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ABSTRACT

Bayes' Estimators of Finite Population Size

Alfred A. Nnadozie

The estimation of a finite population is tackled from the Bayesian point of view
Truncated priors from the class of power series distributions are considered and the
resulting Baves® estimators compared based on their sensitivity to changes in prior
distribution. Three numerical examples corresponding to situations when the prior mean
is less than. equal to. or greater than the prior variance indicate that the Bayes' estimator
resulting from the truncated poisson is preferable. A truncated "poisson difference"” prior
is proposed and extension of the study to situations where the observations can be viewed
as time dependent data is suggested for future research.
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Chapter | Introduction

1.1 Introduction

A well known and important problem in finite population inference is that of
ascertaining the size of the population. A when it is unknown. This problem is
encountered in many areas of application ranging from simple surveys to more general
problems related to species counts in ecological and environmental studies especially in
survevs of biological populations where some sampling techniques have gained wide
audience within the context of 'capture-recapture’ sampling theory which essentially
prescribes obtaining information by the procedure of capturing-marking or tagging and
then - releasing back into the population. some of its members. Among some remarkable
treatisc and applications of this theory to the problem of estimating ecological
populations are the works of Petersen(1896). Lincoln(1930). Schnabel(1938). Chapman
(1951.1954). Craig(1953). Darroch(1958). Seber(1965.1973). Cormack(1968). Robson
(1969). Otis et al. (1978). etc. Also. Nayak(1988) used a recapture debugging design to
get extra information in estimating the number of faults in a rehability system such as a
computer software with an unknown number of errors. N Lstimate of N is also required
in estimating population total. which is an important quantity in some applications |sce
Ahmad et al. (19935a)).

In most cases. stochastic models are constructed so that V is estimated as a parameter
in the probability distribution of some appropriate statistic(s). A sufficient statistic that
has been found very useful in estimating N is the number of distinct units. D in a
sample. Feller (1957) gives the distribution of D and Basu(1958) observed that in simple
random sampling with replacement. the sample mean based on D is a sufficient statistic
for the population mean. Harris(1968) considered estimation of .\ using the distribution
of D. Recently. Ahmad et al. (1995) introduced two variants of this scheme involving

random sample sizes. They remarked that some prior hnowledge of how large the



population may be. could be useful for reducing the variance of the estimators. In their
work, absence of prior information is either presumed or implied. However, prior
knowledge is frequently available and it is rarely the case that an experiment is planned
without any prior information on the statistical propertics of the interplaying variables.
Prior knowledge could be available from past experience. technical considerations,
theoretically objective reasoning or even from subjective imagination. Unfortunately. the
classical methods of maximum likelihood and moment estimation do not provide the
means to incorporate such prior knowledge. An approach which provides a gencral
method of incorporating prior information with observed data is the Bavesian approach
which we will adopt in this thesis. First we present the basic tool which forms the
bedrock of Bayesian statistics called the Bayes theorem. This theorem contained in the
post-humous paper. Bayes(1763). of the English clergyman Thomas Bayes who died in
1761, can be rephrased here as follows:

Theorem 1.1.1 Bayes' Theorem (Discrete Case)

Let [N} be a sequence of mutuallv exclusive events and Nyo N> o =W Let d be
another event for which the sequence of conditional probabilities P(N, d), 1= 1.2,

are defined  Then

Pd N PN
reN, dy= - SRS provided  P(d) >0 (1.1)

| S P NN
[
I'he above is the Bayes' theorem for the discrete case with which we are concerned in
this thesis. In the formula.  PrN) which tells us what is known about N without
knowlege of d. is called the prior probability of .\ because it represents the
distribution of one's degree of belief about V' prior to observing the event d. i.e.. prior to
carrving out any experiment that might bear on the value of V. Correspondingly. Pr\'d)

which tells us what is known about N given knowledge of . is called the posterior

1o




probability of NV given « because it is a distribution determined subsequent to having
observed the outcome of an experiment bearing on the value of N, Thus it can be said
from a subjective probabilistic point of view that Bayes' theorem provides a medium for
changing or updating the degree of belief about .\ in the light of more recent information
coming from d. Actually Bayesian theory is a normative theory for learning from
experience in the sense that it provides a formal procedure for merging knowledge
obtained from experience. or theoretical understanding of what N can  be. with

observational data.

1.2 Outline of the thesis

The next chapter is a review of the essential elements of the theory used in the sequel.
In chapter 3 we apply the results of chapter 2 to the problem of estimating .\ (here
considered a random variable) using D and prior information (modelled as a prio
probability distribution of .NV). The sensitivity of the resulting Bayes estimators to change
in prior distribution is then investigated in chapter 4 where some computational results
are used to illustrate the performance of the different estimators when the prior me~n is
less. equal or greater than the prior variance. In chapter 5. further types of prior
distributions are proposed and introduced and some limit propertics of the Bayesian

estimators are considered. Finally. the thesis is concluded with a discussion.

(99



Chapter 2 Essential Elements of Bayesian Estimation

2.1 Introduction

The development of  Bayes' estimators(rules) can be approached in two ways: as a
traditional statistical inference problem or as a statistical decision problem|sce Berger
(1980)). The traditional approach consists of simply finding the posterior distribution and
then obtaining estimators trom the posterior in any way one thinks reasonable. No formal
consideration is given to the loss that might be associated with an estimator. On the other
hand. the Bayesian decision-theoretic approach makes use ot a loss function and seeks to
minimize the Bayes risk which is @ measure of the average rish associated with a
decision ruletestimator), Lssentialhy. both approaches require sample information and

prior information in order to arrive at a posterior distribution

2.2 Sample information and likelihood function

Generally. a statistical method tor estimating N should be directed towards the use of
sample mtormation in making inferences about N considered as the unknown quantity or
parameter involved in the probability distribution of an appropiate statistic. In what
follows we will use the distribution of the sufficient statistic D. Ideally. the sample
observation  will be postulated to be the value taken by the randomy variable. D wnich
follons a probability distribution indexed by the quantity .V . where v takes values in a
set W so that N eN. Technically, we will speak in terms of a sample space. Q of
elements D (the sample). endowed with an appropirate Borel field (o-field) ef sets over
which is given a family of probability measures indexed by the quantity N (the parameter)
belonging to N (the parameter space). Also. it will be supposed that these probability
measures are dominated by a o-finite measure. p(d) (which in this case is the counting
measure) so that they may be described through their probability mass functions. P(d.\).
with respect to this measure p(d).

The quantity in the denominator of (1.1) 1s the marginal distribution of D. Prd) which



can be written as

P(d)=Y p(N)p(dIN,)=C""

=1
This marginal distribution is merely a "normalizing" constant necessary to ensure that

the posterior distribution P(N|d) sums to unity. Thus (1.1 can be written as
P(N |d) = C P(d\N)P(N) 2.1

so chat given the data. P(d!N) in (2.1) may be regarded as a functiun not of d, but of N.
When it is so regarded. in accordance with Fisher(1922). it is called the likelihood
function of N for given D = d and it can be written as I(N'd).

In summary therefore. Bayes theorem tells us that the posterior distribution of N given
D = d. is proportional to the product of the prior distribution of N and the likelihood

function of N given D =d. Thatis
P(N\d) o« P(N)I(N|d) 2.2)

This highlights the important role of the likelihood function in the Bayes' formula. The
likelihood function. /(N|d) can be  iterpreted as the function throvgh which the sample
data. D modifies prior knowledge about N. Hence it can be understood as representing
the information about N contained in the sample data. And because the likelil.ood
function is defined up to a multiplicative constant (that is. multiplication by a constant
does not change the likelihood). multiplication by an arbitrary constant has no effect on
the posterior distribution of N. The constant cancels upon normalizing the product on the
right hand side of (2.2). Therefore, the important thing is only the relative value of the

likelihood This points to a quite general feature of Bayesian methodology [see Lehmann



(1983) pg. 243] which we record here as a remark for future reference:

Remark 2.2.1
The posterior distribution does not depend on the sampling method used but on the

likelihood of the obser . ed results.

2.3 Prior information modelling and posterior distribution
Prior information is information about N coming from sources other than the statistical

investigation and as such it may not necessarily be precise. Therefore a convenient way to
quantify such information is in terms of a prior probability distribution n(A/ on the set N.
The essential idca of the Bayesian method is that of using Bayes' theorem to modify the
prior distribution. which we shall hereafter denote by n(.V'). in the iight of the sample data.
d to determine a posterior distribution. hereafter denoted by 7(N |d). (the conditional
distribution of N given d) from which all decisions and inferences about N are made.
That is, noting that NV and D have a joint distribution

fldN) = n(N) p(dN ) (2.3)
and that D has marginal density

m(d) = 2 nt(N)p(d|N) (2.4)

it is obvious that for m(d) # 0. the posterior distribution is given by

m(d)

n(N|d)
Note that the range of N in n(Nd) is the union of {N > d} and any restriction implied by
the prior, T(N). In general. m(d) and n(N]d) may not be easily calculable. For this reason,
a number of concepts and ways have been worked out to facilitate the calculation of

n(Nld). Among some of the methods and problems involved in the construction of such

prior probability distributions are the following:




(1) Conjugate prior distributions
A large part of the Bayesian literature is devoted to finding families of prior distributions

for which n(NV|d) can easily be calculated. Such types of priors are called conjugate priors.

Definition: Let denote the class of probability functions P(d|N) (indexed by N). A
class T of prior distributions is said to be a conjugate family for  if n(N |d) is in the
class  forall p e andmeTl.

Although it is not necessary to choose a prior from a particular family, there is the
advantage of obtaining a compact-form expression for the Bayes' estimator(rule). For
instance, starting with a beta prior for the binomial, one ends up with a beta posterior in
such a way that the updating of the prior takes the form of updating its parameters.

(i1) Improper Prior Distributions

When a probability density function does not integrate or sum over its admissible range
to unity, it is said to be an improper distribution. Thus. when n(N) is an improper
distribution, we call it an improper prior. The analysis leading to the posterior distribution
can still be formally done even if n(N) is an improper prior. Improper priors are
frequently used in Bayesian analysis as sensibly practical approximations to proper prior
distributions. This is done by supposing that to a sufficient approximation, the prior is
improper only over the range of appreciable likelihood and that it suitably tails off to zero
outside that range thereby ensuring that the priors actually used are proper.

(iii) Non-informative prior distributions

These are priors that supposedly reflect a complete lack of information about &, and
can hence be considered objective. The drawback to the use of such priors is that usually
a clearcut non-informative prior does not exist. Moreover they are usually improper,

thereby making the interpretation of the posterior distribution unclear.

(iv) Subjective and objective prior distributions

When a distribution is arbitrarily chosen for N apriori, it is called a subjective prior



distribution otherwise it is called an objective prior. This concept is very important in
situations when N may not objectively be considered to be a random variable. The
essential idea of subjective probability [see DeGroot(1970)] is to let the probability of an
event reflect the personal belief in the ‘chance' of the occurence of the event thereby
enabling one to talk about probabilities when the frequency viewpoint does not apply.
The subjectivity(objectivity) of the prior distribution is a major source of the controversy
over Bayesian analysis. In general. an objective prior, when available is the ideal since a
subjective prior raises controversy as to the objectivity of the whole inference process.
However. in this thesis, we shall not be as interested in this controversy as we shall be in
the robustness of the prior which is the most serious [see Berger (1980) pg. 85] question
concerning prior information. Thus we shall be looking for a plausibly convenient way of
modelling prior information into prior distributions that are as non-informative as
possible yet so robust that slight changes in the prior would not cause significant changes

in the inference or decision procedure concerning \'.

2.3.1 Methods of determining a prior
A number of methods for determining a prior distribution have been suggested in the

literature [see for example Berger(1980) pg.63. Lehmann(1983) pg.241. Iversen(1984)
pg. 64 etc]. In all the methods. the most common approach is that of matching a given
functional form to prior information. The idea is essentially to assume that the prior is of
a given functional form which most closely matches prior beliefs. Then prior parameters
can easily be calculated from estimated prior moments. A drawback to this method is that
the estimation of prior moments is often an extremely uncertain undertaking because the
tails of a probability function can have effect on its moments. One way to circumvent
such problem is to use non-informative prior distributions. In this thesis, we shall apply a
method similar to that developed by Jaynes(1968) which tries to strike a balance between

the methods mentioned above. Jaynes' method employs the concept of entropy which we




define here as follows;
Definition: Entropy of a distribution

The entropy of (N ) which we shall denote by €,(n) is defined as

€.(@)= —Zn(}\’, Jlogn(N,) (2.6)
N
where the quantity © (N , )logn (N, ) is defined to be zero whenn (]\', )= 0.

Although Entropy is directly linked to information theory. it measures. in a sense. the
amount of uncertainty inherent in a probability distribution [see for example
Rosenkranzt(1977)].

For instance the prior mean can be specified so that among different prior distributions
with this mean. we can seek the most noninformative distribution. Prior information can

conveniently be considered in the form of restrictions on the prior distributions such as

E.[g,(M]=D n(N)g,(N)=p, . k=1.....m (2.7)

Thus for N < W1, gy(N) = N, and gi(N) = (N-up)k, 2 < k < m. equation (2.7)
corresponds to the specification of the first m central moments. 1, . of m. Now it seems
reasonable to seek the prior distribution which maximizes entropy among all those
distributions which satisty the given set of restrictions (i.e. given prior information).
Intuitively this should result in a prior distribution which incorporates the available prior
information, but otherwise is as non-informative as possible. Using calculus of variation
techniques, [see for example Ewing(1969)] it can be shown that provided the distribution
is proper, the solution to the maximization of the entropy ,(n) defined in (2.6) subject to

the restrictions in (2.7) and Xr(N,) = 1 is given by



m

e,\'p{ ‘zl)\'kg/(]v:)}
Zi exp{z:"":I 2, g(N))

T(N)= (2.8)

where the A, s are constants to be determined from the constraints in (2.7).
Example
Assuming N = {a, a+1, ...,b}. and it is thought that E;[N] = N,,. This restriction is of the

form (2.7) with g|(N) = N.and ) = N,. Then the restricted maximum entropy prior is

therefore,

exp {Z dag(N)

z, exp{z dagn(D)

on f .
_ C.\pﬁu/\) (2‘())

b
Zexp{kn}

1=q

T(N)=

For given values of ¢ and b the mean of the prior in (2.9) can be set equal to N,. and A
can be obtained by solving the resulting equation. A drawback to this method is that often
a maximum entropy prior may not exist although this can be overcome by truncating the
parameter space. Another difficulty lies in the choice of the restrictions. Choosing
monent restrictions is easiest analytically. but is generally inferior to the use of fractile

restrictions from the point of view of robustness.

2.4 Point estimation under Bayesian inference approach

Under the Bayesian inference approach. the estimation of N can be done by applying
some classical techniques to the posterior distribution. One such classical technique and
perhaps the most popular is the Maximum Likelihood Estimation (MLE). The Bayesian

analogue of MLE is the generalized MLE which we record here as follows:



Definition: Generalized MLE of NV
The generalized MLE, GMLE of N is the largest mode of (N |d). i.c, the value of N

which maximizes n(N |d), considered as a function of N.

It is important to note here that the posterior mean and median are also commonly used
as Bayesian estimates of N. Also it is recorded in the literature [see Berger(1980) pg.101]
that the posterior mean and median are frequently better estimates of N’ than the mode.

In Classical Inference. it is customary to give. along with an estimate. an associated
confidence region. A bayesian analogue to this is called a Credible Region.
A 100(1-a)% credible region for N is a subset ' of N such that

1-a < Pr(Cld) = 2 n(N|d).
Because the posterior distribution is an actual probability distribution on N, we can speak
meaningfully (though sometimes subjectively) of the probability that A"is in . This is an
advantage over the classical analogue which can only be interpreted in terms of long run
coverage probability. A useful extension of this idea is the Highest Posterior Density
(HPD) Credible Region. A 100(1-a )% HPD credible region for N is a subset. C of N
of the form
C={NeN:nNld) = k)
where k(o ) is the largest constant such that
Pr(Cld) = 1-a.

The HPD credible region is the minimized C containing only those points with the most
likely values. When m(N|d) is unimodal. HPD credible region is very useful. However
when dealing with bimodal distributions, it consists of two disjoint intervals. In such a
case. the shortest interval having probability 1-a is preferable unless it is worthwhile to

have two disjoint intervals.
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2.5 Loss function and Bayesian decision-theoretic approach
The Bayesian decision-theoretic analysis approach requires. in addition to a prior. a loss
function which can be defined as follows;
Definition: Loss Function L(6,a)
A loss function L®,a) - is a real valued function which measures the loss incurred by
taking action a (a € - = sel of all possible actions) when 0 is the true state of nature
In our particular terminology. 6 is the population size N. and the action. « to be taken
corresponds to the estimate. Nbaves of N which we are looking for. Usually. it is
assumed that L(N . «) is defined for all (N, a) € (N x ). Technically. only L(N. a) > -
K > - are considered where £ i1s some positive real number. Three commonly used loss
functions are:
1) Squared-Error Loss
L(N.a)=(N ~a) (2.10)
2) Absolute error Loss
L(N.a)y=|N—d (2.11H

3) "0-1" Loss

0 ifa=N  exactly,
L(N.u)= (2.12)

1 othervise
Of these three. the squared-error is perhaps the most popular in practice. The reason is
mainly because of its mathematical tractability. For instance. (2.10) is easily
differentiated (an important requirement in minimization problems) while (2.11) and
(2.12) may not be differentiated. Generally. under the decision-theoretic bayesian
analysis, the posterior mean. median, and mode are respectively the optimal actions
corresponding to the three loss functions. Here optimality is in the sense of minimizing

the Bayes risk which is defined as follows;



Definition : Bayes Risk

The Bayes'risk, with respect to a prior distribution n(N ), is defined by

r(n.d) = E,[R(N.J)] (2.13)
where

RINS) = Edw [ LINS ()] (2.14)

is the risk function in terms of which 8(d) is evaluated and

Sd): Q- - (2.15)
is called the decision rule (which in this thesis we shall equivalently refer to us the the
Bayes' estimator Nbayves)

Usually. admissibility of decision rules (estimators) is a very familiar and useful
concept in mathematical statistics which can be used to sclect or climinate certain
obviously bad estimators. However, a basic feature of the Bayesian method is that Bayes'
rules(estimators). when the exist. are in general admissible rules[see Ferguson(1967) or
Lehmann(1983)]. Thus an additional principle must be introduced in order to select a
specific rule for use. In classical statistics there are a number of these principles such as
the maximum likelihood. unbiasedness. minimum variance and least-squares principles
etc. In decision theory there are also several possible principles to go by: the three most
common being the Bayes principle, the minimax principle and the invariance principle. In
this thesis, we shall be concerned with the Bayes principle which we record here as

follows:

13



The Bayes Principle:
Adecisionrule 8y is preferredto a rule 5> if
E_[RIN.§))]< E_[R(N.,))
Thus a best decision rule (estimator) according to the Bayes principle is one which

minimizes (over all d €Q) the Bayes risk, r(m.d) defined ini2 13).

Normally, one would seek to minimize the bayes risk directly. However due to
theoretical difficulty involved in minimizing the bayes risk directly coupled with the
practical difficulty in computing the baves risk itself directly. there has been proposed in
the literature an alternative way of going about the minimization of the Baves' risk when
these difficulties arise. These alternative views have given rise to two forms of analysis
within the Bayesian decision-theoretic framework. These are: Normal Form of Analysis:
- which consists of choosing a decision rule to minimize (n,0) directly and the
alternative form of analysis [see Berger(1980)] called Extensive Form of Analysis: -
W hich consists of  choosing  for cach . a decision rule which minimizes the posterior
expected loss defined as
Definition: Posterior expected loss
The posterior expected loss is defined as the expected value of the loss function where
expectation is taken under the posterior distribution. That is

Posterior Expected Loss = Ex L. N3(d)]
The normal and the extensive forms of analyvsis lead to the same result. This can be

shown by the following lemma.




Lemma : The normal and extensive forms of analysis lead 1o the same Baves rule.

Proof : Consider the Bayes' risk definedin ¢2.13). We have that.

r(m.8)=E,[R(N.8)]
= Fy £, UN dnpdin }
=Y. {XJL(x\’.S(d))])(ciiN)}n(,f\')
=Y D LUNSpd|N)(N) (2.16)

Now to minimize the last expression in (2 16), 8(d) showdd he chosen to nunimize

> LINS(dNpd| N (N)

foreach e Q . Notethat if a mnimizes

Z . LIN.aOYp(d| NI (N).

then a minimizes

[m(d)|“'z\ LN apdiN)Yn(N) = z\ LN am(N|d)

= E [LON ).
The last quantity is the posterior expected loss of the action «. and is simply the expected

loss with respect to w(V|d). the posterior distribution of N given .

2.5.1 Point estimation under Bayesian decision-theoretic approach

As pointed out carlier. the squared-error loss is popular for its mathematical tractability
and it turns out to be the one mostly used for estimation problems. Under the extensive
form of analysis. and using the squared-error loss function. the Bayes rule(estimator) for
a given estimation problem is obtained as the action which minimizes the posterior
expected loss. That is. we seek a 8(d) that minimizes Eyi{(N —8(D))2 ] The posterior
mean accomplishes this task. This result will be shown in chapter 3 where we shall usc it
to obtain the Bayes estimators resulting from different choices of prior distributions under

the squared-error loss function.



Chapter 3 Application of Bayesian Theory to Estimation of N
3.1 Choice and specification of sampling strategy

In simple random sampling with replacement. the number of distinct units D in a
sample has been found uscful for making inference about N [see Harris(1968)]

Feller(1957) gives the probability distribution of D as

; J Y
sy} (4

where 7 is the fixed sample size. The expected value of Din this case is [see Basu(1938)]

given by

1
ECDY=N[1~ (=" (32)

Harris (1968) considered estimation of V' using the distribution of D given in (3.1).
Recently. Ahmad et al. (1995) introduced tw o variants of this sheme in which the sample
sizes are random. One of these schemes iy a strategy which considers random
independent draws until one of the previously drawn units reappears. in which case. the
probability distribution of D is given by

dN'!
(N =c)!

o~
(S}
()

~—

ol

P(D=dl\N)= :

where d = 1.2, N The sample size (which in this case is random) is D + 1. They
observed that the method of moments estimator coincides with the maximum likelihood
estimator which is the same in (3.1) and (3.2). since both involve maximizing the same
likelihood function.

"

L(N)=

=—— N\ 3.4
(N-d)! (3-9)



3.1.1 MLE and mecthod of moments estimator of .\

For completeness. we summarize here the results on the maximum likelihod and
moment estimators of N based on the sampling distribution of D given in (3.3) which
were obtained by Ahmad et. al. (1995). As in Ahmad et. al. (1993). one can equivalently
maximize the function Y(x) with respect to x = J/\. where

d-1

W(x)=x"[](-iv) (3.5)
1=1

and r = n-d. Since necessarily. N > d-/. we must have
X< (d- ])‘I.
Proposition 3.1.1 Provided r21. W (\) does have a unique maxinium m

(0.(d-1)").
Proof:
Setting the derivative of log[ ‘Y (x)] to zcro, the unigue value xymaximizing
W (x) must satispy O (xy) = r, where

-1

d(x) = Z = (3.0)

| —ix

1=}

The function ® (x) is an increasing function on

(0. =1) ). ®(0)=0 and lim .

Therefore, there is a wnique solution 1o ® (x) - r in

\v) =2
o) YD) = o>,
(0.(d = 1) Y. excepi when r =0, when the solutionx,, = 0. corresponds to N = o is not

admissible Since any solution x can take only values of the form 17k for an integer k > -
1. the ML estimator N is not necessarily the value 1/xy, but it is one of the nwo integers N
and N+1 satispring

.1 -,
‘\ S — < .'\ +l
X,
and therefore we can take the integer part of 1/x, to be the ML estimaror

Proposition 3.1.2 The Maximum Likelihood and the Method of Moments
estimators coincide.
Proof:
In (3.1). the moment estimator is obtainable by using the equality in (3.2). That i,
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by solving for N the equation given by

XU—H—{}W=d

or. cquivalently
1 l
‘ (3.8)

Again by settingx = 1N it can be shown by dravemg graphs of t1-xm and that of 1- dx

the equation (3 71 has @ mique solution N such that

N < ! <N +1 (3.9)
Yy

where vyis the wique solution of (1-xn Lo shosw that N iy also the MLE we

(- vy

show that

LS Y2 LN =1 and LN 2 LN =1 (3 10)

that 1y

\
u"!

=) and l-dt] ]‘I., 21
A \

(l—
' \

or.with v=1 N, we nnst have

1-x)
( )) >1 and (1=(d =Dhul+" 21
1 -dh

It can he observed that




x<x, iff (::Zi <1l.  Since l//‘C’Zx,. we must have (::;i z1 ie.
-(——l__x')ll

L(NY= L(N=1). Further, Since, 1/(N +1)<x,. 1. for x'=1/(N +1)

1—dx'
ie.. L(}V )2 L(}(’ +1). Therefore, N 1s a "locai" maximum. Since. i ' N) has

a single maximum for N > (d -1). N is also an absolute maximum.

Since both (3.1) and (3.2) lead to the same likelihood function. we shall be using the

latter as our sampling distribution beause of its simpler form.

3.2 Choice and specification of prior distribution
Since NV is necessarily a positive integer. it would be wise to look to the class of power

series distribution as a natural candidate in the choice of prior distribution for N.

Definition 3.2.1
The distribution of the discrete random variable N with probabilitics

alNp*
PIN=N ={"c@) To"N=0- (311)
0 elsewhere

where a(N)20: 6 >0 and Za( N)O*Y <o i- called a power series distribution.
The power scries dictribution is an exponential family and as such (3.11) can be

expressed in canonical form as

PIN:B)=expi{Nlog0)-C@®)} a(N) (3.12)
where C'in (3.11) and (3.12) is a real-valued function of 0.
From (3.12) or otherwise the moment generating function can be written as

')

313
C®) (3.13)

M (1) =

It can be shown that the binomial. the negative binomial. and Poisson distributions are

special cases of the power series distribution for appropriate values of 6 and C(0).
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Proposition 3.2.1: The binomial distribution, b(N; rl, p1) can be obtained from (3.11).
Proof: By putting

a(N)= (r\l) for N =0.1...., rl, and a(N)=0otherwise; 8 = plj(1-pl) and C(©) =0 + l)".

where rl is a positive integer and 0 < pl< |, we obtain

PN) = -
(25
+1

1-pl

‘|
- ('\,)(/)1)\(1 -phHY "™ for N =01

0 elsewhere
= h( Nl pl).
Proposition 3.2.2 77 negative binomial distribution, nb(N:; r2, p2) can be obrained firom
(311)

Proof: By puiting
a( Ny = (

2+ N -]

- ) for N =012 and a(N') = 0. otherwise. 0 = (1- p2).
e

and CO)=(1-0)"

where 12 is a positive intege, and 0 < p2 <1, we have that

P2+ N -1

N )(1—172)”

(N)y=—
P (1-—(]—;)2))\

24+ N - 5
(' i ')(1-,;2)'-(,;2)‘. N=012....

0 elsewhere

=nb(N:r2.p2)

Proposition 3.2.3 The Poisson distribution, p(N; . ) can be obtained from (3 11).
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Proof: By putting
a(N)= L 0=A. and C(O)=¢"

NI
where ) > 0. we have
1 NIONY
PN = Ny ===
e
1N
)R vooaa.
=1 N!
0. elsewhere
= p(N;L).

Evidently truncation is in the spirit of Bayesian analysis since it does use prior
information and notably in this case where it is obvious that N is finite. That is we have
that ) < N <oo . Thus we shall be using the doubly truncated form of the power series

distribution which we record here as follows:

Definition 3.2.2: Doubly Truncated Power Series Distribution
The distribution of N given in (3.11) is said to be doubly truncated to the left at ¢ and to

the right at » when

0 Jor N<a,. N>bh
/b
P A')// DY P(N)  for asN<h

N ou

P(IN=N)=P(Nlas N<bh)= (3.14)

where ¢ and b, a £ b, are positive integers.

3.2.1 Determination of prior parameters

After choosing a particular functional form. the next step in the specification of a
prior distribution is the determination of the prior parameters. A number of ways for
determining the parameters of a prior distribution arc available in the literature.
Iversen(1984) suggests two methods. The first method is by trial and error, preferably
using a computer to plot n(NV) for various values of the parameters. Then the particular

7(N) that most closely represents our prior knowledge is chosen. The drawback to this
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method is that the curves for nearby values of the parameters would not be very different.
and there could well be other curves that represent our limited prior knowledge equally
well. The second method which we shall adopt here is similar to the maximum entropy
method described in chapter 2 and it involves the specification of the expected value and
variance of N. This may be guided by a target value or a preliminary estimate of N, say
M, along with a measure of its precision I". Then the prior parameters can be computed
from M and V' by equating the first two moments. The truncation points « and » may also
be obtained from Afand }7 by setting
a=M=SJIU and b= M+ST

where S. 0 < S < o0 is some real number indicating the spread of N around M.

In line with the foregoing. interactive programming in MapleV3 [see appendix A] was
used to determine. for particular situations. the prior parameters associated with the three

main prior distributions considered in the sequel. namely:

1) Truncated binomial prior [T,s(N; ril,pl,a,b)]
Definition 3.2.3

We shall call the prior distribution resulting from a truncated binomial distribution the

truncated binomial prior [ Tt u(N; rl.pl.a.b)] which is given by

N
(rl)( pl )
NI -pt
D . forN=aw+l...b (3.15)

200

where 71, a. b, a < b, are positive integers. 0 < pl < I, and T ,4(N: rl.pl.ab)=0

n’h(.\':rl.p].a.h) =

elsewhere.

ii) Truncated negative binomial prior |T,(N;r2,p2,a,b)]
Definition 3.2.4

1~
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We shall call the prior distribution resulting from a truncated negative binomial

distribution the truncated negative binomial prior [ T;,,5(N:r2.p2.a,b) ] which is given by

r2+ N -1 N
( r2 -1 )(]"’2)
n, ,(N:r2.p,a.b) = . for N=a.a+1....b (3.16)
tnh b (124,21 .
z (I‘ +1 )(I-p-))l
i=a r2 -1 -
where »2, a, b, a < b, are positive integers. 0 < p2 < I. and Tp(N:r2p2.ab) = 0

elsewhere.

iii) Truncated Poisson prior [7T;,(V;A ,a,b)]

Definition 3.2.5

We shall call the prior distribution resulting from a truncated poisson distribution the
truncated poisson prior [T;,(N:A .a.b)] which is given by

}\' /\v

1 (Nihaby=—D1 forN=a.a+l...b (317)
p Y
>
i=al
where A >0, a. b, a < b, are positive integers. and T,,(N:A.a.b) = 0 clsewhere.

3.3 Derivation of posterior distributions and Bayes' estimators

Using the formulations in (2.3) - (2.5) of chapter 2. and the sampling distribution of D
given in (3.3), the posterior distributions of N corresponding to the prior distributions in
(3.15) - (3.17) are derived as follows:

The joint probability mass function of D and N is fld.N) = n(N)P(d|N) for d = 1....,
N,and N=max{ad},...b,sincea<N< b, and N = d. The marginal distribution of D
is obtainable by summing out d from this joint function. Hence dividing the joint function

by the marginal for D we obtain the following posterior distributions;

i) Truncated binomial posterior [7,,(Nd; ri,pl,a,b)]

[
(93]



Definition 3.3.1

We shall call the posterior distribution resulting from a truncated binomial prior

distribution the truncated binomial posterior [7t,5(N|d; rl.pl.a,b)] which is given by

( )[ )‘
A.

o[l ’
1\"(‘/”)(]\7-(1)! L [r ][ pl ) I-! i(l/ol)(i_d)!

=man{a ) 1 1- p]

(N

d.rl,plia.b) = (3.18)

ii) Truncated negative binomial posterior [T;,»(N|d; r2,p2,a,b)]
Definition 3.3.2

We shall call the posterior distribution resulting from a truncated negative binomial prior
distribution. the truncated negative binomial posterior [7,s(N|d:r2.p2.a.b)] which is
given by

2 1\'._
(' +\' I)(p.’Z)\N!

T, (N|dir2 p2oa.b) = (3.19)

o r’:"'\.(lyl)'l'

NUDN-ayt Y

] oy

r=manfa d)
iit) Truncated poisson posterior [7,,(N|d;A ,a,b)]
Definition 3.3.3

We shall call the posterior distribution resulting from a truncated poisson distribution the

truncated poisson posterior [T;,(Nld:A . ai.b.d)} which is given by

Al

(d+1) 4 PR
NN — gy
Z i = d)!

7 (Nld: k. a.b) = (320)

In chapter 2. we pointed out that the development of Bayes's estimators can be
approached in two ways; as a traditional statistical inference problem or as a statistical
decision problem. By statistical inference, we mean [see Box and Tiao(1973)] inference
about the state of nature made in terms of probability. and a statistical inference problem

is regarded as solved as soon as one can make appropriate probability statements about



the state of nature in question. Thus under the statistical inference approach, a solution to
the estimation problem is supplied by the posterior distribution m(Nid) which shows what
can be inferred about N from the data d given a relevant prior state of knowledge
modelled as n(¥). In section 2.3, we introduced the Generalized Maximum Likelihood
Estimator, GMLE as a Bayesian analogue of the classical MLE. The GAMLE is simply the
largest mode of the posterior distribution [see definition 2.3.1]. Thus the posterior
distribution can be examined to cast light on the precision of the estimate. This is usually

done numerically for specific situations. Some numerical examples are given in tables 1 -

3 below.

Example (/) Prior mean, M =13, Prior Variance,V' = 1/9,a =13, b = 24.
Table 1. Posterior Distributions and Generalized Maximum Likelihood Estimates of N
for different values of d.
N Tp(Nld. rlplab)  Tup(Nid: rlpl.ah)  Tup(Nld:k .a.b)

d=1
13 0.9961 0.9834 0.9961
14 0.0039 0.0164 0.0039
15 0.0000 0.0003 0.0000
24 0.0000 0.0000 0.0000
d=2
13 0.9960 0.9833 0.9960
14 0.0040 0.0165 0.0040
24 0.0000 0.0000 0.0000
d=6
13 0.9956 0.9814 0.9956
14 0.0044 0.0183 0.0044
24 0.0000 0.0000 0.0000
d=17
13 0.9953 0.9802 0.9953
14 0.0047 0.0194 0.0047
15 0.0000 0.0004 0.0000
24 0.0000 0.0000 0.0000
d=13
13 0.9791 0.9146 0.9791
14 0.0207 0.0813 0.0207
15 0.0002 0.0040 0.0002
16 0.1444 0.0001 0.0000
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24 0.0000 0.0000 0.0000

d=15
15 0.9825 0.9099 0.9790
16 0.0174 0.0855 0.0208
17 0.0001 0.0044 0.0002
18 0.0000 0.0002 0.0000
24 0.0000 0.0000 0.0000
d=24
24 1.0000 1.0000 1.0000

From table 1, it can be observed that the GAMLE of N whend=1.2.6.7. 13,15 and 24
are respectively 13, 13. 13,13, 13, 15, and 24. When d = 1. all valuesof N >a =13 are
improbable except in the case of the truncated negative binomial. As d increases. some

other values of A other than the mode tend to be probable.

Example (if) M=V=10,a =1,b= 30.
Table 2. Posterior Distributions and Generalized Maximum Likelihood Estimates of N

N Tup(Nidorlplab) mpNd rlplab) Tup(N'dinah.d)

d=1
1 0.0039 0.0042 0.0040
2 0.0097 0.0105 0.0100
3 0.0218 0.0231 0.0223
4 0.0412 0.0429 0.0418
5 0.0664 0.0682 0.0669
6 0.0926 0.0941 0.0930
7 0.1139 0.1145 0.1139
* 8 0.1249 0.1240 0.1245 *
9 0.1237 0.1225 0.1230
10 01114 0.1098 0.1107
11 0.0920 0.9043 0.0915
15 0.0204 0.0201 0.0205
20 0.0008 0.0008 0.0008
30 0.0000 0.0000 0.0000
d=15
5 0.0108 00112 0.0109
6 0.0364 0.0373 0.0366
7 0.0724 0.0736 0.0726
8 0.1087 0.1095 0.1086
9 0.1343 0.1344 0.1339
* 1

0 0.1429 0.1429 0.1423 *



11 0.1344 0.1128 0.1339
20 0.0019 0.0020 0.0020
30 0.0000 0.0000 "~ 0.0000

From table 2, it can be observed that when d= 1, although GMLE = 8 with maximum
posterior probability, both 7, 9, and 10 are not unlikely and none of the values of N <20
is improbable( to four decimal places). The situation is the same as d increases. It was
observed that from d = 10 upwards, GMLE = d + 4. except when d = b =30, in which
case GMLE = 30 obviously.

Example (i) M=3, V=4,a=1,b=20.
Table 3. Posterior Distributions and Generalized Maximum Likelihood Estimates of N
N mnNid; riplab) Tup(Nid: riplab)  Tpu(Nidh . abd)

d=1
] 0.3234 0.5200 0.2334
2 0.2830 0.2366 0.2299
3 0.2044 0.1196 0.2013
4 0.1150 0.0612 0.1487
5 0.0506 0.0312 0.0937
6 0.0158 0.1577 0.0513
7 0.0084 0.0039 0.0248
8 0.0011 0.0039 0.0107
9 0.0002 0.0020 0.0042
10 0.0000 0.0010 0.0015
11 0.0000 0.0005 0.0005
12 0.0000 0.0002 0.0001
13 0.0000 0.0001 0.0000
14 0.0000 0.0000 0.0000
20 0.0000 0.0000 0.0000
d=2
2 0.3334 0.4000 0.2234
3 0.3211 0.2697 0.2608
4 0.2032 0.1553 0.2167
5 0.0954 0.0844 0.1457
6 0.0345 0.0445 0.0831
7 0.0098 0.0229 0.0412
8 0.0022 0.0116 0.0181
9 0.0004 0.0058 0.0072
10 0.0000 0.0029 0.0026
11 0.0000 0.0014 0.0008
12 0.0000 0.0007 0.0003
13 0.0000 0.0000 0.0000
20 0.0000 0.0000 0.0000
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10 0.6530 0.0738 0.2286
11 0.2861 0.1531 0.3157
12 0.0549 0.1531 0.2388
13 0.0057 0.1766 0.1300
14 0.0031 0.1422 0.0567
15 0.0000 0.1030 0.0209
16 0.0000 0.0691 0.0068
17 0.0000 0.0438 0.0020
18 0.0000 0.0266 0.0005
19 0.0156 0.0156 0.0001
20 0.0000 0.0089 0.0000
d=15
15 1.0000 0.0392 0.2320
16 0.0000 0.1144 0.3255
17 0.0000 0.1875 0.2431
18 0.0000 0.2278 0.1279
19 0.0000 0.2019 0.0184

From table 3. it can be observed that when d = 1. 2, GMLE = 1. 2 respectively under all
three priors. However the truncated binomial gives these values with higher probabilitics.
As d inreases. for example, when « = 10. 15, GAMLE differs for all three priors. The
truncated binomial gives GMLE = d, until d =135 after which all other values of A are
improbable. The truncated negative binomial gives GMLE = d +2 and d+4 respectively.
while the truncated poisson gives GMLE =d +1.

Under the Bayesian decision-theoretic approach. a loss function is needed in order to
arrive at a Bayesian estimator. The loss function was introduced in chapter 2. There, we
remarked that the squared-error loss function is the most widely used because of its
mathematical tractability. In what follows. we show that under squared-error loss
function. the Bayes' estimators of N, N resulting from the three priors given in (3.15)-
(3.17) are respectively the posterior means of the corresponding posterior distributions

given in (3.18) - (3.20).

Lemma 3.3.1 The Bayes' estimator of N under squared-error loss is the mean of the

posterior distribution of N.



Proof: Under the extensive form of analysis [see section 2.4], the Bayes' estimator is the
decision rule which minimizes for each d, the posterior expected loss. Using definition

(2.4.5). the posterior expected loss is

b
Ey, [LNS(d)]= Y (N=-8(d))n(N|d).

N=max(a.d)
Expanding the quadratic expression, differentiating with respect to 8 , and setting equal
to zero, the value of 8(d) which minimizes the posterior expected loss can be obtained

Jrom the resulting equation
d ) , ,
0= :I-—S-(XN T(N|d) =28 Y. Nn(N|d)+8 * Y n(N|d))

=-2E, [N]+28

Now by solving for 8 the last expression, the desired result is obtained as
() = ExyufN] -

Thus adopting a squared-error loss. lemma 3.3.1 leads to the following results;

Resuit 3.3.1.

The Bayes' estimator for N under squared-error loss function and a truncated binomial
prior. which we shall denote by Ny(rl,pl,a,b,d). is the mean of the truncated binomial

posterior distribution, Tp(N|d: rl.pl.a.b) , defined in (3.18). That is

b
N, (Lplab.d)y=Y N xmn,(Nld:rl, pl.a.b) (321)

N=u
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Result 3.3.2.
The Baye's estimator for N under squared-error loss function and a truncated negative
binomial prior, which we shall denote by Nmp(r2,p2,a,b,d), is the mean of the truncated

negative binomial posterior distribution, T,,,5(/V|d;r2,p2,a,b), defined in (3.19). That is

h
N.,,(2.p2ab,d)=> N xn,,(Nd;r2,p2.a.b) (3.22)

N=u
Result 3.3.3.
The Bayes' estimator for N under squared-error loss function and a truncated poisson
prior, which we shall denote by N,,,()»,a,b). is the mean of the truncated poisson posterior

distribution, Ttyp(N|d;A,a,b). defined in (3.20). That is

h
N, (vabdy= D N xm, (Nldia.h) (3.23)
V=ua
The following tables show the computed values of the estimators for different values of

d, and different values of prior mean M and and prior varince }” corresponding to the

three different situations where M is less. equal or greater than ",

Note: In the following tables. we have reported the values of the Bayes estimators as
computed. Although values should be rounded off to the nearest integer. they are not
expected to make difference in computations. As a matter of fact the Bayes' estimator. N
is one of the two integers N and N +1 satisfying N < N« < N +1 where N« is the reported

value in the table. [see a similar argument in section 3.1.1}



Example (i )when M=13>V=1/9,a=13,b=24.
Table 4. Bag/es' estimates of ]\_’ for different values of d
d Nlb(rlvplva9b’d) Ntnb(Nld;rz,Pz,a,b) th(Md")\va’b)

1 13.00396 13.00396 13.00399
5 13.00426 13.00426 13.00426
10 13.00662 13.00662 13.00662
12 13.01142 13.01143 13.01142
13 13.02112 13.02116 13.07115
14 14.01941 14.02177 14.02120
15 15.01768 15.02238 15.02125
23 23.00356 23.00264 23.00264
24 24.00000 24.00000 24.00000

It can be observed that table 4 suggests that the Bayes' estimators in all three cases are
almost the same. For d < a. N = a. while for d > a. N = d. This suggests that the Bayes'

rule could tend to be. choosing max{a.d}.

Example (if) when M=10=V=10, a=1, b=30.
Table 5. Bayes' estimates of N for different values of d.
d Np(rl,pla,b,d) Nyn(Ndir2,p2,a,b) Nip(Nd;2,a,b)

1 8.8597 8.8051 8.8479
5 10.7023 10.6870 10.7092
10 14.7869 14.8176 14.8181
15 19.4028 19.4707 19.4547
20 24.1378 24.2292 24.2023
30 30.0000 30.0000 30.0000

Example (iif) when M=3<V=4, a=1,5=20.
Table 6. Bayes' estimates of N for different values of .
d Np(rl,plabd) Nyp(Nd;r2,p2,ab) Nyp(Ndhrab)

] 2.3649 1.9722 2.9866
2 3.2167 3.2879 3.8607
10 104143 13.3045 11.5742
15 15.0000 18.0990 16.4997
16 18.6802 17.4314
17 19.1413 18.2853
18 19.5018 19.0140
19 19.7821 19.5855
20 20.0000 20.0000
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Chapter 4 Sensitivity Analysis of the Bayes' Estimators to
change in Prior Distribution

4.1 Introduction

In chapter 2. we pointed out that a Bayesian decision problem model contains three
basic elements: the sample distribution, the prior distribution. and the loss tunction.
Assumptions in the model are usually made regarding aspects of these basic elements.

[he sensitivity of a decision rule(estimator) to assumptions in the model is called the
robustness of the rule and it is usually investigated with respect to any one of these three
vasic elements. The specification of the sample distribution is often less subjective than
that of the loss function and the prior. As such. attention is often devoted more to
robustness of losses and priors. The squared-error loss function is trequently the choice
among other types of loss function because of mathematical convenience (especially in
estimation problems) and as such one can limit attention to robustness of priors .

In the terminology of our particular problem of estimating .\ using D. the Bayes'
estimators. ' may be sensitive not only to the assumptions about the sufficient statistic D.
but also to changes in the structure of N which is the indexing parameter of the
probability distribution P¢d-N) of D. Since all that is known about .\ apriori is believed to
be appropriately modelled in the prior distribution m/\). any inadequacy or change in
n(N) will surely affect the inference process about AN. Here. we will not be concerned
with robustness or sensitivity of the estimators with respect 1o the sample distribution
since the choice of P(d;N) is in a sense. less subjective than the choice of the loss
function and prior distributions we used in the analysis. This is not to say that in general.
robustness considerations concerning P(d}\) cannot have a significant influence upon the
decision rule. Rather what we are saying in this particwar case is that in point of fact of
remark 2.1.1, since P(diN) in (3.1) and (3.3) lead to the same likelihood function, one

would necessarily arrive at the same posterior distribution and hence the same estimator.



Usually a loss function may not pose serious robustness difficulties except when the
crror is multiplied by a weighting factor, say w(N) which indicates the importance of N.
But in general, any such factor would have exactly the same effect on the estimator as the
prior m(N). Thus we will subsume robustness with respect to w(N) in the discussion of

sensitivity with respect to the prior.

4.2 Sensitivity with respect to prior distribution

In order to apply Bayesiz.: analysis with confidence, a study of the prior robustness is
crucial. The problem involved may be posed as follows: How much will the posterior
inference (or desicion) change if we change the prior? This is the important concermn we
will look into in this section. Obviously the key to th: Bayesian approach lies in the
specification of the prior distribution, and it is here that difficulties can arise. The prior
can seldom be specified accurately and errors in the specification can have adverse effect
on the correctness of the final decision. Therefore to conduct a reliable Bayesian analysis,
it is necessary to investigate the effects of inaccurate specification of the prior. It is
suggested in the literature [see Berger(1980)] that the best way to do this would be often
through examination of the risk function R(N,N) of the Bayes estimator, N or alternatively
through consideration of certain classical properties of N.

To invectigate robustness with respect to the prior, we ideally specify a class I’ of
plausible prior distributions, and see how the choice among the priors in I' affects the
analysis. This can be approached in two different ways: either through risk robustness
considerations or through consideration of posterior robustness which measures the cffect

of the prior on the expected posterior loss.
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4.2.1 Posterior robustness

Definition 4.2.1: An actior: is said to be posterior robust with respect to T, if for all n e
T, the posterior expected loss of the action is close to the optimal expected loss.

If for all m e I', the posterior expected loss of an action is within € of the optimal

posterior expected loss, the action is said to be ¢ - Posterior Robust,

Proposition 4.2.1:  [n estimation under squared-error loss, the posterior expected loss
of an action is close to the optimal posterior expected loss
whenever the action is close to the optimal Bayes action.

Proof: Under squared-error loss, the action minimizing the posterior expected loss is the
mean, that is the Bayes action. Let this Bayes action be denoted by ay and let ag
be any other action. Then,

E ,L(N,a))=-E v, [L(Na)]=E, . ,[(N —ao)2 ~-(N-a, ) ]
=E ,l(a,~a))2N —-a, -a,)]
=(a, —a,)2a, -a, —a,

=(a, —a, ).
The last expression implies that the posterior expected loss of «j is close to the optimal
posterior expected loss if ¢y is close to the optimal Bayes action. ay.

Here it is important to remark that analysis through posterior robustness will often
depend crucially on which value of D is observed and as such it can best be investigated
after the sample is at hand. The only situations in which posterior robustness is obvious
are those in which the sample information are conclusive. Frequently posterior robustness
is found to be lacking. However if the Bayes rule is posterior robust, there is no need for

further investigation.
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4.2.2 Risk robustness

There are many possible measures of risk robustness. The two most appealing measures
are through examination of R(N,N) given in (2.14) or through examination of bayes risk.
r(r, N). Examination of R(N,N) consists of simple calculation and comparison of the risk
functions of the various N under consideration to see which rules are sensitive to
uncertainties in the prior specification and which are not. Although this is not a rigorous
way, it is good practice, upon obtaining a Bayes rule, to look at R(NN) for any
unappealling features. The graphs of R(N,N) for the estimators, N can be plotted for
some numerical examples. Examination of bayes risk, »(n, N) is needed for a formal
analysis of risk robustness which can be done by a so called I-minimax approach

explicitly introduced by Robbins(1964).

Definition 4.2.2: T-minimax risk of a rule N - is defined as

"' (N)= <u[r) l‘(n,ﬁ)
I"-minimax Principle : N )
Ny should be prefered to Ny if

r(N) <R (N,)
Definition 4.2.3:
['- minimax Value of a decision problem - is defined as

r =infr, (N) = in[fsupr(n,ﬁ)
nNE NE ael

A rule N* is called the T - minimax rule if ri-(N*) =pp.

The quantity »- (N*) represents the "worst Bayes risk" that can happen if m € I', and our
aim is to seek a rule for which this worst Bayes risk is as small as possible.

rr is the lowest possible worst Bayes risk. Thus a I'- minimax rule (if one exists)

achieves the desired goal. Note that by setting I" equal to only one prior, the I' - minimax

principle is made equivalent to the Bayes piinciple introduced in section 2.4,
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Thus for a formal analysis of risk robustness, we specify I as the class

I'= {nw(N: riplab) nyN; riplabd) TpN:X abd) }

of truncated power series prior distributions, and see how the choice among these priors
in [ affects the analysis. We examine the bayes risks #(m. N) associated with the priors.
thprior, tnbprior, and tpprior under the Bayes rules (estimators), Ny, Nyp and 1\7,,,. The
matrices of Bayes risks were computed using MapleV3 [see appendix B]. Tables]-3
below show three examples of these matrices for the three situations corresponding to
cases when the prior mean is greater than. equal to and less than the prior variance
respectively. The computations in the tables were done wusing the following

decomposition of the risk function;

r(N,N)Y=E [N(D)- K’”(D)]2 + E [Var(N|D)]
where Np(D) = E[ND] is the Bayes estimator.
Example (/). [prior mean, M = 13 and prior variance, V'=1/9 ,a =13, b = 24|
Table 7. Matrix of Bayes Risks (rj;) when prior mean is greater than prior variance.
Bayes Estimator (N)
Prior Nep Nob Nip

1 2 3
1) T 0.0042850 0.0042850 0.0042850

)y 0.0042886 0.0042886 0.0042886

3) Ty 0.0042876 0.0042876 0.0042876

From table 7, we have the following results;
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r-(N,) =supr(n,N,) = sup{r,,r,,r,} =1, = 00042886

nel’

rl'(th) = Supr(n’ﬁmh) =sup{n,,ry,ry ) =, = 00042886

nel

P (N,) = supr(n, N,) = sup{n, .1} = 1y = 00042886
nel

From the above results it turns out in this case that

rr(Nep) = rr(Vimp) = ’T(Nrp) .
Thus the I'- minimax value of the problem would be

rr = inf{ry1, r22. r23}= r21=r20= r23= 0.0042886

and as such there is no I' - minimax rule in this case since all the rules are equally

associated with the I' - minimax value.

In summary, table 7 shows that all the three Bayes estimators considered in this case
(when the prior mean is more than the prior variance) are insensitive to changes in prior
distribution. This suggests that whenever prior information indicates that the possible
values of N are concentrated around a target value M, it does not really matter much
which prior is used among the three truncated power series priors considered. [However,
it can be observed that the Bayes estimator resulting from the truncated binomial prior,
Ny has the smallest variance followed by the estimator resulting from the truncated
poisson prior. Ny].

Next we consider the case when the given prior variance is equal to the given prior mean.
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Example (ii). [prior mean, M = prior variance,} =10, a =1, b = 30]
Table 8. Matrix of Bayes Risks (r;;) when prior mean is equal to prior variance

Bayes Estimator (V)

Prior N Niyb NI[)
1 2 3
1) Typ 8.6890532 NA 8.6891371
2) Tnb NA NA NA
3) Ty 8.7669663 NA 8.7668823

Frem table 8. ignoring the "NA" entries which indicate the "Not-Available"

computational results in those cases due to stack overflow problems, we have the

following results;

r(N ) =supr(n.N,) =suplr,.ry, ry)=r, =876697

nel

1 (N,,) =supr(n. N,,) = sup{r, Jyty} = NA

nel

r,»(z\N/,,,) =supr(m. N,I,) = SUP{Fyy Faq g} = 1y = 876688

nel
I - minimax value = inf{r3}.r33}=r33

Thus. in summary. table 8 shows that all three Bayes estimators considered in this case
(when the prior mean is equal to the prior variance) are almost insensitive to changes in
prior distribution. Also (ignoring the NA cases ), the Bayes estimator resulting from the
truncated poisson prior. (}\7,,,), has the I' - minimax value.

Although we are dealing with truncated distributions, this result is in line with general
distribution theory. where it is a well established fact that the poisson distribution is
characterized by the equality of its mean and variance. This result alongside the previous
result (where the Ny had the smallest variance when the prior mean is greater than the
prior variance) suggest that truncation may not have much effect since if in practice, one

had prior knowledge of the magnitude of the mean relative to the variance, making a
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choice of prior distribution from the class of power series distributions could be guided

by such target values.
Example(iii) [prior mean, M =3, prior variance, V=4,a =1, b =20]
Table 9. Matrix of Bayes Risks (#j) when prior mean is less than the prior variance

Bayes Estimator (Nbayes)

1 2 3
1) T 2.290738 2.887738 2.307912
2) Ty 3.171090  2.340207 2.973408
3) Ty 2.675422  3.135520 2.657536

From table 9, we have the following results;

1 (N,)=supr(n. IV,,,) = sup{ryyFaystay ) =1y = 3171090

nel

r(N,,) = supr'(n.N,,,,,) = Sup{r, .ty ) =15, = 3135520

ael

rr(}V )= supr(n,ﬁ,/,) = SUP{f3 Py ) = 1y = 2.973408

nel

From the above results it tu ns out in this case that

n

rr(Nep ) 2 "F(Nmb ) 2 e p)
Thus the T - minimax value of the problem is

re= inf{ryy, r32, ra3} = ra3=2.973408

and as such the I' - minimax rule in this case is ]\7,,, since it is the rule that is associated

with the I - minimax value.

In summary, table 9 shows that all the three Bayes estimators considered in this case
(when the prior mean is less than the prior variance) are sensitive to changes in prior

distribution. This suggests that when prior information indicates that the possible values
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of N could be scattered about a target value M. one has to be careful in the choice of
prior distribution. In this particular example, the tpnbayes should be preferable since it
has the I' - minimax value. Note also that a closer look at the entries of the matrix shows
that the Nyp and Ny, are only slightly sensitive with respect to each other.

Another approach to sensitivity analysis which we consider here is one which uses

Bayes' relative efficiency [see Chaubey and Li (1993)].

Definition: We define ti.c Bayes's Relative Efficiency, (BRE) of an estimator N*
relative to the Bayes'estimator N by

r(m, N)

BRE(N") = —
FHn.NY)

where r(n, N*) is the Baves'risk of N*.
Using table 9 above, the computations in the following table have been obtained in order

to display the values of BRE for the different estimators.

Table 10. Matrix of BREs when M=3<1"=4, a=1,b=20

Estimator (N'*)
Prior N Nonb N',,,
1 2 3
D s 1.0000 0.7933 0.9926
2) b 0.7380 1.0000 0.7871
3) Ty 0.9933 0.8475 1.0000

From table 10, it can be observed that under a truncated binomial prior, the BRE of the
estimator coming from the truncated binomial prior is about 80% while the estimator
coming from the truncated poisson prior has a BRE of about 99%. This suggests that
under a truncated binomial prior. N, is almost as efficient as Ny while Nypp is about 20%
less efficient than Nyp. Under a truncated negative binomial prior, Ny and Ny, have about
74% and 79% BRE respectively, while under a truncated poisson prior, Nyppand Ny

have about 99% and 84% BRE respectively.
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Chapter 5 Further Considerations

5.1 Case of "equiprobable" prior
Here we consider the extreme situation in which no prior knowledge is available
except that N € {a, a+1, ...,b}. The prior distribution in this case can be expressed as

C, N=aa+l,...b
0, elsewhere

,,(N)={ (5.1)

where C is a real positive constant.
In this case, the joint probability mass function of Dand N is
pld, N) = p(N) p(dIN)

NI

. 52
Ntl#l(N_d)! ( )

ford=12....Nand N=max{a,d},..,b since N> g and N > d implies that N > max{a,d}.

The marginal probability mass function of D is

p(d) = C’\E",:Z'\!u.d; WEN‘_—_EI—)“’ "
Hence the posterior distribution of N given d is
N!
pviy = & = 5 4)

for N = max{a,d},...b and p(N|d) = 0 elsewhere. The denominator in (5.4) can be written
as a constant function of d, a and b, g(d.a.b) say, which is free of N. Then, it can be
observed that the posterior distribution in *his case is proportional to the sample

distribuion. That is

p(N|d) < g(d,a.b)p(d|N).

Thus the Bayes estimator under squared-error loss function which we shall hereafter refer
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to as the equiprobable prior Nbayes [Nep (a,b.d)], can be obtained as the mean of the

posterior distribution in (5.4) given by

[
_ > NpdiN)
N,@b,d)=—— (55)

D pdN)
N=a
5.1.1 Equivalence of Nep, (a,b.d) to MLE
When the posterior distribution in (5.4) is unimodal and symmetric(see appendix ), its
mode, median and mean coincide. Under this condition. the Bayes' estimator using any of
the three loss functions defined in chapter 3 is the same. In what follows, we show that
using the "0-1" loss function, the Bayes' estimator in this case [Nep (a.b,d)] is equivalent

to the MLE estimator. obtained by Ahmad et.al (1995).

Proposition 5.1.1 Under the "0-1" loss function, the Bayes' estimator,
[Nep (a. b,d)] resulting from an equiprobable prior is ina sense
equivalent to the MLE estimator.

Proof: Under the "0-1"loss, the Bayes estimator is the mode of P(N\d) which is the
value of N that makes P(N|d) largest. That is, Ngp(a.b.d) is the value of N
corresponding o

may PCNI) = piax C™ PWIN) (5.6)

Nelah) A elud]

b

-1
. . i! )
where  C' =[m(d)]" = [Z m] is a constant.

r=a

From (5.6), it can be observed that we only need to find the value of N that maximizes
P(d\N) since C* is free of N. Infact we can write
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L
max PN = max P N)
' eu.b) Nedah}

= max_pav). because C' does notdependon N .

Nea.b)

= MLE of N on[a,b].

5.2 Case of "difference' prior

One interesting feature of the Bayesian method(though a major source of controversy)
is the liberty to choose a prior distribution. When this choice is properly made, the
chosen prior(subjective or non-subjective) leadsto a good estimator. Often the choice of a
prior requires among other things. a great deal of intuition on the part of the statistician.
The priors we considered above were guided by intuition, the idea be:ng that since N is
necessarily a positive integer and finite, the class of power series distributions stands out
clearly as asimple and natural candidate among several other possible choices that could
be made. Guided by the same intuition, we propose yet another class of priors which can
incorporate a wider range of the different forms the quantity N may assume in real life.
This class of priors which we shall hereafter refer to as the "difference" prior ariscs as
the difference between two independently distributed (but not necessarily identically
distributed) random variables from the same family of distributions. Here we illustrate the
idea by considering the poisson family which as we saw in chapter 4 outperformed the

binomial and negative binomial.
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5.2.1 Poisson difference prior

Irwin(1937), Skellam(1946). Fisz(1953), Katti(1960), Strackee and van der Gon(1962)
etc., all have considered the differences of two Poisson variables. Katti(1960) obtained
the moments of the absolute difference and absolute deviation of Poisson, Pascal and
binomial distributions. Fisz(1953) considered the limiting distribution of the difference of
two independent poisson random variables and showed that it tends to the normal
distribution as their respective means tend to infinity. Consul(1986) ccusidered the
differences of two generalized Poisson variates.

The difference of two independent Poisson random variables finds application quite
often in risk analysis. Also Strackee and van der Gon(1962) observed that the number of
light quanta emitted or absorbed in a definite time is distributed according to a Poisson
distribution and as such they proposed that the physical limit of perceptible contrast in
vision can be studied in terms of the difference between two independent variates each
having a Poisson distribution.

Consider a situation where the number of elements that join a population, V) and the
number that leave the same population, N> can both be viewed as random variables
following independently Poisson distributions p(Vy; 81) and p(N3: 02) respectively and
let N = Ny - N2+ Ny denote actual size of the population in a definite time, where A. a
real positive constant denotes the initial size of the population. In view thereof. N can be
studied in terms of the difference between two independent variates each having a
Poisson distribution or some non-central version of such adifference according as Ny is
equal to zero or not. That is N can be viewed as a residual or net effect of an input-output
ty pe mechanism. This research will be taken up elsewhere. For curiosity. we give here the
basic formulation for the situation where we assume N = 0.

When E[N}] = 6;# E[N>] = 85. the distribution of N. for N > 0, [see Johnson and
Kotz (1969) or Consul(1986)] is given by
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N
,0,(0,)?
p(N,-N, =N)=e e.az(é_l) 1,(2/06.). (5.7)
2 2

where /,,(n) is the first kind of modified Bessel function of order » and argument ».
Noting that N, can bc expressed as a fractional multiple of Ny such that 8, = a®; where

0 <a <1, the distribution in (5.7) can be written as

P(N=N)=¢e " q ¥} (20a) (58)
2

Thus a truncated form of the distribution in (5.8) which could in a sense be viewed as an

"objective" prior distribution can be defined as follows;

Definition 5.2.1: Truncated Poisson Difference prior [7,,(N.0 .o, . b)]

o ] (20V0)
T, (N.8.a,a.b) = - : (59)
Y a1, (20var)

Using the sampling distribution of D given in (3.3), the joint distribution of N and D is

given by

dN'!

———— 4
A]l/*l(/\/ _‘1)",'t ,pd(]\ 'e'a'a‘b) (5]0)

P(N .8.a,a,b,d)=

Thus the posterior distribution corresponding to ihe prior in (5.9) will also be defined as
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Definition 5.2.2: Truncated Poisson difference posterior [7,,4(N|d . o, a.b)]

N! ~(N2)
- o T (248
N(I#l(N ‘d)' : ( ‘/—)
T .. (Nd.0,a.a,b)= —; T E % (511)
- a (248
:=m§{«ul} i‘hl (1 - d)' ; ( )
Definition 5.2.3:
Truncated Poisson difference Bayes estimator[N,pd(B . a,a,.b,.d)}
- b
Np®.,abd)= > m, (Ndba.a.b) (5.12)

N=maxla.d)
Hence under the extensive form of analysis using a syuared-error loss function, the Bayes

risk associated with the Bayes estimator given in (4 12) is given by

h h 5
e, 0.0,a.h) = Zm(d)[( Z N'n i € N\d.@.a.a.b)) - (.'\’,,,‘, (G.Q.a.b.d)) (5.13)

d=1 MN=manjad)

where m(d) is the marginal distribution of D given by

»
m(d) = Z P(NAo.a.b.d).

V=manjad )

5.3 Limit property of the Bayes' estimators

In this section. we review further elements of the Bayesian methodology in order to
study some features of the Bayes' estimators(rules) developed in the preceeding
discussions. First we record the following useful definitions which can be found in

Ferguson (1967). pg. 49.

Definition: Limiting Bayes' rules
A rule 8 is said to be alimit of Bayes rules 8, if for almost all d. 8,(d) — 8(d) in the

sense of distributions.
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Definition: Generalized Bayes rule

A rule 8, is said to be a generalized Bayes rule if there exists a measure on N such

that 2L(N,3)p(d\N Yn(N ) takes on a finite minimum value when & = §,,

Definition 5.4.3: Extended Bayes rule
A rule 8, is said to be extended Bayes if 8, is e-Bayes for every € > 0.
In other words 8, is extended bayes if for every € > 0 there is a prior © such that 8, is

e-Bayes with respect to n; that is, r(nd,) < infs r(n) +e.

Remark: This notion of Extended Bayes is an easy one which can represent an "almost"

Bayes rule situation.

Now consider the following representation of the power series distributions introduced

by Jain and Consul (1971);

rI(r+BN)
NIT'(r+BN =N +1)

refiN-XN

T o (Nsr,p,B) = pr-p

where 0< p <1, |pB|<1 and the parameter § may not be an integer.

This is called the gencralized negative binomial distribution. It can be cbserved that for
p=0or1, the above reduces to the binomial or negative binomial respectively. Also
when » and f are large, while p is very small, such that rp =\, pb = Ly, where A is
finite and positive while |Ay| < 1, the generalized negative binomia! distribution can be
approximated by using James Stirling's formula on the two gamma functions and can be

simplified to the following form called generalized poisson distribution;

}\.l()\--_,'* N)\’z)f\'—le—(lﬁ)\')Q)

s N=O,],2,...
N!
PN;A L Ay)= A >0, A< ]
0 Jor Nzmif k, +mk, <0,
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Note that for A7 = 0, the gencralized poisson reduces to the poisson distribution.
Consul and Jain(1971) studied the behaviour of this generalized form of poisson
distribution and remarked that it can be applied to a wide variety of observed data.

The mean and variance of this distribution are given by

E(N)= M Var(N) = A = E(N)Z'
1-4, ‘ (1-2;)"  (1=23)" 11 follows that the mean will

be smaller than, equal to, or greater than the variance according as the value of Ay is
positive, zero, or negative. In what follows, we introduce a modified form of this

distribution which we shall call a modified generalized poisson.

Modified generalized poisson.
Let a be a real non-negative constant. Consider

—(/|+\/2)

l(}\.l +N}.2)\'_'L’ /\,a
N Cln, 0o t)

A
PN Ay =

where
o A (L +id )T

(‘(}»1.7»1,0.): Z ! ! 2

) i=1

il

A truncated form of this modified distribution can be obtained as

(k) + Nx:)'\'qe-“"hw") N®
, , N! C(h,, A,
P(Nlas N £b)=~ TR AL
Z RN I\.:) (4 !
t=q i! (v(;\-l.}\vz .O()

Using the sampling distribution of D given in (3.3), the posterior distribution of N

given D=d is

MOy + N e

(N-d)!
p(N|d) = —
i l](l_, +ik,) e jamtdon
r=man o) (1 _d)'
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The Bayes' estimator under squared-error loss which is the posterior mean is then given

by
$ MOy M)
E(N'd) = N=max{a.d} (N"d)'
i )‘l(?‘_’!_ii%_z )'—I_f':')’_’ ja=td+h

r=max{a.} (l - d)'

Now when A3 = 0, this posterior mean reduces to that of a modified poisson which for
a=1,o=d +1, simplifies to

, —d)!

E(N|d) = A=llh (N-d)!

Z }h]’
o (i=d)!
h-dd )\' \
2 rd)!
v=0 y'
= g)\"
vo )
/r-d)\’ V h-d k |
) S
d )1 ZJ 1]
- 1=0 .} + =0 ) .
o ! o V!
xlh-:/ 7\1‘:]
- -
~a+ =

A
»!

2

=0

Now as b — o, E(N|d) - g(d,A1) where
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=d+h,(1-¢)
This limiting result suggests that when the upper truncation point, b is very large, the
Bayes' estimate of N can be taken as the sum of the observed number of distinct units. ¢
and some fractional multiple of the initial target value, 1i. Note however that this result

is subject to the condition that o = d +1.

5.5 Discussion

The Bayesian estimators considered in this thesis provide a wider range of choices for
estimating the size of a finite population, N than the classical methods of estimation.
Moreso, the results obtained in subsection 5.1.1 of chapter 5 show that the classical MLE
can even be considered a special case of the N. The sensitivity analysis carried out in
chapter 4 show that the Bayes' estimator N,,, (formed by using a truncated poisson
distribution) outperformed the Ny and Ny, (formed from the truncated binomial and
negative binomial distributions respectively). We propose extending this research to
situations where; (i) N can be viewed as a residual or net effect of a random input-output
mechanism in which case the truncated poisson difference prior introduced and defined in
subsection 5.2.1 of chapter 5 could serve as an "objective" prior distribution. (ii) the
observations can be viewed as time dependent data. Work in this direction is in progress

and we will give the results elsewhere in further research.
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APPENDIX A: INTERACTIVE PROGRAM IN Maplev3 FOR DETERMINING PRIOR
PARAMETERS

Example (i): Determination of truncated binomial prior when given
prior mean, M =13, prior variance, V = 1/9

Note: The following interactive program gives an idea of the method we used in order to
determine the prior parameters for example (i). The same method is applicable to other
cases.

Notations:
tbprior = trnncated binomial prior p.m.f, M1 = Mean of tbprior
M2 =second raw moment of tbprior, g1 =M1-M, g2 = M2-V.

> tbprior :=(N,r1,p1,a,b)->binomial(ri,N)*p1*N*{1-p1)*(-N)/(sum(binomial(r1,N)*p1*N
> *(1-p1)*(-N),N=a..b));

: : . \ (-N)
t al(rl. Nypl (1 = pl
thprior - - (N.rl.pl.a. h) > hinomial(s Ypl Ao nl)

h
Z binomial(r/. .\')pl‘\'(l -pl )(-1\)
N—u
> M1 := (r1,p1,a,b)->sum(N*tbprior(N,r1,p1,a,b),N=a...b);
h
ML= (rl.ploa by - Z N tbpriot(.\N. 1 pla.h)
N=u
> M2 := (r1,p1,a,b)->sum(N*2*tbprior(N,r1,p1,a,b),N=a...b);
h
M2=(rloplou.b)— Z .\'2 tbprior( N, rl.pl. a. bh)
N=u

> g1 :=(r1,p1,a,b)->M1(r1,p1,a,b)-13;
glh=wlpl.a,b)y>M(rl.pliu, b)-13
> g2 :=(r1,p1,a,b)->M2(r1,p1,a,b)-(13)*2-(1/9);
1522
g2 =(rl.pl.a.b)y >M2(rl, pl.a. h) - 9

for a fixed r1, we want p1 such that gl-g2=0 and gl=g2 ~ 0.
>
> plot({g1(25,p1,13,24),92(25,p1,13,24)},p1=0..1);
>
> fsolve(g1(25,p1,13,24)-92(25,p1,13,24)=0);
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004944704457
> evalf(g1(25,fsolve(g1(25,p1,13,24)-92(25,p1,13,24)=0),13,24));
00427231
> evaif(g2(25,fsolve(g1(25,p1,13,24)-g2(25,p1,13,24)=0),13,24));

0042724
> for b from 14 by 1 to 24 do print(b,fsolve(g1(25,p1,13,b)-g2(25,p1,13,b)=0), evalf(g
> 1(25,fsolve(g1(25,p1,13,b)-g2(25,p1,13,b)=0),13,b)), evalf(g2(25,fsolve(g1(25,p1,13,
> b)'92(25’p1 ,13,b)=0),13,b))) Od;

14, .004982206406. .00427351. .0042735
15, -1.941844746. -.02547826. -.0254782
16, .004944705105. .00427230. .0042723
17. -12.86130913. -.00457055. -.0645705
18, .004944704457. .00427231. .0042724
22,.004944704457. 00427231, .0042724
23, 004944704457, .00427231. .0042724

24..004944704457,.00427231..0042724
> for r1 from 24 by 1 to 30 do print(r1,fsolve(g1(r1,p1,13,24)-g2(r1,p1,13,24)=0), eval
> f(g1(r1,fsolve(g1(r1,p1,13,24)-92(r1,p1,13,24)=0),13,24)), evalf(g2(r1,fsolve(gi(ri,p
> 1,13,24)-g2(r1,p1,13,24)=0),13,24))) od;

24, .005392135632. .00427231. .0042723
23, .004944704457. .00427231..0042724
29, .003712480530. .00427227_ 0042722

30, 003494756555, 00427227, 0042723
> fsolve(g1(25,p1,13,24)-g2(25,p1,13,24)=0);
004944704457
> for a from 10 by 1 to 13 do print(a,fsolve(g1(25,p1,a,24)-g2(25,p1,a,24)=0),g1(25,fs
> olve(g1(25,p1,a,24)-g2(25,p1,a,24)=0),a,24),92( 25,fsolve(g1(25,p1,a,24)-g2(25,p1,a
> ,24)=0),a,24)) od;

10, 4874777394, - 13939777, -. 1593978
12..3809775210, -.04890208. -.0489021

13, .004944704457. 00427231, .0042724
Thus the prior parameters in this case are [r1 = 25, p]1 = 0.00495, a = 13, b =25)
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Appendix B: INTERACTIVE PROGRAM IN Maplev3 FOR COMPUTING BAYES'
ESTIMATORS AND RISKS

Example (i) : Computation of Bayes estimator and matrix of risks when given
prior mean, M =13, prior variance, V=1/9

Notations: cspmf = p.m.f of D
tbprior = truncated binomial prior.
tbjoint = truncated binomial joint distribution of N and d.
tbmarg = truncated binomial marginal distribution of d.
tbpost = truncated binomial posterior distribution of N given d.
tbNbayes = truncated binomial Bayes estimator.
tbpostvar = truncated binomial posterior variance of N given d.

Note: The above system of notation for the truncated binomial prior is applicable to other
priors.

> cspmf := (d,N)->d*NI/(N*(d+1)*(N-d)!);

() d \!

spmf = (d,N) —>

ospn ( Wd+1y
N (N =)

> tbprior:=(N,r1,p1,a,b)->binomial(r1,N)*p12N*(1-p1)*(-N)/sum(binomial(r1,i)*p1*i*(1-
> p1)A(-),i=a..b);

. _‘\'

binomial( /. .\')/)I‘\ (1-pl )( )

thprior =\, rl.pl.u.bh) —
)

Z L i (-i)
binomial(r/. i)y pl* (1 - pl)
i=u

> tbjoint := (N,r1,p1,a,b,d)->cspmf(d,N)*tbprior(N,r1,p1,a,b);

thjvint == (N.rl.pl.a. b.d)y— cspmitd. Nytbprior(Norl.pl.a.b)
> tbmarg := (r1,p1,a,b,d)->sum(tbjoint(N,r1,p1,a,b,d),N=max(a,d)..b);

b
thmare == (rl.pl.u. b.d) > Z thioin N.ri.pl.a. b, d)
N =mun{a. )

> tbpost := (N,r1,p1,a,b,d)->binomial(r1,N)*p1AN*(1-p1)A (-N)*NI*(NA(d+1)*(N-d)!)A (-1)/
> sum(binomial(r1,i)*p1Ai*(1-p1)A(-i)*it(iA (d+1)*(i-d)!)A(-1),i=max(a,d)..b);

thpost .=
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’ (-N
(Norloploacb.d) > - binorllial(rl__,}i)i)/‘\ (I=ph ) Ay
Norlopl.a.b. .

; -1
{d+1) . binomial(r1. ) p1? (1 - p\ " it
"\ (1\ —(.1)! —— B —- — - - —
(d+1)
i (i-d)!

i=max(a.d)
> tbNbayes:= (r1,p1,a,b,d)->sum(N*tbpost(N,r1,p1,a,b,d), N=max(a,d)..b);
b
thNbaves = (rl.pl.a.b. d) > Z Ntbpost(\\.rl.pl.a b, )
N =max(a. )
> tbpostvar :=(r1,p1,a,b,d)->(sum(N*2*tbpost(N,r1,p1,a,b,d), N=max(a,d)..b))-(tbNba
> yes(ri,pi,a,b,d))*2;
thposivar
h
(rl.pliu.b.d)-»> Z A7 thpostt N rloploacb.dy — bNbaves(rl. pl. a. b, (I)2
N=max(a. )
> ri1:= (r1,p1,a,b)->sum(tbpostvar(r1,p1,a,b,d)*tbmarg(ri,p1,a,b,d),d=1..b);
h
il =(rl.pl.a.b)—> z tbpostvar( /. ploa. b dytbmarg(rl.plou b d)
o =1
> r11(25,0.0049447,13,24);
0042850206544
> r2 :=(r1,p1,a,b,r2,p2)->sum(tbpostvar(r1i,p1,a,b,d)*tbmarg(r1,p1,a,b,d),d=1..b) + s
> um((tbNbayes(r1,p1,a,b,d)-tnbNbayes(r2,p2,a,b,d))* 2*tbmarg(ri,p1,a,b,d),d=1..b);
>
h
rl2crloploabor2.p2) — Z thpostvare s/ ploac bodytbmarg(rl. ploa. bod)
d=1
h
+ Z (tbNbayes(rl.pl. u, b.d) — tnbNbayes(r2. p2. u. b, d) )2 tbmarg(ri.pl.a, b.d)
d=1
> r12(25,0.0049447,13,24,0.0015678);
0042835026544
> r13 := (r1,p1,3,b,f)->sum(tbpostvar(r1,p1,a,b,d)*tbmarg(r1,p1,a,b,d),d=1..b) + sum((

> tbNbayes(r1,p1,a,b,d)-tpNbayesi(f.a,b,d))*2*tbmarg(r1,p1,a,b,d),d=1..b);
>
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h
ri3=(rl.pl.a.b,f)—> Z tbpostvar(rl. pl. a. b. )y tbmarg(rl. pl.u. b.d)
d=1
h
"
+ Z (tbNbayes(r!, pl. a. b. d) — tpNbaves(f. a. b. d))" tbmarg(ri. pl, a. b, d)
d=1
> r13(25,0.0049447,13,24,0.05959);
004285026544

> r21 :=(r? n2,a,b,r1,p1)->sum(tnbpostvar(r2,p2,a,b,d)*tnbmarg(r2,p2,a,b,d),d=1..b)
> +sum .bNbayes(r2,p2,a,b,d)-tbNbayes(r1,p1,a,b,d))*2*thbmarg(r2,p2,a,b,d),d=1.
> .b);

h
r2l=(rop2,a.b.pl)y— Z tmbpostyar(r. p2. a. b, d) tinbmarg(r. p2. u. b. d)
d=1
b
-
i Z (bNbayes(r. p2. a. b. d)— tbNbayes(r. pl. a. b. )Y~ mbmarg(r. p2. a. b, d)
=1

> r21(25,0.0015678,13,24,0.0049447);

004288581889
> r22 := (r2,p2,a,b)->sum(tnbpostvar(r2,p2,a,b,d)*tnbmarg(r2,p2,a,b,d),d=1..b);
h
P22 (roplia. by - Z tbpostar(r. p2. a. by mbmargir. p2.oa. b d)
d-1
> r22(25, 0.0015678,13,24),
004288581889

> 123 ;= (r2,p2,a,b,f)->sum(tnbpostvar(r2,p2,a,b,d)*tnbmarg(r2,p2,a,b,d),d=1..b) + su
> m((tnbNbayes(r2,p2,a,b,d)-tpNbayes(f,a,b,d))*2*tnbmarg(r2,p2,a,b,d),d=1..b);
>
h
r23 = plou b f) > Z tnbpostvar( r, p2. a. b. d) tnbmarg(r. p2. a. b, d)
d=1
b
+ Z (tnbNbayes(r. p2. a, b. d) — tpNbayes( £, a. b. (/))2 tnbmarg(r, p2. a. b, d)
d=1

> r23(25,0.0015678,13,24,0.05959);

55



004288581889
> r31:= (f,a,b,r1,p1)->sum(tppostvar(f,a,b,d)*tpmarg(f,a,b,d),d=1..b) + sum((tpNbaye
> s(f,a,b,d)-tbNbayes(ri,p1,a,b,d))*2*tpmarg(f,a,b,d),d=1..b);

>
b
r3l=(fa.b.r.pl)—> Z tppostyar( /, a. b. ) tpmarg(f. a. b. d)
d=1
h
"
+ z (tpNbayes(f. a. h. d) — thNbaves(r. pl.u. b, d))™ tpmarg(f. a. b. d)
d=1

> 131(0.05959,13,24,25,0.0049447);

004287760055
> r32:= (f,a,b,r2,p2)->sum(tppostvar(f,a,b,d)*tpmarg(f,a,b,d),d=1..b) + sum((tpNbaye
> s(f,a,b,d)-tnbNbayes(r2,p2,a,b,d))*2*tpmarg(f,a,b,d),d=1..b);

>
h
132 (facbhor2.p2y—o Z tppostvart f. a. b o) tpmarg(f. a. b d)
d-1
h
{ Z (tpNbayes( /. a. h.d) - mbNbayes(r2.p2. u. b. d))2 tpmarg( o« b.d)
d -1
> r32(0.05959,13,24,25, 0.0015678);
>

004287760035
> r33 := (f,a,b)->sum(sum((N-tpNbayes(f,a,b,d))*2*cspmf(d,N)*tpprior(N,f,a,b),N=ma
> x(a,d)..b),d=1..b);

r3s3:

b b
(f.a.h)y—> Z Z (N = (pNbaves(f. a. b. d) )2 espmi{ . N) tpprior( N, /. a. b)
d=1 N=max(a.d)
> r33(0.05959,13,24),

004287760055
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