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Abstract

Analytical and Experimental Investigation of the Existence of Simultaneous
Forward and Backward Whirling Motion of Jeffcot Rotor Supported on

Hydrodynamic Bearings

Chandrashekar Rao

Whirling of rotating shafts is defined as the rotation of the plane made by the bent
shaft and the line of centers of the bearings. The phenomenon results from such causes
as mass unbalance, gyroscopic forces and fluid forces in bearings. The whirling of the
shaft may take place in the same or opposite sense as that of the rotation of the shaft, de-
pending upon which it is referred to as forward or backward whirl. Rotor systems in
industrial machinery are commonly supported on hydrodynamic bearings and the dynamic
behaviour of such rotors is significantly influenced by the bearing properties. The stiff-
ness anisotropy of bearings, in the absence of damping, can cause backward whirling in
a Jeffcot rotor, in between the critical speeds. The stiffness asymmetry of the support-
ing bearing has a destabilizing influence, and when it is sufficiently small, the backward

whirling is still bound to occur in between the critical speeds.

Whirling motion of Jeffcot Rotor supported on two identical hydrodynamic bearing
is taken as a basis for this study. Effect of flexibility and load parameter on the occurrence
of backward whirl between critical speeds is studied. As the disk whirls in the backward
sense in between the critical speeds, the journal continues to whirl in the forward sense.
The present investigation reveals that the backward whirl commences at the disk and as
the speed increases, it extends over a certain central portion of the shaft and then shrinks

back towards the disk before disappearing.
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Although the assumption of identical bearings at the two ends of the rotor renders
the analysis simple, this may not be the case in reality. In actual practice the man-
ufacturing precision difficulties and wear does introduce dissimilarity in the supportive
bearings. The response analysis of the rotor supported on the dissimilar bearings is an-
alyzed analytically. Effect of dissimilarity of the bearings on the pattern and occurrence

of forward and backward whirling motion is studied.

Experimental verification of the simultaneous forward and backward whirl motion
is carried out on a laboratory model of a simple Jeffcot rotor mounted on identical
journal bearings. Instrumentation involving proximity pickups, oscillator, amplifiers,
demodulator are used to provide an output voltage signal proportional to the displacement.
A differentiator - multiplier - filter circuits is designed and built to identify the sense of the
whirling motion with the input voltage signal from the demodulator. The phenomenon
of the existence of forward and backward whirling motions at the bearing and at the rotor

disk is established through experimental measurements.
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Chapter 1

Introduction and Literature
Review

1.1 Introduction

Rotating shafts are employed in industrial machines such as steam and gas turbines,
turbogenerators, internal combustion engines, electric motors, reciprocating and cen-
trifugal compressors for power transmission. Because of the ever increasing demand for
power and high speed transportation, the rotors of these machines are made extremely
flexible, which makes the study of vibratory motion and the resulting dynamic stresses
an essential part of their design. The shafting of these machine installations is subjected
to torsional and bending vibrations and in some cases may encounter unstable conditions

of operation.

The dynamics of rotor bearing systems has become extremely important due to
the increased speed and power level requirements in advanced design of the rotating
equipment. The aircraft jet engine industry has as their ultimate goal a lighter, more
powerful, more efficient, and more dependable power plant. Industrial Compressor

and gas turbine manufacturers are concerned with reduced development costs, high



reliability, and low maintenance costs over extended useful service life. These factors
arc responsible for the interest in and the growth of the study on the stability and forced
response of rotor bearing systems. Power plants for ground installation and outer space
are relying on fluid-film bearings to provide long, maintenance free service. To avoid the
classical instability associated with plain cylindrical bearings the designers have employed
multi-lobe, tilting pad, pressure dam, and other designs such as herringbone groove 1o

increase the stable speed range of their equipment.

Modern turbo-machines produce or absorb an amazing amount of power in a rel-
atively small package. Undoubtedly, the most impressive example is NASA’s Space
Shuttle main engine turbo-pumps, which produce 70,000 hp in two turbine stages, about
the size of a frisbee. In more common applications, turbo-jet engines provide propulsion
for supersonic airplanes, turbine-compressor trains accomplish astounding flow rates for
petrochemical industries, and steam turbines produce mega-watts of electrical power for
utilities. The property of turbo-machinery which allows these high energy densities and
flow rates to be achieved is the high shaft speed relative to other iypes of machines of
the same physical size. Along with high speeds, comes high inertial loads and potential

problems with shaft whirl, vibration, dynamic stresses, and rotor-dynamic instability.

In general, rotors are used in machinery whenever power is transmitted from one
point to another. Rotors are rotating shafts with concentrated masses such as disks,
impellers etc., supported on stationary structures called bearings.  These bearings can
be either rolling element type such as ball or roller bearings or journal bearings with a
fluid film separating the annular area between the journal and the bearing surfaces. The
rotor systems are mainly classified as (i) light rotors or (ii) heavy rotors depending upon
the applied loads and the type of operation they are subjected to. Again, on the basis
of the geometrical configurations, they are further classified as simple systems and large
rotor systems. Heavy rotor systems such as generator rotors are generally supported on

fluid film bearings. Rotors can also be classified into rigid rotors and flexible rotors. A




rigid rotor is one in which motions are completely described by what occurs at the mass

center.

With the increasing trend towards the concept of lighter weight components in
structures, the weight of the rotor can be reduced either by resorting to different geo-
metrical configurations or by adopting different materials. When all other geometrical
parameters of a rotor remain the same, reduction in weight of a rotor will make it flexible

and thereby, bring down the critical speeds of the system.

In designing, operating and troubleshooting rotor systems, rotor analysis can help

accomplish the following objectives:

1. Predict critical speeds.

2. Determine design modifications to change critical speeds.

3. Predict vibration natural frequencies in torsion.

4. Calculate balance correction masses and locations from measured vibration data.
5. Predict amplitudes of synchronous vibration caused by rotor imbalance.

6. Predict threshold speeds and vibration frequencies for dynamic instability.

7. Determine design modifications to suppress dynamic instabilities.

8. Determine the regions of change of whirl directions and instability.

The phenomenon of bending vibrations and critical speeds of rotating shafts is
perhaps the most common problem of rotor design. Rotors always have some amount
of residual unbalance however well they may be balanced, and will go into resonance
when they rotate at speeds equal or approaching the bending natural frequency. These

speeds are called as critical speeds and far as possible, they should be avoided.
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The operating speed of a machine can be kept away from the critical speeds,
either by changing the operational shaft specd or by changing the critical speed itself. In
practice the latter is usually accomplished by modifying the rotor support stiffness. This
parameter is not included in Jeffcor model, but it has the same effect on critical speeds
as the shaft stiffness k. In general, changing the critical speed is most useful in the case

of constant speed machines with a narrow range of operational speeds.

If the machine must be driven through a critical speed slowly or repeatedly, or if
machine operation near a critical speed cannot be avoided, then the most effective way to
reduce the amplitude of synchronous whirl is to add damping. This would be difficult in
a Jeffcot rotor, since the only source of damping is aerodynamic drag. However usually
most turbo-machines have flexible bearing supports in which damping can be added or
oil-film bearings in which damping is inherent and can be changed conveniently by the

design modifications.

Rotors supported on hydrodynamic bearings, exhibit asymmetric cross-coupled
stiffness and damping properties which vary with the speed of operation. Such proper-
ties influence the dynamic behaviour of rotors significantly. Even though, other aspects
of rotors such as rotating inertia, shear deformation and hysteresis damping ewc., in-
fluence the dynamic behaviour of high speed rotors, the major design parameters of the
bearings in fact, control the design of rotor systems irrespective of their classifications.
Because the fluid film bearings influence the dynamic behaviour of the rotor system, it
is highly essential to have a realistic rotor bearing support model for analysis. Fluid
film bearings, in fact are nonlinear in nature and the resulting nonlinear model is most
involved. However, the nonlinear model is essential only if the dynamic behaviour
of the rotor system is required at or near critical regions. Most of the practical rotors
operate well away from these critical regions and the response behaviour in these regions
can be predicted using a linear model. Hence, it is reasonable to proceed with the lincar

model of the bearing support to analyze the rotor system behaviour.
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Different models were adopted to explain the rotor system behaviour. The two-
degrees-of-freedom model was used by Rankine in 1869 for the first published analysis
of machinery rotor [1] was an attempt to explain the “critical speed” behaviour of rotor-
bearing systems. The system model consisted of a rigid mass whirling in a circular orbit,
with an elastic spring acting in the radial direction. Rankine used Newton’s second law
incorrectly in a rotating coordinate system, and predicted that rotating machines would

never be able to exceed their first critical speed.

Although the two-degrees-of-freedom spring-mass model can execute the orbital
motions of a rotor-bearing system, it does not contain a realistic representation of the
rotating unbalance in the rotor. Since a perfectly balanced rotor never occurs in real
machines, and since it is the rotating unbalance which excites the most commonly
observed type of vibration (synchronous) in turbo-machines, it follows that the rotating
imbalance is an essential ingredient for rotor-dynamic analysis. Jeffcot rotor named
after the English dynamicist who first used the model in 1919 to analyze the response of
high speed rotating machines to rotor unbalance [2], is a very useful model to analyze
rotors. It consists of a massive unbalanced disk mounted midway between the bearing
supports on a fiexible shaft of negligible mass. The bearings are rigidly supported, and
viscous damping acts to oppose absolute motion of the disk. Jeffcot’s analysis explained
how the rotor whirl amplitude has a maximum value at the critical speed but diminishes
as the critical speed is exceeded due to the “critical speed inversion” of the unbalance.
In the present analysis, the Jeffcor model is used to analyze the whirling motion of the

rotor system,

The response analysis by most of the researchers was carried out assuming the linear
bearing model with fluid film translational stiffness and damping coefficients. When
the rotor is flexible nr when the support span is large, the tilted or inclined journal
provides rotational stiffness and damping effects in the fluid film about the rotor transverse

axes. Hence, it is important to include the rotational springs and dampers along with
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translational stiffness and dampers in order to represent an accurate bearing support
model. The fluid film bearings which support the rotor, are in turn mounted on support

structures such as pedestals which possess definite stiffness and damping properties.

A phenomenon which is of utmost importance in rotor dynamics is whirling of
rotating shafts. Rotating shafts tend to bow out at certain speeds and whirl in a compli-
cated manner. Whirling is defined as the rotation of the plane made by the bent shaft
and the line of centers of the bearings. This results from such causes as mass unbal-
ance, hysteresis damping in the shaft, gyroscopic forces, fluid friction in the bearings,
etc. The whirling of a shaft may take place in the same or opposite direction as that
of the rotation of the shaft, and the whirling frequency may or may not be equal to the
rotation frequency. When the whirling speed is equal to the rotation speed, the whirl is

known as synchronous whirl.

The subject of shaft whirl is an interesting topic, and its general motion comes
under the classification of self excited motion in which the exciting forces inducing the
motion are controlled by the motion itself. In practice however, all rotating shafts are
flexible. If a flexible shaft carries an unbalanced rotating mass, the unbalance produces

bending in the shaft, which in turn alters the effect of unbalance.

Experience has taught that most shaft whirls are forward i.e, the shaft center moves
in the same direction as the shaft rotation. For instance, mechanical unbalance causes
a closed-loop motion of the shaft center in a forward direction as does oil whip, internal
friction, shrink-fit friction, and many other disturbing phenomena. When the shaft
center whirls in a direction opposite to that of shaft rotation it is called a backward whirl.
Occurrences of backward shaft whirl are less common; a journal rolling around in a dry

bearing constitutes the most familiar example.

It is analytically predicted that the journal always whirls in the forward direction,



whereas, the shaft can go into backward whirl motion in between two critical speeds

in the fundamental mode region. The objective of the present investigation is to derive
a comprehensive model for the response analysis of a Jeffcot rotor supported on two
identical hydrodynamic bearings, to show the existence of simultaneous backward and
forward whirling in between critical speeds, and to verify this concept experimentally.

The analysis is extended to a Jeffcot rotor supported on dissimilar hydrodynamic bearings.

1.2 Literature Review

With the increasing demand for power accompanied by a decrease in the weight of
rotating machines, the study of rotor dynamics has become very important to a power
systems design engineer. Jeffcot [2] analyzed the dynamic response of a single mass
unbaianced rotor on two identical rigid bearings. Tondl [3], studied a rotor in bearings
having stiffness asymmetry. He showed that there are two distinct critical speeds in
the fundamental mode region due to stiffness asymmetry which splits the critical speed.
He also showed that the rotor whirls in backward direction when the shaft speed is in
between the two criticals, even though the unbalance excitation is in the forward direction.
Lund [4] gave design charts to determine the two critical speeds corresponding to the

fundamental mode of the rotor in bearing supports.

Itis generally recognised that the flexibility of support bearings significantly influ-
ences the rotor response. There are two areas of primary but separate concern, instability
and dynamic response. Whirl instability is a self-excited phenomenon and can occur
in lightly loaded, high speed bearings or in high pressure environments and derives
from the forces generated orthogonal to the direction of journal displacements. In any
rotor, where whirl may be a problem, it becomes the primary concern which must be
investigated and eliminated. This is usually accomplished by a suitable change in bear-

ing geometry. Irrespective of the self-excited stability characteristics of the bearings,
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dynamic response of the bearing rotor system to unbalance forces are important and must

be analyzed, so as to estimate the stresses in the rotor shaft.

The instability associated with the plain cylindrical journal bearing has received
considerable attention in the literature. Pinkus [5] reported that flexible mountings gave
greater stability to rotor bearing systems while Poritsky [6] and Hagg and Warner {7}
found that support flexibility lowered the stability threshold speed. Gunter [§] explained
the discrepancy by showing that a symmetrical undamped support lowered the threshold
speed whereas damped and/or asymmetric s'uppons can greatly increase the stability of
a rotor system. Hori [9] presented an analysis of a long bearing by neglecting the
negative fluid film pressures (to model cavitation) which indicated that the journal was

not inherently unstable at all speeds.

An investigation by Badgley [10] reported on a time transient analysis method of
obtaining the stability threshold speed of short, long and finite bearings. The orbits
of a balanced horizontal rotor on rigid supports were examined for various levels of
perturbation to determine the influence on the stability boundary. He indicated that the
threshold speed at high eccentricities is reduced by large initial velocities. Lund [11]
examined the stability of a flexible rotor with damped supports and concluded that damped
flexible supports can considerably increase the threshold speed.  Gunter [12] presented
a linear analysis of the influence of damped supporis on the response characteristics of
a rigid rotor including gyroscopic effects.  The analysis of a rotor system indicated
significant reduction of forces transmitted to damped bearing supports. Kirk, Choudhury
and Gunter [13] presented the effect of support flexibility on stability of rotors mounted
on plain cylindrical journal bearing and investigated the influence of unbalance on the

stability of vertical rotors.

In actual practice, the rotors are complicated in shape. To detennine the out

of balance response of a general rotor with properties defined at several conditions,




numerical methods can be used. Lund [14] used the Prohl-Myklestad method for this
purpose. Transfer matrices have been used by Pestel and Leckie [15] and Pilkey and
Chang [16]). Kramer [17] and Rao [18] used transfer matrix analysis for a system of

rotors, while Nelson and McVaugh [19] used finite element methods.

To study the effect of supports on the dynamic behaviour of a rotor, Morton
[20] and Kirk and Gunter [21] used the Jeffcot model. A model similar to that was
used to study the effect of cross-coupled spring coefficients of a hydrodynamic bearing
on the critical speeds and out of balance synchronous whirl response of a rotor in the
fundamental rigid support mode region. Particular attention was given to determine
the conditions under which backward whirl response can be present in a rotor and as a

limiting case, the damping in the bearings is ignored.

Fluid film bearings commonly used in heavy machines, play a significant role in
the dynamic behaviour of the rotor. Because the thin film that separates the moving
surfaces supports the rotor load, it acts like a spring and provides damping due to squeeze
film effect. The stiffness and damping properties of the film significantly alter the critical
speeds and out of balance of a rotor. In addition, the rotor instability occurs, which
is a self excited vibration arising out of the bearing fluid film effects, and this is an

important factor to be considered in the rotor design.

The subject of fluid film lubrication is very broad concerning hydrodynamic, hydro-
static or hybrid bearings, with a compressible fluid medium such as gas or an incompress-
ible medium such as a liquid operating in laminar or turbulent regimes. Moreover, the
geometry of the bearing, eg., plain cylindrical, elliptical, multi-lobe and tilting pad
type, is also considered while evaluating the steady state or dynamic characteristics of

the bearing.

Rao [24] studied the effect of cross-coupled spring coefficients of a hydrodynamic



bearing of a flexible rotor in synchronous whirl. Depending on the values of cross-

coupled spring coefficients of the bearing he showed that:

1. There is a possibility of two distinct critical speeds in the fundamental mode region
of the rotor, when the two cross-coupled spring coefficients are positive or one of
them is negative. Under these circumstances, there is a backward whirl of the

rotor, for speeds in between the two critical speeds, and

2. There is no distinct critical speed as it is conventionally known when one of
the cross coupled spring coefficients of the bearing is negative.  Under these

circumstances the rotor has only forward whirl for all the speeds.

In the initial stages, one of the difficulties was that the only available solution of
Reynold’s equation was that of Sommerfeld for the infinitely long bearing, sometimes
modified by a suitable end leakage factor, and that the only calculations of rotor dynamics
was that of the first critical speed, using the methods of either Rayleigh or Stodola. In
the late forties, more advanced rotor dynamic calculation methods were developed, and
with the advent of the digital computers in the fifties, it soon became feasible at little
cost to obtain numerical solutions of Reynold’s equation and to perform elaborate rotor

calculations.

Even so, the concept of bearing coefficients was not immediately accepted, prob-
ably because the load-displacement characteristic of a journal bearing is so evidently
non-linear.  Experience, however, has demonstrated the practical usefulness of the
coefficients, and modern rotor dynamics calculations are firmly based on this concept.
The concept of stiffness and damping coefficients for journal bearings has proven very
useful, and modern rotor dynamics calculations for unbalance response, critical speeds,
and stability use this concept. The theoretical limitation of small amplitudes is of little

importance in practice.
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In order 1o study the effect of support stiffness and damping on the dynamic be-
haviour of a rotor, the Jeffcot model is used. This simplifies the analysis and gives fairly
good results for symmetrical rotors in the fundamental mode region. There has always
been some confusion as to what the term critical speed means. In the early work by
Rankine, Dunkerly, and others, it was observed that a rotating shaft had certain speed
ranges in which deflection of large amplitudes were developed. The shaft, rotating in
a non-oscillatory or simultaneously rotating and oscillating - deflected position, initiated
vibrations of the whole supporting structure and often caused catastrophic failure of some
part of the system. Hence, those particularly dangerous operating speeds became known

as critical speeds.

The dynamic response of rotors to residual unbalance is of vital interest to industry.
In the vicinity of a critical speeds of the rotor, the response is quite large and hence,
the normal steady state operating speeds of the rotor must be away from the criticals.
When the rotors are mounted on hydrodynamic bearings, the evaluation of the damped
critical speeds and the unbalance response is quite complicated due to the asymmetry
in the direct and cross-coupled stiffness and dainping coefficients in the horizontal and
vertical directions. Also. these coefficients are dependent on the operating speed of the

rotor [22, 23].

The response of rotors in the fundamental rigid support mode region has been
investigated by Rao [24], Rao, Bhat and Sankar [25] employing a Jeffcot rotor model.
In their investigations, the rotor disk was at the center of the shaft and two identical
fluid-film bearings supported the rotor at the two extreme ends. Their study was limited
to response evaluation for synchronous whirl conditions only. However, in practice,
the rotor may not be mounted exactly at the shaft center and the bearings supporting
the rotor ends may not be identical due to practical limitations imposed in the design
stage or due to tolerances in production. When the disk is not at the center or when

the bearings are not identical, the rotor is likely to exhibit a coupled type of behaviour
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with the two ends of the rotor having different orbital motions. Unstable vibrations of
an unsymmetric rotor system were studied by Yamamoto, Ota and Kono [26].  Also,
an asymmetrically mounted rotor on dissimilar bearings was investigated by  Ardayfio
and Frohrib [27] using energy methods. But, their investigations did not include the

cross-coupled stiffness and damping of the fluid-film bearings.

A study of the journal response at the bearing locations is important since this
response must be small compared to the bearing clearance for the satisfactory operation,
Hence, the bearings have to be designed considering the rotor response at the bearing lo-
cations. Subbiah, Bhat and Sankar [28] studied the critical speeds and unbalance response
of a single mass rotor, mounted on dissimilar fluid-film bearings at the ends. The direct
and cross-coupled coefficients of stiffness and damping at the bearings were included in
the analysis. An energy method was used to develop the system model and Lagrange’s
equations were utilized to derive the equations of motion. The dissimilarity in bearings
was achieved by having different bearing clearances at the two ends and by varying the
disk position. They also studied the damped critical speeds and unbalance response of a
laboratory model of a single mass rotor for different combinations of clearances for the
two bearings and for different disk positions. However, the rotor response at the two
bearing locations will have different magnitudes and phase. The dissimilarity in the two
bearings influences the unbalance response significantly, and the peak response to some
extent. Also, the rotor may change its behaviour either showing a single peak in its

response or a double peak.

The term forward whirl is used in literature to describe the classical orbital motion
of the shaft where the shaft center has zero apparent rotation in the rotating system of
coordinates. Another often-mentioned rotating shaft motion is that of reverse precession
or backward whirl. This term is used to describe a situation where the shaft center
viewed in the fixed system follows a path whose direction of rotation is opposite to

that of the true shaft rotation and at the same frequency as the rotational speed but in
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the opposite direction. It is generally much more difficult to excite the reverse whirl
or backward whirl than the forward whirl.  Eubanks and Eshleman mentioned that
Lowell was able to excite backward whirl (reverse precession) with pulsating torques.
Dimintberg [32] showed that mass unbalance may cause a shaft center line to precess in
a direction opposite to that of the shaft rotation, but with the same speed, provided that
support elasticity is different in two directions perpendicular to the shaft. This occurs
at operating speeds between two classical, forward-whirl critical speeds and is not a
resonance phenomenon. However, the forward or backward precession, as viewed in

the rotating system, occurs at integer multiples of rotational speeds.

Jeffcot investigated the dynamic response of a central unbalanced rotor carried on a
flexible shaft supported in rigid bearings. Such a Jeffcot rotor, when supported in rigid
bearings having stiffness asymmetry, has been shown to whirl in the backward sense
for a speed range lying between the critical speeds [2]. Considering the unequal cross-
coupled stiffness coefficients of a hydrodynamic journal bearing and neglecting damping,
the backward whirling motion of a Jeffcot rotor supported in a hydrodynamic journal
bearing has been shown to occur only when the system has two split critical speeds, and

it occurs in between the two critical speeds [24, 29].

The stiffness anisotropy of bearings, in the absence of damping, can cause back-
ward whirling in a Jeffcot rotor, in between the critical speeds, [3, 32]. The stiffness
asymmetry of the supporting bearing has a destabilizing influence, and when it is suf-
ficiently small, the backward whirling is still bound to occur in between the critical
speeds, [24, 29). The damping effect of the fluid film which has a significant influence

on the dynamics of the rotor was neglected in these investigations.

The damping in such a journal bearing is not negligible and such a rotor has been
shown to have at least one critical speed [30]. With both the stiffness and damping

characteristics of the journal bearing taken into account. it can be shown that the rotor
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exhibits backward whirling motion for some particular range of the parameters of the
system. Kellenberger [31] considered the anisotropic action of the multi-slide bearing
and found that the oil film damping alone is apparently insufficient to prevent backward
whirl in the region w/w, = 0.85 t00.95. At the present time there are many rigid rotors
operating close to this region and it is worthwhile to identify more precisely the system
parameters affecting backward whirl so as to minimize the resulting problems. Rajaling-
ham, Ganesan and Prabhu [33], studied the necessary conditions for the occurrence of
backward whirling motion of a Jeffcot rotor supported on full cylindrical journal bearings

of b/d = 0.75 in dimensionless form.

Studies using the stiffness and damping characteristics of the supporting hydrody-
namic bearings, showed that the combined influence of the stiffness asymmetry and the
damping could suppress the occurrence of the backward whirling, when the flexibility
of the rotor is sufficiently small [33]. Further, the backward whirling of the disk could
be eliminated either by increasing the slenderness ratio of the bearings or the viscosity of
the lubricant, or by reducing the clearance ratio of the bearings.  Excessive flexibility
of Jeffcot rotor supported on fluid film bearing causes the disk to whirl in the backward
sense for a speed range in between the critical speeds. As the disk whirls in the backward
sense in between the critical speeds, the journal continues to whirl in the forward sense
[34]. Rajalingham, Bhat and Jha [34] showed that, the backward whirl commences at
the disk and as the speed increases, it extends over a certain central portion of the shaft

and then shrinks back towards the disk before disappearing.

The actual occurrence of backward whirl in turbo-machinery has been doubted in
the past [35], but modern instrumentation confirms that it does occur.  Backward whirl
was experimentally observed by Subbiah et al. [42]. With light damping, backward whirl
is excited by rotor imbalance when the rotor speed is between two natural frequencics
split by bearing support stiffness asymmetry, for instance, (v < w < wy), where

« 1s the eigenvalue associated with the lower stiffness and ., is associated with the
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higher stiffness. Sufficient damping will make the backward whirl disappear.

Backward whirl is not a defect in itself, but it does occur and is usually indicative
of very light damping and operation between two critical speeds. Very severe rotor rubs

can produce violent backward whirl that can be quite destructive.

1.3 [Experimental Work on Rotor Systems

Compared to the several analytical studies available for the rotor bearing system in
the literature, very few experimental investigations are reported. One of the earliest
reports on the response of rotors using both analytical and experimental methods on the
response of rotors using both analytical and experimental methods was by Yamamoto
[36]). He studied the vibrations of a rotor system supported on ball bearings. Most
of the refereed work on practical rotors supported on hydrodynamic bearings does not
satisfy conditions for a clear backward whirl, hence there were not many experimental
investigations on the existence of backward whirling. in 1957, Downham [37] showed
that a shaft, rotating in bearings having different support stiffnesses in the vertical and
horizontal directions, whirls backward in the range between the critical speeds. He also
verified experimentally that there were two critical speeds in rotor systems supported
on such anisotropic bearings. He found that the lubricant had a stiffness effect with a
consequent increase in critical whirling speed. Hull [38] observed experimentally this
backward whirl for a rotor driven by a lathe and supported on an outboard bearing held
between two vertical springs in tension giving rise to asymmetric bearing stiffness. By
using elementary apparatus and instrumentation, he investigated shaft whirling for three
cases involving round and flattened shafts in combination with isotropic or anisotropic
bearing supports. Where anisotropic bearings support a round shaft, he found that
backward single-frequency whirl is necessary between the two critical speeds because

the unbalance phase angle must change from zero to 180 deg. and again to zero twice
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per shaft revolution. The displacement trace at resonance is a slanted line which involves
no angular momentum of whirl.  For a second case of symmetrical stiffness bearings
supporting an asymmetrical stiffness shaft, he found that three phase changes occur. On
passing through the half- critical speed the double frequency, forward-whirl deflection
changes 90 deg from in-phase with the soft direction of the shaft stiftness to in-phase
with the stiff direction. These phase changes are overridden as the unbalance phase
angle approaches zero in preparation for passing through the full- critical speed which
is accompanicd by the unusual 180-deg phase change. For a third case of asymmetric
stiffness bearings supporting an asymmetric stiffness shaft, he found that between the
horizontal and vertical half critical speeds the shaft finds itself above critical in horizontal
excursions but not when moving in the vertical direction. He observed four 90-deg
stiffness phase-angle changes per whirl revolution forcing a backward whirl at twice the

shaft angular frequency.

Lund and Orcutt [39] conducted a combined analytical and experimental study of the
test rotor, a uniform flexible shaft with disks, supported on two silicone fluid-lubricated
tilted pad bearings. They found that peak vibration response did not always occur at
the calculated damped critical speed. Cunningham [40] presented the experimental data
for the unbalance response of a flexible, ball bearing supported rotor. He compared
the values of squeeze film damping coefficients obtained from measured data to those
of theoretical values. Subbiah {41] obtained experimentally unbalance response and
critical speeds of a laboratory model simple rotor supported on hydrodynamic bearings
and compared them with those obtained through theoretical analysis. The exp-rimental
results did show a good qualitative agreement with theoretical results.  Subbiah, Bhat,
Sankar, Rao [42] verified the existence of backward whirling motion experimentally with
the aid of a laboratory model of the rotor supported on two identical bearings.  They
designed the rotor system to exhibit backward synchronous whirl.  Non contact type

proximity pickups were used to measure the unbalance response. A FFT analyzer was



used to obtain the orbital diagram with X-Y plotter. The rotor-bearing system exhibited

the split criticals, and they verified the existence of backward whirling between the split

criticals by the direction of plotter pen motion on the plotter.

1.4 Scope of the Present Investigation

The objectives of the present investigation are to study the simultaneous forward and
backward whirling of a simple rotor mounted on fluid film bearings. To this end, the

following studies are carried out.

1. Formulating a finite difference model for the solution of Reynold's equation and

calculation of stiffness and damping coefficients of the journal bearing.

2. Response analysis of a Jeffcor rotor supported on two identical hydrodynamic bear-
ings and investigation of the simultaneous existence of forward and backward

whirling motion.

3. Response analysis of a Jeffcot rotor supported on dissimilar hydrodynamic bearings
and investigation of the simultaneous existence of forward and backward whirling

motion.

4. Experimental investigation of the existence of simultaneous forward and backward

whirling motion.

In Chapter 2, the pressure distribution in a journal bearing is computed by solving
the Reynold's equation using a finite difference model. Ocvirk’s Short Bearing theory
and Sommerfeld's Long Bearing analysis are applied to find an approximate solution to
Reynold’s Equation. The solution is later approximated using one-dimensional analysis

and later with two-dimensional approach to obtain the actual pressure distribution. The
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load carrying capacity of the journal bearing is derived from the hydrodynamic pressures
produced in the lubricant by the shearing action of a rotating journal. Stiffness and

damping coefficients associated with the journal motion are determined.

In Chapter 3 the unbalance response of a flexible rotor-bearing system, comprising
a horizontal shaft and a central rotor, and supported on identical journal bearings at
its ends, 1s investigated. The closed form solution to this problem enables better
understanding on the cause of the backward whirling motion of the shaft. Simultaneous
forward and backward whirling motion of the shaft, for a speed range in between the

critical speeds of the system are studied.

In Chapter 4 the response analysis of a rotor supported on dissimilar bearings
is carried out. The governing equations of unbalance response are derived using Euler
Bernoulli Beam Theory. Gyroscopic forces are considered in the analysis. The resulting
system of linear equations governing the rotor system is solved and the simultaneous

forward and backward whirling motion of the rotor is studied.

Chapter 5 deals with the experimental verification of simultaneous forward and
backward whiling motions of a laboratory model of a simple rotor supported on two

identical journal bearings.

Finally Chapter 6 presents the conclusions and contains suggestions for future in-

vestigations.
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Chapter 2

Calculation of Stiffness and
Damping Coeflicients in a
Hydrodynamic Bearing

2.1 Introduction

Fluid film bearings commonly used in heavy rotating machines play a significant
role in the dynamic behaviour of the rotor. Swdies of the dynamic behaviour of rotor
rely on an accurate representation of the bearings. The load carrying capacity of fluid
film bearings is due to the hydrodynamic pressures developed in the lubricant by the
shearing action of the rotating journal. The thin film separating the moving surfaces
supports the rotor load, it acts like a spring and also provides damping due to squeeze
film effect. The stiffness and damping properties of the oil film significantly alter the
critical speeds and out-of-balance response of a rotor. In addition, a form of rotor
instability, which is a self excited vibration arising out of the bearing fluid film effects,
occurs. Hence, the calculation of stiffness and damping coefficients of the hydrodynamic
bearing is of utmost importance for the present investigation. These dynamic coefficients

are calculated from a finite difference solution of the governing Reynolds equation for
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the pressure distribution in the bearing film.

2.2 Finite Difference Model for Solving Reynolds Equa-
tion in a Journal Bearing

2.2.1 Reynolds Equation in a Journal Bearing

Reynolds equation which relates the variation of pressure in the lubricating film,
is derived under the hydrodynamic lubrication approximation. In bearings, the distance
across the film is very small compared to the longitudinal distance along the film. Fur-
ther, when the reduced Reynolds number is small and Froudes number is large, the
effect of inertia and body forces can be neglected.  Under this condition, pressure
variation across the film is negligible. For Newtonian lubricant with constant viscosity,

Reynolds equation reduces to following form:

3 3 !
0 [h C')p} 0 [/1 31)} ._(2”'_\' .1

dr 12900 | " 9= [1290:| T B0 2.

The Reynolds boundary conditions are often considered to be satisfactory for the
solution of the Reynolds equation. According to these conditions, the pressure dis-
tribution in a journal bearing is assumed to commence from the position of maximum
film thickness, and to extend up-to the point where the pressure and the pressure gradi-
ent are zero. The solution for the pressure distribution, under the Reynolds boundary
conditions, shows an abrupt development of pressure at the inict of the load carrying
film. Since due to the hydrodynamic action the pressure develops smoothly, it is more
reasonable to expect the pressure and the pressure gradient to be zero at the inlet of the

load carrying film also [43].
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Figure 2.1: Geometry of a Journal Bearing

The Joumal Bearing is the most common hydrodynamic bearing in use. Itis a
circular shaft (or journal) rotating inside a circular bearing. The inner diameter of the
bearing is between one and three parts per thousand bigger than the shaft It is very
important to ensure that enough oil gets to the bearing so as to keep it cool. The amount
of oil flow is important, as is the size and location of the minimum oil film thickness
[47].

The film thickness h at the location 6 shown in Fig. (2.1), is given by
h=c[l + ecosb) 2.2)

where € = e/c and c is radial clearance.

When the shaft and bearing are concentric ¢ = 0 and when they are in contact

€ = 1. The minimum film thickness hmn, at 0=, is given by [l — €].

Approximate solutions of Reynolds Equation are broadly classified into two cate-

gories, depending on the assumptions done regarding the bearing geometry as follows.



1. Bearing infinitely long [The Sommerfeld Bearing]

2. Bearing infinitely short [The Ocvirk Bearing]

The dimensionless Reynolds equation governing the pressure distribution in the lubricat-

ing film of a hydrodynamic journal is given as

' 23
5= T (2.3)

0,

2 [Fap], o [Fop) 1
12 96 120=| 200

where V7 is the non-dimensional squeeze velocity, given by
T = —€cosf — €9'sinf (2.4)

Here the superscript ( )’ denotes differentiation with respect to wt

Eqn. (2.3) neglecting the squeeze velocity term 1’ can be expressed in non-dimensional

form as
Fp 1dAdp &Fp C
@ rimo o=t 1! (25)
where
']—’3
4 = 5
, 100
C = =370 (2.6)

Although Eqn. (2.5) can be solved in two dimensions, a simpler one-dimensional

approach will be considered first.
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2.2.2 Approximate One-Dimensional Approach for Solving Reynolds

Equation in a Journal Bearing

For a Short Bearing, we can assume

9P 9P
o9 oz

Consequently, Eqn. (2.5) reduces to
77, ¢

g=ta0

which can be integrated and further simplified to

where, (* =%

;

Pressure at the center line of the bearing ie, at = = b/d = ) is given by

o= )

2.7

(2.8)

(2.9)

(2.10)

An outcome of Ocvirk’s short bearing theory is that the axial pressure profile is parabolic,

(Fig. 2.2). The pressure P at any arbitrary section AA in Fig. (2.2) is given by
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InFig. (2.3) the domain is divided into MX equal lengths of 6T such that 6T = 27 /ALY,

The discrete values of 75 at each node are the solution.

Differentiating Eqn. (2.11) twice with respectto =

Fp 2
i o [—— ,\2] (2.12)
Substituting Eqn. (2.12) in Eqgn. (2.5)
Fp 1 {dA] [0p 2 -
o [W} [m] ~|55]+ € =0 @19

Considering node i, an approximation to the differential Jp/3¢ can be made using the

local values:

(?p _ ]_)H-l - ]_)z—l
2] -2zt "

The second order differential also appears in the governing equation. This can be found

initially considering the first differential at the half nodes.

01_) _ .1_)101 _]—)1 —\
laﬂ]m/:_ = =X (say) (2.15)
0]_) _ T)x — T)t—l -V
[EJ,_W =T = Xy (say) (2.16)

The second differential can be found by differentiating these two values.
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Fp Ni-X2 PatDPo -2,
-4 = c = * = o)
08* &T o7 @17

Substituting these values in Eqn. (2.13), first approximation at center line of the journal

bearing is obtained as

11y i — A
2 [632 * ,\2] o= [1 i 4 ]p“'
1 )\ -414»1 - At-—l —
il {1 -1 1 ]p,_l +Ct

(2.18)

2.2.3 Two dimensional Approach for Solving Reynolds Equation

The domain can be divided into a two-dimensional grid and Reynolds equation (2.5) can

be written in finite difference form as :

=()

]—)Hl.] - 2751.1 +1—)1—1.] + [-414-1 - A:—l] [I_)HI./ - pt-—l.j] + pt,ﬁl - 27)1,; +Fn,1-l + Q
SNy
(2.19)

& 26T 4, 26T o632

Here p,, denotes the pressure at the (i) node in the fluid film. The above equation

can be simplified to

— _ 1 -_l_ l+_]—'.ll+]—'-1l—] - +_1_ 1 _]_Aul—At—l —
Py = 2(_!_+ ) .672( 4 .-l, )I)Hl,_, (".7‘2( - 4—"'"_—“4' )]), -'l.]]

1
T

1 :
T3 (& + &) &2 (Pryor e ) + ,T,] (2.20)

The first approximation for the two-dimensional analysis is calculated using the shor

bearing approximation [46]




P70 (1-33) @21)

where 75,, is the pressure at the center plane NZ, as calculated by one dimensional

analysis, from Eqn. (2.18).

Considering i represent T direction and j represent Z direction, from I ro NX (Fig.

2.3), the pressure distribution in the = direction can be calculated using Eqn. (2.21).

The pressure distribution 7, ;,  obtained in this way can be further refined using a

two-dimensional solution Eqn. (2.20).

2.3 Calculation of Bearing Characteristics
2.3.1 Steady State Characteristics

From the steady state locus of the journal, it is seen that although the load applied
on the rotor is always vertically down, the journal center does not move vertically
up or down. If the load is respectively released or increased, as in a conventional
spring system, the journal bearing behaves like an asymmetric spring offering also
a horizontal motion in addition to a vertical motion. The bearing is anisotropic in
character, offering different stiffnesses in different radial directions. Furthermore, if
the journal is oscillating, the velocity of the journal introduces time dependent terms
on the right hand side of the Reynolds equation which gives rise to squeeze film forces
corresponding to damping forces in a viscous dash-pot. These forces are also asymmetric
and should be accounted for in calculating the unbalance response of a rotor. Unlike
the material damping in the rotor which is small, the damping offered by a fluid film

bearing could be substantial and it is important to consider film damping in any analysis
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of the unbalance response of a rotor mounted on fluid film bearings. These stiffness
and damping properties have also a considerable influence on the instability of a rotor,

leading to a dangerous oil whip phenomenon observed in such rotors.

The load carrying capacity of fluid-film bearings derives from the hydrodynamic
pressures produced in the lubricant by the shearing action of the rotating journal. At
any given speed and, for a given value of lubricant viscosity, the film reaction force, is
a function of the journal center position relative to the bearing center (eccentricity). In

addition, it depends on the instantaneous journal center velocity (the squeeze effect).

2.3.2 Derivation of Dynamic Coefficients from Reynolds Equation

Reynolds equation with the inclusion of squeeze film term has the following form

o [Fop| o[Pop| 100
% [ﬁm}’fzﬁ[ﬁa—s =V-2% 2.22)

The Reynolds pressure boundary conditions for the pressure distribution in the load

carrying region are as follows [43]:

g =0 p=0
6 = 6, p=0, —g%=0

(2.23)

Since p = 0 at § = 6,(%), the component of the pressure gradient in the tangential

direction to the outlet boundary is zero. The condition # = 6,(%), Jdp/H = 0 is
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therefore trivial only when the tangent to the outlet boundary is in the circumferential
direction and, except for this trivial case, both the components of the pressure gradient

are seen o vanish on the outlet boundary.

The known solutions of Eqn. (2.22), obtained by using the boundary conditions
(2.23), show the commencement of pressure development from § = 0, under an adverse
pressure gradient, and this is meaningful only when the lubricant addition takes place
precisely at # = 0. This discontinuity in the pressure gradient could be removed by

restating the pressure boundary conditions as given below.

- —_q 9P_
b = 6, p=0 09—0
T o= =0
8 = b p=0, %=O
= b p=0

(2.24)

Since € = 6; (%) and 6
conditions # = 6 (3). Op/O¥=0 and 6 = 6, (3), Op/OF =0 could be considered

. (=) are not pre-specified boundaries, the additional

as conditions necessary to define the inlet and outlet boundaries.

Reynolds equation can be simplified to

o [Faopr]l olfop] 1 . .
5 [ﬁ 09]+E [E—OT +§e[sm()-—e cosf] =0 (2.25)
where
. 2¢€
e((1 - 2:9)
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1)’ = __]—)—.
(1 =23

(2.26)

Given ¢ and € and A=0/d the above Eqn. (2.25) could be solved with the modified

pressure distribution  p*, using the modified pressure boundary conditions listed below

[43]:
g = 6,3 p=0, 661; =0
- _ ) .
=5 p'=0

0 = 6,3 p =0, % =0
b

~5 p =0

Ll
|

(2.27)

The radially inward and the transverse force components P, and F; acting on the journal

due to the hydrodynamic pressure are given by

PC * ] + -
m = P, -m//p cos 8did=

P, L] .
m = P‘ —Zm//]) sdeé’d:

(2.28)

Now P, and P*, are functions of ¢ and € and b/d. For sufficiently small

¢*, the modified force components I>* and P," can be approximated as [43],
]): f= 5( + G'Dc
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P& =5+¢€D,

(2.29)

Sev Ssy, D, and Dy are independent of €. Using Eqn. (2.28). Eqn. (2.29) can be

rewritten in the alternate form as

P o= S.(1-23)+e (1 -24) D,

(2.30)
substituting
/
€(1-29)= 2
€
2 2
P =S5"+-D"€¢ ~=5"¢?
€ €
2 2
P =5"+-D¢ - =57
€ €
(2.31)
For the steady state, ¢ = 0 and ¢4 = 0. Thus the Sommerfeld number and the

attitude angle are given by

So=1/S"+5.? (2.32)
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% = tan”! (%;)

Displacements in the radial and tangential direction are given by

RY

L -
Ny =— = e
=

Y,

T]) = T = 66’3

The restoring force component for displacement X,

s5¢ = B0t 506
' Oe
&Sy, = 95, Je+S5.2¢.3
! b€
or
6Sx, _ 10S° . S

S S O 6e+-§.;eé/3

B o L0 5 g5

‘Sll —.S;—bf— S()f

(2.33)

(2.34)

(2.35)

(2.36)

The stiffness coefficient matrix with respect to the radial-transverse frame J.X,Y,, shown

in Fig. (2.4), can be evaluated from S.” and S,* as

L[ @500 (S /e
K==

S| 08,1 /00 (5o

3

-~

(2.37)



From Eqn. (2.30), the damping coefficient matrix with respect to the radial-transverse

frame can be written as

2 ‘a _Spa
?',,=—{_%S. e ] (2.38)

Transforming the stiffness and damping coefficient matrices from JX,Y", to JXY frame

as shown in Fig. (2.4) results in

K1 = 1TV R,NT) (2.39)
and
[Tl =TI [T T (2.40)
where
cos 7 sin.d
[T]= [ —sin.? cos.g } (2.41)

2.4 Numerical Computation

For given values of b/d. € and ¢, Eqn. (2.25) was solved for »*, using the
modified boundary conditions (2.27), by means of a finite difference scheme. Intervals
of 7/45 and 0.05 in the circumferential and axial directions, respectively, were used
with an over-relation factor of 1.5. The computations were carried out for bid = (.25,
050, 0.75 and 1.00, € =0.10, 0.15, 0.20,....., 090 and ¢ = -0.2, -0.1, 0.0, and
0.2. The modified force components I>* and P,” were evaluated using Simpson’s

rule.
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By fitting the fourth degree polynomials in ¢ for P and P,” the quantities
Se. Sy D.. and D, are evaluated. The derivatives of the quantities S.(1 —62)2
S(1-€é)* with respect to ¢ were evaluated by fitting the piecewise cubic interpolation
polynomials and the derivatives of S, and S, with respect to € were deduced. The
stiffness and damping coefficients were finally evaluated and the computations were

repeated using the Reynolds boundary conditions.

2.5 Results and Conclusions

The present computational scheme utilizes a more accurate method for the deter-
mination of the derivatives and is less prone to truncation error. Pressure distribution in
the journal bearing using short bearing, long bearing, finite bearing approach is eval-
vated, and a comparison between short bearing and long bearing is done for different

b/d ratio’s, and represented in Figs. (2.6 - 2.13).

In Fig. (2.6) pressure distribution in a journal bearing for a b/d ratio of 0.25 is
plotted using the short bearing approximation. For the purpose of comparison, the mea-
sured pressure distribution by the finite bearing approach is shown in dotted line. Similar
results are shown in Figs. (2.7 - 2.9) for bearing of b/d ratio’s 0.50, 0.75 and 1.00, re-
spectively. In all cases short bearing approximation gives a much larger value of pressure
around 6 = 165°. An approximation to pressure distribution in a journal bearing is
also made with long bearing approach and the results are depicted in Figs. (2.10 -
2.13). Compuarison is made to finite bearing distribution in dotted line in the same
plot. The results are represented for b/d ratios of 0.25, 0.75, 1.00 respectively. The

long bearing approximation gives a smaller value of pressure in all the cases discussed.

In a bearing the make-up flow, ie. the top side leakage, is a very important

quantity which is the oil that has to be pumped into the bearing to keep it full. This
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fiow is made up of two components, the first is the difference between the oil flowing
at the start of the pressure curve and the finish. The second part is the oil that flows out
of the bearing near the entry, due to the pressure feeding. The Fig. (2.19) represents

the plot of flow rate vs. eccentricity ratio € for a b/d ratio of 0.75.

There is a direct relationship between Sommerfeld number So and eccentricity ratio
€. As e increases, so does Sommerfeld number proportionately. Fig. (2.15) shows a

plot of Sommerfeld number vs. eccentricity ratio for a bearing of b/d ratio of (0.75.

In Fig. (2.16) the complete computed results of eccentricity ratio vs. attitude angle
are plotted for a journal bearing of b/d ratio of 0.75. Such a plot is often called “the
equilibrium semi circle’. This plot enables the location of I, to be determined for a

particular b/d ratio.

Variation of direct stiffness coefficients K,,. I\, and direct damping coefficients
Crre ?’_,,y with respect to Sommerfeld number So is shown in Fig. (2.17) for a bearing of
bid = 0.25. The value of the direct stiffness Iv,, is found 1o increase with the increase
of Sommerfeld number, whereas T\‘_,,,, decreases slightly, remaining almost constant
over a wide range of Sommerfeld number. Direct damping coefficient C',, decreases
with increase in Sommerfeld number to a limiting value of Sommerfeld number, and with
any increase above this value, C';, also increases, whereas (', decreases gradually

with the increase in Sommerfeld number.

Cross coupled stiffness and damping coefficients variation is represented in Fig.
(2.18). Cross coupled stiffness 7?,,, decreases with an increase in Sommerfeld num-
ber, and increases after a certain value of So. Negative value of the stiffness coef-
ficient —IT,,, over a wide range of Sommerfeld number is one of the major factors in
causing the backward whirling motion of the rotor. Cross coupled stiffness I, does

take a positive value at a higher range of Sommerfeld number. These results are com-
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puted for journal bearings having b/d ratios of 0.50, 0.75 and 1.00 respectively, and direct

and cross coupled stiffness and damping coefficients are plotted in Figs. (2.19 - 2.24).

Stiffness and damping coefficients of hydrodynamic bearings influence the un-
balance response of the rotor supported on them. The anisotropic nature of stiffness
coefficient results in backward whirling of the rotor between the critical speeds. It is
observed that the asymmetry of the damping coefficients remain negligible under the
modified boundary conditions. The stiffness and damping coefficients thus calculated
in this chapter are used in the following chapters in finding the unbalance response of
the rotor supported on hydrodynamic bearings and the occurrence of simultaneous for-
ward and backward whirling motion. In Chapter 3, the unbalance response and the
simultaneous forward and backward whirling motion of a Jeffcot rotor supported on two

identical bearings are analyzed and discussed.
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Chapter 3

Simultaneous Forward and
Backward Whirling Motion of
Rotor

3.1 Introduction

For a rotor supported on fluid film bearings, the reaction force of the lubricating
film depends on the position and velocity of the journal in the bearing. When the
Journal displacement is small, t : fluid film reaction can be represented by eight bearing
coefficients. A review of the concept of bearing coefficients is given in [22). For
a chosen bearing type, the non-dimensional bearing coefficients can be obtained by
solving Reynolds equation with appropriate boundary conditions, [23] In this linearized
representation of the fluid film reaction, the stiffness matrix is found to be anisotropic.
Consequently, the spring effect of the fluid film reaction eitner accumulates or dissipates
energy depending on whether the journal whirling motion is in the forward or backward
sense. This active spring effect of the fluid film reaction renders the rotor-bearing system

unstable when the speed exceeds a certain threshold speed of instability.

The stiffness anisotropy of the bearings, in the absence of damping, can cause
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the undesirable backward whirling motion of the rotor, for a speed range in between
the critical speeds of the system. Under certain conditions, the stiffness anisotropy and
the damping effect of the bearing can suppress the occurrence of this backward whirling
motion of the rotor. A Jeffcot rotor supported on two identical fluid film bearings is a

suitable rotor-dynamic model for such investigations.

In the present chapter, response analysis of a horizontal Jeffcot rotor supported on
two identical fluid hlm bearings is carried out. Conditions for the backward whirl motion
of the rotor lying in between the two critical speeds is derived. The investigation shows
that the journal center always orbits in the forward sense, and that excessive flexibility
of the rotor and bearing anisotropy are the cause for the backward whirling motion of

the rotor.

3.2 Study of Simultaneous Backward and Forward Whirling
motion of Disk and Journal in a Jeffcot Rotor Sup-
ported on Two Identical Hydrodynamic Bearings

3.2.1 Governing Equations

A flexible shaft, carrying a central rotor and supported on identical journal bearings
at its ends, as shown in Fig. (3.1), is considered for the theoretical investigation. Since
the aim of the study is to investigate the influence of the bearings on the synchronous
unbalance response of the rotor, this investigation is restricted to the symmetrical whirling
motion of the rotor. When the whirl amplitude is sufficiently small, the fluid film force
on the journal can be represented by eight stiffness and damping coefficients.  For rotor
dynamic investigations it is convenient to have these bearing coefficients tabulated as

functions of the Sommerfeld number.
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For the rotor system rotating at a constant speed & with respect to the Cartesian

reference frame Jo.\'}™ as shown in Fig. (3.2), the equations of motion given by

miy + ke (0, —2,) = mutécoswt + myg (3.1

miy + ke (i —y,) = muFésinwt (3.2)

ko (v, —ay) = 2(hyya) + bygy, + cudy + cgll)) + g (3.3)
k(i —y)) = 2(hypry + gy, + oy + cpily) (34)

The subscripts j and r in Eqn. (3.1 - 3.4) refer to the journal and the rotor respectively.

The steady state positions of the journal and disk centers are

r,oo= 0 Yy, =0

Xy

mgfls y =0

In the derivation of thc above equations, all damping effects, other than that provided
by the bearings, are neglected. The equations of motion (3.1 - 3.4) can be rewritien

in non-dimensional form as

o (2 &

T, + 3 (‘l-' _ ’j) = ;COS it (’35)
—_ 1 ""‘32 — - (“ .

7"+ (S5 ) (5 -7) = - sinw (3.6)



: ) 2 oy, —_— . 3
(F) —TF)) = (w) (1\,,.7, + T3, + Coum)' + ny]’) (3.7
-— — u"‘Oz . — -/ -
@ -7) = &5 (R, + Ty, + TuT)' + Tu)) (3.8)

8

In Eqgns. (3.5 - 3.8) the superscript ()’ denotes differentiation with respect to wi.
The terms on the right hand side of Eqns. (3.5, 3.6) represent the synchronous unbalance
excitation of the rotor-bearing system. From a stability point of view, the response of
the system can be regarded as the superposition of the characteristic transient whirling

motion and the synchronous unbalance response associated with the excitation.

3.2.2 Unbalance Whirling Motion

Under steady state conditions, the unbalance response could be expressed as

T, = (;) {a,coswt + byrsinwt} (3.9)
U, = (é) {a,,cos wt + b, sinwt} (3.10)
T, = (g) {a,,cos«t + b, sinwt} (3.11)
Yy, = (-S) {a, ,cost + b,,sinwt} (3.12)
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The eight coefficients «,,. aj,. ... etcin the above steady state solutions can be obtained
as follows. Substituting solution (3.9, 3.11) into the Eqn. (3.5) and equating the sine

and cosine coefficients results in

ANMay, = apn) = pi(a,y + 1) (3.13)
Aty — dy) = paay, (3.14)
where,
*02 (‘\'\
. = 3 = T
o\ &

Since p, is the ratio of the static deflection of the rotor shaft to the bearing (radial)

clearance, it is termed as the flexibility parameter of the rotor-bearing system,
Similarly for y co-ordinate, substitution of Eqn. (3.10, 3.12), in 1o Eqn. (3.6) results
in

ANy = by) = s (3.15)

Aby = byy) = g by + 1) (3.16)

Eqn. (3.13 - 3.16) can be rewritten in matrix notation as

[a,, } - (1 . &) r ] + (Zﬁ) [ ] ] (3.17)
yy A 1y A 0
I)“ = (1 + /_I_:) ,)J" + (L{:
b"l N I)Jl/ A
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Substituting Eqns. (3.9 - 3.12) into Egn. (3.7, 3.8) results in

(ary — A1) = Jiy (F”uj, + Nyya,, + Crbyr + ?beJy) (3.19)

(a4 — @) = Jis (Fy,(l_,, + K,a,, + Cyzbyr + C'yybjy) (3.20)

(b, — b))

/l.‘) (—?IJ‘(IJJ - ?Iy(l_,y + RIijI + Rzybjy) (3.21)

by — byy) = /1,(—?’,,,(11, - ?yy(lju + -Fy,bﬂ + -Kyyb]y) (3.22)

The eight linear simultaneous equations (3.17 - 3.22) in the eight unknown coefficients

can be used to solve for the unknown coefficients.

Substituting Eqn. (3.13 - 3.16) in Eqn. (3.19 - 3.22) results in

() + 1) = /\(7{'“(1]J + Ny, + Crrbyr + Z",;ybjy)

)y = /\(]\y,u,, + Iy, + Z'ylbjr + Zryyb_,y)

I)J, = A (—?11“11 - ?Ju“}u + -I;‘”"bJI + nyb-’y)

(hy + 1) = /\(—?w”u - ?yu(’w + T“yrbﬂ + _Kyybﬂ/)
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The above equation can be rewritten in matrix form as

] o] -

7_;‘1‘] z_{‘zu jl I:”u

LK, I,

“,IU

be 1. [0] [T Tyl K. K.
Mt AR b R

Symbolically, Eqns. (3.23, 3.24) can be written as

4, + U = AR, + ACB,

B+ 1> = -AnC4, + ARB,

Using the notation

1, = A - B
N = T+ C
O = U - ja

Egn. (3.25, 3.26) reduces to

The inverse of the matrix [AN — 1] can be expressed as
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-l 1 AN, +jCy) =1 = ANy +3C2y)
WE=I1]7 = 5D | AL T AR T m1 | G
where
D; = ] - /\.]1 + Az(.]3—J4)
Dy = —AL+ AJs
Substitution of Eqn. (3.28) into Eqn. (3.27) gives the expression for .-Ij as
1 2 DD [ (AR =T =1} + JA R+ jCy) (3.29)
- D A (ij -?'u) - ]{A(Y;‘rr'*'t;yr) - 1} ’
where
D={1-nh+ /\3(,13—.14)}2 + NS — AJs) (3.30)
Equating the real and imaginary parts of Eqn. (3.29) results in
UG | 1 Di{n(ly,, - ?'Iy) -1} + Dy A (-IT,y +Z'yy) (3.31)
”jl/ D "‘Dl A (FUI _zr,“) - DZ{/\(Fz‘r'*'z—"yz) - 1} '
by | _ 1 [ =Di A, +Cy) + DAy = Ciry) — 1) (3.32)
bjy D Dl {/\(FJJ +?U1) - 1} - DZ A (T\‘yr ""t"zr) '
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3.2.3 Orbit of the Journal Center

The algebraic area enclosed by the elliptic orbit of the journal center can be writ-
ten as wé%(a,zb,y, — b,ra,) (See appendix A). Thus the orbit of the journal center
in the forward sense when, (a,;b,, — b,,a,,) is positive and is backward when

(@;2b,y — b,ra,,) is negative.

Substituting for a,;. a,,. b,r. b, (3.31 and 3.32), gives

ay by = byya,, = GiI(A) (3.33)

where

Gi(A) =1 — ACH = By + Al + Jy — Jy) (3.34)

By investigating the sign of the quadratic expression Gy, it is possible to estab-
lish whether the journal is executing backward whirling motion or the forward whirl. The
quantity G} is found to be positive for all values of A and for values of ¢ = (.10, ...,0.90.
Thus for the eccentricity ratios in the working range of hydrodynamic journal bearings

the whirling is always forward.

3.2.4 Orbit of the Rotor Center

The orbit of the rotor center is in the forward or backward sense according as

(ay by = byyayy) % 0 (3.35)

The co-ordinates 7. 7§ at any point on the rotor shaft are given by the expression

(See Appendix B)

~

T, o+ T, - )
g o= 3, +uFy - T) (3.36)
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Using Eqn. (3.36), expression for (a,,b,, — b,,ayy) can be written as

ayby — by = oy + Ua, = @) by + vy — b))

[bj, + v, - 1)) [a)y + Uary — ayy)) (3.37)

This can be simplified to

by — brayy = (a,by, — brayy)
+  vlaghy, + by — brag — byay)
+ 12 (tsrhsy — bsraagy) (3.38)
Here (a,, - b,,) represent relative displacement of the rotor with respect to the

journal, which is given by

Uy = U, —~ U

.y Uy - Uy

by = b — bp

bsy = b'.u - bJ.U

Using Eqn. (3.13 - 3.16), the Eqn. (3.38) can be written in an alternate form as

(a,rbyy = by ay,)

ayeby — byyay,

IR
+ -——j\—‘{(alJ + Dby + a(byy + 1) — bay, — bra,,)

I )
g

t3 {a)y + Dby + 1) = ayb} (3.39)

The whirling of the rotor is forward or backward according as

Vil
(@uby — bpay) + "/!\' {ta;r + b)) + 2(ayhyy ~ byea,)}
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.
17 11

+/\2

{1 + (a,; + b)) + (ay by — by} 20 (3.40

Using Eqn. (3.31, 3.32), the various terms in Eqn. (3.40) can be simplified as follows:

1
((l), + b)!l) = —5[{/\(.71 -5 - 2}D1 + AL+ .](,)D:]
1 )
@by = bpty) = 5 [1 + A = B+ AL+ g - )

I

!
(s +by0) +2(0,ehyy = byuayy) [—)/\[(Jl + J7)
— A+ R = Iy = ade - Ady + 2y)

+ AN{Ch = I = J) o+ SsCh - D))

= %G’z(/\) (3.41)

2
1+((IJ_-,-+I}”/)+((LJ,’)J,I—I)J_,(IJ”) = %I(.]:; + .]4 + .]].]7 - .Iz.l(, - Jt))
- /\{(-]] + S - Jo + Is(h — ,(,)}
+ A = T+ Js))

- %G;m ) (3.42)
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Substituting these values in Eqn. (3.40), the point on the rotor whirls in the forward or

backward sense according as

GN) = GiA) + vps Gi(A) + PultGa(n) 2 0 (3.43)
where
G = 1 — AN = )+ A+ Ty = T (3.44)
G(N) = (L + J) = AN+ B - LG+ by — 4dy + 20)

+ NS = JCh = J) + Js(h - T} (3.45)

(.]3 + J4 + .]1']7 — J2J6 — Jg)
- AN+ I = Ja) + Is(h - Je))
+ A(B = J) + I (3.46)

3(A)

From conditions (3.34, 3.43), one can easily verify that for the case of a very stiff
shaft or a rigid rotor (;i;), the journal center and the rotor center orbit in the same
sense. For any given ;i > 0, the admissible values of A must satisfy the condi-

tion (A + yi,) = (WP, /.7 > 0.

Thus, from condition (3.43), one can deduce that the transition from forward whirl o0

backward whirl, or vice versa, occurs when A and i, satisfy the conditions

G+ Gogt, + Gapp = 00 g >0, (A + pg) >0 (3.47)

3.3 Numerical Computation

Computations are carried out for b/d = 0.25, 0.50, 0.75 and 1.00; and € = 0.10,
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0.15,...0.90. For chosen values of b/d and ¢, the values of A for which G} = 0,
G =0 Gy =0 and (G* - 4G,G5) = O are obtained. The range of A for
which (G + Gaps + Gip?) = 0 has at-least one positive real root for ju,, s
then computed using a A interval of 0.001. For every value of this ¢, the roots
of G(A) = 0 corresponding to the flexibility parameter, i, = 0.001, 0.005, 0.01,
0.05, 01,05, 10, 5.0, 10, 50 and =/l = 0.05, 0.10, ..., 0.50 were noted, and the
values of speed ratio w/w, and load parameter Soy, were evaluated from the relations

wlws = fsf/(A + ,us)% and Sy = Sof(A + poi.

3.4 Results and Discussion

The quantity Gj(A) is found to be positive for all values of A, implying that
the journal center orbits in the forward sense always. However for sufficiently large
values of € > 0.70, the Eqns. G(A) = 0 and GyA) = 0 were found 10
have real roots for A and hence condition (3.43) is satisfied. When ¢ is small, i.c.
for a rigid rotor, the rotor center orbits in the forward sense and therefore the region of
backward whirling motion of the rotor center will become prominent only if the value of

[ts exceeds the minimum value required for backwerd whirling.

The variations of limiting values of Swy for given values of b/d and i, defines
whether backward whirling is possible or not during the motion of a given rotor-hearing
system. The speed range corresponding to the backward whirl is likely 10 be reduced o

suppressed, in the presence of additional external damping.

The variations of the flexibility parameter with load parameter at the onset of the
backward whirling given by the coincident root condition of G = 0 at a point of the shaft,
is shown in Figs. (3.3 - 3.6 ). The different values of ratio z/[ represent the various

location along the length of rotor for the onset of the backward whirling. Flexibility
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parameter and load parameter values for a particular rotor configuration determine whether
the existence of backward whirling is possible or not.  The region above the curves
signifies the region of backward whirling motion of the rotor center.  Clearly there cannot
be backward whirling if the flexibility is less than the minimum value corresponding to
the disk for that load. When the flexibility exceeds this minimum value, there can be
backward whirling of the shaft at the disk and its vicinity. The results are computed
for various configuration of b/d ratios of the journal bearing.  Fig. (3.3) repiesents the
variation of minimum flexibility parameter for a b/d = 0.25. Similarly Figs. (3.4 - 3.6)
represents the flexibility parameter variation with load parameter for b/d = 0.50, 0.75,

1.00 respectively.

The load parameter, Sop , has been plotted against the speed ratio, w/w,, for
differcnt values of the flexibility parameter, ¢, in Figs. (3.7 - 3.10), at the disk
location. The plot of load parameter vs. speed ratio forms an envelope of region which
separates the zone of the backward whirling from forward. For the region below this
envelope, there cannot be backward whirl and it can exist for values of load parameter
or speed ratio above this region. It is scen that for a given load, the disk whirls in
the backward sense for a range of speed when the flexibility of the rotor is sufficiently
large. Similar transition curves could be drawn for points of the shaft and this clearly
supplements the observation made in Figs. (3.3 - 3.6). Itis also observed that when
flexibility parameter is very small, the load parameter has to be sufficiently large 1o
have backward whirling motion which is not the case when the flexibility parameter of
the rotor is sufficiently high. Fig. (3.7) represents the transition curves for disk for b/d
ratio of 0.25. Figs. (3.8 - 3.10) represent similar results of variation of load parameter
vs. speed ratio for b/d = 0.50, 0.75, 1.00. It is clearly evident that with the increasce in
b/d ratio, backward whirling region shifts to higher load parameter region, indicating
that one possibility of avoiding backward whirling phenomenon is to have a bearing of

higher b/d ratio.
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For the flexibility parameter ji, = 1, transition curves for the rotor are plotted.
These plots are repeated for various shaft locations, ie. for different values of 2/
values and shown in Fig. (3.11). It is seen that for a given flexibility when the load is
sufficicntly large to cause backward whirling, the backward whirling commences at the
disk, and as the speed increases, extends over to a portion of the shaft and then shrirks
back towards the disk before disappearing completely. The speed ratio for occurrence
of the backward whirl remains at a high value of 0.75 to 1.0. The same results are
represented in Figs. (3.12 - 3.14) for b/d ratio of 0.50, 0.75 and 1.00. With the
increase of b/d ratio, the load parameter shifts towards higher range for the occurrence

of backward whirl.

Transition curves for rotor for different shaft locations are repeated in Figs. (3.15 -
3.18) for a higher flexibility parameter p, = 5.0 for b/d ratio of 0.25, 0.50, 0.75,
1.00. Commencement of the backward whirling motion follows the same above pattern.
The increase in the flexibility parameter of rotor has a direct effect on increase in the
range of speed ratio over which the possibility of backward whirling occurs, from 0.4
to 1.0. Also backward whirl does occur at a lower load parameter, and only increase

in b/d does compensate this.

The effect of increasing the flexibility parameter to a considerably high value of
ji. = 50 is depicted in Figs. (3.19 - 3.22) for values of b/d of 0.25, 0.50, 0.75
and 1.0 respectively.  The result of making the rotor more flexible, results in increase
in speed ratio range over which backward whirl can occur from 0.1 to 1.0, and there is

also an decrease in the load: parameter.

The orbital behaviour of the rotor resulting from the unbalance response when
Sop =20 and i, = 1.5 at the speed w/w, = 09168 is shown in Figs. (3.23
- 3.28), for different locations in the shaft. For these system parameters, the rotor

will exhibit backward whirling motion between the critical speeds as represented by Fig.
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(3.6). Fig. (3.23) represents the orbit of the rotor at the disk i.c., at o/ = 0. Figs.
(324 - 3.28) represents the orbit for different location away from the disk.  The
whirling is backward over approximately the central two-fifths of the shaft. At the point
of transition from backward to forward whirling, represented in Fig. (3.26) for /1 = 0.3,
the whirl orbit becomes a straight line. The point of transition from forward to backward

whirl may be different for different set of system parameters.

Response plots for the rotor supported on identical bearings are shown in Figs.
(3.29, 3.30). For a rotor, with the load parameter of Sgp = (0.5 and flexibility
parameter of s, == 1.5, rotor exhibits single critical speed at 2650 rpm as shown in
Fig. (3.29). Rotor exhibits split criticals when parameters Scy and i, are changed to
3.0 and 2.0 respectively as shown in Fig. (3.30). The orbital motion of the rotor bearing
system as the direction of whirling motion changes from backward at disk to forward at

a shaft location is discussed in Appendix E.

3.5 Elimination of Backward Whirling Motion

Backward whirling motion of the rotor bearing system can be climinated, by
increasing b/d and by reducing Sop and i, as shown in the results presented in this
chapter. Hence the designer can suppress the backward whirling motion by increasing
b/d or 1 and by reducing ¢. The next chapter will discuss the dynamic behaviour of

rotors supported on dissimilar bearings.
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Figure 3.12: Transition Curves for Rotor : Plot of Load Parameter Sop, vs. Speed

Ratio w/w,, . = 1.0 and b/d = 0.50
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Figure 3.14: Transition Curves for Rotor : Plot of Load Paramecter Soxy vs.
Ratio w/w,, s, = 1.0 and b/d =1
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Figure 3.15: Transition Curves for Rotor : Plot of Load Parameter Sop vs. Speed

Ratio w/w,, s, = 5.0 and b/d = 0.25
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Chapter 4

Response Analysis of Rotor
Supported on Dissimilar
Hydrodynamic Bearings

4.1 Introduction

The response analysis of a Jeffcot rotor supported on two dissimilar bearings is
studied in the present chapter. The dissimilarities may have been introduced in the design
itself in the form of different loads on the two bearings or different bearing geometries.
Moreover, even if the two bearings are identical by design, the manufacturing precision
difficulties, wear, variation in lubricant flow rate and oil temperature could introduce
dissimilarity in the supportive bearings. The equations of motion of the disk are derived
using the influence coefficient method and the force balance at journal is used to formulate
the remaining governing equations. Euler-Bernoulli beam theory is used to obtain the
necessary influence coefficients associated with the displacement and rotation components
at the disk location. Gyroscopic couples are also considered in the analysis. The solution
for unbalance response is determined by solving the resulting system of linear equations

numerically.

84



The data corresponding to laboratory model of a single mass rotor supported on
dissimilar bearings are used to obtain the unbalance response for different combinations
of bearing ciearances. The critical speeds of the rotor-bearing system are identified from
the displacement components at the journal and the disk. Existence of the simultaneous

forward and backward whirling motion at the disk location is verified.

When a rotor is supported on identical bearings the analysis becomes fairly simple
due to the symmetry about the central plane. Also in the case of rotor supported on
identical bearings, slopes at the bearings are not considered and displacement components
at the two bearings are equal.  All these factors make the analysis in Chapter 3 a
special case of the present investigation. In the case of a rotor supported on dissimilar
bearings, the rotation at the disk center should also be taken into consideration in addition
to deflection . Also the displacements at the two bearings are unequal. Thus the analysis

is carried out using a continuous system model.

4.2 Study of Simultaneous Forward and Backward Whirling
Motion of Disk and Journal of a Jeffcot Rotor Sup-
ported on Dissimilar Hydrodynamic Bearings

4.2.1 Equations of Motion
Figure (4.1) shows a schematic representation of a typical single mass rotor sup-
ported on dissimilar hydrodynamic bearings at the two ends. The force and moment

component on this rotor is also shown in the figure. The bending moments at a distance

z is expressed as (Appendix C)

85



7/2 Px +C x/L

; S L
t o
X
Figure 4.1: Bending Moment Diagram for X - Z Plane
PE, ] 1\ R [ , 1°
EIZY = - (EP’ - 76,),- + P, [~ - 2] - G,[~ - 5} (4.1)

where the closed rectangular brackets, [ ] is Macaulays notation [51], where the expres-

sion within the box bracket is considered only when it is positive.
Integration of Eqn. (4.1) gives

d§, 1 1 .\ = 3 1’ B
E[ = —(—1)_, - -GJ)'z" + 513, [., —_ —2-:| - G[~—§] + _41 (42)

dz
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Figure 4.2: Bending Moment Diagram for Y - Z Plane
Using the boundary conditions at z=0, & = & andatz=l, & = £, and simplification
yields the constants of integration as

2 1 2
2., -£ﬂ>+-(111 lca)’ “ipbalal aa

A
A,

277 T 7% 6" "%
EIEI’ (45)

Substituting the boundary conditions at z = 112, & = &, in Eqn. (4.3) and simplifying

results in

EI(ZEJ‘(' - En - frl)

%RP (4.6)

Using the boundary conditions at z = /12, d€,/d= = §,. in Eqn. (4.2) and simplifying
using Eqn. (4.4) results in

Eu - f)l _ _.l_ '
ET (6” - ; ) = 126,1 (4.7)
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Similarly for ‘y-z' plane (Fig. 4.2), the governing equations reduces to

I
EI (2 — &n - &y) = EZPyla 4.8)
EI (9yc _ fi-}@) - l—lzcyl 4.9)

The expression for the force components P,. P, and the moment components G,. Gy at

the disk location are given by

P, = MdAé.coswt — ME. + Mg (4.10)
P, = AMA&sinwt — ME, (4.11)
G, = =Juby (4.12)
G, = Jub, (4.13)

Substituting the expression for the force component P from Eqn. (4.10), into Eqn.
(4.6) gives

241 .
(2£JC - Err - Erl) = ? (ua'Z(SCCOSu)f - E:rc + g) (4.14)

Similarly efiminating P, from Eqn. (4.7) using Eqn. (4.11) results in

9

2

Q6 — & = En) = =5 (WPhesinwt — &) (4.15)

&

Substitution of the moment components G,. G, from Eqns. (4.12, 4.13) in Eqgns.
(4.8, 4.9) yields

((JN _ i_%é) - _fg (whye) (4.16)
(9!11 - él',—7—£w') = g( .rc) “4.17)



When 6, = 0, the particular solution

é.rl =0 ful =0 H.rc =0
EIT' = O Syl =0 Hy(' = O

54
,f“. = 1;-2—. syc =0

satisfies Eqns. (4.14 - 4.17).

Eqgn. (4.14) can be simplified to

— (g e . ¢
2 (S Wt | oo (G _oafl) DU (b G g
c c\ ¢ c\q wy? c ¢

Eqn. (4.18) can be written in non-dimensional form as

Jvz b - - 3 W,Z e
2 2 E,r[‘ + 2 re ﬁgn - 6511 = 2 2 (s(' CcOs LU’ (4 B 19)
Y Lo di

Similarly Eqn. (4.15) in non-dimensional form may be obtained as

uw?

- " - —_ - Ldz .
2= + 2 = T, — Ty = 23 Besinut (4.20)

Eqns. (4.16, 4.17) considering gyroscopic couple can be written in non-dimensional

form as
_ _ _ P
8, — t, + &, = —47;—20,,,.' 4.21)
_ _ —F o
Oy — @€, + TE, = 4]0, (4.22)
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4.2.2 Force Balance at the Bearing

Force balance at the bearings is expressed as

1 G, W

EPI - T - 7 = I\-n.lfrl + ]\-ry.lfyl + C’:t:r.lg.'tl + Czy.lfyl (4.23)
1 GU - - Al
E-Py - ’T’ = I\au.lfrl + I\yu.’fyl + ny,lérl + C:'yy‘lfyl (424)
1 'I W N ) s ;
'2'Pt + — - "'2" = ]\u.tfn - +I\.ry,r§yr + Cr.r,rfrr + Cry,rfyr (425)
1 G, . :
EPy -7 Ryro&or+ Kyyrbyr + Cyzrbar + Coyrlyr (4.26)

Substituting the force component term P, and P, from Eqns. (4.6,4.7) in Eqns. (4.23,
4.24) results- in

12E1 12E7 =& T . .
(“‘\J( - Eu - \CJI) - T 0, — E_& - = I\:rr.l‘frl + I\Iy.lfyl
B / [ 2
+ Cu,[érl + C’.ty,léyl
4.27)
12F1 12E71

Z (28 — & — &) — T(H!ﬂ S ful\ = I\’y”{rl"'l\’yy-’&yl
/

+  Cyribu+ Cyviby

(4.28)

Similarly substitution for the moment components G, from Eqn. (4.8), and G, from

(4.9) in Eqn. (4.25), (4.26) yields

12E] 12 EI o =& W . .
] (2&10 - fn E:l) (H.rc - 'g—lg> - _;’ = I\zz.rfzr + I\Iy,réyr

+ C'rr.rézn + Cry,réyr

(4.29)
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12E71
—P_ (2£yc - f.yv - Eyl) +

2 <
l_lf:[ (Hy( s Eul)

!

+

I\yr,r E.rr + I\yy.vsyr
Cur.rgrr + Clyyn Sy'

(4.30)

Using the non-dimensional stiffness and damping coefficients, Eqn. (4.27 - 4.30) can

be written in non-dimensional form as

2 (E.rc - FIEJI)

+
|
|

+ 9!](‘ =

- ?-,7" = 2/1, (T\‘rr,lfrl'*'F”/-lf!I')
. b (] i

+ 2, (_C'...lf,l +z'1!/‘1£y1)

-8, = 2 (7\‘.,1.15:1+7C!1y"5v1)

] -/ g =z !
+ 2, (Z-yf.lé.rl +Z’.w-'£.ul)

4 -

2/’.»' (FJ r,r—E.” +F1 y,'z!u)
-— -
+ 2/1, (?Jf.lfu +?1!IJ“5|/I‘)

2)1 (FWJZ:I + _Kyy.lzyl)
+ 2, ((',,,_,Z”I +Z",,,,,,Z_,,,")

4.2.3 Unbalance Whirling Motion

Under steady state conditions the

)
=
]

unbalance response can be expressed as

b .

— (c1,1c08 wt + b,y sin wt)
-

&, .

— (a,, coswf + by, sinwt)
.

— (ay cos wt + by sin wi)
P
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€, = % (ay cos wt + by, sinwt)
g, = % (a1,.c08 wt + bye sinwt)
Z':y,. = % (ayc cos wt + by sinwt)
0.c = % (¢r-cos wt + dye sin wt)
Pyc = % (CyeCcOS Wt + dyc sinwt)

(4.35)

Substitution of the steady state solution (4.35) into the equation of motion and equating

cos wi and sinwf terms from the left and right hand sides of Eqns. (4.19 - 4.22) results

in

W‘z - -
20, (1 — — | — Ty — Tl
g

2[),, (1 — ‘»&)22) - -(—1[)11 - Z-'lb.rf

.
20y |1 - = | = Tty — Ty
v

P

Wy
Cre — G Uy, + Ty
(11(‘ - -C-'rbx'l +-(-'lbrl
Cye — (i Uy + Ty

(1,,, -1, ])u, +?’11)y[
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(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)



Similarly, the substitution of (4.35) in

equating cos wf and sin .t terms in Eqns

20,0 — 2Cu, — oy,

2b;c — 20bn - di.

2ay. — 2Cy — ¢

2byr - ZZ'[I)y[ - (]y('

2a,, — 2¢,a,, + ¢,
[4

2brr - 27’1"’11‘ + (11(

20y — 2C,ay, + €,

2bye — 2,0, + dy,

+

equation of force balance at the bearing and

(431 - 4.34) results in
2/1,7\‘“.1(111 + 2/1~F1 vyt

2/ lsz—'rr,le 1+ 2/‘.4z-'.ry.lbyl

2/137?”‘11),) + 2/1,,7\“,_,,‘,1)_,,,

2/1.?’,,.10” - 2/1_‘?'1_,,‘1(1,,;

200Ny gy + 2/1\,77_,,.,,‘1(1”1

2/1,?'_,,,',1),, + 2/1,(',,_,,‘11)_”1

2/1.~7{‘yr‘lbrl + zlst.wJ”yl

2/ls?ur.l”11 - 2/1.'4?111/."’_1/1

21 a,, + 2;1.,7(',,,',-(4,,,

2/13?1 11 by, + 2/13?-' nr b!l"

20 Kpp by + 2/1.,,7?,.,,',.1)”1

(] (]
"‘2/1 s'_Cu aflyy — zllstf!/.f(l!l'

2/1,7;,,,‘,(1,, + 2/1,7?_,,,,,(@,
211 Cyrabr + 21,Cyy by,

2/191\—1/1,71)11 + 2/1s1\1/l;,1bur

. 1
2/“?4/1 ally, — zllszl/l/.l Ly,
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(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)



———7—7

Disk mass, 11 kg

Type of bearings Plain Cylindrical

Bearing diameter 0.0254 m

Bearing LIC ratio 1

Modulus of elasticity of the material of shaft | 2.15*¥10"' N/m*
Viscosity of oil 0.0241 N. sec/m*

Length of the rotor 0.5105 m

Disk diameter 0.2032 m

Shaft diameter 0.022 m

Table 4.1: Data for Computation

4.3 Numerical Computation

The system of Eqns. (4.36 - 4.51) thus derived in the above analysis, represents

typical single mass rotor system whose configuration is given in table 4.1.

The above analysis is carried out to obtain the damped critical speed and unbalance
response of the simple rotor in consideration. For the case, where the supporting bearing
clearances are unequal, the parameter ¢ = (q — c,.)/c, where ¢ = (¢, + c,)/2, is
used to express the dissimilarity of the end bearings in non-dimensional form. For the
bearing of h/d = 1.00, stiffness and damping coefficients thus computed in Chapter 2
are used. The unknown coefficients «y. by. ... ¢ye,cqc in Eqns. (436 - 4.51)
are computed by solving the real general system of linear equations, using the IMSL

subroutine LSLRG.

4.3.1 Sense of Whirling Motion

The unbalance response of the rotor can be calculated thus using the computed
value of coefficients «ayy. .... ¢gc in Eqn. (4.35). Similar to the analysis of a rotor

supported on identical bearings in Chapter 3, the area of the elliptic orbit at the left
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bearing is evaluated from the expression 7.'(5(2((1,11)_,,1 — bnay) (see Appendix A). When

the sign of this expression is positive, the whirl is forward and when it is negative, the

whirl is backward.

Similarly the sense of whirling motion at the right bearing and at the disk location
are evaluated from the area of the respective elliptical orbits, 6. (anby — bray,)
and 7r6c2(a”by, — breayc). Once again the sign of the area determines whether the whirl

is forward or backward depending on it being positive or negative.

4.4 Results and Discussion

In hydrodynamic bearings, the variations in bearing clearances alter the Sommer-
feld number which in turn, influences the bearing stiffness and damping coefficients.
Using the data for computation of the laboratory model, the computed value of load pa-
rameter and flexibility parameter respectively are 1.06 and 1.43. which with reference to
Fig. (3.6), the rotoris seen to lie in a region of forward whirl. The unbalance response
for this rotor is depicted Fig. (4.3) which shows a single critical speed. The correspond-
ing area of the whirl orbit at the disk and bearings is positive over the range of speed, of
rotor operation indicating forward mode of whirling for these system parameters of the

rotor, Figs. (4.4, 4.5).

Considering a rotor model supported on identical bearings ie, keeping the dissim-
ilarity parameter é = 0. the load parameter S, and flexibility parameter ;1. are varied
such that the rotor exhibits split criticals. For the value of Soy = 3.0 and 1, = 2.0, the
rotor exhibits a split criticals, the first minor critical speed at 1900 rpm: and the second
major critical speed at 2400 rpm as shown in Fig. (4.6). Area of the whirl orbit remains
positive at the supporting bearings, indicating a forward whirling motion as shown in

Fig. (4.9). Area of the whirl orbit at the disk goes negative between the two critical
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speeds, indicating the existence of simultaneous forward whirling motion at the bearings
and backward whirling motion at the disk as shown in Fig. (4.7). Response at the
bearing location is shown in Fig. (4.8). Response at the right and left bearings are equal

since the dissimilarity parameter is taken to be zero.

Keeping the load parameter So, and flexibility parameter ;i the same at 3.0 and
2.0 respectively, the dissimilarity in the supporting bearing is introduced by making the
parameter &6 = 0.005. Change in the dissimilarity parameter to a smaller value does not
considerably affect the response at the disk and area of the whirl orbit as represented in
Figs. (4.10, 4.11). However the peak amplitude of response at the right bearing, whose
clearance is lowered with respect to the left bearing comes down as shown in Fig.
(4.12). The corresponding area of the whirl orbit at the bearing location is positive over
the range of speed, of rotor operation indicating forward mode of whirling at bearings,

Fig. (4.13).

For the same system parameters, varying the dissimilarity parameter to a value of
0.05 results in increase of peak amplitude of response at the disk, however the critical
speed peaks shift towards the lower rotor speeds as shown in Fig. (4.14). The same
trend is observed in the area of the orbit at the disk and existence of the backward
whirling motion for a range in between the two critical speeds at the disk is verified in
Fig. (4.15). Peak amplitude at the right bearing drops down considerably compared to
the left bearing as depicted in Fig. (4.16). However the arca of the whirl orbit at the
bearing location remains positive as shown in Fig. (4.17) indicates that the whirl orbit is

forward.

The effect of increasing the dissimilarity factor further to a value of 0.1 results in
critical speed peaks falling down to 1700 and 2000 rpm at the rotor, with the increase
in peak amplitude of response at the disk as observed in Figs. (4.18, 4.19). Response

at the right bearing drops down drastically with the peak amplitude of response for the
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second critical speed being smaller than the first one. At the left bearing location, peak
amplitude of response for the first critical speed was observed to drop down compared
to second critical speed with the increase in dissimilarity parameter é as depicted in

Fig. (4.20). Corresponding area of the whirl orbit remains positive at bearing locations

indicating a forward whirl, Fig. (4.21).

Increasing the value of ¢ to 0.15, the analysis is repeated and the results of which
are shown in Figs. (422 - 4.25). Increasing the value of & to 2.0, the response at
the disk and bearings does not follow the regular trend and the rotor becomes highly

unstable.

The orbital diagram for the rotor with system parameters, Sy = 3.0 and i, = 2.0
and dissimilarity parameter & = 0.1 are studied, because the rotor exhibits split criticals
and hence the whirl patterns of the system at different rotor speeds are of interest. The
orbital diagram provide the amplitude and direction of whirl orbit, indicating whether the
whirling motion is forward or backward at any defined location of the rotor system. The
orbital diagram for the rotor resulting from the unbalance response is shown in Figs.
(426 - 4.30), for different locations in the shaft for a rotor speed of 23(X) rpm. Fig.
(4.26) represents the orbit of the rotor at disk, i.e. a2/l = (. Figs. (4.26, 4.27)
shows that whirling motion is backward over approximately the central one-fifths of the
shaft. At the point of transition from backward to forward whirling, represented in
Fig.(4.28) for z/l = 0.15, the whirl orbit becomes a straight line. The point of transition
from forward to backward whirl occurs at a point on the rotor much in advance than in
the case of identical bearings. This is due to variation in flexibility and load parameter

and also due to the introduction of dissimilarity in the bearings.
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Chapter 5

Experimental Investigation of
Simultaneous Forward and
Backward Whirling Motion of
Laboratory Model of Rotor
Supported on Identical Journal
Bearings

5.1 Introduction

The existence of backward and forward whirling motion of the rotor supported
on identical and dissimilar bearings is theoretically investigated in Chapters 3 and 4.
However, very few experimental studies have been reported to support this theoretical
analysis. Subbiah, Bhat, Sankar and Rao [42] verified the existence of the backward
whirling motion experimentally for a laboratory model of the rotor supported on identical
bearings. Non-contact type proximity pickups are used to measure the unbalance re-
sponse. A FFT analyzer was used to obtain the orbital diagram with a x-y plotter. From

the direction of plotter pen motion while plotting the orbital diagrams they could verify
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the existence of backward whirling for a small range in between two critical speeds. In

the present investigation, a differentiator-multiplier circuit is employed to determine the

direction of the whirl orbit.

Fig. (5.1) represents the elliptical orbit of whirling motion of the rotor. The area of this

orbit is given by,

4 = / ridt (5.1)

The displacement components x, y are represented by

—
1

aycoswt + b,sinwt

5~
]

aycoswt + bysinwt (5.2)

The integrand of Eqn. 5.1 simplifies to

XY = w %((z,by = byay) + —;—((I,bu + bya,)cos2wt + -;—(—u,u_,, + byhy) sin 2wt

(5.3)

Fig. (5.2) represents the schematic representation of the differentiator muhiplier
circuit. The response amplitude y is differentiated first in a differentiator and then
multiplied with the amplitude signal x in the multiplier. From Eqn. (5.3), the resulting
signal has two components; an average or DC component %(a,by — bra,) and a
AC component j ((azby + bya,)cos2ut + (—a,a, + bb,)sin2wt). By filtering out
the AC component from the resultant signal, the DC component can be separated.
The sense of whirling motion can be determined from the sign of the DC component.
The sign of the DC component is positive for forward whirling motion and negative

for backward whirling motion.
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5.2 General Description of the Experimental Setup
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Figure 5.3: Schematic Representation of Experimental Setup

115



In order to verify the theoretical analysis for the existence of forward and backward
whirl morions, an experimental facility was established. Fig. (5.3) shows the schematic
representation of the experimental setup. It consists of a flexible shaft of circular cross-
section, a central disk, supported at its ends on two identical cylindrical journal bearings
and the are lubricated through gravity feed. The rotor-bearing system is supported on
cast-iron pedestals at the two ends. and the entire system is mounted on a heavy steel

frame which in turn is fastened to the floor on rubber padding for damping vibration.

The rotor is driven by a variable speed motor through a timer belt. The rotor
speed is measured using a panel-mounted optical tachometer. Two non-contacting type
displacement transducers which operate on the eddy current principle are used to measure
whirl amplitude signals. Orbit of the whirling motion is detected using a differentiator-
multiplier and filtering circuit which operates in conjunction with the setup. A Digital

oscilloscope is used to process the results.

5.3 Design Features

5.3.1 Rotor Shaft

The details of the steel rotor shown in Fig. (5.3) are:

Shaft length 051 m
Shaft diameter 0.022 m
Disk diameter 020 m
Disk width 04 m
Disk mass 11 kg
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5.3.2 Bearings

The rotor is supported on two identical journal bearings having the following details.

Type of bearing
Bearing-bush width
Bearing-bush outer diameter

Oil hole diameter

Case A

Shaft diameter at left bearing
Left bearing-bush diameter
Shaft diameter at right bearing

Right bearing-bush diameter

Case B

Shaft diameter at left bearing
Left bearing-bush diameter
Shaft diameter at right bearing

Right bearing-bush diameter

Plain cylindrical
0.025 m
0.04 m

8§ mm

0.022167 m
0.022214 m
0.022171 m
0.022223 m

0.022167 m
0.022185 m
0.022171 m
0.022180 n

The material of the bearing is phosphor-bronze. The inner surface of the bushes are Jig-

bored and the dimensions of the inner diameter were measured using the digital vernier



calipers to an accuracy of + 0.5unw

teflon bearing cover.

5.3.3 Drive

The right hand side bearing is covered with an

The drive unit consists of a variable speed DC motor, driven by a speed controller and

a timer belt drive for power transmission.

The details of the motor are below:

Motor manufacturer
Type of Motor
Rated power

Rated voltage
Rated current

Speed range

Speed control unit specifications are:

Speed control unit
Line input

DC output

Rated current

Speed range

Boston Gear
DC

1/3 Hp

110 V at 50 Hz
5-14 A

0-1750 rpm

Ratiotrol DC motor

120 VACat 6 A/ 60 CPS
Field 100 V, Armature 90 V
Field 1 A, Armature 3.6 A
0-1750 rpm

The motor is mounted on a base plate which is hinged at one end and supported on

two jack-bolts on the other, for drive belt tensioning. The power transmission from the

118



motor to the rotor is accomplished through a timer belt with a speed transmission ratio
of 2:1.

5.3.4 Lubricant Circulation

The lube Devices Inc. multiple feed full flow dispenser is designed to serve as a
central reservoir for lubricating the bearings. The reservoir is mounted on the central
mounting shank. The reservoir provides a full flow of oil to two valves which can be
manually shut off by flipping the toggle at the top of the reservoir to a horizontal position.
Feed rate of drip is individually set at each valve. The reservoir is of transparent lucite
which provides a 360° viewing and has a capacity of 3.25 litres.  The reservoir is
mounted at a height of one metre to supply lubricant under gravity. The oil is fed to
the bearings from the reservoir through polythene tubes. The oil flow rate is maintained
continuous so that the bearing does not run dry. The lubricant specification is SAE 30

whose viscosity is 96.7 centi-stoke at 40°C".

5.3.5 Instrumentation

Displacement Transducers

Non-contacting displacement transducers (also known as proximity probes) are
used to measure the relative shaft displacement non-intensively.  As the shaft moves
relative to the sensor, the eddy current energy changes, modulating the oscillator volt-
age. This signal is demodulated, providing an output signal proportional to the displace-
ment. Transducers convert the measured quantity into a voltage, which can be displayed
on an oscilloscope, recorded, plotted, or analyzed by a computer. The voltage output

of most transducers is an “analog signal” ie., it is a time-varying continuous voltage
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analogous to the quantity being measured. Only a scale factor (calibration constant) is

required to determine the magnitude of the measured quantity at any time.

A Kaman Instrumentation Displacement Measuring System Model KD-2310 was
used to make the precision non-contact displacement measurements in the present ex-
periment.  The system includes a sensor, a 10 ft (3.1 m) coaxial cable and a signal
conditioning electronics package. Zero, gain and linearity adjustments are provided on
the electronics package. The system uses the principle of impedance variation caused
by eddy currents induced in a conductive metal target. The coupling between a coil in
a sensor and a target is dependent upon their displacement (gap). The output voltage of
the system is proportional to the distance between the face of the sensor and any metallic
(conductive) target.  The electronics consists of an oscillator, linearization network,
amplifiers and a demodulator which provides an analog voltage directly proportional to
displacement. It uses modern electronics (Eddy current operating principle) to replace

LVDTs, air gauges, capacitance systems, dial indicators and micrometers.

KD-2310 systems are most stable when the target is near the face of the sen-
sor. Sensitivity to the cable movement, dielectric constant, magnetic fields, etc., are
greatest when the target is at full scale displacement.  Parallelism between the target
and sensor is not critical as long as the angle between the sensor face and the target is
within approximately 15 degrees. Each sensor type has been designed to provide an
offset between the face of the sensor and the start of the measuring range (zero point) to
provide clearance for a moving target and to avoid contact pressure errors. For highly
curved targets, improved linearity and stability over the full range may be obtained by
reducing the offset.  The sensor model which is being used in the present experimental
setup is the 28 type with a measurement range of 0 - 80 mils, a recommended offset of

15 mils, and a voltage output of 0 - 0.800 V and a sensitivity of 10 mV/mil.



Optical Tachometer

Panel-mount optical tachometer made by Cole-Parmer make is used for rotor speed
measurements. The tachometer unit is equipped with an integral light source, photode-
tector, and signal conditioning circuitry to provide a 5V compatibl. pulse upon receipt
of an image from a reflective marker. Power requirement is +5 VDC at 75 mA. The
remote optical sensor, can detect a reflected pulse from a target consisting of reflective
tape at a distance up to 3 feet from the rotor shaft. Output from the sensor is displayed
on the panel, which has also an option to feed directly to a computer for plotting rotor

response.

Specification of the tachometer:

Model type L-08212-20
Measuring range 50 to 20,000 rpm
Input Single pulse/rev
Resolution 1 rpm

Accuracy +1 rpm

Display 5 digit LED, 1/2"

Multiplier-Differentiator Circuitry

A schematic diagram of the Multiplier-Differentiator circuit is represented in Fig.
(5.4). The circuitry consists of chip AD 533JH, which is an analog integrated circuit
multiplier.  The multiplier operation is accomplished by closing the loop around the
internal op amp with the Z input connected to the output. The X, null potentiometer

balances the X input channel to minimize Y feed-through and similarly the Y, poten-
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tiometer minimizes the X feed-through. The Z, potentiometer nulls the output op amp

offset voltage and the gain pot sets the full scale output level.

Trim Procedures:

1. With X =Y =0 volts, adjust Z, for 0 VDC output.

2. With Y = 20 volts p-p (at f = 50Hz) and X =0V, adjust .\, for minimum AC

output.

3. With X = 20 Volts p-p (at f = 50Hz) and Y =0V, adjust Y, for minimum AC

output.
4. Readjust Z, for 0 VDC output.

5. With X = +10 VDC and Y = 20 volts p-p (at f = 50Hz), adjust gain for

output = },,

The multiplier circuit was calibrated alone with the steps given in the trim proce-
dures. With X =10 VDC and Y = 20 VAC at 50 Hz, the multiplier output was found
to be equal to XY/10 = 20 VAC. Similarly the circuit was checked for different values

of X and Y inputs, it was found to be functional.
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Figure 5.4: Schematic Multiplier-Differentiator circuit

The op-amp B2 combination with a capacitance and resistors shown in the Fig.
(5.4), operates as the differentiator in the circuit.  The differential differentiator is

formed by adding to the noninverting input a network which is identical to the feedback
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network. In each network a gain-limiting resistor I?) is added to the basic elements in
order to ensure frequency stability. As expressed, the differential differentiator takes
the difference between two signals and differentiates the result. In this way the output

of a floating source can be differentiated with out its common-mode signal.

A major problem encountered with differentiator circuits is high noise. This results
from the increasing gain of the differentiator frequency response and the resulting high-
gain of the amplification of the amplifier noise. To reduce this noise an indirect method
of computing the derivative of a signal can be used, as in Fig. (5.4). In this case, the
derivative of the signal is derived from the signal and its integral. The differentiator
response approximation ends at frequency f = 1/27RC’ [49]. The op-amp C/2 with
the trim potentiometer of 100 K is used to give the necessary gain to the differentiated

signal so that it can be compatible with the multiplier.

The capacitance and resistor across the op-amp B/2 is varied to achieve the nec-
essary differentiation effect and the circuit was found to work as a differentiator with a
capacitance value of 4.7 nf and resistance of 13 K. The circuit was checked by giving
a square pulse as input resulting in the output of a triangular pulse, since differentiation
results in rate of change with respect to time of the input signal. Similarly, a sine
pulse resulted in an output having a spike waveform. This circuit is used to identify
the direction of the whirling motion of the rotor. Two separate differentiator-multiplier

circuits were designed and utilized to find the sense of whirl orbit.

Filtering Circuit

One of the major problems encountered while analyzing the output from the dif-
ferentia:or multiplier circuit was noise. In order to avoid this, a filtering circuit was

designed whose schematic representation is given in Fig. (5.5).
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Figure 5.5: Filtering circuit

$3528B Filter is a CMOS Switched Capacitor Filter device designed to provide
a very accurate, very flat programmable filter that can be used in fixed applications

where only one cutoff frequency is required, or in dynamic applications where logic or

125



Pin Name | Number Function
DD 6 Positive supply voltage pin, +5 V + 10%
Vs 5 Negative supply voltage pin, -5 V + 10%
Ay 11 Analog ground reference point for analog input
and output signals, connected to ground
Deyp 15 Digital ground reference point for digital input
and output signals, connected to ground
Dy 3 Control word inputs:
Dy 2 The set of six bits allows selection of
Dy 1 one of sixty four cutoff frequencies
D, 18
D, 17
D; 16
CE 4 Tied to Vi, -5V
0S5, 13 Oscillator in Oscillator Out: Placing a
0SCy 14 crystal and a 10M resistor across
these pins create the time base oscillator
3.58MHz TV outburst crystal is used
SIG IN 12 Signal Input
FB 10 Feedback point for the input op amp.
The feed back back resistor> 10\
FLT OUT 9 The high impedance output of the
programmable low pass filter
BUFF IN 8 The inverting input of the buffer amplifier
BUFF OUT 7 The buffer amplifier output

a microprocessor can selec: any one of 64 different cutoff frequencies. It is clocked by
an inexpensive TV color burst crystal and provides the required cut off frequencies. The
accessories involved in the design of this circuit is a 10 M resistor, the 3.58 MHz TV
crystal, and some resistors and capacitors around the input and output amplifiers to set
the gain, anti-aliasing, and smoothing. The Data Bus pins are programmed with either

a 1" (+5 V) or “0" (ground or -5 V) for the desired cutoff frequency. The CFE pin is

Table 5.1: Pin Function Description

tied low, to 1, [Fig. 5.5].

By connecting the pins Dy to Ds 1o either ground or to +5 V, different combination

of cutoff frequencies can be selected, which is set at 250 Hz for the present experiment.
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Four filtering circuits are designed to filter out the signals X, Y from four proximity

pick-ups at the rotor shaft and the disk locations.

Digital Oscilloscope

The Hewlett Packard type 54503A Digital Oscilloscope is a high frequency high

sensitivity laboratory instrument providing accurate measurements in the range from DC
to 500 MHz.

The HP 54503A specifications:

Repetitive Bandwidth 500 MHz
Single Shot Bandwidth dc to 2 MHz
Maximum Vertical Sensitivity 1 mV/div
Maximum Sample Rate 20 MSa/s
Number of Channels 4

Memory Depth 1 K/channel

The features of viewing the signal events prior to trigger, auto-scale for automatic
setup, four nonvolatile setup and waveform memories make this instrument ideal for
the present experimentation. The feature of waveform math (+, -, *, vs, invert, only)
makes it possible to perform the mathematical operation on the signal from the multiplier-
differentiator circuit.  The feature of instant hardcopy output enables the output of
the oscilloscope display, whirl orbit and mode of whirling to print on the compatible
printer. With the feature of quad screen display capability the four signal output from
the four proximity pick-ups can be simultaneously viewed on the screen and the required

mathematical operation can be performed on them individually.
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Printer

The output from the oscilloscope display is printed on the Hewlett-Packard Thinkjet
printer.  The oscilloscope is connected to the printer with a standard cable. The
printer is calibrated to the oscilloscope compatibility. The printer receives a copy of the

oscilloscope display, including the measurements and setup information.

5.4 Experimental Investigation
5.4.1 Rotor Alignment on the Bearing

Journal bushes are mounted on the pedestal and are aligned with respect to the steel
frame, with the help of height and dial gages so that the journal centers are in the same
line. The rotor shaft is then mounted on the journal and care is taken so that the shaft
center is aligned with the journal centers. The inner surface of the bushes are jig-bored
in order to get the necessary clearance between bush and the rotor shaft. The steel frame
supporting the rotor is levelled with the help of mercury level gage. Rotor is coupled
to the motor with the help of timer belt and care is taken to align the rotor shaft pulley
with respect to the motor pulley. Lubrication lines are connected to the bearing inlet

and care is taken to keep the bearings properly lubricated.

5.4.2 Proximity Pickup Installation and Calibration

Two proximity pickup sensors are mounted to measure the unbalance response
displacement amplitude in both X and Y directions at a point along the rotor shaft closer
to the disk. These pickups can be moved along the length of the shaft on the guideway

provided. Two more pickups are mounted on the fixture provided, on the disk location
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in X and Y direction to measure the amplitude of the whirl orbit at the disk. Once the

proximity pickups are installed they are calibrated for proper operation. The calibration

procedure is given below.

1. Set the FINE LINEARITY control to mid range. With the target at full scale
displacement (plus offset), adjust COARSE LINEARITY CONTROL control to

the desired full scale output voltage.

2. With the target at “Zero” displacement (at the recommended offset from the face

of the sensor), adjust the ZERO control until the output is zero volts.

3. Move the target away from the sensor to the displacement equal to one-half of
the chosen full range (plus offset). Adjust the GAIN control to obtain half scale

output voltage.

4. Move the target to the chosen full scale displacement point (plus offset), read
the output and note the difference between the actual reading and the desired
reading. Using the COARSE LINEARITY control, adjust the output to the
desired setting and then continue past the desired setting by an amount equal 1o

the noted difference.

5. Repeat steps 2 through 4 as many times as necessary until calibration is attained.
When finer setting of linearity is required, the FINE LINEARITY control may be

used.
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5.4.3 Experimentation

Whirl Orbit

Signal from the sensors are routed into the electronics package which consists of
an oscillator, linearization network, amplifiers and a demodulator. The output from
the demodulators are displayed on the oscilloscope. By using waveform math-mode
function ‘versus’ which draws a volts versus volts display of the two selected operands,
input signal from two sensors on the shaft location are plotted resulting in the whirl orbit
at the rotor shaft. Similarly the whirl orbit is plotted for the disk, from the signal inputs
from the sensors located at the disk location. Whirl orbits for the shaft and disk are
displayed on oscilloscope for different operating speeds and is printed on HP Thinkjet

printer.

Direction of the Whirl Orbit

Displacement signals from the sensors are modulated in the oscillator-demodulator
unit. The output from the demodulator which is an analog voltage is directly proportional
to displacement. Modulated signal from demodulator corresponding to X signal from
the sensor on the shaft location is input x into the differentiator circuit (Fig. 5.4). The
differentiated signal x our becomes the SIG IN input of the filter circuit (Fig. 5.5).
The filtering circuit is incorporated to filter out the noise component of the output from
the differentiator.  The output from the filter circuit, SIG OUT which is in the range
of 0 to 200 Hz is the Channel I input into the oscilloscope. The Demodulator output
corresponding to signal y from the sensor on the shaft location becomes the input SIG
IN 1o the second filtering circuit. The output SIG.OUT from the filtering circuit becomes

input to Channel 3 of the oscilloscope.
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The oscilloscope wave-form math menu defines two functions. Channel 1 and 23
waveforms correspond to sensors at the shait location are multiplied in waveform math-
mode which represent the function fI and is displayed on function 1 viewing area on
the oscilloscope. Mathematica! results of the average value of the DC component of
the function is displayed on the bottom ialf of the oscilloscope screen. For the forward
whirling motion, the value of DC component of the function fI corresponding to the
shaft location is positive if the whirling motion is forward and in the case of backward

whirling motion, this value is observed to be negative.

Similarly signals x and y from sensors located at the disk locations after passing
through differentiator and filtering circuit becomes input signals to Channel 2 and 4
respectively of the oscilloscope. Channel 2 and 4 waveform are multiplied and the
resulting function f2 is viewed on the oscilloscope. The sign of the average value of

DC component determines the sense of the whirling motion.

As a check to the operation of the differentiator-multiplier circuit rotor was run
in clockwise direction which is considered in the experiment as positive direction of
the whirling motion. Resulting functions f7 and f2 were both on the positive side and
average DC components of the functions were observed to be positive. With the reversal
in the direction of the rotor motion, for backward whirling motion, the functions f7
and f2 were both on the negative side and the average DC component is observed 10 be

negative.

3.5 Experimental Results and Discussion

Occurrence of the backward whirling motion which is due to the anisotropic nature
of the fluid film stiffness and damping properties in rotors supported on fluid film bear-

ings. In order for the rotor to exhibit backward whirl, the rotor has to be designed to
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have split critical speeds. The flexibility and the load parameters are the two important
factors in deciding whether the occurrence of backward whirl is possible for the particular
configuration of the rotor. Variation of the bearing clearance does have a direct effect
on the flexibility parameter, which can be increased by decreasing the clearance. The
backward whirling motion of the rotor is possible by the variation of viscosity of the
lubricant. By lowering the viscosity of the lubricant, the corresponding load parameter

increases to simulate the rotor into the region of backward whirling.

The effect of variation of the clearance of the supportive bearings on the simulta-
neous forward and backward whirling motion of the rotor supported on identical bearings
is studied experimentally. For the first set of bearings, the bearing clearance value at
the left and right bearing is calculated as 0.0047 and 0.0052 cm. Using the average
value of radial clearance, 0.005 cm at the supportive bearings, the flexibility parameter
1« and load parameter So, are calculated as 1.43 and 1.06 respectively. For a rotor
supported on identical bearings with the mean clearance of 0.005 cm, Fig. (3.6) shows
that the sense of whirl of the rotor with the above combination of flexibility parameter
and Sommerfeld number is always forward. Fig. (5.6) shows this rotor has only one

critical speed at 2100 rpm.

To investigate the orbital whirling motion, experiment is carried out on the labo-
ratory model and the rotor speed was varied from 0O to 4200 rpm and the dispracement
components at shaft and disk locations are measured by the sensors. The combination of
oscillator, demodulator and amplifier converts the displacement into voltage signal which
is used to generate the whirl orbit on the oscilloscope. Figs. (5.7 - 5.9) shows the rotor
and disk orbits at 1500, 2150 and 4000 rpm respectively. Orbits of whirling motion at a
operating speed of 2150 rpm in the proximity of critical speed is shown in Fig. (5.8). It
can be seen that the magnitude of the whirl orbit at the shaft and disk locations are much

larger than that corresponding to the speed of 1500 rpm.



To analyze sense of the whirling motion, 1, y voltage signals corresponding to
displacement signals from sensors at the rotor shaft and disk are routed through a com-
bination of differentiator-multiplier and filtering circuit. The function f1 and 2 from the
differentiated-multiplied and the filtered signal signifying the whirl orbit direction at the
rotor shaft and disk location are represented in the Figs. (5.10 - 5.12). Whirl orbit
direction waveform for a rotor speed of 1500 rpm is shown in Fig. (5.10). The function
f1 and f2 are positive and the average DC component value at 38.973 mv and 16.429
mv, indicates that the whirling motion is in forward sense for the rotor shaft.  With
a rotor operating speed of 2150 rpm, whirl direction waveforms fI and f2 are positive
with the average DC component value of 19.155 mv and 3.178 mv, indicates that the
whirling motion continues in forward sense, Fig. (5.11). Fig. (5.12) represents the
function f1 and f2 for a rotor speed of 4000 rpm, value of DC component at 17.942 mv
and 6.800 mv marks the whirling motion continues to remain in forward sense for this

rotor configuration.

For another set of bearings whose clearances are 0.0018 and 0.0013 cm respectively
at left and right bearing, the sense of whirling motion is studied. Using the mean radial
clearance of 0.001 cm, flexibility and load parameters are calculated as 2.43 and 1.02
respectively. For these values of the system parameters, rotor supported on identical
bearings with mean clearance of 0.001 cm, Fig. (3.6) shows that the rotor whirls in the
backward mode for a certain range of speed, and the rotor has two critical speeds, the
minor critical speed at 1900 rpm and the major critical speed at 2400 rpm as shown in

Fig. (5.13).

Experimental analysis is carried out by supporting the rotor on these pair of bearings
and is operated through a full range of speed from 0 to 4250 rpm. Presence of the first
critical speed was not distinguishable, whereas the second critical speed is seen clearly at
2750 rpm marked by excessive vibration and resonance on the rotor. Figs. (5.14 - 5.17)

shows orbital diagrams of the whirling motions at shaft and disk locations at 1500), 2750,
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2950 and 4250 rpm respectively. Orbital diagrams in the vicinity of critical speed of
2750 rpm is shown in Fig. (5.15), marked by a increase in magnitude of the whirl orbit

at shaft and disk locations.

The sense of the whirling motion is measured using the differentiator-multiplier
- filter circuit. The waveform of the function fI and f2 representing the whirl orbit
direction at rotor shaft and disk locations are shown in Figs. (5.18 - 5.21). For a rotor
speed of 1500 rpm the whirling motion direction function f7 and f2 both are positive with
average DC component voltage value of 16.638 mv and 5.606 mv at rotor shaft and disk
location respectively, indicates that the sense of the whirling motion is forward for the
rotor shaft at this speed of operation, Fig. (5.18). However, in the case of disk, the
waveform of the function f2 remains positive through a large range of speed except for
a short range of speed just before the second critical. Rotor speed is varied and the
functions f1 and f2 are observed for transition in to the backward whirling motion. With
the rotor speed of 2700 rpm, the function f2 was observed to take a negative value with
average DC voltage component voltage at 2.235 mv and -1.020 mv at rotor shaft and
disk locations respectively, marking the onset of the backward whirling motion at the
disk where as the sense of whirling motion continues to be forward at the rotor shaft
location as seen in Fig. (5.19). The existence of simultaneous forward and backward
whirling motion continues for a range of speed from 2700 rpm to 2950 rpm. This is in
accordance with the theoretical analysis of Chapter 3 for the rotor supported on identical
bearings with the given system parameters, the rotor will exhibit the backward whirling
motion between the split criticals. Sense of whirling motion at the rotor disk becomes
forward at a rotor speed of 2950 rpm as shown in Fig. (5.20), with the DC component
value of 4.605 mv and 168 mv respectively for functions fI and f2. Whirling motion
remains forward for the remaining speed range of rotor operation, Fig. (5.21) represents

the forward sense of the whirling motion at rotor operation speed of 4250 rpm.



5.6 Summary

Simultaneous existence of forward and backward whirling motion is studied experimen-
tally for a rotor supported on identical journal bearings. The effect of variation of bearing
clearances on the onset of backward whirl is investigated by finding the sense of whirling
motion using a differentiator multiplier circuit. For a rotor supported on bearings with
clearances of 0.0047 and 0.0052 cm at left and right bearing, the whirling motion was
observed to be in the forward direction throughout the operating speed range of the rotor.
Experimentation was repeated by varying the bearing clearances to a value of 0.0018 and
0.0013 cm at left and right bearing respectively. The rotor system was observed to have
split criticals, with the sense of whirl going backward at the disk location for a speed
range of 250 rpm, while the direction of whirling motion elsewhere in the shaft location

remains forward.
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Chapter 6

Conclusions and
Recommendations

6.1 Conclusions

The dynamic behaviour of a simple rotor system supported on hydrodynamic bear-
ings is studied. Response analysis of the rotor supported on identical and dissimilar

bearings are analyzed.

For a Jeffcot rotor supported on hydrodynamic bearings:

1. Simultaneous existence of forward and backward whirling motion of Jeffcot rotor

supported on identical hydrodynamic bearing is investigated.

2. The response analysis of the rotor supported on dissimilar bearings is also ana-
lyzed. Dissimilarity of the bearing is due to the difference in the clearances of the

supporting bearings.

3. To verify this aspect experimentally, a laboratory model of Jeffcot Rotor mounted

on identical journal bearings, driven by a variable speed motor is developed.
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Proximity pickups are used to make precision non-contact x and y displacement
measurements of shaft whirling orbit. The electronics consists of an oscillator,
linearization network, amplifiers and a de-modulator which provides an analog
voltage directly proportional to displacement. A Multiplier - Differentiator - filter

circuit is designed to identify the direction of the whirling motion.

. Based on the resulis of the above investigations the following conclusions are

drawn;

. For aJeffcot rotor supported on two identical fluid film bearings excessive flexibility
causes the disk to whirl in the backward sense for a speed range in between the
critical speeds. As the disk whirls in the backward sense in between the critical
speeds, the journal continues to whirl in the forward sense. It is also observed that
the backward whirl commences at the disk and as the speed increases, it extends
over a certain central portion of the shaft and then shrinks back towards the disk

before disappearing.

. Studies using the stiffness and damping characteristics of the supporting hydrody-
namic bearings, showed that the combined influence of the stiffness asymmetry and
the damping could suppress the occurrence of the backward whirling, when the
flexibility of the rotor is sufficiently small. Further, the backward whirling of the
disk could be eliminated either by increasing the slenderness ratio of the bearings

or the viscosity of the lubricant, or by reducing the clearance ratio of the bearings.

. Existence of the simultaneous forward and backward whirling motion at the disk
location is verified for a rotor supported on dissimilar bearings. Effect of dissim-
ilarity effects the peak amplitude of response and the critical speed peaks shifts

towards lower speed of the rotor.

. The existence of simultaneous forward and backward whirl is verified experimen-

tally.
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6.2 Recommendations for Future Work

Some suggestions for the possible future work are given below:

1. Analytical and Experimental and Investigation of whirling phenomenon of a

rotor supported on three or more bearings.

A transfer matrix or finite element analysis of whirling phenomenon of a rotor sup-
ported on three or more bearing. When more than two bearings are used, factors
such as the bearing misalignment, initial bending in the rotor shaft etc. must be
given proper consideration. For laboratory studies an initially straight rotor setup
can be used, and the influence of the bearing misalignment on the whirling motion

of the rotor can be investigated.

2. Application of thermo-hydrodynamic characteristics of the lubricant for un-

balance response analysis of the rotor.

In the present investigation, the bearing characteristics like Sommerfeld number,
stiffness and damping coefficients are computed assuming viscosity of the lubricant
remains a constant with variation of temperature. The viscous heat generation in
the lubricant film of a hydrodynamic journal bearing causes a rise in temperature
of the fluid film. The variation of lubricant viscosity which depends strongly on
temperature, must be taken into account for an accurate evaluation of bearing
characteristics.  Such a thermohydrodynamic analysis reduces the mathematical
problem to the simultaneous solution of a generalized Reynolds equation and an
energy equation with the appropriate boundary conditions. The solution of the
simultaneous partial differential equations is difficult and time consuming. Appli-
cation of finite element analysis techniques can be used to solve these simultaneous
equations and the bearing characteristics are determined. These modified charac-

teristics can be employed to investigate the whirling phenomenon of a rotor.
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3. Application of Condition Monitoring techniques in rotor bearing experimen-

tation,

The effect of rotor bearing system parameters on the rotor operation can be studied
experimentally for comparison with the existing condition monitoring techniques.
In condition monitoring techniques, the critical parameters that are usually de-
cided in advance and programmed, are monitored continuously and analyzed by
suitable techniques. The rotating machinery are highly complex dynamic systems
and are very sensitive to slight changes in operating conditions. The condition of
the machine is reflected by parameters such as frequencies of vibration, direction
of predominant amplitude, location of predominant amplitude, magnitude of re-
sponse to speed variation, influence of loading, oil pressure and temperature. The
procedure for continuous condition monitoring and diagnosis therefore boils down
to obtaining the signature of the rotating machinery at suitable predetermined loca-
tions and analyzing this signature for determining the health of the machine. The
data thus obtained can be used to analyze the effect of various parameters such as
bearing clearance. flexibility parameter, lubricant viscosity etc. in rotor bearing

system operation.

4. Application of micromechatronic accelerometer sensors in Active control of

rotor bearing system.

Application of micromechatronic sensors in rotor bearing experimentation is fairly
a new concept. In present investigation, the experimentation is done using non-
contact type proximity pickups, which can be replaced by lighter micromechatronic
accelerometer sensors. The advantage of using micromechatronic sensors is, they
are economic and accurate. The active control of unbalance response of rotor

system can be done using actuators.
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Appendix A

The Elliptic Orbit

Let the co-ordinates of the moving point p at time t, with respect to an orthogonal

Cartesian frame Oxy be,

I = a,coset + b, sinwt (A1)

Yy = aycoswt + by sin wt (A.2)

where a;. a,. b,. b, and . are constants. From the periodicity of sin . and cos wt,

one can infer that the point P describes a closed curve at frequency w.

Eliminating .t from Eqns. (A.1 and A.2) gives the equation to the locus of P as

((1_,,2 + 1)_1,2).1'2 = 2azay + bb)ary + (a,? + b,"’)y2 = (asb, - J,-ay)2 (A.3)

The above equation is an ellipse whose centre is at the origin. When (a;by — bray) = 0,
the ellipse degenerates to a segment of a straight line. When (q, /b,) = (bf/ay) = +1,

the ellipse becomes a circle.
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Using Eqns. (A.1 and A.2), one can deduce the relation

2+ = Acos2ut + Bsin2ut + C (A 4)
where
4 = %[(1,2 + (1,,2 - bt - b_,,zl (A.5)
B = la:by + ayby] (A.6)
"= %[(1,2 + a, + bt + bl (A7)
(A.8)

Using Eqns. (A.5 - A.7) the following results could be deduced.
C* — (L + B = (a;h, + ab)* > 0 (A9)

Eqn. (A.4) can be rewritten in the alternate form as

2

2o = SR+ BP)cos2t ~ 6) + C (A.10)
0 = wn [ B/(4 + S + B (A.11)

From Eqn. (A.10), the major and minor axes of the ellipse can be expressed as

\/[C + \/(—-PT'BZS] and \/[C - V¥ )], respectively.

where

Area enclosed by the x, y coordinates of amplitude of the whirl rotation is an ellipse can

be obtained from Eqns. (A.1 and A.2) as
Area = % rdy

) 2T
6214 (aycosf + b, sinf) (—a,sinf + b, cost)df

1]

27
ézl (——agzysin Gcost) + a,b,cos? 6 — ba,sin®f + b,b, sin ()cos(})

276 (asb, — bya,)
(A.12)
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The area enclosed by the elliptical orbit of the journal centre is given by

f.rj(l_r/] = 7 (a)rhyy — byrayy) (A.13)

Thus the orbit of P on the ellipse is in the positive or negative sense according as the

expression

(ayehyy = byrayy) 5 0 (A.14)
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Appendix B

Derivation of Expression for
Rotor Co-Ordinates

Let defiection at mid point of a simply supported beam shown in Fig. (B.1) ie, at
= = 1/2, be given by
. PB

A8E] (B.1)

Deflection at any distance z is a partial value of &. ie 14,. The bending moment at
any point for the system is

(B.2)
Integrating

dr P,
— = —_——— s '3
EI(I-. e + A (B.3)

Constant of integration is evaluated using boundary condition, ET% = 0, which gives
gr g y d. i

PE

27 - A
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Figure B.1: Simply Supported Beam
Eqn. (B.3) can be further integrated to give
P PP
Elzr = —Ez:’ +—1-3-Z + B (B.4)

Evaluating the constant of integration, using the condition at x =0 and z =0, one

gets B =0. Hence,

P 12 16
= & (-4(?)3 3(?)
= 6 (32 - 423) (B.5)
Hence the partial » is obtained as
1/=E(3—422) 0<% % (B.6)
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The unbalance response of the rotor at any distance z is given by

ro=ry o+, -y (B.7

J'sing non dimensional coefficients

- (~" - I’("q)

Egn. (B.7)can be written in non-dimensional form as

T =T+ (T - T) (B.8)

Similarly

=
]

7y + @, - T) (B9)

159



Appendix C

Simply-Supported Beam Carrying
a Concentrated Lateral Load

Consider a beam of uniform flexural stiffness E/ and length L, which is simply -
supported at itsends C and G. The beam carries a concentrated lat:ral load W ata

distance @ from C. Then the reactions at C and G are

. W . W
V. = —L—(L - ). Vo = "L— (C1)

Now consider a section of the beam at a distance x from C; if x < q, the bending

moment at the section is

Al = Vo

and if » > «
M=V« 110 - o (C2)

The analysis may be simplified by using step-functions during process of integra-

tion.
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Figure C.1: Simply Supported Beam with a Concentrated Lateral Load

By introducing a function ¢{(x), which is zero for the range 0 < = < a, and
equal to unity for the range 0 < = < L; then ¢ has the ‘stepped’ form shown in
Fig. (C.1), and is called a step-function. Then bending moment for all values of x is

in the form

M =Vz - ¢lWE - a)] (C3)

Since ¢ = 0 for x < a, the second term vanishes and M = V.z. But for
* > a, ¢ = 1, and the second term is retained. Here the moment balance for the
beam is given by
d*y

EIE:L‘—Z = =Vir + HW(x - a)] (C4)

On integrating once, we have

E’I% = —--;—V,,z'2 + [¢[W(a: — a)dr + A (C.5)
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where A is a constant. Now, if » < q,

[ AN (r — a))de = 0

since ¢ = 0; andif » > q,

[ AW — alde “oWz — a)da

’ P[W(r — a)ldx (C.6)

+

4
J

But

f' olWWr — a)lde = 0
0

Since ¢ = 0 forxr < «, and we may write

AI AW (r - a)ldr c»/;j o Wi - aldx - a)

So that Eqn. (C.3) becomes

J[ AW (r - a)ldr m'[ - Wi - o)ldr — a) (ChH

We may now write Eqn.(C.2) in the form

dy .., T-a
FI—= = —=1." + u/ Wa - odle — a) + A (C.8)
dr 2 Jo
The effect of the step function ¢ on the integration is to introduce a new variable
(x - a). Sothat, onintegrating Eqn. (C.1) we take ¢ as unity and integrate the term
W(r — «) with respect to (x - a) and not with respect to x. From Eqn. (C.5), we
have
dy

I (r — af
El(h‘ = —2\(.: + O [II ———2———] + 4 (C9)
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The presence of o, which is still equal to zero for + < «, and to unity for + > «q,

indicates that the term

O [n_('___;_”Z] =0 foraxr <ua

is zero for + < @, and is equal to

W'L;—(—Q: forx > a

r'4

On repeating the integrating process, we have

Ely = —é\f’;ﬁ + O ‘—2—(.)' - (1)3] + dr+ DB (C.10)

where the second term on the right-hand side of Egn. (C.6) is integrated with
respect to (x - a), and not x. It remains to find the value of the constants A and B
inEqn. (C.7); at x = 0 wehave y = 0, sothat B = 0, since ¢ = 0 for

r < a at »r = L, again y = 0 giving

0 = —%\«;E + %(L - o + AL (C.11)
Since ¢ = 1 for » > « then
4 = é‘;Lz - %(L - a) (C.12)
So that
Ely = —-évgﬁ + o %(.,- - u)’] 4 [%\;1} - %(L - (1)3] s (C13)

If weput 17 = L(L - a), then
AN Wa

Ely = —_6_Z(L -t o+ E(2L3 - 3ul + A+ o [L:)'(.I‘ - (1)’] (C.14)
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The advantage in using a step-function, such as ¢, is that only two constants of
integration are introduced. We need not consider continuity of the deflected form of the
beam at a point of application of a concentrated load: continuity is ensured automatically

by the step function.
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Appendix D

Simply-Supported Beam with a
Couple Applied at an
Intermediate Point

The simply-supported beam of Fig. (D.1) carries a couple Al, applied to the beam at

a point a distance a from C. The vertical reactions at each end are (Af,/L). The

bending moment at a distance z from C is

M,z
M = -——L- + d)[.ﬂ’[a] (D.1)
where
o = 0 for 0 < =z <a
o = 1 for a < 2 <L
Then
o A,z .
EII:E = "—L— - O[.”\[a] (D.2)

As before, the step function ¢ introduces a new variable (z - a), and we have

. )
i s

77 A olMy(z — @) + A
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Figure D.1: Simply Supported Beam with a Couple

Elv = Ag,.Lz:“ - ¢ %[ﬂ(z - a)z] + Az + B (D.3)
The constants A and B are eliminated from the conditions that v = 0 and 2z = 0,
z = L. These give B = 0, and
A= %(ZLZ — 6La + 3@%) (D.4)
Then
Elv = %"-3- - [%If-(z - a)’] + Mﬁ“z (2L2 —- 6Lla + 3a2)z (D.5)

The deflection at D, where z = a, is

vp = —A—l'-'-‘-z—(L - af(L - 2a) ' (D.6)

3EIL
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Appendix E

The Unbalance Orbit

The orbital behaviour of the rotor supported on identical bearings resulting from unbalance
response Sy = 1.385 and jts = 0.965 at the speed w/.us is shown in Fig. (E.1). The
whirling is backward over approximately the central two-fifths of the shaft. At the point
of transition from backward to forward whirling, the whirl orbit becomes a straight
line. The point of transition from forward to backward whirl may be different for

another set of system parameters |34].

167



y/(8¢/¢)

g 0.2

0.3

x/{8q/¢)

0.4

Figure E.1: Unbalance Orbit of Rotor

168

0.5

zZ/%





