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Frobenius - Perron operator.

/
/f/
. CHAPTER 1
5 \ INTRODUCTION.

1.1 Introduction

In recent years, the study of the probabilistic propenrties of dynqmical systems
has received much attention. For example if one deals with a mfmp;r from the unit
interval into itself, one studigs the asymptotic behavior,’bf the ass9ciatcd Frobenius-
Perron operqfor TP; s Li(X, 8, p) — Li(X, 5, pn). Tt has been prov;z:i for iargc
classes of buch maps thalt aéymptotically we can ?xPect ‘som% regu'larit)'r in lthcir

probabilistic behavior yhich is reflected in the spectral properties of the associated




S
J - 2 ‘ , 2

In this chapter we introduce the underlylng motlva.tqons for studymg dynam-

ical systems from ‘the probablllstlc point of view. The last sectlon is devoted to the
statement of the main theorem and we also glve an example of a class of constrictive:

Frobemus Perron operators which are induced by maps of the mterval

Chapter 2 deals with the proof of the main theorem. In chapter 3 we prove
some results about random ma:pS. A random map give rise to a convex c:ombinati(;n
v
of Markov operz;,tors. The asymptotic behavior of such an operator may be very
complxcated If we assume that at least one of the operators in the combination is
‘ constrictive w?’obtam an upper bound for the number of elements in the spectral
representa.tion of the combination. It ig not known in general if convex combinations
of constrictive Markov oper;tors have a fixed point. We present two e)?amples of ~

convex combination of constrictive Markov operators which are themselves constric-

tive. The results obtained in this chapter generalize some earlier results obtainedf

by Pelikan [3].

4

1.2 Markov Operators. ) . ‘ Y

.

Let (X,X,u) bea measure space and let L, (X, 2,}1) the gpace of integra.blgaf .

functions on (X, X, ).

o

"~ 1.2.1 Definition o -
ﬁ A linear operator P, P: Ll(X 5,p) — Ly (X, 2, p) is said to be Markov 1f
1)Pf>0 for fd>-0 fe Liy(X/E,u) (Positivity)
2)\Pfll=lfl, £ 20, f€ Ly(X,2,4) (norm preserving) :\’ .
8. S -

Using 1) and 2) we will prove some properties of Markov operators which

<
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are goi‘nlg to be useful in the sequel. Let ( At = max(0, f(z)), and let (flrs—
B | |
> ‘
1.2.2 Propositii_)g
Let P be a Markov operator.on Ly (X, Z, 1), tHen
M1) Pf> Py, whenever f > g € In(X, 2 -
M2) (Pf)* < Pf+ . . '
M3) (Pf)-<Pf~ °
M4) |Pf| < P|f
Ms) 125 < I
.

Proof: L

M1) Since f=> g, then f — g > 0 and P(f — g) > 0 by positivity of P, ,

M2). From the ‘definition of f+ and f-, it follows that § = f% ~ f~. Ilence

~=t (Pf)* (Pf+ Pf=)* = max(0, Pf+ > Pf- ) < < max(0, Pf*) = Pft

M3). :[;he proof is analogous to M2). '

M4) Since |Pfl = (Pft)+ (Pf .), and, from M2), M3) (1"f)+ < Pf+,‘(Pf)“
 Pf~ weget that [Pf| < Pt 4+ P~ = P(FH 4 )= Plf.

M5) We have t#xa,t |Pf| < Pif| and [, P|fldp= [y |f|dp, since |f] >0, so that

125 =‘]x Pol < [ Pisidu= [ idu = ) ) -

It followsliirecia;;:ly from M5) that ||P|| < 1, and hence that any Markov

— " operator is a contraction. - -

1.2.3 Definition

* Support of f = suppf =‘ci{m': 'f(z) # 0}

) '




" Proof:

- 1.2.4 Deﬂgiﬁ jon

,10214 P!OQOBiti%!! ) o - . - \“ . - ‘:;f‘}‘?.
||Pf|| =||f|| ifqgnd only if Pf* and Pf~ have disjoint supports. o
3

We have |Pf* — Pf~| < |Pf*|+ |Pf~|. Integrating over X .

[P @ - Prs@ldns [ 1Pst @t [ 1S (@i
X " X X %

. Equality occurs if and only if there'is no set 4 € I, p(A) > 0, such that

Pft(z) > 0and Pf~(z) > 0 for z € A; that is,Pf*(z) and.Pf(z) have disjoint

support. Since f = ft —f~, the left hand integral is simply ||[Pf||. The right hand
side is ||PFH|| + |1 PF=|| = £+ 170l = |ff|| and this completes the proof of the -
. Y . s

;Sroposition. S , f

We introduce now the idea of a fixed point for a Markov operator, which is

fundamental in studying dynamical syj;ems from the probabilistic point of view.

O -
.

If P is a Markov operator and, for some f € L1(X,Z,u), we have Pf = f then f ﬂ
is called a fixed point for P. ‘ ‘ {

1.2.5 Proposition
IfPf f, then Pf* = f* and Pf~ = f~.

Proof:

From Pf = f v‘le have f’+ = (Pf)"“s Pftend f~ = (Pf)~ < Pf~ so

[
|

o By



'For‘any'.f;e D(X, X, p) such that Pf = f, the measure p is called an absolutel& '

#

S os/[Pf?f’-f*ldn%/[Pf-—f-]du- - -
o /5Pf++Pf ldu - f[f++f1du o B
- / Pl g, .
=IPAI- WAL o

Since P is a contractlon, the last equality.is s less thaneor equal to 0. This is
only posmble if Pft = f"’ and Pf = f-.
/

\ 7 R . * ’ . oo , 2
. L ' .
1.2.6 Deflnition

Let (X, %, 1) be a measure space and let

P
5 -

D(X,Z,u) = {f € Lu(X,Z,) | £ 2 0, |If]| = 1}.

Any f €.D(X, %, p) is called a density.

Consider now the set function

/ wi#)= [ fdu,  feDXSu), A€t
; 9 .

+

S

" It is easily checked that y¢ is a measure, pug(X) = 1, and that us(A4) = 0 whenever,

n(Ay = 0. The measure py is then said to be absolutely. continuous with ;

respect to y and f is thedensity associated with py.

4 &

) 2.1
1.2.7 Definition

continuous measure invariant under P

-3 _An Example of Mgrkov erator; Frob - ) r

4
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We begin with two definitions.

* » . . ! . - . '
1.3.1 Definition o1 : .
Let (X,X, n) be a measure speCe..A'transfonnat’iém 7,: X — X is measurable if
“l(A)eT forallAc . - \ o =
1.3.2 Definition . ’ o, SRR

.. A measurable transformation-T : X . X on a meastre space (X, %,u) is non-

singular if 4(r~1(A)) = 0 for all A € ¥ such that p(A4) =
. o “
/ ' e . : v

) Non-sing}xlar tranformations represent an important class: of tyansforma,tions
on a nfeasure space. More precisely, the trahsformatioﬁs induce Markov operators
on LI,(X; Z,p) m the following way: |

d" ' 1) Let f € Ly(X, X, ) and f > 0. Consider C -

»

‘ / fe)dy, A€s.
-1(A) ‘ .

Since ~1(U; &) = U; 771 (4i), it follows that this mtegra.l deﬁnes a fic

nite measure. Thus,by the Radon-Nikodym theorem, there is a umque element

in Ly(X, X, x), which we denote by P, f, such that T
C . A ,
/ Pfiu= [ ) Aes. Y
-1(4) T
2) Iffe Ll(X T , 1) i8 not non-nega.twe, write f ft - f and deﬁne P.f=
P,.f'*' P.f-. From thls, we have: , ‘,-

A P, f(z)dp = /A f*(f);u¥ /4 f_-.(;')d,,

o 2

= . -

“s
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1 3.3 Deﬁmtlon ’ o
' N

Let (X, X u) be a measure space Ifr': X — s X isia nOn-smguIaf tmnsfbmmtum.

associated with . X ' - T .

o

. . %
It is straightforward to show from the definition of P, that a Frobenius-Perron

s

olpera.tor has the followmg propertles " o,
. 4 " .
. P (dafi+ Aefe) = W(PLf) + /\2(P-rf2) v ' ,
P1)" . (linearity)
for allﬂfhfZ ELI(X1 2:”): Al,_/\ZER- ) . . b
FP2) P,f 2 0if f>0.. e . (positivity)
L, ° ) t . * .
FP3) [y Prfdp= [y fdp. (preserves integrals) .-
* [ - ':%.‘ ' ° : P l -
FP4) If - L R e . L
© Aty . N e :’ nl.ii{ne; o o N . "
. . ™=r0Tb T & <
r “ L 4 -
c.b ' )

and P,.n is the Frobemu's Perroﬂﬁ:orrespondmg to ", thcn- P.n = P! where

3
* P, is the Frobenius- Perron operator corresponding to T.

" the umque ogerator P, induced by 7 is caIIed the Frobe\pus-Pervon operator

o TN
i ) v . .
' .’. ! «“‘- - « % . '-;

4

* . - .
3 P . )

One can see directly from FPl) FP3) that a Frobemus'?erron éperator i8 a

‘4 >

Markov operator and that it dlscrlbes the evolutlog of any f € L;(X L, u) upder

-
[ ° ]

the transformaflon T. e »

L
A " . N .
a o .

. .
In some special cases we can obtain an explicit form for P;.

' . .
. . Pl .
L @ e ' (- R P
) . . .
. ° , s ) -
3 . R .
.

L



) . ° 8
If X = [a,b], an interval on the real line with the usual Lebesgue measure an% _

.4 - . " :
‘A—[a,x],t\hen ‘ Y . , s

[ Pestsrtn = | L T .
. a ‘ 7 ta,z

and by differentiating

-

“

- . d " o .
’ Pfa)= 1 [ y ]f({iiu-
. r~1a,z .

8

"\

_If the transformation 7 is differentiable and invertible, then an explicit form e
of P. ¥ is available. In this case 7 must monotone. Suppose it is increasing and that
7=} has continuous derivative. Thentr™![a,z] = [r~!(a),v"!(z)] and then
\ . v

a .

(1) j .
Pt =g [ = ) g @)

by Leibnitz’s Rule.

If 7 is decreasing, then the sign in the last expression is reversed. Thus in the _ |

s hJ

genera] one dimensional case, for 7 differentiable and invertible with E——('r_l(:z:))

. S I . . 22. .
continuous, : . .
T R = T e I @) .
m !
Ve 4
- - T, ¢ ’ ' I
~ . '

. Frobenius-Perron operator: An example.
5 . - \ .
- N ’ ! - ¢ .
- We now derive the Frobenius-Perron operator for piecewise monotone C?
.t M

function in [0,1].

3
L . R . N
A oL . . E



N

function on [0,1]. Then for

LR
1.3.4 Thegrem

b

€
Let ¢; € C'[b;j—1,b;] and monotone where 0 = by < b < .. < by = 1. Assume

also for the saké of convenience that each ¢; can bé extended as a monotone C!

L \ P

) q
’ ‘ o $=) ¢ixs,

i:l *

where B; = [.b,'_l, b;] we hﬁs\

L
Pyf(z) =Y f(i(2))ai(z)x , (z)

1=1
where ; = .-_1,.0':' = il , Ji = ¢i(Bi).
Proof:

Set“A;(z) = ¢:1([0,z]) N B; = ¥;([0,2]) N B;. Then

-

J . ) l Yi(z)
, / f(s)ds == . f(8)x g, (s)ds. e
. A.:(z) ¥i(0)

e
wé want fA,(‘z) f >0 when f > 0. Since ¢; is monotone,i is monotone and ¢; and

;i are either both increasing or both decreasing. Therefore

¢

VAN ' R

B W) _ )
W~ W

¢ s o
s

€

for all z,y € [0,1]. We use this to set the sign. Thus

| _ w:(;p) vi(z) J .
/Af(=) fjs)ds WG Lo f (3?’fa¢(8) s\
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dz J a(z) i)l d= ‘
| ' %bi(fv)
" by Leibnite’s Rule . .
_ WP )
= T0l)] Ty F(@i(E))x g, (Yi(z))
= f(¥i())oi(z)x g, (¥i(z)). > .
. R LR L A
Note that
XB‘(tp,(:c)) =1 & Yi(z) € B
¢=> z € ¢i(B;) =
= X_I = 1.
Therefore )kji(x) = AX;B'_ ((1#.(:::)) and we get
d [
2 Lo % = D)
T Ai(z) N L] X
For ¢ = 371 dixg,, 71 ([0,2]) = U, Ai(z), where the A;’s are disjoint since the |
B,-"s are disjoint. Thus - ' . .-
© Pl = s
’ dz Jg-s(o, o
o . . ZO:"/A i(z)
Therefore
i - ’ q '
Pyf(a) = Y- f(bi())oil)x 5, () | ‘
L i=1 . ~
/
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1.4 Invariant Measure, Ergodicity, Mixing and Exactness
Let 7 : X + X be a non singular measurable transformation on a measure
space X. Let z € X be a‘s.tarting point and'let the corresponding orbit be defined

by the sequence of.iterations {z, = 7"(z)}32,.

The main id(;,a_m is not to study individual orbits corresponding to a single |
point but to rather study the e\:olutior; of distributigns or densities of in{initcly
many initial cor’lditions, bs:' mea;ls of the iterates of the Frobenius-Perron’opcrf:tor
induced by 7. If P, is the Frobenius-Perron associated with.r the effect of P, goes

“fc;rward” in time, that is, if f is the probability density on X at time n then Py f .
. is the density on X at time n + 1. Givén these obsefva.tio‘ns an important question
is: Does th;re exists ah f* € D such that the action of 7 on X d;)cs not cl\langc on
f* 7 That is, does there exists an f*ebD suf:h that P, f* = f* 7 The existence of

.~

such an f* would tell us something about the probabilistic behaviour’of 7.

\

1.4.1 Definition
A measure p is said to be invariant under 7 if p(r71(A)) = p(A) forall Ae . If ‘
.Z"‘f — f* in Ll(X,E,p) sense, then Pf* = f* and

/ frdpu = / ftdu forallAe L
\ A r-1(4)
Thus v(A) = [, f*(z)dp is an absolutely continuous measure invariant under r.

—

There are simple mappings 7 : X — X having an absolutely invariant mea-
sure. For example if X is sorhe closed interval of the real line, i the Borel measure

in X and 7 such that 7(X) = X, then there are infinitely many such measures,
. - .

\ ~
W Y
-

. However, the existence of an absolutely continuous invariant measure in itself -

T
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does not imply any 7tochastxc or turbulent like behaviour of the dynamlca.l system
déﬁned by 7. Let T have a unique absolutely continuous 1nvar1ant measure. Then
erratic behaviour can be investigated by means of the different modes of convergence
of {P"f} to the density of the im./ariant measure. We now describe these modes of

convergence. !

- 1.4.2 Deﬂnition

A transformation T is said to be ergodic if theré exists no non-trivial set of X

a3

which is invariant under 7, mpre‘ precisely, T is ergodic if for all A € ¥ for which
r(A) = 4, uth) = 0 or w(X \ 4) = |
y ’
As an example let us consider the rotatlon F on the unit cucle S, where
F(z) =248 and 6 € [0,27] is constant Obviously the measure 1nduced by the arc
length is invariant under F. But depending on whether m\tional—or irrational,

4
—

(\F is not ergodic or ergodic respectively. .
This example shows that ergodic jcransform@tions are not necessarily very
} irregular. : ‘ T “

i ’ - b

From the operator point of view, it can be shown that ergod1c1ty of the trans-

B forma:tlon T corresponds to the convergence of thp average of&he successive itera-
> tions of P,

) N A (ZP"f) ~f* forall feD,

k=1
>+ where f* is the density of the unique absolutely continuous measure invariant under
7. This is a consequence of Birkhoff’s Ergodic Theorem. This type of wconvergencs

s also called Cesaro. ’ , : ‘



13 /
The next category of asymptotic behaviour is called mixing. ) ’ o/

- 1.4.3 Definition
. A transformation 7 is called mixing if ' Y
k Jim ANT(B)) = w(A)u(B), forall ABEX. “ ,

)

s

Roughly speaking, this condition means that if one starts with a set A of
initial conditions, then after many iterations the fraction of solutions points lying
¢ in some (arbitrarily given measurable) set B equals the product of the measure of

the sets A and B. Mixing is loosely called irregular or chaotic behaviour.

It can be shawn that mixing for 4 fransformation implies that the iterates
of its associated operator P in L,(X, X, u) converges weakl'y to thg density of thel
unique absolutely continuous in‘va,riant measure. This type of conve;'ge;lc}z necesser- -
‘abily implies the Cesaro convergence of P and therefore mixing transformation are : J

ergodic. -

k]

The last category of asymptotic behaviour is called’ exactness. T

-

-
’ 1.4.4 Definition -
' _ " A transformation is said to be exact if , /

‘o - lim p(r™A)) = u(X)  for A € B, u(A) > 0.

n—0o0

; & ‘
\ The iterates of the operator P of an exact transformation converge strongly flor
all feD to the'ur'lique f* representing the unique absolutely continuous measure.
It therefore follows that exactness implies‘ mixing which in turns implies ergodicity.

4
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\

In the next section we describe another possible type of asymptotic behaviour

which does not necessarly jt in the preceding hierarchy of éssymptotic behaviour,

namely asymptotic periodidity. “

N 4 ?
.5 Constrictive Markov Operator, As totic Periodicit

»

- Let (X,Z,p) be a measure space with non-negative o-finite measure p. As

before, let. D denote thé set of all normalized densities on X.

»

1.5.1 Deflnition ‘o

_We say an operator P is strongly constrictive if there exists a strongly c
set F C Li(X,X,u) such |

r d

lim d(P"g, F)= for g € D,

¥ n-—+00

a

L / .
where d(g, F) denotes the distance between g and F, that is, inf||g — f| for f € F.

v
4 )

The main result proved in this thesis is the followi

1.8.2 Theorem|l] o '// )

Let P a strongly constrictive Markov operator. Then there exists a finite se-

quence of densities gy, g2,..., g, and a finite fEQUence of bounded linear functionals

. A1y ’\2’ veny A, such that /'/ o . —
N ,/‘ ’
. K _ .
.,ll.m IP"( Z A (f )n =0 forfeLy(X,S,u). *
N ‘—0/ ‘

The dessities {g;} have mutually disjoint supports and Pg; = ga() Where /
e ‘ ’ ,

/
/
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{a(1),a(2),...,a(r)} is a permutation of the integers {1,2,...,r). w \ -~

-
-

Since

| pn (f _ g ,\'.(:f)g,) = P'f—p" (z": )\.'('f)g.') | h

- '

1=0
/ n .
=P"f - (Z /\i(f)ga"(i))_ ) -
K =0 .
and P ( f= 200 Al f)g,'). converges in norm to 0 as n — oo, we could |
/ rewrite: - ¢ o ‘
) . . .o ' \ N . i
// ' ?
// P ‘ ‘ n » ‘ - ?‘\
Pf = 3 M(f)garcn + Buf,
o ' ~ =0
. L]
h where o™ denotes the nt? iterate of thé permutation a and R, f converges in norm
" to0asn— oo. Thus,~every sequence{P"f} is asgunptbtically periodic, with period
which does not exceed r! since the perfhutations of r elements form 'a cyclic group
" the period of which does not exceed r!. ‘
We now give an example of a conétrictive operator. Consider a measurable
" transformation § : [0,1] == [0,1], which satisfies the following conditions:
' i) There is a partition 0-= ao,ay,...,am = 1 such that for each integer i the .
restriction S; of S to the interval (gi-1,a;) is a,‘C2 function.
. R . { ’
ii) inf |S'(z)| > 1, (z # a;).where ' denote the derivative. .
o |87(2)] C g
ill) sup sme=r—= < 00. -
: ) S )] - -

-
.

: If T; denote the inverse function Sy 1 it is ea,sy to write an explicit formula
.

-

H

» ; foijg:;
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T Pefe)= Y T@ (D) g (@)
=1 R .

where xc denotes the charactenstxc function on the set Ci = Ty(a;z1, a,) We can

evaluate the total varxatlg/g  on [0, lL dettoted V of the function P f for la,rge n [5]

Namely, if S satisfies 1)-iii), then’there exists a constant K independent of f such

.

\ —

lim sup VPS f 5

- - e BTO0
{ , .
for every f € D[0,1] of bounded variation, The set

F?s\{\eDIVIKK} o

is compact in L (X, L, u), by Helley’s Theorem and smce the densities of boundeds

variation are dense in D, {Pgf} converges to F for any f € D. We summarize

¢

these results in the following proposition. ' '

.

Eroposntlon - ' o -
If S\“'{O 1] + [0,1] satisfies conditions i)-iii), then the operator Ps is st/:on,gly

constrictive. Consequently, for every f € L0, 1], the iterates Pg‘f can be written

in the form of tj:e theorem 1.5.2 and the seque}rce {P2 f} is assymptoticaly periodic. |

t

r

o,
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CHAPTER 2 ‘

.~ L

PROOF OF THE MAIN THEOREM

c 2.1 Proof of the Main Thebrem: Case w(X) < oo and Pxyx = xx
— t ‘ .

We now proceed to i:hewproofof the main theorem. We assume we have a

' strongly constnctlve Markov operator Pon (X,Z,u), ‘with the'additional assump-
tion tha,t Pxx = Xx and p(X ) < oo. Later in this chapter we wxll delete the-

i

-¢ assumption Py, = x and u(X) < oo to prove the theorem in the general case.

& [ ~

-

2.1.1 Definition
A set A e.X will be caljed a nice set if Py , is a characteristic function for each
. positive mtegern In t};xs case x 4 is called a nice functzon In the foIIowmg Iemma,

+ we show that the family of nice sets forms an a,]gebra A.
1 'R e

* 2.1.2 Lemma (

i) If A is a nice set, then X \ A is a nice set.
- . PR ot

i1) If Ay, A, are nice sets, then A; U A, is a nice set.
Proof: ' - ) -

i) From y XA T Xx — Xy it follows that

Py~ P"x4 =Xx — Xp,

where B, is the set which has P"y, as its characteristic function. Hence
X\ A is a nice set.

s
}



g e . . , . . \) . /”[
ii) Since A],A2 are nice sets, for fixed n, we have P"XA = Xp, P"X4, = XB[

for somme sets Bl,Bg contained in X. Fori = 1,2 we have . }/
R .xAi S XA1UA3 S XAl + XAQ' /’
L) K
A Hence
- - .- . . Al A } -
n t y
- . ” i X B, <P XA1UA%SXBI+XB;~"

Ve
, B

If x/ﬁ By U B, then P"x , ., = 0.8ince P"x, , < xx/:c € B, UB, y

: implies P"x, ,,. = 1. So A;U A, is.a nice set. n

,

2.1.3 Corollary:

N - Let Ay, A, be two nice sets which are dxsgomt a.ndﬂlei Px,, = xp,»? = 1,2 Then
. BinBy=0. ) - J”:‘“.

‘ . ' . w @

Pfoof: = ‘ . ' '

o Since x Ajuds = X4, T X PREL follows that .
' Yo Pxaua, = Pxa, 1PXy, = Xp, X5, : .

On the other hand PxA uArS Pxx 'xx so that x5 + XB; < Xx- This proves *

X .
that By N Bz = 0. |
‘ /

g ~ Now we use constrictiveness of P to show that in this case, the algebra of nice

set is finite, that is, there are oniy finitely many nice sets.

- n N N

) ~ There exists a § > 0 such t‘ha% #(A) > 6 forall nice set’' A € . '
" Proof: | L . Y e
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©°

~

Choose A € T afid define f = x4/n(A). Siace P is constrictive, there exists

) F c Ly(X,%,p) such that P"f — Fasn — .00 where f € D. _Thus, given

€ € (0, 1), there’ ex:sts a sequence {gn} C F such that HP"f g,,ll < 1-e. Since F

o '{33 strongly compact, it is also weakly compact. Therefore, g)ven €> 0, there is a § -

, é@h that for all B € © such that p(B) <6 we have

t

1y ;-\\/ gnd[,l < €.
B

Let A,. = supp P™f,then , since I?"f = P"x ,/u(A) = X, We get that u(A) =
B . ‘ﬁ

p(A,) for all n. We claim p(A) > 6. Assume the contrary. Then

- / gndp < € ’
An .
implies that . . . .
P =gl /A |P™f — galdu
C ' .2 / P"'fdu—oj; gndp .
: L 2> 1_:6. "

which cor_xi.radicts |P™f - gnl| < ;1 —e.

— - { .

A none—mpty‘set Bin an alg'ebr&B of sets is called an atom if the only subsets
of posmve measure of B that are in B are B and . Hence, the set of atoms in an
algebra must be mutually dls_]om»t From lemma 2.1.4, the number of atoms m A

.must finite since p(X) < oo. Let {Al,Az, .,A,} be the set of atoms of A and

-write xi = x4, fori=1,2,...,r

2.1.5 Lemma ] ‘ .

»

There exists-a permutation a of {1,2,...,r} such that Py; = Xa(i)

Proof:

¥
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It follows easily from the de}inition f’f nice functionns 'thi;.t Py is z.x_ni. function ‘.
ft;r ez;ch i =12,...,r. Let xp .= Px,-. By Corollary 2.1.3 Xp, 2 /XBj have -
désjoint supports for 7 # j and By, B,,..., B, is .; collection of mutually disjoint "
elements of 4. Now each B; is an atom. Suppose thi; is not': the case, then fc;r at-
least one i, there is a set B! C B, such that w{(B;) >.0. Since u(A;) = p(B;)-and
w(X) = I‘(UL;,Ai) ="pllJi, BQ, B; must i;ltersects an A; on a set ‘of pesitive

.

measure. ’i‘his contradicts the fact that the A;’s are atoms. Then Bj, B,,..., B, ié_

a permutation of the A;, 4,,...,A,. ' v
14 . . ~ .

For f € Ly(X,Z,pu), {P"f} is precompact since P is st;‘ongly canstrictive.
Let 0(f) be the set of limit points of {P"f} and @ = Ujer, (xz ) USf). We

claim that all nice functions are in Q.First, observe that all pd8sible unions of the ,

atoms ln A is al'qo in A since it is a.k algél;ra-. If a 5set.A is in A then it can he
. written as a union of atoms of A since p(A) > 6> Orfrc;m .Lemma.'2.1.4. Tlgerefore;
the set of atoms {Ai, Ao, ... ,z},} genera.te; the algebra A, and ‘therefore A is a
finite algebra. Now for any 4 € A, A = U};:l Aj for some j € {1,2,..‘. ,7}, and

XA = X4 tX ;2 +otx A0 since the A;’s are disjoint. ‘Therefore the sequence.
- % N

Py A= Zf;:l P;‘x 4, contains a subsequence convergent to x , because P psrrm;tes

- ' © ‘.
{x1,X2)-%.,xr}. Then x, € Q(x,) C Q for any nice set A, which prove the claim.

-~

Wa now state:

ot

2.1.6 Tﬁeomm . . -

-

| Q is a finite dimensional linear space with basis Rx1, X2y s xr}. '

i
\

Before provihg it we need to prove a few lemmas. _. { ‘

NN

e
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2.1.7 Lemma . ’ T )
wF . I feQ, then f € (f). ) ..
Proof: o K N - : T~ ‘f
N ‘ ® 9 ? ¢ ! I’y
ge i f € @, then there exists a g € L1(X,Z, ) and a sequence {P g} ‘of {P"g} such
that {P"g} — f asg' — oo. That is éiven >0, thelze is a‘positive integer Mauch -
© v that ||P“"g fll < § for k2 N. Then [[Pg = Prasr=ms fl< § Butk+1> N
8o that ||P“'=+\g f” <%, tha.t is ', i -
; L IR T — fll < [P PR PP S fL
I . SN PR
. . o < 5 + > €. L ‘ . .
then there is a subsequence of {P" f} which converges ig f'and so f € QU(f). '
2 1. 8 Lemma ) _ . ) ‘ ‘
| 15 eQ/hen|Ps] )fn e
,Proof . | - B * ’
e i First notice that A2 IIP iz AP Al > . From the p;,eee&mg lelnma, there
- “is a subsequence {P™f} — f, that is [P — ||f|| Hence ]IP"*f|| is a constzrmt
' + which implies || Pf]|.= If]I- L C 1
Lo _. ' ;o C
.. . f ’ . T . ~ : ) | -
i _ 219Lemma/ - . j l .
\/L_L 1{ f and fz an# nonnegatxve and have the sa.me support, Then Pf ) and Pf, I?aVc L
¢
: the same su pp%rt oo ] : f ' 1
. . . b“ vt ) | ) . i
C ) Proof: / L . ' / ' l
. . '. s L oL ‘; . :
‘ We prove that supp Pfy C supp P fz The reverse mclusnon |s proved in cxactly] the ]I
NI / same wa,y Le t‘supp P fa= Ba. Then , ‘ //° ‘ | 1
N V . ‘ II,'- . i N 1 ‘;
* ' , k] '/ S i : o
s 4. ‘ P.fl X-g, Pfl+XJ\B,Pf1 / - . T LT
" ) ’ : ) ) '7 . " |
el e ° . | v : 1{ &
v
|
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For ¢ > 0, define f. = min(¢fs, $1).-Then f. hds the proprieties: * - @

’ S . 1) fe .<_‘f1

o~

. oo 2) limeoo fe(2) = fi(2) K
| 3) supp Pf. C suppPf, = B,

-t

*From 1) and 2) and the Lebesgue Dominated Gorfvergenqe Theorem, we have

- -

N N P~ fo = S - o

-~ _as ¢'— oo, From 1) and 3), o \

IPfi ~ Pfe]l = /X (Pfy ~ Pfo)dp = / Pfidp =||Pfixx\p, I

B, X\B,

- L)

y  So-that Pf,xj(\B2 = 0. Thus supp Pfy C By = supp Pfg.

’ . -~
Y.

2.1.10 Proposition

o~ ©

If feq, thex‘l for eachv >0, f~!(—o0,v) is a nice set.

/ R :
X Proof: ' -
\\JK . o - ' - ' .
‘ ‘ We ﬁrst,assur'ne‘ that p(f~*(v)) = 0. Write h; = Xf=1(=00,v) a0d A2 = X £ 1[y,00)"
- Then hy + ks =X Letting g = f — v, we see that g € Q, and
i . supp g¥ = {z.: f(z) > v} = supphe
R ' suppy~ = {z : f(z) < v} = supphy’
. ‘4" .. . ) . . .
' Now supp g7 and supp g~ are clisjoint‘and by combining Lemmas 2.1.8, 2.1.9 and
" Proposition 1.2.4 we get that ’
A . T . . supp P"h; Ngupp P"hy =0
. Now P"(h;+h2) = P"}(x = xx = Py +P';h2, therefore, P"hj isa characteristic |

function for each n > 0. Suppose now,.u(f~*(v)) > 0. Then,since u(z) < oo and

‘.
N
. .
\. ‘.
. . N
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F~Y(c) are disjoint for different c >.0, the set of ¢’s with #(f71(e)) > 0 is at most
countable. thus its complement is dense. Let v; be an increasing sequence with
v, = vand p(f~*(v)) = 0. Then since f‘l(——?o,v) = U, f~1(~o0,v;) and the nice

set form an algebra, f~1(—oo,v) is also a nice set.

Proof of Theorem 2.1.6
It suffices to prove, that every f € Q can be written as a linear combination of
the’\x,-.’s. By Propositic‘m”2.1.10, for each real v, f~!(—oo,v) is a nice set. Since
the family of nice sets is finite, there is a finite number of different v.a.lues, sy
V1, Vg,. .., vk, for which f~!1(—o00,v1), f7}(—00,v2),...,f 1 (—00,v;) are different
sets. Thus f has the for'm. for the appropriafe; choice of real number ;,

f= Zﬂ'(xf Y(—oo,pigt) ~ Xf™ ‘(—oov.))

i=1

Sm.se X f=1(—o0,viq1) ~ Xf=1(—o0,v;) BTE MICE functlons, f is a linear combination of

1

the x;'s.

{

Let Po: Li(X, X, u) — L1(X, Z; u) be a Markov operator and let a sequence of

densities {g{} (z=1,2,...,7) with mutually disjoint supports be given. Wé assume
! | . o

that P. permutes the densities g;, i.e. Pg; = ga(i), Where « is a permutation of the

integers 1,2,...,r. _ L

. 2.1.11 Definition ' o & . '
We say that the {g.} induce an .asymptotic decomposltlon of P if there is a
sequence of linear functxona.ls {X },_l on L1 (X z, p) such that

S [IP°(— Y Aol 0 for}féLl(X,Sf,u)

o .
i=i o

wd

Since the g;’s areJinezqui independant, the functionals \; are nescessaﬂj". bounded.

-e.;
4




Ly

" ng such that

) 0
2.1,12 Lemma
The densities {g;} induce an asymptotic decomposition if and only if for every

fe LiX,Z,pu) and,el>'0, there are constant c;,¢;,...,c, and a positive integer

. 'r ‘ .
||P"f~zcigi||56," n>ny. .
. i=1 !

x t \

" Proof:

\

The “only if” part is obvious. To prove the “if” part, let nx and cf, i =1,2,...,r,
be ¢hosen such that, with indices rearranged if nescessary,
- ‘
1™ = > chgamecyll = 0. ~ (%)
i=1
Now {cf} is a bounded sequence for each i. By qhoosing a subsequence if nescessary,
we suppose that, for each i, cf converges to a constant Ai(f). Write
‘ ] ‘
En = |P™"(f =Y X(£)anll-
=1
It follows from (*) that ‘E‘,,,, — 0 as n — co. Furthermore, E, is a decreasing
. . t .
sequence since P being a Markov operator, ||[P™h| is nonincreasing for each h €

Li(X,2,u). Hence E, — 0. It remains to show that the A;’s are linear. Observe

" that Xi(f), &= 1,2,...,r are uniquely defined since the g; are linearly independent.

A\
Moreover, from

P(fy = 30 Mi(f)g) = 0 \and ,
Pn(hs‘z:::l Ai(f2)gi) — 0 ' | imply that

P(fi+ f2 = Rpima (Ni(f1) + ’\i(lf2))9ij:"" 0

It follows that Ai(fs) + Ai(f2) = M(fs + fa) for each 5.

4
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“l
.

Let P be a strongly constrictive Markov operator on a measure space (X,X,u).

.. Assume Py, = X x and p(z) < oo. Then, there is a sequence of densities {g;}, ¢ =

1,2,...,r with mutually disjoint et_lpports‘, which gives an asymptotic decomposition

of P

"® Proof:

;Letw{A,-}.and xi be as in Lemma 2.1.5. Défine g; = xi/p(Ai). By virtue of Theorem
2.1.6, all elements of Q are of the form Zf_,‘c,’g; Thus, for f € L;(X L, ), there.
is a subsequence of {P™f } which coriverges to a function of the form 33, cigs.
Then, by Lemma 2.1.12 we have an asymptotic decomposition of f .

- o w ] ‘ .
- 2.2 Proof of the Main Theorem: the General Case '

We are now goihg to prove the maiﬁ theorem in the general case, that is, by
deleting the COI’I(YIthIlS u(X ) < o0 and Px X=X X We assume only that X is a

o-finite mea.sure space and that Pis constrlctlve Smce p is o-finite, there exists

a density fo with fg(:c) a.e. Smce {P" fo} is precompact P bemg constnctwe, the .

. mean ergodic Theorem 1mp11es that the hrmt Z:' ,l Pify =1y muat exnst and the
.*limiting function ¢ satisfies ||g|| =1 and Pg g: '

. Write G = ,supp g. Now for every A E E define (A fA gdp, and let

——te

L, = Ll(X,E,ﬁ). Denote the norm in L; by ||| ||| and define P : I ~ L; by -
Ph = P(hg)/g for h € Ly, W,‘here hg = h(z)\g(z‘). It is clear that FXX = xx and if
h >0, Ph > 0. Moreover, for h > 0, we have . o

Pl = [ Plho)/oar= [ Plrords
. / bodu= | 1 hd"—lllhlll'

Therefore Pisa Markov operator - :
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Let F be the strongly cofnpact set-to which all the iterates of P converge.
Define F = {f/g: f € F}. Since

f/all = [ radn= [ fau=stcll <151

Fc _LT If {fa/g} C F, then there is a subsequence {f,} C F such that f, — f.
Then from the preceding inequality, |||fn/g— f/glll £ |fa— ./f|| Since every infinite
sequence of I contains a strongly convergent subsequence, we conclude that Fis
strongly corr;pa,ct. _Further, for & > 0 and |||h]|]] = 1 we have [lhg|| = [||r]|| = 1,

and since P is strongly constrictive, there exists a sequence {fn} C F such that

[[P"(hg) = fall — 0. Consequently,

I(P"(hg) ~ Fu)/slll = /G PRh— fu/glgdu
| < 1P"(hg) - fall = O,

which implies that P. h — F.

We have shown that P has the following p}o‘pérti@: :

- 1

' 1) Pxx = xx
2) p(X) < oo .
3) {‘Isﬂh} — F for all densities h € L,, where F is a 'strongly compact compact. ‘

- subset of I;. We may then apply Propositibn 2.1.13 to conclude that

P'h= ZA (W) Tom iy + e,,(h), for k€ Iy

=1

whgre |||€,.(h)”| —0asn— oo, a is a permutatxon of {1,2,...,r}.and g; are

densmes in Ly w1th"?nutually dlsJomt support By letting g; = gg; we have

\

| hy) Z,\ )gar ).+ 96:(’1) |
i=1

+ with ||lgen(B)|| = |||€n(h)||| —+ 0. From the identity Pg; = g,(s and from

¢

llgill = / 9g;dp = / gidi=1
, JX X .

’
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we conclude that (g{ is a density.

To get an asymptotic decomposition of f € L, (X, Z, u) under P, we still have

to prove a number of lemnmas.

2.2.1 Lemma

Let fo be the density introduced at the beginning of this section. This density is

such that L Z:’_ll Pify = g. For any € > 0, there exists an integer mp such that '

/ P™ fodu < €.
X\G ’

Proof:

Suppose this is not the cage. There is an £ > 0 such that fX\G P™ fodp > € for all

m > 0. It follows that

-,
n—-l 1 -1
I‘ P‘fo-*g]dﬂ>/ |=) Pify—gldp :
Kz >
o ’ 1 . ,
! P! fodu >0 .
\ - . L\Gn; - ods -

for all n > 0, which contradicts the definition of g.
We can now compléte the proof of the main result.

Let fe Ll(X L, pu) and € > 0 be given. Since fo > 0 there exists a constant
¢>0and g € LI(X X, #) with flg1]} < § such tha.t If| < cfo + ¢1. Choose mo as
Jin Lemma 2.2.1 such that o

P fody < . 3
X\G 4 ,
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/ |P™ fldu < / 1Z"’If|du
x\c X\G

<o / Podut [ Phosd
' X\G , yane

» s

On the other hand there exists a constant c; >0and g3 € L1 (X T, u) w1th ||q2|| <

i

£ and suppgq; C G such that xalP"‘f| < c19 + qg Write b = (xg|P™f| — ¢2)/ 9.
Then xglP™ | = ig + aaywith IAl]| = Ihgl| < oo. Now

P™f = xx\oP™f + X6P™f .
= Xx\ame'l‘ hg + ¢z
- . ~ =hg+gs,
where <.'||q3|| < ||xk\GP"‘f'|| + llaal] < 5 + f’: % Since h € L, we have .

Eh(hg) = 3 M()gancsy + gEn(R)

i=1

’
(=]

‘with [|gen(h)|| = 0. Choose n large enough so that ||gs‘n(h)fﬂ.< €. Then

.

P f = P"(hg + ga) Z Ai( h)ga"(:) + yen(h) + P"Qs

=1
Hence|| Prtm f(; -3 A (h)gau(,)ﬂ <Lie=¢ and. the conditions of Lemma
2.1. 12 are satlsﬁed with ng =n+mg and ¢; = A —n(,)(h) for 1 < i < r. This proves

the main result in its full genera.hty _— -



CHAPTER 3
SPECTRAL DECOMPOSITION FOR CONVEX COMBINATION OF
MARKOV OPERATORS ] '

H
H

. :

3.1 Random Maps

In this chapter we present some results about convex combination of Markov
operators. The main question once again is to investigate the asymptotic behaviour .
of the iterates of these convex combinations. We are espacially interested in the

3

case when one of the Markov operator is constrictive. . - ¢ ‘

The motivation to study this problem arises from the theory of random map-
pings. More precisely, let 7; and 7; be fyo non-singular ‘maps from a closed interval
into itself. Let 7 have a probability a of being applied at any time, and 72 a prob-
ability (1 — a) of being applied at any time. Consider now the stationary stochastic

& »

process defined by L
’ ¢

¥

Lo = Pr{fri(en) + (L= Bra(en) Sz | A=1)

+ Pr{Bri(zn) + (1 ~ ﬁ)Tz(xn) <z|p=0}
"that'is . '

| Pr{onss S} = aPr{re(za) S 2) + (1 - @) Pr{n(an) < 2},

s
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If we let z,, have probablllty density functlon f(z) € L;(X ¥, u), then by the

Radon- Nykodlm Theorem we get

Pof(2) = aP, f(z) + (1 — @) P (2)

-

where P;; P, denote the Frobenius-Perron operators of 73 and 73, respectively.
This is a convex combination of Frobenius-Perron operators, and it is easily

checked that P, is a Markov operator.

An absolutely continuous measure 4 is said to be invariant for the stationary
stochastic process defined above if its density function f € Ly (X,3, ) is a fixed

/
point of the operator P,. ' . .-

. \

In the fpllov_ving sections, we show that if we assume the convex combination

of constrictive to be constrictive we get an ui)per bound for the number of densities

in the spectral representation of P,.

t

-

- We will begin by giving an example of a convex combination of constrictive
operators such that P,. is constrictive.
—

3 of Convex Combinations of Markov Operators

i) Let I = [0,1] and L; = Ly([0,1],m) be the space of Lebesgue integrable
functions where m is Lebesgue measure on I. Let C denote the set of non-

‘ 3 .
singular piecewise C* maps on I. Let 7 € C. The Frobenius-Perron operator

v #
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¢ ’ i
Py : Ly — Ly associated with 7 is d%ﬁned by \
P, f(z) = d f s)d.;
dz.

Let {'r,},_l .C C’ and let 0 < A; < 1 be the px;oba.bility that the map =;
is applied atf any given 1teration, where Yoizi Ai, = 1. This gives rise to a

random map T = {7;, \;}I-;, and a combination Pr = Y, X; P,‘ B

=1

.3.2.1 Theorem|3] v
Let T be a ra.ndom.map. If, for all ¢ € I, Y0, AifImi(e)] € 4 < 1, then for all
f€ Ly L
1) hmn_.oo E;—o PTf f* exists in L.
2) PTf t=fr
3) V f‘ < Bjifll for some B > 0 which is independent of f, where Vf denotes

the vanatzon of f over [0, 1].

- ~
The key of this proof is_the inequality [4]:
Co1 1
| VPTf < an + kll{ul

o
'

for somme 0 < a <1 and k>0 1ndependent of f. Byan mductxon argument, we

VPtf <a \l/f+ k”f"l

Therefore, for every f € D of bounded varlra,tlon,

“lim sup VP,},f < k1

j—+o0

where ky = k/(1 — &). Now the set F defined by

%

. 1- N
F={geD|\/g< k)
. . 0 l‘
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-3

is weakly precompact by Helley’s Theorem. Since the set -1
. . ) {f € D| f of bounded variation}
1 #

is dense in D, the last inequality tells us that Pr is constrictive.

- —ii) Let K : X x’ X +— R be a measurable function that satisfies K(2,y) > 0 and
Jx K(z,y)dz = 1. K is called a stochastic kernel. Let us define the integral

.

operator P, i Ly — L; by

Pif(z) = /X K@)y, forall f € Ly

Clearly P, is a Markov operator.

..

o

3.2.2 Theorem :
Let P, be the integral operator whosé stochastic kernel K satisfies K gm,y) < g(z),

9 € L. Let P; be any Markov operator. Then Py = AP+ (1 = X)P2,0 <A <1,is -

constrictive. \
- ’ i
Proof:
— Since K(z,y) < g(z), | | :
Pf(@) = [ KEnf@ <o) | f6)ds = o)
where f(:c)E D. Therefore .

PJ() < Ag(2) + (L~ NP,

We shall prove by induction that

. n—1 :
PPf(z) £ AY (1= X)'Pig+(1 - APy f.

=0 .
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It is true for n = 1. Assume it is true for n = k7 Then

Py f = PA(PYS) = APU(PEF) + (1= NP(PY)

k—1 :
¢ <o) + (- VB Y - VBigle) + (1 - NP
. =0 .
: - k-1
. —Ag(m)+A21—A)'+1P'+‘ (2) + (1 = N+ P+ f(a)
I—O
= AZ(l _ A Pig(e) + (I - A)".“P:“f(x» ‘
1=0 [

Since P, is a Markov operator ||P2g(z)|| < Hg(m)”, for all 7. Herice, for all n,

=0 j 1=0 .
~ gl = (1= 2"

-
< liglls.

INY Pl < SNl

thus

C s PPf() S§(=)+ (1 - N"PPf(a) . for fED

where §(z) = A Y oog(1 = M) Pjg(z), and limsup,_, ., P"f(z) < f](:z:): Since § € Ly,
P f converg;as to the weakly precompact set {f € L, | f(:c} < §(z)}. Hence Py is
constrictive.

L}

3.3 Spectral Representation Dof Combination of Constrictive
‘ Markov Operators

LetP; and P, be constrictive Markov operators on Ly(X, A,m). Then for a ‘
f €Ly, Pf and P f admit the following représentations:

Plf = Zal(f)qa“(:)+‘4nf . Ao

t-L

Ppf = Z bi(f jrﬂ"(s) + Bof

i=1
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whcr)vt; a and' f-are permutations of the integers

2.0} and {1,2,...,1},

respectwely Let r < 11' denote the period of Z =1 2i(f)qan(i)- Let

,PA;A3;+(1-A)P2, <A<

be constrictive: Then

’ Q

o * ppf = Zc.(f)sqn(,wc(f)

8=0

In this séction we shall prave that [ < min(l;, &). Let

. - i l2
. Pi= U{supp gi}-and Pp = U{SUPP ri}. . ,
=1 - ’ i=1 >, °

' ‘

o 4 4 N b

3.3.1 emma’
Assume Py, is constrictive. Then the support of every density s; must mtersects both
P: and P, on a set of positive m measure, ie., m(supps; N P;) #0, i = 1 2,...,1,

i=1,2

Proof: ' ‘ | .

-

»

We need only prove this for j = 1 and for any s;, say s;. Since Py is constrictive,

there exists an integer ¢ such that Py's; = s; for k=1,2,. .. From the expansi'on
PLf = ATERf + 2771~ A)[Pl"‘"‘Pz +PI?RP+ PPrYf

S+ AR - A)’[PF"P2+ ++ PP f +(1- AR,

k]

we have that ' - ' ' R s

& = P“81 = AM[Zai(*‘h)‘lrx"‘(') + A"‘(sl)] ——
=1 '
+ [terms 1nvolvmg P1 and Pz]- .

AY
Hexice , . : - oo e

=1

llsz = A *Za.(sl)mou M| Age(s1)l] + llterms'involving Py and Byl

N_.- . - -
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The right hand side of the last ine,uali,ty is bounded by 1 — MM, Let. us choose -

F=kg sufﬁéienﬁ]y large finite, such that

A

Akotl| Akot(s1)ll1 + [|terms involving Py and P <t ’

-

then N
) . ! *
o "81 - ,\k"tzai(sl)qa"o‘(i)ul <1
R =1 -

If therefore follows that for some g;,

“@

V. > “

m(supp s1 Nsupp g;) # 0. .

] L]

- - [}
’ \
i ,

From Lemma 3.3.1, né"know that the support of any s; must intersect the

Y “

bl e »,
.support of some g¢; on a set of positive m measure. If I >.1;, then at least two g;’s,
s1 and sy say, must ‘intersecé the support of a common g;, say g;, on a set of positive

m measure. Let ’ -

n
3 M t . L4

, D1 = suppg; Nsupp sy,

D; = supp g1 Nsupp s2.
Then m(Dy)> 0 and m(D;) > 0. Let s = s;|p, Then.
. . 4 ’\ - . L

.~ suppsy Csuppar.

3

° -

‘From [1], it follows that for all n, ‘ ) .
supp'P*s} C supp Pl'q;.
oo '

The same argument applies to sh. = 32|p,. Since supps; and supp sz are disjoint,

4 B Q

supp s’ and supp s} are disjoint. Therefore = *
pp Sz PP $2 J ;

L o ls— sl = el sl

YR
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.

Since s\ and s are equal to 0 on the support of ¢j, 7 # 1, and the period of the

limit sequence E:;l ai(f)gan(i) is t we have

- Pf's) = ai(s})q1 + Axe(s})
% and

- : Pi'sy = ai(sh)q1 + Axe(s})- ‘
Let us assume: that ||sj|[; > [|s3]l1. Then let us chodse k large enough so that

1 .
lAki(ll < 5l i=1,2,

< Thqrefore .

P (s) = sp)llh < laa(sh) — an(sp)lllgn ] + Nl Ake(s)llx + | Are(s5)]s

< lar(s1) — a1(s3)| + I3l

/

«-But the right hand side will be less than |a;(s})| + ||s4]l1 or |a1(sh)| + ||s4]l1- Since
' g
lar(sDl < laallllsill and flas]l < 1, we get lai(s)] + [lshlly < llsi ] + [lsp]| or
" Jar ()l + skl < Nlshll + Nlsgll < sl F lshl- 1n either case

(€]
o

k S
1P (sy — sl < llsills + Wshlly = [Is] = shllx.
A ] : )

We can now ;rove:

\' L]
3.3.2 Theorem - . ‘

" Let P, and P, be constrictive Markov operators such that P, P, have ly, |, densities

irf their spectral representations, respectively. fi‘hen, if
‘ : h ‘ ‘ vy . ' L .
‘ YPa= AP —(1 = \B;

" is constrictive, its representation has | densities, where

15 min(ll,lg).' ‘
»




Proof:: -

We shall ;\vae that for | > [; we get a contradiction. If I > 1), there exists q1, 5,

and s, as above, such that

m(supp s; Nsuppq1) > 0, i=1,2.
Write

91 = (81— 8}) + 3}

;.

Lsr=(s-sp) 5y

where s} -and 8y are defined above. Since P igfconstrictive suppsi Nsupp sy =
0. Therefore, ||s; — s2]] = 2. Let ¢’ be the period of the finite sequence in the

;representatlon of Py. Since 31 and sg are fixed under P
1PfY (51— s2) =2 for ¥ = L.
But now, Q
Pt '(31 — 85) = AFY' PF¥ (5, —s;) + [terms involving P, and Pj].
From the represgntation of P} f fn Lemma 3.3.1, it can be shown that
. ||terms involving P, and Pyl < 2(1 - LA
Choose k' so that k't' > kot -where ko satisfies

N*ot|| Qg o(s1)]| + lterms involving Py and Pyf) <1.

Then "
2=||PFY (1 =)l < AFEYPEE (31 — sp)|| + 2(1 — A¥'¥)

= A1 ""‘,’""'P (1 ~ 81) + 8} — (82 — s) — s3]l| +2(1 =N

SR ~ )+ IPF (52 = )l + 1P (s} — o)



Since, || PF'(sh — sy)ll < llsh — s3I,

’ 2 <Ay —sif| + fls2 — shll + [ls3 — sal]+ 2(1 — AFT)

- 141 Iy
) =)skt"81—82u+2(1—Akt)=2
' since, s; and sz have disjoint support and s} = 1|4, and sy = s3|4, have disjoint

support. Thus we have a contradiction. Repeatiflg the entire argument with P,

and P, interchanged yield® the desired results. »

3.3.3 Corglla;:u Yy

If either Py or Py is exact, then Pj is exact.

Proof:
min(ll,lg) = 1. , . . o ,

| Example =™~

' (i P, and P; are Frobenius-Perron operators associated with maps 71, 73 of the
interval [0,1], and if either 7, or 7» is exact, then the random map (71,72, A,1 — A),

" whose Markov operator is

Py =AP +(1-N)P,

-—
[N

is exact provided Py admits a fixed point. In th‘*is case, the randgm map has a

unique absolutely continuous measure. This generalizes the examples on p. 821 of

¢ ’ \» : -
) . o : ,

rolla -
-~ P is an integfal‘operator with kernel K (z,y) < g(:c) where g € L, and P, is any i
 Markov operator. Then T : A )
. o.~ ' : B : PA=1\P1+(1-A)'P2 0<,\.<1,
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is a constrictive operator and the number of densities in its spectral mpmsentntxon

is bounded by the number of densmes in the spectral repnesentatxon of P,.

Proof: , Cas )

' s .
By example ii) in section 2., P is constrictive. The result follows from the prgof of
Theoremﬁ3.3,2.

3.4 Spectral Represegtation~ and Ergodic Decomposition

Let P be any constrictive Markov operator. Then

{

Pf=a (f)g.+Q(f)

i=1
Let f* € D be a. ﬁxed point of P, Klet b be the period of 2,_.1 ai(f)gi: Then
f* = Pkb 1mpl1&s that . .

I

=3 alf)gi + Qu(f*) .
t'=1

for all k. But |@Qu(f)|| —.0 as & — oo. Since f" and Z,_I ai(f* )g, are fixed o7
functions independent of k Qu(f) = 0 Thus

= Z ai( )

=1

~

LY

From this it follows that supp f* C U,_1 supp g; for every f“ € D fixed under P. . .
Hence the maximum number of independent fixed denslty functlons must be less

than or equal to I. Tha.t is, the number of ergodic components, n of P is bounded

<

by the number of densntxes_m the spectral representation, i.e, n <L

«

Now, if Py, P, P, are constrictive, where

-

PAa= AP+ (1 -))P;
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it foilo@s from Theorem that ! < min(ly,l;), where ! is the number of depsitifas in
the qu’ctrﬂ represe‘nta.tion of Py. |

In [3], it is shown that if 7 : [0, 1] — [0,1] is piecewise continuous, piécéwise '
C! with finitely many discontinuities 7, Tilen T has at most n absol{ltely contin-
* uous invariant measures whose densities f, fa,..., fn are disjoint. Let P, be the
Frober'lius-Perron opera.to.r of 7. then P, f; = f;,t = 1,2,...,n. Under the assump-
tions that |r'(z)| > 8 > 1 and |’r"(:1:)|/-|’r'(:z:)|2 < ¢ < oo, it can be shown that
P, is constrictive [3]. Hence by the spectral representatidn.Theorem, there ex;sts l
densities {g1,02,...,gn} such that Prg; = g, where @ : 1,2,...,1—1,2,. ..,l'_is'
a permutation. |

. s

" 3.4.1 Theore_r_u.
Let 1y, T be maps as in the foregoing paragrap]i and let Py, P be their Frobenius-

_ Perron operators. Then

[y

t Py=AP +(1-NP \

1

. ‘
is constrictive. If the permutations in the spectral representations of P; and P, are

cyclical, we h'gve.

n S min(ll, 12’) = min(nl, nz),
where n; is the number of independent densities in the ergodic decompositioﬁ of };,

i=1,2

.

~ Proof:

n

Consider Ty and let P, = -P,,. Let a;.: 1,2,...,l; — 1;2,...,11 be a cyclical
permutation. (This is equivalent to P being ergodic [?, Thm 5.5.1]) Then Pf*g; = g;, \
where {91, ¢2,...,91,} are the densities of the spectral repi‘&ent_:a.tion of P;. But

by the ergodic decomposition Theorem [3], there can be at most n; such densities.

a

~

t



ﬁence h £ny. But iy 2 ny. Thus ny = l) and simijlarly ny = l3. It therefore
: follows that

. n < min(ly, l3) = min(ny,n,). o
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