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ABSTRACT

Application of Neural Networks to
ISDN Optimal Access Control Policies

Luc Vouligny, February 1991

The problem of determining optimal access policies for integrated circuit-switched
and packet-switched traffic types for communication networks is addressed. The network
is assumed to support K classes of calls where each class is determined by a fixed route and
a bandwidth requirement in the case of circuit-switched traffic or a packet arrival rate in the
case of packet-switched traffic. A certain grade of service is allowed in every class of calls.
The optimal access policy determines the decision to accept or reject a call based on max-
imizing the utilization of a link. A Semi-Markov Decision Process (SMDP) approach is
employed to extend the existing results for circuit-switched traffic to an integrated
environment which includes packet-switched traffic also. Then the SMDP is mapped as a
Linear Programming algorithm. Finally, the optimization process is solved using the parallel
computing power found in Neural Networks. Simulation results demonstrate the superior
utilization of a link when packet-switched traffic transmission is allowed compared to a link

where only circuit-switched traffic is permitted.
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CHAPTER 1
INTRODUCTION

With the advent of todays’wideband transmission facilities such as optical fibers,
demands are created for integrated multimedia communication networks like the Broadband
Integrated Services Digital Network or B-ISDN. As stated in the International Consultative
Comnmittee for Telephone and Telegraph (CCITT) recommendations, B-ISDN is an all
purpose digital network supporting a wide range of audio, video, and data applications in
the same network. The network capabilities include support for variable-bit-rate information
transfer from Kbps to Gbps for both bursty and continuous traffics, as well as for dialog and
broadcast services. A conceptual view of the B-ISDN multimedia communication features

is depicted in Figure 1.1,

Subsriber Loops and
Digital Pipes
Telephone ISON Channel Structure

‘ -

| Custoner TSN
TSON Central *
Interface Office

Data
Terninal Circuit & Packet
Switched Networks
=11
Local firea Network

Figure 1.1 Conceptual View of the B-ISDN Connection Features.




A given user will have all its ISDN communicating devices attached to a single
Customer ISDN Interface. The Customer ISDN Interface will be connected to the ISDN
Central Office together with other Customer ISDN Interfaces. The digital pipe between the
Central Office and the ISDN user will be used to carry a number of communication channels.
The capacity of this digital pipe and therefore the number of channels available will vary
from user to user. The basic channel structure of the presently available Narrowband ISDN
(N-ISDN) for instance consists of two full-duplex 64 Kbps B channels and a full-duplex 16
Kbps D channel. The B channels can handle both circuit-switched and packet-switched
traffic types. A circuit-switched call is equivalent to the switched digital service available
in the current Plain Old Telephone Services (POTS). The user places a call and a circuit-
switched connection is established with another network user. Circuit-switching technology
refers to the transfer of continuous information such as voice (telephone call) or video. In
the packet-switched traffic type, the user is connected to a packet-switching node and data
is exchanged with other users via a communication protocol such as the X.25. Packet-
switching is used whenever a bursty traffic type of call occurs, like in electronic mail or
terminal to mainframe computer communications. The designation of 64 Kbps as the
standard user channel rate was chcsen to be compatible with digital voice. The main purpose
of the D channel is to carry any signalling information to control circuit-switched calls on

the associated B channels at the user interface.

The digital pipes interconnecting the ISDN Central Offices will be able to support
many more channels in order to efficiently accommodate all the customers usiag the network.
The present standard for the N-ISDN network consists of 24 channels of 64 Kbps each, per
digital pipe. In the near future though users will request transmission speeds higher than
those currently offered in the N-ISDN T1 standard of 1.5 Mbps. These higher speeds (from



the already established T3 rate of 45 Mbps to rates in the range of 150 to 600 Mbps) will
be required in order to realize Local Area Network-to-LLAN interconnections, High Defi-
nition Television (HDTV) distribution, and so on. The preferred transport method in a fully
evolved B-ISDN multimedia communication network is the ATM, or Asynchronous
Transfer Mode. The ATM transport method is suitable for a multimedia traffic environment
because it offers a great flexibility in bandwidth allocation through the assignment of fixed
length packets, called cells, to virtual connections on a demand basis. Each ATM cell
consists of a header and an information field. Although CCITT has agreed that ATM will
be based on fixed-length cells (since they are easier to process at higher speeds), the length
of the cells and the content or length of the cell headers have not yet been agreed upon.
Currently a header field lengthof 5 bytes and an information field length of 64 bytes appear
to be favored by the US. A layered view of the ATM transport method is given in Figure
1.2, The traffic flows originating at the service layer are converted into ATM format by the
ATM adaptation layer, and then transferred within cells via multiplexing and/or switching
by the ATM transport layer which is supported by a physical layer. In order to maximize
the information transfer speed, the traffic will be best controlled at the point of access to the
ATM transport network (which corresponds to the ISDN Central Office in Figure 1.1) in

order to avoid additional per-node buffering and processing delays.

The ATM transport method is expected to handle a wide variety of traffic types ranging
from circuit-like connections of fixed size and guaranteed bandwidth to highly bursty data
services. Integrating the various traffic types ic an important task in B-ISDN. Therefore,
the schemes for packet multiplexing, bandwidth allocation and congestion control should
be investigated to ensure fairness and efficient resource usage. It is also important to identify

and understand some of the traffic types likely to be integrated in B-ISDN. They may have




differences in tolerance to queueing delay, buffering, and bandwidth requirements. It can
therefore be useful to characterize the following B-ISDN traffic types:

(1) Delay-sensitive high-bandwidth services: This traffic type requires a fixed large
bandwidth for the duration of a call and demands real-time service. Examples of this traffic
type are conference video, real-time image processing, document retrieval, and local area
network interconnects.

(2) Delay-insensitive high-bandwidth services: This traffic type includes bulk
information transport services. The user can designate the extent of delay which is tolerable
(specified, for instance, as minutes, hours, or overnight). Examples of this traffic type
include delay-tolerent document, image, and video delivery services.

(3) Delay-sensitive low-bandwidth statistically multiplexed services: This traffic type
includes calls which are delay sensitive with end-to-end delay requirements ranging from
a few tens to a few hundreds of milliseconds. Examples of such traffic are packetized voice,

interactive data, and enquiry-response messages.

ATH ataptation layer i (data stream) ¢
ATH transport layer (packet strean) ¢
Physical layer (multiplexed packet strean)

Figure 1.2 Layered View of the ATM Protocol Model.

Service layer




In this work, B-ISDN traffic will be assumed to fall into two categories; circuit-

switched and packet-switched traffic. Circuit-switched traffic may also be referred to as
non-queucable since a call of this type cannot be stored or queued in a buffer.
Packet-switched traffic on the other hand may be referred to as queueable since a packet
can be queued in a buffer until the transmission line becomes free. Each of these traffic
types are further divided into a number of classes of calls where each class has its own call
arrival rate and call duration. The circuit-switched classes of calls are moreover classified
with their bandwidth requirements in number of channels and the packet-switched classes
of calls are classified with their packet arrival rate per call per second. To handle such a
wide range of traffic flow characteristics and to make efficient use of the associated digital

pipe, close control of the access mechanism in the ISDN Central Office will be required.

1.1 Access Control Policies

In order to accept the transmission of a call in the digital pipes between the ISDN
Central Offices, the access controller must ensure that the specific requirements associated
with the call are available. As an answer to a circuit-switched type of call for instance, a
given number of free channels ought to be dedicated from the source ISDN Central Office
to the destination ISDN Central Office during the entire communication time. If the
bandwidth requirement is available then a virtual circuit will be established between the
sending and the receiving central offices. Packet-switched calls on the other hand are usually
carried out by sending the packets constituting a message from one central office to the next
in a store-and-forward fashion. A packet-switched call may hence request a given time limit
on the delay which can occur in the communication transfer at every central office. An

access control policy is therefore required to provide users with a fair share of the resources
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available while maximizing the utilization of the node. Access control policies fall into one
of the following categories: complete sharing, complete partitioning, preemptive priority
and optimal policy. The first three access control categories are suboptimal in the sense
that they do not yield optimal utilization of the bandwidth available. This work is concerned
with the optimal policy which maximizes the use of a link while ensuring the requirements
forall classes of calls. Inwhat follows the suboptimal access policies are introduced together

with examples and then the optimal access policy is described.

1.1.1 Suboptimal Access Control Policies

The easiest access scheme to implement is complete sharing. Complete sharing accepts
a call whenever sufficient bandwidth exists on the communication link to accommodate the
call. Complete sharing, however, suffers from fairness between uscrs when it is used to
control the access in a communication network where many classes having different
requirements are allowed. For example an increase in the arrival rate of a given class of
call will decrease the share of the resources available to the other classes of calls in the
network, No control is given in complete sharing to allocate a fair share of the link to the
other classes of calls by blocking a call from the first class, since a call is allowed on the

link as long as there is sufficient bandwidth available.

Complete partitioning is an access scheme used in order to avoid conflicts between
the different classes of calls. Complete partitioning separates the available bandwidth in
such a way that each class of calls possesses a portion of the link. Using this access control
policy a call is accepted as long as sufficient bandwidth exists in the reserved area of the

link for that specific class of calls. The drawback with this technique is the possible waste




of link capacity. For example, some area of a link may very well be unused while other
area can suffer from congestion. Complete partitioning will not allow a call corresponding
to the congested area to access the unused portion of the link since calls of each class are

only accepted if there is enough bandwidth in their restricted area of the link.

The preemptive priority access control scheme is a technique specially useful when
both circuit-switched and packet-switched traffic types are integrated on the same link. In
this access scheme a fixed number of channels is reserved for the use of circuit-switched
traffic. A packet-switched call is allowed in the idle portion of the link allocated to
circuit-switched calls with the risk of being preempted whenever a circuit-switched call
requests it. The packet-switched traffic is thus able to use the idle portion of the link whenever
a sudden increase in its arrival rate occurs, which is a great advantage. Due to the fixed
boundary limit for circuit-switched calls, this technique suffers from a lack of flexibility.
The boundary position cannot be optimally set to provide the best possible utilization of the
communication link at all times since the arrival rates of circuit-switched and packet-
switched calls vary. Some actions must further be taken to avoid packet loss when packets

are preempted from the circuit-switched reserved area of the link.

Several studies have already been conducted to address the above suboptimal access
policies and their variations showing how they would perform under a variety of integrated
traffic environments. For instance, the implementati~n: of the preemptive priority access
control strategy (shown in Figure 1.3) was applied to the control of wide-band non-queueable

traffic type (WB) and narrow-band queueable traffic type (NB) [1]". Another study [2]

* Numbers in brackets designate references at the end of the thesis.




reports the performance analysis of a system under different control strategies, namely, First
In First Out (Complete Sharing) and Preemptive Priority, in the case where only all-queued
traffic types are assumed to share the same broadband channel (or digital pipe). From these
studies, the best access scheme to be used heavily depends on the traffic allowed in the
communication network. One of the key issues found is that fairness to the users may be

achieved only at some expense of reduced bandwidth utilization.

Blocked ¥B
Hessages | \
8 Traffic (P .
(Preemgting) 3 ¢ | 8 Chanmels
Preenpted NB
Hessages “— Boundary
B Traftle I 3 ¢ | M8 Channels
Queve of NB )
Kessages
¥B: Wide-Band

HB: Narrow-Band

Figure 1.3 Preecmptive Priority (PP) Access Control Strategy.
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Another study [3] analyses the utilization of an integrated system where voice, video,
anddata communications sharea single link under the preemptive priority scheme. A certain
grade of service is assumed for circuit-switched calls (video and voice) and a minimum
delay is allowed for packet-switched calls. The system proposed permits the location of a
boundary maximizing the utilization of a link while keeping the user fairness to the best

level possible. This system permits the maximum utilization of a link under the preemptive



access control strategy, as long as the traffic parameters (such as the arrival rate) of the
different classes of calls do not vary too much in time. This thesis is concerned with the
access control of an integrated communication network where the traffic parameters are fast

changing.
1.1.2 Optimal Access Control Policies

The decision to accept or reject a call in the suboptimal access policies depends only
on the present state of the communication network. The state of a communication network
corresponds to the number of calls currently using a link for every allowed class of calls.
The accept/reject decision can be taken on a real time basis in the case of suboptimal access
policies since upon arrival of a call the access controller only needs to know the amount of
free space available in the link and the requirements related to ie class of the call in order
to accept or reject the call. These policies maximize the utilization of the link in each state
independently of one another and they are qualified as suboptimal for this reason. Anoptimal
access policy on the other hand maximizes the overall utilization of a link by taking into
consideration all possible transitions from the states. For example even though there might
be enough bandwidth left in the link for a given class of call, the optimal access controller
could reject the access to a call from that class in order to accept another call requesting
more bandwidth later on, if this action results in an increase in the overall link utilization.
The optimal access policy operates like a dynamic movable boundary in an integrated
environment. Every time a circuit-switched call is accepted, the capacity of the link to serve
packet-switched calls will decrease accordingly. At any time, the channels unused by the
circuit-switched calls will serve packet traffic on a First-Come-First-Served (FCFS)

queueing discipline. In order to guarantee a certain grade of service for packet-switched
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calls, the optimal policy may allocate a minimum capacity to packet-switched calls based
on their present load at any time. In fact the optimal access policy provides fairness in the
access to the resources since all classes of calls are able to specify their own requirements.
These requirements might be a maximum blocking probability for a circuit-switched class
of calls or amaximum probability that the packetdelay in a packet-switched call transmission
will not be longer than a specified maximum. The optimal policy could be very useful as
the access control strategy for the ATM transport method for instance. In a multimedia
environment it will be critical that the ATM transport method satisfies the cell delay and
loss performance requirements adequate for all applications supported [4]. One of the main
reasons which makes the optimal access policy the best choice as an access controller in an
integrated communication system is its adaptability to guarantee all users requirements in

a varying environment.

The optimal access policy technique has been studied lately in various papers [5][6].
The problem of controlling the access to acommunication link consisting of a heterogeneous
mix of circuit-switched traffic is usually formulated as a Semi-Markov Decision Process
(SMDP) to find the optimal access policy. Unfortunately even though the optimal policy
gives the best possible utilization of the resource, one is required either to solve a Linear
Programming problem or to use a value iteration algorithm to determine the optimal access
policy. These techniques eliminate the possibility of a real time computation process to
determine the accept/reject decision in all but the simplest cases using the present unipro-
cessor sequential computer technology since the time required to solve the problem increases
exponentially with the size of the problem. An optimal access controller for instance might

need several seconds to compute the best decision upon a call amrival, which should be
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answered in a very short time dela; (a few milliseconds) [7]. If this processing time problem
could be solved then the optimal access scheme could be effectively implemented to

maximize the utilization of a link.

1.2 Research Contributions and Scope of the Thesis

The first major contribution of this thesis is the extension of the optimal access scheme
to maximize the utilization of a link for circuit-switched traffic to include packet-switched
traffic as well. This new concept allows us to find the optimal access policy corresponding
to a multimedia ISDN communication system, for example. In order to fully integrate
packet-switched traffic and circuit-switched traffic types on the same link, the concept of a
dynamic movable boundary is used. A dynamic movable boundary ensures that both
circuit-switched and packet-switched traffic requirements are always satisfied, except when
the capacity of the resource is push=d to the limit (in overload situation). With the dynamic
movable boundary technique, the resource is fairly shared between the packet-switched and
circuit-switched traffic types, which may not be the case when ordinary boundary access
schemes are used as discussed above. The resuits allow specification of user requirements

for both circuit-switched and packet-switched traffic.

As asecond major contribution of this thesis, we tackled the processing time problem
required to find the optimal access policy corresponding to a given communication system.
This processing time problem may be solved tsing the fast parallel computing power found
in Neural Networks. A neural network is a highly interconnected network of simple analog
processors (called neurons) which can collectively compute good solutions to difficult

optimization problems. The type of neural network considered here is a modified version
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of the neural network first proposed by D.W. Tank and J.J. Hopfield which was specially
designed to solve Linear Programming problems [8]. This type of neural network has also
been studied for other optimization applications such as in high-speed packet switch control
[9], or in traffic routing and flow allocation [10]. Another type of neural network has recently
been studied to be used as an access controller in an integrated services communicatin
system [11]. The proposed ATM communication network access controller is implemented
using neural networks with back-propagation in order to learn the relations between offered
traffic and service qualities. Once trained this neural network takes a decision uponaccepting
or rejecting a call much faster than a uniprocessor computer would do. Since the learning
model used to train the neural network is a variation of complete sharing, the utilization of
the resource under this technique would however still be lower than what could be provided

by an optimal access policy.
This thesis is organized as follows:

Chapter 2 introduces the reader to the neural network computation approach. After
an overview of the different neural network models, the neural network used to solve
constrained optimization problems is fully described. Topics such as the momentum (or
energy) function corresponding to a neural network, and the implementation of equality and
inequality restrictions are discussed. The physical implementation of the neural network
from its momentum function using basic electrical circuit components is also covered. Care
is taken in the physical implementation to allow easier VLSI fabrication of the neural network

although the VLSI implementation itself is not provided here.

Chapter 3 first demonstrates how the optimal access policy problem for a communi-

cation network integrating both circuit-switched and packet-switched traffic types can be
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modelled using a Semi-Markov Decision Process (SMDP). Then the mapping of the SMDP
communication model to a Linear Programming problem is described. Examples of optimal
access policy computation problem for both constrained and unconstrained communication
system are also given. In an unconstrained communication system, the optimal policy does
not take the user requirements into consideration. Finally the queueing model techniques
used to compute the packet delay probability which allows packet-switched classes of calls

to set their service requirements is fully described.

Chapter 4 is devoted to thesimulation results obtained from the optimal access policy.
The possible implementation of an access controller based on the optimal access policy is
given first. Then the program used to compute the different parameters required by the
Linear Programming neural network, and the Linear Programming simulation program
emulating the action of the neural network itself are described. The simulation results
obtained from an unconstrained communication system where the access scheme is based
on the optimal access policy, and where only circuit-switched traffic is allowed are first
given first. The simulation results provide the utilization of a link under various paramelers
such as the arrival rate of the different classes of calls, the capacity of the link in number of
channels, the number of channels taken by each class of calls, and so on. Then simulation
results show the obvious advantage of integrating packet-switched traffic with circuit-
switched truffic on the utilization of a link. The last simulation results demonstrate that the

utilization of a link decreases as a certain grade of service is allowed to a given class of call.

Finally a summary of the main findings and results of this thesis are given and sug-

gestions for further research are provided in Chapter 5.




CHAPTER 2
THE NEURAL NETWORK MODEL

2.1 Introduction

Intelligent behavior in a person seems to emerge from interaction involving a huge
number of neurons -each of which is quite limited in its processing capabilities (i.e., with
regard to its speed, the information it acts upon, and the information it produces). Similarly
-vith a neural-network approach, information is processed through the interaction of a large
number of simulated neurons. In the first part of this chapter the neural network approach
is introduced in general terms. The neural network specifically used to solve Linear Pro-
gramming problems is then described. The physical implementation of the neural network

using basic electri. 1l circuit components is fully covered.

2.2 The Neural Network Approach

The neural network models have so far been used in different areas such as pattern
recognition, artificial intelligence problems, and approximations to large optimization
problems. The basic element of any neural network is the neuron. An artificial neuron has

four main components: (see Figure 2.1)

* synapses (input connections), through which the neuron receives activation from
other neurons.
* a summation function which combines the various input activations into a single

activation.



15

* a threshold function which converts this summation of input activation into output
activation.
* axonal paths (output connections) by which a neuron’s output activation arrives as

input activation to other neurons in the system.

\muh Outgut
__7@@\ |

Function Function

Figure 2.1 A Simulated Neuron.

A neural network consists of a large number of neurons communicating together using
their inter-neuron connections, that is, the synapses and the axonal paths. An inter-neuron
connection in a neural network is typically assigned a weight value which modulates the
activation passing through the connection. If the connection from neuron A to neuron B
has a weight wg, for example then the activation output of neuron A is muitiplied by this
value to determine the activation actually received by B. The absence of a connection
between A and B can be represented by simply assigning wy, a 0 value. An inhibitory
relation between A and B is modeled by giving wg, a negative value. A neural network
is driven by the numerically-valued activation which passes from neurons to other neurons.
The knowledge of a neural network lies in its inter-neuron connections and their corre-

sponding weights.
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There are two popular models of neural networks; the feedback model and the feed-
forward model. In the feed-forward model (shown in Figure 2.2) the neurons are arranged
into layers so that the flow of information propagates from the input layer towards the output
layer. The operation of the feed-forward model is similar to that of a combinational circuit
where the inputs propagate and interact in one direction to produce the output. The feed-

forward model is appropriate to solve problems such as pattern recognition for example.

Unidirectional
Inter-Neuron

Figure 2.2 Feed-forward Neural Network.

The architecture of the feedback neural networks can be described as an undirected
graph (see Figure 2.3) since the flow of information propagates bidirectionally between the
neurons. The operation of the feedback model is closer to that of sequential circuit where
the system is initialized to a given state and evolves in time to a final state. The computation

time in feed-forward neural network is simply given as the time required for the signals to
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propagate from the input layer to the output layer. The evolution of the feedback model in
time is more complex and may be analyzed with the help of amomentum (orenergy) function.
Under favorable conditions the momentum function decreases monotonically as the neural

network evolves from one state to the next.

Bidirectional /

Inter-Neuron —
Connections

Figure 2.3 Feedback Neural Network.,

Optimization problems are typically implemented on a feedback neural network. The
feedback neural network is therefore suitable to determine an optimal access policy since a
Linear Programming optimization process can be used to find a solution to this problem.
One famous example of optimization process is the Traveling Salesman Problem (TSP) in
which a salesman is supposed to tour N cities and desires to minimize the total distance of
the tour. There are N! possible solutions and this number increases rapidly with the problem
size. This task is computationally intensive on a present-generation digital computer. Using
the original feedback neural network model as proposed by Hopfield and Tank a very good

solution could be found in a relatively short time, the problem being distributed among all
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neurons. In the remainder of this chapter, the physical implementation of a neural network
used to solve a Linear Programming problem is described. The Linear Programming
optimization technique will be used later on to find the optimal access policy corresponding

to a given communication system.

2.3 Linear Programming Neural Networks

The behavior of a neural network using the feedback approach is best described by its
so called momentum (or energy) function. The momentum function is chosen in such a way
to have its minimum activation once the optimum solution is found. A Linear Programming

problem can be stated as the attempt to maximize an objective function such as

— e

M=A-V (2.1)
where "*" refers to the dot product operation and A is an N-dimensional vector of

coefficients for the N variables which are the components of V, that is,

.Al- Vl
A2 V2
n=|.[-1{. (2.2)

This maximization process is to be accomplished subject to a set of I linear inequality

constraints and E linear equality constraints among the variables:
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D;*V s B, i=1,2,.1 2.3)
I—):-V = B, e=I+1,. ,I+E (2.4)
for
-Dj'1
—f Dj'z
D,=| .|, j=12.I+E (2.5)
LDj'N

where the l_)_;, for ch j, contains the N variable coefficients in a constraint equation and

B; are the bounds.

In order to better understand how the neural network proceeds to find an optimum
solution to an optimization problem, one can introduce the following analogy. The com-
ponents of the variable vector V can be treated as the coordinates of a point in a Euclidean
spaceof N dimensions. Callthis point the objective point. The objective function (equation
2.1) is continuous and single valued everywhere within this space and therefore can be used
to define a gradient vector, grad I1. If &,,ut,,., Uy are unit vectors in the directions of the
coordinate axes, then

Yool -

— N L
gl'adn = n = ‘-IEV; uk = ‘glAkuk. (2-6)

The vector II is everywhere constant, normal to the hyperplanes of equal II, and in the

direction of steepest ascent.

The #* inequality restriction of equation 2.3 represents a hypervolume in the N-space
bounded by the hyperplane 5: V= B;. This bound is called the i* edge, and corresponding

to this edge one may also define a vector T, normal to the i hyperplane. An edge separates
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the region of the space in which an inequality is satisfied from the region in which it is
violated. The space in which all of the given inequalities are satisfied is called the allowed
region. The allowed region is closed in the sense that the objective function cannot increase
indefinitively without entering a forbidden region. An example of this representation is

shown in Figure 2.4.

Forbidden Region
ith pdge

Allowed Pegion

n

Figure 2.4 Motion of Objective Point Near a Restriction.

N
= 7
u;

Assuming only inequality restrictions one can imagine a point (the objective point) moving

h

through the allowed region along T until it reaches a restriction such as the i edge (see

Figure 2.4). Then the motion is determined by two vectors; 11, and -1_‘,. which is multiplied

ith

by a factor z corresponding to the distance between the point and the i edge. If 2T, is
greater than I1 then the point will be ejected from the forbidden region (along the resultant
vector .t‘) The actual rebound is infinitesimal in magnitude as the point moves back to the
allowed region. The influence of vector T, then vanishes, and the gradient IT causes the
motion to reverse until the point again enters the forbidden region. This way, the objective

point moves along the restriction boundary in the direction of the projection of the vector

grad IT on the i* hyperplane [12].
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2.4 Physical Implementation of the Linear Programming Neural Net-

works

As a Linear Programming problem solver the neural network is required to maximize
the objective function (equation 2.1) while ensuring that all equality restrictions as well as
all inequality restrictions are satisfied (equations 2.3 and 2.4). The momentum function for
such a neural network can be stated as [13]

I1+E

S H({D,*V-B,) 2.7

M=-@AV)+ élG(B:-V—B,.H 3
where A « V is the objective function to be maximized, and G(2) and H(z) are the functions
which will ensure that the inequality restrictions as well as the equality restrictions are
respectively met. Notice here that only inequality restrictions were allowed in the original
Hopfield and Tank model. As the neural network tries to find a valid optimal solution, the
restrictive functions G(z) and H(z) will penalize the system whenever an inequality or an
equality restriction is violated. The value of G(z) should hence be high only when an
inequality restriction is not met while H(z) should penalize proportionally to the divergence

of the objective point from a given equality restriction. Two such penalizing functions could

be given as follows:

0 if z < 0 (allowed region)

G(z) = {yz*
(2) % y>0 ifz >0 (restricted region)

(2.8)

and

H(z)={y—;-2,y>0} . (2.9)
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The variable z here can be interpreted as the distance between the objective point position
and a boundary restriction. The coefficient y is a positive number used to adjust the scaling
of the penalizing function. A value too low would not "penalize" the objective point motion
enough while a value too high could cause divergence, and hence oscillation in the neural
network solution. These penalizing functions were chosen because of the facility with which
their physical implementations can be obtained as it will be demonstrated later on. G(2)
has no effect in the momentum function as long as the objective point respects every
inequality restriction. For the equality penalizing function, it is assumed that the objective
point is always in the forbidden region. H(z) thus has a value proportional to the distance
between an equality boundary and the neural network solution, so that the obj _tive point
will be forced towards this boundary. Furthermore one may obtain the circuit equation of
the neural network from its momentum function (equation 2.7). To do so, the negative of
the partial derivative of the momentum function is taken with respect to v (where each

component of V will represent the output voltage of a neuron) as follows:

oM dV. I — E+1 — —
3 C—' = A-3Dig®;*V-B)- 3 D kD, V-B) k=12..N
(2.10)
where
_dG(2) _dH(z)
giz)= e and h(z) = Z (2.11)

The schematic diagram of such a neural network is shown in Figure 2.5. The inputs
of the neural network are the components of vector A (see equation 2.2); the boundary
values of the inequality restrictions B, i = 1, 2, ..., I; and the boundary values of the equality

restrictions B, e = I+1], .., I+E. The outputs of the neural network correspond to V. In
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Figure 2.5, f represents the variable amplifiers which provides the neural network solution
to the Linear Programming problem once stabilization is achieved (the optimum being
found). The circuit equation of the variable amplifiers is given by equation 2.10. The
amplifiers gand h in Figure 2.5 represent the inequality and the equality restriction amplifiers

respectively, and their circuit equations are given by

W, = g(D,*V-B) and ¥, = h(D, « V-B,). 2.12)
Variables Insqualities Equalities
’ - N p——— ——
1,-‘ii 1-‘&1: ‘AN J—Bl §Br Bt Bz
Dips |Diex D . Dy __ DN Dty __ [Dupx
—-1 P e Dy Dty IDnpk
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Figure 2.5 Linear Programming Neural Network.

To physically implement the variable and restriction amplifiers, one can use the fol-
lowing four basic electrical circuits which are shown in Figures 2.6, 2.7, 2.8, and 2.9, that

is, the summing integrator, the summing adder, the precision amplifier, and the inverter
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respectively. The characteristic equation corresponding to the summing integrator can be

given as
Uy U, U U,
V,, = _% (;2+-r—‘+-r-3+...+7'=)d:+Uc (2.13)
0 1 2 L

where U, is the initial voltage stored in capacitor C (as shown in Figure 2.6), whereas the

characteristic equation corresponding to the summing adder circuit can be written as follows:

U U U U,
V,“--Rf(-r—:+;l—l+r—:+ +-i) (2.14)

The functions of both the inverter and the precision rectifier circuits are to negate the potential
given at their respective inputs. However the precision rectifier does not respond to a positive
potential, that is,

V,

o

w = max(—Vin’ 0)‘ (2-15)

Each of the basic circuit elements provides an almost ideal linear characteristic function for

the operating range required by the neural network.

Upo—n2- Upo—a2-

U1o—~£1—- C Uio-—MfL By
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Figure 2.6 Summing Integrator. Figure 2.7 Summing Adder.



25
R
D R
N NN
] D -
Vm o—#—}_D M Vout Vo-—-w\—ij>__ov
Figure 2.8 Precision Rectifier. Figure 2.9 Inverter.

The neural network main circuit equations (see equation 2.10) required in order to
solve a Linear Programming problem can be integrated to give a relation with the output

voltage of the &® variable amplifier as follows:

1 I+E
Vk = %'J' (Ak—.le,‘_klp.'— ; ch‘k‘p‘) d‘, k - 1,2, ..,N (2.16)
where
W, = g(D,*V-B)and W, = h(D, +V-B,). (2.17)

In most Linear Programming applications however there is a set of inequality constraints
which are used to ensure that the range of values for the decision variables are kept positive.
One may thus further reduce the complexity of the overall neural network physical
implementation if a simple modification is done to equation 2.16 in order to restrict the

range of the function to allow only positive output values as follows:

I1+E

)
Vk = maX{ 'C];"J‘ (Ak - EID""‘I“' - ; D¢ kq’,) dt, 0}, k - 1, 2, ..,N. (2.18)
i= e=f+1

Next, the physical implementation of variable amplifiers, equality and inequality restriction

amplifiers will be discussed.
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2.4.1 Variable Amplifier Implementation

In order to implement the modified variable amplifiers, three of the basic circuit ele-
ments are required, that is, the summing integrator, the precision rectifier (in order to provide
the modification brought into equation 2.18) and the inverter. The inverter is used to allow
a negative output for the variable amplifier. The weights D,y k=1, 2, .., N;j = 1, ..,
I+E) found in the neural network (see Figure 2.5) are implemented using resistors.
Unfortunately, one cannot have negative resistors corresponding to negative weights.
Instead the inverse of the potential which was supposed to be applied to the resistor will be
used in such a case. The following figure (Figure 2.10) presents an electrical circuit used
to implement the variable amplifiers. As it may be seen, it consists of a summing integrator,
a precision rectifier and an inverter. Next, the choice of the parameters in this circuit to

express equation (2.18) will be explained.

Ugo—-w— B‘

oL D
Ulo—M;—- > ) V, R
Uzo—mé ID_ R | p |l n i
Upouti ¥ ED S ID——J k

Figure 2.10 Implementation of the Variable Amplifier.

For example, let us begin by assuming that the first input in Figure 2.10 has been used to
implement A, in equation 2.18. One can thenset U, to plus or minus one volt, given the

sign of A, as follows:
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U A 2.19
[\ IAkl’ (‘ )

and 7, can thus be set as the inverse of the magnitude of A, so that the following equality

is met:

=2 =4, (2.20)

Each of the other inputs may be used to generate the summation terms in equation 2.18. For
example one can set 7; to the inverse of the magnitude of the corresponding weight; namely,

1
r,= — j=12,.,I+E, 2.21
i = Dt ! @21)

and U; can now be set to the corresponding output of the restriction amplifier (taking care

of the sign of the weight at the same time):

U = 2P

, j=1,2,.,]+E, 2.22
J IDj,kl ] ( )

so that the following requirements are met:

- = -¥D,,, j=12,.,]+E. (2.23)

2.4.2 Equality Restriction Amplifier Implementation

An equality restriction amplifier may be physically implemented using a summing
adder and an inverter as shown in Figure 2.11. The circuit equation driving an equality

restriction amplifier can be obtained from equations 2.9, 2.11, and 2.12 as follows:

N
lI’e = Y‘(—B¢+kz D¢.kvk)9 € -I+1’ "’I +E' (2'24)
-l
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Figure 2.11 Implementation of the Equality Restriction OpAmp.

The first input in this case corresponds to an equality boundary condition and can be easily
implemented much like th= first input of the variable amplifiers. One can let the potential

U, to be 1 or -1 volt following the sign of the corresponding boundary condition:

(2.25)

and r, can then be set to the inverse of the magnitude of the boundary condition so that the

following equalities are met:

Uy

Iy

= B.. (2.26)

Each of the other inputs should correspond to one of the outputs coming from the variable
amplifiers. Hence, one can set = to the inverse of the magnitude of the corresponding

weight:

n=r—k=12,.,N, 2.27
b= D] (2.27)

and U, can now be set to the output corresponding to the variable amplifier (taking care

of the sign of the weight at the same time):

-VkDe.k

Uk = ID"kl_,

k=12,.,N (2.28)
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so that the following equations are met:

U
— = ~ViD,, k=12..N. (2.29)
k

One final step required here is to adjust the scaling of the penalizing function by setting the
resistance R, to the appropriate value, that is,

R‘. = Y. (2.30)
2.4.3 Inequality Restriction Amplifier Impiementation

Finally one can implement the inequality restriction amplifiers with the use of a pre-
cision rectifier assbown in Figure 2.12. The circuit equation driving an inequality restriction

amplifier can be obtained from equations 2.8, 2.11, and 2.12 as follows:
N
lp‘ = Y ¢ maX(—Bl- + kle.-'ka, 0), i - 1, 2, --,I (2-31)

The first input in this case corresponds to an inequality boundary condition. Here again,
one can let the potential U, tobe 1 or -1 volt following the sign of the corresponding
boundary condition:

B;
Uy = 1=\ i=12.1, (2.32)

|B:|
and r, can be set to the inverse of the magnitude of the boundary condition so that the

following equalities are met:

U,
= =B, (2.33)
To
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Each of the other inputs should correspond to one of the outputs of the variable amplifiers.

For example, one can set r, to the inverse of the magnitude of the corresponding weight:

= —— k=1,2,.,N, (2.34)

and U, can now be set to the output corresponding to the variable amplifier (taking care

of the sign of the weight at the same time):

k D
I ik |

so that the following equations are met:

U,
r—" = -V,D;,, k=1,2,.,N. (2.36)
k

Another step also required here is to adjust the scaling of the penalizing function by setting

the resistance R; to the appropriate value, that is,

R; =y (2.37)
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Figure 2.12 Implementation of the Inequality Restriction OpAmp.

For the Linear Programming neural network physical implementation to work pro-
perly, the response time of the restriction amplifiers must however be negligible compared

to that of the variable amplifiers. Oscillation could otherwise occur in which case the neural
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network outputs would not stabilize. Although the VLSI implementation of the Linear
Programming neural network is not covered in this work some characteristics may be
outlined here. In the procedure given above, one may notice that only resistor values are
required to set the weights in the neural network. This will help the implementation of the
Linear Programming neural network on VLSI chips where the resistor values can be set
much like the way memory locations are set in the memory chips. The neural network
implementation will hence be able to solve different Linear Programming problems by
simply reprogramming its resistor value. To simulate the absence of connection between
two neurons a VLSI implementation will also have to provide the possibility of an open
circuit between two neurons. As it will be seen in the next chapter the minimum number
of outputs required to get the optimal access policy solution from the Linear Programming
neural network corresponds to the number of classes of calls allowed in the communication

network.
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CHAPTER 3
THE OPTIMAL ACCESS CONTROL POLICIES

3.1 Introduction

The main goal of this chapter is to show how to express the optimal access policy
corresponding to a multimedia communication network using the neural network developed
in the previous chapter. The problem of determining the optimal access policy for a
circuit-switched communication network which supports traffic classes with varying
bandwidth requirements is first addressed. A Markov Decision Process approach is
employed to obtain the optimal access policy as it was demenstrated in [6). This approach
3 isthen extended here so that packet-switched traffic can be allowed in the communication
system. This extension is quite general and allows different classes of packet-switched
traffic to the network. The mapping of the Markov decision processtoaLinearProgramming
problem is then introduced in order to implement the corresponding optimal access policy
using a neural network. Examples of neural networkimplementations for bothunconstrained
andconstrained optimal accesspolicies will be givenafterwards. Onlythe optimal utilization
of the link is important in an unconstrained optimal access policy, that is, the policy will

not take into account the various call requirements in this case. On the other hand the

constrained policy allows users to specify maximum blocking probability ordelay that they
: may be subjected to in the network. Finally the queueing models which can be used to
compute the packet delay in the system, allowing a certain grade of service for packet-

switched users, will be described.



33

3.2 The communication Network Model

As it may be recalled from Chapter 1, the future B-ISDN multimedia communication
network will consist of interconnected Central Offices, or CO (see Figures 1.1 and 3.1).
Each of these Central Offices will be able to carry the transmitted information from the }
source CO to the destination CO through the use of wideband communication links such as |
fiberoptic cables. A communication link # will be characterized by its bandwidthin number
of channels (m,) which are supported by the link. For example a transmission rate of 1.5
Mbps is required in orderto handle the 24 channels of 64 Kbps each as itis currently specified
in the TI telephone network standard for digital communication. One may now proceed

with the description of the communication network model.

CcI
CI
(I o co (1
CI
(1
(W | co co {1
o C0: ISN Central Office
CI: Customer ISON Interface

Figure 3.1 B-ISDN Communication Network.



Inthe following C, circuit-switched classes and P, packet-switched classes of calls
will be allowed in link n, for atotal of C, + P, = K classes of calls. Each class of calls
will be identified with their Poisson process call amival rate and their exponentially dis-
tributed call duration, that is,

A, calls persecond, k=1,2,.,.K (3.1)
i seconds percall, £=1,2,.. K. (3.2)

Furthermore a circuit-switched class of call will also be identified with its bandwidth
requirement, that is,

b, channels percall, k=1,2,..,C,, 33)

and a packet-switched class of call will generate packets with exponentially distributed

length following a Poisson process during the duration of a call with an arrival rate of

N, packets percall persecond, k=C, +1,..,C, +P,. (3.4)

Finally each channel will be characterized by a service rate of w packets per channel per

second.

The state of a link at any time may be given by x = (x;, X, «.,, X «-., Xy) Where x;
represents the number of class-k calls which are carried out by the link at that time. The
capacity of the link is assumed to bedivided into two parts with adynamicmovable boundary.
Let

m,. = the numberof channels occupied by the circuit-switched calls when the system
is in the state x, and
m,, = the number of channels occupied by the packet-switched calls when the system

is in the state x.
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Hence m, +m,, =m, where m, is the capacity of the link in number of chennels at any
time. ‘The utilization of a channel used for circuit-switched purposes being always one in
any given state x, thatis, p, =1, the number of channels occupied by the circuit-switched

calls may be computed as follows:

Cl
m“ = 2 x,‘b,‘. (3.5)
k=]

Clearly m,=m, - m,. Note here that m,. and m,, will change dynamically. It is assumed
that the packet arrival due to all packet-switched calls will form a single queue. Clearly this
packet arrival process will be a Poisson process. The packets in the queue will be served
according to the FCFS queucing discipline by the m,,, channel servers. The utilization of
a channel in a given state x uvsed for packet-switching purposes may thus be computed as

follows:

(3.6)

Hence xy; refers to the total arrival rate of packets per second in the link from the class-k
packet-switched calls and m_w represents the service rate of the system in number of
packets per second. Notice here that this ratio (equation 3.6) should always be kept below
one (p,<1) to avoid infinite packet delay. Now, it is possible to express the overall

utilization of the link for a given state x as

Co C,+P,
rx) = 3xb+ Y xn/o. (3.7)
kel k=C,+1
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The state space, that is, the space of all possible states, may be derived from equation

3.7 as follows:
C. C,+P,
A= { x:x=0; kzlx,‘b,, +k_CE'+1x,‘n,/w = m,+m_=m, } (3.8)

A state is thus allowed in the state space as long as the bandwidth requirement for that state
is notgreater than the capacity of the link itself. To every state of the state space corres ponds
a state dependent action space. The state dependent action space determines the decision
to permit or deny access to every class of call in the link. The set of all possible actions (the
action space) is related to the number of classes of calls (K), and may be expressed as
follows:

B = {(a,a,...ax):a,€{0,1}} (3.9)
where

a - 0, a class-k call access will be rejected
* 711, aclass-k call access will be accepted [

Clearly, the optimal access policy assigns a given action to every state of the state
space in such a way that the overall utilization of the link is optimized. Let us assume for
example that only 2 classes of calls are allowed in the link. The action space can then be

enumerated as:

B = {(0,0)(0,1)(1,0)(1, 1)}, (3.10)
that is, reject both classes of calls, accept only a class-2 call, accept only a class-1 call, or
accept both classes of calls respectively. If action a =(a,, a,) = (0,1) is chosen in a given
state then only a class-2 call will have access to the link. Actually only a subset of these
actions (the state dependent action space) arc possible for a given state. If the capacity of

the link in state x is fully utilized for instance then the only possible action would be to



deny access to every class of calls, thatis, B, ={(0,0)},orif the link is idle then the chosen

action should accept at least one class of calls, The departure of a call (that is, no further
need of the link from a particular call) being always accepted, the state dependent subset of

the action space can thus be represented as follows for a given state x:

B, = {a€B:q, -0 if x+e, & A} (3.11)
where

a veclor of zeroes except for the k"component.

6

Hence the optimization process required to provide the optimal access policy must

find the best action to choose from the state dependent action space for every state of the
state space in order to maximize the utilization of the communication link over all states.
Finallyitmay benoticed that the cardinality of the statespace, thatis, the number ofelements
in the state space, is given as |A|, whereas the cardinality of the action space (equation 3.9)
is 2%, One may compare the technique used in this work with another technique [S] where
the cardinality of the state space was 2K|A| and the cardinality of the action space was 2
for an arrival and 1 for adeparture, the decision epoch being taken after the occurrence of
an event rather than before like in our case. Clearly, in the state descriptor used here, an
event occurs upon a call departure from the link or upon a call arrival in the system. A
decision epoch occurs every time the state of the system changes, that is, upon departure of
a call from the link or upon acceptance of acall in the link. Hence the decision to accept
or reject a call will already be made before the arrival of a call. If the call is accepted then
the state of the link changes and a decision epoch occurs to make sure that the system will
be ready for the next event. It has been proved in 7] that the state descriptor used here

results in faster optimal access policy computation.
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3.3 Formulation of an Optimal Access Policy as a Semi-Markov Deci-

sion Process and as a Linear Programming Problem

Now that the communication network model has been established we can proceed to
find the optimal access policy itself. In order to obtain an optimal access policy the com-
munication network needs to be cxpressed as a Semi-Markov Decision Process (SMDP).
As it may be remembered from Chapter 1, the main characteristic of the optimal access
policy is to maximize the overall utilization of a link over all states of the state space.
Consider for instance a communication network with a link of 10 channels (m, = 10), 3
classes of calls (K = 3), and the following parameters for circuit-switched classes: (b,, by,

bs) =(1,4,8), (A, Ay, Ag) =(1,1,1),and (1/p;, 1/, 1ps) = (1,1,1), as shown in Table 3.1.

Table 3.1 Traffic Parameters.

1 1

Network
Parameters

In this example the optimal access policy assigns the same action in every state as
woulddo the complete sharing access policy with one exception: in state (x;, x,, x;) = (2,0,0)
the optimal policy blocks class-1 call because even though there is enough bandwidth in
the link, the optimal policy prefers to wait for a "wider" class-2 or class-3 call. This way

the overall utilization of the link will be increased [14]). The remaining of this section shows
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how the Semi-Markov Decision Process can be expressed asa Linear Programming problem.
Our goal will then be achieved since a Linear Programming problem can be solved using a

neural network implementation as it was shown in Chapter 2.

Let us first tackle the problem of unconstrained access policies. An unconstrained
optimal access policy maximizes the utilization of alink without considering any of the user
requirements. This policy will thus provide the optimal utilization of a link at the price of
a possible degradation in user services. Let us also assume for now that the time interval
between two consecutive decision epoches (arrival or departure of a call) is always the same.
Using this assumption we can represent the optimal access policy as a discrete Markov
decision process. The overall utilization of a link in a given state x can be expressed as
follows:

c, C,+P,
rix) = glx,‘b,‘ +k_c2"+1xm,‘/w. (3.12)
Also of importance is the transition probability from, say, state x to, say, state y ata

decision epoch given that action a is chosen. This probability can be stated as follows:

Akab ify-x'*‘ek, k-l,-oo,K
Py ={mx, ify=x-¢ k=1..K (3.13)
0 otherwise.

where

e, = avector of zeroes except for the k"component.

The Markov Decision Process may now be expressed as a Linear Programming
problem to find a solution to the optimal access problem. First the objective function must
be chosen to provide the best action to take in eachstate of the state space so as to maximize

the long-run overall utilization of the link. If onc lets z, to be the long-run fraction of
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decision epoches at which the system is in state x and action a is chosen then the Linear
Programming problem corresponding to the Discrete Markov Decision Process in z,, can

be expressed as follows [15]:

Maximize S Y rix)z, (3.14)
x€EA a€B,
i b = P , Vy€E 3.15
SUbJCCt to aEB’z’m ngP,a Xgl\ aEEB, Wz“ y A’ . ( )
S Sz.=1, (3.16)
x€EA a€B,
z,20,xE€A and a €B,. (3.17)

The first set of restrictions (equation 3.15) represents the balance equations requiring
that for every state y € A the long-run average number of transitions from state y per time
unit must be equal to the long-run average number of transitions into state y per time unit.
Now since these equations must be respected for every state, the number of equality
restrictions required will be |Al, that is, the number of possible states for the communication
system. The next equality restriction (equation 3.16) emphasizes the fact that the sum of
the fractions z,, must be equal to 1. The last set of inequality restrictions (equation 3.17)

makes sure that the values of the decision variables z,, are always positives [16].

However in real life, the time spent by the system in each state will not be the same.
We hence cannot let the time between consecutive decision epoches be constant. So instead
of having a discrete Markov decision process the optimal access policy will be represented

by a semi-Markov decision process. In order to obtain the semi-Markov decision process

e m e me e AN Gttt
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from a discrete Markov decision process, we need to know the expected time until a new

state is entered from a given state x € A when action a € B, is chosen. This expected

time may be given as follows [15]:

-1
T(x,a) = (élukx, +§13\.,‘a,) . (3.18)

Notice here that in order for equation 3.18 to hold the call arrivals are assumed to follow a
Poisson distribution and the service time of the calls is assumed to be exponentially dis-
tributed. The next step is to express the semi-Markov decision process as a Linear Pro-
gramming problem. This is done by multiplying each term of the Linear Programming
problem corresponding to the discrete Markov decision process by the expected time. The
resulting Linear Programming problem in 2z, which corresponds to the semi-Markov

decision process is given as follows [15]:

Maximize > D rix)(x,a), (3.19)
xEA aEB,
subject to aeB’z,, ngP,,,;t(y,a) = ng agbeWt(x,a)z,,, Vy€EA, (3.20)
2 2 ux,ak,=1, (3.21)
XxEAN a€B

z,20, x €EA and a €B,. (3.22)



-

42

This representation can be simplified since the transition probabilities from a state y

with a given action a should sum up to one, that is,

ngsz(y,a ) =1 (3.23)
And if we further let
P, = P_x(x,a), (3.24)
that is,
Ma(x,a) ify=x+e, k=1,...,K
P, ={pxrx,a) ify=x-e, k=1,..,K}, (3.25)

0 otherwise.

the resulting Linear Programming formulation for the semi-Markov decision process

becomes [15]

Maximize Y 3 rixn(x,a), (3.26)
x€EA a€B,

subject to 2 %a= gA gﬂ Pz Yy EA, (3.27)
2 2 txap,.=1, (3.28)
xXEA a€EB

x

z,20, x EA and g €B,. (3.29)
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Notice here that the steady state probability of being in state x and choosing action
a is given by t(x,a)z., for the semi-Markov decision process. For each state x € A, there
will be at most one action a € B, in the unconstrained case such that z_, > 0; call this
action m,(x). If z,, =0 forall a €B,, then n,(x) should be set to an arbitrary element of
B, The optimal policy will choose action m,(x) whenever in state x, maximizing over all

policies the long-run overall utilization of the link [15].

3.4 Neural Network Implementation of the Unconstrained Optimal

Access Policy

As it was demonstrated in Chapter 2, a Linear Programming problem may be solved
using a neural network. Next the implementation of the Linear Programming problem
corresponding to .ne unconstrained optimal access policy will be described. The objective
function (equation 3.26) and the Linear Programming restrictions (equations 3.27-3.29)
being found, we may now proceed with the following associations. The components of
vector A (see equation 2.2 and Figure 2.5) correspond to the coefficients of the decision
variables in the objective function (equation 3.26), that is, the r(x)t(x,a) terms. The outputs
of the variable amplifiers (vector V in equation 2.2) correspond to the decision variables
themselves, that is, z,,. Notice here that only equality restriction amplifiers are required in
the neural network to find an unconstrained optimal access policy (the inequality restrictions
represented by z,, = 0 being taken care of with the modified variable amplifiers as discussed
in Chapter 2, equation 2.18). Let us assume that the first equality restriction amplifier takes
care of the restriction given in equation 3.28. One of the inputs to this restriction amplifier
should hence be set to the boundary condition value, that is, B,=1 (see Figure 2.5). The

other inputs should be set to the output value of the variable amplifiers multiplied by the




corresponding weights in t(x,a). The remaining of the equality restriction amplifiers serves
to ensure that every equality restriction given in equation 3.27, which may also be written

as

2 2y, 2 2 anyzxa"-'o’ V}’EA, (3‘30)

a€EB x€A a€B,

are satisfied. The number of elements required in the neural network in order to solve an

unconstrained optimal access problem may be stated as follows:

|[Var. Ampl.| = x%lB,,| < 2X|A]|. (3.31)
|[Rest. Ampl.|= | A | +1. (3.32)
|Weights| = 2 (jVar. Ampl.|) (Rest. Ampl.))
=2(Z B (A]+1) < 251 |A P 42514 (3.33)
|OpAmps| = 3 (JVar. Ampl.|) + 2 ([Equ. Rest. Ampl.|) + 3 (JIneq. Rest. Ampl.|)
=3S§IB,|+2(|A|+1) s 325|A| +2|A| +2. (3.34)

Next, the neural network implementation of the unconstrained optimal access policy
will be illustrated by a simple example. A link with three channels (m, = 3) is to be shared
between two circuit-switched classes of calls. Let the arrival rate and the service time of
the calls to be equal to unity, that is, (A;, A;) = (1,1), and (1/p,, 1/u,) = (1,1); and let us
assume that the two classes of calls require one and two channels respectively, that is, (b;,

b,)=(1, 2) (see Table 3.2 for a more concise form). Figure 3.2 shows the state diagram of

such a communication network.
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Network Value
Parameters

1
1
2

(8.0)1

/ l\-
(1,8)2 (8,1)s
(2,8>3 (1,1)6
/‘
(3,0)4

Figure 3.2 State Space Diagram.

The state space can also be enumerated as
A = {(0,0)(1,0)(2,0)(3,0)(0,1) (1,1) }. (3.36)
(Note here that the states have been sequentially numbered in Figure 3.2 for later use to get

a more concise notation). Since there are only two classes of calls, the action space cor-

responding to this example can be enumerated as follows:
B = {(0,0)(0,1) (1,0) (1,1) }. (3.37)
A specific state dependent action space corresponds to every state of the state space. Table

3.3 enumerates all actions which are allowed in a given state.




Action Space B,

X X X

* Symbol X means that the action is allowed in the corresponding state.

With this information in mind we can proceed with the computation of the main
parameters for the semi-Markov decision process, that is, the overall utilization of the link
in every state of the state space, r(x), the expected time until next state, (x,a), and the
transition probabilities, P,,. Let us first obtain the overall utilization of the link in every
state. Since there are only two classes of circuit-switched calls, the utilization can be

expressed from equation 3.7 as:
2
rix) = kz xb, = x, +2x, (3.38)
=]

Table 3.4 gives the overall utilization of the link for every state of the state space for this

example.
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Utilization

r(x)

* r(x) computed from equation 3.38.

The expected time until next state and the transition probabilities are given in Tables
3.5 and 3.6 respectively. The equation of the expected time can be obtained from equation
3.18 as:

1
n+x,+a,+a;

tx,a) = (kél WX + kél)"kak)- = (3.39)

whereas the transition probability formula can be derived from equation 3.25 as:

at(x,a) fy=x+e, k=1,..,.K
P, =ixtx,a) ify=x-¢, k=1,...K (3.40)
0 otherwise.
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State Expected Time t(x,a)

Number
| (a5,a,)=(0,0) (a,8)=(1,0) | (a,a,)=(1,1)
, - 1 1 172

* 1(x,a) computed from equation 3.39.
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(a3)=(0,0) @,8)=100) 1 (a,a)=(1,1)
112]3]4]5]6]1]2]3{4]5]6]1]2{3]4a[s]6]1]2]3]4a]5]6]

* P, computed from equation 3.40.

We are now ready to give the parameters for the resulting Linear Programming problem
(from equation 3.26 to 3.29). Let us also sequentially number actions in the action space,
thatis, B = {(0,0)", (0,1)’, (1,0)’, (1,1)*}, so that the decision variable z,, corresponds to
state x and action a. The objective function (equation 3.26) for our example may thus be

stated as:

P
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where "¢" represents the dot product, and the equality restrictions given in equation 3.27

and 3.28 may be represented as:
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With these results in mind we may now proceed with the neural network implementation
corresponding to the communication network as shown in Figure 3.3. In this figure, 13
variable amplifiers (f) and 7 equality restriction amplifiers (h) are found which results in
(3*13) + (2*7) = 53 OpAmps and 2(13)(7) = 182 weights (resistors)-(see equations 3.31 to
3.34). The number of amplifiers found here is the strict minimum allowable to solve our
simple example, if the neural network is implemented as shown in Chapter 2. The point to
keep in mind here is that the Linear Programming problem will be distributed among all the

amplifiers to find a solution.
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3.5 Neural Network Implementation of the Constrained Optimal Access
Policy

Let us now turn our attention to the case of optimal access policies when the com-
munication system is subject to user requirements. Guaranteeing to meet the user constraints
results in a decreased utilization of the network resources compared to that of unconstrained
optimization for the benefit of the user satisfaction as to be demonstrated with the simulation
results in Chapter 4. These constraints will enable circuit-switched users to specify the
maximum blocking probability and packet-switched users to specify the maximum delay
probability which can occur during their packet transmission. First the theoretical basis
which will allow a user to add these restrictions will be developed and then a communication

network example will be given.

The optimal access policy functions as a dynamic movable boundary system. Thus
as the circuit-switched traffic increases, the capacity allocated to the packet-switched traffic
will decrease, and therefore the delay seen by these users will increase. During the temporary
overload conditions, this degradation of the performance may not be acceptable to the
packet-switched traffic. The constrained optimal access policy prevents this from happening
by allowing packet-switched users to specify a maximum delay probability that their packet

may experience.
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So far in the unconstrained optimization we have only considered stationary policies
under which the actions are chosen deterministically. It is also possible to impose constraints
on certain state frequencies in such a way to satisfy the user needs. A policy = is called a
stationary randomized policy when it can be described by a probabilistic distribution {m,(x)
20,a€EB,} for each state x €A such that action a is to be chosen with probability x,(x)
whenever the process is in state x. In the case where m(x) is O or 1 for every x and aq,
the stationary randomized policy n reduces to the familiar stationary process policy choosing
the actions in a deterministic way. For any policy w, let the state-action frequencies f (%)

be defined by {17]

f.«(%) = the long-run fraction of decision epoches at which the process is in state x

and action a is chosen when policy = is used.

Suppose now that the goal of a semi-Markov decision process is to maximize the
long-run overall utilization of a link subject to the following linear constraints associated

with given classes of calls on the state-action frequencies,

3 }‘,B oa¥f (@) s B* for k=1,.,.K (3.44)

x€EA a€

where o) and B* are given constants. Notice here that o) depends only on the state
and the specific action chosen. Itcan be shown thatan optimal access policy may be obtained

when the following Linear Program is solved [18]:
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Maximize S 3 rix,ak(x,a), (3.45)
x€EA a€B,

Subject to aEB,z,,, = ng ‘EB‘P,,,;:,,, Vy€EA (3.46)
T 3 o¥x,a), s pY, k=1,.,K (3.47)
€A a€B,
Y S txak,=1 (3.48)
x€EA a€B,
z, =20, x€EA and a €B,. (3.49)

In order to understand how the constraints affect the optimal policy it is important to
see that the steady state probability of being in state x and choosing action a is given by
t(x,a)z., for the semi-Markov decision model, where z., isthe value of the decision variable
taken at the end of the Linear Programming process. Notice here the similarity between
(3.47) and (3.48). In (3.47) the probability of being in state x and choosing action a is
subject to a user "penalty" of probability (a.,,) which is small if the user "likes" taking action
a in state x and large otherwise. The optimization process thus tries to avoid the less
"appreciated" decisions in every state while making sure that the user constraint (B) is
respected. Making the user constraints tighter by decreasing the value of § will thus reduce
the optimum value reachable, that is, the utilization of the link as it will be shown with the
simulation results in Chapter 4. To understand this reduction notice that the value of the
expected time T(x,a) in equation 3.47 remains the same as p* is decreased. Hence z,,

will have to decrease to make sure that the tighter user constraint is followed. It may also
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be noticed that a decrease in z,, will reduce the value of the objective function (equation
3.45) which implies a reduction in the utilization of the link. Denoting by z,, an optimal
basic solution to this linear program and letting the set J, = {x I ‘EEB Za >0 }, an optimal

stationary randomized policy can be given as [19],

T(x,a),,
. ————, aE€B_ andx €J,,
m(x)=] 2 ©xa)z. (3.50)
arbitrary, otherwise.

Here it is pointed out that the unichain assumption is essential for guaranteeing the
existence of an optimal stationary policy [19]. The unichain assumption states that for each
stationary policy R, a state r (which may depend on R) exists that can be reached from
any other state under policy R[20]. For example in the state diagram of the communication
network depicted in Figure 3.2, every state can be reached from any other state and the
unichain assumption is thus satisfied. Notice also that when an additional constraint is

imposed the optimal policy will in general be randomized [21].

A nice feature of the Linear Programming algorithm for solving semi-Markov decision
processes is hence to permit optimization over additional constraints. Let us now apply this
optimization technique in order to guarantce a minimum performance for the circuit-
switched and packet-switclied traffic types. For example suppose that the blocking prob-
ability of a class-k circuit-switched call should be kept bellow $*. This constraint can be

incorporated in the Linear Programming formulation as follows:

Y 3 Pr{Class-k call blocked in (x,a)}t(x,a)z, s B* (3.51)

xEA a€B,

where
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. 0, if a& - 1
Pr{Class-k call blocked in (x,a)} = L ifa <0l = 1-a,. (3.52)
’ 't ™

Hence the blocking probability of a call is either 0 (when calls are allowed in the link)
or 1 (when calls are not allowed). As before, the decision to accept or reject a call is taken
from the state-dependent action space for every class of calls. Another set of constraints
will be used to limit the packet delay experienced by a class-k packet-switched call to a

maximum as follows:

Y Pr{Packet queucingdelay in (x,a) > t}t(x,a)z,, = g* (3.53)

xEA a€B,
where
—am(i-p )
Pr/Packet queueing delay in (x,a) >t} = P® Myp > 0 (3.54)
1 M, =0
and
C,+P, X,
o, = 3 (3.55)

Notice the major assumption made here for packet-switched traffic requirements: the
system must stay in a given state long enough to ensure that the steady state equilibrium
delay formula (such as equation 3.54) can apply. The formula used here to obtain the
queueing delay for packet-switched traffic (equation 3.54) is the one corresponding to the
waiting time for the M/M/1 queueing model where packet arrivals follow a Poisson dis-
tribution and the packets service time are exponentially distributed [22]. However it is
assumed that the service rate varies with the number of channels available to the
packet-switched traffic (m,,). As it will be demonstrated later on in the next section the

packet delay formula proposed here (equation 3.54) is precise enough for our purposes.
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The Linear Programming algorithm will thus find the best action to be taken in every
state in order to satisfy the users requirements based on the time spent between decision
epoches and on the probability constraints corresponding to the state and action. Let us
illustrate the implementation of a constrained optimal access policy using our previous
communication network example developed in Section 3.4. The class-2 circuit-switched
calls could require for instance that their blocking probability must be less then 0.2. In order

; to influence the choice of action to be taken in each state, a new inequality constraint will

be added into our previous example, that is, (see equation 3.51)

z 2 (-a)uxa)z, s 02 (3.56)

*EA a€

A MR TET RV 4

From the semi-Markov decision process parameters computed earlier for the unconstrained

problem, this inequality restriction may be written as follows:

g WO L T T Ry, o
syt Povng

: 0 [Z)5)]
| i il!
n 0 14
_,} 1 Zn
f 0 Zn

12 Zx3
0] |24 = 0.2 (3.57)
Ef 12 Z3
‘ 18| |z,
; 1{3 ;41
12 51
12 Zs3
S | %61

where "' is the dot product. The objective function and the equality restrictions being the

same as in the unconstrained optimization example (see equations 3.41 and 3.42 respec-

it o
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tively), the resulting neural network implementation may be given as shown in Figure 3.4.
Notice here that the only difference between this neural network and the onegiven in Figure
3.3 for the unconstrained example is the addition of an inequality restriction amplifier (g).

The cost to guarantee a certain grade of service to a given user is thus minimal.
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3.6 Packet Delay Computation Using Queueing Models

An important parameter for the packet-switched users of the resource is the packet
queueing delay, as opposed to the blockingprobability for circuit-switched users. The packet
queucing delay will increase in a higher system load, that is, when new packet-switched
calls are accepted in the link or when the number of channels available for packet-switched
traffic decreases in the link. In the queueing modeis developed here, it is assumed that the
packet-switched calls are lumped together at the input of the queue and that the packet
arrivals follow a Poisson distribution. The queueing models proposed here are tools which
can be used to compute the packet queueing delay when the communication system is in a
givenstate x with m,, channels available in the link. Next, three queueing models are

presented with increasing complexity.
i) MM/1.

It will also be assumed that the arriving packets are served on a first come, first served
basis; that the transmission line is error free (that is, the same packet is never retransmitted);
and that the waiting room is infinite, so that the arrival rate of packets is independent of the
number of calls already in the system. In the M/M/1 queue model the further assumptions
made are that the service time of packets is exponentially distributed, and that the service
rate of the single server varies according to the number of channels available for packet-
switched traffic in the link. Clearly, so long as the number of packets in the system is larger
than the number of channels available this will be exact. Otherwise it will be an
approximation providing a lower bound for the delay. In this case the probability distribution

of the time spent by the packets waiting in queue is given as follows [22]:




—am (1-p )t

Pr{Packet queueing delay in (x,a) >t} = p_e , 120, (3.58)

where

C,+FP, xknk
pxp - k-;.#l mq,w’

(3.59)

that is, the utilization of any channel occupied by packet-switched traffic. An essential
condition for the stability of this queueing model is hence that p,, < 1. Otherwise the server
could not keep up with the arriving packets which would have to wait for an infinite amount

of time (or be lost due to buffer overflow in a more realistic system).
ii) M/M/S.

A better approximation is provided by the M/M/S queueing model where more than
one server is available to the arriving packets. In the M/M/S queueing model an arriving
packet waits in queue only if all servers are occupied. The probability distribution of the
queueing time can be stated as follows: [23]

(Mmeps)"™  (mepy)™ (1 - ™" ")
myl(1-p,) myl(1-p,)
(3.60)

Pr{Packet queueing delay in (x,a) >t} = Po(

where P, is the probability of no packet, that is,

me M,y (o)™ )"
P = > i e 4 . 3.61
° (;o iU Tml(1-py) .61
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iii) M/DJS.

Now if the ATM transport method is used in the communication network then the
length of each packet (or cell) should be the same. The service time of a packet is hence
deterministic instead of exponentially distributed as it was the case in the two previous
queueing models seen (M/M/1 and M/M/S). Unfortunately the equation required to be
solved in order to find the delay using M/D/S is quite involved except may be for the case
where there is a single server. For the M/D/1 queueing model, the delay formula can be

expressed as follows [24].

Cotfa v anlt - ib) (= ¢ —ib i
Pr{Packet queueing delay in (x,a)>t} = (1-p_,) 3 e gt - i) (=X ( ))
R . —

=G+l i=0 i!
(3.62)
if
t = vb+w, v20, 0swch. (3.63)

The following figures (Figures 3.5 and 3.6) compare the probability of delay under
each of the above queueing models. The probability of delay for boththe M/M/1 and MM/S
queueing models have been computed from their respective formulas (equations 3.58 and
3.60). The waiting time probabilities for the M/D/S queueing model was obtained from
tables in a queueing delay probability handbook {25]. The first figure (Figures 3.5) gives
the waiting time probability results under light loading condition (p,, = 0.6) for the case
where m_, =5 servers. The next figure (Figures 3.6) presents the results under heavy loading

(P = 0.9) condition.
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Figure 3.5 Five Servers with Traffic Intensity of 0.6.
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Figure3.6 Five Servers with Traffic Intensity of 0.9.

As may be seen under heavy loading all the curves approach to each other. Further,
the MM/1 provides a lower bound, the system cannot be better than this result. Finally due
to its simplicity, M/M/1 results was used in the neural network implementation. Clearly,
the application of the MM/1, MM/S, or M/D/S delay formulas assume that the queueing
system has reached to the steady-state. Howewver in the present problem, the service rate
varies with the number of channels available to the packet-switched traffic, and the packet

arrival rate varies with the number of packet-switched users in the system. Thus each time
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either of these two quantities change, the queueing system will go through a transient state
before it reaches to the steady-state. Let us explain this in more detail, by studying the mean

arrival and service rates. Let

x(f) = Number of calls connected at time
1(f) = Arrival rate of packets per call per second at time ¢
o(f) = Service rate of packets per channel per second at time ¢

S(t) = Number of channels available for packet-switched traffic at time ¢

Assuming o(f) = w, aconstant value; x(f) and S(f) are step functions with constant
value during a given state; and n(f) which is the mean arrival rate of packets per call

following a Poisson distribution. An example of this system is shown in Figure 3.7.

/N
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Figure 3.7 Fluid Approximation.

A transient period is shown at the beginning of each state. During the transient period at

the beginning of State 1 in Figure 3.7 a backlog is created because the arrival rate of packets
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is larger than the service rate (the cross-hatched area labeled "+" corresponds in fact to the
"deficit" between service rate and arrival rate and it therefore represents the total amount
of packets backlogging in the system). On the other hand, once the arrival rate drops below
the departure rate the deficit can be made up with the excess capacity shown as the cross-
hatched area labeled "-". Only when the total negative area equals the total positive area
will the backlog drop to zero. If the non-rush hour value for x(f)n(?) is only slightly less
than the departure rate then we can imagine that it will take quite a while to make up for the
deficit. Conversely if the rate of accumulation of negative area is large compared to that
for the positive area then the backlog will fall off rather quickly. This situation is depicted

in the transient period at the beginning of State 2 in Figure 3.7 [26].

In the following it will be assumed that the queueing system will remain inastate long
enough to reach the steady-state, so that the stationary delay distributions apply. This is

known as the quasi-static approximation [27].



CHAPTER 4
NEURAL NETWORK SIMULATION RESULTS

4.1 Introduction

In this chapter we would like to show how the optimal access policy performs under
different communication systems. The main characteristics of the implementation of an
optimal access controller using a Linear Programming neural network are first described.
The simulation process required to determine the behavior of a Linear Programming neural
network is then presented. Finally the simulation results obtained for both the unconstrained

and the constrained optimal access policies are given.

4.2 Optima! Access Controller Implementation

The main characteristics of an optimal access controller using a Linear Programming
neural network are depicted in Figure 4.1. The access controller receives the call requests
and issues the accept/reject decision. The optimization task required to find the best action
corresponding to the present state of the link is processed in the Linear Programming neural
network which is used much like a coprocessor. When a call request arrives the main
processor in the access controller computes the weights required by the Linear Programming
neural network from the communication link parameters. These parameters include the
arrival rate for every class of calls, their call service time, and their bandwidth requirement
in the case of circuit-switched calls or their packet arrival rate in the case of packet-switched
calls. The computed weights are then "programmed" into the Linear Programming neural

network corresponding toresistances. At this point the optimization process can start. Once
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the neural network outputs are stable the resulting values are transmitted back to the main
processor which will compute the best action to be taken in the present state of the link upon
arrival of a call. The access controller is now ready to issue the accept/reject decision

corresponding to the present state of the communication link for every class of calls.

Class-1 Call Reqest ; | Accspt.Raject Class-1 Call Decision

Class-2 Call Request elght . Uotinal focess Policy ) Accent/Reject Clats-2 Call Decision
. Coputation  Action Comutation |—) .

Class Call Request ’ b= ficcapt Rujuct Class-3 Call Decision

Results

Linear Programing
Neural Netwark

Yeight
Ualues
[Limr Programning

Figure 4.1 Schematic Diagram of the Optimal Access Controller.

The accept/reject decision remains valid as long as the state of the link does notchange.
The state of the link (and the call arrival rate) can be computed from the call requests
themselves. Clearly at the time a call makes its request, an event occurs and the accept/reject
decision is already available for that class of calls since this action corresponds to the present
state of the link. If the call request is accepted then a decision epoch occurs and the state
changes with on¢ more call in the link for that class of calls, Similarly every time a call
transmission ends an event occurs and the state space should change with one less call in
the link for thatclass of calls. The main processor can compute the expected departure time

of a call from the average service duration usually taken by that class of calls. This com-
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putation will unfortunately set the decision epoch at a time which may not be the same as
the call departure event as it should be since a call departure will obviously change the
physical state of the system. Some feedback information from the link such as the exact
service time of a call would hence be very helpful to further improve the performance of

the optimal access controller.

From the analysis in Chapter 3, the computed decision variables will be valid so long
as the call parameters do not change. When A, or p, change than the results are not valid
anymore and we have to run the system again. Thus the assumption will be that the -;:aral
network will be activated whenever these parameters changes. This in a way invalidates
some of the reasons why neural network was being used in the first place when these
parameters are slowly changing. On the other hand note that some studies like the Japanese
work [11] does assume that these parameters would change all the time in an integrated

communication netwoik.

The steps required to compute the value of the Linear Programming neural network
weights are given in the following flowchart (see Figure 4.2). These steps correspond to
the examples given in Chapter 3 (see Sections 3.4 and 3.5). The computation of the Linear
Programming neural network weights requires a fair amount of memory. Table 4.1 presents
an overview of the amount of memory required in the computation of the different
parar-eters. In order to compute the transition probabilities the following observation was
made. To store every component of the transition probabilities P,,, a three-dimensional

matrix of | A|x|A|x2* should be required. Fortunately the transition from one state is
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Figure 4.2 Flowchart of the Weight Computation Steps.
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possible only to the neighboring states, that is, only if the Hamming distance between two
state descriptors is equal to one, since simultaneous call arrivals (or departures) are not
allowed in the system (see the state diagram in Figure 3.2). For instance if the present state
is (1,1,1) then at most 2(K) =6 states are reachable: (0,1,1), (1,0,1), (1,1,0), (2,1,1),
(1,2,1), (1,1,2). The memory space required to hold the transition probability ceefficients
may hence be reduced to & maximum of | A [ x2Kx2 significant values. From Table 4.1

the total amount of memory required can be roughly stated as

Total Memory Requirements =< |A| (1+2*+K2"*"), 4.1)
Table 4.1 M Requi ts for the Weights C ati
Computation: Parameters Memory Requirements
R
State Space A |AT
Overall utilization of the link r(x) |A|
State-dependent actions B, 25| A
Expected time until next state (x,a) 25| A|
I Transition probabilities P,,, 2K-2%-|A|

* |A|] refers to the number of elements in A.

4.3 Linear Programming Simulation

Atpresent time the hardware implementation of a Linear Programming neural network
of the size required to solve an optimal access control problem is not practical, and for the
time being a simulation program will be used instead. The speed at which one can find the

optimal access policy depends on the speed at which the Linear Programming problem




corresponding to the communication system can be solved. In the physical implementation
of the Linear Programming neural network, the value of all variable amplifiers outputs as
well as the value of all restriction amplifiers outputs are computed simultaneously (in
parallel). It is hard to know how long it would take: for the neural network outputs to reach
a stable state when the optimization process is computed. With todays high speed VLSI
technology a solution should however be provided easily on the order of a few milliseconds.
This is the kind of speed which is required by the access controller to work efficiently in a
multimedia environment. In a uniprocessor mainframe computer system every instruction
is executed in sequence so that the value of all amplifiers output has to be computed one
after the other. For this reason the execution time of the simulation process required to find
the Linear Programming solution for an optimal access policy depends heavily on the size
of the problem itself. This problem size difficulty would not appear if in the physical
implemcntation of the Linear Programming, neural network was used since the computation

is made in parallel in that case.

In order to simulate the action of a Linear Programming neural network, one may start
from its circuit equation (equation 2.10). If we let C=1 for convenience then the circuit
equation to solve the meximization Linear Programming problem may he expressed as

follows:

v,
dt

E«+l

’ —— — — —
= Ak = '_ngi,kg(Di * V"Bi) - '_;'HDc,kh(De ¢ V—B‘), k= 1’2’ "9N’

(4.3)

so that we can compute the value of the variable amplifiers iteratively using the Jirst order

difference as:
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Vit = max(V,:+(gdl:£) At, O). (4.9)

The flowchart in Figure 4.3 shows the steps required to simulate the action of the
Linear Programming neural network. Notice the first step where the output values of the
variable amplifiers are initialized to zero (initial state of the Linear Programming neural
network). Once the values of the variable amplifier outputs are stable the simulation process
stops since the neural network is in its final state. Clearly the simulation precess will compute

the value of the momentum function, that is,

—_ 1 — ot I+E — —
M= -AV)+ 3GD;*V-B)+ 3 H({D,*V-B,), (4.5)
im] eml+1

~

after each iteration to see if its value changed from the last iteration. When this value does
not change for a given number of iterations the optimization process stops. At this point
the output values of the variable amplifiers are assumed to be stable and the maximum
possible overall utilization of the link may be obtained from the objective function itself,

that is,

‘gA . gﬂxr(x,a ye(x,a),, (4.6)

The plot in Figure 4.4 shows the value of the momentum function as the time goes on.

At the beginning the value of the momentum function is very high since the equality
restrictions are all violated. When the energy stabilizes to a minimum value (towards infinity
in time) the neural network solution will ultimately satisfy every restriction. At this point
the value of the momentum function should be equal to the negative of the overall utilization

of the link (the value of the objective function) since all the equality restrictions as well as
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Figure 4.3 Flowchart of the Neural Network Simulation Program.
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all the inequality restrictions are satisfied. To see it one may compare the momentum
function (equation 4.5) with the objective function which may be written as
m=A4-V, 4.7)
that is,
M= -1 (4.8)
if
I1+E

Y HD.-V-B,) = 0. (4.9)

e=]4+1
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Figure 4.4 Momentum of the Neural Network.
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4.4 Simulation Results

For the first simulation example let us assume that the optimal access controller is
used to determine the access for two classes of circuit-switched traffic in a link of four
channels (m, = 4). Class-1 calls take up one channel and class-2 calls, two channels (b,
b,) =(1,2). The service time of these calls is assume to be one second for both classes (1/u,,

1/u;) = (1,1). Figure 4.5 shows the state space diagram for such a communication system.

2,8

VAN
1,0) (08.1)
(2,0) 1.1 (0.2)
(3.0) (2.1)
/
4,8)

Figure 4.5 State Space Diagram for the 4-Channels Example.

We are now ready to compute the optimal utilization of the system from the Linear Pro-
gramming neural network simulation results. In order to be consistent with the literature

though [15], we will make sure that the arrival rate ratio A,/A, is varied so that

b\ b
L (4.10)
nl"l npi

The curve for A; = 0 in Figure 4.6 shows the utilization of the four channels link for these
two circuit-switched classes of calls when the optimal access policy is used. As it can be

seen from Figure 4.6 when one class of calls is predominant the utilization of the link
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Figure 4.6 Utilization in a 4-Channels Link.

(Call parameters are given in Table 4.2)
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increases. Clearly if the arrival rate of one class of calls is much higher than the other class
then the access controller following an unconstrained optimal access policy will have a

tendency to accept only that class of calls.

We would like now to introduce packet-switched traffic into the communicationsystem
in order to increase the utilization of the link. A very important ratio for packet-switched
traffic is the arrival rate of packets per call over the service rate of packets per channel ratio.
The lower this ratio is the higher the number of states in the state space. As it was shown

in Chapter 3 the state space may be derived from the following formula:
c, C,+P,

A= {x:x 2 O;kglx,b,‘ +k_C2.me,/u) s m, } (4.11)
It can be seen from this formula (equation 4.11) that the number of packets-switched calls
allowed simultaneously on the link (as well as the number of elements in the state space)
increases as the 1,/ ratio decrease assuming everything else remains the same. Upto two
packet-switched calls could hence be allowed simultaneously in a four channels link in order
to respect the bandwidth limitation of the link. Asitcanbeseen from Figure 4.6 the utilization
of the link increases when the packet-switched traffic is allowed. The utilization of the link
increases to a maximum as the packet-switched calls arrival rate is raised towards infinity
(see curve Ay = 100 for instance). (Note here that a table showing the communication

system parameters follows every simulation result given.)

Let us now assume a more complex communication system where the number of
channels in the link is 24 (which comresponds to the T1 transmission standard). Two
circuit-switched classes of calls are allowed in the link with a service time of 1 second each

(1/w;, 1/u5) = (1,1). The class-1 calls require 1 channel only while 6 channels are needed




for class-2 calls transmission. Figure 4.7 shows the utilization of the link when the
unconstrained optimal access policy is used in this case (curve A; =0). Also on Figure 4.7
the utilization of the link under the complete sharing access policy is demonstrated [15] (see
curve Complete Sharing). As shown in Figure 4.7, for small and large values of the arrival
rate ratio there is little difference in performance between the optimal policy and complete
sharing; for moderate values of A,/A, however the improvement can be close to 10 percent
in this example. Figure 4.7 also shows the influence of the packet-switched traffic on the
utilization of the link. In order to reduce the cardinality of the state space (and hence the
complexity of the system) the arrival rate of packets per call over service rate of packets per
channel ratio 12 was chosen. In such a system an ATM packet-switched call would bring
an arrival rate of 1500 cells per second. Here again the utilization of the link is increased

as the arrival rate of the packet-switched calls is increased.
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(Call parameters are given in Table 4.3)

Table 43 Utilization in a 24-Channels Lin}
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Network
Parameters

In the third situation let us assume a link of four channels where there are only two

classes of calls allowed; one circuit-switched class and one packet-switched class. In this
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case however the circuit-switched traffic has a service time of 10 seconds while the
packet-switched traffic has a service time of 1 second (a more realistic situation), that is,
(1/u,, 1/np) = (10,1). The bandwidth taken by a circuit-switched call is 1 channe! and the
ratio of the arrival rate of packets to the service rate of packets per channel is 2. Figure 4.8
shows the utilization of the link under the unconstrained optimal access policies as the arrival
rate of circuit-switched calls is varied. As it can be seen from Figure 4.8 the utilization of
the link increases very fast as the circuit-switched traffic is increased because the service

tirne of these calls is 10 seconds.
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Figure 4.8 Utilization in a Realistic Situation.

(Call parameters are given in Table 4.4)
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In the simulation results seen so far the utilization of the link was optimized without
taking the user specifications into account. In Figure 4.6 for example it can be seen that by
allowing more packet-switched calls in the system an overall increase in the performance
of the communication network may be obtained. But what happens when user demands are
taken into account? Clearly the utilization may be maximized by flooding the link with a
given class of calls. In order to be able to guarantee a certain level of service quality to
other classes of calls however additional constraints must be added to the system. Let us
assume for now that only two circuit-switched classes of calls are allowed to the link. Each
class of calls will be able to specify its blocking probability, that is, the probability that a
call will be blocked should be less than what is specified by the given class. Figure 4.9
shows the utilization of a link following the addition of these constraints. The situation
given in Figure 4.9 is the case where the link has 4 channels and where the bandwidth
required from each class of call is (bj, by) = (1,2). The results are plotted as a function of
maximum blocking probability for class-1 or class-2 calls (B). Clearly, because of fixed
arrival rates of this example, this probability can be specified only for one ciass. As it can

be seen from Figure 4.9, when the maximum blocking probability specified is very loose




(towards p = 1) the corresponding utilization is very high and tends to the value of the
unconstrained utilization of the link as shown in Figure 4.6 when the arrival rate ratio A,/A,
= 1. As the user specifications get tighter the utilization decreases since more channel

capacity is needed to guarantee the user requests.
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Figure 4.9 Utilization under Constraints with CS Traffic Only.

(Call parameters are given in Table 4.5)
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Figure 4.10 presents the case where a packet-switched class of calls is also allowed in
the link. The packet-switched type of call users will request a guarantee on the probability
of their maximum packet queueing delay. In the example shown in Figure 4.10 a
packet-switched user will make a request to ensure that the probability of having a packet
delay greater than 0.01 second must be less than, say, B (see curve "Pr{PS Delay > .01} <
B"). Here again it may be noticed that the utilization of the network is the same as it was
for the unconstrained situation when the constraint is loose (see Figure 4.6 in the case when
the arrival rate ratio A,/A, =1 and when the arrival rate of packet-switched calls is A, =
100) while the utilization decreases as the specification set by the user gets tighter. Notice
here that the probability of delay was computed from the modified M/M/1 queueing model,
that is,

—am(1-p.)8

fortzO,mv>0

Pr{Packet queueing time in (x,a) >t} = Pt
1 fort =20, m,=0

}(4.13)

Figure 4.10 also demonstrates that even though the link is flooded with packet-switched
traffic calls, the utilization of the link will decrease to guarantee a certain grade of service

to a circuit-switched user,
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(Call parameters are given in Table 4.6)
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CHAPTER §
CONCLUSION

The main objective of this thesis was to provide an efficient mean to control the call
access in a multimedia communication system. An efficient controller should optimize the
utilization of the communication link bandwidth while guaranteeing the user requirements
in the network. The technique determining the optimal access policy corresponding to a
communication system where both circuit-switched traffic and packet-switched traffic types
are integrated was developed in Chapter 3. This technique is very flexible in the sense that
every class of user is allowed to specify its requirements. The optimal policy was modelled
as a semi-Markov decision process which was then mapped to a Linear Programming

problem.

The computational task required to find an optimal access policy expressed as a Linear
Programming problem may be quite intensive on a conventional uniprocessor computer
system. And due to the short time delay allowed to make the decision to accept or reject a
call, another approach had to be found to solve this processing time problem. Chapter 2
describes the Linear Programming neural network which can effectively find a solution to
an optimization problem. A neural network can be described as a highly interconnected
network of simple analog processors (the neurons) which can collectively compute difficult
optimization problems. The processing time problem is thus resolved since the computation
in a neural network is distributed among all the neurons working in parallel. Moreover the

processing time will be independent of the problem size to be solved when a neural network

is used.
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As demonstrated from the simulation results found in Chapter 4, the optimal access
policy provides superior link utilization compared to less complex access schemes such as
Complete Sharing. The optimal access policy efficiently integrates both packet-switched
and circuit-switched traffic types with the possibility of allowing a certain grade of service
for every class of calls. For circuit-switched traffic this involves specification of maximum
blocking probability, while for packet-switched traffic, maximum probability thatthe packet

delay exceeds a limit.

Suggestions for further research in this area could include the study of a physical
optimal access controller implementation. A simpler system would make use of a proba-
bilistic model while a more evolved model could benefit from the use of certain feedback
information such as the exact duration of a call. Such information would be very helpful

to provide a more efficient utilization of the link.

To conclude, the main objective that we wished to demonstrate in this thesis work was
that close control of the access mechanism in a multimedia communication network to
achieve an optimal performance out of a link while guaranteeing all users requirements is

possible using techniques which can effectively be implemented using todays technology.
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