode function satisfy the condition h.n = 0, therefore.

J'J'(—Q—h +-3-h )GdS’ ‘

Yy
i

The integral I is now become ' . >

X , P

. 3 _ |

- _I =I dS(hmxlx+h 1 )(-a-l + -aay.ly)l (-B;Th:\x+.53,7.h;y)cds' N
“ . j .

By the same way, the differential operator can be reduced-ta-give—



-

136

=. D n -2 (2h + Ln
I !l‘“dsgathx.*ayhmy)lijds(ax.?‘nx+ay. hny)G A

In vector notation,

{

o

I = -ﬂdsvt.ﬁmde' v.E G

L4

ce e
A

w—— 7

From Maxwell's equation, the transverse magnetic field components

/r

are related to the longitudinal field combonent by
v, .'l'-\'m = jy1. h
Hence,

ﬁ I= ymynﬂds hnz”dS- h! G
* 1 , Dj

. S

.-

X



