INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be
from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

SYSTEM VISUALIZER

KiMm THANG VU

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
ForR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

MARCH 1997
© KiM THANG VU, 1997

aTm

of Canada = du Canada

Acquisitions and Acquisitions et .
Bibliographic Services services bibliographiques
395 Waellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Your file Votre rdférence

Our fike Notre référence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette these.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-26021-6

Canada

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Kim Thang Vu
Entitled: System Visualizer

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science
complies with the regulations of this University and meets the accepted standards
with respect to originality and quality.

Signed by the final examining commitee:

Chair

Examiner

Examiner

Supervisor

Approved

Chair of Department or Graduate Program Director

19

Dean of Faculty

Abstract

System Visualizer

Kim Thang Vu

It is a complex and difficult task to maintain and enhance existing large software
systems. One of the main reasons is that the task of trying to understand such an
existing system is very difficult. Software engineering tools are needed to improve and
accelerate understanding. Software tools do this by displaying software in graphical
forms. Traditional tools provide only two dimensional display of the software. Two
dimensional visualization has certain limitations. This thesis attempts to remove
some of the limitations associated with two dimensional displays by providing an

initial research into three dimensional visualization of software.

iii

Acknowledgments

I would like to express my deepest gratitude to my supervisor Dr. Peter Grogono for
his continous guidance and enthusiastic support. It is his valuable input and encour-

agement that made this thesis possible.

Also, I would like to thank all my brothers and sisters for their encouragement and

support.

Finally, I would like to dedicate this work to my mom, my wife and my daughter
with great love and gratefulness.

iv

Contents

List of Figures vii

1 Introduction 1

1.1 Review of Software Engineering 1

1.1.1 Software Engineering 1

1.1.2 Software Engineering Tools 4

1.2 Thesis Contribution 6

1.3 Organizationof Thesis 7

2 Visualization 9

2.1 Development of computeroutput 9

22 Visualization 11

2.3 Software Visualization 14

2.4 Visualizing software structure 16

3 Related Work 19

3.1 Software Visualization in the Large 19

3.2 Visualizing the Structure of Large Relational Databases 24

3.3 Visual Programming 28

3.3.1 Visualization of Programs and Execution 28

3.3.2 Visualization of Software Design 29

3.4 Using Visualization to Foster Object-Oriented Program Understanding 30

3.5 Three-Dimensional Computation Visualization 30
3.6 Using Animation to Design, Document and Trace Object-Oriented Sys-

7<) ¢ - 32

4 Design

4.1 Requirements
4.2 UserlInterface
43 Design e e e e e e e
4.3.1 DataStructures
432 TheParser.« uiininenen...
43.3 TheDisplayModule
44 DesignDecisions e

5 Implementation

5.1 Steps in implementation
5.1.1 DataStructures
5.1.2 TheParser.,
5.1.3 The DisplayModule
5.1.4 Viewing Transformations
5.1.5 Integration of the Parser and the Display Module

5.2 Problems.

5.3 Discussion of implementation

6 Discussion

6.1 Accomplishment of Design Goals

6.1.1 Module interconnections

6.1.2 Three dimensional display
6.2 Contribution of System Visualizer to Software Engineering
6.3 Capacity of System Visualizer
6.4 Cyclicdependencies.,
6.5 User Interface Facilities.

7 Future Research and Conclusions

7.1 Possible Future Enhancements
7.2 Conclusions o v v v v i i e e e e e e e e e e
Bibliography

vi

33
33
36
38
39
40
41
47

49
49
49
51
52
62
63
66
68

70
70
70
71
73
76
78
80

83
83
87

90

List of Figures

O 00 ~ O Ot > W N

[ST T (T - T X R o N R I T T I R T o TR o S B~
D W = O W00~ O W NN~ O

An example of a 2D visualization of software structure 16
An example of a 3D visualization of software structure 17
ACodeviewexample. 27
A Layout viewexample. 27
An illustration of the user interface 37
Data structure representing a collection of modules 39
Improved data structure 40
Visualization of a simpletree 42
Computing the line between twospheres 44
Sixviews. e e 47
Sphere B in front of sphere A 56
Sphere Bis behind sphere A 57
An example of a tree structure with duplicated subtrees. 59
The visualization of the tree structure with duplicated subtrees . .. 60
A subtree is rooted at its smallest level twice 61
Arrowbuttons L L Lo 66
Image of more than three-level deep system 72
Module interconnections display starting at module G 73
Acluttered3Dimage 75
The cluttered 3D image which has been rotated 75
A one-levelconetree 76
A three-levelconetree 77
An example of visualizing cyclic dependencies 79
A cluttered visualization of cyclic dependencies 79
An uncluttered visualization of cyclic dependencies 80
A whole cone tree with no nodes excluded 84

vii

27 A whole cone tree with nodes B and D excluded

viii

............

Chapter 1

Introduction

1.1 Review of Software Engineering

1.1.1 Software Engineering

In the early years of computerization, computer programs were in general small, es-
pecially when they are compared to software applications which are being developed
now. The programmers who wrote these early programs were also the users of the
programs, and they were often experts in the application area concerned. The pro-
grams were written to solve problems mostly of a technical nature, and the emphasis

was on expressing known algorithms efficiently in some programming language.

Today software applications are different from those early written programs in many
aspects. Today software systems are often very large. They are developed by different
teams. These teams collaborate over periods which could span several years. The
developers are not the future users of the system. Moreover these developers may

have little expert knowledge of the application area in question.

Programming techniques have been behind the developments of software both in
size and complexity. To many people, programming is still an art, and has never

become a craft, let alone a science.

As a result, software is often delivered too late, programs do not behave as the user

expects. Programs are rarely adaptable to changed circumstances, and many errors

are detected only after the software has been delivered to the customer [10, page 2].

The cost of software is also of crucial importance. The cost is associated with both
software development and software maintenance in order to keep the system opera-

tional once it has been delivered to the customer.

The productivity in developing the software is closely related with cost. The growth
of the population of people working in data processing has not kept up with the
increase of the quest for data processing personnel. The gap between demand and
supply keeps growing. The result is both a backlog with respect to the maintenance

of existing software and a slowing down in the development of new applications.

Cost and productivity are two major problems associated with software. We must
do something to resolve these problems. However, these are not the only problems.
Society is increasingly dependent on software. The quality of the systems we develop
is increasingly determining the quality of our existence. On a larger scale, software
bugs could put the world in danger. As an example of this, in June 1980, the United
States brought their atomic bombers and nuclear missiles to an increased state of
alarm when, because of a computer error, a false alarm indicated that the Soviet
Union had started a missile attack [10, page 4]. On a smaller scale, errors in software
may also have very unfortunate consequences, such as transaction errors in bank traf-

fic, or a reminder to finally pay a bill of $0.00.

This all marks the enormous importance of the field of software engineering. There is
no doubt that better methods and techniques are needed for software development.
We need to be able to develop systems that better fit the user needs. More effective
methods in software development need to be researched in order to develop software
systems which are more reliable and to reduce the cost associated with the develop-
ment of these systems. Quality and productivity are the two most central themes in

the field of software engineering.

Shouldn’t it be possible to build software in the way bridges and houses are built,
starting from a theoretical basis and using sound and proven design and construction

techniques, as in other engineering fields? This is one of the major problems software

2

engineering is trying to tackle.

Software engineering is the systematic approach to the development, operation, main-
tenance, and retirement of software [10, page 5]. There are some essential character-

istics of the field of software engineering:

e Software engineering concerns the construction of large programs. Small pro-
grams are generally written by one person in a relatively short period of time.
A large software development project refers to multi-person jobs that span more
than half a year. The traditional programming techniques and tools are pri-
marily aimed at supporting development of small programs.

e Large problems are difficult to solve. In general, these problems cannot be
solved as a whole. The problem often must be split into smaller parts so that
each individual part can be understood and therefore can become solvable. The
communication between the parts also need to be simple. The total complexity

of the problem does not decrease in this way, but it does become manageable.

e Good cooperation between software developers is also very important in con-
structing large software applications. The problems these applications try to
solve are large. We need to have a large number of software developers to work
together to solve those problems. There must be clear arrangements for the

distribution of work, methods of communication, responsibilities, etc.

e A lot of software models parts of reality, such as processing requests in a library.
Reality evolves with time. Therefore the software which models the associated
reality has to evolve as well. We have to bear this evolution in mind during

development.

e The productivity and efficiency associated with software development is another
important aspect of software engineering. The cost and time in developing
software is generally high. The same thing also applies to the maintenance
of software. Requests for new software applications keep increasing. There are
not enough software developers to satisfy all these requests. Therefore, software
engineering has to deal with finding better and more efficient methods and tools

for the development and maintenance of software.

e Software is developed because people need to use it. Therefore, software has
to be able to support its users effectively. The functionality offered should fit
users’ tasks. It is not sufficient to build the system the right way, we also have

to build the right system.

When developing large computer programs, a phased approach is followed. First, the
problem is analyzed. Then the system is designed, implemented and tested. Each
of these actions compose a phase during the development of software projects. This
practice has a lot in common with the engineering of physical products. Software en-
gineering, however, differs from the engineering of physical products in some essential

ways.

Software models part of the real world surrounding us, like banking or the reser-
vation of air line seats. The world around us changes over time. So the corresponding
software has to change too. It has to evolve together with the changing reality. Much
of what we call soltware maintenance, actually is concerned with ensuring that the

software keeps pace with the real world being modeled.

The most important problems that software engineering tries to tackle are the quality

of the software being delivered and the productivity of the people working in the field.

1.1.2 Software Engineering Tools

The demand for software grows faster than the increase in software development
productivity and available manpower. The result is an ever increasing shortage of
personnel. We are less and less able to satisfy the quest for software [10, page 373].
In order to resolve the problem, we must look for techniques that result in significant

productivity gains.

Automation is one of the most obvious ways we can do to resolve the problem. The

computer itself can be used as a tool to produce software.

The computer has long been employed for the implementation of software. Pro-
grammers have a number of tools to use to implement software, such as compilers,

linkers and loaders. Also during testing, tools like test drivers and test harnesses have

4

been used for a long time.

The development of tools to support earlier phases of the software life cycle is how-
ever a lot more recent. Software tools such as the ones which aid the drawing and

validation of data flow diagrams have become available only recently.

Today, there are various software engineering tools which help increase the productiv-
ity of software developers and help produce software with better quality. These tools
help the developers in various activities during the software development life cycle.
Tools may support checking conformance to standards; tools may help to quantify

the degree of testing; tools may support progress tracking; and so on.

The application of tools in the software development process is referred to as CASE
— Computer Aided Software Engineering. Today, the number of CASE tools is over-

whelming,.

Software tools can be characterized as follows [10, page 374]:

e Tools which support the requirements specification or global design phase.

These tools thus can be called an analyst workbench.

e Tools.which support the programmer for the implementation of software which

includes coding and testing are therefore called programmer workbench.
e Tools which support management tasks are called management workbench.

e There are also tools intended to support all phases of the software life cycle.

These tools are named Integrated Project Support Environment.

As we may notice from the above classification, there is a certain relation between a
given model of the software life cycle and a corresponding tool collection. Starting
from a life cycle model, we can decide on a set of techniques that fit the model. Then

we can look for software tools that would support such techniques.

Software tools often render some process models, such as prototyping and evolution-

ary development. There is an interaction between trends in support environments

and trends in process models. Based on trends that have a major impact on support
environments, we can distinguish different categories of software engineering tools [10,

page 375]:

e Tools which are suited for the support of software development in a specific

programming language.

e Tools which are aimed at manipulating program structures. These tools are used

in environments which are based on the structure of programming languages.

e There are also various toolkits. The support offered by toolkits is independent of
a specific programming language. A toolkit merely offers a set of useful bulding
blocks. In particular, toolkits tend to contain tools that specifically support the

development of large software systems.

o There are tools which are based on certain techniques used in specific phases
of the software life cycle. There exist also integrated tool sets which aim at

supporting the full spectrum of the software life cycle in a coordinated fashion.

1.2 Thesis Contribution

Perhaps the most difficult software engineering projects involve the development of
large software systems. These large team projects, often in maintenance mode, re-
quire enhancements involving subtle changes to complex legacy code written over
many years. Under these circumstances, programmer productivity is low, changes

are more likely to introduce errors, and software projects are often late.

One of the main reasons for these problems is that programmers do not quite un-
derstand the software system they are modifying and enhancing. However, we cannot
really blame these programmers. Large software systems can contain millions of lines

of code. It is a very difficult task to understand such a software system.

It is obvious that software tools are needed to help software engineers, who have
to maintain and enhance existing large software systems, understand these large soft-
ware systems. There is a number of existing software tools which perform this task.

These tools mainly use graphical techniques to make software visible by displaying

6

programs, program structures and program behaviours. These traditional tools usu-
ally visualize programs in two dimensional space. There are limitations associated
with displaying software in two dimensional space. Space is an example of one of
these limitations. Given the limited space of a window, there is only room for a cer-
tain number of nodes on the screen. A three dimensional display of this number is
more effective than a two dimensional display. A 3D image can be viewed from dif-
ferent directions. As a result, a 3D image may look confusing from one direction but
may look very clear from another direction. Also in three dimensional space, objects
which are closer to our eyes appear larger, and objects which are farther from our

eyes appear smaller. Therefore, a three dimensional image is more comprehensible.

The thesis attempts to solve some of the limitations associated with two dimensional
display. It has provided a software tool to extract the structure of a software system,
and to visualize the information in three dimensional space. To be more specific,
the tool attempts to extract module relationships of a software system, and tries to
find a good way to display this information in three dimensional space. Since the
tool visualizes the structure of a software system, the tool has been named System

Visualizer.

1.3 Organization of Thesis

The thesis is made up of seven chapters. The following paragraphs briefly describe
the contents of each chapter.

e Chapter 1, Introduction: provides a review of software engineering and software
engineering tools. The Chapter then introduces the work provided by the thesis,

and briefly describes the organization of the thesis.

e Chapter 2, Visualization: the Chapter first discusses a history of the develop-
ment of computer outputs. It then talks about visualization and the importance
of visualization. The discussion then narrows down to software visualization,

and then to the visualization of software structure.

o Chapter 3, Related Work: this Chapter discusses work which has been done in

software visualization. Two related articles and a few chapters in a book which

talks about software visualization are discussed in Chapter 3.

Chapter 4, Design: the Chapter first describes the functional and user interface
requirements which System Visualizer has to meet. The Chapter then discusses

the design of the tool and makes some design decisions.

Chapter 5, Implementation: discusses the actual implementation of System
Visualizer. Some problems which were encountered during the implementation

are also discussed.

Chapter 6, Discussion: provides a discussion of whether System Visualizer has
met its design goals and of the aspects the tool has contributed to software

engineering.

Chapter 7, Future Research and Conclusion: the Chapter discusses possible
future enhancements which could be made to System Visualizer, and concludes

the thesis by summarizing the main points which the thesis has accomplished.

Chapter 2

Visualization

2.1 Development of computer output

In the very early stage of computers, the user had to use punched cards to input pro-
grams into the computer. Computers executed in batch mode, and mainly performed
computations. The output of the computations went to line printers. Line printers

were only able to print the results of computations in text form.

Then terminals were introduced. The terminal was connected to the computer, and
the user was able to input programs into the computer by typing program text on the
terminal, and save the program into a file. Early terminals were ‘dumb’, and could
only display text line by line. As a result, only line editors were available for the user
to use for writing programs. The computer still performed basically computations,
and the results of the computations could then go to either line printers or dumb

terminals.

Terminals were then improved so that they were able to display text in a full screen
mode. Full screen editors became available. The user was then able to use these
editors to write programs more effectively. The results of program execution could
be output on terminal screen in full screen mode. Therefore, the programmer was
able to format the results in a good way so that the user could analyze the results
more effectively. These terminals were, however, able to display text only. And

also, at any point in time, the results of only one program could be displayed since

there was only one window, which was the screen of the terminal, available for display.

Graphic terminals were developed only when fast processors and large memories be-
came available. Terminals were then able to display not only text, but graphics also.
Windows were also developed. With the development of windows, a single terminal
could then have multiple virtual screens. The outputs from several different programs
were then able to go to several windows simultaneously. The early graphic terminals
were, however, only able to display simple graphics, and these terminals were still

monochrome.

Computers no longer executed in batch mode. Many programs were developed for
users’ interactions with computers. Users of these programs could then interact with
the computer to obtain desired information. To help ease the development of interac-
tive programs, graphical user interface packages have been developed. These packages
provide high level primitives for the application software to use. The application soft-

ware just needs to concentrate on how to provide good interfaces for the user to use.

With the introduction of graphic terminals, the field of computer graphics was born.
But, because of the limited graphic display capabilities of the early graphic terminals,
and because the field was in its very early stage, computer graphics was not widely

recognized.

Today, high resolution, color terminals are available. These modern terminals can
display very sophisticated colored images. The speed of displaying is also very fast.
With the use of graphical user interface packages, users can also interact with the
graphics displayed on these terminals.

The field of computer graphics has also become mature. As a matter of fact com-
puter graphics has become indispensable in countless areas of human activity. High
resolution, color displays are used for ‘visualization’ in endless fields such as aerody-
namics, medicine, electrical engineering, mathematics, business, science, education,

and others.

10

Researchers in medicine use graphics generated by the computer to study and an-
alyze medical data. Since processors become very fast, computers have very large
memories, and modern terminals can display graphics in realtime, medical doctors
can now determine the condition of a patient by looking at the graphics displayed on

a terminal which contains the information.

Scientists can track a storm’s progress for weather prediction by watching the changes
in temperature, in pressure, and in other fields which are visualized on a changing

graphic displayed on a terminal.

Mathematicians use computer visualization to study graphs of complicated functions

[3, pages 164-167], or to perform research on the field of geometry [4].

With the use of computer aided design tools, which are graphic based, an electri-
cal engineer can design sophisticated electrical systems and an architect can design

very complex buildings [3, pages 138-151].

These are just a few examples of how computer visualization is used today in various
professions. Software engineers have developed all these sophisticated tools for other
professionals to use. But the software engineer himself does not use much visualiza-

tion for software development.

It is true that there are CASE tools which help the software engineer do software
development. But, these CASE tools have not been mature enough to efficiently

speed up the development in the field of software engineering.

2.2 Visualization

Visualization enables people to use a natural tool of observation and processing, their
eyes as well as their brain, to extract knowledge more efficiently and find insights.
Visualization is clearly not only useful to engineers and other professionals dealing
with problems in the real world, such as air flow around airplane wings, mechanical

stress modelling, and three dimensional reconstructions of brain scans. It has also

11

become a key tool for pure mathematicians, and in a comparatively short time.

Let us consider a simple example. Suppose we would like to study and understand the
behaviour of a function, such as the exponential function. For every value of z, there
is a corresponding value of the function e*. It would be a tedious task to study the
function by looking at a table of numbers. However, if the function can be visualized
by plotting the value of the function against each value of z, then it becomes a lot

easier to understand the function.

Now, for a typical engineering example, such as trying to understand the flow of
air over the wing of an aircraft. It would be impossible to look at a huge table of
numbers, and be able to understand it. Apparently, the only practical way to study
this kind of problem is to look at a three dimensional display corresponding to this

huge table of numbers.

Today, computers and data gathering devices spew out floods of data every second.
Obviously, simply wading through pages and pages of numbers is a tedious route
to insight. On the other hand, when data are presented as animated color images,
large quantities can be assimilated by the visual cortex, perhaps as much as several

gigabytes of data every second.

Engineers, scientists, physicians, and professionals in many other fields need an al-
ternative to numbers and symbols. Visualization provides such an alternative by
transforming numbers and symbols into the universal language of visuals, thereby
enabling these researchers and practitioners to observe their data, computations, or
models in a more meaningful form. This ability to visualize complex data sets, syn-
thetic models, and results from supercomputer simulations is essential in provoking
insights, enabling communication of these insights to colleagues, and confirming the

integrity of observation.

Visualization means the presentation of large quantities of data in a visual form
that can be rapidly assimilated and understood by a person. This is exactly what we
do when we plot the exponential function against each value of z. The same applies

when a three dimensional display is drawn to represent a huge table of numbers for

12

the case of studying the flow of air over the wing of an aircraft.

Scientific numerical data and their representation are, for the most part, spatial in
concept. In other words, they can be mapped by means of a three dimensional
representation appropriate to their context. For example, different colored stripes
representing temperature or stress can be mapped, in one way or another, directly
to the additional representations of these objects to which they apply, whether of a

simulation of a missile in flight or a jet exhaust stream.

Information is a more abstract concept. It is used for items that rarely have any
correspondence to a physical space. Consider a list of documents related by their
subject matter and rated by their relevance to some search criterion. There is noth-
ing intrinsic to such a list that dictates its graphical representation, even though, for
example, a document is often said to be of high or even topmost important. There-

fore, in order to visualize information, it needs to be mapped to some physical space.

Visualization, often referred to as scientific visualization or visualization in scientific
computing, helps us extract useful information from complex or often voluminous
data sets through the use of interactive graphics and imaging. It also provides pro-
cesses for steering the data set and seeing what heretofore may have been invisible,

thereby enriching existing investigation methods.

Visualization encompasses computer graphics, image processing, computer vision,
computer aided design, signal processing, user interface design, cognitive science, and
computational geometry, taking its foundation material from these and related fields

and at the same time unifying them.

Scientific visualization aims to devise algorithms and methods that transform massive
scientific data sets into pictures and other graphic representations that facilitate com-
prehension and interpretation. In many scientific domains, analysis of these pictures
has motivated further scientific investigation, laboratory experiments, numerical sim-

ulations, or remote observations.

Visualization technology has generated much excitement and enthusiasm among its

13

practitioners and has already significantly changed the way scientists do science, the
way engineers design, and the way physicians deliver health care. The results of vi-
sualization research most directly affect the quantitative and qualitative aspects of
users’ work, but the general utility of visually displayed information is increasingly

affecting other aspects of their work as well.

Supercomputers, satellites, medical scanners, microscopes, radio telescopes, geophys-
ical sensors, information superhighways, and geometric and computational models
all generate huge amounts of scientific, engineering, and medical data. The many
techniques that help us analyze and comprehend this data by providing visual repre-

sentations are included in the definition of visualization.

Because tremendous benefits accrue from direct interaction with data sets or simu-
lations, the trend is toward interactive visualization. Interactive visualization means

that the user can provide input so that the way the data is visualized will be changed.

Interactive systems are most effective when the results of models or simulations are
in a dynamic visual form. Thus, visualization includes techniques that help users
interact with visual presentations of scientific data. Visualization also includes the

hardware, software, and systems issues required to support the interactive mode.

Visualization today has become a discipline of its own. The importance of visu-
alization research and development has increasingly been recognized. Visualization is
now the subject of considerable research and development activity at many academic

institutions, as well as in industrial companies around the globe.

2.3 Software Visualization

Large software systems are complex and difficult to maintain. Source listings of
production-sized systems may consist of hundreds of thousands of lines spread over
hundreds of files. Even a seemingly simple, small project, such as a spreadsheet, is
quite complicated. It is time consuming and costly to understand, repair, maintain

and enhance code in large systems.

14

As the software gets older, knowledge of code decays. The design documents are
usually out of date, leaving the code as the only guide to system behavior. It is a
tedious task to reconstruct the design and system behavior by studying the code.

Software visualization can help software engineers understand, maintain and enhance
large software systems more efficiently. Software is intangible. It has no physical
shape or size. After it is written, the code is saved into files which are kept on disks.
Software visualization tools use graphical techniques to make software visible by dis-
playing programs, program artifacts, and program behavior. The essential idea is
that visual representations of software can help make understanding software quicker

and easier.

A few basic properties of software systems can be visualized:

e Systems design and architecture: the structure of software systems, such as
module relationships, calling relationships between functions, can be visualized
using directed graphs. These graphs show the relationships among software
entities. For example, a node can represent a procedure, and an edge can

represent a calling relationship between the two procedures.

e Systems behavior: graphical representations of data structures and their mo-

tions can be used to illustrate the behavior of system'’s algorithms.

e The code itself: some editors display the code using different colors for different
types of code. Comments can be displayed in red. Keywords can be displayed in
blue. Built-in types can be displayed in green. Pretty printers also use special
fonts and colors to distinguish keywords and so forth.

Software engineers usually work with these large and complex software systems. In
order to maintain and enhance these systems, the engineers have to understand the
structure of the system, such as function calling relationships. How can software

visualization help software engineers perform their tasks quickly and efficiently ?

15

2.4 Visualizing software structure

Traditionally, software structure, such as calling relationships between functions, is
visualized using ‘box and arrow’ graphs. These graphs usually consist of node and
link diagrams which are carefully arranged by sophisticated layout algorithms to show
the underlying structure of complicated software systems.

For example, a node can represent a function, and a link between the two nodes
can represent a calling relationship between the two functions. A node can be vi-
sualized as a circle in two dimensional space, and a link can be visualized as a line
between the two circles. Figure 1 is an example of such a two dimensional approach

to visualizing software structure:

Figure 1: An example of a 2D visualization of software structure

In Figure 1, circles A, B, C, and D represent functions A, B, C, and D respectively.
The lines connecting circle A and circles B, C, and D represent calling relationships

between function A and functions B, C, and D respectively. In the example, function
A calls functions B, C, and D.

The two dimensional approach to visualizing software structure has some limitations:

o There is not enough room for many nodes on the screen. As we can see from

Figure 1, with the space of the given window, we can draw at most 4 circles to

16

represent 4 functions. We can fit in more circles if we use smaller circles and a

larger window, but the complexity of this kind of display is clearly limited.
¢ The links tend to cross over, confusing the diagram.
o All nodes are of the same size regardless of their positions.

In order to overcome some of the limitations imposed by 2D visualization, System
Visualizer uses a three dimensional approach to visualizing software structure. In
particular, the tool was developed to provide a three dimensional display of module
interconnections. Figure 2 shows an example of how software structure can be visu-

alized in three dimensional space:

Figure 2: An example of a 3D visualization of software structure

In Figure 2, spheres A, B, C, D, and E represent modules A, B, C, D, and E
respectively. The lines connecting sphere A and spheres B, C, D, and E represent the
uses relationship between module A and modules B, C, D, and E respectively. In the
example, module A uses modules B, C, D, and E.

The three dimensional approach to visualization has some advantages over the two

dimensional approach:

e There is room for more nodes in three dimensional space. In Figure 2, the

window size is exactly the same as that in Figure 1. Figure 2 displays one node

17

more than Figure 1 does. Moreover, as we can see, there is still room to display

more nodes in Figure 2.

e Modules appear larger if they are closer to the viewer. This increases the clarity
of the 3D image and helps the viewer interpret the picture better. In Figure 2,

modules B and C are closer to the viewer, therefore they appear larger.

e Rotation allows the user to select a view that shows part of the system clearly.
A 3D picture may look confusing from one direction, i.e. spheres may overlap
each other. However, when the image is rotated as if it is looked at from another
direction, then part of the image may become very clear. In Figure 2, the image

has been rotated to a position where the whole structure looks very clear.

e Colour coding can be used to distinguish different kinds of modules. For exam-
ple, leaf modules, i.e. modules which do not use any other modules of a software
system, can be colored blue. Non-leaf modules, i.e. modules which use some

other modules of the system, can be colored yellow.

Three dimensional visualization clearly has advantages over the traditional two dimen-
sional approach. Unfortunately, there has been very little done on 3D visualization,
especially on software visualization. The purpose of this thesis is to try to contribute
a part to fill up this lack.

18

Chapter 3

Related Work

As stated in the previous chapter, there has been very little work done on visual-
ization, especially on software visualization, e.g. visualizing source code, visualizing
the design by extracting information from source code, etc. This chapter discusses
two articles on visualization. The first article talks about how code can be visualized.
The second article discusses a method which visualizes large database structures. The
chapter also briefly discusses two chapters in a book which talks about how visualiza-
tion can help in software development. Finally, the chapter references a few technical
reports which talk about the use of visualization in the design and understanding
of object oriented programs, and about the needs for 3D graphics in computation

visualization.

3.1 Software Visualization in the Large

The article by Ball and Eick [2] presents four different code visualization techniques
and then shows how these techniques were applied to the authors’ tools to visualize

very large software systems developed by Bell Laboratories.

The four visualization techniques are: Line Representation, Pixel Representation,

File Summary Representation, and Hierachical Representations.

Line Representation

This technique presents views of code which are color coded at different scales.

19

In a larger scale, each line of code is presented in a readable format, i.e. just
as we read the code using a text editor except that lines are colored differently.
In a smaller scale, each line of code is reduced to a single row of pixels, but the
indentation, length and coloring of the line are preserved. Colour may be used
to represent various properties of the source code, such as its age. Recently-
written lines can be colored red, old lines can be colored green, and yellow
lines represent intermediate age. Sometimes the line indentation is turned off
to emphasize the line colors. The smaller scale is used to view an entire file in

a rectangle, while the larger scale is used to read a small portion of the file.

Pixel Representation

File

The technique represents each line by one, or a small number of, pixels which
are also color coded. The pixels are ordered from left to right within a row.
There are two different ways to order the pixels. The pixels can be ordered to
respect their line numbers, e.g. the first pixel on the left represents line 1, the
next pixel represents line 2, and so on. The pixels can also be ordered by their
colors to provide mapping from statistics, such as code age, to colors. As an
example to illustrate the second way of ordering the pixels, let us assume that
line 1 is red, line 2 is yellow, line 3 is green; and these 3 lines are represented
by 3 pixels in a graphical row, where the red one is on the left, the yellow one
is in the middle and the green one is on the right. Now, if line 4 is yellow, line
6 is red, and line 5 is green, then the pixel representing line 6 would be the first
pixel on the left, the one for line 4 would be in the middle and the one for line
5 would be on the right of the next graphical row. As in the case of the Line
Representation, this technique can represent a large file in a small window on

the screen.

Summary Representation

In this technique, each file is represented by a rectangle, which could be of
different heights, depending on the file size. There are four different rectangle
heights which represent four different types of file sizes. Each portion in the
rectangle can be colored differently to show different characteristics of the codes

within the file. For example, a rectangle may contain a small portion colored

20

purple to represent the amount of code added for new functionality, and a large

red portion which shows the larger amount of codes for bug fixing.

Hierachical Representations
A large software system may contain several subsystems which are organized
into different directories. Each subsystem, in turn, contains modules which
correspond to subdirectories within the directory of the subsystem. Each sub-

directory then contains files of the corresponding module.

The whole system can be represented by an entire window. The window is
partitioned into rectangles of different sizes to correspond to its subsystems of
different sizes. Each subsystem is then partitioned vertically to show its internal
directories which correspond to modules of the subsystem. Vertical partitions
corresponding to modules could be presented as a bar chart to encode additional
statistics, such as the amount of new code development. A subsystem can be
zoomed to show files within its subdirectories, where each subdirectory is par-
titioned horizontally to represent files. Each horizontal partition corresponding
to a file within the module could also be presented as a bar chart to encode

file-level statistics.

The authors then illustrate the application of these techniques to the visualization of

codes based on history and static characteristics, and based on execution behavior.

Code version history
Code age can be viewed using both line representation and pixel representation.
The newest lines of code can be colored in red, and the oldest in blue, with a
rainbow color scale in between. Therefore, a rectangle representing a file which
has a lot of red lines or red rows of pixels, as in the case of line and pixel repre-
sentations respectively, indicates that a lot of new code have been added. The
file summary representation can also be used to show views of code age. The
red portion in a rectangle corresponding to a file represents new code, and blue

portion represents old code.

21

The file summary representation can also be used to show bug-fixing code where
the red portion can represent the amount of bug-fixing code, and the purple por-

tion represents the amount of new feature development code.

The line representation can also be used to visualize fix-on-fix information. A
fix-on-fix occurs when a bug is fixed in the code, and the code is subsequently
fixed again because the original repair was faulty. Each vertical rectangle, or
column, representing a file contains lines which are color coded to show code
age, i.e. red lines represent new code, blue for old code. Now, each column is
split in two with half lines on the left representing initial bug fixes, and half
lines on the right indicating subsequent fixes to the original fixes. Therefore,
half lines means that the bug fixes have worked so far, and whole lines indicate
fix-on-fix information.

Differences between releases
The line representation can be used to display the differences between the same
file of difference releases. The two files are shown pairwise simultaneously. Four
colors are used to show the code. Deleted lines are red, green for added lines,
changed lines are yellow, and gray for unchanged lines. Large scale is used to
show small portion of the code differences in a readable format, and small scale

is used to globally summarizes the differences between two files.

Hierachical representations are used to show differences between all files within
a subdirectory representing a module in one release, and all files within another
subdirectory representing the same module but in a different release. Each
small partition representing a file within a subdirectory contains bar charts of

different colors to show deleted, added, changed and unchanged code.

Platform specific information
The pixel representation is used to show platform-specific fragments of the code.
Pixels in graphical rows within a column, which represents a file, are colored

differently to represent lines of code which are platform-specific. For example,

22

lines of code specific to HP Unix is represented by red pixels, green for the Sun,
blue for common code. This visualization shows the amount of code required

for each platform.

Conditional nesting complexity
The conditional nesting level of a statement is the number of loops or con-
ditionals which surrounds the statement. The pixel representation is used to
indicate the nesting complexity, where a different color is for a different number
of nesting levels. Red pixels can represent lines which have the most number
of loops or conditionals surrounding the lines. Green pixels are for lines with
the least nesting levels. A rainbow color scale is for lines with the number of

nesting levels in between.

Execution hot spots
Hot spots in a file are lines of code which were executed more frequently during
a user test. Execution hot spots are visualized using the line representation.
The color of a line encodes the number of times the line was executed. Red
can denote high frequency of execution, and blue can denote the opposite. Line

indentation is switched off to make the color patterns more visible.

Dynamic program slices
A dynamic program slice is the code that impacts the execution of a code state-
ment or a procedure. The impacted statement is then called the slice point. A
dynamic slice could contain many statements and procedures which may reside
within one file or may span over several files. The line representation visualizes
dynamic program slices. The point of slice at the mouse can be coded red. Yel-
low lines can represent statements which directly affects the slice point. Green
statements can directly impact the yellow ones. And so on. The large scale is
used to show the code portion which contains the point of slice. Smaller scales

are used to show the entire dynamic program slice which could span over many

files.

23

In this article, the authors demonstrate that the conventional way of displaying source
code on the screen is only one of several possibilities. The capabilities of a high-
resolution, color monitor can be used in a variety of ways to provide information about
source code rapidly and efficiently. By reducing the visual size of a line of source code
to a row of pixels or even a single pixel, the authors are using visualization techniques
as an abstraction mechanism. By using color, they make relationships in the source

code such as age and maintainability, instantly visible.

3.2 Visualizing the Structure of Large Relational

Databases

The article by Antis, Eick and Pyrce [1] visualizes relational databases using seven
different views. There is an Overview which displays the entire structure of the
database. The other six views show detail information on different characteristics of
the database. The authors abandon the use of entity-relationship diagrams because
they are not suitable for viewing large relational databases. One of the main reasons
for this is that the diagrams become cluttered for large databases, making it difficult

to extract information.

The seven views which are going to be discussed are: Overview, Association, Speci-

fication, Path, Code, Layout, and Domain.

Overview
The Overview displays all the relations of a database in a window. Relations
are represented as horizontal bars. There is a number of columns of bars in the
Overview, depending on the number of relations the database has. The length
of a bar could represent the number of attributes the corresponding relation
has. Or the bar length could represent other statistics of the relation such as
the size of a relation tuple, or the maximum number of tuples the relation could

have.

The color of each bar encodes some categorial statistic associated with the

relation such as the relation’s access method, how the relation is stored, how

24

the relation is distributed over processors, or who the owner of the relation is.
For example, if the bar color represents the relation’s access method, then a
blue bar could mean that the relation is accessed using the index method, a

green bar means the relation is accessed sequentially, and so on.

Association
The association view shows a relation X with all of its attributes, and all the as-
sociated relations in the database specification in a window. Relation X in this
view corresponds to the bar in the Overview which the user moves the cursor
onto it. Associated relations of X are extracted from predefined queries used in
application software. The relation X with all its attributes is in the center of
the window, and associated relations are placed around it. The position of as-
sociated relations indicates the direction and strength of their association with
X. Relations with associations to X, i.e. associations containing the complete
key of X, are placed on the left of X. These associations are called access paths
to relation X since they can be used to directly access tuples of X. Relations Ys
with associations from X, i.e. X has associations which contain the complete
keys of Ys, are on the right of X. Relations with bidirectional associations, i.e.
having both associations to and from X, are on the top. Relations with con-
straint associations with X are on the bottom. Constraints are associations

which do not involve any keys, and therefore cannot be used as access path.

The association view can be expanded to show just relation X and one as-
sociated relation Y. All the attributes of relations X and Y are displayed side
by side in a window. The linked attributes between X and Y are connected by
arrows. Linked attributes are attributes contained in both X and Y. There is a
number of small vertical bars in the bottom of the expanded association view.
Each bar corresponds to a query in the application software which involves both
relations X and Y. The red bar denotes the query which is currently displayed

in the Specification view.

Specification

The Specification view shows the text of predefined queries in the application

25

software of the database in a scrolled window. It is linked to the expanded
association view. If the mouse touches any of the small vertical bars in the
bottom of the expanded association view, the specification view will show the

text of the corresponding query in the application software.

Path
The Path view shows all possible shortest paths connecting two relations X and
Y. The shortness is measured in terms of the number of joins needed to tra-
verse the path. The relations in the path view are represented by small vertical
rectangles in a window. The two rectangles representing relations X and Y are
placed at the far left and right side of the window. All relations in between
which involve in the paths are placed in between. The relations are connected

by arrows to represent shortest paths connecting relations X and Y.

The color of the relations is the same as the color of the corresponding bars
in the Overview which encodes a categorial statistic associated with the rela-
tion such as the access method, etc. Using the path view, the user can quickly
discover the most efficient path which can be used to look up tuples of relation
Y from X. If the color encodes how the relation is distributed over processors,
then relations which have the same color are stored in the same processor. The
most efficient path is the one which involves relations which have the smallest
number of tuples and which have the same color, i.e. all relations involved in
the path are stored in the same processor, or which have the least number of dif-

ferent colors, i.e. all relations involved are stored in very few different processors.

Code
The Code view shows the source code which references a relation X. The code
view organizes the code in hierarchies as a tree of subsystems, modules within
subsystems, and files within modules. Each application which references rela-
tion X has its own tree. For example, two applications A and B reference the

relation X, then Figure 3 illustrates an example of how the code view for this
would look like:

26

Application A Application B
subsystem Al Subsystem B1
Module M1 | Filel Subsystem B2 | Module M3 | File 3 |
Module M2 | File 2

Subsystem A2

Subsystem A3

Figure 3: A Code view example

In Figure 3, application A has files 1 and 2 which have code that references re-
lation X. File 1 belongs to module M1, and file 2 belongs to module M2. Both
modules M1 and M2 belong to subsystem A2. Application B has file 3 that

references relation X. File 3 belongs to module M3 of subsystem B2.

Relation X corresponds to the bar in the Overview on which the user places
the cursor. The user can also identify all relations accessed from, say file 2, by
clicking on the box which represents file 2 in the code tree. All the relations,
which are used by the code in file 2, in the Overview are then highlighted.

Layout
The Layout view shows the physical layout in memory for a tuple of a rela-
tion. Each attribute of the relation is represented by a rectangle. The size of
the rectangle corresponds to the size of the attribute in the relation. Figure 4

illustrates an example of the layout view.

Aurl Aur2 Aur3

Figure 4: A Layout view example

The gray rectangle in Figure 4 represents the unused portion of the physical

data structure for the relation.

Domain

The Domain view is a grid. Each square in the grid represents a domain in the

27

database. The whole grid represents all domains used in the database. A do-

main is a set of possible values which an existing attribute of a relation can have.

The squares representing the attributes of the selected relation are colored.
The purple square represents the domain of the key attribute of the relation.

Domains are arranged alphabetically with respect to their names.

All relations which use a particular domain can also be identified. This is
accomplished by selecting the square corresponding to the domain of interest in
the Domain view. This in turn highlights all relations in the Overview which

use the domain.

All the views we have just described may interact, as we have seen. At any point
in time, there is one instance of the Overview. But there may be multiple instances
of any other views. An object may appear in several different views. The result of

manipulating the object in one view will be reflected in all other views.

The second article [1], like the first [2], demonstrates different ways in which visualiza-
tion techniques can be used to reveal different properties of a complex system, in this
case a relational database system. Again, the key factor is that a high-resolution,
color monitor has the capability of displaying a large amount of information very

rapidly and efficiently, provided that the information is suitably encoded into pixels.

3.3 Visual Programming

There are two chapters in the book by Shu [7] which discusses how programs can be

visualized and how visualization can be used in software development.

3.3.1 Visualization of Programs and Execution

Chapter 3 of the book by Shu [7, pages 40-64] presents various ways of visualizing

programs and their execution states.

28

A program can be displayed using ‘pretty-printing’ method to make it more read-
able by using different levels of identation, well-placed commenting, and blank-line
insertion. Today with high-resolution bit map displays, the ‘pretty-printing’ method
is enhanced to display program source text using multiple fonts, variable point sizes,
variable character widths, proportionate character spacing, nonalphanumeric sym-

bols, gray scale tints, rules, and arbitrary spatial location of elements on a page.

Another way of visualizing source code is to graphically represent programs using

flow charts and diagrams.

Multiple views of a program and its execution states can also be displayed simul-
taneously in a window. For example, one view could display program source code,
another view could show the graph of the execution flow of the corresponding pro-

gram source code.

Program algorithms can also be represented through an animated sequence of im-
ages. Interesting events play an important role in algorithm animation. Interesting

events are events which lead to changes in the image being displayed.

3.3.2 Visualization of Software Design

Chapter 4 of the book [7, pages 67-78] discusses two different approaches of how

visualization can be used to help in software development.

In the first approach, the users are provided with a set of basic visualization tools.
They can use these tools to create various diagrams at their own choice during a
software development cycle. There are different categories of diagrams the users can
create, such as system requirements diagrams, program function diagrams, program

structure diagrams, diagrams of flow control, etc.

The second approach introduces formality into graphical representations of programs.
A program design is represented as a hierarchy of interrelated formal dependency di-
agrams. Diagrams are composed of icons which denote predefined or user defined

concepts about program dependencies. Predefined primitives denote objects such as

29

modules, processes. They also denote data dependencies, which involve the declara-
tion, manipulation and sharing of data objects, and control dependencies which deal
with asynchronous and synchronous activities. The users can define new concepts us-
ing the primitives. Syntactic and semantic constraints are placed on the construction
of pictures. When a program is written, it then can be verified whether it meets its

pictorial documentation.

3.4 Using Visualization to Foster Object-Oriented

Program Understanding

The article by Jerding and Stasko [5] shows a way to visualize object oriented pro-

grams and their executions. It then provides a framework to do that.

Classes in an object oriented program are represented as upside-down triangles. Ar-
rows from the bottom of a class to the top of another class represent inheritance.
The class hierarchy is represented as a tree structure of upside-down triangles. Class
instances are represented by ovals, and message passing is shown by animating the
drawing of arrows between instances. Global functions are represented by rectangles.
The behaviour of an object oriented program is visualized by graphically animating

message passing between instances that occurs during execution.

The article then introduces a framework for visualizing object oriented software. The
framework contains two basic components, namely Fvent Generation and Event Vi-
sualization. The event generation component is responsible for generating program
events such as method calls and object creations. The event visualization component
manages events as they are generated, and creates graphical, animated views of pro-
gram execution based on the collected events and using the above mentioned way of

visualizing object oriented programs.

3.5 Three-Dimensional Computation Visualization

The article by Stasko [9] identifies the needs for 3D graphics in computation visu-

alization, and introduces a toolkit that supports development of 3D computation

30

visualizations.

In a 3D computation visualization, each dimension can be used to encode certain
information. For example, one dimension can be used to encode position, another di-
mension can be used to encode value, and the third dimension can be used to encode

some other information such as history.

There are computation visualizations whose information display requires only two
spatial dimensions, such as position and value, but a third dimension is added for
presentation purposes. This is because people can process information from three
dimensional displays more quickly and as accurately as from 2D displays [8]. Some
other types of computations minimally require two spatial dimensions. However, the
third dimension is used to encode some other attribute of the computation. For
example, in a bar chart sorting view, one dimension encodes the position, another
dimension encodes the value, and the third dimension can be used to show a history
of the pairs of elements exchanged at each step of the program. Finally, there are
computations which involve inherent 3D entities such as a visualization of a cube

parallel architecture.

The article then introduces a toolkit called Polka-3D which supports 3D computation
visualization development. Polka-3D is an object oriented animation methodology.
In the model imposed by Polka-3D, an entire animation consists of different views.

Each view is made up of 3D graphical objects and their motions.

An entire computation visualization is encapsulated in an Animator class. The An-
imator base class defines methods that receive and handle events from the system
being visualized. Animation designers subclass Animator, adding individual views as
data members and providing a mapping to specify which views are called in response

to program events.
There are 3D classes, such as line, sphere, etc, supplied by the toolkit for animation

developers to draw 3D graphical objects which make up views. The class Actions can

also be used to manipulate the motions of 3D objects.

31

3.6 Using Animation to Design, Document and

Trace Object-Oriented Systems

The article by Shilling and Stasko [6] introduces a visual design tool which helps

object oriented software designers develop and capture object oriented designs.

The tool allows software developers to visually specify both static structure of a
program and the run-time dynamics and protocols through menus and direct manip-
ulation operations. A programmer uses pull-down menus to select program design
and specification commands such as ‘Class create’, ‘Instance create’, ‘Function in-

voke’, etc, during development.

Design sessions are stored in script files and replayed later to animate program exe-

cution.

In displaying a program execution, the tool does not concurrently present the re-
lationship between all program entities since this can quickly lead to an information
overload. Instead, the tool utilizes the concept of a current focus to drive the display.
A program entity in the display becomes the current focus when the entity’s repre-
sentation is selected. When describing a protocol, the object last receiving a message
becomes the focus. Once an entity becomes the focus, all other objects update their
view to reflect their relationship to the focus entity. If an entity has no relationship to
the focus entity, its view is a simple black outline of its shape surrounding its name.

The tool also uses color to represent the different class hierarchies within a program.

32

Chapter 4

Design

4.1 Requirements

A large software application may contain hundreds of modules. One of the very im-
portant tasks a software engineer has to do is to understand the uses relationship
between these modules. Our task is to build a tool to help the engineer perform this
task quickly and efficiently.

The overall goal of the tool is to be able to display a set of C or C++ modules
in a large software system and their uses relationships as three-dimensional structure.
This will help a software engineer new to a large software system understand the

system quickly by looking at the system visually.
System Visualizer will display a module as a sphere and a uses relationship between
two modules as a line between two spheres. There are two problems to solve:

e The tool needs to be able to determine the relationships between all modules

of a system.

o How should we graphically display these modules and their relationships as

spheres and lines in three dimensional space?

The first problem is fairly easy to solve. In a typical software system developed using
the C programming language, there is a main module which is a .c file which contains

the main() function. This main module normally has an associated .h header file.

33

As a matter of fact, each module of a system has an associated header file which
is included in the .c file of the module. When a module uses another module of the
system, it includes the header file of that module in its header file. Therefore, starting
from the main module, we can infer the uses relationships between each module of

the system.

The second problem is more complicated. However, we can see the natural tree-
like structure of the relationships between modules of a system. For example, if
module A uses modules B and C. Module B in turn uses modules D, E and F. Then
A will be the root of the tree which has two children B and C where C is a leaf of the
tree. B in turn has three children D, E and F which all are leaves. Therefore we can
display modules and their relationships as a tree where each module is represented as
a sphere and the relationship between two modules is an edge between the spheres.
In three dimensional space, the children of a module M are placed on the surface of
a cone with its vertex at M, instead of on a plane. We use the term cone tree to refer

to this kind of tree in three dimensions.

In a system where the uses relationships between the main module and some of
the leaf modules, i.e. modules which do not use any other module of the system, is
very deep, the cone tree will contain many levels. As a result, it may not be possible
to draw the whole cone tree without confusing the picture, given the limited space of
a computer terminal. Therefore, the tool by default will display the cone tree starting
from the root down to a maximum of 3 levels. To make the tool more flexible, the

user can select to display the cone to have any levels of 1, 2 or 3.

Since the tool displays a cone tree of at most 3 levels, part of the system may not
be seen. Therefore, the tool has to provide the user with the capability to select any

non-leaf modules and display the cone tree starting from the selected module.

The cone tree normally will have non-leaf nodes and leaf nodes. To help the user
distinguish these two different types of nodes visually, we use different colours for leaf

nodes and non-leaf nodes.

It often happens that two modules A and B use the same module C in a system.

34

This is because the system structure may actually be a directed graph rather than a
tree. In this case, if C is a non-leaf node then the subtree with root at C may appear
twice in the cone tree. In order to avoid this, we only draw the subtree rooted at C
once and represent C in both places as red spheres. Moreover, if A is at level 1, and
B is at level 0, we do not want to draw the subtree C starting from A, since this will

make the cone deeper unnecessarily. Instead, we will display the subtree C starting
at B.

If the cone tree has a lot of nodes, the picture could become very confusing even
though we display the cone at at most 3 levels. This is because the spheres will nor-
mally overlap each other. In three dimensional space, we can look at the cone tree
from different positions, resulting in the cone having different shapes. The spheres
may overlap each other when we view the cone in a straight-on position. But if we
move our eyes a little bit up, a little bit to the right or a little bit to the left, then the
spheres may not overlap at all, resulting in a clear picture. Utilizing this important
characteristic of three dimensional space, the tool allows the user a powerful capabil-
ity to move their eyes around, i.e. a little bit up, a little bit down, a little bit to the
right or a little bit to the left, resulting in the cone tree being rotated, until the cone
can be seen best from a good position. In order to help the user speed up the process
of locating the best position for viewing the model, the tool allows the user to select

one of the 6 following views:

e Looking straight-on.

Looking from right.

Looking from left.

Looking from straight up.

Looking from right up.
e Looking from left up.

With this, the user can quickly move to a good position by selecting the best view
from these, and from here the user can move the eyes around a lot faster to locate

the best position for viewing the model. By default, the tool uses the first view to

35

display the model.

In three dimensional space, if an object is closer to our eyes then the object appears
larger. System Visualizer also makes good use of this characteristic to display the
spheres closer to our eyes larger, and display the spheres farther to our eyes smaller.

This increases the clarity of the 3D picture and helps the user interpret the image.

4.2 User Interface

System Visualizer is started up by running the tool executable with the name of the
root module as the first parameter and the directory where all the header files of the

system under study are located as the second parameter.

The tool then parses the header files, infers module relationships and displays the
cone tree representing modules and their relationships of the system in a separate
window. Let us call this window the drawing window. There is 2 menu bar on top of

the drawing window.

36

L odfraw cone

Figure 5: An illustration of the user interface

Figure 5 is an image displayed by the tool. Please refer to Figure 5 in the following

description of the user interface portion of the tool for clarification.

The first button on the menu bar is a scrolled-down menu which is labelled ‘Views’.
Selecting this button results in a scrolled-down menu which has 6 items for 6 different
views. When a view is selected, the tool clears the existing picture and redisplays the

model using the selected view.

37

The second button on the menu bar is another scrolled-down menu which is labelled
‘Levels’. This scrolled-down menu has 3 items. One item is labelled ‘1 level’ and if
selected will cause the tool to re-display the cone tree of one level. The other two are
labelled 2 level’ and ‘3 level’ and are used to display the cone tree of 2 levels and 3

levels respectively.

The next four buttons on the menu bar are right, left, up and down arrow buttons.
Clicking on the right arrow button means that we want the picture to be shifted a
little bit to the right. In order to accomplish this, our eyes have to move a little bit to
the left. Clicking on the left arrow button causes the reverse action to be performed.
Clicking on the up arrow button means that we want the picture to be shifted a little
bit up, which means that our eyes need to move a little bit down. The down arrow

button performs the reverse action of the up arrow button

The last item on the menu bar is a scrolled list. Each item in the scrolled list is
the name of a non-leaf module. If an item is selected, System Visualizer redisplays

the cone tree which has the module in the item as the root.

When System Visualizer is started up, it creates the drawing window of a reasonable
size. However, the user can move the mouse cursor to the top edge of the window to
select a scrolled-down menu, in which there is an option to resize the drawing window
to full screen. This also increases the size of the cone tree and improves the clarity

of the visualization.

To quit System Visualizer, we can move the mouse cursor to the top edge of the
drawing window to select the scrolled-down menu, and then select the ‘Done’ item.

This causes the drawing window to disappear and the tool to terminate.

4.3 Design

There are two major components in the design of System Visualizer: a parser which
reads the header files of the software system under study then infers modules rela-

tionships and a display module which uses the information obtained by the parser to

38

construct modules and their relationships into graphical form.

The parser when extracting module relationships has to store this information into
memory, as a collection of data structures, and then pass the information to the
display module. The display module will then read the information from the data
structures to build the required graphics. So these data structures are also an impor-

tant part in the design of the tool.

4.3.1 Data Structures

Since a module may use a list of other modules, the data structure must contain
the module name and a pointer to a list of other modules. Consequently, the data

structure shown in Figure 6 is suitable:

Figure 6: Data structure representing a collection of modules

This data structure has some disadvantages for what we want to do. First, as we
can see that the data structure represents a tree structure, and could be very deep
depending on the depth of the tree. Also, the data structure imposes the shape of
the tree, but the display module does not necessarily want to draw the cone tree in
this shape. Moreover, it is a more difficult task and requires more time to traverse

the data structure to construct the list of non-leaf nodes.

39

Figure 7 shows the data structure that we have used in the design since it removes

the disadvantages imposed by the previous data structure

subtree subtree
A B
edge edge
edge
leaf leaf
leaf B C D

Figure 7: Improved data structure

The data structure is a flat linked list where the top two nodes A and B represent
non-leaf nodes which have a subtree underneath. It is needless to say that it is very

easy and efficient to traverse this data structure.

4.3.2 The Parser

Having described the design of the data structure passed between the parser and the
display module, let us now consider the design of the first component of the tool,
namely the parser. In the design described below, please refer to Figure 7 which

illustrates the selected data structures for clarity.

Given the name of the main module A, the parser will have to read the header
file of A to extract modules which A uses. The parser then has to construct a subtree
where module A itself is the root and the modules A uses are the leaves using the
described data structure. Basically, the parser will first allocate a subtree node which
has the main module as the node name. Then the parser creates a linked list of edges
in which each edge points to a leaf node which represents a module used by the root.

The parser then creates the linked list of subtrees which contains only one element

40

which is the subtree the parser just created.

For each module used by the root which is a non-leaf node, the parser will construct
a subtree for the module by reading the module’s header file to extract modules used
by this node. This task is exactly the same as just described above. After having
constructed the subtree, the parser then needs to append the subtree to the end of
the subtree list.

Now we start to see the recursive nature of the parser. Starting from the root,

for each non-leaf nodes the parser repeats the following tasks:

1. If the non-leaf node is already in the linked list of subtrees then nothing needs

to be done. Otherwise perform the tasks below.

2. Construct a subtree which has the non-leaf node as the root and the modules
it uses as the leaves by reading the header file of the non-leaf node to extract

those modules.
3. Append the subtree just created to the linked list of subtrees.

4. If a module in a leaf node of the subtree is the root of another subtree in the
linked list of subtrees, then make this leaf node points to the other subtree
in the linked list of subtrees. Please refer to the leaf node B of subtree A in
Figure 7 which illustrates the data structures for an example. In this case leaf
node B has a subtree B in the linked list of subtrees.

5. For each module used by the root of this subtree which is a non-leaf node, repeat

the above steps.

4.3.3 The Display Module

The display module was the most difficult part of System Visualizer to design. First
of all, we need to be able to draw a subtree with a root sphere and a number of leaf

spheres.

Consider the XYZ coordinate in 3D space which has the X, Y and Z axis and the

41

origin at (0,0,0). First, we can place the root sphere at the origin, i.e. the root sphere
will have its center at the origin. Then we can try to place the leaf spheres around
and below the root sphere. This could be a difficult task, especially when the number

of leaf spheres varies.

Consider a simple example, where a subtree, or subcone, has module A as root and

modules B and C as leaves. We can draw this simple cone as illustrated in Figure 8.

by

| Ka)

Figure 8: Visualization of a simple tree

The location of the center of sphere C in the XYZ coordinate is computed as:

z = rsinfcos¢
Yy = rcos¢
z = rcos@ sing

where r is the distance between the center of sphere C and the origin. As we can see
from the figure, ¢ is a fixed angle which is greater than 90 degrees whereas 6 varies
for spheres B and C. In the example, § for sphere C is 90 degrees and for sphere B is
270 degrees. In order to draw spheres B and C at their correct location, we can first
draw them at the origin, then compute r, # and ¢ for B and C, and then move the

sphere from the origin to their new XYZ coordinate using the above formulas.

42

From the analysis of this simple example, we now can draw a subcone with a root
and any number of leaves, N. The only thing we have to worry is how to compute 6

for each leaf. 8 for a leaf 7 can be computed using the following formula:

§; = constant angle + (¢ x 360)/N

where 7 is from 0 to N — 1. If constant angle is 0 then 8 for the first sphere is going
to be 0 which means that the sphere is located right on the YZ plane.

Let us now see how we can draw lines between spheres. One way to do this is
that we would draw a line connecting the centers of the two spheres, and the line
only starts from the surface of one sphere and ends on the surface of the other sphere.
But this approach requires a lot of calculations, since we need to compute the two
endpoints of the line. The problem becomes worse when we need to do this for a cone

with several levels.

Instead, we will use the following approach which is very similar to the one we use
for drawing the spheres. Let the distance between two spheres be L. This distance is
a constant for any two spheres. First we draw a line along the Y axis starting at the
origin which has the length of L. We then move the line up a distance R where R is
the radius of the sphere. Now, we rotate the line down ¢ angle. Finally, we rotate
the line to the right 6 angle. ¢ and @ are the units used to locate the leaf sphere as
described above. Figure 9 illustrates this method.

43

‘_,/ ‘
theta
YA

Figure 9: Computing the line between two spheres

Now, we are ready to construct the design for the Display Module. The modul
relationships information is stored in the form of our data structures and passed intc
the Display Module. The Module first needs to extract the subcone information fron
the data structure, i.e. what are the modules used by the main module. With thi
information, it can compute the locations of each sphere in the subcone using th
above described method. Therefore it can draw each sphere and the lines connectin,

them to construct the subcone.

Now, for each module X represented by a leaf sphere of the subcone which use
some other modules, the Display Module has to construct a subcone for it using th
above method. But then this subcone has the root located at the origin of the XY
coordinate which is not the location the subcone is supposed to locate. However, al
we have to do is to move the whole subcone to its proper position, i.e. its root spher

will be located at sphere X.

The task is going to be repeated until there is no more non-leaf nodes or until th
maximum number of levels the cone supposed to be drawn is reached. The design c

the Display Module can be summarized in the following steps:

1. Start from the main module as the current node.

2. Initialize the current level to 0.

44

3. If the current level is greater than the maximum number of levels then stop.

Otherwise do the following.

4. Extract the subcone information from the data structure, starting from the

current node as the root.

5. Compute the locations of all spheres for the subcone which is rooted at the

current node using the above extracted information.

6. Using the computed locations, construct the subcone to be drawn with root

located at the origin.
7. Move the subcone to its proper location.
8. Increment the current level by 1.

9. For each non-leaf nodes of the leaves of this subcone, repeat the above steps,

starting back from step 2.

As we have specified in the requirements that, by default the maximum number of
levels is 3. However, the user can select to have the cone tree drawn at any levels
between 1 and 3. If this is the case, all we have to do is to reset this maximum number
of levels, and execute the above steps to draw the cone tree with the desired number

of levels.

From the Data Structure, we can extract very easily and efficiently the list of non-leaf
modules and place it in the scrolled list of non-leaf modules as specified in the User
Interface section. Now, if the user select a non-leaf module from this list, the Display
Module needs to be able to redraw the cone tree which is rooted at this module.
Looking back at the algorithm we just developed, we see that all we have to do is to

replace the first step as:

1. Start from the selected module as the current node.

By default the selected module is the main module.

Now, we need to paint different colors for spheres representing different types of

45

modules. The problem is to determine the type of a module. For leaf modules, it is
very easy to determine. Looking back at our data structures, if the pointer of the leaf
data structure is nil, i.e. it does not point to any subtree, then this is a leaf node,
and will be painted blue. It is more difficult to determine whether a non-leaf node
appears only one time or more in the cone to be drawn. If we try to count the number
of times a module appears in the cone while drawing, then it may be too late. For
example, as we draw module A the first time, the count will be 1, therefore it will
be painted yellow. However, the module may be drawn again and only subsequent
drawings of the module will paint it red since only subsequent drawings will have the
count greater than 0. To overcome this problem, we need to traverse the cone first
to compute the count, and then we can start drawing using the count to determine
what color should be used.

As specified by the requirements, we do not want to draw the same subtree more
than once in the cone. Moreover, if a subtree is supposed to appear twice in the
cone, one time with root at level 1, for example, another time with root at level 2,
then we will draw the subtree with root at the smaller level. Because of the recursive
nature of our algorithm, if care is not taken, we may traverse to the subtree with
root at level 2 first, and as a result, we may draw the subtree with root at level 2
instead. Therefore, before we start to draw, we need to compute the smallest level a
subtree could be rooted in the cone. Then, during drawing, if we encounter a subtree
at a level which is greater than its smallest level, then we do not want to draw it
yet. We will draw the subtree only at the smallest level it could be rooted. There is
another potential problem. A subtree may appear more than once in the cone tree
at its smallest level. To overcome this problem, once a subtree has been drawn, we
will mark it as drawn. So the next time during drawing, if we encounter the subtree

at its smallest level again, we know that it has been drawn.

By default, the cone tree is drawn as if our eyes look at it in the direction of point X
(0, 0, 1) towards the origin in the XYZ coordinate, where the XY plane is the plane of
the screen and the Z axis comes towards the viewer. Since looking at the cone in this
direction may cause the spheres to overlap each other, making the cone difficult to
view, we need to be able to draw it as if we were looking at it in different directions.

As a matter of fact, the spheres may overlap when it is looked at in one direction,

46

and may not overlap when it is looked at in another direction. The direction which
cause the spheres to overlap or not to overlap is more or less random. This is why
we need to be able to look at the spheres from different directions. Most 3D library
packages provide the capability to draw a model as the eyes look at it from differ-
ent directions. As the user interface of System Visualizer provides 4 different arrow
buttons to do this, if the user presses on the right arrow button, then we decrement
the X coordinate of point X by a small constant, say 0.1, and then redraw the cone
using the new direction. For left arrow button, we do the reverse, i.e. increment X
coordinate of point X by 0.1. For up arrow button, we subtract the Y coordinate of

point X by 0.1, and we do the reverse for down arrow button.

Figure 10 shows the directions which can be used to draw the cone tree for the 6

different views as specified in the requirements:

Views XYZ coordinate of point X
straight (0,0,1)
right (1,0,1)
left (-1,0,1)"
straight up (0,1, 1)
Tight up 1, 1,1)
left up (-1, 1, 1)

Figure 10: Six views

So far, we have only talked about looking at the cone tree from different directions.
If the eyes looking at the cone are positioned far away from it, then the sizes of all
spheres will appear to be the same. However, if the eyes are positioned close to the
model, then spheres closer to the eyes will be larger and spheres farther from the eyes
will be smaller. Most 3D graphics libraries allow us to do this.

4.4 Design Decisions

System Visualizer has been developed to analyze software applications written using

the C programming language to infer module relationships of the application and

47

transforms this information into three dimensional graphics form. The tool was also
written in the C language and is supposed to run under the Unix operating system
which supports X windows. The tool assumes that an X server is running on the

terminal in which the tool is executed.

These choices were made because many software applications have been developed in
C to run on the Unix operating system. Also, C and Unix are standard language and
platform used in many Universities. Moreover, X windows are installed in most Unix

machines.

System Visualizer uses the OSF Motif toolkit for its User Interface portion since

Motif is also available on most Unix machine and is compatible with X windows.

The Display Module of System Visualizer utilizes the X library PEXIlib to draw the
three dimensional graphics portion. PEXIib is a 3D extension of the Xlib which is a
very powerful 3D library. It can provide all the graphic facilities the tool requires.

Also, we can incorporate Motif into programs which use PEXIib.

Since the 3D extension of X servers run mainly on color terminals, System Visu-

alizer also assumes to run on color terminals which support PEX servers.

48

Chapter 5

Implementation

5.1 Steps in implementation

As we can see from the Design chapter, there are two major components to implement
System Visualizer, namely the Parser and the Display Module. But, first let’s discuss
the detailed implementation of the Data Structures which are a major component

required to integrate the parser with the drawing code.

5.1.1 Data Structures

There are three major data structures for System Visualizer: subtree, edge and leaf.
The subtree data structure represents the root node of a subtree. Each subtree node
is an element of the linked list of subtrees which is a linked list of non-leaf modules,
i.e. modules which use other modules. The first field a subtree needs to have is the
name of the root module of the subtree. It also contains a pointer NeztSubtree to
the next subtree in the subtree linked list, and a pointer Uses to a linked list of edges.
These two pointers will be discussed shortly.

Also as specified in the Design, a non-leaf module may appear more than once in
the cone tree to be drawn, and as such the sphere will be colored red and we need to
store the count of the number of times the non-leaf module is to appear in the cone.
Let’s name this counter the AppearCount. If we create a separate data structure to

store AppearCount then we would need a pointer between this new data structure

49

and the subtree data structure. Therefore the best place is to include AppearCount

as another field in the subtree data structure.

If AppearCount of a subtree is greater than 1, i.e. the subtree may appear more
than once in the cone, then we only want to draw it once. Moreover, we want to draw
the instance of the subtree which has root at the smallest level. Therefore we need to
compute and store this information somewhere. Let’s call this Smallest RootedLevel.
Also, storing SmallestRootedLevel alone is not sufficient since a subtree may be
rooted at its Smallest Rooted Level more than once, and therefore we may draw the
subtree a few times at this level. Therefore we also need to mark a subtree as having
been drawn once it is drawn the first time, so that subsequent occurrences of the
subtree at this level will not be drawn again. We will call this information Drawn.
Both Smallest RootedLevel and Drawn are placed inside the subtree data structure

for the same reason as discussed above.

Another field is needed to store in the subtree data structure. This field is named
Traversed, and is used to compute AppearCount of the subtree. We explain its

function on page 61.

To summarize, a subtree contains the following fields: NodeName, NeztSubtree,
Uses, AppearCount, Smallest RootedLevel, Traversed, and Drawn. Note that the
fields AppearCount and Smallest RootedLevel need to be computed before drawing

so that the Display Module can use their values to determine what to draw.

The linked list of edges represents the uses relationships between modules of a sub-
tree. Each element in the linked list points to a leaf node which represents a module
used by the root node of the subtree. The edge data structure contains a pointer
NeztEdge which points to the next element of the linked list, and a pointer Leaf

pointing to a leaf node of the subtree.

The leaf data structure needs to contain the NodeName which is the name of the
module used by the root of the subtree. It also contains a pointer to the subtree
node where the module itself is the root of this subtree. In case the module is a leaf

module, i.e. it does not use any other module, then this pointer will have the value

50

Nil. Let’s name this pointer Rooted At.

5.1.2 The Parser

The Parser takes the name of the main module of the application software, reads its
header file and then recursively reads header files of modules which the main module
uses to extract module relationships. The parser then stores the extracted module
relationships information using the data structures described above. The information

will then be passed to the Display Module for drawing.

The main function of the parser is BuildModuleRelationshipInfo which takes a
module name A, which is the name of the main module of the application software

when originally called from the main program, and performs the following tasks:

1. Calls the function IsInSubtreeList to check if the subtree rooted at module A
has been built. If it has, then BuildModuleRelationshipIn fo just returns.

2. Construct the subtree rooted at module A by invoking function ButldSubtree.

3. Append the subtree of A just created to the linked list of subtrees by calling
function AppendToSubtreeList, if A is a non-leaf module.

4. For each edge E in the linked list of edges pointed to by Uses of the subtree of
A, do the following in this order:

(a) invoke the function itself, which is BuildModule RelationshipIn fo, pass-
ing in module name B stored in the leaf node pointed to by Lea f of edge
E to extract module relationships and build the information for the sub

system rooted at module B.

(b) set the pointer RootedAt of the leaf node B of the subtree of A to point

to the subtree rooted at module B.

The implementation of function IsInSubtreeList is straightforward. Starting from
the first element, the function traverses the linked list of subtrees to find a match if

one exists, and returns the result.

51

The function BuildSubtree is a little bit more complicated. The function takes the
name of a module, and opens the header file H of the module for reading. It then
reads every line in the header file, parses the line looking for a header file which is
included in header file H. If the module is a non-leaf module, the function allocates a
subtree node for it, and for every header file included in H, it allocates an edge for it
to be part of the linked list of edges and the corresponding Lea f node. If the module
is a leaf module then nothing is created. However, the function still has to read and

parse the header file H to determine whether the module uses any other modules.

The function AppendToSubtreeList builds the linked list of subtrees, i.e. the linked
list of non-leaf modules, by appending the subtree being passed in to the function.
At first, if the linked list is empty then the function creates it with the first element

to be the subtree passed in.

5.1.3 The Display Module

The Display Module takes in module relationships information inferred and built by

the parser, uses this information to construct and draw the corresponding cone tree.

The decision to use PEX to display structure was made at an early stage in the
design of System Visualizer. PEX is a 3D extension of the X window system. The
implementation of the display part is tightly coupled with the 3D library package be-
ing used, which is PEXIlib in our case. Therefore in describing the implementation, we

need to discuss important characteristics of PEX which are used by System Visualizer.

In PEXIib, there are two modes of drawing. The first mode is the immediate-mode.
In this mode, we specify the picture to be drawn and then draw the picture. After
being drawn, since the information of how to draw the picture is not stored anywhere,
the information is lost. Therefore every time we want to redraw the picture, we need
to respecify it, and this will increase real time execution. This mode is clearly not
suitable for our application. System Visualizer needs to keep changing the way the
picture looks depending on the user’s needs and needs to redraw the picture many

times.

52

Another mode of drawing in PEX is to use PEX Structures. The application can
specify how it wants to draw the picture, and store this information in PEX struc-
ture. Later on, the application can ask PEX to draw the picture using the information
specified in the PEX structure. The application then can change some characteris-
tics of the picture by just changing some information stored in the structure without
having to respecify the whole picture again. The Display Module uses this mode to

perform its drawing task.

The main task of the Display Module is therefore to create a PEX structure and
build the information of how to draw the cone tree using the module relationships
information, and store the information into the PEX structure. BuildConeStructure
is the main function of the Display Module. It uses the linked list of subtrees, and

performs the following tasks:
1. Invoke the PEX function PEXCreateStructure to create a PEX structure.

2. Invoke PEXSetViewlndex to tell PEX to use the view which has been defined
earlier in the main() function of System Visualizer during initialization code.

This will be discussed in greater detail later.

3. Call function ComputeSmallest Rooted Level to compute Smallest Rooted Level
for all subtrees to be displayed in the cone.

4. Call function Compute AppearCount to compute AppearCount for all subtrees
to be displayed in the cone.

Let’s recall that we need to compute values for Smallest RootedLevel and
AppearCount prior to drawing, so that the drawing process can use these values
to decide how to draw. The functions to compute these values will be discussed
shortly after.

5. Call BuildSubconeStructure to recursively build all subcones of the cone tree
to be drawn and store this information into the PEX structure, starting at the
first subcone pointed to by CurrentConeRoot, and starting at CurrentLevel
to be 0.

53

CurrentConeRoot is a pointer to a subtree in the subtree linked list. This
subtree has the root which is also the root of the entire cone tree to be drawn.
Originally, when System Visualizer is started up, CurrentConeRoot points to
the first subtree in the linked list, which is rooted at the main module of the

software application.

We also need to specify that we want to move the first subcone to its
CorrectSubconeLocation as (0,0,0) in the XYZ coordinate.

Let us have a few words to discuss the use of CorrectSubconeLocation. Every sub-
cone we draw has the root sphere centered at the origin. This is to make our drawing
algorithm simple. However, only the root sphere of the entire cone tree to be vi-
sualized is centered at the origin. Therefore, each time BuildSubconeStructure is
invoked to draw a subcone, we need to tell the function to move the subcone to
CorrectSubconeLocation. Since the first time BuildSubconeStructure is invoked,
the function draws the subcone having the root sphere which is also the root of the

entire cone tree, CorrectSubconeLocation is specified to be the origin.

ButldSubconeStructure is a recursive function and does most of the work for the
Display Module. It takes in mainly CurrentSubconeRoot, a pointer to a subtree in
the subtree linked list. Each time the function executes, it draws a subcone whose root
is the root of the subtree pointed to by CurrentSubconeRoot. CurrentSubconeRoot
is initially set to CurrentConeRoot when BuildSubconeStructure is called from
BuildConeStructure. This means that the first subcone to be drawn has the root
sphere which is also the root of the entire cone tree. The function BuildSubconeStruc-

ture performs the following tasks:

1. If Smallest RootedLevel of subtree A pointed to by CurrentSubconeRoot is
smaller than CurrentLevel then return. This means that during drawing, we
encounter a subtree at a level which is greater than its smallest rooted level,

therefore we do not want to draw the subtree.

2. If Drawn of subtree A is true then return. This means that we have encountered
a subtree at its smallest rooted level more than once, and the subtree has been

drawn previously.

54

3. Set Drawn of subtree A to be true, since we are going to draw it.

4. Compute @ for each sphere representing a module used by module A which is
the root of subtree A. As we noted from the design that r and ¢ are fixed and

need not be computed.

5. Draw sphere representing module A at the origin. The color of the sphere is
determined by AppearCount of subtree A, i.e. if AppearCount is greater than

1 then it is red, otherwise it is yellow.
6. Move sphere A to CorrectSubconeLocation.
7. For each module X used by module A, do the following:

(a) Draw a sphere for X at the origin. The color of the sphere depends on
whether or not X is a leaf module. If it is a leaf module, it is colored
blue. If it is not a leaf, its color is determined by AppearCount of its own

subtree.
(b) Using 6, ¢ and r of X, compute its location L in the XYZ coordinate.
(c) Move the sphere to the new location L + CorrectSubconeLocation.

(d) Draw a line connecting sphere of A and sphere of X using the method
described in Section 4.3.3, using ¢ and @ of X. This causes the line to

rotate properly.

(e) Move the line to the new location L + CorrectSubconeLocation.
8. If CurrentLevel is smaller than MazLevelToDraw then do the following:

(a) Increase CurrentLevel by 1.

(b) For each module X used by A, if it represents a non-leaf module, i.e.
Rooted At pointer of Lea f X points to a subtree node in the subtree linked
list, then set CurrentSubconeRoot to RootedAt. This is to prepare so that
the next time BuildSubconeStructure is called, it will draw the subcone
rooted at X.

(c) Using 8, ¢ and r of X, compute its location in the XYZ coordinate and
add this to CorrectSubconeLocation. This new value of CorrectSubcone-
Location will be used by BuildSubconeStructure to move subcone X to

its proper position.

39

(d) Recursively invoke BuildSubconeStructure to draw subcone X.

Note that MazLevelToDraw, as the name suggests, is the maximum number

of levels the cone tree is to be drawn. By default it is set to 3.

A few things should be mentioned in the algorithm of BuildSubconeStructure. In the
function, we construct information of how to draw the cone tree in the PEX structure
created by BuildConeStructure, and later the structure will be used to draw. In the
algorithm, we need to rotate the line connecting the root sphere and its leaf sphere.
In PEXIlib, we can call function PEXrotate consecutively two times, the first one to
rotate it through an angle ¢ downwards, the second one to rotate it through an angle
6 rightwards. To move the spheres and lines to their proper position, we can call PEX

function PEXSetLocalTransform.

There is one important characteristic in 3D visualization which we need to discuss
here. In three dimensional space, when parts of two objects overlap, the part of the

object which stays behind is obscured. Consider the follxving figure:

Figure 11: Sphere B in front of sphere A

In Figure 11, sphere B seems to appear in front of sphere A. This is because the
line connecting the 2 sphere is obscured by sphere B, meaning that the line is behind
sphere B. Also, since the line is not obscured by sphere A, the line seems to appear

before sphere A.

In three dimensional space, for the same picture, if the hidden parts are different,

then the resulting pictures will appear very different. Let us look at the picture as in

56

in Figure 11, however the hidden portions are different as in the following figure:

Figure 12: Sphere B is behind sphere A

This time, sphere B seems to appear behind sphere A. This is because the line is
obscured by sphere A which results in the line being behind sphere A. And since the
line is not obscured by sphere B, the line appears in front of sphere B.

This three dimensional characteristic is called Hidden Line And Hidden Surface Re-
moval, or HLHSR for short, in PEX. As we can see, HLHSR is very important. When
a 3D picture is drawn using a wrong HLHSR, this will mislead the user to interpret
the picture differently.

HLHSR can be accomplished by drawing the object which stays behind before draw-
ing the object which is in front. The result of this is that the in-front object, since it
is drawn after, will obscure the object which is behind. Therefore, the order in which

objects are drawn is very important for HLHSR.

When a PEX server supports HLHSR, the order in which an application asks PEX
to draw is not important. For example, if object A is in front of object B, even if an
application asks PEX to draw A before asking PEX to draw B, PEX will still take
care of HLHSR properly since it knows which object is before which object by their
locations in the XYZ coordinate. This relieves the application of having to worry

about the order in which it must ask PEX server to draw objects in order to have a
proper HLHSR 3D image.

Unfortunately, not all PEX servers support HLHSR mode. In particular, the PEX

57

server where System Visualizer was developed does not support HLHSR. Therefore,
the tool must take care of the order it asks PEX server to draw objects. From the
analysis of a simple subcone, we know that leaf spheres Xs whose 8 is between 90
and 270 degrees lie after leaf spheres Ys whose 8 is less than 90 or greater than 270
degrees. Therefore leaf spheres Xs need to be drawn before leaf spheres Ys. Also, the
lines connecting leaf spheres Xs and the root sphere lie before Xs. Therefore these
lines must be drawn after Xs. However, the lines connecting leaf spheres Ys and
the root sphere are behind Ys, so they must be drawn before drawing leaf spheres
Ys. The root sphere can be the last thing to draw since we look at the cone from
top down. The code which actually implements the function BuildSubconeStructure
rearranges steps 5, 6, and 7 of the algorithm for BuildSubconeStructure taking into

account the above analysis.

Also, since we look at the cone tree from top down, subcones which lie below will
appear after subcones which stay above. Therefore, lower subcones need to be drawn
before higher subcones. As we can see from the algorithm of BuildSubconeStructure,
step 8 prepares and recursively invokes the function itself to draw subcones below the
subcone the function is drawing. So the actual code of BuildSubconeStructure moves
step 8 before step 4 so that the function can draw lower subcones before drawing the

higher ones.

The function ComputeSmallest RootedLevel takes a pointer to subtree A and tra-
verses subtree A, and recursively traverses all subtrees under subtree A which would
appear in the cone tree to be drawn, to compute Smallest RootedLevel for each
subtree. Originally, when the function is called from BuildConeStructure, A is the
subtree which is the root of the entire cone tree to be displayed. The function is imple-

mented as follows, starting at CurrentLevel of 0, and stopping at Maz LevelToDraw:

1. If SmallestRootedLevel of A is greater CurrentLevel then set it to be Cur-
rentLevel. Originally, when subtree A is allocated, SmallestRootedLevel is
given a large value, e.g. 999.

2. If CurrentLevel is less than Maz LevelToDraw then for each non-leaf module
X used by A, do the following;:

58

(a) Increment CurrentLevel by 1.

(b) Recursively invoke ComputeSmallest Rooted Level, passing in the pointer
to subtree X.

It is fairly easy to compute Smallest RootedLevel for a subtree. As the function
traverses, if it encounters a subtree with Smallest Rooted Level greater than the level
it is at, then it resets Smallest Rooted Level to the current level. It is very difficult to

compute AppearCount for a subtree. Let;s consider the following example:

Figure 13: An example of a tree structure with duplicated subtrees

Because of the recursive nature of the algorithm, we will encounter subtree C at
level 2 first. Therefore, AppearCount of C will be 1, and as we go down to subtree E,
AppearCount of E will be 1. Now, as we traverse along, we will hit subtree C again
at level 1. This time, AppearCount of C is incremented to become 2, and as we go

down to subtree E, AppearCount of E will be 2.
However, the Display Module only draws the subtree C rooted at the smaller level

which is at level 1. The cone tree which is drawn by the Display Module will look
like this:

59

Figure 14: The visualization of the tree structure with duplicated subtrees

Since, the AppearCount of E is 2, E will be colored red, which is not correct

because E appears only once in the cone tree.

What we should have done is that when we reach subtree C rooted at level 2 the
first time, we should still increment AppearCount for C, but we should not have tra-
versed down subtree C, since it is not rooted at its Smallest RootedLevel yet. Now,
when we reach subtree C at level 1 the second time, we will increment AppearCount
for C, and this time since subtree C is at its Smallest RootedLevel, we will traverse
down subtree C. When subtree E is reached, AppearCount of E is incremented the
first time, so it will have a value of 1. Therefore E will not be colored red. One thing
which can be noted is that Smallest RootedLevel for each subtree must be computed
before AppearCount can be computed, since the algorithm to compute AppearCount

uses Smallest RootedLevel to decide whether it should traverse down a subtree.

There is another potential problem. A subtree may be rooted at its SmallestRoot-
edLevel twice as in Figure 15:

60

Figure 15: A subtree is rooted at its smallest level twice

If we have traversed subtree C at its Smallest Rooted Level once, when we reach
subtree C at this level the second time, we should not traverse it again. Therefore
we need to set a flag once we have traversed a subtree the first time. This is why
Traversed was introduced in the data structures we discussed earlier. Traversed is

initially set to false when a subtree is created.

The function ComputeAppearCount takes a pointer to subtree A and traverses sub-
tree A, and recursively traverses all subtrees under subtree A which would appear in
the cone tree to be drawn, to compute AppearCount for each subtree. Originally,
when the function is called from BuildConeStructure, A is the subtree which is the
root of the entire cone tree to be displayed. The function is implemented as follows,

starting at CurrentLevel of 0, and stopping at MazLevelToDraw:
1. Increment AppearCount of A by 1.
2. If CurrentLevel is equal to Maz LevelToDraw then stop.

3. If Smallest RootedLevel of A is equal to CurrentLevel, which means that we
are reaching subtree A at its Smallest Rooted Level, and Traversed of A is false,
do the following;:

(a) Set Traversed of A to true.

(b) Increment CurrentLevel by 1.

61

(c) For each non-leaf module X used by A, recursively invoke ComputeAp-

pearCount, passing in the pointer to subtree X.

5.1.4 Viewing Transformations

System Visualizer needs to allow the user to look at the cone tree, or the model,
in different directions, i.e. draw the model using different views. PEXlib provides
utilities to an application so that the application can define the view it wants to use

to draw the picture.

It is easy to explain loosely the factors that go into taking a picture with a cam-
era: stand back far enough to get the whole scene, point the camera at the thing you
want in the middle of the picture, hold the camera either vertically or horizontally.
However, it is not easy to reduce these factors to mathematically precise values. Pre-
cise values are what we need in order to describe the view to PEXIib. In the following
paragraphs, we are describing what are the relevant factors needed by the tool to de-
fine in describing the view it desires to PEXlib.

In the XYZ coordinate, we need to select a point. Wherever we place the cam-
era, we will aim it directly at this point, which becomes, so to speak, the direction of
our gaze. The point is called the view reference point in PEXIib. The view reference

point is by default located at the origin.

Next, we need to define how we shall tilt, or rotate, the camera around the axis
provided by the direction of our gaze. Depending on this rotation, the resulting view
will appear ‘normal’, sideways, upside down, or at some strange angle. What we are
defining, in effect, is which direction is up. System Visualizer uses the Y axis to be

the view up vector.

The direction of gaze is called the view plane normal in PEXIib. It is the view
plane normal the tool needs to change in order to allow the user to look at the cone
tree in different directions. By default, the view plane normal is defined to be the (G,

0, 1) vector, which is the direction along the Z axis.

62

Now, we need to define how we want 3D objects to be projected to 2D images.
First we need to define the plane onto which the 3D model is projected. This plane
is called the view plane in PEXlib, and is defined by our tool to be the XY plane.

In PEXIib, there are two kinds of projections: parallel and perspective projections.
In the case of a parallel projection, the projecting lines are parallel to the direction
of gaze. As a result of this, all 3D objects of the same size will be projected to have
the same size onto the view plane. In a perspective projection, the point where we
place the camera is important. In PEXIib, this point is called the projection reference
point. In the case of a perspective projection, the projection reference point is the
point from which all 3D objects are projected onto the view plane. If the projection
reference point is close enough to the 3D model, then for 3D objects of the same size,
the ones which appear closer to the camera will be projected to be larger, and the
ones which appear farther to the camera is projected to be smaller. System Visualizer
uses the perspective projection and places the projection reference point at (0,0,1)

to satisfy its requirements.

PEX has several different kinds of table, one of which is the view table. The view
table has several entries, each entry contains definitions of a view. A view entry is
accessed by indexing into the view table, using the proper view index of the entry.
View indexes are numbered, starting at 0, going up 1, 2 ... System Visualizer defines
the view for its cone tree model, and stores the view into a fixed entry in the view ta-
ble. The function BuildConeStructure calls PEXSetViewIndex to specify that when
drawing the picture using the PEX structure, it should use the view whose definition

is stored in this view entry.

5.1.5 Integration of the Parser and the Display Module

Now, we will put everything together to construct the implementation of System Vi-

sualizer. All this is done in the main() function of our tool.

The first thing we need to do is to setup PEX to create a drawing window among
other things. This is a standard step in all PEXIib programs, and we will not discuss

63

it further here.

Now, we initialize MazLevelToDraw to its default value, which is 3. Recall that
MazLevelToDraw is used by the function BuildSubconeStructure to decide when
to stop drawing. Then we invoke the parser by calling BuildModuleRelationshipInfo

to infer and build module relationships of the application software.

We then utilize Motif to create a menu bar on top of the drawing window. Now we
create a pull down menu to sit on the menu bar, which contains six buttons labelled
‘Front view’, ‘Right view’, ‘Left view’, ‘Up-Front view’, ‘Up-Right view’, ‘Up-Left
view’, and specify SetView to be the callback function for these buttons. SetView
will be discussed later. As a matter of fact, the discussion of all callback functions

which are mentioned here will be deferred a little later.

Again, using Motif we create a pull down menu on the menu bar which contains
3 buttons labelled ‘1 level’, ‘2 level’, ‘3 level’, and assign function SetLevel to be the
callback function of these buttons.

Now, on the menu bar, we create four arrow buttons: right, left, up and down,
and specify RightArrow, LeftArrow, UpArrow and DownArrow to be callback

functions for these buttons respectively.

Next, we utilize Motif again to create a scrolled list which contains the names of
non-leaf modules, and specify NonLea f ModuleListCallback to be the callback func-

tion when a module name in the scrolled list is selected.

We then register an event handler ExzposeHandler for the expose event. This is
mainly needed to draw the cone tree the first time when the drawing window of the

tool appears on the screen.
Then we invoke the main function BuildConeStructure of the Display Module so

that it can construct the cone tree to be drawn and store the information in a PEX

structure for drawing.

64

Finally we define the default view to be used for drawing, with the view plane normal
to be (0, 0, 1) and store the view in a fixed entry of the PEX view table, as discussed
previously. Recall that step 2 of the algorithm for the function Bu:ldConeStructure
asks PEX to use this view when drawing the model. We then ready to go to the main

loop, and wait for user’s input.

Let us now discuss the implementation of each of the callback functions mentioned

above.

SetView sets the view plane normal to the appropriate value as specified in the
Design chapter depending on the button selected. It then redefines the view using
the new value of the view plane normal and redraw the cone tree using the updated
view, i.e. redraw the picture using the PEX structure storing the information on how
to draw the cone tree, and the structure is supposed to use the view stored in the

view entry which has just been updated.

SetLevel sets MazrLevelToDraw to the appropriate value depending on the but-
ton selected. Now, since the cone structure will change, the function destroys the
old PEX structure, and invokes BuildConeStructure again to contruct the new cone
structure and store the information into a new PEX structure. SetLevel then redraws

the cone using the new PEX structure.

The callback function RightArrow subtracts the X coordinate of the view normal
plane by a small number, say 0.1. This means that we are shifting the direction of
gaze a little to the left, causing the cone tree to be shifted a little bit to the right. The
function then redefines the view using this new value of the view plane normal, and
redraws the cone using the updated view. LeftArrow, UpArrow and DownArrow
do basically the same thing, The difference is that LeftArrow increments X coor-
dinate of the view normal plane by 0.1, causing the cone to be shifted a little bit
to the left, UpArrow decrements the Y coordinate of the view plane normal by 0.1,
causing the cone to be shifted a little bit up, and Down Arrow increments the Y coor-

dinate of the view plane normal by 0.1, causing the cone to be shifted a little bit down.

Figure 16 shows the changes to XYZ coordinate of the view plane normal with respect

65

to the arrow buttons.

Arrow Buttons X Y VA
right -0.1 unchanged | unchanged
left +0.1 unchanged | unchanged
up unchanged —0.1 unchanged
down unchanged +0.1 unchanged

Figure 16: Arrow buttons

NonLeafModuleListCallback traverses the subtree linked list looking for a match
of the module name selected, and sets CurrentConeRoot to point to the matched
subtree. Recall that CurrentConeRoot points to the subtree which is rooted at the
root of the entire cone tree to be drawn. Now, since the structure of the cone tree
will change, the function destroys the old PEX structure which contains information
about the old structure, and then invokes BuildConeStructure to rebuild the new

cone, and redraws the new cone tree.

EzposeHandler is called every time the drawing window is exposed. This means
that the first time when the drawing window is created and exposed on the screen,
EzposeHandler is called. The function is also called when the drawing window was
behind some other windows on the screen, but then selected to appear on top, or to
be exposed. EzposeHandler basically just redraws the picture using the information

stored in the PEX structure for the cone.

5.2 Problems

A few problems were encountered during the initial implementation of System Visu-
alizer. One of the problems was that a subtree appeared twice if it was rooted at the
same Smallest RootedLevel two times. This is why the field Drewn is introduced in
the subtree data structure. While drawing the cone, if System Visualizer encounters
a subtree at its Smallest RootedLevel, it first has to check Drawn to see whether the
subtree has been drawn. If it has, then the tool will not draw it again. Otherwise,

the tool will set Drawn to true for the subtree, then start drawing it.

66

Let us take a look back at Figure 14 on page 60 which shows the visualization drawn
by System Visualizer of the tree structure as shown in Figure 13 on page 59. Another
problem which was encountered was that node E in Figure 14 was colored red, which
means that E appears more than once in the cone. But this is not true, since E
was drawn only once by the tool as shown by Figure 14. This, as discussed earlier, is
because subtree C was duplicated as shown in the tree structure of Figure 13, and the

problem is solved by computing properly the value of AppearCount for each subtree.

An initial version of the tools drew all spheres to be of the same size, regardless
the locations of the spheres. This is incorrect in three dimensional visualization, and
made it harder to interpret the cone tree since the user has to try to analyze the
image to determine which sphere is closer and which spherc is farther. The problem
is solved by utilizing PEXIib, using the perspective projection and placing the pro-

jection reference point close to the model.

Another problem which was encountered was the HLHSR problem, because HLHSR
was not handled properly as we discussed earlier. Spheres which should have been
behind appeared in front. The problem was then fixed by rearranging the algorithm
of BuildSubconeStructure properly.

Also, the tool initially provided only six views of the model, namely straight on,
right, left, straight up, right up, and left up. It is clearly insufficient to look at the
model using only these six views. It then became clear that the tool needed to provide
the capability for the user to shift the model around, a little bit to the right, a little
bit to the left, a little bit up or a little bit down, until the model can be seen to its
best advantage. The Arrow Buttons were introduced to allow the tool to provide this

very powerful capability, using the view utilities of PEXIib, as discussed earlier.

5.3 Discussion of implementation

The implementation of the data structures was fairly easy. It was just a straight

mapping from the design. However, let us note that it was not easy to derive the

67

improved data structures from the original data structures. What was needed was
flat data structures which do not impose any depth and tree structure. Another dif-
ficulty was the introduction of the fields which are used by the Display Module to
draw the model, e.g. AppearCount, Smallest RootedLevel, etc. Even though these
fields are not part of the module relationships, they are needed to properly visualize

the information.

The parser was also not difficult to implement. All that we needed was to build the
recursive function BuildM odule RelationshipIn fo to analyze module relationships of
the application software and store the information for later use by the Display Module.

It was more difficult to visualize the module relationships on the screen. In order
to draw just a simple one level subcone, some analysis needed to be performed to
discover formulas to compute locations of each sphere and how to draw lines con-
necting these spheres. The implementation of this required moving spheres around
after originally having drawn them at the origin, and rotating the lines to their proper
positions. All this has to be done prior to actually drawing the subcone on the screen,
and the information has to be stored somewhere, since we can not actually draw a
sphere on the screen originally at the origin, and then move it to another location
later. PEXIib provides PEX structure to store information on how to draw an image
without actually drawing the image yet. It also provides powerful utilities to move

or rotate objects around.

Now, to draw a cone tree of several levels, the most difficult thing was to implement
properly a recursive function, namely function BuildSubconeStructure, to recursively
draw each subcone at a time from the origin, and then move the subcone to its proper

position.

Also, the viewing capabilities of PEXIlib had to be studied in depth in order to im-
plement the tool to provide the capabilities of shifting the model around, drawing
objects to have different sizes depending on whether the object is closer or farther
to our eyes, etc. But, once PEX Views was understood, the implementation of these

was fairly straight forward.

68

It is also worth mentioning that PEX can draw a complicated image rapidly, es-
pecially if the information of how to draw the image is already stored in a PEX
structure. When the user uses the arrow buttons to shift the cone tree around, all
System Visualizer does is to update the view definition which is used by the PEX
structure. It does not recompute the PEX structure. Therefore it is very fast to shift
the cone tree around using System Visualizer. Even if the tool has to recompute the
PEX structure, e.g. to redraw the cone tree to have a different number of levels, etc,

experiments show that PEX is also very fast.

69

Chapter 6

Discussion

6.1 Accomplishment of Design Goals

The goal of System Visualizer is to help a software engineer understand module
relationships within a software system quickly and efficiently. Specifically, the tool
will display module interconnections in three dimensional space as a cone tree. In

order to achieve this, the tool needs to be able to:
o infer the relationships of all modules of the system.

e display module relationships as a cone tree in three dimensional space, where
a sphere represents a module and a line connecting the two spheres represents

the uses relationship between the two modules.

The three dimensional display of module interconnections will help the user extract

module relationships of the system quickly and efficiently.

6.1.1 Module interconnections

System Visualizer extracts module relationships in a software system which was de-
veloped using the C programming language. In order to do this, the tool assumes that
each module has a .c file and an associated .h file. Moreover, if module A uses module
B, then the .h file of A includes the .h file of B. With these assumptions, the tool

recursively reads all the header files of the system to infer module interconnections.

70

These assumptions are very reasonable. Each module A developed in the C program-
ming language is associated with a .c file. Normally, module A has data structures,
and these data structures are defined in the associated .h file of module A. More-
over, A also defines its function prototypes, i.e. function declarations, in its .h file.
This is especially true if A was developed in ANSI C. When module B uses module
A, this means that B uses some data structures defined in A, and/or B calls func-
tions defined and implemented in A. If B uses data structures of A, then B must
include the header file of A. If B calls some functions of A, normally B also includes
the header file of A in its header file, especially if the system was developed in ANSI C.

Therefore, for well written software system developed in C, the tool will be able

to infer module relationships of the system very accurately.

There are, however, existing software systems developed in C which violate the as-
sumptions System Visualizer has made. For instance, module A of certain systems
calls some functions of module B, and yet module A does not include the header file
of B. In some systems, a module does not even have a header file. System Visualizer
does not work very well with these ill-written software systems. These systems would
need to be modified a little bit in order to use System Visualizer, i.e. each module
needs to have an associated .h file, and if module A uses module B, then the header
file of A needs to include the header file of B.

6.1.2 Three dimensional display

System Visualizer displays module interconnections of a software system in three di-
mensional space as a cone tree. Because of the limited space of the screen, System
Visualizer will display a cone tree up to three levels only. If the ‘uses’ relationships
of all modules in a system is less than or equal to three level deep, then the tool will
display the entire module interconnections of the system. If the depth of the ‘uses’
relationships of the system is greater than three, then the tool will still display the
cone tree only up to three levels. However, the user can select non-leaf modules at
level three, and the tool will re-display the cone tree, this time with the root of the
cone as the selected non-leaf module. Therefore, the tool can provide the user with

the capability to quickly extract all module interconnections of a system.

71

As an example to illustrate how a user can extract all module interconnections of

a system, consider Figure 17:

A

Figure 17: Image of more than three-level deep system

In Figure 17, the system has A as the main module. Non-leaf modules are A,
B, E, and G and they are colored differently from leaf modules. Since G is colored
differently from leaf modules, the user knows that it is a non-leaf module and he can

select module G at level three to extract the rest of module interconnections of the

system, as shown in Figure 18:

72

Figure 18: Module interconnections display starting at module G

Because of the limitation of the available space of the screen, the tool cannot
provide the user with a cone tree which represents all modules of a software system
if the uses relationships among the modules of the system is deeper than three levels.
However, the tool provides the user with the capability to extract all module rela-

tionships within a system, as we have demonstrated with the simple example above.

Normally, a software engineer will need to change or enhance a small part of the
system only. In this case, the engineer would want to study the module relationships
starting at a specific module M, and down a few levels only. Then the engineer would
just need to select module M, and the tool will display exactly what the engineer
would like to study.

6.2 Contribution of System Visualizer to Soft-

ware Engineering

A software engineer new to a software system needs to understand the system in
order to maintain and enhance the system. One of the very important tasks for the
engineer to understand the system is to understand the module relationships of the

system.

73

It would be a tedious task for the engineer to try to understand module intercon-
nections without the help of a software engineering tool. The engineer would have to
manually read the header file of the main module M to find out the modules used by
M. The engineer would then probably need to plot down this information on a piece
of paper in some form. Then the engineer needs to repeat the task for every module
which is used by module M.

Traditional tools do help a software engineer to accomplish the task in some form.
However, these tools display the information in two dimensional space. There are
limitations associated with two dimensional display, such as space, i.e. there is not

enough room for many nodes on the screen.

System Visualizer provides three dimensional display of module interconnections.
There are advantages associated with three dimensional displays over the two di-
mensional approach. One such advantage is space. With the same window space,
three dimensional images can display a lot more nodes than the two dimensional im-
ages. Moreover, since in three dimensional space, we can display objects closer to the
viewer’s eyes larger, and objects farther from the viewer smaller, a 3D image can be

understood better.

There is also a very powerful capability associated with three dimensional space.
It is the capability to rotate a 3D image. As a result, a 3D image may look confusing
from a certain direction. But if the image is rotated, it may look very clear from

another direction.

As an example to illustrate the usefulness of this capability, consider the image as

shown in Figure 19:

74

Figure 19: A cluttered 3D image

In Figure 19, it is hard to extract modules which are used by module A. Nodes
B and C overlap each other. Nodes E and F also overlap each other. However, if we

rotate the image a little bit, the result is as shown in Figure 20:

A

Figure 20: The cluttered 3D image which has been rotated

Figure 20 is a rotated image of Figure 19. In Figure 20, the image is very clear.
The user can easily see that module A uses modules B, C, D, E, and F.

75

The capability of being able to rotate an image in three dimensional space can help

the user see a part of the system very clearly.

6.3 Capacity of System Visualizer

Let us first try to see that for a one-level cone tree, how many leaf spheres the cone

tree can have before the screen gets too crowded to be useful.

Consider a one-level cone tree as shown in Figure 21:

D1 C1

Figure 21: A one-level cone tree

In Figure 21, the image has been rotated so that module AQ is in the center. All
modules which are used by AQ are placed around module A0. As we can see from
Figure 21, A0 can have many more nodes around it and the image will still look very
clear. From this examplé, it is reasonable to say that when the cone tree of one-level
is to be displayed, the tool can display a very large number of leaf spheres and the
image will still look clear. This means that even for a module which uses many other
modules, the tool will be able to display the information very clearly. This capability

is a lot more powerful than any 2D images generated by traditional tools.

76

For a cone tree of two or three levels, if there is a very large number of modules
to be displayed at each level, then probably we will not be able to see the whole cone
tree very clearly. However, since in three dimensional space an image can always be
rotated, the user will be able to rotate the cone tree so that the part of the system

which the user is interested in can be shown very clearly.

Let us consider an image displayed by the tool as shown in Figure 22:

L draw cone

Figure 22: A three-level cone tree

17

Figure 22 is an image of a cone tree with three levels. The cone tree has a number
of modules, and it has been rotated so that the whole image looks very clear. As we
can see from the image, there is still room for a lot more nodes without cluttering

the image.

6.4 Cyclic dependencies

Cyclic dependencies between two modules A and B, in its simplest form, occurs when
module A directly uses module B and module B directly uses module A. This means
that A either calls a function defined and implemenmted in B or A uses some data
structures defined in B. At the same time, B also either calls a function defined and

implemenmted in A or B uses some data structures defined in A.

In a more general form, there is a cyclic dependency between modules A and B
if A uses B1, B1, uses B2, ..., Bn uses B and B uses Al, Al uses A2, ..., An uses A.

Consider a simple example. Module A uses modules B and C. Module B uses mod-
ules C and D. Module C uses modules B and E. Here we have a cyclic dependency
between modules B and C since B uses C and C uses B. How can we visualize the

module relationships of this simple system?

One way of visualizing this system is as illustrated in Figure 23

78

Figure 23: An example of visualizing cyclic dependencies

There are two problems with the way to solve cyclic dependencies as shown in
Figure 23. The first problem is that it violates the tree structure of the system. With
respect to the subtree rooted at B, B is the root and C is a leaf. However, with
respect to the subtree rooted at C, C is the root and B is a leaf. The second problem

is that the visualization can easily become Aclutt;ered. Consider Figure 24:

Figure 24: A cluttered visualization of cyclic dependencies

As we can see from Figure 24, with the introduction of node F in between B and
C, the image becomes cluttered already. And this is a very simple image. Imagine
how confusing an image is going to be when the system becomes more complex with

more cyclic dependencies.

79

System Visualizer solves the problem usini the approach as illustrated by Figure 25:

Figure 25: An uncluttered visualization of cyclic dependencies

In Figure 25, since module B uses C and D, we have a subtree rooted at B which
has two leaf nodes C and D. Also since module C uses B and E, subtree rooted at
C has its own leaf nodes B and E. However, since nodes B and C appear twice, they

are painted with different colors.

System Visualizer represents different types of modules using spheres of different
colors. Modules which do not use any other module of the application software sys-
tem are represented as blue spheres. These are leaf modules. Modules which use some
other modules of the system and only appear once in the cone tree are represented
as yellow spheres. These are non-leaf modules. Non-leaf modules which appear more
than once in the cone tree are represented as red spheres. When there is a cyclic
dependency between two modules, these modules are represented as red spheres since

they are non-leaf modules which appear more than once in the cone tree.

6.5 User Interface Facilities

Let us take a look back at Figure 22, which is an image generated by System Visu-
alizer. On the left of the bar on the top of the window, there is a ‘Views’ button.
Clicking on this button results in a scrolled down menu which has the following en-

tries: straight, right, left, straight up, right up, left up. Please refer back to section

80

4.3.3 for the use of each of these entry. If the user select one of these entries in the
scrolled down menu, the tool will re-draw the image as if the image is being looked
at from the corresponding direction. Using the ‘Views’ scrolled down menu, the user
can quickly select the direction from which the image looks best among the other 5
directions. Now, if the image still looks not completely clear, the user can use the
arrow buttons, which will be discussed shortly, to rotate the image until it becomes

completely clear.

The ‘Levels’ button next to the ‘Views’ button is another scrolled down menu. If
the ‘Levels’ button is selected, a scrolled down menu will appear. There are 3 entries
in the scrolled down menu: 1-level, 2-level, 3-level. When the user select one of these
entry, say 2-level, the tool will re-display the image which is a cone tree of 2 levels.
By default, the tool displays the cone tree of 3 levels. But if the 3-level cone tree has
too many nodes, and therefore the image may look confusing, then the user can use
the ‘Levels’ button to re-display the cone tree with less levels so that the image looks
cleaner. As discussed in section 6.3, a cone tree of 1 level can have many leaf nodes,

and the image will still look very clear.

The next four buttons on the menu bar are arrow buttons. These buttons are used to
rotate the image around, e.g. a little bit up, a little bit down, a little bit to the right,
a little bit to the left, as discussed in sections 4.3.3 and 5.1.5, until the image appears
clear. These arrow buttons are by far the most useful user interface facility provided
by System Visualizer. With the use of the arrow buttons, the user can rotate a very
complicated 3D image until the part of the system which the user is interested in
appears very clear. These arrow buttons show a clear advantage of 3D visualization

over the traditional 2D visualization.

The list at the most right corner of the menu bar is a scrolled list where each entry is
the name of a non-leaf modules, i.e. a module which uses some other modules of the
software system being visualized by the tool. System Visualizer by default displays a
cone tree of 3 levels where the root node of the cone tree represents the main module
of the system. However, the module relationships of the system may be deeper than
3 levels. In this case, there will be non-leaf modules at level 3. The user can recognize

whether a node is a leaf or non-leaf module by its color. A sphere which represents a

81

leaf module is colored blue. Therefore any sphere which is either colored yellow or red
represents a non-leaf module. The user then can scroll up or down the scrolled list to
find a corresponding entry, and select the entry. Upon an entry is selected, the tool
will re-display the cone tree which has root to be the non-leaf module selected. With
the use of the scrolled list, the user can find out module relationships of all modules

of a system, even when the system has module relationships which are very deep.

82

Chapter 7

Future Research and Conclusions

7.1 Possible Future Enhancements

There are a number of possible enhancements which can be made to System Visual-

izer:

1. Currently System Visualizer displays a cone tree of at most three levels. This is
because of the limited space of a window. Therefore, for an application software
which has the depth of the ‘uses’ relationships between modules greater than
three, the tool will only display a partial ‘uses’ relationships information. This

does not provide the user with an overview of the system structure.

One possible enhancement is to modify the tool to display the whole system
structure, even if the cone tree may contain many levels. The thesis already
provides an algorithm to display a cone tree of many levels. The only thing
which needs to be changed is to set MazLevelToDraw appropriately. However,
the important thing which has to be looked at is to scale the cone tree properly

so that the whole system structure can fit into the window space.

Since the overview of the system structure can be very crowded and confus-
ing, the size of the spheres can be very small, the tool needs to be able to allow
the user to display the cone tree of a desired number of levels, e.g. 3 levels, with
a selected node as the root of the cone tree. This will allow the user to look

at a part of the system very clearly. This is the capability the tool currently

83

provides.

2. Another possible enhacement is to allow the user to exclude certain nodes from
the cone tree to be displayed. As an example to illustrate this, consider a simple

cone tree as shown in Figure 26:

Figure 26: A whole cone tree with no nodes excluded

Suppose that the user is not interested in the subcone rooted at B. Therefore
displaying the cone with the subcone rooted at B is really useless to the user.
With the current implementation of the tool, the whole cone tree will be dis-
played. Now, the enhancement will allow the user to select node B, and to
exclude the subcone rooted at B. The result will be the cone tree as shown in

Figure 27:

84

Figure 27: A whole cone tree with nodes B and D excluded

Sometimes, even a part of the system may contain many nodes. As a result, the
cone tree representing this part of the system may be very crowded. In three
dimensional space, the cone tree can be rotated so that at least a portion of the
cone tree can be seen very clearly. However, the whole cone tree may not be
seen very clearly. It happens often that the user is only interested in looking
at a number of nodes of the cone tree. Other nodes of the cone may not be
of interests to the user. Therefore the ability to display a cone tree, excluding
uninteresting nodes, together with the ability to rotate a 3D image may result

in a very clear cone tree which contains only interested nodes to the user.

. Currently, the tool extracts module relationships by reading header files. The
tool has made the assumption that each module has a “.c’ file and a correspond-
ing °.h’ file, and that when a module A uses another module B, the header file
of A includes the header file of B. As discussed in Chapter 6, there are existing

software applications which violate the assumption the tool has made.

Therefore, the tool can be enhanced to extract module relationships of a soft-
ware application without making the above assumption. In order to do this, for
example we want to find all modules which are used by module A, we need to

perform two tasks:

85

(a) For every function which is called in module A, we have to find the module
B which defines and implements the function. B is then a module which
is used by A.

(b) For every data structure which is used in A, we need to find the module C
which defines the data structure. C is again a module which is used by A.

Clearly, it would be necessary to develop efficient scanning algorithms to make
such an approach feasible.

. System Visualizer can also be enhanced to extract function calling relationships.
Given function A, the tool would then find all functions which are invoked by
A. The tool can do this by just reading the implementation of A and extracing
all functions invoked by A. Now, for every function B called by A, the tool will
need to find the module which contains the implementation of B. The tool then
can read the implementation of B to extract all functions called by B. The tool
will need to do this recursively to build the function calling relationships which

has the root as function A.

The Display Module of System Visualizer is completely reused to display the
cone tree which represents function relationships. The only thing we need to
take care of is to build the calling relationships, and to pass this information

using the data structures the Display Module expects.

There is one potential problem we will need to look at though. A module
does not use itself, but a function can call itself. Currently, System Visualizer
does not take care of this. In order to allow the tool to display function calling
relationships, we have to enhanced the tool to take care of recursive functions.
The change for this is however very minimal. If a function A calls itself, in-
stead of displaying two spheres representing A connected by a line, we may just
display one sphere representing A. However, we need to draw sphere A using

another color.

. System Visualizer can also be enhanced to extract class hierarchy of a given
class A in a software system developed using the C++ programming language.

For a given class A, we can search for all subclasses of A by looking in each

86

module of the system for classes which inherit from A. Now, for each subclass
B of A, we can recursively find all subclasses of B. Using this method, we can
build the class hierarchy of A.

Again, the Display Module of the tool does not need to be changed in order to
display the cone tree representing a class hierarchy. The class hierarchy infor-
mation just needs to be stored using the data structures expected by the Display
Module, and the Display Module will be able to display the corresponding cone

tree representing the class hierarchy.

. System Visualizer can be integrated with other software tools such as a text
editor. A text editor is used to edit source files of a software application. One
possible way for a text editor to work with System Visualizer is to enhance the
text editor to have an additional button on the menu bar on top of the text
editor window. When the user edits a module A of a software application, if the
user clicks on the button, then the text editor can start up System Visualizer
to build the module relationships with A as the root, and to display the cone

tree representing the corresponding module relationships.

A text editor will also work very well if System Visualizer is enhanced to be
able to extract function calling relationships or class hierarchy, and to display
the corresponding cone tree. When the user edits a source file of an applica-
tion developed using the C or C++ programming language, if the user selects
a function or a class, the text editor could then start up System Visualizer to

build the information and display the corresponding cone tree.

7.2 Conclusions

As discussed in Chapter 2, visualization is extremely helpful in countless areas, in-

cluding software engineering. However, research on visualization in helping the un-

derstanding of existing software systems or in helping to speed up the development of

a software system which is free of errors is still in its very early stage. Moreover, the

traditional research on software visualization concentrated mainly on two dimensional

visualization which has its limitations.

87

The thesis serves as an initial research in the field of three dimensional software
visualization. Understanding the module structure of an existing software applica-
tion is a typical problem in software engineering. The thesis has tried to solve this

problem by using three dimensional display of the information.

The thesis has succeeded to solve the problem in the following points:

1. An algorithm to extract module structure of a software application developed
in C or C++ is provided. The algorithm was developed based on the assump-
tion that each module has a ‘.c’ file (or .C file in the case of C++) and an
associated ‘.h’ file. Moreover, if a module A uses another module B, then A.h

will include B.h. The assumption is very reasonable for well-written application.

Although the algorithm was developed to extract module relationships infor-
mation of an application only, it can easily be enhanced to extract other types

of information such as function calling relationships or class hierarchy.

2. The thesis has provided an algorithm to display the system structure in three
dimensional space as a cone tree. Even though System Visualizer only displays
a cone tree of maximum three levels, the algorithm can be used to display a

cone tree of any number of levels.

3. A generic interface to the Display Module of System Visualizer was developed
through the introduction of the data structures expected by the Display Module.
With this generic interface, the tool can easily be expanded to display other
types of information without having to change the Display Module at all.

4. Using PEXIib, a 3D extension of the X window system, in its implementation,

the thesis has shown some outstanding characteristics of three dimensional dis-

play.
One of these outstanding characteristics is the ability to rotate a 3D image.

As a result, a very crowded cone tree with many nodes can be rotated until the

whole cone or the interested portion of the cone becomes clear.

88

Another useful characteristic associated with three dimensional display is that
objects which are closer to our eyes appear larger and objects which are farther
from the eyes appear smaller. Also, objects in three dimensional space may
overlap. If an object A is behind object B, and A and B overlap, then the
portion of A which overlaps with B is hidden in three dimensional space. The

result of these is a much more comprehensive cone tree.

The thesis has also shown that for the same window space, many more objects
can be displayed in three dimensional space as opposed to in two dimensional

space.
There are however a few limitations associated with System Visualizer:

1. The tool fails to extract module relationships information for software applica-
tions which violate the assumptions the tool has made, i.e. each module has a
¢.c’ file and an associated ‘.h’ file, and if module A uses module B then A.h in-
cludes B.h. Even though this is a good assumption for well written application,

many existing software systems violate this assumption.

2. The tool fails to provide an Overview of the whole system structure. However,
as mentioned above, the algorithm to display a cone tree can be used to provide
an Overview of the whole system structure. The only problem which needs to

be looked at is how to scale the cone tree accordingly.

In summary, despite of some limitations associated with System Visualizer, the thesis

has provided an initial research in the field of three dimensional software visualization.

89

Bibliography

[1]

[2]

(3]

[4]

[5]

[6]

[7]
[8]
[9]

[10]

Jacqueline M. Antis, Stephen G. Eick, and John D. Pyrce. Visualizing the
structure of large relational databases. IEEE Software, 13(1):72-79, January
1996.

Thomas Ball and Stephen G. Eick. Software visualization in the large. IFEE
Computer, 29(4):33—42, April 1996.

Richard Mark Friedhoff and William Benzon. The Second Computer Revolution:
Visualization. W.H. Freeman, 1989.

Andrew J. Hanson, Tamara Munzner, and George Francis. Interactive methods
for visualizable geometry. I[EEE Computer, 27(7):73-83, July 1994.

Dean F. Jerding and John T. Stasko. Using visualization to foster object-oriented
program understanding. Georgia Institue of Technology, Technical Report GIT-
GVU-94-83, July 1994.

John J. Shilling and John T. Stasko. Using animation to design, document and
trace object-oriented systems. Georgia Institue of Technology, Technical Report
GIT-GVU-92-12, June 1992.

Nan C. Shu. Visual Programming. Van Norstrand Reinhold, 1988.

Ian Spence. Visual psychophysics of simple graphical elements. Journal of Ezper-
imental Psychology: Human Perception and Performance, 16(4):683-692, 1990.

John T. Stasko. Three-dimensional computation visualization. Georgia Institue
of Technology, Technical Report GIT-GVU-92-20, September 1992.

Hans van Vliet. Software Engineering: Principles and Practices. John Wiley
and Sons, 1993.

90

SR

16

| F=
= 12
ol FO
L

.4

£
-ou

150mm
6

125

© 1993, Applied Image, Inc., All Rights Reserved

