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ABSTRACT

Using Simulated Annealing to Minimize the Cost of Multipoint Lines in Centralized
Computer Networks. Implementation for Windows 3.1™

Daniel B. Tomiuk

We focus on a problem encountered when designing centralized
telecommunications networks, namely, the ferminal layout problem. Given each
terminal’s geographical location, the problem consists in creating multipoint lines rooted at
a central site (typically a concentrator) in order to save on connection costs. Well-known
multipoint line topologies are the tree, the bus, and the loop. When terminals are assigned
a weight representing the average traffic amount exchanged with the central site and lines
are constrained by the amount of traffic they can carry, the tree-topology problem is
referred to as the Capacitated Minimum Spanning Tree (CMST) problem. Algorithms that
generate solutions for CMST problems create tree structured networks but can also be
used to produce bus structured networks by imposing additional constraints. As for the
loop topology, the problem is analogous to the Vehicle Routing problem found in
Operation Research.

These problems are NP-Complete. Finding an optimal solution in an acceptable
amount of time is, therefore, unlikely due to the exponential growth in complexity relative
to problem size. Nevertheless, techniques yielding exact solutions have been developed
but are limited to networks of no more than, say, 50 terminals. Alternatively, heuristics

solve the problem to near-optimality with acceptable computational effort.
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We designed applications with graphical output capabilities for Windows 3.1™
using simulated annealing (SA) in an attempt to improve upon well-known heuristic
solutions. Our SA programs are presented along with computational results on data sets
containing up to 250 terminals. Results are evaluated and compared with those obtained

with other heuristic methods.

iv



ACKNOWLEDGEMENTS.

The author wishes to thank first and foremost Professor Jean-Marie Bourjolly for
his encouragement, guidance, continuous support, and the time he set aside for the
valuable weekly discussions pertaining to this work and without whose help this thesis
would have not been possible. I would also like to express my deepest gratitude to
Professor Samuel Pierre for his suggestion of the research topic and his valuable help prior
to and during this work. In addition, I would also like to thank Professor Mohan
Gopalakrishnan for his help during my studies at Concordia and his input towards this
thesis.

I kindly thank my friend, Gene Kapantow for his encouragement, valuable
suggestions, and for his uncanny ability to ‘surf the net’ and find solutions to some
programming problems I encountered when implementing the programs in Delphi 1.0™.

I thank the administrative staff of the M Sc. program and particularly convey my
deepest gratitude to Mrs. Heather Thomson and to Theresa Sarazin-Wadey for their
patience, understanding. and all their help during my studies

Finally, I am very grateful to my family for their support and understanding



Chapter 1 -

Chapter 2 -

TABLE OF CONTENTS

Introduction, Basic Concepts, and Definitions
1.1 - Introduction

1.3 -Outlineof the Thesis............................................
Design of Centralized Networks................................ .
2.1 - An Overview of the Problems Arising in the Design of
Centralized Networks............................._..
2.2 - Media and Hardware Component........._............... ..
2.2.1 - Conductive Media.....................................
222-Terminals......................................
2.2.3 - Point-to-Point Versus
Multipoint Connections... e
2.2.4 - Concentrators and Concentratlon
Techniques.... .
2.2.5 - Incentives for Usmg Multlpolnt Lmes.
2.2.6 - Possible Drawbacks of
Using Multipoint Lines... e
2.2.7 - Design Issues for Multlpomt Lmes ................
2.3 - Topologies for Multidrop Lines..................................
2.3.1 - The Hierarchical (Tree) Topology...................
2.3.2 - The Loop (Ring) Topology..............c.cc0ooco.....
23.3-TheBusTopology.....................cccooveiiieii ..
2.4 - Centralized Network Design Problems..........................
2.4.1 - The Concentrator Location Problem..............
2.4.2 - The Terminal Assignment Problem.................
2.4.3 - The Terminal Layout Problem
(The Design of Multipoint Lines)...................
2.4.3.1 - Basic Notions of Graph Theory.........
2.4.3.2 -The Minimum Spanning Tree
Problem and Extensions.....................
2.4.3.3 - Extending the MST
to Include Capacities.........................
1.5.3.4 - The Complexity of the CMST
Problem and Constrained
Optimization Techniques..................
2.5 - Heuristics for the CMST problem..................................
2.5.1 - First Order Greedy Algorithms.......................
2.5.1.1 - The Esau-Williams Algorithm...........
2.5.1.2 - The Modified Kruskal Algorithm......
2.5.1.3 - The Modified Prim Algorithm..........

14

17
20

21
21
23
23
24
25
27
27
29

31
31

32

33

35
37
38
38
41
42



2.5.1.4 - Vogel’s Approximation

Method (VAM).............................. 42
2.5.1.5 - A Unified Algorithm................. . 43
2.5.2 - Second Order Greedy Algorithms........ ... 44
2.5.3 - Clustering Algorithms........................... 45
2.5.3.1 - Sharma’s Algorithm.................._. . 45
2.5.3.2 - The McGregor and
Shen Algorithm....... ......... . .. 46
2.6 -The Terminal Layout as a Bin Packing
Problem : An Alternative to the MST Approach........... 47
2.7 - Extentions to Other Topologies......................... . 48
2.7.1 - Extending the CMST to
the Loop Topology................................... 48
1.8.2 - Extending the CMST to the Bus Topology..... 50
Chapter 3 - An Overview of Simulated Annealing.............................. . 51
3.1 - Origins of Simulated Annealing......................... . . 51
3.2 - The Annealing Schedule. ... 55
3.3 - A Variation on the Generalized
Simulated Annealing Model............................... 57
3.4 - Various Modificationsto SA............................ 59
3.4.1 - Storing the Best Solution Obtained...... .. ... 59
3.4.2 -Starting with a Good Initial Solution........... ... 59
3.4.3 -Combining Different Stopping Criterias.......... 60
3.5 - SA Research into the Terminal Layout Problem......... . 61
3.6 - How We Generated Neighbour Solutions................ . 62
3.6.1 - Generating a Neighbour Solution
for the Bus and Loop Topologies.................. .. 62
3.6.2 - Generating A Neighbour Solution
for the Tree Topology....................coc............. 67
Chapter 4 - Description and Implementation of our Algorithms............ ... 71
4.1 - Algorithms for the Bus and Loop Topologies................ 71

4.1.1 - Method (1) : Considering a Set

of Neighbour Solutions Obtained

from Randomly Selected Terminals............. . 73
4.1.2 - Method (2) : Considering a Set

of All Possible Neighbour

Solutions from Two Randomly

Selected Lines. .................................... 74

4.1.3 - Method (3) : Considering All
Possible Neighbour Solutions......................... 74
4.2 - An Algorithm for the Tree Topology.............................. 76
4.3 - Data Structures Used by the Algorithms................... . 78



4.3.1 - Data Structures Used to Represent the
Bus and Loop Network Topology

in all Three Methods...................ccooovviiiioii

4.3.2 - An Additional Data Structure

Needed for Method 3.........................oo0vi oo

4.3.3 - Data Structure to Represent the

Tree Network Topology.......................coccooo......
4.4 - Pseudo-Code Describing the Algorithms.....................

4.4.1 - For SA Implemented for the

Bus and Loop Topologies..................................

4.4.1.1 - For SA Implemented Under

Method (1).............................

4.4.1.2 - For SA Implemented Under

Method (2)...........oooooeoeoe

4.4.1.3 - For SA Implemented Under

Method (3)...............ooooi .
4.4.2 - For SA Implemented For the Tree Topology.....

Chapter 5 - Computational Results and Analysis....
5.1 - Results for the Bus Topology ( Method l ) .......................
S.2 - Results for the Bus Topology ( Method 2). ...................
5.3 - Results for the Bus Topology (Method 3 ). ....................
5.4 - Results for the Loop Topology ( Method 1)...................
5.5 - Results for the Loop Topology ( Method 2 )....................
5.6 - Results for the Loop Topology ( Method 3 )....................
S.7 - Results for the Tree Topology...................c...ccocooooooeie..
5.8 - Overall Average Improvement on the Initial Solutions...
5.9 -Analysisof Results....................................
.10 - Limitations of this Research...................................

Chapter 6 - Computational Results and Analysis....................................
6.1 -Conclusion......................................

Bibliography.. ... e

Appendix - Input and Output Capabilities of the Programs.......................

viii



List of Figures:

Figure

2.1
2.2
23

24
2.5
2.6
2.7
2.8
2.9

2.10
2.11
2.12
3.1
3.2
3.3
34
3.5

3.6

4.1
4.2
4.3
4.4
4.5
4.6

Al
A2
A3
A4
AS
A6
A7
A8
A9

A centralized computernetwork....................._...... . 8
Point-to-point connections............................. 14
Multidrop lines where terminals are configured )
sequentially (bus topology).............................. . 15
General multiplexer configuration........................... 18
A concentrator configuration......................_._. .. 19
A multidrop line configured as a tree with three subtrees.... 23
A multidrop line using a loop configuration.... ... 24
A multidrop line using a bus configuration.......... ... 25
A centralized network containing all three types

of multipoint tepologies........... ... 26
A minimum spanningtree....... ... .. . 33
ACMSToproblem.....................ooooov 39
The Esau-Williams solution with Wmax=2 and all w;=1... 41
An optimization problem......................_._. ..~ 54
Placing terminal Ti following terminal T 64
Placing terminal Tj following terminal Ti........................... 65
Swapping terminal Tiand Tj..........................._.. . 66
The Esau-Williams solution showing a capacitated

minimum spanning tree.........................__ . 67
The modified Esau-Williams solution showing a

capacitated minimum spanning tree with a lower cost..............____ 69
Alocal minimatrap............................. . . 75
Diustration of abusmetwork........................._..... . 78
Data structure representing a bus network........................._ . 79
Neighbour solution generating process used by method 2................. 81
Neighbour solution generating process used by method 3........... ... 83
Assigning probabilities to neighbour solutions for method 3..... . . 86
Example of the initial window......................._._..... 133
Creating a random data set of 50 terminals........................... 134
Loading an existingdatafile................................ .. 134
Program parameters...................................... ... 135
An example of the summary ofresults........................_........ 137
An example of textresults........................................ 138
Format of text results for the loop and bus topologies........................ 139
Format of text results for the tree topology.................................. 140
Example of a graphical result for the bus topology

showing the Esau-Williams solution......................................._ 141



Al0 Example of a graphical result for the bus topology

showing the SA improvement........................... . 142
All Example of the program’s capability to display the

differences between the initial and SA solutions..... ... 143
Al2 Buttons of the toolbar used in positioning the graphical display....... 144
Al13 The zoom buttons, terminal numbering buttons, and the

‘find’ terminal and line buttons. ... 144
Al4  The print button, the solution button, and the exit button........ 145
AlS  Example of graphical output for the loop topology.(initial solution).. 145
Al6 Example of graphical output for the loop topology.(SA solution)....... 146
Al7 Example of graphical output for the tree topology.(initial solution)... 147
Al8 Example of graphical output for the tree topology.(SA solution)........ 148
List of Tables:
Table
5.1 Results for the bus topology (method 1) for

data sets consisting of S0 terminals............................. 100
5.2 Results for the bus topology (method 1) for

data sets consisting of 100 terminals........................... . 101
5.3 Results for the bus topology (method 1) for

data sets consisting of 150 terminals................._............... 101
5.4 Results for the bus topology (method 1) for

data sets consisting of 200 terminals............................ 102
3.5 Results for the bus topology (method 1) for

data sets consisting of 250 terminals.............................. . 102
5.6  Results for the bus topology (method 2) for

data sets consisting of 50 terminals................................ 103
5.7 Results for the bus topology (method 2) for

data sets consisting of 100 terminals.................................. 104
5.8  Results for the bus topology (method 2) for

data sets consisting of 150 terminals............................._..... . 104
3.9 Results for the bus topology (method 2) for

data sets consisting of 200 terminals................................. . 105
5.10  Results for the bus topology (method 2) for

data sets consisting of 250 terminals................................... 105
S.11  Results for the bus topology (method 3) for

data sets consisting of 50 terminals................................... ... 106
5.12  Results for the bus topology (method 3) for

data sets consisting of 100 terminals................................. 107
S.13  Results for the bus topology (method 3) for

data sets consisting of 150 terminals.................................... 107



S.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.28

5.26

5.27

5.28

5.29

5.30

531

5.32

5.33

5.34

538

5.36

Results for the bus topology (method 3) for

data sets consisting of 200 terminals................._........_ 108
Results for the bus topology (method 3) for

data sets consisting of 250 terminals........................._ . 108
Results for the loop topology (method 1) for

data sets consisting of 50 terminals............................. . 109
Results for the loop topology (method 1) for

data sets consisting of 100 terminals............_....._.._._ 110
Results for the loop topology (method 1) for

data sets consisting of 150 terminals............ ... 110
Results for the loop topology (method 1) for

data sets consisting of 200 termimnals............................ 111
Results for the loop topology (method 1) for

data sets consisting of 250 terminals............................ 111
Results for the loop topology (method 2) for

data sets consisting of 50 terminals............................ 112
Results for the loop topology (method 2) for

data sets consisting of 100 terminals.......................... 113
Results for the loop topology (method 2) for

data sets consisting of 150 terminals.............................. 113
Results for the loop topology (method 2) for

data sets consisting of 200 terminals............................. 114
Results for the loop topology (method 2) for

data sets consisting of 250 terminals............................ 114
Results for the loop topology (method 3) for

data sets consisting of S0 terminals...............__............ 115
Results for the loop topology (method 3) for

data sets consisting of 100 terminals............................ 116
Results for the loop topology (method 3) for

data sets consisting of 150 terminals..................._........ . 116
Results for the loop topology (method 3) for

data sets consisting of 200 terminals........................._.... . 117
Results for the loop topology (method 3) for

data sets consisting of 250 terminals......................_..._... .. 117
Results for the tree topology for

data sets consisting of 50 terminals............................. 118
Resuits for the tree topology for

data sets consisting of 100 terminals................................... . 119
Results for the tree topology for

data sets consisting of 150 terminals.................................. .. . 119
Results for the tree topology for

data sets consisting of 200 terminals................................ . 120
Resuits for the tree topology for

data sets consisting of 250 terminals...................................... 120
Average improvement for each heuristic. ................................. .. 121



CHAPTER 1 : INTRODUCTION, BASIC CONCEPTS, AND DEFINITIONS.

1.1 - Introduction.

Centralized computer networks contain a large number of components
interconnected together. Basically these components represent terminals and a central
site, while the connection links depict how these components are interconnected using
various types of data communication medium, generally referred to as ‘lines’.

The terminals exchange data among themselves and with the central site which can
be either the central computer or a line-concentrating device connected to it. This
exchange of information consists of sending and receiving messages over various types of
medium intermittently with a transmission time usually lasting no more than a few
seconds. By knowing the average amount of dialogue (traffic or weight) between each
terminal and the central computer, it becomes possible to interconnect these components
at a minimal cost given the type of network configuration desired and data transmission
capabilities of the medium.

When the data communication medium linking network components is a line (a
wire or a cable as opposed to radiated media such as satellite technology), the cost of the
network is a function of the aggregate geographical distance the connection links must
span in order for each terminal to be able to exchange data with the central site. If the
amount of data exchanged between a terminal and the central site is quite large, the
terminal and the host are typically connected in a point-to-point fashion, where the

terminal completely monopolizes the transmission line connecting it to the central site.



However, if this is not the case, economies of scale dictate that in order to take advantage
of commercially available lines whose maximum capacities are typically gauged with
discrete values such as 2400, 9600, 14400, 28800, 57600 bits per second, one connects
several computers onto a ‘high-capacity’ line, where the line is shared by several terminals
at once. Lines structured in such a way are called multidrop or multipoint lines. Since a
weight is associated with each terminal and a constraint is typically imposed on the
capacity of transmitted data the lines can carry, the design of multipoint lines gives rise to
a computationally complex problem called the terminal layout problem. For terminals
connected to a central site using a multipoint line, three general types of line arrangements
are possible. These are referred to as ‘topologies’. A ‘tree’ topology is a multipoint line
where terminals are arranged hierarchically, a ‘bus’ contains terminals arranged
sequentially in a line, while ‘loops’ are similar to buses but have both extremes connected
to the central site instead of just one. Alternatively, when each terminal is directly linked
to the central site using a point-to-point connection the network topology is called a
‘star’.

This thesis focuses on the adaptation of Simulated Annealing to the terminal layout
problem in centralized computer networks. We introduce a set of programs implemented
under the Windows 3.1™ environment that use the simulated annealing process to improve
upon results obtained by certain heuristic resolution algorithms. These programs were
created to be user-friendly and offer the user th; capability of displaying graphical results

in order to visualize the network components and its connections.



1.2 - Problem Statement.

The focus of this thesis is on a subproblem of network topological design typically
referred to as the terminal-layout problem. Once the number and locations of
concentrators are known, and the optimal interconnection configuration of these
concentrators to the central computer is established, we must determine how to
interconnect every terminal in the cluster of terminals assigned to each concentrator.
Terminals can be either connected in a point-to-point or multipoint fashion. Multipoint
lines, also known as multidrop lines, consist of many terminals linked together onto one
line in order to lower costs. The manner in which the terminals of a multipoint line are
linked is known as the line topology. In the terminal layout problem, each terminal is

assigned a weight (w;) that represents the average amount of traffic exchanged between it

and the central computer, and the data communication lines that are used for this exchange
are constrained by a maximum allowable line weight (Wmax) to reflect the capabilities of
commercially available lines; their cost is a function of the distance that they must span.
The optimal solution will be one which minimizes the total cost of the network subject to
the constraint that the weights of all terminals on each line may not exceed the data
transmission capability of the line, and to the connectivity constraints imposed by the
desired topological architecture. In addition, because of reliability concerns, network
designers typically impose a limit on the number of terminals that can share a single
multidrop line to limit the disruptive effects of a breakdown.

As we shall see, the terminal-layout problem is NP-complete and can be addressed

in two ways: as a ‘line cost (distance) minimization’ problem or a ‘line quantity’



minimization problem. The focus of this thesis is on cost (distance) minimization which
comes down to finding a minimum spanning tree with extra constraints on the traffic
capacities and on the number of terminals per line. The line minimization approach can
also be viewed as a bin-packing problem where terminals with different capacities play the
role of a set of objects of various sizes that must be fitted into the smallest possible
quantity of equally sized bins (lines) having ample enough storage capacities to at least
accept the largest sized object among the set.

There are basically two types of solutions for interconnecting terminals to line-
concentrating devices (or directly to the central computer): (1) exact solutions, which
include branch-and-bound methods, are limited to problems of relatively small size, and
(2) solutions obtained using heuristic techniques. Heuristics have the advantage of
requiring less computer running time while offering solutions that sometimes are near-
optimal. However, the solutions obtained by heuristics are usually local minima.
Simulated annealing (SA) uses a probabilistic modification method that enables the
process not to get trapped too soon in a local minimum while searching to minimize its
cost function. By using SA, we attempt to further minimize the cost of multidrop lines for
the various topologies (tree-bus-loop) by improving upon the results of simple local search
heuristics. To accomplish this, SA must occasionally accept increases in the cost function
that allow it to ‘jump out’ of local minima traps. The analogy is to the physical annealing
process of metals, a process by which a substance is first melted at a high temperature and
then allowed to cool by lowering the temperature slowly, where the cooling schedule

dictates the quality of the final product.



1.3 - Outline of the Thesis.

This thesis is divided into seven chapters. In the first we will state the nature of
the problem and familiarize the reader with basic concepts of network design, including a
description of the physical network components and their functions. In addition, the
characteristics of each type of network topology will be depicted. For the tree
architecture, the terminal-layout problem will be defined as a capacitated minimum
spanning tree problem and explained in detail. Moreover, current algorithms used to
resolve the capacitated minimum spanning tree problem will be examined and discussed.
Extensions of the terminal layout problem to other topologies such as the bus and the loop
architectures will follow.

Chapter two will describe the generalized simulated annealing process and some
variants and modifications that make it an extremely flexible tool in optimization. In the
third chapter, we shall explain how our programs go about generating a neighbour
solution for the SA process and will include illustrated details of the various neighbour
generating methods. The fourth chapter gives a general description of our algorithms.
Chapter five introduces the data structures used when programming the algorithm, and
describes how these were manipulated to generate neighbour solutions. Chapter six
describes the SA algorithms in detail using pseudo-code.

Finally, the computational results obtained by running the programs will be
presented and analyzed, followed by some concluding remarks. The appendix includes the
details of our programs describing our SA applications implemented in Delphi™ for the

Windows 3.1™ environment. More specifically, it will illustrate the input and output



capabilities of the programs. This description includes an account of the functions,

graphical capabilities, and limitations of the applications produced.



CHAPTER 2 : DESIGN OF CENTRALIZED NETWORKS.

2.1 - An Overview of the Problems Arising in the Design of Centralized Networks.

A network is defined as being “two or more computers connected via a
communications medium, together with all communications, hardware, and software
components.  Alternatively, a host processor, together with its attached terminals,
workstations, and communications equipment such as transmission media, modems, and
so on.” [Stamper, 1991, p.600]. Examined topologically, networks can be considered as a
three level hierarchical structure. At the first and lowest level we find terminals dispersed
geographically at known locations. At the second level in the hierarchy are line-
concentrating devices with a limited number of possible sites for locating them. These
sites may or may not coincide with the terminal sites. These intermediate line-
concentrating devices are generically referred to as ‘concentrators’ and are connected to
the central computer via high speed lines such as fiber optic cables. When designers can
identify a cluster containing terminals that are in close proximity to one another but
relatively far away from the central computer, the use of a line-concentrating device may
be justified. These devices “consolidate low-speed lines into higher-speed lines, taking
advantage of the economies of scale of cost versus capacity” [Kershenbaum, 1993, p.179].
When such a device can be placed in the vicinity of the cluster, terminals can be connected
to this device rather than spanning the distances needed to link each and every terminal to
the central computer. Economies of scale dictate that in some instances the savings such

devices generate outweigh the additional costs (acquisition, installation, and connection)



incurred. Finally, at the highest level of the hierarchy we find a single element referred to
as the central computer or simply the centre.

A network that is designated as centralized is a “network where all communication
is to and from a single (central) site. In such networks, the other sites usually have
relatively simple equipment not capable of making (message) routing decisions. Also,
with all traffic going to a single site, there is little motivation (other than reliability) for
including lines between other sites. This leads to a tree topology where there is only one
possible path to the center (and hence, between any pair of nodes)” [Kershenbaum, 1993,

p-179]. Figure 2.1 illustrates the hierarchical structure of a centralized network.

Figure 2.1 A centralized computer network.



The design of centralized networks is made up of three subproblems. These are:

1 - Concentrator Location - Deciding where and how many concentrators to use,

if any.

2 - Terminal Assignment - Determining what terminals will be assigned to which
concentrator where concentrators are limited in the number of terminals and

amount of traffic that they can accommodate.

3 - Terminal Layout - Selecting a cost effective way to connect the terminals to
their assigned concentrator with possible configurations being the star, the tree,

the bus, and the loop. All of which will be discussed below.

Before addressing each of these problems in detail, we will briefly discuss some of
the network components in order to give the reader a rudimentary understanding of

centralized network design.



2.2 - Media and Hardware Components.

2.2.1 - Conductive Media.

Today, wires constitute the most commonly used transmission medium.. They are
available at relatively low prices but are vulnerable to signal distortion or error and have
limited transmission rates for long-distance links. Wires can be classified either as private
(deployed by the user) or public lines (provided by the telephone company). Ordinarily,
public lines are used where distances are large or geographical factors prevent the
installation of private lines. Stamper [1991] notes that if distances are small, the use of
private lines allow speeds of up to 80 000 bps. When distances are large, data
communications can employ either switched or leased lines. In addition to using the same
equipment as a regular voice telephone call, the use of switched connections require
modems (an acronym for modulator/demodulator). These devices change "a computer
signal from digital to analog format for transmission along a medium such as telephone
lines, and another modem converts the signal back to digital format at the receiving end”
[p.5]. Typical transmission speeds are 2400, 4800, 9600, 14 400, 28 800 bps. Although
telephone lines were originally implemented to send analog signals, technological
improvements in recent years have enabled telephone companies to devise digital data
technology that allows speeds of up to 56 000 bps with switched connections. By simply
dialing the telephone number of the other device’s line, one of the two devices to be
connected sets up the circuit. Commonly, “switched lines are used when the amount of
transmitted data is small or when many locations are contacted for short periods” of time.

[Stamper, 1991, p.46].
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Alternatively, leased lines are put to use when “the connection time between
locations is long enough to cover the cost of leasing or when speeds higher than those
available with switched lines must be attained” [Stamper, 1991, p. 46]. With leased lines,
also known as dedicated lines, the connection is sustained throughout the day. The cost
of leased lines not only depends on the distance the line must cover and its transmission
speed, but also on its susceptibility to error. By conditioning the leased line, the telephone
company can lower error rates and increase transmission speeds. Typically, conditioned
leased lines operate at speeds of 64 000 bps, but speeds superior to 2 billion bps are
available through today’s digital data transmission technology.

Coaxial cable is used in local area networks (LANs) that normally span short
distances such as office buildings situated at close proximity. Data transmission over
coaxial cables involves using either frequency separation that enables several channels to
be transmitted over a single cable at various transmission speeds or by fluctuating the
voltage along the channel, which does not allow multiple channels on a single cable but
has the advantage of being less expensive than the previous option. Theoretically, bit rates
of more than 400 Mbps are feasible although current transmission rates range around 100
Mbps.

A relatively new communication medium is Fiber optic cable used by telephone
companies instead of long-distance wires and for certain local data communication
network implementations. Made up of glass or plastic fibers woven together, the
technology consists of directing light pulses through the cable from source to destination
allowing speeds over 2 billion bps (2Gbps). Although fiber optics is costly for short

distances compared to wire, it becomes cost effective as distances or data transmission
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requirements increase. Other types of data transmission mediums also include satellite
and microwave technology; the interested reader is referred to Stamper [1991] for more
information on conductive and radiated media including their benefits, limitations, and

current commercial implementations.

2.2.2 - Terminals.

A terminal is the user’s access to the data communication network. It is...

“an input and/or output device that may be connected to a local or remote
computer, called a host computer. The terminal is at certain times
dependent on the host for either computation or data access or both.

The phrase ‘may be connected’ allows for switched connections and

devices that have some degree of processing power and are connected to a

host on a periodic basis...”[p.128 Stamper, 1991, p. 128] .

Terminals can be loosely classified into a number of categories according to their
capabilities. Although overlaps exist, terminals can be usually labeled as dumb, smart, or
intelligent. A “dumb terminal passively serves for input and/or output and does no
additional processing. Since dumb terminals usually have no memory to store entered
data, each entered character must immediately be transmitted to the host, unsolicited, and
the host must be always ready to accept data from the terminal” [Stamper, 1991, p. 133-
134]. Smart terminals on the contrary, have memory. They can receive and store data

transmitted from the host computer. Entered data can be saved in the smart terminal’s

memory until the entire record is ready for transmission. Smart terminals are given a name
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that both they and the host recognize. This name is commonly referred to as an address.
“The host can transmit data addressed to that terminal and the terminal will recognize that
the data is intended for it and store the data in memory” [Stamper, 1991, p. 135-136].
Addressing further enables Host control, where the host can dictate when and what
terminal is allowed to send or receive data. Addressing and host control allow smart
terminals to share a common medium (the same line). Lines containing several smart
terminals are called multipoint lines. They allow cost reductions in ways that will be
discussed further on. Stamper [1991] describes an intelligent terminal as having the same
capabilities as a smart terminal “but in addition can participate in the data-processing
requirements of the system.” [p. 139] They usually have more memory than smart
terminals since part of this is necessary to run programs and store program data.
Secondary storage devices such as hard drives are typically fitted into these machines for
downloading and uploading from, and to, the host computer or to store and run stand

alone applications.
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2.2.3 - Point-to-Point Versus Multipoint Connections.

In a point-to-point connection, a terminal is placed at the end of each
communication link from the host. Figure 2.2 below shows a group of terminals where

each one is directly connected to the host computer.

8 — g

Host

Figure 2.2 Point-to-point connections.

Contention is one simple way of managing the data flow between these terminals.
The process consists of a station asking the other party for control of the connection when
it is ready to transmit. If the other station is ready to receive, control is simply granted to
the requesting device. “Upon completion of the transfer, control is relinquished and the
link goes into an idle state, awaiting the next bid for control. A collision may occur when
both stations simultaneously bid for the line”[Stamper, 1991, p. 151]. To alleviate this
problem, either one station is designated as having priority over the other or each station is
asked to wait for a certain time period before reattempting a bid for control. To avoid

additional collisions, time-out intervals for each party are assigned different values. Pure
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contention on the contrary does not require line bids, but allows devices to transmit
whenever they are ready. If the message is received correctly, the receiving station returns
a positive acknowledgment message. If the sender does not receive this acknowledgment
message, or, if a certain period of time has elapsed without any communications at all, the
sender assumes that the message was not correctly received and begins retransmission.

In multipoint connections also referred to as multidrop connections, several
terminals may share the same line as depicted in figure 2.3 below. Multidrop lines are
made up of several links either placed sequentially, hierarchically, or forming a circuit. The
amount of terminals allowed on a multidrop line depends not only on the transmission
capacity of commercially available lines and the amount of traffic (messages or bytes per
second) of the terminals themselves, but also on the reliability concerns of the designers
that may limit the quantity of terminals disposed on each line. When the number of
terminals on a line increases, not only does each terminal’s average access to the line
decrease but in case of a link failure, the potential number of ‘downed’ terminals in the

system rises.

Host

-

Figure 2.3 Multidrop lines where terminals are configured sequentially (bus topology).
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Although contention-like line disciplines also work for multipoint lines, when the
number of terminals on a line increases, so too does the number of possible collisions on
each channel. In cases where the collision rate is high, the average rate of data transfer
diminishes due to the time needed to resolve these collisions. For this reason, different
methods were conceived to manage the data flow between devices for multidrop
connections. The most common is known as polling. One station, usually the host
computer (but also possibly the concentrator), is designated as supervisor or primary
station.  All other stations are referred to as secondary stations. The supervisor assumes
total control for managing data flow over the communication link. By asking each
secondary station whether it is ready to transmit data, the supervisor can decide when, and
to what secondary terminal, the permission to proceed is granted. By referring to its list
of terminal addresses, the supervisor sends a short poll message to the chosen terminal. If
the latter has nothing to send, it transmits back a negative acknowledgment. Terminals
grouped into multipoint lines must either be ‘smart’ or ‘intelligent’ since they require some
memory in order to store the data they want to send upon awaiting permission to transmit.
As we will see below, a concentrator can also be a supervisor managing several multipoint
lines.

Selection occurs when the supervisor needs to send data to one or more secondary
stations. Similar to polling, it begins by selecting a station by finding its address, and it
inquires whether the station is ready to receive data or not. Again, the secondary station
responds either positively when it is ready to receive or negatively when, for instance, its

memory buffer is full and therefore unable to receive.
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2.2.4 - Concentrators and Concentration Techniques.

Although polling and selection allow terminals to share a common communication
channel, they however require the use of smart terminals for the protocols necessitate
terminals that are addressable and have memory. Furthermore, “polling protocols
designed to support high data (transfer) rates impose severe limitations on the number of
terminals that can be put on a multidrop line and their distance to the centre. " [Gavish,
1991, p.18]. Alternative line sharing techniques, such as, multiplexing and concentration,
have been developed to respond to these limitations. These techniques divide a
communication link into segments, each of which can carry information coming from a
separate source. Each segment is separated from other segments by either time-division
multiplexing (where each data source is allocated a time slot) or Jfrequency-division
multiplexing (where data sources are transmitted over different frequencies).

One multiplexer at the ‘remote site’ allows multiple signals to be transmitted over
a single link by merging all incoming terminal lines into one line. The combined data is
then transmitted over this single link to the host. At the host end a second multiplexer
separates the data and distributes it among the outgoing terminal lines. ~Multiplexers
require that the number of lines going into the host side be equal to the number going out
to the terminals at the remote side. They make line sharing transparent to the users; in

essence they create the illusion and feel of a point-to-point connection.
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Multiplexer . Terminal ;

Figure 2.4 General multiplexer configuration.

“A Concentrator is also a line sharing device. Its primary function is the same as
that of a multiplexer : to allow multiple devices to share a communication circuit. Because
a concentrator is a computer, however, it can participate more actively than a multiplexer
in any application” [Stamper, 1991, p. 174]. Although in recent years additional functions
have been added to multiplexers that have narrowed the differences between multiplexers
and concentrators, Stamper describes their main principle differences as follows:

“ 1. Concentrators are used one at the time; multiplexers are used in

pairs.

2. A concentrator may have multiple incoming and outgoing lines, with a
different number of incoming lines than outgoing lines; a multiplexer takes
a certain number of incoming lines into one line and converts back to the

same number of outgoing lines.

18



3. A concentrators is a computer and may have auxiliary storage for use in

support of an application.

4. A concentrator may perform some data-processing functions such as
device polling and data validation.” [p. 174]

 —

=] |
Concentrator :

Hosts

Figure 2.5 A Concentrator Configuration.

Further if the concentrator is equipped with disk drives it can allow intelligent terminals to
continue some of their functions even if the link between the concentrator and the host
computer is down. Disk storage on a concentrator also provides store and forward
capabilities; if the communication lines become too busy, the concentrator can store the
transmitted data and forward it (retransmit) at a later time. With store-and-forward
capabilities, the message one wishes to send is divided up into slices called ‘packets’ that
contain their destination address. A ‘routing table’ is consulted to find the possible

itineraries each packet can take to reach the destination independently from one another.
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Once all packets arrive at destination they are reassembled by a ‘communication protocol ’

that insures that the sequence of packets is correctly received at the destination.

2.2.5 - Incentives for Using Multipoint Lines.

In their infancy, computer networks typically served at most a few hundreds of
users who accessed a single computer centre that was located at close proximity. Because
of these limitations, telecommunications services could effectively be provided by
connecting each terminal in a point-to-point fashion via a dedicated low capacity line (star
topology).

However, as networks evolved and expanded, distances and the number of
terminals that they supported grew increasingly larger, and the star configuration’s cost
became prohibitively high. Besides such economical factors, other considerations include
the fact that human beings have significantly slower response times when compared to
computers, typically resulting in a very low utilization level of dedicated links. By
grouping terminals into a multipoint configuration, it is possible to take advantage of the
low line utilization that normally occurs in the star topology. Furthermore, when
multidrop lines can be supported by a good polling protocol, their creation allow
considerable cost reductions without the users ever perceiving any degradation in service
quality.

These cost reductions stem from economies of scale. Since only one line is
needed, if modems are used, fewer of them are required. Note that for each point-to-point

connection one pair of modems is necessary, while in multipoint configurations one
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modem per terminal plus one for each line at the host would suffice. And if the terminals
are sufficiently close in proximity, their individual modems can be replaced by a cluster

controller modem that supports several terminals at once.

2.2.6 - Possible Drawbaci(s of Using Multipoint Lines.

Multipoint configurations also have their disadvantages. The terminals required on
such lines must be ‘intelligent’ to some degree, which makes them more expensive than
the terminals used in point-to-point configurations. However this increase in cost is
usually offset by the savings in transmission medium and modems. Another disadvantage

is an increase in the users’ waiting time when too many terminals share the same medium.

2.2.7 - Design Issues for Multidrop Lines.

Capacity issues come into play since the transmission medium (typically a line) is
limited by the amount of data it can carry (referred to as line speed, and commercially
available in discrete sizes such as 2400 bps, 4800 bps, 9600 bps, etc.). Consider the

following example:[see Kershenbaum, 1993].

Suppose there are 8 terminals with weights of 100 characters per second
and 2 terminals with weights of 4000 char/sec. We consider using 9600
bps (or 1200 char/sec since 8 bytes = 1 character) lines and 56 Kbps lines
(or 7000 char/sec). Suppose that, based on delay and stability issues, we

are willing to tolerate at most a 70 percent utilization on the lines, therefore
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the 9600 bps lines can accept up to 1200*0.70=840 char/sec, while the 56
Kbps can only accept up to 7000*0.70=4900 char/sec. Given the previous
information, we can see that the 2 terminals with weights of 4000 char/sec
would be individually placed on a pair of point-to-point 56 Kbps lines, all
the remaining terminals with weights of 100 char/sec could then

‘somehow’ occupy a single multipoint 9600 bps line.

Reliability issues can not only be addressed by limiting the number of terminals any
line can carry, but reliability is also affected by the choice of the topology of the multipoint
lines. Multipoint line topologies are sometimes referred to as network architecture or
network topology. They come in several varieties defined by how the line’s terminals are
interconnected. The most common topologies are the free (also referred to as
hierarchical), the bus, and the loop (also known as the ring). Others exist such as the
interconnected network where every component is connected to every other component
with which it must communicate, and combination network where various types of
topologies are sometimes integrated into one network; these will not be covered in this

thesis.
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2.3 - Topologies for Muitidrop Lines.

2.3.1 - The Hierarchical (Tree) Topology.

The tree structure contains one root node, typically the central computer or a
concentrator. At every following level we find the terminals. Each terminal node may
have several cascaded terminals attached to it. The tree network is illustrated in the

following figure.

Concentrator

Figure 2.6 A multidrop line configured as a tree with three subtrees.

Each node may have a certain number of child nodes ranging from 0 to a predetermined
maximum. Each node in the subtree except for the root node must have a parent node.
Trees are typically inexpensive structures, but have the obvious disadvantage that the

failure of a single link may disconnect a considerable part of the network.
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2.3.2 - The Loop (Ring) Topology.

A loop structure is depicted in figure 2.7 below. A line is a loop when its terminals
possess a parent linking it into the network, and only one child. Furthermore, the first and
last terminals in the structure must be linked to the central site thus creating a circuit.

The reliability of loops is better than that of trees. Although the cost is usually
higher, the reliability issue often warrants the extra expenditure needed in wiring. “All
traffic ordinarily travels in one direction around the loop, say, clockwise. If, however, a
link breaks, the terminals may have the capability of recognizing this and of temporarily
using the remaining portion of the loop in the other direction. This can require a manual
switchover and some rearrangement (usually at the software level) at the central site”
[Kershenbaum, 1993, p.196]. Loop structures are usually used in local area network

implementations that must be highly connected for the sake of reliability.

Figure 2.7 A Multidrop Line Using a Loop Configuration.
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2.3.3 - The Bus Topology.

Although the bus architecture resembles a loop in which one of the ends is not
connected to the concentrator, it is actually a tree topology where the number of child

terminals is constrained to 1.

RN

===

Terminal

P

Concentrator

|

Figure 2.8 A multidrop Line Using a Bus Configuration.

Figure 2.9 illustrates how the various hardware and media components introduced
previously may be combined to create a network containing all three topologies discussed

above.
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Figure 2.9 A Centralized Network Containing All Three Types of Multipoint Topologies.

26



2.4 - Centralized Network Design Problems.

2.4.1 - The Concentrator Location Problem.

The concentrator location problem is a version of the plant location problem in
Operations Research. Given are network points having demands for a given commodity
and several sites for possible plant locations. There exists a fixed cost of opening a plant
with a certain capacity at a given site. The shipping costs from plant locations to demand
points for each unit of the commodity are known. The problem is to determine at which
sites to open plants so as to minimize the total cost consisting of building and commodity
shipment costs. Similarly, in the concentrator-location problem there is a limited number
of terminals that can be accommodated by each concentrator. Boorstyn and Frank [1976]
identify this limit as a function of “the limitations in buffer space, input ports, addressing
structure, to the finite capacity of the line from concentrator to central site which restricts
the amount of traffic from all the assigned terminals that can be handled by each
concentrator, and to the share of resources used by the polling scheme™ [p.31]. Because
of the complicated nature in which these factors combine to estimate the number of
terminals a concentrator can handle, research in this area usually assumes that the
concentrator’s capacity is already known. In the simple model, either one concentrator
‘size’ is considered where all concentrators are assumed to have the same capacity
constraint or even more simply capacities can be utterly overlooked. The basic problem

formulation is:
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mnz = Xcjx; +2Xdy
L J

subject to:
(1.1) Xxj; =1 V;
J
(1.2) _Zx,-j < Ny V;
J
(1.3) xi;, yye {01} V.V

where C;; represents the cost of connecting terminal i to the concentrator situated at
location j, d; represents the cost of placing a concentrator at location j, and M is the total

number of terminals. Equations (1.1) ensures that each terminal is associated to exactly
one concentrator; (1.2) ensures that the concentrators that have associated terminals are
included in the solution,

Xi j = 1, if and only if terminal T; is connected to a concentrator

placed at site j.
Vi = 1, if and only if a concentrator is located at site j.

If a data capacity constraint is imposed on the concentrators, then the following

additional constraint must be added:

(1.4) 2wixy < Wy V;
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where w; is the weight (amount of data) associated with terminal i, and /; the maximum

transmitted data capacity that the concentrator placed at j can accept. A further restriction
can be imposed on the number of terminals that a concentrator can handle, this can be

expressed by :
(1.5) Tx; <Ky v

where K expresses the maximum number of terminals a concentrator can handle and is the

same for all concentrators, but it can be allowed to vary with each concentrator.
Well-known algorithms used for locating concentrators are the COM (Center of

Mass), ADD, and DROP algorithms. We refer you to [Kershenbaum 1993] for further

details.

2.4.2 - The Terminal Assignment Problem.

When a specific set J of concentrators have already been picked, the concentrator-

location problem is reduced to the terminal assignment problem. As in the previous

problem description, cost is generally a function of the distance separating terminal T;

from concentrator C; but unlike in the concentrator-location problem the cost of the

concentrators can be ignored since it is actually a sunk cost. To minimize the cost of
connecting the terminals to the concentrators, the problem is expressed in the following
way:

mnz = 3 cjX;j

iy
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subject to the constraints:
@.1) Sxy; = 1 v,
F
i.e., each terminal must be connected to a concentrator,

(2.2) z w; x,-j < W, VJ

i.e., each terminal has a capacity W ; associated to it and the
sum of these capacities must not surpass the allowable
maximum capacity ¥} of the concentrator they are assigned to.

(2.3) Xij € {0,1} Vv,
where X;; = 1, ifterminal T;is connected to a concentrator
at site j, and
= (0, otherwise.

k]

Furthermore, if each concentrator is limited by the maximum number K of terminals it can
manage, the following additional constraint applies as in the concentrator-location

problem:
(2.4) "[_ x; <K v

Classical algorithms for solving this problem are the Greedy and Exchange

algorithms that are discussed in [Kershenbaum, 1993].
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2.4.3 - The Terminal Layout Problem (The Design of Multipoint Lines).

The solutions to both problems stated above generate clusters of terminals
associated with each concentrator placed at a certain location. The next step in designing
the network is to find the manner in which the terminals in these clusters must be
connected to their assigned concentrators via some type of line configuration.

Designing multidrop lines gives rise to a well-known combinatorial optimization
problem, the capacitated minimum spanning tree (CMST) problem. The problem consists
of finding “trees of minimum total length (cost) subject to the constraint that the aggregate
weight of the terminals on any multipoint line does not exceed a given weight, W.”
[Kershenbaum, 1993, p.182]. Although possible configurations previously described also
included the loop and bus configurations, the tree configuration is the basis for many of
the algorithms that will be discussed in the following pages and we shall therefore
commence with it. But before discussing the problem of optimizing the lines, let us
familiarize ourselves with some basic concepts of graph theory that are useful for the

analysis and topological design of computer networks.

2.4.3.1 - Basic Notions of Graph Theory.

A graph is a collection of nodes connected to one another by edges. If we
designate by V" this collection of nodes and by E the collection of edges, we can denote the
resulting graph by G=(V,E). In a graph made up of » nodes, the maximum number of
edges is given by myv = n(n-1)/2. A directed edge contains an origin and a destination

that are not interchangeable, and serve to model unidirectional communication links, while
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non-directed edges can represent two-way links between pairs of nodes. A graph is said
to be directed when all its edges are directed. An edge is said to be incident to a node
when the node represents either its origin or its destination. The degree of incidence of a
node refers to the number of edges incident to that node, and the degree of a graph
corresponds to the node with the smallest degree of incidence in the entire graph.

A path between two nodes i and j designates a sequence of edges starting at i and
terminating at / with no repeated nodes. Each edge is given with a number called its
‘length’. The length of a path simply designates the sum of all the lengths of the edges
that constitute it. When the origin and destination of a path are identical, we call this a
cycle or circuit. A graph is connected if each pair of nodes is linked by at least one path.
In the case where there exist k paths between each pair of terminals in the graph, it is said

to be k-connected. The interested reader is referred to [ Goudran and Minoux, 1984 ].

2.4.3.2 - The Minimum Spanning Tree Problem and Extensions.

A tree is basically a graph with a degree of connectivity equal to 1 and containing
no cycles. A minimum (length) spanning tree (MST) is a minimum length tree containing
all the nodes of a given graph. In the MST problem, we are given a symmetric matrix ¥ x
V of positive values dj; representing the Euclidean distance of edge (i,j). The task is to
find a shortest spanning tree. Figure 2.10 below, shows an example of a minimum

spanning tree containing two subtrees.
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Figure 2.10 A Minimum Spanning Tree

When creating communication networks, minimum spanning trees become
extremely meaningful and useful since they are...

“the basis for many algorithms and design and analysis techniques.(...)They
are minimal networks; they provide connectivity without any unnecessary
additional links. (...) However, since trees are minimally connected they
are also minimally reliable and robust. This is why actual networks are
usually more highly connected. Nevertheless, the design of a network
often starts with a tree.” [Kershenbaum, 1993, p.139].

Algorithms capable of generating MSTs can be used to for centralized network design by

simple extension of the MST problem.

2.4.3.3 - Extending the MST to Include Capacities.

When designing multidrop lines, a capacity constraint is needed since the lines that
will carry the data to and from the terminals have limited transmission capabilities.
Expressing this constraint can be done by considering that terminals have a unit traffic

requirement which we can depicted as w; (weight of terminal i) while a constraint Wmax

can be placed on the maximum weight any subtree (multipoint line) can carry. This
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constraint indicates the maximum data transmission capabilities of the commercially
available lines being considered, and the solution to this problem is referred to as a

capacitated minimum spanning tree(CMST).

In the CMST, we seek to solve the following problem:

Given :

L. anode set V={v;| i=0, 1, ..., n} representing the terminal locations,
where node v, is the central site and » is the number of terminals,

2. a symmetric function giving the length (cost) C;, of an arc between
any pair of locations,

3. a line capacity constraint Wmax, and a weight (or traffic) w;
associated with each node, where we require that the sum of the
weights associated with the nodes on any multidrop line not exceed
Wmax. This constraint indirectly limits the number of terminals that
can be associated to a multidrop line,

4. no possibility of having a cycle, and

5. that each terminal must have a link connecting it into the
configuration.

Minimize:

2 Cij Xij
'

where X;; is a 0-1 variable associated with each node pair (i, j )
(where i <j) and X;; = 1 if edge (i,j) is selected in the solution.

It is possible to further constrain the problem described above by incorporating both a

limit on line capacity and on the number of terminals any line can handle.
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2.4.3.4 -The Complexity of the CMST Problem and Constrained Optimization

Techniques.

“There is a general agreement among computer scientists that an algorithm is a
practically useful solution to a computational problem only if its complexity grows
polynomially with respect to the size of the input. For example, algorithms of complexity
O(n) or OQ’) are acceptable in this school of thought. (...) Naturally, algorithms for which
the asymptotic complexity is not a polynomial itself but is bounded by a polynomial, also
qualify. Examples are #>° and n log n.” [Papadimitriou and Steiglitz, 1982, p-164]. On
the contrary, an NP-complete problem is a computational problem where “the running
time of algorithms currently known to guarantee an optimal solution is an exponential
function of the size of the problem” [Eglese, 1990, p.271).  Papadimitriou [1978] has
shown that the CMST falls into this category of problems when 2 < Q < n/ 2, where O
represents the number of terminals a line can carry. The interested reader is referred to
Garey and Johnson [1979] for a complete explanation of NP-completeness.

The techniques currently used for solving the CMST problem offer solutions that
fall into one of two classes:

1) Exact solutions  using branch & bound and integer programming techniques
[Chandy and Lo, 1973], [Gavish, 1982], [Gavish, 1983], [Gavish,

1985], [Kershenbaum and Boorstyn, 1983], and more recently,
[Malik and Yu, 1993] and [Gouveia, 1995]

2) Near-optimal solutions using heuristical methods.

In this thesis, we shall completely focus on the latter due to the limitation on

problem size imposed by techniques yielding exact solutions. Gavish [1991] indicates that
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the techniques used to obtain exact solutions are limited to problems involving up to 30
terminals.  Similarly, Kershenbaum [1974] states that “it is generally felt that these
techniques are too slow to be of practical use in the solution of the CMST problem for
networks with more than 50 nodes. Even for networks of such moderate size, when the
constraints are neither very loose nor very tight, these techniques tend to use too much
computer running time to make them practical” [p. 300].

Heuristic procedures offer a respite from this increasing complexity relative to
problem size. In practice, a terminal layout problem consists of several hundred nodes
that need to be connected. Heuristics have the advantage of providing a sometimes decent
solution to large problems with acceptable computational effort. “Running times are on
the order of seconds for networks containing several hundred nodes and the quality of the
solution is generally within 5% of the optimum obtained using branch and bound
techniques” [Kershenbaum, 1974, p.300]. In the following pages, some well known
heuristics developed for the CMST will be introduced and their characteristics explained

and compared.
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2.5 - Heuristics for the CMST problem.

Various heuristics have been proposed for solving the CMST problem. It is
possible to divide these algorithms into three categories loosely based on the way they
create the subtrees of the CMST. Note that when the a capacity constraint is not present,

these algorithms all converge to a minimum spanning tree.

The three classifications are :

1) First Order Greedy Algorithms (FOGA),
2) Second Order Greedy Algorithms (SOGA), and
3) Clustering Algorithms.

The term ‘greedy’ refers to algorithms that use local search. They are also known
as down-hill search and descending algorithms in optimisation literature. They start with
an initial solution i, changes are then made to the current solution while respecting all
constraints to generate a new solution j called a neighbour solution. The change in cost
AGC; ;, is then evaluated. If cost is reduced, the current solution is replaced by the
neighbour solution, otherwise the current solution is retained. The process is repeated
until no additional cost reductions can be generated. The algorithm then terminates at a
local minimum. Basically, the algorithms that fall under this designation differ from one
another by the sequential order in which links are created. The general format of the

greedy algorithm is given in pseudo-PASCAL as follows:
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Procedure GenericGreedy; (Based on minimization)
Begin
Initialize (7);
Repeat
Generate neighbour solution (i — );
Calculate AC,; ;= C(i) — C(j)
If AC;; > 0then i:=j
until AC;; < 0 for all j in the neighbourhood of i;

End;

In the following pages we will introduce various heuristics developed to resolve
the CMST problem. The Esau-Williams algorithm will be given special attention since it

provides the initial solution used by the SA programs described in the following chapter.

2.5.1 - First Order Greedy Algorithms.

2.5.1.1 - The Esau-Williams algorithm.

Esau and Williams [1966] used the notion of a ‘trade-off value’ given by the
formula ;= d j — d y;, where d ; denotes the distance between the terminal i and the
central site ‘0’, while d ; represents the distance from terminal i to terminal j.

Initially, each component i is made up of terminal / and the central site, in other

words, terminals are considered to be directly connected to the central site in a star

configuration. For each pair of components ( / , j ), the trade-off is calculated
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representing the change in cost of removing the central link connecting component I to ‘0’
and forming the link (/ — j ). At each iteration, the algorithm finds the best trade-off ij
and merges the component currently containing terminal / with the component currently
containing terminal /. Before joining these components into one, the combined traffic is
checked to verify that it does not exceed the amount that one line can handle. If the link is
accepted and components i and j are merged, then d g;=d gjif d g; > d gj or d o=dgifd
0i <d gj. The algorithm stops when no additional savings can be obtained by combining
components together. The following example illustrates the iterations of the algorithms:

Consider that a network must be created with terminals numbered from

1 to 4 and a concentrator denoted as terminal ‘0’. The length separating

the nodes is given, and represents the cost of linking a pair of nodes.

Suppose that Wmax is 2, and that all terminal weights are 1.

figure 2.11 A CMST problem.
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The Esau-Williams algorithm begins by computing the trade-offs.

tpp=6-7=-1
;3 =5-7=-2
L14=10-7=3
L;;=6-6=0
t3=10-6=4
Ly=7-6=1
t3;=5-11=-6
£3:=10-11=-1
l34q=8-11==2
lyg=10-14=-4
ly=7-14=-7
ly3=8-14=-6

The link (4,2) is chosen and both components are merged. Since the cost from terminal 4

to the centre has changed from 14 to 8, we must recompute the trade-offs for terminal 4.

lyg=10-7=2
Ly = L4 =0 (since they are part of the same component)
ly3=8-7=1

The link (3,1) is chosen and both components are merged. Since the cost from terminal 3

to the centre has changed from 11 to 7, we must recompute the trade-offs for terminal 3.
31 =13 =0 (since they are part of the same component)
l=7-7=0
t34 =8-7=1

The link (1,2) is chosen but is rejected since it would create a component of weight 4.

The algorithm ends by creating links (1,0) and (2,0), representing the smallest cost from

each component to the centre. Figure 2.12 represents the Esau-Williams solution.
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Figure 2.12 The Esau-Williams Solution with Wmax = 2 and all w, = 1.

Note that without a capacity constraint, link (1,2) would be accepted, the result would be

a minimum spanning tree.

2.5.1.2 - The Modified Kruskal Algorithm.

The Kruskal algorithm [Kruskal, 1956] begins by sorting all edges (shortest first).
While traversing the sorted list, it includes all edges that do not form cycles with edges
previously selected. Once all terminals have been linked, the algorithm stops. By
modifying the Kruskal algorithm [Boorstyn and Frank,1977], it is possible to apply it to
the capacitated minimum spanning tree problem by not including edges that would violate
the capacity constraint imposed on the subtrees. Any terminal that violates the constraint
is removed from consideration and connected “to the centre by a least cost line. The

(modified Kruskal) algorithm has a worst-case time complexity of O(n* log n) for a fully
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connected graph of » locations.” [Gavish, 1991, p.42]. The algorithm offers worse results

than the Esau-Williams algorithm for comparable CPU time.

2.5.1.3 - The Modified Prim Algorithm.

Prim’s algorithm [Prim, 1957] viz. [Gavish, 1991] begins by assuming that the
central node is the only node in the tree while all other nodes are not. It then finds the
‘out-of-tree’ node that is the nearest to the tree and includes it into the tree. The
algorithm then updates the distance to the tree for all out-of-tree nodes. The algorithm
stops when all nodes have been included into the tree. In the capacitated version of the
algorithm, if a subtree reaches the capacity constraint its nodes are eliminated from future
consideration. The computational complexity is O(n?), while offering worse solutions than

those provided by the Esau-Williams algorithm for comparable CPU times.

2.5.1.4 - Vogel's Approximation Method (VAM). [Reinfield and Vogel, 1958] viz.

[Kershenbaum, 1993] and [Gavish, 1991]

Similarly to the Esau-Williams algorithm, a trade-off function determines values

fort;j , wheref;j=b; —a ;—d;;. The value a ; represents the cost (distance) of
connecting terminal { to its nearest neighbour that doesn’t violate the capacity restriction,
and b ;, the cost of connecting to its second nearest neighbour, again without violating the

capacity constraint. If terminal / is not immediately connected to its nearest neighbour,
there is the risk that the subtree containing the nearest neighbour fills up; and then terminal

I would have to connect elsewhere. “By giving preference to (ferminals) that would
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suffer the most by not connecting them to their nearest neighbours, they are considered
sooner, making it less likely that they would lose their first choice.” [Kershenbaum, 1993,
P.193). The quality of the algorithm’s results, although slightly worse, are comparable to
those offered by Esau-Williams. The CPU time is of the same order as Esau-Williams, but
can be considerably greater depending on how the algorithm is implemented as the
research by Kershenbaum et al. [1980] revealed. The computational complexity of the

algorithm is O(s* log n).

2.5.1.5 - A Unified Algorithm. [Kershenbaum and Chou, 1974].

The algorithm uses the notion of weight, that we shall denote as uw; (not to

confuse the reader with the term w ;, denoting the capacity of a terminal as introduced

previously in the context of the capacitated minimum spanning tree). A trade-off function
for the algorithm is given by £ ;; = d ; j— UW ;, where d; j represents the cost (distance)

of link (4, j ). The algorithm’s name is derived from it’s ability to reduce itself to other

algorithms described above. The difference between all previously introduced heuristics is

in the way the Uw;’s are defined. For example, if #4wW; is set to zero for all i, then the

algorithm reduces to Kruskal's algorithm.  Similarly, if uw; is set to d y ; then the

algorithm reduces to the Esau-Williams algorithm. While Vogel’s Approximation Method
can be obtained by setting uw; to ~( b; — a;).
Kershenbaum and Chou propose the following definition of uw; = P1(p2d+(1-

P2)bi), where d; is the cost of connecting terminal  to the centre node and b; is the cost
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of connecting terminal i to its feasible neighbour. p, and p; are constants such that (p, > 0)
and (0 < p, < 1). By changing the values of these parameters, many solutions can be
generated, and the best one(least cost) selected. With three to ten different parameter
settings, the algorithm offers a 1 to 5 percent improvement on the Esau-Williams
algorithm but a three to tenfold increase in computer time. However, if one good set of
parameters can be chosen from the start, the CPU time is equivalent to that of the Esau-

Williams algorithm. Computational complexity is in the order of O(n? log n).

2.5.2 - Second Order Greedy Algorithms.

First developed by Karnaugh [1976] viz. [Gavish, 1991] a second order greedy
algorithm starts with an initial solution provided by one of the first order greedy
algorithms, and tries to improve upon its solution. Although the author attained a 1%
improvement over the Esau-Williams algorithm, the computational effort demanded an
increase of 70 times that of the Esau-Williams.

Kershenbaum et al. [1980] improved upon Karnaugh’s idea. According to the

authors, the optimal solution for the MST often differs from one of the FOGA heuristic
solutions for the CMST by a small percentage. This percentage typically represents a
small number of links (M) that were left out of the CMST solution due to the constrained
nature of the problem. The heuristic solution is then recalculated a number of times by
forcing a number of these links into the solution, and then running the FOGA. The
number of times the solution is re-evaluated depends on the amount of links that were

originally left-out of the FOGA solution but exists in the MST solution, and how many are



forced at each re-evaluation. Usually, improvements of 1.9 % can be found when the
number of left-out links is not greater than 2, but this necessitates 2 to 3 times the CPU

time required by the Esau-Williams algorithm.

2.5.3 - Clustering Algorithms.

2.5.3.1 - Sharma’s Algorithm. [Sharma and El-Bardai, 1970]

The algorithm partitions the nodes into clusters (or sectors) that do not violate the
capacity constraint. Each cluster of nodes is then used to form a subtree by running an
ordinary MST algorithm such as Kruskal’s. Sharma’s algorithm creates these clusters by
sweeping out clockwise (or counterclockwise) from the centre node, and including all
terminals swept into clusters. A new cluster is started only when the previous cluster can
no longer accept the next terminal in the sweep without violating the cluster’s capacity
constraint. Thus, the quality of the solution depend not only on the direction (clockwise
vs. counterclockwise) of the sweep but also on where it starts. Sharma suggests that
better solutions (comparable to Esau-Williams) can be attained by iterating the start of the
sweep at each node, but at a substantial increase in time. The time complexity of the
algorithm is O(* / k), where k represents the average number of terminals in a cluster.
When the algorithm is repeated for each node, its worst case complexity becomes O(r* /
k). Kershenbaum [1993, p.191] notes that although Sharma’s algorithm is easier to
implement than the Esau-Williams algorithm requiring only “an MST algorithm and a

sectoring algorithm”, the Esau-Williams is “significantly faster if it is implemented
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carefully”. Furthermore, the main drawback of the algorithm is that it can only be applied

to cases where terminal locations are given by their co-ordinate values on a plane.

2.5.3.2 - The McGregor and Shen Algorithm. [McGregor and Shen, 1977]

The algorithm merges the nodes into clusters that do not violate the capacity
constraint, these clusters of nodes are then replaced by single nodes. The clusters reflect
‘natural’ groupings of nodes that are approximated by a single node placed at their centre
of mass.

Starting with all nodes connected directly to the centre, two nodes closest together
are selected. The nodes are merged only if the merger doesn’t violate the line constraint.
They are then replaced by a single node at their centre of mass. The weight of the new
node is the aggregate weight of all the nodes in the cluster it represents. If the two closest
nodes cannot be merged without violating the line constraint, the next closest pair is
selected. The algorithm ends when no pair of nodes can effectively be merged.

Similarly to Sharma’s algorithm, an MST algorithm can then be run to connect the

terminals of each cluster onto a multipoint line.
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2.6 -The Terminal Layout as a Bin Packing Problem : An Alternative to the MST
Approach.

When one is seeking to minimize the number of lines rather than the total cost
(where the total cost is a function of the total length of the spanning tree), the terminal

layout problem can be considered as a bin packing problem.

The problem can be viewed as a set of # objects of a given size s; that must be put
into a minimum number of boxes of fixed capacity C, where 7 € {1,2,...,n}. For a feasible
solution to exist, one must assume that 5i< C foralli € {1,2,...n}. Then, the number of

boxes needed is clearly at most 7.  In the terminal layout problem, terminals can be
considered as the objects while the boxes may represent the multidrop data transmission
lines.

The problem is formulated as follows:

Given

N ={1,..n}

X;= [lifboxjis used, 0 otherwise.

Yij = 1 if object i is placed in box j, 0 otherwise.
Find (4.0) zZ =min X;.y x;

subject to:

4.1) 2ZienSi Yij < Cx; V,eN

(4.2) 2ienyij = 1 VieN
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4.3) yij€ {0,1},x;; € {0,1} VieN VjeN
Equation 4.0 keeps count of the number of boxes used. Equation 4.1 guarantees the
capacity constraint of the boxes. Finally, equation 4.2 insures that every object is placed

in exactly one box.

2.7 - Extensions to Other Topologies.

2.7.1 - Extending the CMST to the Loop Topology.

Multipoint lines can also be configured as loops (rings). The advantage offered by
this topology is its resistance to failure. Since the bus or tree topologies are minimally
connected networks, a single link failure may wreak havoc on a large part of the network
by disconnecting some of its users until repairs may be completed. Because of the dire
consequences of such a possibility, network designers sometimes opt to configure
multipoint lines as loops, reasoning that their reliability justifies the increase in cost due to
the additional links.

Loops may be created in two ways. The first approach consists of running an
algorithm that solves the CMST. Furthermore, if the resulting subtrees are considered
only as partitions, a Travelling Salesperson (TSP) algorithm may be used for each
partition to find the least lengthy tour starting and ending at the root of the tree. In such a
situation, the nodes in each partition are equivalent to the cities the salesperson must visit

exactly once before returning home.
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The second approach consists of viewing the problem as a Vehicle Routing
Problem (VRP). It consists of “finding a set of routes for a fleet of vehicles which have to
service a number of stops from a central depot. It is assumed that every vehicle has the
same capacity and the number of vehicles is unlimited. The vehicles depart and arrive at
the depot. The demand quantity at each stop is known in advance and is deterministic.
No single demand quantity exceeds vehicle capacity.” [Breedam, 1995, p. 480]. It can be
added that the total demand quantity assigned to a given vehicle is no more than the
capacity of the vehicle; the number of stops of each route is limited and one is seeking to
minimize the overall distance that all the vehicles must cover.

Kershenbaum [1993] proposes the use of a generalization of the Esau-Williams
algorithm, called the Clarke-Wright algorithm [Clarke-Wright, 1964, viz. Kershenbaum,
1993]. The algorithm starts by considering each terminal on a separate loop. The

algorithm then combines loops when the mergers offer a decrease in cost. Similarly to the
Esau-Williams algorithm, a trade-off is associated with link (i,j) given by t; =C; i—Cio
— Cj g9, where C; 9 and C; ¢ denote the geographical distance between terminals J and 7

from the central site ‘0’ respectively, while C; ; represents the distance between terminal i

and terminal j. Kershenbaum [1993] adds that the solution obtained by the Clarke-Wright

algorithm can then be improved by running a TSP algorithm for every resulting loop.
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2.7.2 - Extending the CMST to the Bus Topology.

Recall that a centralized network connected under the bus topology is actually a
tree where the nodes of each subtree have been restricted to have a maximum of 2 edges.

Thus, any algorithm available to solve the CMST can be further constrained to create

multipoint lines that follow a bus architecture.
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CHAPTER 3 : AN OVERVIEW OF SIMULATED ANNEALING.
e A Y SR YV W O DIMULATED ANNEALING.

3.1 - Origins of Simulated Annealing.

In thermodynamics, “physical annealing is a process in which a solid is heated
until all particles randomly arrange themselves in the liquid state, followed by a slow
cooling.(...) At each temperature, the solid is allowed to reach thermal equilibrium, where
energy levels follow the Boltzmann distribution.” [Vidal, 1993, p. 47].

It is essential for the temperature to be lowered in small decrements and the system
allowed to settle at each temperature level for “if the cooling is too rapid, the material
does not have time to reach equilibrium. Instead, various defects become frozen into the
structure.” [Greene and Supowit, 1986, p. 221].

Simulated annealing was first introduced to model the physical annealing of solids
when Metropolis et al. [1953] simulated a small displacement in individual atoms for each
iteration of the simulation while monitoring the change in system energy the displacement
produced. When the change corresponded to a decrease in energy, the resulting change
was accepted, while increases in energy were only accepted with a certain probability. At
each temperature level, a sufficiently large number of iterations were realized to attain
thermal equilibrium, and the acceptance function guaranteed that the system was governed
by the Boltzmann distribution (also known as the Gibbs distribution).

Kirkpatrick et al. [1983], and Cerny [1985] independently proposed that the
simulated annealing process could be applied to optimization problems by comparing the

energy states of the solid to an objective function to be minimized. In the analogy, “the

51



different states of the substance correspond to different feasible solutions to the
combinatorial optimization problem, and the energy of the system corresponds to the

function to be minimized.” [Eglese, 1990, p- 273].

The general simulated annealing algorithm can be described in pseudo-PASCAL as
follows:

Procedure Simulated Annealing;(for minimizing a function)

Begin
Initialize the parameters(k, 75, & a)(set T'=T, and 0< @< 1)
Repeat
For m:=1tokdo
Begin

Generate a neighbour state (state i—»state N
Calculate AC,, = C(state /) - C(state D;
if AC, <0 then make ; the current state;
else
if exp(-AC, / T') > random [0, 1]
then make j the current state;
End;
I'=T+a;
Until T < & (or until some other stopping criteria is reached),
End;

In any implementation of the algorithm an annealing schedule must be specified.
This schedule stipulates the initial temperature (To) setting, the reduction rate (a, also
known as alpha) in temperature (T), the repetition (k) which denotes the number of
changes to be attempted at each temperature level, and finally a stopping criterion (g, later

referred to as ‘epsilon’) in order to terminate the program.
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As we can see from the SA description above, the process involves accepting or
rejecting a number of k neighbouring states at each temperature level (T), while dropping
the temperature gradually. For the new state J to be a neighbour state of i, it must be
reachable in exactly one move form state I, and it must be reversible. Furthermore, if S/
denotes a set of neighbour states reachable in exactly one move from 7, then any state of S/
must be capable of being reached from any other in some number of moves. Moves to
new states are generally selected at random, although we shall see later on how a
systematic approach identifying all possible neighbour states before selecting one was
implemented in one version of our SA programs for the CMST problem. If the selected
new state represents a decrease in cost then the new state becomes the current state, while
states generating increases in cost are not necessarily rejected. Because of the formulation
of the probabilistic acceptance function, given as exp(-AC; / T ) > random([0,1[, note
that at high temperature levels it is possible to accept new states that produce relatively
large increases in cost. As the system cools, the function becomes more likely to accept
states generating small increases in cost rather than larger ones. When the temperature
approaches zero, the majority of cost increasing moves are rejected.

Its potential to accept occasional increases in the cost function is what differentiate
it from simple local search algorithms since it has the “ability to migrate through a
sequence of local extrema in search of the global solution and to recognize when the
global extremum has been located” [Bohachevsky, Johnson, and Stein, 1986, p. 209].
Contrarily to simple local search (greedy) algorithms, the SA’s sporadic increases in the
cost function allow it to ‘jump out’ of local minima traps. Consider the following figure

depicting the cost function of an optimization problem, to illustrate the point:
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Figure 3.1 An Optimization Problem

Algorithms based on the greedy approach begin by placing themselves at a certain

location on the function (point 4 for example), they then start to descend the “hill” until

they reach the lowest point (point B). The problem that usually occurs is that the values
found that minimize the function do so only locally, as depicted by B. As point C shows,

there might exist a better solution but a greedy algorithm will not find it.
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3.2 - The Annealing Schedule.

Good annealing schedules are those that combine short execution times for the
program and near optimal solution qualities for the results. Often good schedules depend
on a the right ‘blend’ of parameter values in the program, and thus finding such a schedule
is an intuitive process of trial_and_error referred to as ‘tuning’ the algorithm. Below, we
shall stress the effects of parameter settings on the behaviour of the SA program. These
considerations aid in establishing the right annealing schedule, by guiding the search
towards better parameter value settings.

Large initialization values in temperature (To) for the program is synonymous to
heating up a substance until all its particles are randomly distributed in the liquid form of
the substance. Essentially, when T, is ‘large enough’, all neighbouring states have the
potential of being accepted. If T, is set too high, the program might waste a lot of time
attempting to lower the cost of large ‘uphill’ moves that were accepted early on. On the
other hand, if To is set too low, the program may not have the momentum to get out of a
local minimum.

Recall that ‘a‘ is the parameter required for reducing the temperature parameter,
T. When “a proportional temperature function is used, i.e. T (¢+ 1) = a T(¢) where ct is a
constant (...and £ denotes time,...) typical values of o used in practice lie between 0.8 and
0.99. Such a function provides smaller decrements in T as zero temperature is
approached.” [Eglese, 1989, p. 275]. This enables the program to relatively consider
more neighbour solutions near the freezing point where lower cost solutions are accepted

primarily. Of course, for a given value T,, the closer the value of a to 1 the larger the
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running time of the program. This is because the amount of temperature decrements
becomes larger, thus increasing the number of iterations for the program.

It is possible to counter this effect by lowering the number of repetitions (k).
Recall that k affects the number of neighbouring states that will be considered at each T.
The term “affects’ must be stressed, for the value of k is not necessarily equal to the
number of neighbour states considered at each T. Only when one neighbour state is
considered per repetition is this the case. Instead, at each repetition, it is possible to
generate a set of neighbour states before selecting the best among them. This of course,
increases the time needed for the program at each iteration but has the advantage of
increasing its ability to jump out of local minima traps as the system is cooling. Apart
from the ones described above, a variety of schemes have been developed to select the
number of repetitions at each T, such as ‘repeat until a certain number of acceptances or
rejections have occurred * at each temperature value. The stopping criteria can be set to
stop once the system reaches a certain temperature (e), which represents the final value of
T. Others include stopping the process once a fixed number of temperature decrements
have occurred, or after no improvement has occurred over a number of successive

temperature decreases.
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3.3 - A Variation on the Generalized Simulated Annealin Model.
s SR e enéralized Simulated Annealing Model.

Greene and Supowit [1986] note that “although the Metropolis method is simple,
effective and easily programmed, it has one major drawback: at low temperatures, the
running time is quite high because many candidates are rejected before each move to a
different state.” [p. 222]. The authors modified the Metropolis method by assigning
probabilities to a set of m neighbouring states chosen randomly. Labeled as the
rejectionless method by the authors, one of the neighbour states is always accepted to
become the current state based on a certain probability value.

The rejectionless method works as follows. For each possible state i, where 1 <i

< m, a value q@; is calculated that corresponds to the probability of selecting that state
under the Metropolis method. Therefore, if state / corresponds to a decrease in cost, ¢; is

assigned a value of 1.00. If instead, state { induces an increase in cost, then a; = exp( -

AC:/ T'), where AC; corresponds to change in cost if state i is accepted as the current
solution. The probability of accepting neighbour states i under the rejectionless method is

then given by:

a;

m
2a;
J=1
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Finally, the cumulative probabilities F; are calculated before the pseudo-random generator

is called. Assuming that F; =b and F;, = a, then / is accepted if the pseudo-random

generator provides a number in the interval ]a, b].

The Metropolis and Rejectionless methods vary from one another in the following

way:
L. Generate a set of neighbouring states
(Metropolis) (Rejectionless)

2. Choose the least costly state 2. Assign a probability to

among the set. each state of the set relative
to the quality of all the other
states among the set.

3. Ifthe chosen state represents a 3. Choose a state according

decrease in cost then make it the to its acceptance probability

current state, else make it the current assigned above.

state with a certain probability.

It is important to note that, the rejectionless method, although necessitating more
computer memory (since it must store the cost effects of all states considered), has the
advantage of always changing the current state to one of the neighbouring states i being
considered.  This is especially beneficial over the Metropolis method when the
temperature approaches zero where the Metropolis method spends most of its time

rejecting neighbouring states.
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3.4 - Various Modifications to SA.

Below, we will demonstrate the flexibility of SA by discussing certain
modifications that can be made to the general SA model in order to improve the

effectiveness of the basic algorithm.

3.4.1 - Storing the best solution obtained.

In implementations of SA, it is possible that the algorithm accepts states that
increase the cost function even as the temperature becomes quite low. “It is therefore
possible in any single SA run for the final solution to be worse than the best solution found
during the run”. [Eglese, 1989, p. 276]. In such occurrences, any previous states although
offering lower energy configurations are lost. To remedy this, it is plausible to specify that

SA continuously remember the lowest state it has found thus far.

3.4.2 - Starting with a good initial solution.

It is possible to improve SA by providing it with a good initial state (solution)
which allows to shorten the running time of the process. Such initial states may be
provided by a heuristic algorithm such as Kruskal’s for the CMST problem. In doing so,
it should be noted that the SA process must be initialized with a lower initial temperature
(To), otherwise the process may negate the beneficial effects of such a strategy by

perturbing the initial state by a large degree.

59



3.4.3 - Combining different stopping criteria.

A common stopping criteria in SA is to specify a temperature (g) close to zero.
However, as the temperature of the SA process approaches zero, the probability of
acceptance of even the slightest cost increasing state becomes very low. With most of its
time spent rejecting lower grade solutions, the process continues to search for savings that
it may be no longer be able to attain. In other words, if the process finds itself in a local
minimum when the current temperature is in the vicinity of zero, the SA may not have the
momentum to escape from this trap. This time consuming task can be shortened by
combining an alternative stopping criterion to the original one that tells the SA to stop
trying to escape after a certain number of sequential temperature iterations without
improvement.

For a more in depth look at various modifications to SA, the interested reader is
referred to [Eglese, 1990], where the author summarizes the ‘speed-up’ techniques

introduced and tested by various researchers.
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3.5 - SA Research into the Terminal Layout Problem.

To our knowledge, only one research study’ exists where simulated annealing was
applied to minimizing the cost of multipoint lines. Starting with all terminals connected
via point-to-point connections as an initial solution, the authors reported having achieved
“amazingly good” results (close to the optimum) in spite of the short CPU-time per run,
typically a few minutes on a 386-16 MHz machine. However, their testing was limited to
data sets of at most 63 terminals. Nevertheless, their approach was later used to design a

real network in Denmark consisting of 72 terminals and a CPU in the Copenhagen area.

! See Anderson. K., Vidal. R.. and Iversen, V., “Design of a Teleprocessing Communication
Network using Simulated Annealing,” in Applied Simulated Annealing. ed. René V.V. Vidal (Berlin:
Springer-Verlag, 1993). 201- 215.
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3.6 - How We Generated Neighbour Solutions.

In this section, we review how our SA algorithms proceed to generate neighbour
solutions for the three topologies.

Note that the term ‘neighbouring state’ introduced in the previous sections of this
chapter will be used interchangeably with ‘neighbour solution’, which is intuitive and more

appropriate when referring to an optimization problem such as the CMST.

3.6.1 - Generating a Neighbour Solution for the Bus and Loop Topologies.

The process of generating a neighbour solution for these topologies begins by
selecting 2 terminals denoted Ti and Tj, where Ti = Tj. Furthermore, let us denote Ti-1 as
the predecessor of Ti on a line I originating at the centre. In other words, if nodes Ti-1
and Ti denote the end points of a common edge in a line rooted at the concentrator, then
the path from the concentrator to node Ti-1 is shorter than from the concentrator to Ti.

Similarly, Ti+1 denotes the successor of Ti.

By changing the link(s) that connect each of these two terminals to their respective
lines we can consider two simple ‘moves’ and one pairwise ‘interchange’. Of course, the
terms ‘moving’ and ‘interchanging’ is figurative since the terminal locations are
geographically fixed. The process is actually one of including or excluding terminals from
lines by adding and dropping the links that connect them to their respective lines. By

evaluating the change in total distance (cost) of ...
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(1) including terminal Ti to the line containing terminal Tj at position Tj+1,
(2) including terminal Tj to the line containing terminal Ti at position Ti+1,
and

(3) swapping both terminals

up to three potential neighbours can be generated.

Each new configuration produced in one of these ways that does not violate the
topology nor the maximum line weight (Wmax) and maximum number of terminals per
line constraints, is considered to be a valid neighbour solution. When a link is dropped, its
cost is retrieved from the cost matrix and subtracted from the current cost, similarly when
a link is created its cost must be added to the current cost. Through this amalgamate of
subtractions and additions, the neighbour solution’s cost is obtained. Needless to say that
the greater the decrease in total cost generated by a neighbour solution, the higher its

desirability.

The following figure illustrates how three neighbour solutions can be created from

a pair of terminals (Ti and Tj) by manipulating the links connecting these terminals.
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Concentratar e e Ti+1

[

Tj-1

figure 3.2 Placing terminal Ti following terminal Tj.

The steps of figure 3.2 are as follows:

Step 1: If Ti is not the concentrator then goto step 2 else goto step S.

Step 2: If the line containing Tj can accept the weight of Ti without violating

Wmax then goto step 3 else goto step 5.
Step 3: Remove Ti from the line that contains it by subtracting the cost of the
inks (Ti-1,Ti) and (Ti, Ti+1)" and adding the cost of the link (Ti-1,Ti+1)" to

the current cost.

Step 4: Connect Ti to the line containing Tj by adding the cost of the links (Tj, Ti)
and (Ti,Tj+1)" and subtracting the cost of the link (T}, Tj+1)°

Step 5 : Stop.

(*) : If this link exists.
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Ti-1

Concentrator

figure 3.3 Placing terminal Tj following terminal Ti.

The steps of figure 3.3 are as follows:

Step 1: If Tj is not the concentrator then goto step 2 else goto step 5.

Step 2: If the line containing Ti can accept the weight of Tj without violating

Wmax then goto step 3 else goto step 5.

Step 3: Remove Tj from the line that contains it by subtracting the cost of the
links (Tj-1,Tj) and (Tj, Tj+1)" and adding the cost of the link (Tj-1,Tj+1) to

the current cost.

Step 4: Connect Tj to the line containing Ti by adding the cost of the links (Ti, Tj)

and (Tj,Ti+1)" and subtracting the cost of the link (Ti,Ti+1)"

Step 5 : Stop.

(*) : If this link exists.
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figure 3.4 Swapping terminal Ti and Tj,

The steps of figure 3.4 are as follows:

Step 1: If neither Ti nor Tj is the concentrator then goto step 2 else goto step
4.

Step 2: If the sum of the terminal weights on the line containing Ti minus the
weight of Ti plus the weight of Tj is smaller than or equal to Wmax
and
If the sum of the terminal weights on the line containing Tj minus the
weight of Tj plus the weight of Ti is smaller than or equal to Wmax then

goto step 3 else goto step 4.

Step 3: Subtract the cost of links (Ti-1,Ti), (Ti,Ti+1)", (Tj-1,Tj), and
(Tj,Tj+l)° from the current cost. Add the cost of links (Tj-1,Ti), (Ti-1,Tj),
(Ti, Tj+1)", and (Tj,Ti+1)" to the current cost.

Step 4: Stop.

(*) : If this link exists.
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3.6.2 - Generating a Neighbour Solution for the Tree Topology.

For the tree topology, neighbour solutions are obtained by manipulating the order
in which the Esau-Williams links terminals to one another to create multipoint lines. As
the Esau-Williams algorithm proceeds, subtrees may fill up by reaching the maximum line
weight constraint (Wmax) and/or a node may not accept any additional child nodes
without violating the maximum number of terminals per line constraint. From this point
on, the solution will start degenerating away from a minimum spanning tree since the
algorithm is unable to make the best multipoint connections for the remaining terminals.
Typically, links created towards the end of the run tend to be non optimal.

By forcing the Esau-Williams algorithm to link a node before it would normally be
considered for connection it is possible to generate a neighbour solution with a lower cost.

To illustrate the point, consider the following Esau-Williams solution with Wmax
is 3, maximum number of terminals per line is 3, and all terminals having a weight of 1 as

depicted in figure 3.5 below.

Figure 3.5 The Esau-Williams solution showing a capacitated minimum spanning tree.
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Initially, all terminals are connected directly to the central node ‘0’. With each
iteration of the Esau-Williams algorithm a new link is created merging terminals into
components. By saving the order in which the algorithm links nodes together, a hierarchy

of connections can be recorded. For the example above the connections were made as

follows:
Iteration Connection Connection Cost
From To

1 2 1 $20

2 5 4 $10

3 3 4 $5

4 1 0 $20

5 4 0 $40

6 6 0 $50

$145

Note that replacing the link (0-6) by a link from terminal 6 to terminal 4 would yield an
additional decrease in cost but cannot be done without violating both the WMax and the
maximum number of terminals per line constraints.

By forcing the Esau-Williams algorithm to consider terminal 6 higher up in the hierarchy

of connections a lower cost solution can be obtained as shown in figure 3.6 below.
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Figure 3.6 The modified Esau-Williams solution showing a capacitated
minimum spanning tree with a lower cost.

This modified version of the Esau-Williams algorithm can be illustrated as follows:

Iteration Connection Connection Cost
From To
1 2 1 $20
2 6(forced) 4 $25
3 5 4 $10
4 3(*) 1 $10
5 1 0 $20
6 4 0 $40
$125

(*) : Since a connection from terminal 3 to terminal 4 would now violate the constraints,

terminal 3 must be linked to terminal 1.
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If we let F denote the iteration at which the forced connection was made, this method of

generating neighbour solutions eventually breaks down to :

(1) For iteration=1 to F -1, keep the Esau-Williams links, and destroy all links

created from point F onward,

(2) Force a random yet unconnected node to be considered for connection at

point F, and then

(3) Run the Esau-Williams algorithm for all remaining yet unconnected nodes.
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CHAPTER 4 - DESCRIPTION AND IMPLEMENTATION OF OUR
==L R I UNAND IMILEMENTATION OF OUR

ALGORITHMS.

Seven SA programs were produced, three for the bus, three for the loop, and one
for the tree topology. All of these applications start by using a heuristic algorithm to
generate an initial solution. For the bus and tree topologies, the initial solution is obtained
by running the Esau-Williams algorithm previously explained in 2.5.1.1. As for the loop,
the initial solution is given by the Clarke-Wright algorithm introduced in 2.7.1.

Once an initial solution to the problem has been generated, the SA subroutine then
attempts to improve upon it. The steps of each application will be given below starting
with the ones implemented for the bus and loop topologies, followed by the one for the

tree topology.

4.1 - Algorithms for the Bus and Loop Topologies.

For each of the topologies, three SA algorithms were developed. Each one uses a

different method to select the number of neighbour solutions that will be created and

evaluated.
The general format of the applications developed for the bus and loop topologies
can be summarized in the following steps:

(1) Given the INPUT data.
A set of terminals represented by their (x,y) coordinates
relative to a concentrator placed at point (0,0), that can be used to
create a cost matrix,
or
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A symmetric cost matrix representing the distances between all
terminals (where 1 unit in distance is equivalent to 1 unit in cost).

(2) Calculate the INITIAL SOLUTION.

The Esau-Williams for the Bus Topology.
The Clarke-Wright for the Loop Topology.

(3) Run the SIMULATED ANNEALING Process. At each iteration repeat
one of the following ...
Method 1 :

A set of randomly generated neighbour solutions, then choose the best
neighbour among the generated set. If this solution’s cost is smaller

than the current cost then accept it as the current solution, otherwise accept it

with a certain probability.

Method 2 :

A set containing all neighbour solutions derived by manipulating the links in

2 randomly selected lines, then choose the best neighbour among the generated
set. If this solution’s cost is smaller than the current cost then accept it
as the current solution, otherwise accept it with a certain probability.

Method 3 :

Consider all possible neighbours that can be derived from the current solution
and assign a probability to each possible neighbour . Then choose one based
on its probability value, and make it the current solution.(Modification of the
rejectionless method introduced by Greene and Supowit, 1986)

...until a stopping criterion has been reached.

(4) If the Simulated Annealing process has improved on the initial
solution then display the improvement.(OUTPUT)

Although the implementation of any one of the methods shares similarities with the
other two, all differ enough to warrant independent explanation in the following pages.
This is because the data structures that are used to implement them are not only dependent
on the type of network topology (Bus versus Loop) but also on the relevant information

needed by each method to generate its set of neighbour solutions.
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The following steps describe how method 1 goes about generating a random set of

neighbour solutions.

Step 1. Specify the number of times (m) you wish to repeat the process.

Step 2. From the current solution, select 2 terminals randomly among all terminals

including the centre.
Step 3. Consider two moves and a pairwise interchange for the terminals, to
generate up to a maximum of 3 neighbour solutions, and select the best

among them.

Step 4. If any one of the solutions generated in step 3 is the best neighbour

solution found so far then remember this neighbour solution.

Step 5. If steps 2 to 4 have been repeated m times then goto step 6, otherwise

goto step 2.

Step 6. Stop.

With method (1) up to (3 * m) neighbour solutions are generated before the best

among them is chosen.
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4.1.2 - Method (2) : Considering a Set of All Possible Neighbour Solutions from Two

Randomly Selected Lines.

The following steps describe how method 2 goes about finding a neighbour

solution.
Step 1. Select 2 lines randomly among all lines from the current solution.

Step 2. For each pair of terminals, consider two moves and a pairwise
interchange among the two lines, to generate up to a maximum of 3

neighbour solutions for every pair, and select the best among them.

Step 3. Stop.

With method (2), the maximum number of neighbour solutions that are generated
depends on the number of terminals in each line. Since up to 3 neighbour solutions can be
generated for each pair ( Ti, Tj ), the maximum number of neighbour solutions to be

evaluated is given by:

3 * (Number of Terminals in line I - 1) * (Number of Terminals in line J - 1)

since no neighbours can be generated with the pair (0,0).

4.1.3 - Method (3) : Considering All Possible Neighbour Solutions.

Intuitively, before implementing this method it was believed that it would yield a
better neighbour solution than simply selecting random pairs of terminals since all possible
pairs could be considered before selecting the best one among them. Once implemented

though under the ‘regular’ simulated annealing process (the Metropolis method), testing
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revealed that it could eventually become trapped in a local minimum. To understand how
this could occur let us recall that the simulated annealing process using the metropolis
method automatically accepts a neighbour solution if its cost is lower but does not
necessarily reject a neighbour solution with a higher cost. The following figure illustrates

the circular loop the process may get trapped in.

1. Current Solution S1 is a local
minimum

3 . Best Neighbour Solution S$3 has
a lower cost and is automatically
accepted, but S3 = S1

2. The Best Neighbour Solution S2
has a higher cost, but is accepted.

figure 4.1 A local minima trap.

By implementing this selection method under a variant of the simulated annealing
process ‘with rejectionless moves’(Greene and Supowit, 1986) instead, it was possible to
alleviate this problem.

Recall that instead of automatically selecting the best solution among all
neighbours and then considering whether to accept it or not, the rejectionless method
assigns a probability to each solution. The better a solution, the higher its probability of

being selected, and although all lower grade neighbour solutions have smaller probabilities
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assigned to them, they may still be selected. Once a neighbour is selected it becomes the
current solution.
The following steps describe how Method 3 finds the best neighbour solution

among all possibilities:

Step 1. Evaluate all possible neighbour solutions by considering all possible

moves and pairwise interchanges for the current solution.

Step 2. Assign a probability to each solution based on its quality relative to all
other solutions.

Step 3. Select a solution generated in step 2 based on its probability.

Step 4. Stop.

4.2 - An Algorithm for the Tree Topology.

The SA process implemented for the tree topology is given in the following general steps:

step 1. Generate an initial solution using of the Esau-Williams
algorithm and remember the order in which the

connections were made.
step 2. Initialize the SA parameters.
step 3. Choose a connection from the current solution

representing a link from terminal i to terminal j but this may not

be the optimal connection for terminal i.
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step 4.

step 5

step 6.

step 7.

step 8.

step 9.

Run the modified Esau-Williams algorithm which is forced
to consider terminal i the moment it would normally be

considered for connection into the network.

If the modified Esau-Williams algorithm generates a lower
cost then goto step 7. If a lower solution was not found

then goto step 6.

Accept the solution with a certain probability generated by
the function exp(-AC; / T'), where AC; corresponds to

the change in total cost if the link connecting terminal i
into the network has changed. If the solution is rejected

then goto step 9.

Make the modified Esau-Williams solution the current

solution.

If the stopping criteria has been reached then goto step
10.

Adjust the SA parameters(decrement the repetition
counter or reset the repetition counter and the decrement

the temperature). Goto step 3.

step 10. Stop.
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4.3 - Data Structures for the Bus and Loop Topologies.

4.3.1 - Data Structures Used to Represent the Bus and Loop Network Top
Three Methods.

ology in all

To illustrate the data structure that was used to represent the bus and loop

topologies consider the following figure illustrating a bus network made up of 7 terminals

divided up into 3 bus lines.

°‘ —
figure 4.2 Illustration of a bus network.

This preceding network is represented using a linked list as follows :
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0 2 3 1 0 4 5 0 0 —» nil
k\ A A A
\ : ' .
\ [] : :
\ H H H
St;rt Start of line 2. Start of line 3 Start of potential
of new line.
Datastructure

and start of line
1.

figure 4.3 Data structure representing a bus network.

Each data structure element contains the following fields:

Terminal Number : integer;

Weight : integer,
(if the data structure element is ‘0’
the weight field value represents the
cumulative weight of all the
terminals on that line, if the data
structure is non zero and therefore
a terminal, the weight field value
simply reveals the weight of the
terminal.

Number_of_Terminals_in_Line  integer; (used only if data structure
element is ‘0°).

Next : pointer;

The concentrator is represented by ‘0’ and thus a beginning of a line. The arrows

represent pointers to the next element of the linked list.
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Each linked list (line) starts with an element representing the concentrator node

(| 0]). This element denoted with a Terminal Number equal to 0, contains information

on the number of terminals in the line, the weight of the line, and uses a pointer to the
next element (terminal) in the list.

Each element representing a terminal node on the line ( @ ), contains the
terminal number (7), the weight of the terminal, and use a pointer to represent the
neighbouring terminal on the line. Finally, the Number_of Terminals field for data
structure elements representing terminals is redundant and therefore set to zero.

Finally, an additional data element positioned at the end of the data structure
represents a potential new line that can be created by linking a terminal directly to the

concentrator.

The following describes the process of finding 2 random terminals for method 1:

1. Line I = A line randomly selected from 1 to Lastline

2. Line J = A line randomly selected from 1 to Lastline

3. Position Ti at element @ in linked list representing Line I

4. Position Tj at element I_—O_l in linked list representing Line _J

5. Move Ti a random number of times down Line _I, where the number of

times is a random value not greater than Number __of_Terminals_in Line I.

6. Move Tj a random number of times down Line _J, where the number of
times is a random value not greater than Number _of_Terminals_in_Line J.
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For method 2 the following figure illustrates the process of combining all terminals from

line I and J to create the pairs of terminals that will generate the neighbour solutions.

LINEI LINEJ
l \
Ti I Tj
Ti I Tj loops
moves through
down @ the line
the line |
|
|
Pairs are @

created

Figure 4.4 Neighbour solution generating process used by method 2.

With the pairs (To,T2),(To,Ts),(T1, To).(T1,T2),(T1,Ts),(Ts, To),(Ts,T2), and (Ts,To), a set of
16 potential neighbour solutions can be evaluated so as to determine whether they do not

violate the maximum line weight constraint (Wmax) or not:

For pair (T,,T,) : 1. moving T to line I between the concentrator and T,.
For pair (T,,Ty) : 2. moving Ty to line I between the concentrator and T,.
For pair (T,,T) : 3. moving T, to line J between the concentrator and Ts.
For pair (T,,T,) : 4. moving T, to line J between T, and Ts.

5. moving T to line I between T, and Ts.

6. swapping T, and T>.
For pair (T, Ts) : 7. moving T, to line J following Ts.

8. moving T, to line I between T, and Ts.
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9. swapping T, and T,.
For pair (Ts,T,) : 10. moving Ts to line J between the concentrator and T,.
For pair (Ts,T,) : 11. moving Ts to line J between T, and T,.

12. moving T to line I following Ts.

13. swapping Ts and Ts.
For pair (Ts,Ty) : 14. moving T; to line J following Ts.

15. moving T, to line I following Ts.

16. swapping Ts and Ts,.

From the set of acceptable neighbours, only the lowest cost solution will be
considered for acceptance or rejection by the simulated annealing process.

As for method 3, since all possible pairs of terminals are considered for this
method, no search procedure is needed.
The following describes the steps of this method:

Step 1 : Set Ti equal to Start, set Tj equal to Ti.NextElement.
Step 2 : If Ti # nil then 8oto step 3 else goto step 5.
Step 3 : Evaluate the neighbour solutions obtained by
1) placing Ti following Tj (If Ti = 0),
2) placing Tj following Ti (If Tj = 0), and
3) swapping Ti and Tj (If both Ti and Tj=0)
and move Tj to the next element in the data structure.

Repeat this step until Tj reaches the end of the line (Tj = nil).

Step 4 : Move Ti to Ti.NextElement.
Move Tj to Ti.NextElement.
Goto step 2.

Step S : Stop.
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Graphically, the iterations of method 3 can be represented as follows:

. NN SN N N

. NN N N

. NN N

Figure 4.5 Neighbour solution generating process used by method 3.
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4.3.2 - An Additional Data Structure Needed for Method 3.

Recall that in method 3 we use the ‘rejectionless method’. All possible neighbour
solutions must be evaluated before one is chosen depending on its probability relative to
all other neighbour solutions. This chosen neighbour solution is never rejected and
becomes the current solution of the SA process. Therefore, a linked list was needed to
hold the relevant information of all neighbour solutions before one could be chosen. Each
element of the list represents a potential neighbour solution. Recall that up to 3 neighbour
solutions can be generated for each pair of terminals. Let us denote (Z) as being the set of
possible neighbour solutions. Each element z is represented as a record, where the fields
of each element contain the parameters needed by the program to easily and promptly
change the current solution to the neighbour solution in the case where it would be
selected. This linked list is created at each repetition (k) of the simulated annealing
process, once a neighbour solution is selected the list is then disposed (erased) to free up

the computer’s memory. Each element of the list contains the following fields :

NeighborInfoType=RECORD

Linel : NodePointer Type;
LineJ : NodePointer Type;
Ti : NodePointer Type;
Tj : NodePointerType;
NeighbourType : Byte;
NeighbourCost : LonglInt;

a; - Real;
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F; : Real;
Following : NeighborInfoPointerType;
END;

Fields Linel and LineJ are pointers to elements in the data structure representing the

topology, these elements represent the beginning of the lines containing Terminal i and
Terminal j respectively.

Fields Ti and Tj are pointers to the terminals i and J in the data structure representing the
topology.

The field ‘NeighbourType’ holds a value of 1,2, or 3, representing the type of exchange
that is needed to modify the current solution to become that selected neighbour solution
(where the value 1 corresponds to putting Ti at position Tj+1 on line J, the value 2
corresponds to putting Tj at position Ti+1 on line I , and the value 3 corresponds to
swapping the terminals).

The ‘NeighbourCost’ field expresses the cost of the particular neighbour solution.

The pointer ‘Following’ simply points to the next neighbour solution in the list of

solutions.

The field ‘@;’ holds the probability value calculated by the ‘regular’ simulated annealing

acceptance probability function (a; = exp((Neighbour Cost -Current Cost)/Temperature)
for solutions where the neighbour cost is superior to the current cost. For neighbours

having a lower cost than the current solution @; is assigned a value equal to 1. Recall that
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in this instance, the neighbour solution would be automatically accepted under the

‘regular’ simulated annealing process proposed by Metropolis et al. [1953].
Once all feasible neighbour solutions have been identified, all values for @; are summed up

with one “pass’ through the linked list. Each element = of the list is then assigned a value

for ‘p;’ by the function

Finally, the cumulative probabilities F; are calculated before the pseudo-random generator
is invoked. Consider the following figure showing an example to illustrate how
probabilities are assigned. Three neighbour solutions are considered, the current cost is

360, and temperature is currently equal to /0.

Neighbour 1 Neighbour 2 Neighbour 3

Cost=% 70 Cost = $ 40 Cost=§ 55

;= exp(60-70)/10 a;=1.00 a;=1.00
=0.36

F;=036/236+0 Fi;=1.00/2.36+0.15 F;=1.00/2.36 +0.57
=0.15 =0.57 =1.00

figure 4.6 Assigning probabilities to neighbour solutions for method 3.
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A random probability value is generated. If the value ranges from O to 0.15 then
neighbour 1 is selected, if it is larger than 0.15 but smaller than 0.57 then neighbour 2 is

selected, and if the random probability is above 0.57 then neighbour 3 is chosen.

4.3.3 - Data Structure to Represent the Tree Network Topology.

Recall that the Esau-Williams algorithm initially assumes a star topology where
each node represents a component. The algorithm then merges components together
according to a certain trade-off function. An array of n records provides a simple way of
keeping track of how these components are merged at each iteration of the algorithm.
Each record [i], where i represents the terminal number and can have a value of 1 to n,
where n represents the number terminals not including the central node contains the

following fields:

component . integer;
SumOfwW : integer;
NbOfChildNodes : integer;

Each ‘component’ field is initialized with a value equal to i, the number of the sole
terminal that it initially contains. ‘SumOfW’ represents the aggregate weight of all the
terminals in the component where terminal i is included. Initially, this value is set to equal
the weight of terminal i since it is the only terminal of the component. ‘NbOfChildNodes’

denotes the number of child terminals in the component and is initially set to 1.
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Two arrays of size n record the hierarchy of connections generated by the Esau-Williams
algorithm and its modified version. An additional two arrays store the current SA solution
and the best SA solution found so far. Each element of these arrays contain the following

two fields.

From : integer;

To - integer;

The SA process implemented for the tree topology is given in the following steps with an
example of a network consisting of 6 terminals numbered from 1 to 6, where ‘0’

represents the central site:

step 1. Generate an initial solution using the Esau-Williams
algorithm and store the hierarchy of its connections in the

EWSolution array.

example:

EwSolution Array

From (Ti) 2 - s [ 3 1
To (Tj) 3 3 3 s o L]
step 2. Copy the elements of the EWSolution array into the

CurrentSolution array.
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step 3. Choose an element ‘q’ from the CurrentSolution array that
represents the link (terminal iq - terminal Jq) but is not

the optimal connection for terminal iq into the network.

example:
CurrentSolution Array /‘ q:link (6,5)
From (Ti) 2 a s [ 3 1
TJo (-rj) 3 3 3 5 -] o
step 4. Select an element ‘p’ from the CurrentSolution array, where
P<q.
example:
/ P /- q
From (Ti) 2 i a 5 | 6 3 1
To (T)) 3 | 3 b3 s [} | o
step 5. Copy all elements preceding element p from the

CurrentSolution array into the NeighbourSolution array,

making these links part of the neighbour solution.

Example:

NeighbourSolution
Array

From (Ti) 2 l l
To (Ti) 3 l i

89



step 6.

step 7.

step 8.

step 9.

Make terminal i, = terminal iq in the NeighbourSolution
array, and find the best available link (terminal ip - terminal

Jp ) that does not violate any constraints.

example:
NeighbourSolution ir=6, jo=3
Array /- g
From (Ti) 2 L]
To (Ti) 3 3

Run the Esau-Williams algorithm after forcing the link in
step 6 for the terminals that have not yet been linked.

example:
NeighbourSolution
Array —
From (Ti) ; 2 | e |- s s | 4
To (Ti) L 3 ! ] f s o o , o

If the links in the NeighbourSolution array represents a
lower cost solution than those in the CurrentSolution
array then goto step 10. If a lower cost solution was not

found then goto step 9.

Accept the solution with a certain probability generated by
the function exp(-AC; / T'), where AC; corresponds to

the change in total cost if the link connecting terminal i
into the network has changed. If the solution is rejected

then goto step 12.
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step 10.

step 11.

step 12.

step 13.

step 14.

Make the neighbour solution the current solution by
copying the elements of the NeighbourSolution array into

the CurrentSolution array.

If the new solution is the least costly solution found so far

then save it as the best SA solution.

If the stopping criteria has been reached then goto step
14.

Adjust the SA parameters (decrement the repetition
counter or reset the repetition counter and decrement

the temperature). Goto step 3.

Stop.
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4.4 - Pseudo-Code Describing the Algorithms.

4.4.1 - For SA Implemented For the Bus and Loop Topologies.

In the following pages we use pseudo-PASCAL to show the simulated annealing
programs that were developed for the various topologies.

The terms used in the pseudo-code below were chosen carefully in order to be self-
explanatory to readers with no background in programming languages.

In addition, note that an alternative stopping criterion was introduced for the bus
and loop programs in order to shorten the execution times. The alternative criterion
(called ‘max_no_improve’) consists of stopping the process after no improvement has
occurred over a number of successive temperature decreases. As we shall see later,
testing revealed that this strategy was effective once the temperature neared zero where

most of the program’s time is spent rejecting lower grade solutions.

44.1.1 - For SA Implemented Under Method (1).

Recall that method (1) consists of finding the best neighbour solution from a
specified number of pairs of terminals. For each pair, up to three neighbour solutions are
generated by considering two moves and an exchange.

For this method the steps of the Simulated Annealing process can be described in

Pseudo-PASCAL as follows:
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Begin (Method 1)
step 1. Start with the initial topology;
step 2. Initialization of Parameters. Assign values to the simulated annealing parameters

(Temperature, Alpha, Epsilon, Number_of _repetitions, and max_no_improve.
Assign a value to number_of terminal_pairs_to_consider ).

Set r equal to 0.
step 3. While (Temperature > than Epsilon) or ( r <= max_no_improve) do
Begin
Set k equal to Numbers_of repetitions;
Set m equal to number_of terminal_pairs_to_consider;
While k > than 0 do
Begin
Repeat (m) times
Begin
find_two_Random_Terminals_Ti_and_Tj
and
Consider_All_Possible_Neighbours_For_Ti_and_Tj;
End
Select_the_Best_Neighbour_from_the_set_of Solutions;
If Best_Neighbour_Solution’s_Cost is smaller than the
Current_Solution’s_Cost
then Change_To_Selected_Neighbour
else If we accept with a certain probability
then Change To_Selected Neighbour;
if the cost has not gone down then increment (r);
decrement (k);
End;
Temperature:=Temperature*Alpha;
End;

End(Method 1).
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4.4.1.2 - For SA Implemented Under Method (2).

For this method the steps of the Simulated Annealing process can be described in

Pseudo-PASCAL as follows:

Begin (Method 2)

step 1. Start with the initial topology;

step 2. Initialisation of Parameters. Assign values to the simulated annealing parameters
(Temperature, Alpha, Epsilon, Numbers_of repetitions, and max_no_improve).
Setr=0.

step 3. While (Temperature > than Epsilon) or (r<=max_no_improve) do

Begin
Set k equal to Numbers_of repetitions;
While k > than 0 do
Begin
Select_ Two_Random_Lines I and J
Evaluate_All_Possible_Neighbours_for_each
Combination_of Ti_and_Tj
Select_the_Best_Neighbour_from_the_set_of Solutions;
If Best_Neighbour_Solution’s_Cost is smaller than the
Current_Solution’s_Cost
then Change To_Selected Neighbor
else If we accept with a certain probability
then Change To_Selected_Neighbor;
if the cost has not gone down then increment ;
decrement (k);
End;
Temperature:=Temperature*Alpha;
End;
End(Method 2).
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4.4.1.3 - For SA Implemented Under Method (3).

For this method the steps of the Simulated Annealing process can be described in

Pseudo-PASCAL as follows:

Begin (Method 3)

step 1. Start with the initial topology;

step 2. Initialization of Parameters. Assign values to the simulated annealing parameters
(Temperature, Alpha, Epsilon, Numbers_of repetitions, and Max_no_improve).

Setr=0;

step 3. While (Temperature > than Epsilon) or (r<=Max_no_improve) do

Begin
Set k equal to Numbers_of repetitions;
While k > than 0 do
Begin
Evaluate_All_Possible Neighbours
Assign_a_Probability_of_being_Selected_to_each_Neighbour
Select_a_Neighbour_Solution_Based_on_its_Probability
Change_To_Selected_Neighbor
if the cost has not gone down then increment(r);
decrement (k);
End;
Temperature:=Temperature* Alpha;
End;
End(Method 3).

95



4.4.2 - For SA Implemented For the Tree Topology.

Recall that for the tree topology we store the hierarchy of connections obtained while
generating solutions in arrays. As the following example illustrates, link (2,3) in element 1

of the array is the first link created, while (1,0) at element 6 in the array is the last.

example:

EwSolution Array

From (Ti) P2 b a s s 3 1

To (Tj) {3 3 3 s °© . o

Note that the terminals considered towards the end of the process by the Esau-Williams
algorithm have no choice but to connect to the ‘0’. Often enough, this is because the
multipoint lines being created around them are being filled up and cannot accept additional
terminals without violating the capacity constraint.

The method that was developed for generating neighbour solutions for the tree topology
consists of changing the order in which the Esau-Williams algorithm creates its links. For
example, terminal 1 instead of being considered for connection at iteration 6 of the Esau-
Williams algorithm as illustrated above, would be linked anywhere between iterations 1 to
5. Thus, instead of having to link terminal ‘1’ to the centre ‘0’, a possibility would now
exist to find a lower cost link to a previously unavailable multipoint line.

The following steps in Pseudo-PASCAL describe the process:
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Begin (Tree topology)

step 1. Start with the Esau-William topology constrained by maximum line weight
(Wmax) and by the number of child nodes any terminal node may have;

step 2. Initialization of Parameters. Assign values to the simulated annealing parameters
(Temperature, Alpha, Epsilon, Numbers_of_repetitions).

step 3. While (Temperature > than Epsilon) de

Begin
Set k equal to Numbers_of repetitions:;

While k > than 0 do

Begin
Select_a_Random_Link_(i, j;)_at _Element_q _of_the_CurrentSolution_Array;
Select_an_Element_p_F rom_the_CurrentSolution_Array;(where p<q)
Copy_all_Elements_Preceeding_ p_to_the_NeighbourSolution_Array;
Find_the_Best_Link for terminal iq;
Run_Esau-Williams_for_the_Remaining_Terminals;

If Neighbour_Solution’s_Cost is smaller than the

Current_Solutions_Cost then Change To_Neighbor
else If we accept with a certain probability then Change_To_Neighbor:

decrement (k);
End;

Temperature:=Temperature* Alpha;
End;
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CHAPTER § - COMPUTATIONAL RESULTS AND ANALYSIS.

Data sets representing 50, 100, 150, 200, and 250 terminals were created. In all,
20 sets were produced, 4 in each size category. All data sets were generated at random to
represent the xy-coordinates' of the terminals relative to a concentrator positioned at
(0,0). In addition, each terminal (7}) was randomly? assigned a weight (w; ), with an
average w; for all data sets equal to 4.

For the loop and bus topologies, the problems were constrained by imposing a
limit on the maximum number of terminals any line could carry in addition to a restriction
on the maximum data transmission capacity of each line (Wmax) which was the same for
each line. For the bus topology, the ‘maximum number of terminals per line’ constraint
was ignored and replaced by a limit on the number of child nodes any one terminal in the
tree could have with exception of the concentrator.

For the loop and bus topologies, the ‘maximum number of terminals per line’
constraint was set to 12 after making sure that this value actually did constrain the Esau-
Williams and Clarke-Wright algorithms somewhat. For the tree topology, the ‘maximum
number of child nodes’ was limited to 3. For all topologies the ‘maximum line weight’
constraint (Wmax) was set to 32, thus, on average we would expect resulting topologies

consisting of about 8 terminals per line (Wmax / average w; =32/4 ). All programs were

run by specifying a random seed value of 2222 on a 486 DX-2 66MHz computer with 8

megs of ram.

! Random values for x were limited to (-309. 309 ], and [-174, 174 ] for y.
2 Random weight assignments were generated between [1, 8].
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The following pages include tables illustrating the results obtained from our
simulated annealing algorithms. The tables include (among other relevant information) the
percentage of average savings obtained and the SA running time for the given annealing
schedule. The schedules were obtained by comparing the results obtained from various
combinations of parameters settings. From this process of trial_and_error, the annealing
schedule offering the most savings for each problem size was selected. The following

tables summarize the results obtained using the selected schedules.
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5.1 - Results for the Bus Topology ( Method 1 ).

For the bus topology, the results of our simulated annealing algorithm using

method 1 ( randomly selecting a specified number of terminal pairs at each repetition ) are

given below.

For the four data sets representing the xy-coordinate locations of 50 terminals the

results are...

table 5.1 Results for the bus topology (method 1) for data sets consisting of 50 terminals.

Esau Simulated Esau Simulated Average
n=50 | Williams | Annealing | Savings { Williams Annealing Improvement Annealing Schedule
Cost Cost Time Time % (Parameters)
50_1 | 3094 | 2873 | 221 0 12 sec
- Temperature = 14
Alpha = .990
50_2 | 3027 | 2795 | 232 0 29 sec Eoilon = 01
silon = .
587% |7
Repetition = 80
0 35 sec
9 7 89
503 2947 2758 ! Pairs Considered = 40
Alternate Stopping
504 | 3324 | 3238 | 86 ° 3 sec Criteria = 30
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For the four data sets representing the xy-coordinate locations of 100 terminals the

results are...

Table 5.2 Results for the bus topology (method 1) for data sets consisting of 100 terminals.

Esau | Simulated Esau Simulated Average
n =100 | Williams | Annealing | Savings | Williams Annealing | Improvemens Annealing Schedu,
Cost Cost Time Time % (Parameters)
100_1 | 5435 | 4867 | seg | !s= S min
- 12 sec Temperature = |3
) Alpha = .998
100 2 | 4905 | 4208 | 697 o § min
- 26 sec ° Epsilon = .01
9.59 %
Repetition = 95
0 I min
100 3 996
00_ 499 4882 114 44 sec Pairs Considered = 5
) Alternate Stopping
100 4 | 5194 4605 589 0 583mslenc Criteria = 110

For the four data sets representing the xy-coordinate locations of 150 terminals the

results are. ..

Table 5.3 Results for the bus topology (method 1) for data sets consisting of 150 terminals.

Esau Simulated Esau Simulated Average
n =150 | Williams | Annealing Savings | Williams Annealing Improvement Annealing Schedule
Cost Cost Time Time % (Parameters})
3 sec 9 min
517
150_1 6365 5848 1 11 sec Temperature = 15
Alpha = .993
3 sec 5 min
150 2 7284 6597 687 40 sec 6.21 % Epsilon = .01
. °
Repetition = 100
3 sec 9 min
1503 | 6690 6415 275 04 sec Pairs Considered = 50
) Alternate Stopping
150 4 | 6897 | 6684 | 213 | dse | 4min Criteria = 150
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For the four data sets representing the xy-coordinate locations of 200 terminals the

results are...

Table 5.4 Results for the bus topology (method 1) for data sets consisting of 200 terminals.

Esau Simulated Esau Simulated Average
n =200 | Williams | Annealing | Savings | Williams Annealing | Improvement Armnealing Schedule
Cost Cost Time Time % (Parameters)
200_1 | 8281 | 7829 | 452 | % | Omin
- sec Temperature = 10
_ Alpha = .991
200 2 | 9004 | 8241 763 9 sec 2 min _
- o Epsilon = .01
717 %
Repetition = 180
10 sec 6 min
7
200_3 8778 7799 979 16 sec Pairs Considered = 85
) Alternate Stopping
2004 | 8910 | 8598 | 312 | 0% | 3min Criteria = 20

For the four data sets representing the xy-coordinate locations of 250 terminals the

results are...

Table 5.5 Results for the bus topology (method 1) for data sets consisting of 250 terminals.

Esau Simulated Esau Simulated Average
n =250 | Williams | Annealing Savings | Williams Annealing Improvement Annealing Schedule
Cost Cost Time Time % (Parameters)
17 sec 32 min
250_1 | 10143 | 9305 838 gt Temperature = 7
Alpha = 993
18 sec 3Imin
2502 | 10132 | 9495 | 637 2% ve o | Epsiton =01
6.45 %
Repetition = 200
18 sec 32 min
250_3 | 10101 9403 698 26 sec Pairs Considered = 60
Alternate Stopping
19 sec 29 min Criteria = 120
250_4 | 10249 | 9802 | 447 08 o
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5.2 - Results for the Bus Topology ( Method 2 ).

For the bus topology, the results of our simulated annealing algorithm using

method 2 ( randomly selecting two lines and considering all possible pairs of terminals that

can be combined from these two at each repetition ) are given below.

results are...

For the four data sets representing the xy-coordinate locations of 50 terminals the

Table 5.6 Results for the bus topology (method 2) for data sets consisting of 50 terminals.

Esau Simulated Esau Simulated Average
N =50 | Williams | Annealing | Savings | Williams Annealing Improvement Annealing Schedu
Cost Cost Time Time % (Parameters)
50 1 | 3004 | 2863 231 0 23 sec
- Temperature = 7
Alpha = .999
50 2 | 3027 | 2961 66 0 24 sec Eosilon = 01
on =.
5.74% |*
50_3 | 2947 | 2647 | 300 0 23 sec Repetition = 50
Alternate Stopping
50 4 | 3324 | 3210 114 0 19 sec Criteria = 180
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For the four data sets representing the xy-coordinate locations of 100 terminals the

results are. ..

Table 5.7 Results for the bus topology (method 2) for data sets consisting of 100 terminals.

Esau Simulated Esau Simulated Average
n =100 | Williams | Annealing | Savings | Williams Anmnealing | Improvement Annealing Schedul
Cost Cost Time Time % (Parameters)
100_1 | 5435 | 4814 | 621 0 57 sec
- Temperature = 11
Alpha = .999
100 2 | 4905 | 4441 464 0 58 sec _
9.83 % Epsilon = .0]
0 1 min Repetition = 80
100_3 | 4996 4366 630 09 sec epelition
Alternate Stopping
100 4 | 5194 | 4890 304 0 33 sec Criteria = 110

For the four data sets representing the xy-coordinate locations of 150 terminals the

results are...

Table 5.8 Results for the bus topology (method 2) for data sets consisting of 150 terminals.

Esau Simulated Esau Simulated Average
n =150 Williams | Annealing | Savings { Williams Annealing Improvement Annealing Schedule
Cost Cost Time Time % (Parameters)
150_1 | 6365 | 6246 | 119 | 3% 36 sec
- Temperature = 20
Alpha = .999
3 sec 2 min
150_2 | 7284 6306 978 45 sec . Epsilon = .01
10.20 %
1503 | 6690 | 5840 | gs0 | e | lmin Repetition = 92
) Alternate Stopping
150_4 | 6897 6066 831 3 sec ‘:3":::: Criteria = 200

104



For the four data sets representing the xy-coordinate locations of 200 terminals the

results are. ..

Table 5.9 Results for the bus topology (method 2) for data sets consisting of 200 terminals.

Esau | Simulated Esau Simulated Average -
n =200 | Williams | Annealing | Savings Willmms Annealing | Improvemen: Amnealing Schedu
Cost Cost Time Time % (Parameters}
2001 | 8281 | 7373 | 908 [ 8% 2 min
- sec Temperature = 12
_ Alpha = .999
2002 | 9004 | 8000 | 1004 | °Psc [ lmin _
- sec ° Epsilon = .01
10.54 %
9 sec 2 min Repetition = 110
200 3 | 8778 7887 891 38 sec epetition
) Alternate Stopping
2004 | 8910 | 8027 | gg3 | 0 | lmin Criteria = 220

For the four data sets representing the xy-coordinate locations of 250 terminals the

results are...

Table 5.10 Results for the bus topology (method 2) for data sets consisting of 250 terminals.

Esau Simulated Esau Simulated
n=2s0 | Williams | Annealing | Savings | Williams Annealing | Improvement Annealing Schedule
Cost Cost Time Time % (Parameters}
18 sec 2 min
250_1 | 10143 9179 964 04 sec Temperature = 11
Alpha = .999
19 sec 4 min
250 2 | 10132 9048 1048 16 sec . Epsilon = .01
7.16 %
250_3 | 10101 9659 442 19 sec llgn:; Repetition = 100
) Alternate Stopping
250_4 | 10249 | 9795 | 454 | s | 3min Criteria = 220
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5.3 - Results for the Bus Topology ( Method 3 ).

For the bus topology, the results of our simulated annealing algorithm using

method 3 ( a systematic approach of considering all possible pairs of terminals to create

potential neighbour solutions ) are given below.

For the four data sets representing the xy-coordinate locations of 50 terminals the

results are...

Table 5.11 Results for the bus topology (method 3) for data sets consisting of 50 terminals.

Esau Simulated Esau Simulated Average
n=s0 | Williams | Annealing | Savings | Williams Annealing | Improvement Annealing Schedule
Cost Cost Time Time % (Parameters)
501 | 3094 | 2795 | 232 0 37 sec
- Temperature = 6
Alpha = 900
502 | 3027 | 2780 | 247 0 37 sec Eocilon = 0]
on = .
592% |
0 1 min Repetition = 50
50 3 2947 2757 190 40 sec epetition
Alternate Stopping
0 I min C iteria = 2
S50 4 3324 3260 64 03 sec riteria
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For the four data sets representing the xy-coordinate locations of 100 terminals the

results are...

Table 5.12 Results for the bus topology (method 3) for data sets consisting of 100 terminals.

Esau Simulated Esau Simulated Average
n =100 | Williams | Annealing | Savings | Williams Amnealing | Improvement Annealing Schedule
Cost Cost Time Time % (Parameters)
100_1 | 5435 | 4962 | 473 I sec 4 min
- 16 sec Temperature = 6
) Alpha = .990
100_2 | 4905 | 4762 123 0 3 min _
0 7 min Repetition = 100
100_3 4996 4877 119 12 sec epetition
) Alternate Stopping
100 4 | 5194 4885 309 0 zslg Criteria = 2

For the four data sets representing the xy-coordinate locations of 150 terminals the

results are...

Table 5.13 Results for the bus topology (method 3) for data sets consisting of 150 terminals.

Esau Simulated Esau Simulated Average
n =150 | Williams | Annealing | Savings | Williams Annealing Improvement Annealing Schedule
Cost Cost Time Time % (Parameters)
150_1 | 6365 | 6159 | 206 | 3% 34 min
- Temperature = 7
Alpha = .900
4 sec 25 min
150_2 | 7284 | 6889 | 395 o N sysiton .01
4.05 %
3 sec 51 min Repetition = 50
150 3 6690 6554 136 45 sec epetilion
Alternate Stopping
3 sec 39 min Criteria = 15
150_4 6897 6531 366 43 sec riteria
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For the four data sets representing the xy-coordinate locations of 200 terminals the

results are...

Table 5.14 Results for the bus topology (method 3) for data sets consisting of 200 terminals.

Esau Simulated Esau Simulated Average
n=200 | Williams | Annealing | Savings | Williams Annesling | Improvement Annealing Schedule
Cost Cost Time Time % (Parameters}
200 1 | 8281 7762 519 8 sec 313";:
B Temperature = 4
) Alpha = .960
200 2 [ 9004 | 8586 418 9 sec ‘g"‘m _
B sec o Epsilon = .01
511 %
200 3 | 8778 | 8321 457 10 sec 38 min Repetition = 50
- sec
) Alternate Stopping
200 4 | 8910 | 8518 392 | 10sec 38 min Criteria = 4

For the four data sets representing the xy-coordinate locations of 250 terminals the

results are...

Table 5.15 Results for the bus topology (method 3) for data sets consisting of 250 terminals.

Esau Simulated Esau Simulated Average
n =250 | Williams | Annealing | Savings | Williams Annealing Improvemen:t Annealing Schedule
Cost Cost Time Time % (Parameters)
-~ 18 sec 30 min
250 1 | 10143 9734 409 35 sec Temperature = 2
Alpha = .992
19 sec 21 min
250 2 | 10132 9653 479 18 sec 3.79 9 Epsilon = .01
. ()
2503 | 10101 | 9540 | s61 | 9% | 33min Repetition = 50
) Alternate Stopping
250_4 | 10249 | 10158 | 91 | 0% | Smin Criteria = |
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5.4 - Results for the Loop Topology ( Method 1 ).

For the loop topology, the results of our simulated annealing algorithm using
method 1 ( randomly selecting a specified number of terminal pairs at each repetition ) are

given below.

For the four data sets representing the xy-coordinate locations of 50 terminals the
results are...

Table 5.16 Resuits for the loop topology (method 1) for data sets consisting of 50 terminals.

Clarke Simulated Clarke Simulated Average
n=50 Wright Annealing | Savings Wright Annealing | Improvement Annealing Schedule
Cost Cost Time Time % (Parameters)
50_1 | 4851 | 4131 | 720 0 36 sec
- Temperature = 10
Alpha = .999
50 2 | 4942 | 4433 | so09 0 26 sec Eocilon = o1
silon = .
10.17 % | *
Repetition = 22
0 23 sec
7
503 4177 4099 8 Pairs of terminals = 25
Alternate Stopping
504 | 5053 | 4425 | 628 0 33 sec Criteria = 250
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For the four data sets representing the xy-coordinate locations of 100 terminals the

results are...

Table 5.17 Results for the loop topology (method 1) for data sets consisting of 100 terminals

Clarke Simulated Clarke Simulated Average
a=100 | Wright Annealing | Savings Wright Annealing Improvement Annealing Schedule
Cost Cost Time Time % (Parameters)
2 sec 2 min
100_1 | 8776 7549 1227
- 07 sec Temperature = 10
) Alpha = .999
1002 | 7750 | 6741 | 1009 | 'S¢ 2 min Epsilon = 0]
12.18 % | *" ™
) Repetition = 35
1003 | 7938 | 7446 | 492 | 2%° o min
- Pairs of terminals = 35
) Alternate Stopping
100_4 | 8439 | 7176 | 1279 | 2% 3 n Criteria = 250

For the four data sets representing the xy-coordinate locations of 150 terminals the

results are...

Table 5.18 Results for the loop topology (method 1) for data sets consisting of 150 terminals.

Clarke Simuiated Clarke Simulated Average
n =150 Wright Annealing Savings Wright Annealing Improvement Annealing Schedule
Cost Cost Time Time % (Parameters)
150_1 | 10622 | 9417 | 1205 | %% 3 min
- Temperature = 10
Alpha = .999
10 sec 6 min
150_2 | 12414 10751 1663 10 sec . Epsiton = .01
11.57 %
Repetition = 55
9 sec 3 min
150_3 | 10937 10019 o18 36 sec FPairs of terminals = 35
) Alternate Stopping
150_4 | 11848 | 10332 | 1516 | °= o mn Criteria = 200
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For the four data sets representing the xy-coordinate locations of 200 terminals the

results are...

Table 5.19 Results for the loop topology (method 1) for data sets consisting of 200 terminals.

Clarke Simulated Clark Simulated Average
B =200 Wright | Annealing | Savings Wright Annealing | Improvement Annealing Schedule
Cost Cost Time Time % (Parameters)
200_1 | 14335 | 12755 | 1580 | 23sec > min
= 54 sec Temperature = |6
‘ Alpha = .990
200_2 | 15425 | 13455 | 1970 | 27sec 5 min
= 18 sec ° Epsilon = .01
10.35 %
) Repetition = +5
200 3 | 15156 | 13808 | 1348 | 28sec > min _
- 59 sec Fairs of terminals = 6(
' Alternate Stopping
2004 | 15468 | 14116 | 1352 | 29 | Gmin Criteria = 120

For the four data sets representing the xy-coordinate locations of 250 terminals the

results are...

Table 5.20 Results for the loop topology (method 1) for data sets consisting of 250 terminals.

Clarke Simulated Clarke Simulated Average
n =250 Wright | Annealing | Savings Wright Annealing | Improvement Annealing Schedule
Cost Cost Time Time % (Parameters)
55 sec 20 min
250_1 | 17746 15496 2250 51 sec Temperature = 18
Alpha = .992
56 sec 19 min
250 2 | 17344 15210 2134 34 sec . Epsilon = .01
11.88 %
Repetition = 55
53 sec 13 min
250 3 | 17294 15281 2013 49 sec Pairs of terminals = 106
) Alternate Stopping
250_4 | 17984 | 16038 | 1946 | S8sec | 17min Criteria = 110

111



5.5 - Results for the Loop Topology ( Method 2 ).

For the loop topology, the results of our simulated annealing algorithm using

method 2 ( randomly selecting two lines and considering all possible pairs of terminals that

can be combined from these two at each repetition ) are given below.

results are. ..

For the four data sets representing the Xy-coordinate locations of 50 terminals the

Table 5.21 Results for the loop topology (method 2) for data sets consisting of 50 terminals.

Clarke Simulated Clarke Simulated Average
n=50 Wright | Annealing | Savings Wright Annealing | Improvement Annealing Schedule
Cost Cost Time Time % (Parameters)
0 31 sec
50_1 | 4851 4164 687
- Temperature = |4
Alpha = .998
502 | 4942 | 4218 | 724 0 30 sec Eosilon = 01
siion = .
10.27 % | P
503 | 4177 | 4080 97 0 24 sec Repetition = 75
Alternate Stopping
50 4 | 5053 | 4607 | 446 0 19 sec Criteria = 100
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For the four data sets representing the xy-coordinate locations of 100 terminals the

results are...

Table 5.22 Results for the loop topology (method 2) for data sets consisting of 100 terminals.

Clarke Simulated Clarke Simulated Average
n=100 | Wrght | Annealing | Savings Wright Annealing Improvement Annealing Schedule
Cost Cost Time Time % (Parameters)
100_1 | 8776 | 7533 | 1243 | 2sec 48 sec
- Temperature = 22

Alpha = .998

100 2 | 7750 | 7362 | 388 2 sec 17 sec Eosilon = 01

12.25 % | =7 =

100_3 | 7938 | 6331 | 1607 | 2% 44 sec Repetition = 55
Alternate Stopping

100 4 | 8439 | 7646 793 2 sec 34 sec Criteria = 100

For the four data sets representing the xy-coordinate locations of 150 terminals the

results are. ..

Table 5.23 Results for the loop topology (method 2) for data sets consisting of 150 terminals.

Clarke Simulated Clarke Simulated Average
p=150 | Wright | Annealing | Savings Wright Annealing Improvement Annealing Schedule
Cost Cost Time Time % (Parametersj
8 sec 1 min
74
150 _1 | 10622 8948 16 24 sec Temperature = 12
Alpha = .998
150_2 | 12414 | 11165 | 1249 | 10se 35 sec Eosilon < 01
on =,
13.09 % | ="
9 sec 1 min Repetition = 55
150_3 | 10937 9887 1050 22 sec epetition
) Alternate Stopping
150_4 | 11848 | 9819 | 2029 | = | Imin Criteria = 150
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For the four data sets representing the xy-coordinate locations of 200 terminals the

results are...

Table 5.24 Results for the loop topology (method 2) for data sets consisting of 200 terminals.

Clarke Simulated Clark Simulated Average
n =200 Wright Annealing | Savings Wright Annealing Improvement Annealing Schedule
Cost Cost Time Time % (Parameters)
200_1 | 14335 | 12235 | 2100 | s | 4min
- sec Temperature = 25
_ Alpha = .998
200_2 | 15425 | 13311 | 2114 | 26%= I min
- 08 sec 13.51 % Epsilon = .01
» (1]
2003 | 15156 | 12912 | 2244 | s | 4min Repetition = 75
) Alternate Stopping
200 4 | 15468 | 13771 | 1697 | 29%e 3n Criteria = 200

For the four data sets representing the xy-coordinate locations of 250 terminals the
results are...

Table 5.25 Results for the loop topology (method 2) for data sets consisting of 250 terminals.

Clarke Simulated Clarke Simulated Average
n=250 | Wrght Annealing | Savings Wright Annealing | Improvemen: Annealing Schedule
Cost Cost Time Time % (Parameters)
55 sec 1 min
250_1 | 17746 15518 2228 29 sec Temperature = 10
Alpha = .999
56 sec 1 min
250_2 | 17344 14713 2631 51 sec . Epsilon = .01
12.50 %
53 sec 1 min Repetition = 35
250 3 | 17294 15136 2]58 38 sec epetition
) Alternate Stopping
250 4 | 17984 | 16204 | 1780 | 8% o min Criteria = 250
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5.6 - Results for the Loop Topology ( Method 3 ).

For the loop topology, the results of our simulated annealing algorithm using

method 3 ( a systematic approach of considering all possible pairs of terminals to create

potential neighbour solutions ) are given below.

results are...

For the four data sets representing the xy-coordinate locations of 50 terminals the

Table 5.26 Results for the loop topology (method 3) for data sets consisting of 50 terminals.

Clarke Simulated Clarke Simulated Average
n=50 Wright | Annealing | Savings Wright Annealing | Improvement Annealing Schedule
Cost Cost Time Time % (Parameters)
0 1 min
50_1 4851 4491 360 08 sec Temperature = 4
Alpha = .999
0 4 min
50_2 4942 4503 439 11 sec . Epsilon = .01
7.91 %
50_3 4177 4091 86 0 llonsl:: Repetition = 70
. Alternate Stopping
50_4 | 5053 | 4433 | 620 0 o Criteria = 4
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For the four data sets representing the xy-coordinate locations of 100 terminals the

results are...

Table 5.27 Results for the loop topology (method 3) for data sets consisting of 100 terminals.

Clarke Simulated Clarke Simulated Average
n=100 | Wrght | Annealing | Savings Wright Annealing Improvement Annealing Schedule
Cost Cost Time Time % (Parameters)
2 sec 9 min
100 1 | 8776 7809 967
- 35 sec Temperature = 3
. Alpha = .999
1002 | 7750 | 7288 | 462 | 2% | Smin _
7.92 o, Epsilon = .01
2 sec S min Repetition = 70
100_3 | 7938 7416 522 58 sec epelition
) Alternate Stopping
100 4 | 8439 | 7783 656 2 sec 1§ min Criteria = 6

For the four data sets representing the xy-coordinate locations of 150 terminals the

results are...

Table 5.28 Results for the loop topology (method 3) for data sets consisting of 150 terminals.

Clarke Simulated Clarke Simulated Average
a=150 | Wrght Annealing Savings Wright Annealing Improvement Annealing Schedule
Cost Cost Time Time % (Parameters)
9 sec 21 min
7
150_1 | 10622 9393 1229 40 sec Temperature = 3
Alpha = .999
10 sec 23 min
8
150_2 | 12414 11556 85 30 sec . Epsilon = .01
7.15 %
150_3 | 10937 | 10344 | 593 | O | Il8min Repetition = 75
) Alternate Stopping
150_4 | 11848 | 11251 | s97 | 8¢ | 19min Criteria = 5
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For the four data sets representing the xy-coordinate locations of 200 terminals the

results are...

Table 5.29 Results for the loop topology (method 3) for data sets consisting of 200 terminals.

Clarke | Simulated Clark Simulated Average
n=200 { Wright | Annealing | Savings Wright Annealing | Improvement Annealing Schedui
Cost Cost Time Time % (Parameters)
23 sec 15 min
200 1 | 14335 13273 1062
- 49 sec Temperature = 1
) Alpha = 960
200_2 | 15425 | 13754 | 1671 | 2Tse 22 min
- 18 sec ° Epsilon = .01
7.14 %
200 3 | 15156 | 14350 | 806 | 8%« 24 min Repetition = 25
) Alternate Stopping
200 4 | 15468 | 14693 | 775 | 30se 1 min Criteria = 10

For the four data sets representing the xy-coordinate locations of 250 terminals the

results are. ..

Table 5.30 Results for the loop topology (method 3) for data sets consisting of 250 terminals.

Clarke Simulated Clarke Simulated Average
n=250 | Wright Annealing | Savings Wright Annealing | Improvement Annealing Schedule
Cost Cost Time Time % (Parameters}
55 sec 40 min
250 1 | 17746 16234 1512 36 sec Temperature = |
Alpha = 950
57 sec 28 min
250 2 | 17344 16279 1165 17 sec . Epsilon = .01
8.83 %
250_3 | 17294 | 15729 | 1565 | 34 | 43min Repetition = 25
) Alternate Stopping
250_4 | 17984 | 16026 | 1958 | 39sec 38 min Criteria = 10
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5.7 - Results for the Tree Topology.

For the tree topology, the results of our simulated annealing algorithm are given

below. Recall that for the tree, the SA algorithm consists in altering the order in which the

Esau-Williams algorithm selects its links.

For the four data sets representing the xy-coordinate locations of 50 terminals the

results are...
Table 5.31 Results for the tree topology for data sets consisting of 50 terminals.
Esau Simulated Esau Simulated Average
= Williams | Annealing | Savings | Williams Annealing | Improvement Annealing Schedule
n =50 -
Cost Cost Time Time % (Parameters}
0 1 min
302 98
S0_1 021 2988 33 09 sec Temperature = 3
Alpha = .900
0] 1 min
50 2 2910 2907 3
= 10 sec Epsilon = .99
L11 % | ="
503 | 2701 | 2640 | 6l 0 36 see Repetition = 35
50_4 | 3221 | 3186 35 0 | min
— 11 sec
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For the four data sets representing the xy-coordinate locations of 100 terminals the

results are...

Table 5.32 Results for the tree topology for data sets consisting of 100 terminals.

Esau Simulated Esau Simulated Average
n =1¢¢ | Williams | Annealing | Savings | Williams Annealing | Improvement Annealing Schedule
Cost Cost Time Time % (Parameters)
100_1 | 5236 | 5190 | 60 2 sec 13 min
- 02 sec Temperature = 10
) Alpha = .880
100 2 | 4789 | 4726 84 I sec 11 min _
1.45 % Epsilon = .99
2 sec 11 min Repetition = 20
100_3 | 4812 4756 50 47 sec epelition
100 4 | 5095 | 4971 124 | 25 12 min
— 23 sec

For the four data sets representing the xy-coordinate locations of 150 terminals the

results are. ..

Table 5.33 Results for the tree topology for data sets consisting of 150 terminals.

Esau Simulated Esau Simulated Average
n =150 | Williams | Annealing | Savings | Williams Annealing | Improvement Annealing Schedule
Cost Cost Time Time % (Parameters)
8 sec 22 min
150_1 | 6291 | 6231 60 L Femperature 7
Alpha = .870
12 sec 30 min
150_2 | 7347 | 7263 84 i | Epsiton = 50
1.37 %
9 sec 24 min Repetition = 9
150_3 | 6572 | 6522 | 50 %6 o epetition
9 sec 23 min
150 4 | 6952 | 6775 | 177 1
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For the four data sets representing the xy-coordinate locations of 200 terminals the

results are...

Table 5.34 Results for the tree topology for data sets consisting of 200 terminals.

Esau Simulated Esau Simulated Average
p =200 | Williams | Annealing | Savings | Williams Annealing | Improvement Annealing Schedule
Cost Cost Time Time % (Parameters)
26 sec 1hr
200 1 8235 8169 66 .
- 36 min Temperature = 6
30 sec
Alpha = 900
2002 | 8805 | 8730 | 75 | % 2hs
- mn ° Epsilon = .50
32 sec 1.05 %
32 sec 2 hrs R ition = 12
200_ 3 | 8628 8528 100 24 min epetition
15 sec
34 sec 2 hrs
200 4 | 8747 8628 119 32 min
16 sec

For the four data sets representing the xy-coordinate locations of 250 terminals the

results are. ..

Table 5.35 Results for the tree topology for data sets consisting of 250 terminals.

Esau Simulated Esau Simulated Average
n =250 | Williams | Annealing | Savings | Williams Annealing [ Improvement Annealing Schedule
Cost Cost Time Time % (Paramelers)
1 min 1hr
250_1 | 10006 | 9926 80 | oo | sin emperature = 18
23 sec
Alpha = .700
1 min 1hr
9 90 .
250 2 | 9985 895 s | 160 | psiton - 50
15 sec 0.69 %
1 min 1 hr Repetition = 3
250_3 | 10039 | 9943 96 | s | 1enr epetition
50 sec
1 min 1 hr
250_4 | 10132 10122 10 08 sec 20 min
21 sec
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5.8 - Overall Average Improvement on the Initial Solutions.

The following table shows the overall average improvement obtained by each

program considering the results from all 20 data sets.

Table 5.36 Average improvement for each heuristic.

Method 1 | Method 2 | Method 3
Busl 7.06 % 8.69 % 4.77%
Loopz 11.23 % 1233 % 7.79%
Tree3 1.13%

5.9 - Analysis of Results.

Before testing began, intuitively at least, we believed that for the bus and loop
topologies, method 3 would yield better results. This was due to the fact that method 3
was presumed to have a distinct advantage by systematically considering all possible
neighbour solutions before selecting one among them. Furthermore, the higher running

times of method 3 when compared to the other two methods were not unexpected, but it

! For the Bus topology the improvement is over the Esau-Williams solution.
? For the Loop topology the improvement is over the Clarke-Wright solution.
3 For the Tree topology the improvement is over the Esau-Williams solution.
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was presumed that the additional savings that the method would offer would offset this
drawback. Yet, as the results clearly show, for the 20 data sets tested and the annealing
schedules that were selected, method 3 offers the least improvement among all three
methods, and this for both topologies. In addition, if running time is also taken into
consideration, this method is clearly disadvantageous. From the table above, we can see
that for both the bus and loop topologies, method 2 offers the most savings. In addition,
for the loop topology under the SA process using method 2, the SA solution offered a
20.24% improvement over the Clarke-Wright algorithm for data set ‘100_3’(see table 22,
p-112). Surprisingly, for both topologies, it is also method 2 that offers significantly
smaller running times when compared to the other two methods.

For the tree topology, although an improvement over the initial solution was
obtained, the computational results are disappointing. Not only is the running time quite
high when compared to our other SA programs for the same data sets, the overall average
cost improvement is only of 1.13 % over the Esau-Williams solution.

A possible explanation for the relatively small improvements obtained for the tree
topology is that good annealing schedules for the data sets that were tested were not
found. Another possibility for the lower improvement percentages is that we are
somewhat erroneously evaluating the quality of the tree solutions. Indeed, by comparing
them to the greater improvements obtained for the bus and loop topologies, the
improvements for the tree topology may do appear disproportionate to those obtained for
the other two topologies. However, the relatively small amount of improvement for the
tree topology may simply be due to the high quality of the initial solution itself. In fact, in

the tree topology, a multipoint line is made up of terminals that were interconnected in a
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less restrictive manner when compared to the other two topologies. In other words, the
Esau-Williams solutions obtained for our tree topology problems may be relatively close
to exact solutions, in such a case, large improvements should not be expected.

For the bus and loop topologies, the addition of an alternate stopping criterion
proved to be beneficial in reducing the running times of the programs. Recall that this
alternate criterion stops the SA process if a specified number of consecutive temperature
decreases occur without procuring any savings. The selection of a value for this criterion
depends mainly on the value of alpha. We noticed that when alpha was set to a value very
close to 1, say, 0.999, the value for this alternate criterion needed also to be set quite high
since at high alpha settings the temperature decrements very slowly. In other words, this
has the effect of increasing the total number of temperature decrements in the annealing
process. As this number increases so too does the average number of temperature
decrements between the occurrences of lower cost neighbour solutions.

Another observation that was made was the importance in finding a good value for
the initial temperature. Testing showed that lower temperature settings, generally less
than 20, provided the best results. This, we believe, is due to the fact that the initial
solutions provided for our SA programs are already quite good. High initial temperature
settings deteriorate these initial solutions greatly from the start of the SA process. In such
situations, as the temperature approaches zero the programs probably spend most of their

time fixing their previous cost increasing alterations.
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5.10 - Limitations of this Research.

The major limitation of our research is that although improvements were obtained
over well-known heuristic solutions (Clarke-Wright and Esau-Williams algorithms) that
are used as input to our programs, we have not been able to evaluate how close our
results come to the exact solution for lack of a lower bound on the optimum.
Furthermore, we did not grade the quality of the solutions obtained by our SA algorithms
relative to other existing CMST and VRP heuristic solutions apart from those used to
obtain our initial solutions.

Moreover, only one value of Wmax (the maximum amount of traffic a line can
effectively carry) is considered. This is analogous to designing a network with only one
type of data transmission medium (only copper wire for example). In reality, a multitude
of data transmission media exist as described in chapter 1. However, in this aspect we are
not alone; none of the previous CMST research that was collected and reviewed in this
thesis took this factor into account. In the real world, we believe that any heuristic
solution (as implemented in existing research on the terminal layout problem) should
probably only reflect an upper bound on the true cost of a real centralized network. This
is because an appropriate value for Wmax must be specified so that any line can at least

accept the terminal with the largest amount of traffic (Wmax > w; for all i ). Once a

solution is obtained with this value of Wmax, any multipoint line that has slack could be
down-graded to a lower gauge line that would still accept all the terminals already on that
multipoint line. Since the cost of data transmission media is largely dependent on its

transmission capability or what researchers call Wmax (also generically known as the
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‘speed’ of a line), the change to a lower gauged line could provide additional savings.
Considering that the classical formulation of the CMST problem is already very difficult to
solve to optimality in a reasonable amount of time, the additional consideration of muitiple
media types would complicate the problem greatly. For the loop topology for example,
considering multiple Wmax values would be synonymous to considering a vehicle routing

problem with a fleet of transport vehicles having different payload capacities.
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CHAPTER 6 - CONCLUSION.

6.1 - Conclusion.

We developed programs using simulated annealing in an attempt to improve upon
the quality of the solutions obtained from well-known heuristics used for the terminal
layout problem. Given the geographical locations of the terminals assigned to a
concentrator, the problem consists in creating multipoint lines in order to minimize the
cost of centralized computer networks. Specifically, instead of independently connecting
terminals to a concentrator, where each terminal monopolizes one line, cost reductions are
obtained by allowing several terminals to share the same data transmission line. Three
types of multipoint line topologies were considered; the tree, the bus, and the loop.

This research has shown that simulated annealing is a very flexible tool when
applied to the terminal layout problem. We demonstrate that SA yields improvement on
solutions generated by the Esau-Williams and Clarke-Wright algorithms for all the data
sets we tested. In fact, in some cases, considerably better solutions were obtained.
However, for some of our programs and with data sets consisting of a large number of
terminals, typically above 150, the CPU time was quite high when compared to the time
required to calculate the initial solutions.

The results disclosed in this thesis were obtained by selecting the best solutions
obtained through a process of trial_and_error by varying each program’s annealing

schedule. Although some of our algorithms exhibited better quality solutions than others,
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we are certain that additional computational experiments using various annealing

schedules could yield even better results in all our SA algorithms.

6.2 - Recommendations.

Further research into the CMST should include the development of other effective
solution procedures. To our knowledge, other techniques such as tabu search and genetic
algorithms have not been applied to the CMST. Moreover, an in depth investigation of
the full potential of the application of SA to this problem is needed for it has shown itself
to be well adapted to this type of problem. In addition, a need exists for establishing a
standardized set of test problems for the CMST. The lack of such data sets make

comparisons of new CMST heuristics difficult.
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APPENDIX

INPUT AND OUTPUT CAPABILITIES OF THE PROGRAMS.



The programs were implemented for the Windows 3.1™ environment. With the
aid of Delphi 1.0™ and after a fairly simple transformation of the original Pascal code, it
became possible to design programs that would offer users the ability to easily load data
sets of up to 256 terminals into the programs and offer users graphical capabilities in order
to display the solutions obtained. This graphical output capability was especially desired
so that the results could be verified visually. It also provides the user with a quick way to
visually discern the differences between the initial solution and that provided by the SA
algorithm.

Inputting data can be done in a variety of ways. Typically the programs allow
either data files containing xy-coordinates or symmetric cost matrices to be loaded. In
addition, it is possible for the user to create a random set of coordinate values representing
the positions of up to 256 terminals relative to a concentrator positioned at point (0,0). It
must be noted that only the data sets consisting of coordinate values (either from file or
randomly generated) can be used to display the topology in graphical format. In other
words, loading data that is represented in a cost matrix does not allow graphical display of
the results, although text output is still available .

In the following pages the capabilities of the programs will be introduced and
explained. When possible an illustration of the actual window used by the program will be
given to familiarize the reader during the explanation. Since all the programs have the
same format the following applies to all although we have chosen to review the program

implemented for the bus topology using method 2.
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To begin, when the program is first loaded the following screen appears.

tlew Nata  Shmw Current Dzta Besud | ey

figure Als Example of the initial window.

The menu contains the following items ‘New Data’, ‘Show Current Data’,
‘Result Log’, ‘About’, and ‘Quit’ although at this point only the last two items of the
menu are enabled. Once the user clicks on the start button, the introduction screen
disappears and the ‘New Data’ menu item is enabled.

By clicking on this menu item the user is capable of loading a data set into the
program. As mentioned above, data sets may be randomly generated by the program. If

this is the case, the following screen allows the user to specify the size of the data set and
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let the program assign random weight values ranging from 1 to the specified maximum

weight as shown below.

figure A2 Creating a random data set of 50 terminals.

Instead, if the user decides to load an existing data set the following screen allows

him/her to do so.

1_100xy.xy
1_150xy.xy
1_200xy.xy
1_250xy.xy
1_50xy.xy
7] 2_100xy.xy
vl 2_150xy.xy
2_200xy.xy

o
: o

e

figure A3 Loading an existing data file.
Once a data set has been selected and loaded into the program, a window appears

allowing the user to enter the parameters needed to calculate the initial solution and those

required by the SA process.
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I Resultlog

figure A4 Program parameters.

Note that the menu item ‘Show Current Data’ is now enabled. By clicking this
item, the user can examine the xy-coordinate values and the weight assigned to each

terminal of the data set that is currently loaded (not shown).

The screen shown above allows the user to manipulate the parameters of both the
topological problem itself (‘Wmax’ and the ‘maximum number of terminals per line’) and

the SA parameters (annealing schedule). The cost information box situated at the top left
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of the screen displays the cost of the different solutions and the savings obtained. The
progress gauge allows the user to visualize the speed at which the simulated annealing
process is working. The information box found at the bottom of the screen displays a
summary of the data set currently loaded, the constraint settings, and the annealing
schedule. Once an annealing schedule has been specified, the user clicks on the Accept

Settings and Run button to start the simulated annealing process.

When the user is satisfied with his/her parameter value assignments, he/she drags
the mouse and clicks on the ‘Accept Parameters and Run’ button. The program
calculates the initial solution, and begins the simulated annealing process. If the progress
bar was enabled, the user is given a visual indication of how the program is proceeding.

When the results are obtained, the cost information box displays a summary of the findings

while the text and graphical output buttons are enabled as shown below.
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New Data o
¥ Star Topology 4 5033
Esau-Williams  $ 3094
Stmulated Annealing $ 2363

i Saving % 231

0 tirs: 8 i 8 sec: 118 msec

8 hrs: B min: 2 sec: 310 msec

TextSelutions

R B

":&:i‘; ek,

figure AS. An example of the summary of results.

Once the process terminates and a lower cost topological configuration is found,
the user may display the textual result as shown below. This text output displays what
terminals can be found on what line of the topology. The value in parentheses represents
the connection cost between the terminals on the line. Additionally, these text solutions
may be printed.

Results given in text format can be seen below.
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2 it information =07 53
N Star Topology $ 5033
= Esau-Willlams ¢ 3094
Simulated Annealing $ 2863
1 Saving $ 231

e R |Line 26 —($112)-27-($14)-11-($86)—43(526)-9—($139)--34—(§29)—41- . |.
# tu sz 0 min: 8 sec: 168 msec JLne 37 —($130)-32-($26)—36—($41)--20—($140)-25-($83)--47

8 hrs: B mire 3 sec: 570 meec

~($114)—10-($141)--5-($46)--31—($39)—44—($26)--14($30) 48
~{$50)--3--($52)-37($73)—45—($13)-30--($34)-2%—($27)--12
~($11)-13--($28)—-16--($70)-17—-($25)--27—($149)-11—($51)- 38
~($172)-4—($57)—9--($26)—43-($114)—34—($29)--41—($40)-48— |
~($107)--24--($62)32—($26)-36—($41)-20—($111)-47($69)-2¢
~(§118)—33-($32)--2—($13)~7-($32)-21—~($57)-50—($34)-26({ |-
~($112)-49--($93)- 29 ($103)-15—($46)--6—($63) - 1—($55)-19-

figure A6. An example of text results.

Note that the SA process has finished and a cost reduction obtained but that the progress
gauge only registers 67% completion. This is because a value of 50 was specified for the
alternative stopping criterion. Recall that an alternative stopping criteria value of 50
informs the program to stop execution if no saving has been obtained for 50 consecutive

temperature decreases.

Scroll bars enable the user to view the entire solution if it doesn’t fit into the

provided solution display area.
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For the loop and bus topologies, text results are displayed line by line where each
represents the terminals found on a data communication line in the resulting topology. In
parentheses we find the costs of the links between the terminals of the line. Finally at the

bottom of each text solution, the total sum of the topology is given (as shown below).

£ P A i s s 3
———

2 3517 31D IR N LTI S ALIIAITI. . BN T YT A S AN A
NE——— —— e ———— e

: -($114}--10--($141)-5--($46}--31--($41}-40--($38)-44--{$26)—-14 :
lLine #3 --($11)--13--(528)-18-($105}-—46-($13)-30--(534)--46-(527}--12 g
ELine #4 —($92)--1 ?-(si's)--ss--(sas)-.zz-(344)--39--<S30)—s-($49)--3s--(s

{Line #5 —($107)--24--($99)--4
#Line #6 -($112)--2?--($14}-11--{$86)—43-—($26)--9--($139}-34—-{$29)—-41- 3
HLine #7 -($130)--32--(526)--36-(541)-zn..(s14o)-zs-($ss)-47 '
HLine #8 —($118)--33--($32)--2--($1 3)--7--($32)--21--($67)--50--($34)--26--(§
Hline #9 —($91)—-37-($121)-29-($1ll3)--15-—($46)--8--($63)-1-($55)--19--
] Ezsau Williams cost = $ 3094

sjLine #2  —($50)--3--($52)--37--($73)--45--($13)--30--($34)-46—($27)--12 |+
H{Line #3 —($11)--13--($28)--16-($70)--17—($25)--27--($14)—-11-($51)—38— [ - |
HLine #4 —($172)--4--($97)--9--($26)--43--($114)--34--($29)--41—($40)--48—- | |
fgLine #5 --($107)--24--($62)--32--($26)--36--($41)--20--($111)—-47--($68)--2¢ =1
:|Line #6 -~{$118)--33--($32)--2--($13)--7--($32)--21--($67)--50--($32)--26--({ ==
:|Line #7 --($112)—49--($93)--29--($103)--15--($46)--6--($63)--1--($55) 19—

? Simulated Annealing cost = § 2863

figure A7. Format of text results for the loop and bus topologies.
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For the tree topology, an example of text result format is given as follows.

Esau Williame Solution it 4 Simulated Annealing Solution *

From To ;5 * To

£ 1 (($713) o $73) o
2 ($79) o $79) o
H 3 (100 41 $10 41
z 4 ($31) 44 $31) aa
5 (30 2 $30) 2
§ 6 ($60) 22 $60) 22
7 ($36) 4o $36) 40
8 ($26) 26 ($26) 26
; 9 ($46) 24 $46) 24
2 10 ($89) 9 ($89) 9
: 1M1 ($32) 25 $32) 25
12 (75 27 $75 27
: 13 ($16) 42 ($16) 42
d 14 @10 o $107) o
g 15 ($62) 4 $62) 4
E 16 ($103) 35 ($103) 35
: 17 ($72) 18 ($75) 43 22
1 18 (955 43 ($48) 49t
z 19 ($29) 48 ($29) 48 oo
] 20 @5 29 =i $5 29
($186) o oy 21 ($186) O >y
‘ e D T R e T e e meg

figure A8. Format of text results for the tree topology.

Note that the asterisks beside a terminal in the simulated annealing solution denotes a

difference from the Esau-Williams solution.

The graphical display capabilities for the results are illustrated below. The larger

node found initially at the centre of the display represents the concentrator. The links

interconnecting the terminals represent the communication lines of the network.
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For the Esau-Williams solution obtained for the bus topology above, the graphical

solution is given as follows.

figure A9. Example of a graphical result for the bus topology showing the Esau-Williams solution.
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Similarly, the simulated annealing solution can be displayed in the same manner.

figure A10. Example of a graphical result for the bus topology showing the SA improvement.
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In addition, both solutions can be superimposed to note the differences as shown below.

Saed

New Data S Resuitiog

Solutions

figure A11. Example of the program's capability to display the differences between the initial and SA

solutions.

In the illustration above, the dashes represent the Esau-Williams solution and the dotted

lines superimposed on top of it represent the SA solution.
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A tool bar appears that allows the user to easily manipulate the display. It consists of

various buttons. From left to right, we first find 4 arrow buttons and a bull’s eye.

figure A12. Buttons of the toolbar used in positioning the graphical display.

The arrows allow the user to move the graphical display in 4 different direction. This
capability is particularly useful when the data set consists of a large number of terminals
and they do not fit the screen all at once. The bull’s eye allows the user to automatically
center the display back onto the concentrator (the default setting).

The next set of tools are given below. The magnifying glasses allows the user to zoom in
or out (increasing or decreasing the display size). The ‘#’ button numbers all the terminals
of the solution. The next two buttons enable the user to either find a specific terminal or a

specific line in the topology.

I e e T T T IR T
q““' 4

e G & 4
g 30, N W

figure A13. The zoom buttons. terminal numbering buttons, and the ‘find" terminal and line buttons.

Finally, printing capabilities were added in order to give the user the ability to output a

hard copy of the solutions.
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figure A14. The print button, the solution button, and the exit button.

The middle button above toggles between the initial solution display and the SA solution
display, while the last button to the right exits the graphics mode and returns the user to
the previous screen.

Finally, examples of the graphical output for the other topologies are given below

and in the following pages.

47

42

figure A15. Example of graphical output for the loop topology.(initial solution)
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figure A16. Example of graphical output for the loop topology.(SA solution)
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figure A17. Example of graphical output for the tree topology.(initial solution)
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figure A18. Example of graphical output for the tree topology.(SA solution)
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