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ABSTRACT

Biaxial Buckling of Laminated Composite Plates

Young Soo Kim, Ph.D.
Concordia University, 1995

Buckling behaviour of laminated composite plates subjected to biaxial inplane loading
was theoretically studied, numerically analyzed, and experimentally determined. This
research was motivated from a need to understand the buckling behaviour of laminated
composites in structures such as aircraft fuselages and body-skin of automobiles or

shirs with various inplane loads and supporting mechanisms.

A plate specimen was developed for this study. The proposed specimen has a
slight modification from the ideal rectangular plate and its admissibility was fully
investigated with nonlinear finite element analysis (N-FEA) and experiments. Deflec-
tion characteristics using different boundary conditions of the postbuckled plates were
also experimentally investigated to obtain admissible analytical deflection functions
and boundary conditions for the theoretical and numerical analyses. Experimental
values of the strains and deflections at the centre and rim cf the plates were compared
with the results from N-FEA to find governing deflection function for the theoreti-
cal formulations. N-FEA was carried out for the two types of boundary conditions,
i.e. uniform pressure and uniform end-shortening, to simulate the actual boundary
behaviour of plate in experiments. Comparing experimental results with the two N-
FEA results for the two different boundary conditions, it was found that results using
N-FEA with the uniform pressure loading condition agreed better with experimental

results.
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For the analysis of the critical buckling load of biaxially loaded plates, solutions
of classical laminated plate theory (CLPT) were compared with results from linear
or nonlinear finite element analyses (L-FEA, N-FEA) and experiments. In addition,
effects of bia-dal load ratios, k, on the critical buckling load aad postbuckling response

were experiinentally determined and compared with analytical results.

For biaxial buckling, effects of flexural stiffness ratio, ¢, and inplane stiffness ratio,
€, induced from the stacking sequence variation were investigated through nonlinear

finite element analyses and experiments.

In addition tc the extended application of Southwell Plot Buckling Criterion
(SPBC), a new buckling criterion, Minimum Slope Buckling Criterion (MSBC), was

proposed for the experimental determination of catastrophic buckling failure load of

composite plates.
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Chapter 1

Introduction

1.1 Background

Laminated composite plates are widely used in many structural applications, not only
in aerospace structures but also in automobile or marine constructions, in situations
where weight saving and higher structural performance are required. Laminated com-
posite plates are made of layers, each layer consisting of parallel fibers embedded in
a matrix. These layers are laid up and cured in an autoclave to consolidate the fibers
and the matrix of the whole laminate. The preferred mechanical properties could be
obtained by controlling the stacking sequence and the fiber orientation in each layer.
Therefore laminated composite plates are generally anisotropic bodies comprised with

multiple layers, where each layer can be considered as an orthotropic material.

Even though the anisotropy has been considered as a merit of laminated composite
plates owing (o the selective strength ratio along the two material axes, most design
engineers still hesitate to utilize it due te the complexibility of the analytical solutions.
For stability problems, a significant amount of work has been done on plates subjected
to uniaxial loading and some works has been done on theoretical formulation for plates

subjected to biaxial loadings. Most composite structures are sutjected to loadings

1
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in 2-directions Therefore, experimental verification of the strength ratio effects on

buckling is required for the design of composite plate structures subjected to biaxirl

inplane loading.

Plates may undergo buckling failure in the presence of inplane loading. Any plate
subjected to inplane compressive loading remains in a primary stable equilibrium
state until the inplane loads rcach the critical buckling values. With a small enough
load increment beyond the critical loading point, the plate can not remain in the
primary equilibrium state but shifts to a secondary stable equilibrium state having a
large transverse deflections. Thus the buckling phenomenon is usually described as
a bifurcation mode which indicates the splitting of the equilibrium path into two or
more theoretically admissible secondary paths of equilibrium. When a plate undergoes
buckling failure, one of the secondary paths is a mathematically unstable equilibrium
path which occurs with no more lateral deflections and the other is & stable equi-
librium path with large deflections as shown in Figure 1-1. No matter what type of
secondary equilibrium path is followed by the primary stable equilibrium state, the
secondary path shows severely weakened inplane strength with lateral deflections due
to the coupled bending deformations. Finally the plate may reach a higher mode of
buckling or catastrophic failure depending on the boundary conditions. For this rea-
sun, buckling analysis has been essentially required in the design of plate structures

to validate their dynamic stability and engineering reliability.
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1.2 Review of Previous Works

1.2.1 Theoretical Works

Based on the principle of energy conservation, various linear or nonlinear approxima-
tion methods have been developed for the theoretical analysis of buckling of laminated
plates. Linear buckling theory has been applied to determine the critical buckling
load by assuming that the deformation is small and the inplane strain-displacement
relation is linear. The stability analysis of laminated composite plates has been well
documented by Lekhnitskii [1], Leissa [2], Ashton [3], and Whitney [4]. Linear approx-
imate solutions were obtained using energy formulation in conjunction vrith classical
beam deflection functions by Ashton and Waddoups [5][6]. Also, extensive closed
form solutions were presented with the application of double Fourier series by Whit-
ney {7][8] and Leissa [9]. These energy based linear approximate solutions predict only
the upperbound of the critical buckling load and mode shapes but fail to depict the

secondary equilibrium path after bifurcation point, namely postbuckling behaviour.

On the other hand, nonlinear buckling theory has been developed to analyze the
postbuckling behaviour taking into account the effects of large deflection by introduc-
ing nonlinear strain-deformation relations. In the nonlinear plate buckling, the basic
displacement function considering the large deflections were first suggested by Von
Kdrman [10] and also the concept of effective width was introduced by von Kdrman,
Schler, and Donnell [11]. Farly works on the pestbuckling analyses of homogeneous
plates were performed by Cox (12, Timosheuko [13], and Marguerre {14], on the ba-
sis of energy methods. A direct energy minimization technique has been applied to
the postbuckling analysis of laminated plates using numerical mc hod by Minguet,

Dugundji and Lagace [15].

Numerous nonlinear approximate solutions were obtained by simulating the buck-
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a) b)

Figure 1.1: Typical buckling behaviour of simply supported rectangular plates showing
a stable equilibrium path, a) under biaxial loading, b) under uniaxial loading.
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ling deflection as series functions, namely Fourier series, power series or trigonometric
functions. Fourier series solutions were well presented by Levy [1€], Coan [17], Ya-
maki [18], Yusuff [19], Harris {20], Prabnakara and Chia |21], Prabhakara [22]. Also,
power scries were applied by Stein [23], Chandra and Raju [24], and trigonometric
functions were appiied by Walker [25], Rhodes and Harvey {26}, and Stein [27]. On
the other hand, Turvey and Wiitrick [28] used the dynamic relaxation method to
study the post-buckling behaviour of laminated plates. Extensive theories and exam-
ples dealing with the large deflection behaviour of laminated plates were discussed
by Chia [29]. As a more complicated topic, buckling analysis for the biaxially loaded
plate has been reported only in a few theoretical or parametric studies by Harris [30],
Turvey [31], Tung and Surdenas [32]. However, they were mainly concerned with
about the numerical approximate solutions, to predict the limiting bound in ordor to

avoid biaxial collapse with application of power series.

Recently, higher order theories are used to take into account the effect of trans-
verse shear and rotatory inertia on the nonlinear behaviour of postbuckling of lami-
nated plates by Lo et al. [33][34], Reddy [35][36], Cho et al. [37], Chang-Huang [38],
Moazzami-Sandhu [39]. These effects were oripinally reported by Reissner and Mindlin
by assuming a linear variation of stresses and strains through the plate thickness. How-
ever those analyses quickly lead to very complicated algebra and require expensive
computational processes since more variables are added to describe the displacement
fields. To have an efficient calculation, a few researchers tried to rely on numerical
methods, like higker order finite element methods, such ac Kant et al. [40] and Yuan
and Miller [41]. Based on the prior results of Berger [42], Zaghioul and Kennedy [43],
Sathyamoorthy [44], and Chia {29], it was found that the effects of shear deflection
and rotatory inertia are very small and negligible in cases where the span-to-thickness
ratio is greater than 25 in laminated composite plate. Counsidering the values of span-

to-thickness ratios, from maximum 140 to minimum 70, of the plate specimens used
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in this research, the higher order theories are not necessary in the present biaxial

buckling analyses.

1.2.2 Numerical Works

The aforementioned theoretical approach is effective in the calculation of critical buck-
ling load or in the study of postbuckling behaviour from closed form solutions which
were formulated by the assumed governing deflection function. But it is not effective
in the determination of postbuckling deformation or stress and strain distributions
of the buckled plate, especially in case that the plate has a complicated shape or
comp'icated boundary conditions, due to the error of the assumed governing deflec-
tion function. There are very limited choices in selecting the admissible governing
deflection functions to simulate the actual deformations of buckled plate and also to
satisfy the boundary conditions. Another obstacle in the theoretical approach is the
requirement of complicated calculation process to get the displacements, stresses and

strains, due to the large deflection nonlinearities.

To overcome these limitations of theore.ical methods, numerical methods like the
finite difference, boundary element and finite element methods have been frequently
used. The finite difference method is particularly useful for plates having mixed
boundary conditions or varying flexural stiffness. It is based on an approximate cal-
culation in which the derivatives of the deflection functions satisfy the boundary con-
ditions [45])[46]. However it is difficult to find a suitable model of deflection functions
that correspond to an actual deformation in cases where the plate has free boundaries
or holes. The boundary element method, based on integral equations rather than dif-
ferential ones, was recently introduced in plat: stability probleras. Even though it has
major advantages with regard to the high accuracy and computational efficiency, the
boundary element method has difficulties to solve large deflection problems because

a higher-order model is required in each discrete domain. Recently, withk incremental



CHAPTER 1. INTRODUCTION 7

approximation technique, only a few fundamental solutions were introduced for plate

buckling problem with large deflecticn theory by Elzein [47)].

In view of its excellent applicability to multi-layered structures, the finite element
method is a powerful tool for the buckling analysis of laminated composite plates.
The generality of its element shape function that covers large deformations and the
accuracy of its predictions compared to previous methods are particularly attractive
for plate buckling analysis. By the applications of multi-layered shell elements or three
dimensional elements v.e can obtain not only a global buckling strength-deformation
response but also local inter-laminar stresses or strains between any two specific lay-
ers. For the efficient calculation of inter-laminar stresses and deformations, a few
researchers developed the higher order or hybrid finite element method such as Kant
et al. [40], Yuan and Miller [41], Laschet and Jeusette [48], Chen and Yang {49)].

In this research, using the commercial finite element analysis software ANSYS [50],
linear finite element analysis was applied to determine the critical biaxial buckling load
for various boundary and loading conditions. In addition, a nonlinear finite element
analysis was extensively applied to obtain the post-buckling behaviour, deflections,

stresses and strains, considering large deflection nonlinearity of the laminated plates.

1.2.3 Experimental Works

Experimental works on the buckling and postbuckling of laminated composite plates
arc scarce. After the nonlinear large deflection equations were suggested by Von
Kdrman [10], some important experimental results on the uniaxial buckhng - a plate
loaded with uniaxial compressive loading - of the rectangular plates were reported
by Stein [23], Mandell [51], Ashton and Love [52], Spier [53], Minguet, Dugurdji and
Lagace [15], Englestad et al. [54], Chai et al. [55]. In 1959, Stein (23] experimentally

investigated the postbuckling behaviour of simply supported rectangular aluminum-



CHAPTER 1. INTRODUCTION 8

alloy flat plates subjected to uniaxial compression. Comparisons were made for total
end-shortening, local strains and deflections by comparing Stain's experimental data
and the linearized solutions obtained by expanding the displacements into a power

series,

For laminated composite plates, Mandell [51] carried out an evtensive buckling
experiments for various materials, including boron and glass fiber reinforced composite
plates in 1968. In that research, individual knife-edge supporter was introduced to
acquire 4 sided simply supported boundary conditions and the experimental buckling
loads were determined by the application of Southwell Plot from a load-deflection
curve. The main purpose of that research was experimental deteriiination of critical
buckling load of laminated plates subjected to uniaxial loadings. In the analysis of
buckling modes, the experimental results revealed that most plates buckled into the
first mode. A few plates, buckled into the second or third mode. These phenomena
appeared for highly anisotropic plates like [(07/ — 90;)],, [(0s/ — 902)]., [(0)s], and
[(0)10], plates.

In 1989, Minguet et al. [15] carried out an experimental investigation on the post-
buckling behaviour of laminated plates to verify their theoretical solutions from direct
energy minimization technique. Also, Chai et al. [55] carried out an extensive com-
plementary experimental investigation to confirm the theoretical solutions in 1991,
where load-deflection curves and postbuckling strain distributions were experimen-

tally obtained for uniaxially loaded rectangular laminated composite plates.

Up to now, experiments on the plate loaded with biaxial compressive loading con-
sidering various axial load combinations can not be found in the literature. Only
a parametric diagnosis from the basic buckling differential equation was performed
by Libove {56] in 1983 and Tung [32]. In the research of the author, to investigate

the biaxial buckling behaviour of laminated composite plate for various combination
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of axial loads, extensive experimental works have been carried out for symmetrically
laminated orthotropic and anisotropic composite plates. For the experimental inves-
tigation, a biaxial testing machine having four independent actuators and position
controllers, as shown in Figure 1-2, was used. A modified rectangular specimen was
designed and fabricated to accommodate the simultaneous biaxial loading by the bi-
axial testing machine. Experimental values of critical buckling load, the behaviour of
load-deflection and strain distributions were compared with numerical and theoreti-
cal results. Also, Shadow Moiré technique was employed to visualize the postbuckling
deflections at different load-ratios, stiffness-ratios and lay-up angles of the composite

plate specimen.
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Figure 1.2: View of biaxial buckling test of Graphite/Epoxy composite laminated
plate.

1.3 Objectives of the research

Laminated composite plate structures, like the skin structure of aircra’t fuselage or the
body-skin of automobiles and ships, are generally exposed to biaxial inplane loadings.
Biaxial buckling mode shapes generally appeared in the inplane loaded rectangular
plates when the plates have any type of fully-supported boundary condition, like S,-S,-
S,-S, or S,-5,-S,-Sy. Even if the plate is uniaxially loaded, the plate may experience
a biaxial stress state and may reveal a biaxial deflection due to the interaction of
axial loads and reaction forces from the boundaries. This then can be considered as
a biaxially loaded case.

On the other hand, it was observed that the critical buckling load and load-
deflection behaviour changed with respect to the load ratio along the two axes. In

particular, the critical buckling load shows a minimum value when the plate is sub-
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jected to uniform biaxial loadings, i.e., two axes having the same value of axial load.
Considering more generalized loading and boundary conditions, biaxial buckling anal-
yses and experiments may produce more relevant design parameters than conventional
uniaxial analyses and experiments. However, to the author’s knowledge, no exper-
imental work has been done on the biaxial buckling of laminated composite plate
under various combinations of the biaxial loadings even though a significant amount
of experimental work has been done on the buckling of composite plates subjected to
uniaxial compressive loading. The spin-off benefits of this research can be the gener-
ation of design data for the applications of laminated composite plates considering a

generalized inplane load and supporting mechanism.

To achieve the above mentioned research objective successfully, the author divided
this research into four targets as follows. In view of no precedent experimental veri-
fication, the first step of this research was focused on the developement of a suitable
experimental specimen to simulate the actual buckling behaviour of plate structures.
A plate specimen was proposed and its admissibility was fully investigated with non-
linear finite element analysis(N-FEA) from ANSYS program [50]. Through the study
on the actual by <kling of plate structures, the experimental model was selected as the
four-sides simply supported square laminated plate, which was subjected to uniform

compression by four independent rigid loading grips.

The second step of this research was concentrated on the modelling of boundary
behaviour of postbuckled plate subjected to biaxial loads with various axial load ratios,
k. Plate boundaries were changed from a straight line to a partly curved line due to
the large transverse deflection of the plate in the postbuckling state. Also the stress
distribution on the plate boundaries was changed from uniform continuous stresses
in the prebuckling state to nonuniform discontinuous stresses in the postbuckling

state. To obtain more accurate boundsry conditions, the author executed N-FEA



CHAPTER 1. INTRODUCTION 12

for the two different boundary conditions, i.e., uniform pressure and uniform end-
shortening, simulating the actual boundary behaviour of experiments. Comparing
the experimental results with the two numerical analyses having two different loading
conditions, it was found that results from the analysis with uniform pressure loading

condition agreed better with experimental results.

The third step of this research was aimed at determining the effect of flexural
stiffness ratio, ¢, and ianplane stiffness ratio, £, which was induced from the stacking
sequence change. From the energy theorem, in simply supported plate buckling,
CLPT says that the criticai vuckling energy and the critical buckling loads are not
affected by the stacking sequence of the plate if the lay-up angle was maintained.
However experimental results revealed different critical buckling load response and
post buckling behaviour from the Classical Laminated Plate Theory (CLPT). Also,
the buckling mode jumping phenomenon was observed to happen during the buckling
test for specific plates having a very large flexural stiffness ratio, (. This experimental

mode jumping phenomenon was verified with N-FEA from ANSYS.

The final step of this research emphasized on the study of buckling failure criteria
derived from the author’s experimental results. This is a new practical buckling cri-
terion for the design of laminated plate structures. Southwell Plot Buckling Criterion
(SPBC) was applied to determine the initial buckling load. Although this tecknique
was suggested to apply only for determining the critical lcad of a column, it was ex-
tended to a fully simply supported plate subjected to a biaxial inplane compression
loadings. On the other hand, Minimum Slope Buckling Criterion (MSBC) was pro-
posed by the author to determine the catastrophic failure loads at the postbuckling

state.




Chapter 2

Plate Buckling Theory

2.1 Classical Laminated Plate Theory

The required theory to analyze the buckling of laminated composite plates is more
complicated than that of isotropic homogeneous plates. This is particularly true
in case of unsymmetrically stacked angle-ply laminates because of the existence of
coupling terms due to the bending and stretching effect. In practical applications of
thin plates, the magnitude of the tractions on the surface of middle plane is relatively
small compared to the bending and inplane stresses, particularly on the state of plane

stress conditions.

In the derivation of the laminated plate buckling equations, the basic assumption is
the Kirchhoff hypothesis implying that the effects of the transverse shear deformation
are neglected. Relying on this hypothesis, the equations are valid in case that the
thickness of a plate is small in comparison with its lateral dimension. On the standard
z,y, 2z coordinates system, as shown in Figures 2-1 and 2-2, the displacements on
the z,y, z directions are denoted by u,v, w respectively. To construct the governing

equations for the plate buckling, following assumptions are required.

13
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LT -

e The plate is constructed by an arbitrary number of layers of orthotropic ply-
group bonded together. However, the two principal axes of each individual layer

need not coincide with the z, y axes of the laminated plate, i.e., general angle-ply

laminate is considered.

e The plate is thin, i.e., the thickness h is much smaller than the other physical

dimensions.
¢ In-plane strains ., ¢, and ¢,., are small compared to unity.

e In order to include in plane force effects, nonlinear terms in the equations of

motion involving products of stresses and plate slopes are retained.

¢ Transverse shear strains ¢,; and ¢,, are negligible and tangential displacements
u and v are linear functions of the z coordinate according to the Kirchhoff

assumptions.
o The transverse normal strain €, is negligible.

e Each ply obeys Hooke’s law.

The plate has uniform thickness.

Rotatory inertia terms are negligible.

e Transverse shear stresses, 0., and oy,, vanish on the surfaces 2 = +h/2

Constitutive Equations

Most theoretical equations are formulated by introducing an admissible deflection

function which satisfies the given boundary conditions, From the above mentioned
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Figure 2.1: Description of inplane stress resultants.

Figure 2.2: Description of moments and shear stress resultants.
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assumptions the lateral deflection, w, and tangential displaccments, u and v, are of

the form
u = uo(m’ yst) + Zf](l‘, yvt)
v = (z,y,t) + 2fa(z,y,1) (2.1)
w = w(z,y,t) (2.2)

where u° and v° are tangential displacements of the middle plane. On the other hand,

strain-displacement relations of the small deformation theory can be written as

E-—g}i 6—.6_2 € —.a.g.*.@.

<7 o’ V7 oy’ T 9y Oz

ow ow Ov ow Ou i
Ez-—'é'z‘—O, fyz—a’;"“é'z‘—'oy fz:-%'*"éz—o (23)

Introducing equations (2.1) and (2.2) into the strain-displacement relations of equation

(2.3), the unknown functions of equation (2.1) can be written as

ow ow
fl(zayat) et —-5;’ fz(.'B,y,t) = —"é; (24)
Thus the strain-displacement relations of anisotropic plates are of the form
€: = € +2K;
€ = €+25 (2.5)
€y = €+ 2Ky
where
o _OW  , 0 ,  0u
€. = -a—x-, &= ay y Epy = ay + 9z (26)
o*w 0w 0w
zr = = ’ =E=3T Ky = 2.
Ke =G WS Tp M= "2p5, (27)

Equation (2.5) describes the strain-displacement relations of plates of small deforma-

tion and it coincides with the classical homogeneous plate theory.
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For the postbuckling analysis of laminated plate, the strain-displacement relation

should be formulated by including higher order terms as mentiond by C hia [29]. By

including higher order terms, the large deflection nonlinear strain-displacement rela-

tions of anisotropic laminated plates are

€& = €42k, =Q}‘_ 1(6“’)2 6w
av 1 Bw 62
e” = ‘:+z"v = a 2( )2
n ou®  Ov° 8w8w
€y = ezy+znzy=“a"y"+'a—x‘+-azg'y'—

(2.8)

(2.9)

(2.10)

The generalized Hooke’s law, describing the two dimensional stress and strain

relation, can be written in the following form:

where

[S]
{0}
{e}

{0} = [Cl{¢}
{¢} = [Sl{s}

= [C]?
= [U,, Oy, 05,0yz,Oz;, aty]T

— T
= [f:y €yy €zy€ygy €2z, fzy]

(2.11)

Assuming that the 2-axis is perpendicular to a plane of symmetry, the stress strain

relation reduces in the case of monoclinic symmetry as

[C] =

r

21 c22 23 0 0 o6
{31 €32 C33 0 0 C38
0 0 0 Ca4 Cg5

0 0 0 Csq4 C3s

ar c12 &3 0 0 ¢y

[ o1 ce2 C63 0 0 ces |

(2.12)
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where the number of independent elastic stiffness cumponents are reduced to 13 be-
cause of symmetry. Also, to determine the principal stress and strain of the anisotropic
plate, it is necessary to consider the off-axes stress and strain components which have
a rotated angle 8 with respect to the on-axis coordirate on the plane of the plate as

shown in Figure 2-3. Introducing m = cos6 and n = sin, the transformed stress o;

and strain ¢ are given by

{0} = Wl{oi}

{&} = P Hea) (2.13)
m2 n2 0 0 2mn
n2 m2 00 0 -2mn
0 0 1 0 O 0
b = (2.14)
0 0 0m -—n 0
0 0 00n m 0
| -mn mn 0 0 © m? —n?

Considering an approximate state of plane stress, the transverse normal strain ¢,

can be transformed using terms of stiffness from the Hooke’s law.

c c c
€ = —-l-:-’-e, - -ﬁe, - —3—8'6,,, (2.15)
€33 €33 €33

By introducing the reduced stiffness terms g;;, the plane stress strain relation for the

k' layer becomes

Oz am Q12 Qie €z
Oy = | @12 @2 Q2 €y (2.16)
Ozy qQie Q26 dges €zy
Ci3Cs
G; = Cj-— 5 (2.17)

C33
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e

Figure 2.3: Rotation angle between on-axes(z-y) and off-axes(z-y).

The inplane stress and moment resultant are obtained by integrating of the stress

and moment through the thickness;

(Nzy, Ny N,,) = _://:(a,, 0y,02y)dz
h/2
@.Q)) = [ (0ess0)dz (218)
/2
(M, M, M) = /_hlz(a,,ay,o,,)zdz

These resultants are illustrated in Fig.2-1 and 2-2. Using equations (2.5), (2.12)

and (2.14), the inplane stress and moment resultant equations yield the following
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constitutive relations

[ N, | (A A A i Bu Bn B || € ‘
N, A2 Ap Ax i Bz Bxn By €
Nyy Ale Az Age i Bie By Bes €2y
S S e I ST T B 1)
M, B;y Bz Big ¢ D Dy; Dig Kz
M, By2 By By : D2 Dy Dy Ky
| Mzy | Big By Bes : Die Dig Des | | Koy |

where A;j, Bi; and D;; are integrated stiffness coefficients of the following form
(A B D) = | a1, 2, 22)d 2.20
1)y 4783 13 —j_h/2qU ,Z,Z ) 24 ( * )

Equation (2.19) can be written in the abbreviated form as

(N} [A] i [B] || {e}
T S T (2.21)
{M} B] : D] ]| {x}

Governing Differential Equations

The governing equation for plate buckling problems can be formulated using the
differential equation of static equilibrium, energy methods, and dynamic approaches.
The equilibririn eguation is obtained by considering the simultaneous bending and
inplane stretchins, of the plate. Consider a plate subjected to lateral loads which
are prescribed 4s inplane stress resultants, N, N, and N;,. Summing forces in z, y
and 2 direction on an infinitesimal plate element produces the following equilibrium

equations as written by Whitney [4]

F 4 ——El— hathadd =
oz T oy Qepp tPe=0
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ON., 6N,, ow _
5 t 3o Q"??'" +p, =0 (2.22)
2
00 aQ"+N,—1;+2N, ou +NQ—-,-+q 0

oz Oy oz Y o1dy Voy

where p, and p,; denote the body forces or tangential forces acting on the surfaces
of the plate along x and y direction, and also ¢ denotes the lateral pressure in =z
direction as discussed by Timoshenko [45]. On the other hand, variation of moment

about r and y axes yields

_ oM, oM,
Q- = 5zt 3y
M., , oM,
Q = G+t (2.23)

However the transverse shear resultants Q. and @, are small compared to other
resuitants, also the tangential slopes 52 and 4% are typically small at the elastic

buckling limit. Therefore the above equilibrium equation can be simplified as

ON. . BN, . _
3z T Oy tpe=
aN,, . ON, _ _
gl t gt =0 (2.24)
*M, M, M, _ 0w v . Pw
2 T oy T o + N + Wz R +N?37+q 0

Let us consider the inplane load as two parts — the first part which exists before
the initiation of bucklng, and the second part which is concerned with the buckling
deformations - to analyze the buckling phenomenon in detail by supposing prebuckling
displacements and postbuckling deflections. Introducing a load factor, A, equation
(2.21) also can be divided in two parts. Let these two parts be denoted by using the
superscripts i(prebuckling) and b(postbuckling) as follows

Nj = N;+1V:
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(A€’ + Bk) + A(A€® + Bk)
M+ M} (2.25)
(Be® + Dk) + A(Be® + Dk)

M;

It is assumed that the plate remains flat before the onset of buckling and there is
no additional variation of tangential or lateral load on the plate surfaces during the

buckling process, i.e.,

w = w
pi = pi (2.26)
g =4

For the first part of the equations, describing the state of the plate before buckling
takes place, the magnitude of the inplane load is less than the critical buckling load
and the inplane deformation is due to pure compression of the flat plate. Considering

w' = 0, equations (2.24),(2.25) and (2.26) yield the governing differential equations,

Ni AN
0. + —L+p. =0

oz oy

ON; ON: .
X —t -

7% T X +p,=0 (2.27)
M a?M:, M

= zy y i=
oz? + 23:c3y+ Jdy tq =0

For the second part of the equations, describing the state of the plate when the
inplane load exceeds the buckling load and gives rise to the postbuckling mode, the
magnitude of the inplane load is a little more than the critical buckling load and
it creates lateral deflections. Substituting equations (?.25) and (2.26) into equation

(2.24) and subtracting equation (2.27), the buckling governing equations in terms of

stress resultants are




CHAPTER 2. PLATE BUCKLING THEORY 23

aNt  ONY,
oz + dy =
32?” + a;z - (2.28)
i;%‘,é’ + 2362A;:1+3gf N'%ET+2N;”662;U+N‘aw

+ (N"a“’+21v:v£;” N"‘?:y) 0

The last three terms, N

i» of the third equation of equations (2.28) have consider-

ably smaller magnitudes compared to the others because \ is small compared to 1 in

equation (2.25). Therefore these terms are normally dropped.

The above mentioned two governing formulations, equations (2.27) and (2.28),
bave further meaning and it is better to be understood by rewriting them as matrix
equations by introducing differential operators.

Therefore, in the prebuckled state, the governing equations satisfy the following con-
ditions, w = 0 and «} = &}, = «}, = 0, because the plate is still flat and it has no
displacement along the z-axis. Consequently, from equations (2.5), (2.19) and (2.27),

the governing equilibrium equations can be written as

Ly L L u l -l
Ly Ly  Lyp v} = -p (2.29)
L31 L3y (Laz—~A) w J -¢

Secondly on the state of postbuckling, there is no additional bodyforce variation
and also w # 0 and £ =} = i y # 0. Substituting equations (2.5) and (2.19) into

equation (2.28) the matrix form of governing equaticn can be written as
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Ly Ly Lya u 0
Lay Ly Lo v = 0 (2.30)
L31 L32 (L33 - A) w (]

where all L;; are differential operators representing the stiffness and A is also a dif-

ferential operator denoting the inplane load as

a? 62 92
a2 32 o
Ly = Ana - +2Azea 5y +A663$2
& o o
Ly = Duaz + 4Dwm +2(Dy2 + 2D66)3x23y5 +
ot ot
4D263 6y3 + D22 y4 (2.31)
82 & o
Liz = Ln=Awep; + (A2 + Ass)'aTa; + A%W

& 8

L3 L3 = —Blra-;g - 331651_76;

& »
A= Nega+2Nuppy tNigp

& i

- (B2 + 2Bes)w - Bzea—ys-

& , &
Ly = Ly =—Biszs = (Biz+2Bes, 9270y

s o
3326—81: a7 Bzzﬁ

2.2 Buckling Criteria of Simply Supported Plate

For symmetrically laminated plates, the inplane/flexural coupling terms B;; = 0 and

L1z = Ly3 = U in equations (2.31). Since the inplane part is uncoupled from the

transverse part of the nontrivial matrix equation of the equation (2.30), the transverse

displacements are governed by

ik ! &

Dy, + 4D;¢ + 2(D12 + 2D3¢)

ozt 0z38y

or2ay?

+4D2¢

o ot
66y3+Dny‘
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0 92 9?2

=Neg + 2Nagog. + Mgz

262

(2.32)

Considering Dig = Dy = 0 and N,, = 0 for the orthotropic laminate plates,
i.e., specially orthotropic plate, under biaxial loadings, above governing differential

equation can be written as

dw dw &' Ow o’w
Dy — A +2(Dy2 + 2D55)a 25y 7+ + Djo 5 = N, o2 + N, 52

(2.33)

Let us assume the plate deflection function, w, as one of double Fourier series

which satisfies the simply supported boundary conditions discussed in Chapter 4.

[+ ] o0
Y Z Gy, BID —{sm 2—?— (2.34)
m=1n=l

where a,, is the maximum deflection amplitude with m,n = 1,2,3,.... Consequently
for the biaxially loaded orthotropic laminate, the critical buckling load along x-axis,
P,.., can be obtained by introducirg the aspect ratio, R, and the biaxial load ratio,

k, as follows

7r2[D11m“ + 2(Dya + 2Dsc)m2n2R2 + D22n4R4]

2R (m? + knlR2)
b
P = /oNzcrdy (2.35)

a
=73
N,

= —l

k A

If we consider the first buckling mode of simply supported orthotropic square plate

with a = b and m = n = 1, equation (2.33) can be reconstructed as following.
Hw 0w
{Du + Doy + 2(Dya + 2D55)}E:-4- = {N, -+ Nv}'g;i' (2.36)

As a special case of orthotropic laminates, if we consider cross-ply laminates having

various stacking sequences, it is true that the sum of two major and minor flexural
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stiffness terms, D; = D1 + Dag, is constant and also the sum of other tangential
stifiness terms, Dj; = 2(D;s + 2Dgg) is constant as tabulated in Table 3.5. Thus

equation (2.36) is simplified as follows

0w w
{Dr+ D"}—a_:;; = {N, + Nv}-gz-c? (2.37)
where
D; = D;; + Djyg = Constant
Dy = 2(D12 + 2D35) = Constant (2.38)

Consequently, if the axial load ratio k was prescribed, the critical biaxial buckling
load of specially rthotropic square plate can be summarized as the function of the
global flexural stiffness value, Dy, as following.

T 2DT
b%(1 + k)
Py = bN.o = Constant

Nzer

= Constant (2.39)

where,

Dy = D;+ D;; = Constant (2.40)

Therefore, as long as we focused on the first buckling mode of biaxially loaded
square plates having the same thickness, the critical buckling load is constant no
matter what kind of layup sequence (cross-ply laminates) was made. For example,
the global flexural stiffness values, Dr = Dj + Dy, are all the same for variously
stacked 12-layer, 16-layer or 20-layer cross-ply laminates with different axial flexural

stiffness ratios, ¢, as shown in Table 3.6.



Chapter 3

Development of Biaxial Plate

Specimen

3.1 Design of Biaxial Plate Specimen

3.1.1 Ideal and Modified Plate Specimen

Theoretical researck for plate buckling is usually applied for the case of rectangular
or square plates because of the simplicity of coordinate systems and admissible shape
functions of deformed plates. In experiments! work where uniaxial loading is applied
the rectangular plates are preferred due to the ease in load application and specimen

fabrication.

However, practical arrangement of biaxial tests for rcctangular plates have many
obstacles to solve. This is because four loading grips create interferences at each
corner of the specimen during the continuous biaxial compression process. Figite 3-1
a). shows a schematic diagram of the biaxial loading arrangement where interferences
between loading grips can occur. Ideally, the four loading grips would fit exactly on

the four edges of the plates. However interference occurs vecause loading fixture at

27
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edge BC can not go further to the right without interfering with fixtures at edges AB

and CD which are coming down and up.

One way of overcoming this obstacle would be to make the specimen size larger
than that of the loading fixtures as shown in Figure 3-1 b). In this new arrangement,
there is no load at the corners. The new arrangement is therefore not exactly the
same as the ideal case of rectangular plate under uniform biaxial compression. Also,
a premature failure occurs at points A;, Az, By, B; etc. due to the the cutting action
of the loading fixture on the specimen.

Another way to avoid the interference and premature failure at each corner is to
cut the corners of the specimen along the sn'id line A Ay, By By, C,C, and Dy D, as
Figure 3-1 b). This modified specimen does not have exactly the same shape as the
ideal rectangular plate. However, if the corner cut sizes were kept small relative to
the plate dimension, this modified plate specimen may be used as a substitute for the
ideal plate specimen in the experimental determination of critical buckling loads and

postbuckling responses.

To study the admissibility of this modification, linear and nonlinear finite element
analyses were carried out to investigate the deviations of the critical buckling loads,
load-deflection responses and strain distributions between modified plates and ideal

ones.

3.1.2 Fabrication of Modified Piate Specimen

Plate specimens were manufactured with NCT301 Graphite/Epoxy prepreg tapes pro-
duced by Newport Composites Inc.. Physical characteristics of N CT301 Gragaite/Epoxy
prepreg as obtaii.ed from the manufacturer are shown in Table 3.1. Before curing,

the prepreg tapes were cut and laid up on a flat aluminum base plate. Then, these
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Figure 3.1: Schematic drawings of the biaxial loading device. a) Ideal setup, b)
Modified setup.

wet prepreg laminates were packed with release filin, breather, resin absorber and
vacuum bag. All the plate specimens were cured in an autoclave using a cure cycle
shown in Figure 3-2. After the curing process, the laminates were exposed to the
ultrasonic scanning system to detect any internal defect. An MTS was used to get
the mechanical properties of the cured NCT301 Graphite/Epoxy composite unidirec-
tional laminate which are shown in Table 3.2. In this research, the author fabricated
three groups of plate specimens, quasi isotropic, orthotropic and anisotropic laminate,
where each group has three different series of layup thickness, i.e., 12, 16 and 20 plies.
Dimensions and layup sequence are summarized in Table 3.3. Moreover euch series of
laminates were fabricated with various stacking sequences in order to determine the

effects of stiffness ratio, £ and ¢, as shown in Tables 3.4 and 3.6.




S
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Table 3.1: Physical characteristics of NCT301 Graphite/Epoxy prepreg tape.

Property Value
Fiber weight 230 g/sq.m
Resin content (by weight) 0 %
Volatile content Less than 1.0 %
Gel time 10 - 16 min. at 220°F ( 104 °C)
Warranty period 90 days at 40°F or below
Temperature : e — | Pregsure
O (P (psi) (kPa)
316 600/ 90 pel 60 413
260 500i~ 50 344
204 400(- 40 275
149 300/ 25T 30 206
1 hour
93 200 20 137
38 100t \ 10 &9
| 1 i i N 1 |
0 1 3 25
Time (hrs)

Figure 3.2: Cure cycle of the plate specimens.
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Table 3.2: Material properties of the NCT-301 Graphite/Epoxy.

e

Symbol and Property Value Units

Ey , Young's modulus in the fiber direction 1139 GPa
Ey , Young’s modulus in the transverse direction 79 GPa
E,, Out-of-plane Young’s modulus 79 GPa
Vxy » Poisson’s ratio 0.28

Vyz: Poisson’s ratio 04

Vyx » Poisson’s ratio 0.02

Gy » In-plane shear modulus 3.1 GPa
Gy, » Out-of-plane shear modulus 31 GPa
Gyz , Out-of-plane shear modulus 28 GPa
XT, Longitudinal tensile strength 1621.0 MPa
YT, Transverse tensile strength 483 MPa
S, Longitudinal shear strength 33.3 MPa
e?, Maximum longitudinal strain 14231x 106

e; , Maximum transverse strain 6048 x 10 -6

es, Maximum longitudinal shear strain 10615 x 10-6

hy, Thickness of unit ply 0.138 mm

p. Density 1480.0 kg/m3

smasecmane
——
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Table 3.3: Dimensions and lay-up sequence of the modified plate specimens for L-FEA,

L-FEA and experiments.

Group Lay-up Dimension
Series Stacking and orientation axbxh (mm) a.(mm) aJa(%)
Orttrg;c OP-12  [(0/90)3);~ [05/90]s 240x240x1.67 18 1.5
Plate
(OP) OP-16  [(0/90)4)g ~ [04/90]s 240x240x2.22 18 7.5
OP-20  [(W90)s]g ~ [05/90]s 240x240x2,78 18 7.5
Aniso- | AP-12  [(30/-60)3]5 ~ ((60/-30)3])¢ 240x240x1.67 18 15
tropic
Plate |AP-16  [(30/-60)4)5 ~ [(60/-30)4]¢ 240x240x2.22 18 7.5
(AP) | AP-20  [(30/-60)g);~ [(60/-30)s] 240x240x2.78 18 75
pLH 518
Quasi-
Isotropic| IP-16  [(0/90/45/-45)]¢ 240x240x2.22 18 7.5

Plate
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Table 3.4: In-plane and flexural stiffnesses of the modified plate specimens for L-FEA,
N-FEA and experiments.

Plate Lay-up In-plane Stiffness (MN/m) Flexural Stiffness  (N'm)

D S  AuAnmAuAsshAis A Pu Du Diz Des Dis Pos
OP-12-11  ((0/90)3]4 102 102 38 52 0 O 29 18 08 12 0 O
OP-12-.1 [(0,/90))s 132 72 38 52 0 O 37 1008 12 0 O
OP-12-33  [03/903])¢ 102 102 38 52 0 O 3 808 'z 0 O
OP-12-51 [04/90]s 161 43 38 52 0 0 4 308 12 0o -~
OP-12-60 [Og)g 191 13 38 52 0 O 44 08 12 0 O
OP-16-11  {(0/90)4]¢ 136 136 51 70 0 O 65 47 21 29 0 O
OP-16-22 [(02/907))s 136 136 51 70 0 O 74 38 21 29 0 O
OP-16-44  [04/904])¢ 136 136 51 70 0 O 93 19 21 29 0 O
OP-16-71  [0;/90], 225 47 51 70 0 O 104 8 21 29 0 O
CP-16-80 [Oglg 254 1851 70 0 O 104 7 21 29 0 O
OP-20-11 [(M0)s]g 170 170 64 87 0 O 123 95 41 56 0 O
oP-20-32 [(03/907),]; 200 141 64 87 0 O 161 57 41 56 O O
OP-20-55 [04/90¢] 170 170 64 87 0 O 180 38 41 56 0 O
OP-20-82 [03/90,)¢ 259 81 64 87 0 O 202 16 41 56 0 O
OP-20-100 [0y0), 318 22 64 87 0 O 206 14 41 56 0 O
AP-16-36 [(30/-60)41s 92 92 49 S1 25 -25 42 33 20 21 14 -64
AP-16-45 [(45/45)4]s 78 78 64 65 0 O 32 32 26 27 45 45
AP-16-63 [(60/-.0)4]s 92 92 49 51 -25 25 33 42 20 21 -64 14
AP-20-36 [(30/-60)¢1s 115 115 61 64 32 -32 81 67 39 41 26 -14
AP-2045 [(45/45)]1s 97 97 80 8 0 O 62 62 51 53 7.1 7.1
AP-20-63 [(60/-30)sls 115 115 61 64 -32 32 67 81 39 41 -14 26
IP-16-45 ((0/9%0/ 107 107 3¢ 36 0 O 54 43 96 104 1.7 1.7

451-45),)s
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Table 3.5: Stiffness ratios and stiffness constants of the modified plate specimens for
L-FEA, N-FEA and experiments.

Plate Lay-up Em {= D= Dy= N-FEA  Experi-

A D mented
I.D. Code th (—11E ) (Dy1+Dy3) 2D1#Wge (YewNo)  (YeaNo)
OP-12-11 ((0/90)4), 10 16 412 6.6 Yes Yes
OP-12-21 [(0/90)y]s 18 36 472 6.6 Yes Yes
OP-12-33 [04/904], 10 47 412 6.6 Yes Yes
OP-12-51 (04/90]s 37 13.7 472 6.6 No No
OP-12-60 [0glg 14.3 143 47.2 6.6 No No
OP-16-11 [(0/90),4], 1.0 14 111.8 156 Yes Yes
OP-1622 [(0290,))), 10 20 1118 156 No No
OP-16-44 [04/904]; 1.0 4.7 1118 15.6 Yes Yes
OP-16-71 [04/90], 4.7 139 111.8 15.6 Yes Yes
OP-16-80 I.glg 143 143 1118 15.6 Yes No
OP-20-11 [(0/90)s]), 1.0 13 2183 30.5 Yes Yes
OP-20-32 [(03/90,)5), 14 28 2183 305 No No
OP-20-55 [04/90); 10 47 2183 30.5 Yes Yes
OP-20-82 [0g/90,), 32 128 2183 305 Yes Yes
OP-20-100 [01¢], 143 143 2183 305 Yes No
AP-16-36 [(30/-60)4]s 1.0 13 75 1238 Yes Yes
AP-16-45 [(45/-45)4)s 1.0 1.0 63.7 159.8 Yes Yes
AP-16-63 [(60/-30)4])s 10 03 75.7 1238 Yes Yes
AP-20-36 [(30/-60)sls 10 1.2 1479 0417 Yes Yes
AP-20-45 [(45/-45)¢]s 10 1.0 1244 3122 Yes Yes
AP-20-63 [(60/-30)s]s 1.0 0.8 1479 2417 Yes Yes
IP-16-45 [(0/90/ 1.0 1.3 96.7 €0.7 Yes Yes

45/-45),)s
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Table 3.6: Global stiffness ratio and critical buckling load of the modified plate spec-
imen from theory and N-FEA.

Plate Lay-up Global Critical _ Buckling Load .

Stiffness Theoretical Theoretical N-FEA mented
1.D. Code Dy(N.m) Ideal Modified (YoaNo)

Pe(kN)  PokN) = PofkN)

OP-12-11 [(0/90)4), 538 221 1.99 —_ Yes
OP-12-21 [(0,/90),]s 538 221 1.99 — Yes
OP-12-33 [04/905), 538 221 1.99 — Yes
OP-12-51 [04/90]s 538 221 1.99 — No
OP-12-60 [0g), 538 221 1.99 — No
OP-16-11 [(0/90)], 1274 5.24 471 4.65 Yes
OP-16-22 [(0,/909)]; 1274 5.24 47 —_ No
OP-16-44 [0,/90,), 1274 5.24 an 4.65 Yee
OP-16-71 [07/90), 127.4 5.24 AM 4.50 Yes
OP-16-80 [Og], 1274 5.24 an 4.40 No
OP-20-11 [(0/90)g], 24838 10.23 9.20 9.05 Yes
OP-20-32 [(03/909)9], 248.8 1023 9.20 — No
OP-20-55 [04/905], 248.8 1023 9.20 9.05 Yes
OP-20-82 (04/90,), 248.8 1023 9.20 8.80 Yes
OP-20-100 [0;¢), 2488 1023 9.20 8.65 No
AP-16-36 [(30V-60),]s 199.5 under 8.20 under 7.38 7.10 Yes
AP-16-45 [(45/-45)4]s 2205 under 9,06 under 8.16 8.40 Yes
AP-16-63 [(60/-30)4]s 199.5 under 8.20 under 7.38 6.90 Yes
AP-20-36 [(30/-60)q)e 389.6 under 6.20 under14.41 14.20 Yes
AP-20-45 [(45/-45)s]s 4366 under17.95 under16.15 16.40 Yes
AP-20-63 [(60/-30)g]s 389.6 under 1620 under14.41 14.00 Yes
1P-16-45 [(090/ 1574 under 6.47 under 5.82 o Yes

45/-45),]8
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3.2 Validity of Modified Plate Specimen

3.2.1 Numerical Validation

To investigate the admissibility of the modified plate specimen as a substitute of
ideal plate, linear and nonlinear finite element analyses were made using ANSYS
program [50]. First of all, effects of corner modification on the critical buckling load
were calculated numerically by monitoring the reduction of the critical buckling load
from ideal plate to modified one while increasing the modification ratio, a./a, as shown

in Figures 3-3.

For linear and nonlinear finite element analyses with ANSYS program, 8-node
multi-layered shell element, SHELL99, was used. This element can allow up to 100
different layers in a laminate. Each model was meshed with more than 148 elements
with different densities from centre to the corner of the plate as presented in Figure
3-4 and Figure 3-5. At each modification ratio, such as 2.5%, 5%, 7.5%, 10% of a./a,
critical buckling load was computed by linear finite element method with the full-
subspace eigenvalue extraction approach while controlling the maximum error norm
value to be less than 1078 The results of this L-FEA for the two kinds of modified

plates, coiner-unloaded and corner-cut, are presented in Figure 3-6.

On the other hand, nonlinear finite element analysis was performed to obtain more
accurate postbuckling behaviour and strain distribution on the surface of the plate
specimen. A small initial deflection, less than 0.08mm, was prescribed by the action
of infinitesimal lateral pressure to invoke large deflection N-FEA successfully. Also,
15 ~ 25 steps of load increments were imposed with different intervals to secure more
accurate bifurcation point and postbuckling behaviour. Moreover, the convergence
was checked by controlling the maximum deflection error norm, Au, to be less than

10-%mm with more than 25 times of iteration in each load step. These N-FEA results




CHAPTER 3. DEVELOPMENT OF BIAXIAL PLATE SPECIMEN 37

for the influence of corner modification were plotted in Figure 3-7. From the load-
deflection curves in Figure 3-7, it can be found that all the curves are the same trend
and each curve shows a parallel transition according to the modification ratio. In
addition to this, nearly linear relation was obtained in the plot of the critical load
v.s. modification ratio as shown in Figure 3-6. Consequently, it is obvious that the
madified specimen does not produce significant error when it is used as a substitute

for an ideal plate specimen as long as a./a < 7.5%

Another aspect on the investigation of the val*iity of the modified specimen was
focused on the comparison of load-deflection behaviour and strain distribution of the
two specimens, ideal and modified, through the applications of the N-FEA. For the
biaxial buckling of OP-16-11 plate, the continuous buckling deformations for ideal and
modified plates are shown in Figure 3-8 and Figure 3-9, where the global shapes of
buckling deformation of the two plates are identical except the value of the maximum
transverse deflection, wyq:.

Also, detailed views of the surface strain distribution are illustrated in Figures 3-
10, 3-11, 3-12 and 3-13. These four pictures describe the surface strain distributions of
the ideal and modified plates when the two plate are subjected to the same amount of
biaxial load, P, = P, = 3kN, as shown in Figure 3-8 ¢) and Figure 3-9 e). Comparing
the bidirectional strain distributions(e,,e,) of the ideal and modified specimens, truly
similar strain distributions appeared at the cenire of the plate. On the other hand

the strain concentrations are not severely high at the corners of the modified plate.
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Figure 3.3: The S-line for strain comparison between ideal plate specimen and modi-
fied plate specimen by N-FEA.
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Figure 3.4: Input data for N-FEA of ideal plate (1:meshed elements, 2:nodal points,
3:prescribed loads, 4:boundary conditions).
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Figure 3.5: Input data for N-FEA of modified plate (1:meshed elements, 2:nodal
points, 3:prescribed loads, 4:boundary conditions).
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0 2 4 6 g 10 12
Modification ratio, ac/a (%)

Figure 3.6: Effects of specimen modifications on the critical buckling loads of biaxially
loaded OP-16-11 plate from L-FEA and N-FEA.
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Figure 3.7: Specimen modification effects on the biaxial buckling behaviour of OP-
16-11 plate from N-FEA.
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a) PxwPys2.0 kN, Wmaxe0.27 mm b) Px=Py=2.25 kN, Wmax=0.43 mm

c) PxaPy=2.5 kN, Wmaxs=0.87 mm d) Px=Py=2.75 kN, Wmaxxl.81 mm
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Figure 3.8: Continuous buckling deformation of ideal plate specimen OP-16-11 with

biaxial loading (P; : P, =1: 1) from N-FEA.
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Figure 3.9: Continuous buckling deformations of modified plate specimen OP-16-11

with biaxial loading (P : P, = 1: 1) from N-FEA.
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1 ANSYS ¢.4A
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Figure 3.10: X-strain (strain along x-direction, €.) distribution along x direction of
ideal plate specimen OP-16-11 with biaxial loading, P, = Py = 3kN (P, : P, =1:1),
from N-FEA.
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Figure 3.11: Y-strain (strain along y-direction, ¢,) distribution of ideal plate specimen
OP-16-11 with biaxial loading, P, = P, = 3kN (P, : P, = 1:1), from N-FEA.
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Figure 3.12: X-strain(e.) distribution of modified plate specimen OP-16-11 with bi-
axial loading, P; = Py = 3kN (P, : P, = 1:1), from N-FEA.
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Figure 3.13: Y-strain(e,) distribution of modified plate specimen OP-16-11 with bi-
axial loading, P, = P, = 3kN (P, : P, = 1:1), from N-FEA.
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3.2.2 Experimental Validation

To confirm numerical results on specimen modification effects with experiments, the
strain distributions at the centre and rim area along the S-line of the plate was investi-
gated (S-line is shown in Figure 3-3). Strain gauges were located in the centre area of
the plate, four gauges on each side with #1 ~ #4 and #21 ~ #24 as showu in Figure
3-14. These gauges were intended to examine the admissibility of the testing area
where effects of modifications could be neglected. Five strain gauges, #5 ~ #9, were
also located on the rim area along the S-line to examine the continuity and uniformity
of contact between the specimen and loading grips. The specimens were tested in a

biaxial machine as shown in Figure 3-15.

Concerning plate buckling experiments unrler biaxial compressive deformation,
the strain inspection is meaningful because the plate boundaries change from straight
lines with full-contact with loading grips at the early stage to parabolic curves with
incomplete contact at postbuckled state. In fact, this boundary behaviour is the
result of the global deflection shape of the postbuckled plate. In Figures 3-16 and 3-
17, numerical results for the Y-strain values(strain values along y-direction, ¢,) at the
rim area along the S-line are presented for the ideal plate and modified plate of OP-16-
11, where the two strain distributions correspond well in early stage of postbuckling.
Furthermore, in a high level of buckling load (i.e., 5 kN), the wave-like curve of y-
stain(e,) along S-line shows the possibility of incomplete contact at bourdaries. These

boundary behaviours will be discussed more fully in Chapter 4.

To secure the strain behaviour of the centre of the plate, four strain values of front
and back surface of OP-16-11 specimen were plotted in Figure 3-18 by N-FEA. From
this figure, an equalized strain distribution was found in the centre of plate and it was
already verified from the z- and y-strain distributions of centre area in Figure 3-12

and Figure 3-13. On the other hand, in Figure 3-19, the experimental strain values
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were compared with that of N-FEA, where all experimental strain plots revealed the
same contour as numerical strain values. In the same manner, Y-strain values(e,) at
the rim area along the S-line were presented in Figure 3-20 and compared with exper-
iments in Figure 3-21, where the two strain values revealed as a conformed curves. In
this experimental validation process to check the admissibility of the modified plate
specimen, as we know, one unfortunate thing is that the ideal plate specimen is ob-
viously impossible to be tested without modification. For this reason, only after the
full-comparisons of numerical results between ideal and modified plate specimen, the
experimental data were compared with numerical results only for the case of modified

plate specimen.
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Figure 3.14: Location of strain gauges on the experimental plate specimens, a) front

side, b) back side.

Figure 3.15: Experimental setup of loading grips with 2 modified specimen.
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Figure 3.16: Y-strains, ¢,, along the S-line of OP-16-11(see Figure 3.3) ideal plate

specimen with various biaxial loadings from N-FEA.
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Figure 3.17: Y-strains, ¢,, along the S-line of OP-16-11(see Figure 3.3) modified plate

specimen with various biaxial loadings from N-FEA.
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Figure 3.18: Strains at plate centre for OP-16-11 modified plate under biaxial loading
with N-FEA.
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Figure 3.19: Comparing the experimental and numerical strains for OP-16-11 modified

plate at plate centre, under biaxial loading.
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Figure 3.20: Y-strains along the S-line for OP-16-11 modified plate under biaxial
loading with N-FEA.
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Figure 3.21: Comparing the experimental y-strains along the S-line for OP-16-11
modified plate under biaxial loading with N-FEA.



Chapter 4

Boundary Conditions

Considerations

1.1 Boundary behaviour of Postbuckled Plate

From information obtained in the literature ou the biaxial buckling for the composi:~
laminate, it was found that there was a severe limitation in the analytical methods
to interpret the actual behaviour of the plate at postbuckling state. The main restric-
ions of the analytical methods are due to the i/wited choice of displacement functions
and loading conditions. In numerous theoretical researches on the plate buckling and
post-buckling probleins, all analyses have been conducted under simplified boundary
ioading conditions, i.e., uniform pressure loading and uniform end-shortening. Uni-
form end-shortening boundary condition can be made by the compression with the
rigid bar bonded with plate. Uniform pressure loading condi.i~u is hard to be made
but it traditionally has been constructed by mean. of rigid bars. However, it can be

realized thai the actual conditions of plate boundaries are neither of them.

At the postbuckling state, the plate boundaries changed from straight lines to

partly curved lines due to the large transverse c eflection. Also the boundary stresses

59
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change from uniform-continuous to nonuniform-discontinuous distributions as shown
in Figure 4-1. Consequently the boundary condition of postbuckled plate is time
variant. In this research, the approrimate and numerical analyses for the postbuckled
plates assuming two different loading conditions, uniform pressure and uniform end-

shortening were carried out.

4.2 Simply Supported Boundary Conditions

The analyti. al expressions for the boundary conditions of all edges simply supported at
postbuckling state can be described as the the combination of loading conditions and
supporting conditions. As shown in Figure 4-2 b) i)*, for the homogeneous isotropic
plate compressed by frictionless loading bars with knife edge, the two supporting

conditions are

2 2w

w = (%;-w;+u?—;)—0 at = =%b (4.1)
24

w = (%?+u?-2-'§)_0 at y=za (4.2)

Also, the additional sets of loading conditions are

b 1 8%°F o*F 1 0w, s 92F
-/b[E-a—y{ j)—_—)]dl za :-—h a dy, atx—:!:b(4.3)
2 2
v° =_/[ ('6_@ Q;)“"l"a—u—})zldy oy, P, -—h/ d:v at y = +a (4 4)

where F' is any type of admissible stress function,
However aforementioned boundary conditions are true only at the prebuckling

state ‘a a strict sense.
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Figure 4.1: Postbuckled shapes and stresses of simply supported plate under biaxial

loading. a) Actual behaviour, b) Assumad as uniform pressure loading, ¢) Assumed

as uniform end-shorteniug.
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4.3 Closed Form Solution by Eunergy Method

4.3.1 Ritz Method for Postbuckling behaviour

Various approximate solutions for plate buckling problems have been presented on
the basis of minimum potential energy theorem, i.e., Ritz method, Galerkin method,
perturbation technique, finite difference method, finite element method, etc. The
Ritz method is one of the convenient methods for obtaining approximate solutions to
boundary value problems [29]). This method is governed b; *he stationary value of

potential energy as follows,

II(u®, v°, w) = Ub +U,+4V = stationary value (4.5)
= Z E mntimn(T, Y), ¥° = Z ZBm..vmn(x y), w= Z Z Crmnttmn(Z, y}4.6)
m=1n=1 m=1n=1 m=l n=1

Where u° and ©v° denote the inplane displrcements of the middle plane of the plate,
and w describes the deflection surface of the buckled plate, satisfying the boundary
conditions. Also, from the equation (4.5), total potential energy IT is the sum of the
strain energy due to bending, Uy, the strain energy due to inplane shortening, U,, and

potential eneigy due to external load. V.

Including the large deflection nonlinearity, the strain-displacement relations of
anisotropic plates are already given in equations (2.8)~(2.10). The strain energy
stored in the laminate can be presented as the sum of the strain energy due to bend-
ing, U,, and the strain energy due to inplane shortening, U,, at middle plane as

follows[4][29].

- 1 % a b n n
U= U+Up= 5./2 /.a /_b{a,(c',' + 2k;) + oy(€) + zky) + oxy(€3, + 26,y) }dzdydz
3

1 fo b
5 [ [ 1AN(E) + 2410606 + Ana(€])? + 2 Aroel + Ans€ )€l + Asa(el, ) }drdy

1 o qb ow ., 3w 8%w 2w, *w
+5 [ ou(G + Wugzar +D”‘3;e') +4Dua(55- )"
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Pw 0w, 0%w
-*-4(016-6-'3:—2 + D”'a?)az_ay}dxdy (4.7)

where, the stress-strain relation and the integrated stiffness coefficients, A;; and Dyj,

can be written as same form as equations (2.16) and (2.20):

{0} [g){e} (4.8)
(Aij, Di;) = /__,iQaj(l,Z?)dZ (4.9)

The above equation was derived for the symmetric laminate. Thus the bending-
stretchiug coupling terms were identically zero, i.e., Bi; = 0. The potential energy

due to external load, V, is

V = /_:/_bbpwdxdy+/.NT-uds (4.10)

where, p, N7 and u indicate transverse pressure, applied inplane force per unit length
and the normal component of displacement at the boundary respectively. Finally
the stationary value of the total potential energy can be expressed as a minimization

problem.

oIl o1l oIl
=0 —-0, m-_

A " BB 0 (4.11)

Like other approximation methods, if the assumed deflection functions are suitably
chosen to describe the displacement of the actual plate, the Ritz method provides an
accurate solutions by using a simple series functions. A severe restriction remains to
find admissible displacement functions to satisfy the boundary condition at postbuck-

ling state.

Traditionally the uniform pressure loading condition has been acquired by means
of the uniform end-shortening with rigid bars in real experimental " :termination of
buckling load and postbuckling response as conducted by Mandell [51]. Therefore a
closed form solution(C-SOL) for biaxial buckling of isotropic plate under the uniform
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end-shortening boundary condition was considered, as shown in Figure 4-1. Based on
the previous discussion for the displacement function, we can take the displacement

functions as follow.

(
l

L, T T
° C.sin — cos Ty _ €T
way 7%2
v = Cysin—cos— —e 4.12
¥ a 2% Vy ( )
T mY
where, e., €, are constants indicating the uniform strain along r and y-direction

respectively.

4.3.2 A Closed Form Solution for Uniform End-Shortening

For an isotropic plate or a symmetric laminate constructed with isotropic plies, all
terms of the inplane and flexural stiffness are simplified as A = A;; and D = D;;.

Now, all the energy terms discussed in equations (4.7) and (4.10) are as follows;

a rb 1
U, = A/_a /_b{(e:)2 + () + 2vele) + 5(1 - v)(€3,)? }dzdy (4.13)

Dr4ab 1 1,
Up = —55—(Wmas)(= + 53) (4.14)
Vo= [NT-uds= P ufy+ Py sy = PSe + B, (4.15)
8

where, P, P, indicate external inplane load on each axis and, é,,6, are the end-
shortening = and y axis at plate boundary. In the case of co-uniform biaxial end-
shortening buckling of square plate, i.e., k =1 or N; = N,, we have a = b, C, =
C,=C,e;:=¢;,=¢, P. = Py= P and 6, = 6,. As a case study, for the isotropic
plate(Plate#1) as shown in Table 1, critical biaxial buckling load can be solved from

its stationary equation, equation (4.11), as following form:

727302'
on _ 0; ~ C =0.14-Tnez (4.16)
on

T =0~ w?,, = 2.25a% ~ 0.712h? (4.17)
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If we put P, and e, as the critical value of P and e, the critical biaxial buckling load

and strain values are
h3 h?
P, =43834— =4 kN, e =0.316— = 108 10-° (4.18)
In above equations, the critical load P, was obtained from the equation of stresses
as shown in equation (4.19) and more detail description can be found from Timo-
shenko [13]. Moreover the stress distribution on the boundary of the plate at post-
buckling state can be expressed as a simple C-SOL as follows.

_ _ h? Yy 4 h? 9
Ozl(z=b) = Oyl(y=a) = 38000‘—15(71 -1)(1.2 co8 o = 0.44) - 21900-a—2n (4.19)

where n = efe. = §/6.. More converged solutions can be obtained by adding more
terms, i.e., €.z or e.z?, in equation (4-12), but the equations would become highly
complicated [19]. To investigate the validity of this C-SOL, the maximum deflection
and the boundary behaviour of postbuckled plate were compared with the results of
N-FEA in Figure 4-3.
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Table 4.1: Dimensions and engineering data of the composite plates for analyses and

experiments.
Table 1. Dimensions and engineering data of analytical and experimental plate specimen

Plate#1 : Isotropic Plate Plate#2 : Orthotropic Plate Specimen

Dimensions & Stiffnesses Material Spec. Dimensions & Stiffnesses
Code Isotropic Material Code ((0/90)4)
: mm 120 Brand | NCT30! & mm 240

» mm 120 Fiber | Graphie b mm 240
h, mm 222 Matrix | Epoxy h, mm 221
aomm i(af2a%) 18 :(1.5) aommi(a/a®)  18:(1.5)
bemm ;(b2b%) 18 i (7.5) Ply Constants  p_mmi (bb%)  18:(7.9)
v, 03 H39  A11, A22, <N/mm  136.1, 136.1
E, GPa 485 Ey,GPa} 7971 A12, AG6, kKN/mm 5.08, 6.96
A kN /mm 1183 vx 0.286 DI1, D22, kNmm 650, 468
D,kN mm 48.6 Es,GPa| 3.113 D12, D66, kNmm 2.1, 28
< 2b b = : x-strain (¥1,#6,#7,#8)

le—20s "¢ i y-strain (¥2,43,44.45)

- A h, thickness

T N ¥

#5 #4 #3

y %’ [:E—-
. n .
7}
Ideal & Modified l %—_
=wn Plate Specimen p A & v iii) iv)
a) b)

Figure 4.2: Plate specimen and its supporting mechanism. a) Ideal and modified

specimen with strain gauge, b) Various simple supporting conditions.
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4.4 Uniform Pressi.7e and Uniform End-Shortening

Figure 4-1 a) shows the behaviour of postbuckled plate under biaxial loading. It de-
scribes the deformed boundaries and nonuniform-discontinuous stress distributions.
Figures 4-1 b) and c) represent the two assumed loading conditions used in most ana-
lytical approximation methods. The two assumed conditions are strictly the same at
prebuckling state and we can obtain the same critical buckling load. However beyond
the critical load, we should choose one of them. Normally uniform end-shortening
is preferred in various approximation methods. It is true that the assumption of
uniform pressure loading (Assumrtion 1) leads to larger deflection than uniform end-
shortening case (Assumption 2). In geometrical aspects of buckled plate, Assumption
2 looks closer to the actual state than Assumption 1 in early stage of postbuckling.
But in a highly postbuckled state, Assumption 1 leads to more comparable solution
than Assumption 2. as shown in Figure 4-6 Authors investigate analytically the dif-
ference of the two assumed cases through the C-SOL and N-FEA. On the other hand,
the analytical results are compared with the experimental results for the orthotropic

composite plates.

4.5 Selection of Boundary Conditions

To validate the C-SOL obtained under uniform end-shortening condition, the axial
load and boundary stresses are compared with N-FEA results as shown in Figure 4-3.
From equation (4.16), we have the critical buckling load of C-SOL as P. = 3.996 kN
rather than that of N-FEA as P, = 3.268 kN. In the load response from Figure 4-3 a),
the errors diverge quickly according to the effective end-shortening, n = efe. = 6/6..
Also, the boundary stresses represent a similar distributions but C-SOL values are
larger than values of N-FEA.
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In Figure 4-4, the displacement of plate boundary was depicted for ideal and
modified plate under uniform pressure loading for Plate #2, where the modified plate
shows much larger boundary d:splacements than the ideal one. However, considering
n value is only 1 or 2 for the practical buckling modes, the boundary displacements of
the two models are acceptably the same and it means the modified specimen is valid

for the substitute of the ideal piate specimen.

Figure 4-5 reveals the effects of the assumed loading conditions for ideal and mod-
ified plates. Beyond the critical buckling load, the two loading conditions show a
wide difference in terms of the increase of postbuckling deflections. Finally the ex-
perimental load-deflection responses are plotted along with the N-FEA results for the
two extreme loading conditions, as shown in Figure 4-6. Here we can find that even
though the plates were subjected to the uniform end-shortening by rigid bars, their
postbuckling behaviours are chosen to the theoretical uniform pressure loading con-
dition for an isotropic ideal material. More discussions on the boundary behaviour
could be found from the literature [62][63)].

Consequently, in plate biaxial postbuckling analysis, it can be concluded that the
analyses using the unifo: n pressure loading condition renders a solution that agrees
better with our experimental results than the analysis with uniform end-shortening

condition.
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Figure 4.3: Axial load and boundary stress distribu.ions for Plate#1 with uniform

end-shortening condition. a) Axial load vs. n, b) Boundary stresses vs. n.

‘==s > —r—e—b o ——— P ——— "
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-100 -50 0 50 100 -100 =50 0 50 100
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a) b)

Figure 4.4: Boundary displacement at postbuckling state for Plate#2 with uniform
edge stress in compression. a) N-FEA for ideal plate, b) N-FEA for modified plate.
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5|  N-FEM-m-ud ”

W

[

UL

Inplane load, kN

Inplane load, kN

0 1 2 3 4 5 6 0 2 4 6
Max. eflection, mm Max. Deflection, mm
a) b)

Figure 4.5: Biaxial postbuckling behaviour (axial load vs. deflection) for composite
plate, Plate#2, when P, : P, = 1: 1. a) N-FEA for ideal plate, b) N-FEA for
modified plate (Note: i=ideal, m=modified, ud=uniform end-shortening, up=uniformn

pressure).
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Inplane load, kN

Inplane load, kN
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Figure 4.6: Experimental and N-FEA postbuckling behaviour(P, vs. wp,.) for
Plate#2. a) Experiment with P, : P, =1:1, b) Experiment with P, : P, =1:0.9



Chapter 5

Numerical Analysis for Biaxial

Buckling

5.1 Finite Element Analysis

Normally two types of numerical approach have beea used on the analysis of buckling
problem, { z.,, L-FEA with eigenvalue formulation and N-FEA with large deflection
small strain formulation. ANSYS program has these two approacaes for stability and
postbuckling analysis of structures. Linear buckling analysis in ANSY{ program uses
eigenvalue formulation to determine the bifurcation load, so called eigenvalues or scale

factors as in the fullowing equation,
[Kl{#i} = Ai[S){e:} (5.1)
where

structure stiffness matrix

(K]

{#i} = eigenvectors (b.2)
A; = eigenvalues
[S] = stress stiffness matrix

58




CHAPTER 5. NUMERICAL ANALYSIS FOR BIAXIAL BUCKLING 69

As the extraction procedure of eigenvalues and eigenvectors, full subspace iteration
method is applied, which was uescribed in detail by Bathe {57]. The convergence was

checked by requiring that all of the requested eigenvalues satisfy the convergence ratio,

ie.,
Aidn = (Ai)n-
e = ’( idn = Oi)n-y < tolerance (5.3)
(’\i)n
where
e; = error of i-th eigenvalue as computed in iteration n
(Ai)n = value of i-th eigenvalue as computed in iteration n (5.4)
(A)n-1 = value of i-th eige..value as computed in iteration n — 1

In the L-FEA of ANSY" software, if the applied load is unity, the eigenvalue is the
buckling load and the eigenvector is th= buckling shape. Also, the first eigenvalue and
eigenvector are of interest in most engineering problzms. L-FEA of ANSYS program
can only predict the upper bound of the actual buckling load but 1ts advantage is

f.oter and easier determination of critical load.

However, if the rotations are large while the mechanical strains are still small, a
large deflection nonlinear finite element method can be used from ANSYS program.
This large deflection analysis assumes the displacements are large enough to signifi-
cantly affect the flexural stiffness of the structure. Since the stiffness and displacement
affect each other, iterative minmization technique like Newton-Raphson method is re-
quired to obtain the correct displacements. Through the finite element formulation,

system equilibrium equations are presented as a set of simultaneous equations, i.e.,

[K}{u} = {F°} (5.5)

where

[K] = structure stiffness matrix
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{u} = vector of unknown DOF values (5.6)
A; = eigenvalues
{F°} = vector of applied load

If the coefficient matrix [K] is itself a function of the unknown DOF(degrees of
freedom ) values or their derivative, above system equation is a nonlinear equation. For
this nonlinear system, ANSYS software uses Newton-Raphson method as an iterative

process written as in the followings, for the i-th iteration,

(KI{Auw} = {F°}-{F"} (5.7)
{vin} = {w}-{Au} (5.8)

where
[KT] = tangent stiffness matrix
{ui} = displacement vector (5.9)
{F'} = restoring force vector calculated from the element stresses

In the above equations, both [KT] and {F"} are evaluated based on the values
given by {u;} and the right-hand side of equation (5.7) is the residual or out-of-
balance load vector when the system is out-of equilibrium. To check the convergence,

the displacement increment method is selected as the equation of the vector norm as
Il {Au;} || < tolerance (5.10)

In addition, a small perturbation is required to start the buckling behaviour and
1t is a very small imperfection prescribed by the original geometry or & very small
force. SHELL99 element - 100 layer structural shell element - wes selected for this
N-FEA work on the biaxial plate buckling from ANSYS program as shown in Figure
5-1. SHELL99 is 3-D 8-uode shell element with rotation and shear deflection. It can
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have two shapes, triangular and quadrilateral element with following shape functions,

u . u; - a; by [92,.
v = ch V; +E‘/’ir'2—. azs by ‘ (5.11)

i=1 i=1

w w; as; bs, J l Oy.i J
where
¥ = shape functions, given with u, v, ..., as in following equations
v = %{u,(l — )1 =t)(=1=s—8)+us(l + )1 —t)(=1+s—1)
+ug(l = s)(1 +t)(~1=s+t) +u(l +3s)(1+1t)(-1+s+t)}
+-1?:{uM(1 — s (1 =1t) + un(l = s)(1 = t?)
+uo(1 +38)(1 —=t*) + up(l = s?)(1 + 1)}
v = %{v;(l —5)(1 —t).......(analogous to u)
u,,v;,w; = displacement of node 7 (5.12)
r; = thickness . >ordinate
t; = thickness at node i
{a} = unit vector in s-direction
{6} = unit vector in plane of element and normal to {a}
: 6.; = rotation of node i about vector {a}
| 6,; = rotation of node i about vector {b}

The integration points are 2-through the thickness and 2x2 for the inplane domain
‘ for quadrilateral element and also 2 for through-the-thickness and 3-for the inplane
domain for triangular element. SHELL99 allows up to 100 different layers. The
possible load types are bilinear pressure and temperature load across the plane of
the element. This element has linear pressure and temperature along each edge and
through the thickness. Main assumptions and restrictions of SHELL99 element are

summarized as follows,
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Figure 5.1: A sketch on the SHELL99 in ANSYS program : 3-D 8-node shcll element
e Normals to the centre plane are assumed to remain straight after deformation.

e There is no significant stiffness associated with rotation of the element about the
r axis. However, a normal value of stiffness is present to prevent free rotation

at the node.
o The bonding of layers is perfect without slip.

o Interlaminar shear stresses are calculated on the assumption of no shear on the

top and bottom surfaces of the element
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5.2 Effect of Stiffness Ratio (Cross-ply Laminate)

Normally laminated composite plates process a different inplane stiffness, A,,, and
flexural stiffness, D;;, according to the stacking sequences. In the case of angle-ply
or cross-ply lamiration, the existence of a major-axis and a minor-axis of stiffnesses
is a strong point of composite materials compared to other conventional materials
from the design point of view. Also, the ratios of these major stiffnesses and minor
stiffnesses, i.e., inplane stiffness ratio (¢ = 41) and flexural stiffness ratio (¢ = £4),

22 D3,

are determined from the sequence of stacking.

For 12-, 16- and 20-layer orthotropic and anisotropic laminates, various stiffness
ratios are obtained as presented in Tables 3.5. From these data, even if the thickness
and the number of layers are the same, the inplane stiffness ratio £ varies from 1 to 14.3
and the flexural stiffness ratio ¢ varies from 1.3 to 14.3 in orthotropic laminates. In
consideration of these huge differences in stiffness ratios by virtue of stacking sequence,

there is a question - what are the effects of stiffness ratios on plate buckling ?

On the other hand, we know that the critical buckling loads are not affected by
the flexural stiffness ratio, ¢, but by the amount of globa! stiffness, Dy, as mentioned
in equation (2.39) of the buckling theory discussed in Chapter 2, especially for the
simply supported orthotropic laminates. If this theory is correct, i.e., the stiffness
ratio does not affect to the buckling stability, we do not need to select the stronger

axis any more in the designing of plate structures.

To clarify this doubtful point on the effects of stiffness ratio in buckling, N-FEA
was carried out for various laminated orthotropic plates as mentioned in Table 3.5.
Numerical input data for this N-FEA, element meshes and boundary conditions, were

prescribed in the same manner as in numerical analysis in Chapter 3, as piesented in
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Figure 3-5.

A small initial deflections, less than 0.064mm (2.8% of plate thickness, 2.22 mm)
for 16-layer and 0.044 mm (1.6 % of plate thickness, 2.78 mm) for 20-layer modified
plate specimen, was applied to invoke large deflection nonlinear finite element analysis.
To obtain comprehensive buckling data, the uniaxial or biaxial load was continuously
imposed with 20 steps of load increment from prebuckling to postbuckling state. The
convergence was checked by controlling the displacement increment norm, || Az || to

be less than 10~%mm with 25 times iterations in zach step.

5.2.1 16-layer Plate Specimen
Uniaxial Loading along X-axis

Figure 5-2 shows an integrated view of all the uniaxial buckling behaviour of the
various 16-layer orthotropic plates subject to x-axis uniaxiai loading with S5,-S,-S,-5;
boundary conditions. The plate used were OP-16-11 to OP-16-80 specimen series,
denoted in Table 3-5. From the lower detailed view cf the shaded area in Figm 5-2,
we can find that the values of critical buckling load do not vary very much with change
in the flexural stiffness ratio, i.e., P, = 4.65 ~ 4.40 kN for ( = 1.4 ~ 14.30.

However, in postbuckling behaviour, the specimen having higher stiffness ratio
exhibits faster development of postbuckling deflection. It could be understood that,
for the x-axis uniaxial load, even if a plate is stiff in x-direction due to a high stiffness
ratio it is more unstable in postbuckled state. For example, postbuckling behaviour
of OP-16-80 specimen (¢ = 14.3) reveals very fast development in lateral deflection
amount in postbuckling state. From this result, for the effect of stiffness ratio, it can
be stated that the major flexural stiffness(D;) itself does not govern the buckling

stability but minor stiffness(Dy,) also has an effect on the buckling behaviour of
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laminated plate structure. Figures 5-3, 5-4 and 5-5 display successive views of buckling
behaviour for each specimen of OP-16-11, OP-16-44 and OP-16-71 respectively in
order to check the continuous buckling deformation. Here three picture demonstrate
global shapes of buckled plates and values of maximum deflection (w,;) each under
same amount of loadings, i.e., 3 kN, 4 kN, 4.5 kN, 5 kN, 6 kN and 8 kN. If we compare

Wpmar values among three plates, we can make the same conclusion mentioned above.

Also, the following three pairs of figures, Figures 5-6 and 5- 7, Figures 5-8 and 5-9,
Figures 3-10 and 5-11, exhibit detailed views of x- and y-axis strain distributions in
the early state of postbuckling with 5.0 kN of the x-axis load. In view of these strain
fields, we can figure out the deformation of the postbuckled plate, i.e., deformation of
OP-16-11 specimen is more stable than OP-16-71 speciien because OP-16-11 shows
a concentric circular strains distribution along z- and y-axes but OP-16-71 specimen
reveals circular strain distribution along z-axis but totally elliptic strain distribution

along y-axis.

Consequently, based on the above numerical results, it can be concluded that a
plate having smaller flexural stiffness ratio shows higher postbuckling strength than
a plate with higher stiffness ratio in the uniaxial loading {along major stiffness axis,

i.e., z-axis in this case) of a simply supported rectangular Jamirate.
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Figure 5.2: X-axis uniaxial loading behaviour of the 16-layer orthotropic plates for
various flexural stiffness ratio, { = 1.4 ~ 14.3, by N-FEA.
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Figure 5.3: Successive views of postbuckling benaviour of the 16-layer orthotropic

plate, OP-16-11, with uniaxial loading along x-axis (P, : P, =1:0).
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Figure 5.4: Successive views of postbuckling behaviour of the 16-layer orthotropic

plate, OP-16-44, with uniaxial loading along x-axis (P, : P, = 1:0).
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Figure 5.5: Successive views of postbuckling behaviour of the 16-layer orthotropic

plate, OP-16-71, with uniaxial loading along x-axis (P, : P, =1:0).
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Figure 5.6: X-strain(e,) distribution of the 16-layer orthotropic plate, OP-16-11 with
uniaxial loading along x-axis, P, = 5kN (P, : P, = 1:0).
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Figure 5.7: Y-strain(e,) distribution of the 16-layer orthotropic plate, OP-16-11 with
uniaxial loading along x-axis, P, = 5kN (P, : P, =1:0).
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Figure 5.8: X-strain(e, ) distribution of the 16-layer orthotropic plate, OP-16-44 with
uniaxial loading along x-axis, P, = 5kN (P, : P, =1:0).
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Figure 5.9: Y-strain(e,) distribution of the 16-layer orthotropic plate, OP-16-44 with
uniaxial loading along of x-axis, P, = 5kN (P, : P, =1:0).
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Figure 5.10: X-strain(e.) distribution of the 16-layer orthotropic plate, OP-15-71 with

uniaxial loading along x-axis, P, = 5kN (P, : P, =1:0).
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Figure 5.11: Y-strain(e, ) distribution of the 16-layer orthotropic plate, OP-16-71 with
uniaxial loading along x-axis, P, = 5kN (P, : P, =1:0).
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Uniaxial Loading along Y-axis

Integrated views of all the uniaxial buckling behaviour of tie various 16-layer or-
thotropic laminates subject to y-axis uniaxial loading under §,-5,-5.-S5, boundary
conditions are presented in Figure 5-12. Four curves, in Figure 5-12, belong to four
different plates each having a different stiffness ratio { due to varied stacking sequences
from OP-16-11 to OP-16-80 layup series denoted in Table 3-5. From the lower detailed
view of the shaded area in Figure 5-12, we can find that the values of critical buckling
loads depend very much on the flexural stiffuess ratio, i.e., Py = 4.5 ~ 3.8 kN for
(=14~143.

Based on these postbuckling responses with y-axis uniaxial loading, plates having
unbalanced stacking sequences like OP-16-71 and OP-16-80 specimen exhibit lower
critical buckling load than plates having balanced stacking sequence like OP-16-11 and
OP-16-44 specimen. Also, concerning the contours of the four different load-deflection
curves, plates having higher stiffness ratios (OP-16-71 and OP-16-80) display close-to-
unstable postbuckling behaviour, similar to the buckling of beam-plate of 5,-S;-S,-Sy,
while plates having lower stiffness ratios (OP-16-11 and OP-15-44) undergo 1st mode
of normal buckling. Ilere the close-to-unstable behaviour means very large deflection

within small load increments.

Figures 5-13, 5-14 and 5-15 display successive views of buckling behaviour for
each specimen of OP-16-11, OP-16-44 and OP-16-71 respectively. A mode jumping
phenomenon was found in OP-16-71 specimen where the mode jumped to the 3rd
buckling mode directly. This phenomenon is never expected in theoretical study
based on energy method. However, in author’s point of view, N-FEA produced the
3rd mode deflection when the flexural stiffness ratio exceeds some ultimate value, i.e.,
¢ 2 12.0. It was numerically validated through author’s numerous N-FEA works

many times.
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On the other hand, this phenomenon can be understood that; in the buckling
of simply supported plate which has a higher stiffness ratio, i.e., highly anisotropic
plate, if the plate undergoes the 1st mode buckling, it requires a harmonic deflection
along major-stiffness axis and minor-stiffness axis equally as mentioned in equation
(2.34). However, the required critical buckling load along major-stiffness axis (x-axis
in this problem) is 3-times higher than the critical buckling load of minor-stiffness
axis (y-axis in this problem). it can be understood from careful considerations of the

meaning of stiffness ratio, { = D,; /Dy > 12.0.

Also, three pairs of strain figures, Figures 5-16 and 5-17, Figures 5-18 and 5-19,
Figures 5-20 and 5-21, exhibit detailed views of x- and y-axis strain distributions in
the early state of postbuckling with 5.0 kN of the y-load. The figures, especially
Figures 5-20 and 5-21, show a complete strain views of mode-jumping behaviour
by generation of the 3rd mode of deflection. The author confirmed these jumping
phenomena in case of the buckling with ideal plate specimen too. It means these
mode-jumping phenomena are not the problem of the modification of the specimen
shape, i.e., modification ratio of a./a, but rather it is a result of the effect of flexural

stiffness ratio (.
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Figure 5.12: Y-axis uniaxial loading behaviour of the 16-layer orthotropic plates for
various flexural stiffness ratio, { = 1.4 ~ 14.3, by N-FEA.
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Figure 5.13: Successive views of postbuckling behaviour of the 16-layer orthotropic

plate, OP-16-11, with uniaxial loading along y-axis (P, : P, =0:1).
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Figure 5.14: Successive views of postbuckling behaviour of the 16-layer orthotropic
plate, OP-16-44, with uniaxial loading along y-axis (P, : P,=0:1).
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Figure 5.15: Successive view of postbuckling behaviour of the 1C-layer orthotropic
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Figure 5.16: X-strain(¢.) distribution of the 16-layer orthotropic plate, OP-16-11 with
uniaxial loading along y-axis, P, = 5kN (P, : P, = 0: 1).
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Figure 5.17: Y-strain(e,) distribution of the 16-layer orthotropic plate, OP-16-11 with

uniaxial loading along y-axis, P, = 5kN (P, : P, =0:1).
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Figure 5.18: X-strain(e, ) distribution of the 16-layer orthotropic plate, OP-16-44 with

uniaxial loading along y-axis, P, = 5kN (P, : P, =0:1).
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Figure 5.19: Y-strain(e, ) distribution of the 16-layer orthotropic plate, OP-16-44 with
uniaxial loading along y-axis, P, = 5kN (P, : P, =0:1).
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Figure 5.20: X-strain(e,) distribution of the 16-layer orthotropic plate, OP-16-71 with
uniaxial loading along y-axis, P, = 5kN (P, : P, =0:1).
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Figure 5.21: Y-strain(e,) distribution of the 16-layer orthotropic plate, OP-16-71 with
uniaxial loading along y-axis, P, = 5kN (P, : P, =0:1).
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Biaxial Loading

Figure 5-22 shows also an integrated view of all the biaxial buckling behaviour of the
various 16-layer orthotropic laminates subject to a simultaneously increasing biaxial
loading with S,-8,-S,-S, boundary conditions, from OP-16-11 to OP-16-80 specimen
series, denoted in Table 3-5. Vews of global load-deflection behaviour, in Figure
5-22, denote that plate having balanced layup liks OP-16-11 produce more stable
postbuckling behaviour than unbalanced plate like OP-16-71 or OP-16-80.

Also, from the lower detailed view of Figure 5-22, we can find that the values of
critical buckling load do not vary very much according to the flexural stiffness ratio,
ie., Py =23 ~ 24 kN for ( = 1.4 ~ 14.30 and the tendencies of the graphs are
almost the same as the case of x-axis uniaxial buckling in Figure 5-2. Comparing
three detail views - "Detail of S” - of Figures 5-2, 5-12 and 5-22, we can find the
stiffness ratio effect on the bifurcation mechanism near the buckl’ng point. That is, in
case of uniaxial loading, the major flexural stiffness(D;,) governs totally the critical
buckling load value when the loading axis is major axis (x-axis in this problem).
However, the minor flexural stiffness(D,;) does not govern the critical buckling load
value when the loading axis is minor axis (y-axis in this problem). I means the major
stiffness( D) governs the critical buckling load in any case of uniaxial buckling, i.e.,
x-uniaxial or y-uniaxial loading. Finally, in case of biaxial buckling, the major flexural
stiffness(D;,) mainly governs the critical buckling load value and the effect of minor

flexural stiffness(Dqg) is very minimal.

In Figures 5-23, 5-24 and 5-25, successive views of postbuckling deflections for
each OP-16-11, OP-16-44 and OP-16-71 specimen were presented. All specimens
reveal normal and stable 1st mode buckling deflections as similarly as the case of

x-axis uniaxial buckling.
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Also, the subsequent three pairs of views of strain distribution, Figures 5-26 and
5-27, Figures 5-28 and 5-29, Figures 5-30 and 5-31, exhibit detailed view of x- and
y-axis strain distributions in the early state of posttuckling with 3.0 kN under biaxial
loading. Comparing x-strains from Figures 5-26, 5-28 and 5-30, all plate produce a
concentric circular distributions of strain. However, if we compare y-strains from Fig-
ures 5-27, 5-29 and 5-31, the highly unbalanced plate(OP-16-71) reveals very unstable
strain field by showing two separated elliptic strain distributions.

Consequently, it is clear that these figures back up well the previous buckling

behaviour of Figure 5-22.



CHAPTER 5. NUMERICAL ANALYSIS FOR BIAXIAL BUCKLING 100

s » ,’ _/'
s
s/
4 ./’
4 4
f 3
d
L
:g :0P-16-11, $=1.0, {=1.4
s oncaPruns ! (X’-16-44. §=1:0r c=4'7
1 e 1OP-16-71, 847, =139
creme—-- : OP-16-80, E=143,(~143
0

0 2 4 6 8 10

7 e G S Gl P T
2 B S cved ‘ ﬁi‘?%%»&
kS giu & g, SR f‘{f&ﬁ? g
«?\ w\gf:%%‘ - %3:’”"
175} ; AR
2N f,:
A
1
S i D 3 4
Max, deflection, Wmax ‘am)

Figure 5.22: Biaxial buckling behaviour for various flexural stiffness ratio,{ = 1.4 ~
14.5, on the 16-layer orthotropic plates by N-FEA.
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Figure 5.23: Successive views of postbuckling behaviour of the 16-layer orthotropic
plate, OP-16-11, with biaxial loadings (P, : P, =1:1).
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Figure 5.24: Successive views of postbuckling behaviour of the 16-layer orthotropic
plate, OP-16-44, with biaxial loadings (P, : P, =1:1).
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Figure 5.25: Successive views of postbuckling behaviour of the 16-layer orthotropic
plate, OP-16-71, with biaxial loadings (P; : P, =1:1).
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Figure 5.26: X-strain(e,) distribution of the 16-layer orthotropic plate, OP-16-11 with
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Figure 5.27: Y-strain(e,) distribution of the 16-layer orthotropic plate, OP-16-11 with
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Figure 5.28: X-strain(e,) distribution of the 16-layer orthotropic plate, OP-16-44 with
biaxial loadings, P, = P, = 3kN (P, : P, =1:1).
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Figure 5.29: Y-strain(e,) distribution of the 16-layer orthotropic plate, OP-16-44 with
biaxial loadings, P, = P, = 3kN (P, : P, =1:1).
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Figure 5.30: X-strain(e.) distribution of the 16-layer orthotropic plate, OP-16-71 with
biaxial loadings, P, = P, = 3kN (P, : P,=1:1).
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Figure 5.31: Y-strain(e,) distribution of the 16-layer orthotrcpic plate, OP-16-71 with
biaxial loadings, P, = P, =3kN (P, : P, =1:1).
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5.2.2 20-layer Plate Specimen
Uniaxial Loading along X-axis

Figure 5-32 shows an integrated view of all buckling behaviour of the various 20-
layer orthotropic plates subject to x-axis uniaxial loading with S,-S,-S,-5, boundary
conditions. Analysis models were chosen as OP-20-11 to OP-16-200 specimen series,
denoted in Table 3-5. From the upper global and lower detailed view of the shaded
area in Figure 5-32, we can find that the values of the critical buckling load do not
vary very much according to the flexural stiffness ratio, as P., = 9.05 ~ 8.65 kN for
(=13~ 14.3.

However, in postbuckling behaviour, the specimen having a higher stiffness ratio
exhibits more sharpened development of postbuckling deflection. It could be said
that, for the x-axis uniaxially loaded ortbotrcpic plate, even if a plate is stiffened in
x-direction, due to the high stiffness ratio it is more unstable in postbuckled state
and it easily reaches a catastrophic failure. Figures 5-33, 5-34, 5-35 and 5-36 display
successive views of buckling behaviour for each specimen of OP-20-11, OP-20-55, OP-
20-82 and OP-20-100 respectively. All f the views reconfirm the buckling behaviours
in Figure 5-32 and it can be noted that plate with higher stiffness ratio has higher
lateral deflection, wpm,., in postbuckling state.

Also, all detailed views of x- and y-axis strain distributions in the early state
of postbuckling with 5.0 kN of the x-load were obtained and all of them were well-
matched with Figure 5-32 (not shown here).
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Figure 5.32: X-axis uniaxial loading behaviour of the 20-layer orthotropic plates for
various flexural stiffness ratio, { = 1.3 ~ 14.3, by N-FEA.
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Figure 5.33: Successive views of postbuckling behaviour of the 20-layer orthotropic

plate, OP-20-11, with uniaxial loading along x-axis (P; : P, = 1:0).
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Figure 5.34: Successive views of postbuckling behaviour of the 20-layer orthotropic

plate, OP-20-55, with uniaxial loading along x-axis (P, : P, =1:0).
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Figure 5.35: Successive views of postbuckling behaviour of the 20-layer orthotropic

plate, OP-20-82, with uniaxial loading along x-axis (P, : P, =1:0).
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Figure 5.36: Succassive views of postbuckling behaviour of the 20-layer orthotropic
plate, OP-20-100, with uniaxial loading along x-axis (P, : P, =1:0).
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Uniaxial Loading along Y-axis

Figure 5-37 shows also an integrated view of all the uniaxial loading behaviour of
the various 20-layer orthotropic laminates subject to y-axis uniaxial loading with S,-
S,-S,-S, boundary conditions. For this analysis, specimen models were chosen as
OP-20-11~ OP-20-100 specimen series as tabulated on Table 3-5. From the lower
detailed view of the shaded area in Figure 5-37, we see that the values of the critical
buckling load vary according to the flexural stiffness ratio, i.e., P,, = 9.1 ~ 8.0 kN for
¢ = 1.3 ~ 14.30. However, from the postbuckling responses, the plates having a higher
stiffness ratio, like specimens OP-20-82 and OP-20-100, exhibit weaker postbuckling
behaviour than the plate with a regular stacking sequence like specimens OP-20-11

and OP-20-55.

Through the inspection of Figures 5-38, 5-39, 5-40 and 5-41, successive views
of postbuckling deflections for each OP-20-11, OP-20-55, OP-20-82 and OP-20-100
specimen, very different responses are found according to the stiffness ratio (. From
the two groups of different curves, it can be interpreted that the plate with irregular
stacking sequence, like specimens OP-20-82 and OP-20-100, behave differently from
the regular plate such as OP-20-11 or OP-20-55 specimen. The major differences
are early buckling and mode jumping phenomena that go from 1st mode to the 3rd
buckling mode directly. These phenomena were also confirmed in the analysis of 16-
layer laminates. On the other hand, the strain distributions were investigated in the
same manner as for the case of 16-layer and they were also well matched to Figure

5-37 (not shown here).
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Figure 5.37: Y-axis uniaxial loading behaviour of the 20-layer orthotropic plates for
various flexural stiffness ratio, ( = 1.3 ~ 14.3, by N-FEA.
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Figure 5.39: Successive views of postbuckling behaviour of the 20-layer orthotropic
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plate, OP-20-55, with uniaxial loading along y-axis (P, : P, = 0:1).
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Figure 5.40: Successive views of postbuckling behaviour of the 20-layer orthotropic

plate, OP-20-82, with uniaxial loading along y-axis (P, : P, = 0:1).
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Figure 5.41: Successive views of postbuckling behaviour of the 20-layer orthotropic

plate, OP-20-100, with uniaxial loading along y-axis (P : P, = 0:1).
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Biaxial Loading

Figure 5-42 shows an integrated view of all the biaxial loading behaviour of the various
20-layer orthotropic laminates subject to a simultaneously increasing biaxial loading
with the boundary conditions of S,-S,-S,-S,.

OP-20-11 to OP-20-100 specimen series, presented in Table 3-5, were used in this
numerical analysis, . From the upper global view and lower detailed view of Figure
5-42, we can find that the values of the critical buckling load do not vary much with to
the flexural stiffness ratio, i.e., P = 4.5 ~ 4.4 kN for { = 1.3 ~ 14.30. Also, with the
investigations of postbuckling responses, plates having a higher stiffness ratio reveal
more weakened postbuckling behaviour than plates with a regular stacking sequence.
The tendency of the graphs is almost the same as the case of x-axis uniaxial buckling

of 16-layer laminate as shown in Figure 5-2.

By the inspection of the Figures 5-43, 5-44, 5-45 and 5-46, which show successive
views of postbuckling deflections for each OP-20-11, OP-20-55, OP-20-82 and OP-20-
100 specimen, all specimens reveal a normal and stable 1st mode buckling deflection as
the case of x-axis uniaxial loading. Here also we can find that the global stiffness(Dr),
the sum of major stiffness(.D;;) and minor stiffness(Ds3), governs the critical buckling

load as discussed in 16-layer plate.

Also, the surface strain distributions for the biaxial buckling of these five 20-layer
plates were obtained and compared to each other. All the strain distributions were
well matched with the successive buckling behaviours of Figures 5-43, 5- 4, 5-45 and

5-46 ( not shown here).
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Figure 5.42: Biaxial buckling behaviour of the 20-layer orthotropic plates for various
flexural stiffness ratio, { = 1.3 ~ 14.3, by N-FEA.
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Figure 5.43: Successive views of postbuckling behaviour of the 20-layer orthotropic
plate, OP-20-11, with biaxial loadings (P, : P, =1:1).
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Figure 5.44: Successive views of postbuckling behaviour of the 20-layer orthotiropic

plate, OP-20-55, with biaxial loadings (P, : P, =1:1).
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Figure 5.45: Successive views of postbuckling behaviour of the 20-layer orthotropic
plate, OP-20-82, with biaxial loadings (P, : P, = 1:1).
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Figure 5.46: Successive views of postbuckling behavioui of the 20-layer orthotropic

plate, OP-20-100, with biaxial loadings (P, : P, = 1:1).
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5.3 Effect of Layup Angle

The effects of layup angle for the composite plate buckling have been studied by
many other researchers such as Leissa {2], Ashton (3], and Whitney [4]. Here, the
terminology of layup angle means the angle between the direction of fibers and the
direction of loading in orthotropically laminated plates with general off-axis, i.e.,
generally orthotropic plates as shown in Figure 7-3 and Figure 7-4. Most of the results
were limited to the buckling of uniaxially loaded laminates based on the theoretical
study with insufficient experimental verifications. Moreover, the layup angle effects
on the biaxial buckling of plates have not been validated with experiments. For this
reason, N-FEA was executed for 16- and 20-layer composite laminates with the layup

angle of (0/ — 90), (30/ — 60), (45/ — 45) and (60/ — 30).

5.3.1 16-layer Plate Specimen

As the N-FEA resalts for 16-layer plates, Figure 5-47 shows the load-deflection curves
for uniaxial buckling of the four different plates. AP-16-45 specimen with (45/ — 45)
of layup angle demonstrates its cri‘ical buckling load to be aimost twice the critical
load of the AP-16-11 specimen with (0/ — 90) layup angle. This phenomenon can be
understood from the value of coupling terms between bending and twisting, D¢ and
Dyg. However these terms can be neglected when the number of plies is increased
infinitely as mentioned by Leissa [2], Tsai ana Hahn [58] [59]. For the validation of
the load-deflection behaviour of angle-ply laminates, detailed distributions of x- and
y-strain on the surface of plates are plotted such as Figures 5-48 and 5-49 for the
specimen of AP-16-45, and also Figures 5-50 and 5-51 for the specimen of AP-16-63.

Also, Figure 5-52 reveals the biaxial buckiing behaviour of the four off-axis or-
thotropic laminates. From the detailed view, the critical buckling load increases ac-

cording to the chage of layup angle from (0/ — 90) to (45/ — 45) in the same pattern
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as the case of uniaxial loading. In the same manner as the uniaxial loading, strain
distributions on the surface of plates are presented in Figures 5-53 and 5-54 for the
specimen of AP-16-45, and in Figures 5-55 and 5-56 for the specimen of AP-16-63.

From the figure of strain field for uniaxial loading as shown in Figure 5-48~5-31,
the strain distribution of angle-ply laminate is more unstable than that of orthotropic
laminate like OP-16-11 or OP-20-11. Especially, for (60/-30) or (30/-60) plate’s strain
field, shown in Figure 5-50 and 5-51, strains in corner area are more highly concen-
trated than normal orthotropic plate. Generally, the angle-ply laminates reveal more

non-homogeneous strain distribution.
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Figure 5.48: X-strain(e.) distribution of the 16-layer generally orthotropic plate, OP-
16-45 with ((45/-45)x4), by x-uniaxial loading of P; = 10kN (P, : P, =1:0).
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Figure 5.49: Y-strain(e,) distribution of the 16-layer generally orthotropic plate, OP-
16-45 with ((45/-45)x4), by x-uniaxial loading of P, = 10kN (P, : F, =1:0).
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Figure 5.50: X-strain(e.) distribution of the 16-layer generally orthotropic plate, OP-
16-63 with ((60/-30)x4), by x-uniaxial loading of P, = 10kN (P, : P, = 1:0).
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Figure 5.51: Y-strain(e,) distribution of the 16-layer generally orthotropic plate, OP-
16-63 with ((60/-30)x4), by x-uniaxial loading of P, = 10kN (P, : P, =1:0).
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Figure 5.53: X-strain(e,) distribution of the 16-layer generally orthotropic plate, OP-
16-45 with ((45/-45)x4), by biaxial loading of P, = Py, = 5kN (P, : P, =1:1).
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Figure 5.54: Y-strain(e,) distribution of the 16-layer generally orthotropic plate, OP-
16-45 with ((45/-45)x4), by biaxial loading of P, = P, =5kN (P, : P,=1:1).
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Figure 5.55: X-strain(e,) distri-ution of the 16-layer generally orthotropic plate, OP-
16-63 with ((60/-30)x4), by biaxial loadiig of P, = P, =5kN (P,: P, =1:1).
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Figure 5.56: Y-strain(e,) distribution of the 16-layer generally orthotropic plate, OP-
16-63 with ((60/-30)x4), by biaxial loading of P, = P, = 5kN (P : Py =1:1).
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5.3.2 20-layer Plate Specimen

For the 20-layer plates, all the results of N-FEA are analogous to the case of 16-layer
plates. The uniaxial and biaxial loading behaviour of the four plates with different
layup angles are integrated in Figures 5-5/ and 5-58, where the postbuckling be-
haviour of specially orthotropic laminates like OP-20-11 plate is more stable than the
behaviour of angle-ply laminates like AP-20-36, AP-20-45 and AP-20-63 plate. Here,
by the change of lay-up angle, we can expect some enhancement in the value of crit-
ical buckling load, up to twice that of the orthotropic laminate, but this is only an
analytical point of view. From experiments, the angle-ply laminates do not increase
the critical load as much as expected in numerical analysis. The main reason of this
phenomenon can be the microscopic relative motion between two plies due to the

inter-laminar shear deformation.

Focusing on the global load-deflection curves of Figures 5-57 and 5-58, it is true
that the critical buckling load is enhanced according to the increment of layup angle 8,
the angle between on-axis and off-axis. However, in the postbuckling behaviour, the
plate reaches a higher lateral deflection more quickly with increasing of layup angle,
6.

For the verification of postbuckling deflection, here also the surface strains were
obtained and validated in the same manner as 16-layer laminates from N-FEA (not

shown here).
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Chapter 6

Biaxial Buckling Experiments

6.1 Biaxial Testing Machine

The biaxial testing machine was designed and fabricated in house as shown in Figure
6-1. The machine is comprised of four units, i.e., power unit, control unit, testing
unit and recording unit. The power unit, the hydraulic pump having the maximum
power of 7.5 GPM(Gallon Per Minute) with 3000 psi, was installed at a remote place
from the testing unit to prevent vibration and noise. The control unit was designed
employing the proportional position controlling system in order to control the displace-
ments of the four loading grips independently or simultaneously. The input sources
of the proportional position controlling system are generated by the DC voltage from
four LVDTs (Linear Variable Differential Transducer). This was used to control the
displacement of the four cylinders in each direction manually. To acquire uniform
compressive displacements of the four loading grips simultaneously, a DC power gen-
erator was applied to generate the optimal voltage as the required input source of the

controlling system.

The testing unit consists of supporting grips, load cells, guide blocks, hydraulic

cylinders which were mounted on the each corner of the main frame. Four load cells

143
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with the maximum capacity of 100 kN were installed between each supporting grip
and cylinder to measure the acting load in each direction. The in-plane compressive
displacemen's were monitored by the four LVDTs and the transverse deflection on
the centre of the plate was measured by a potentiometer. To secure complete contact
between the specimen and the four loading grips, a small amount of preloading was
prescribed and then the strain values at the four edges were compared. These strain
values were used as a guide to ensure uniform contact between the grips and the plate

edges .

A recording unit consisting of a digital signal processor, Helios (40-channel data
acquisition system from Fluke Inc.), and a PC with on-line data plotting software,
Labtech Notebook, was used. All data of the axial loads, in-plane displacements
and transverse deflections were plotted on the PC window at a frequency of 12 read-
ings/sec. Also, all strain values were stored into the PC and plotted by MATHE-
MATICA software in NextStation workstation.

6.2 Visualization by Shadow Moiré

Shadow Moiré technique was employed to visualize the buckling deflections of the
plate specimen. This apparatus comprises a collimated light source, a fine-meshed
master grating and a white-painted plate to generate topographical shadow fringes on

the plate surface as shown in Figure 6-2.

Among various types of Moiré methods, shadow Moiré technique is based on the
principle of optical interference between two sets of superimposed parallel lines. This
interference produces white and dark bands of Moiré fringes. Master grating was
fabricated by the author with the alignment of fine black string. The grating was
aligned to have parallel and equal spacing, 0.35 mm spacing and 0.35 mm thickness(14
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Figure 6.1: The experimental setup for tiaxial bu.ckling test.

lines/cm), by using two screw bars fixed on wooden frame. If the grating is illuminated
by the collimated light source with an angle ¢, shadows of grating lines were cast upon
the object as shown in Figure 6-2 a). When viewing the undeformed object through
the grating, the object does not produce Moiré fring=s because of no interference of
light. However, for the deformed plate, topographical shadow fringes appear due to

the interference between grating and shifted shadows as shown in Figure 6-2 b).

The main purpose of Shadow Moiré visualization work was to obtain the real de-
flection map of the plate in postbuckling state. Even though the buckling initiation
point was detected by measuring the centre deflection of plate specimen with poten-
tiometer, the real shape of buckling deformation can not be figured out by the naked
eye. So far, in most analytical approach, the buckling shape has been assumed as
a biharmonic function no matter what type of anisotropicity was prescribed by the

stacking sequence as discussed in Chapter 2.
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Of course, bi-harmonic functions do not exactly comply with the real buckling
shape of orthotropic or anisotropic plate because of the twisting and rotation coupling
and the effects of varied stiffness ratios ¢ and {. Those approximations contribute
to the error produced between theory and experiment in the values of the critical
buckling load and postbuckling behaviour . However, through comparison between
the Shadow Moiré topography of the real plate and the theoretical deflection function,

the difference my be found and a better theoretical deflection function can be found.

Observation normal to the grating is preferred to avoid experimental error and
to have simplified calculations. The observed fringe pattern has a relationship with
the topological map of the object’s surface because each fringe represents a pitch of
displacement from the grating. When the illumination angle is normal to the grating,
the relation between each Moiré fringe and the transverse displacement, w, can be

presented as follow.

_ s
" tang

(6.1)

w

where, s represents the pitch of the grating and ¢ is the illuminatica angle.
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a) b)

Figure 6.3: The arrangement of Shadow Moiré apparatus used in experiments.
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6.3 Buckling Experiments

Generally plate structures are complicated to experiment with, especially in buckling
experiments, because it is diffcult for the plate structure to fulfill the given supporting
conditions and lcading conditions during the experimants. Through the author’s
experiments for the 240mmx240mm square plates, normally the specimen experiences
its buckling deformation - from starting the inplane compression up to the induced
lateral deflection - within 0.05~0.1 mm of end-shortening. Another sensitive problem
is stabilizing the fluctuating biaxial i0ads caused by the correlated deformation alon¢
the x and y axes, especially in the case of the plate having high stiffness ratios.
Because of these limitations, talent and high signal processing speed are required to
controlling the displacement of the loading grips and in monitering the axial loading,

lateral deflection and strain distribution.

All plate specimens were fabricated in house using the same process as mentioned
in Chapter 3. Each plate’s edge was machined to make a sharpened supporting edge
as shown in Figure 4-2 b) i)* of Chapter 4. On the other hand, to check the plate
alignment before loading, strains were monitored from several strain gauges attached
on the centre and edge areas as shown in Figure 3-14 of Chapter 3. For each specimen,
the postbuckled shape was exposed by Shadow Moiré picture and the Moiré fringe
was compared with successive views of postbuckling deflection as shown in Figures

5-23~5-25 and also with the strain distributions from N-FEA of Chapter 5.

6.3.1 Uniaxial Loading Experimeuts
Orthotropic Laminates

Figure 6-4 and Figure 6-5 represent typical view of experimental load-deflection be-
haviour in the buckling of OP-16-11 plate series for x-axis and y-axis uniaxial loading.

From the two figures, the two critical buckling loads are almost the same regardless
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of the loading axis and also the two postbuckling behaviours are of the same pattern
with a weakened stiffness response compared to the expected values by N-FEA. In
this regularly laid-up laminate having a lower stiffness ratio, { = 1.4, it is hard to find
the buckling point clearly. For this problem, more considerations will be made in the

following section.

The uniaxial loading behaviour of OP-16-44 specimens is shown in Figure 6-6
and Figure 6-7, where it is clear that the buckling behaviour under x-axis loading
shows higher load response than the buckling with y-axis loading. By Comparing
the load-deflection behaviours of OP-16-11 specimens with ( = 1.4 and OP-16-44
specimens ( = 4.7, the two load-deflection behaviours along x- and y-axis exhibit
different behaviours, i.e., there is almost the same load-deflection curves in x- and
y-axis uniaxial loading case for OP-16-11 specimens but there is a clear difference in
load-deflection curves for x-axis and y-axis uniaxial loadings. This tendency was not
expected from N-FEA but, in experiments, the stiffness ratio effect does exist, i.e.,
major flexural stiffness(D;;) and minor flexural stiffness(Dy;) have an effect on the

buckling response for the direction of loading.

On the other hand, as one of the most irregular layup sequences with ¢ = 13.9,
OP-16-71 plate series were tested and their buckling behaviours were presented in
Figure 6-8 and 6-9. From the two figures, it is clear that the required energy to cause
buckling along the strong axis is much higher than along the weaker axis. The critical
buckling load with y-axis uniaxial loading(P,) is less than a half of the critical load
with x-axis uniaxial loading(P..). Also, the experimental P, value is much less than
the critical buckling load resulted from N-FEA and theory. Moreover, buckling mode
jumping was found from these experiments and it was also predicted by N-FEA as

shown in previous Chapter.
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Anisotropic Laminates

In Figures 6-10 and 6-11, the uniaxial buckling responses of angle-ply laminate with
AP-16-45 specimens are presented, where the two critical buckling loads, P, and P,
are both much lower than that ¢N-FEA results. In author’s point of view, this can be
explained from the coupling shear stiffness terms,Dig and Dyg, which attribute to the
shear deformation through plate thickness. Normally these terms are small compared
to “he other stiffness terms - yd more over they disappear in orthotropic laminates.
Also, physically these terms resist the shear rotation in thickness direction. However,
these terms are overestimated in N-FEA( because the FEM element model does not

allow the inter-laminar slip).

Postbuckling belaviours of other angle-ply laminate AP-16-63 specimens are de-
picted in Figures 6-12 and 6-13, where the values of critical buckling load from ex-
periments are more than half of the values obtained by N-FEA. These experimental
values are much higher than in the case of AP-16-45 plates. From numerical analysis,
OP-16-63 plates should provide lower critical buckling load but experiments give a
reversed result. This may also be explained by the shear stiffness terms of D;g and

Dag.

Investigating Figures 6-4~6-13, we can find that the load-deflection data obtained
from N-FEA and experiments reveal some differences. These discrepancies can be

explained as followings :

In the finite element method formulation, the loading condition is always assumed
to be of uniform pressure. However, in the experiments, the loading condition may
not be exactly uniform pressure. This loading condition is also a function of the

magnitude of the loads
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Figure 6.4: Comparison of load-deflection response between experimental and N-FEA

results of OP-16-11 plate with uniaxial loading along x-axis (P, : P, = 1:0).
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Figure 6.5: Comparison of load-deflection response between experimental and N-FEA

results of OP-16-11 plate with uniaxial loading along y-axis (P, : P, =0:1).
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Figure 6.6: Comparison of load-deflection response between experimental and N-FEA

results of OP-16-44 plate with uniaxial loading along x-axis (P, : P, =1: 0).
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Figure 6.7: Comparison of load-deflection response between experimental and N-FEA

results of OP-16-44 plate with uniaxial loading along y-axis (P, : P, = 0: 1).
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Figure 6.8: Comparison of load-deflection response between experimental and N-FEA

results of OP-16-71 plate with uniaxial loading along x-sxis (P; : P, = 1:0).
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Figure 6.9: Comparison of load-deflection response between experimental and N-FEA

results of OP-16-71 plate with uniaxial loading along y-axis (P, : P, =0:1).
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Figure 6.10: Comparison of load-deflection response between experimental and N-
FEA results of AP-16-45 plate with uniaxial loading along x-axis (P, : P, = 1:0).
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Figure 6.11: Comparison of load-deflection response between experimental and N-

FEA results of AP-16-45 plate with uniaxial loading along y-axis (P, : P, =0:1).
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Figure 6.12: Comparison of load-deflection response between experimental and N-
FEA results of AP-16-63 plate with uniaxial loading along x-axis (P, : P, = 1:0).
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Figure 6.13: Comparison of load-deflection response between experimental and N-

FEA results of AP-16-63 plate with uniaxial loading along y-axis (P, : Py =0:1).
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6.3.2 Biaxial Loading Experiments

Orthotropic Laminates

Figures 6-14~6-16 plotted the experimental biaxial loading behaviours of orthotropic
laminates. The experimental specimens were chosen to be OP-16-11, OP-16-44 and
OP-16-71 plates. In Figure 6-14 and 6-15, all experimental load-deflection curves
of OP-16-11 and OP-16-44 plates are well matched with N-FEA solutions. Three
different series of specimens demonstrate their responses from weakened to stiffened

according to the stiffness ratio from ( = 1.4 to ( = 13.9.

However, OP-16-71 plates shown in Figure 6-16 demonstrate quite a different buck-
ling behaviour than predicted by N-FEA. This discrepancy comes from the difficulties
of increasing biaxial loads simultaneously and also difficulty of keeping the given load-
ing because of the dynamic reaction of the specimen, especially in the case of the plate

having a high stiffness ratio like OP-16-71 plates.

Apparently, from these experimental results, slopes of load-deflection curves do not
differ much from numerica! ‘esults. Therfore, except for severely anisotropic specimens

like OF -16-71 plate, these experimental biaxial buckling resuits are acceptable.
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Anisotropic Laminates

In Figures 6-17 and 6-18, buckling responses for biaxial loading of two series of angle-
ply launinates, AP-16-45 and AP-16-63, are presented, The experimental critical load
of AP-16-45 plates are higbzr than that of AP-16-€3 plates. This resuit is somewhat
different from the uniaxial loading experiments in previous section. In uniaxial load-
ing, OP-16-63 and OP-16-45 plates revealed almost same value but, in biaxial loading
case for OP-16-45 plates, the experimental values always exceed the N-FEA results.
For biaxial loading on OP-16-63 plates, experimental values sometime exceed N-FEA

results.

This phenomenon can also be explained using the coupling shear stiffness terms,
Dig, D. In this biaxial loading case, the plate motion is highly restrained due to the
fully supported grips. For this reason, the coupling shear stiffness fully contributes to
the global buckling stiffness. Therefore the plate requires more energy to be buckled.
However, OP-16-63 plates may undergo some shear deformation due to the anisotropic
effect from (30/-60) or (60/-30) layups. Thus, they may lose their global stiffness some
extent as compared to OP-16-45 plates.
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Figure 6.14: Comparison of load-deflection response between experimental and N-

FEA results of OP-16-11 plate with biaxial loadings (P, : P, =1:1).
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Figure 6.15: Comparison of load-deflection response between experimental and N-
FEA results of OP-16-44 plate with biaxial loadings (P, : P, =1:1).
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Figure 6.16: Comparison of load-deflection response between experimental and N-

FEA results of OP-16-71 plate with biaxial loadings (P, : P, =1:1).
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Figure 6.17: Comparison of load-deflection response between experimental and N-
FEA results of AP-16-45 plate with biaxial loadings (P, : P, =1:1).
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Figure 6.18: Comparison of load-deflection response between experimental and N-
FEA results of AP-16-63 plate with biaxial loadings (P, : P, =1:1).
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6.3.3 Shadow Moiré Experiments

Shadow Moiré fringes, for the umaxially loaded OP-16-11 piates, are shown in Fig-
ure 6-19. From this figure, we can find concentric circular fringes in the two cases of
uniaxial loading. It means these uniaxial buckling deformations are biharmonic defor-
mations. Also, these pictures confirm the similarity of the uniaxial loading behaviours

in Figures 6-4~6-7 of the previous section.

Figure 6-20 shows the Shadow Moire figures for OP-16-71 plate series. Deformation
of the x-axis uniaxial buckling case appears as a rectangular contour in Figure 6-20
a) and it notes that the axis of loading and the stiffening axis are the same. do.vever,
Figure 6-20 b) shows a kind of 3rd mode of deflection due to loading along the weaker
y-axis. This figure confirms the mode jumping phenomenon from numerical analysis

in Chapter 5.

For biaxial buckling cases, Figures 6-21 and 6-22 are presented for the cases of
OP-16-11 and OP-16-71. Comparing the two pictures, the shape of postbuckling
deflection of regularly layuped plate(OP-16-11) is revealed as a concentric circular
contours as shown in Figure 6-21 but, for the case of irregularly layuped plate(OP-
16-71), an elliptic contour is found in Figure 6-22. However, regardless of the stiffness
ratio, postbuckling deflection appears as an uniform biharmonic function in the case

of biaxial loading.

On the other hand, general shapes of biaxial and uniaxial buckling of crthotropic
laminate OP-12-11 are shown in Figure 6-23. These pictures back up the previous
conclusion. That is, as long as the buckling of balanced laminates like OP-16-11
or OP-20-11 is concerned, the bucking deformation is biL¢ rmonic regardless of the

loading direction, i.e., x-uniaxial, y-uniaxial or biaxial loading.
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Finally the buckling shapes of anisotropic laminates are given in Figures €-24 and
6-25. For the buckling shape of AP-16-36 plate series, Figure 6-24 shows a skewed
elliptic shape due to the direction of major stiffness axis. However, in the buckling
shape of AP-16-45 plate series shown in Figure 6-25, the buckling shape can be seen as
a circular contours ( note that the loading direction is between the two major stiffness

axes ).
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Figure 6.19: Shadow Moiré picture for the 16-layer plates of OP-16-11, a) x-axis
uniaxial loading, P, : P, = 1:0, b) y-axis uniaxial loading, P, : P, =0:1.
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Figure 6.20: Shadow Moiré picture for the 16-layer plates of OP-16-71, a) x-axis
uniaxial loading, P, : P, = 1:0, b) y-axis uniaxial loading, P, : P, =0: 1.
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Figure 6.21: Shadow Moiré picture for the 16-layer plates of OI’-16-11, a) early state
of biaxial buckling, P. = P,=2 kN, b) full-developed biaxial buckling, P, = P, = 3kN.
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Figure 6.22: Shadow Moiré picture for the 16-layer plates of OP-16-71, a) early state
of biaxial buckling, P, = P,=2kN, b) full-developed biaxial bucklicg, P, = P, = 3kN.
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Figure 6.23: Shadow Moiré picture for the 12-layer plate, OP-12-11, a) biaxial
buckling,P. = P,, b) x-axis uniaxial buckling, P, : P, = 1 : 0, c) y-axis uniaxial
buckling, Pr : P, =0:1.
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Figure 6.24: Shadow Moiré picture for the 16-layer plate, AP-16-36, a) biaxial
buckling,P, : P, = 1 : 1, b) x-axis uniaxial buckling, P, : P, = 1 : 0, ¢) y-axis
uniaxial buckling, P, : P, =0:1.
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Figure 6.25: Shadovs Moiré picture for the 16-layer plate, AP-16-45, a) biaxial
buckling,P. : P, = 1 - 1, b) x-axis uniaxial buckling, P : Py = 1 : 0, c) y-axis
uniaxial buckling, P, : P, =0:1.
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6.4 Experimental Buckling Criteria

6.4.1 Southwell Plot Buckling Criterion (SPBC)

In general, classical laminated plate theory assumes that a plate remains flat as it
loaded until the critical load is reached. However all plates have some initial curvature
or eccentric loading that may induce defiection as they are loaded. The experimental
verification of most buckling theories will require some c1.teria for determining when
the plate would have reached its critical load. Southwell reported, in 1932, a method

for determining the critical load for a column with an initial iniperfection [60].

At first look, Southwell remarked that the actual load-deflection curve for such a
column would be a rectangular hyperbola with asymptotes at zero deflection. Then
he proved that the hyperbola could be transformed into a straight line with a slope of
1/P. by changing the coordinates from P vs. § to §/P vs. 6. The buckling of plates,
particularly those with only the loaded edge supported as S,-S;-S,-Sy, is very similar
to the buckling of columns. Southwell, in his original paper, suggested that his .nuethod
could be applied to plates just as it has been applied to columns. In this section the
applicability of the Southwe.l Plot to plates will be verified by a formulation which

closely parallels Southwell’s original formulation

A plate with simple-simple boundary conditions, S,-S,-S,-S,, can be considered

as a column with an initial imperfection of the form

w, = a; 5in Z—xsin qu (6.2)

By substituting equation (6.2) into the differential equation and applying the bound-
ary conditions to the general solution, the deflection resulting from the load will

be [51)

_ 1 . XL, TY
w) -al[l_a — 1)ein —sin— (6.3)
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where
N,
a= 6.4
A (6.4)
and the total deflection will be
w = w,+w
_ & 7T Ty 5
= {_,sin—sin (6.5)
when £ = a/2 and y = b/2,
0" 7Y =
sin n sin 5 1 (6.6)
If we put the current deflection, 6, as
_ aay
6= T—a (6.7)
by rearranging,
6-ba-aa; =0 (6.8)

which is the equation of a hyperbola between § and a. Dividing by a, we find that

'1\67, = (—ﬁl:)-c-(a +a) (6.9)

Therefore Southwell’s equation for the column can be extended to a plate with all
four edges simply supported, subjected to compressive edge loads in the x and y axes.
This equation obviously can be generalized to any point on the plate and to any .aode.
As long as the deflection due to the load overshadows the initial imperfection, and
the deflection still remains small, the Southwell Plot can be applied to any portion of
the load-deflection curve. This feature of the Southwell Plot is particiiarly important

for the following reasons:
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o The critical load can be fonnd experimentally without exceeding the buckling
load of the plate. Thus, as long as the deflections can be made large enough to
overshadow the initial imperfection without damaging the plate, i.e., the test

will be nondestructive.

¢ The experimental data can be taken at relatively low load levels, and there is less
danger of the predicted experimental behaviour being influenced by n deviation

of the material from Hooke’s Law.

e A test fixture need not be capable of imposing high loads on a very stiff or flat
plate. Instead, the plate can be perturbed by a lateral load, and, by backling

behaviour possible, the neutral and the stable-symmetric.

Typical Southwell Plots using the experimental data are shown in Figures 6-26
and 6-27. Figure 6-26 and 6-27 demonstrate the Southwell Plot for the biaxial and
uniaxial buckling behaviour for OP-16-11 and OP-16-44 plates. The term Wmaz in
the figure is as same as 6 of the equations. From these figures, it can be seen that the

Southwell Plot is very sensitive to the data distribution of load-deflection curves.
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Figure 6.26: Detcrmination of the buckling initiation load from Southwell Plots for
the biaxial and uniaxial loading of OP-16-11 plates from the experiments.
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Figure 6.27: Determination of the buckling initiation load from Southwell Plots for
the biaxial and uniaxial loading of OP-16-44 plates from the experiments.
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6.4.2 Minimum Slope Buckling Criterion (MSBC)

An exact meaning of buckling criterion is finding the correct bifurcation point based
on the load-deflection behaviour. This bifurcation point can be found only in case
that at least two curves are contacted or intersected. In most buckling theories, the
bifurcating point is sought by overlapping two asymptotic lines associated with two
curves. For this reason, the bifurcation point establish: = only the upper bound of the

actual critical buckling point.

For simply supported rectangular plates, the experimental postbuckling behaviour
follows the stable load-deflection curve as shown in Figure 6-28. As the early stage
of deflection, from Figure 6-28, t1ie glebal flexural stiffness - slope of the curve - is
infinitely high and then the curve may contain one bifurcation point, Cy, which is
known as critical buckling load point. In fact the Southwell Plot assigns a lower
bound of this critical buckling point, which is very important value from the design

point of view,

However, in the designing of large scaled plate structures, some extent of postbuck-
ling might be allowed to secure flexibility. For this purpose, we need to find another
criterion for the structure that undergoes a large deflection postbuckling behaviour,
i.e., Minimum Slope Buckling Criterion (MSBC). The determination of this minimum

slope is shown in Figure 6-28.

The importance and practical meaning of the MSBC can be found from the foilow-
ing discussion. As shown in Figure 6-28, in the buckling of plate structures, there are
two possible postbuckling behaviours, i.e., one is a stable mode which is the typical
behaviour of fully supported plates and another is an unstable mode which is rarely
found for partly supported plates, like beam-plate with the boundary conditions of
Sp-Sy-Sp-Sy. From these, we can find a stagnation point, Cz, which 18 the point of
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Figure 6.28: Determination of the buckling initiation load by Minimum Slope of
Buckling Criterion (MSBC) for the biaxial and uniaxial buckling experiments.

minimum slope for MSBC. Consequently MSBC provides a higher ultimate critical
buckling load than SPBC.
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Discussion

7.1 Reliability of Modified Plate Specimen

To propose a suitable plate specimen for biaxial buckling experiment, various numer-
ical and experimental investigations were executed using orthotropic laminate OP-
16-11 plate. Two kinds of modified specimen, corner-free and corner cut-model, were
initially proposed to overcome the experimental obstacles. Based on the numerical
and experimental analysis for the two suggested model, corner-cut model was selected
as the modified specimen. The reason was the premature failure at each corner for

the corner-free plate as was discussed previously and also presented in {61}{62)].

In simulating the critical buckling load for the ideal plate from the modified plate,
Figure 3-6 can be used as reference curve to determine the reduction rate of the critical
buckling load as a function of modification ratio. Thus, the critical buckling load of
the ideal plate can be obtained from the experimental data of the modified specimen
easily. For example, the unknown critical buckling ioad P..; of the ideal plate can

be found from the known critical buckling load P,_,, of the modified specimen with

184
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a./a = 7.5% as simply as
Poe; = Pu_m x (100/90) (7.1)

Also, the surface strain distribution was investigated by N-FEA and it was com-

pared favorably with experiment specially on the centre and edge area along S-line.

Consequently, base:) on the numerical and experimental investigations on the ad-
missibility of the modified plate specimen as a substitute for the ideal plate, it can
be concluded that the modified specimen i3 a reliable model in the determination
of critical buckling load and also in the analysis of postbuckling behaviour also if

modification ratio, a./a, does not exceed 7.5%.
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7.2 Effect of Laminate Thickness

As mentioned with equations (2.36)~(2.39) in Chapter 2, the critical buckling load
is governed by the values of the flexural stiffness, D;;, or by the value of the global
stiffness, Dr, in orthotropic plates. These flexural stiffness values are functions of the

plate thickness.

From the N-FEA results plotted in Figure 7-1, thicker plates demonstrate not
only higher critical loads but also much clearer bifurcation points and more stable

postbuckling behaviour than that of thinner one.

For the 12-, 16- and 20-layer orthotropic composite plates, the values of the ex-
perimental critical buckling loads, obtained from SPBC, along with the results from
L-FEA and N-FEA, are shown in Figure 7-2.
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Figure 7.1: Thickness effects on the biaxial buckling response of 12-, 16- aud 20-layer
symmetric laminate with equal (0/-90)s layup sequence from N-FEA.
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Figure 7.2: Thickness effects on the biaxial buckling response of 12-, 16- and 20-

layer symmetric laminate with equal (0/-90)s layup sequence from analytical and

experimental results.
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7.3 Effect of Layup Angle

Based on the result of L-FEA, N-FEA and experiments, the effect of layup angle is
shown in Figure 7-3 and 7-4. Figure 7-3 was constructed by comparing the uniaxial
critical buckling loads, P,., obtained using SPBC, for the case of three different layup
angles, (0/ — 90), (30/ — 60) and (45/ — 45). The critical buckling load values from
uniaxial buckling are not as high in the experiments as predicted by the numerical
analyses. In contrast with the N-FEA result, whick ~ives twice the value for (45/-45),

the experimental result shows an increase of only 1.5 times.

Figure 7-4 compares the biaxial P, values, obtained using SPBC, for the cases of
three different layup angles, (0/ — 90), (30/ — 60) and (45/ — 45), showing tiat the
predicted critical load values are realized in the experiments. In (45/ — 45) plates,
The N-FEA results give twice of the critcal values of (0/ — 90) plates, which agree

with the experimental results.

From these results, it may be concluded that the layup angle has effects on critical
buckling load in both unaxial and biaxial bucklings. However the effect is stronger in

the biaxial buckling case.
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Figure 7.3: Effects of layup angle on the x-uniaxial loading (P, : P, = 1 : 0) for

symmetric cross-ply laminate by CLPT, N-FEA and experiments, where P, is the
value of P., when § = 0 (P, is critical load).
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Figure 7.4: Effects of layup angle on the biaxial loading (P, : P, = 1: 1) for symmetric
cross-ply laminate by CLPT, N-FEA and experiments, where P is the value of Py
when 8 = 0 (P, is critical load).
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7.4 Effect of Stiffness Ratio

7.4.1 Orthotropic Specimen

As the experimental criteria of buckling initiation and catastrcphic failure, the two
critical buckling loads were obtained by implementing SPBC (Southwell Plot Buckling
Criterion) and MSBC (Minimura Slope of Buckling Criterion), and those data were
plotted in the same domain of critical values from N-FEA and CLPT. From the figures
of regularly layup, such as Figures 7-5 and 7-6 for the 16-ply specimen and Figure 7-9
for the 20-ply specimen, critical loadings of the two u ‘axial loading, P, and P, are
not much different. it can be understood by considerin the effects of flexural stiffness
ratio, ¢, on the critical buckling load which was mentioned in N-FEA of Chapter 4.
Also, from these results, the difference of critical buckling load values between SPBC
an; MSBC is sm=l' in uniaxial buckling case but large in biaxial buckling case. This
difference also can be understood from considerations of the boundary conditions for

biaxial and uniaxial loading.

Let us compare Figures 7-7 and 7-8 and Figures 7-10 and 7-11 for the irregular
layup laminates with a high value of the stiffness ratios, ( > 12.8. Here the c-itical
buckling loads for the two uniaxial buckling case, P., and P, show a big difference
from each other. It also can be understood by the considerations of the stiffness ratio.
Because for the case of loading along the weaker axis, there is a change in the buckling

mode.

In these figures, the difference of critical buckling load value between SPBC and
i3BC is much larger than the buckling of regular layup laminates. However, for the
case of irregular layup plates, the two critical buckling loads obtained of SPBC and
MSBC show scattered distribution with a small amount of difference in unaxial loading

as shown in Figures 7-8 and 7-11. Some of this has been published in [63][64][65].
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Figure 7.5: Experimental determination of the buckling initiation load from SPBC
(Southwell Plot Buckling Criterion) and uitimate load from MSBC (Minimum Slope
of Buckling Criterion) for OP-16-11 plate with various loadings (1st data).
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Figure 7.6: Experimental determination of the buckling initiation load from SPBC
(Southwell Plot Buckling Criterion) and ultimate load from MSBC (Minimum Slope
of Buckling Criterion) for OP-16-11 plate with various loadings (2nd data).
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Figure 7.7: Experimental determination of the buckling initiation load from SPBC
(Southwell Plot Buckling Criterion) and ultimate load from MSBC (Minimum Slope
of Buckling Criterion) for OP-16-44 plate with various loadings.
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Figure 7.8: Experimental determination of the buckling initiation load from SPBC
(Southwell Plot Buckling Criterion) and ultimate load from MSBC \Minimum Slope
of Buckling Criierion) for OP-16-71 plate with various loadings.
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Figure 7.9: Experimental determination of the buckling initiation load from SPBC
(Southwell Plot Buckling Criterion) and ultimate load from MSBC (Minimum Slope
of Buckling Criterion) for OP-20-11 plate with various loadings.
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Figure 7.10: Experimental determination of the buckling initiation load from SPBC
(Southwell Plot buckling Criterion) and ultimate load from MSBC (Minimum Slope
of Buckling Criterion) for OP-20-55 plate with various loadings.




CHAPTER. 7. DISCUSSION 199

Y-Load, kN

0 2 T 6 8 10
Py=1
X-Load, kN &
Px=0

Figure 7.11: Experimental determination of the buckling initiation load from SPBC
(Southwell Plot Buckling Criterion) and ultimate load from MSBC (Minimum Slope
of Buckling Criterion) for OP-20-82 plate with various loadings.
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7.4.2 Anisotropic Specimen

The critical buckling loads and the ultimete critical loads, obtained from SPBC and
MSBC, are plotted in the same domain of critical values from N-FEA and ~UPT, in
Figures 7-12~7-13 for 16 ply specimens and Figures 7-14 and 7-15 for 20-ply angle-ply
laminates from (45/ — 45) to (60/ — 30) anisotropic plates.

Comparing these four figures with the figures of orthotropic (0/ — 90) laminates
(in Figures 7-5 and 7-6), angle-ply laminates show a stronger resistance in biaxial

buckling. Some results of this work were presented in [62][63].
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Figure 7.12: Experimental determination of the buckling initiation load from SPBC
(Southwell Plot Buckling Criterion) and ultimate load from MSBC (Minimum Slope
of Buckling Criterion) for OP-16-45 plate with (45/-45)x4, under various loadings.
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Figure 7.13: Experimental determination of the buckling initiation load from SPBC
(Southwell Plot Buckling Criterion) and ultimate load from MSBC (Minimum Slope
of Buckling Criterion) for OP-16-63 plate with (60/-30)x4, under various loadings.
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Figure 7.14: Experimental determination of the buckling initiation load from SPBC
(Southwell Plot Buckling Criterion) and ultimate load from MSBC (Minimum Slope
of Buckling Criterion) for OP-20-45 plate with (45/-45)x5, under various loadings.
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Figure 7.15: Experimental determination of the buckling initiation load from SPBC
(Southwell Plot Buckling Criterion) and ultimate load from MSBC (Minimum Slope
of Buckling Criterion) for OP-20-63 plate with (60/-30)x5, under various loadings.
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7.4.3 Mode Jumping Analysis

As shown in the Figures 5-12, 5-15, 5-20~5-21, 5-37, 5-40~ 5-41, buckling mode jump-
ing phenomenon was obtained with N-FEA for the orthotropic plates having a higher
stiffness ratio, (. On the other hand, this mode jumping was obtained in experimental
works through the Shadow Moiré method as presented in Figure 6-20 again. Based
on these numerical and experimental results, here we can analyze the mode jumping
phenomenon theoretically from the stiffness ratio data in Table 3.4 and Table 3.5
directly.

For the buckling analysis of orthotropic square plate, mainly the critical buckling
load value of the major axis (V) was considered as an important design parameter.
However, the critical load on the minor axis (Ny.) is also important because it also

attribute to the mode jumping phenomenon.

Now, we can obtain the critical buckling load equation along minor axis as the

same manner of equation (2.35) as follow,

1r2[Duﬂ4 -+ 2(D12 + 2D56)n2m2R2 + D22m4R4]

Nyw = R2B2(n? + km’R?)
P = /o " Nyordz (7.2)
a
T
k = YV—‘,

where R = 1 and k¥ = 0 in case of y-axis uniaxial loading. Therefore, above
equation can simplified as following equations with allowing the variation of m and

m.
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7!'2[1)1117.4 + 2(Dyo + 2D¢;3)n2m2 + Dnm‘]
b2(n?)

a
Pycr = ‘/oNycrdx (7°3)

Nye =

In this critical buckling load formulation, our concerning point is to find the the
minimum value of Ny, for the various laminated composite plates. Generally, in the
balanced composite laminate, the minimum value of N, can be obtained from the
first buckling mode condition, i.e.,, m = 1 and n = 1. However, in case that the
orthotropic plate has a highe* stiffness ratio as appeared in Table 3.5, m and n are

not the same value,

Some useful analyses for the mode jumping were presented for OP-16-71 and OP-
16-80 in Figure 7-16, where we can £~d a higher mode shape corresponding to the

minimum value of critical buckling load, Ny,
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Figure 7.16: Mode jumping analysis for the orthotropic laminates having higher stiff-

ness ratios, a)for OP-16-7. plate, b)for OP-16-80 plate.



Chapter 8

Contributions and Conclusions

Through the whole research on the buckling of biaxially loaded laminated composite
plates, some important remarks can be made in the followiug. It was shown that
the biaxial buckling analysis produces more relevant design data for the applications
of laminated composite piates in dynamic structures constructions. Unified design
parameters can be obtained for various loading conditions with one time experiment
of biaxial buckling. A useful biaxial buckling testing methodology was introduced
and its admissibility was verified from numerical analyses and experiments. Several

contributions are summarized as followings.

o A modified plate specimen has been developed to determine the biaxial buckling
behaviour of composite plates by experiment. With small modifications, a./a
less than 7.5%, the critical buckling load reductions due to the modification
of plate model are not severe. This means the modified plate specimen is an
admissitle model for the determination of biaxial buckling behaviour and the

critical buckling load in the experiments.

e Through the analyses for the boundary conditions, it was found that analyses
with the uniform pressure loading condition rendered solutions that agrees better

with the experimental results than with uniform end-shortening condition.

208
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o The effects of load ratio k on the biaxial buckling behaviour of laminated com-
posite rectangular plates were found. From the results, it is observed that the
buckling behaviour is affected by the combinations of axial loads. The critical
buckling load decreased exponentially when the axial load ratio was changed

from zero to one, i.e., from uniaxial loading state to full biaxial loading state.

e The flexural stiffness ratio, ¢, and inplane stiffness ratio, £, govern the post-
buckling mode. In case of a high value of flexural stiffness ratios, ¢ > 12.8, a

mode jumping was obtained.

¢ A new buckling criterion, MSBC (Minimum Slope Buckling Criterion) was pro-
posed by the author to determine the ultimate loads for plates in the postbuck-

ling state.




Bibliography

[1] Lekhnitskii, S. G. Anisotropic Plates. translated from Russian by Tsai, S. W.
and Cheron, T., Gordon and Breach Science Publishers, Inc., New York, second

edition, 1968.

[2] Leissa, A. W. “Buckling of Laminated Composite Plates and Shell Panels“.
AFWAL-TR-85-3069, Final Report for Flight Dynamics Lab., Wright-Patterson
Air Force Base, Ohio, pp.439, 1985.

(3] Ashton, J. E. and Whitney, J. M. Theory of Laminated Plates. Technomic
Publishing Co., Stamford, Conn., U.S.A., 1970.

[4] Whitney, J. M. Structural Analysis of Laminated Anisotropic Plates. Technomic
Publishing Co., Lancaster, Penn., U.S.A., 1987.

(5] Ashton, J. E. and Waddoups, M. E. “Analysis of Anisotropic Plates“. Journal
of Composite Materials, 3:pp.148-165, 1969.

[6] Ashton, J. E. “Analysis of Anisotropic Plates II“. Journal of Composite Materi-
als, 3:pp.470-479, 1969.

[7] Whitney, J. M. “Fourier Analysis of Clamped Anisotropic Plates“. Trans. ASME,
J. of Applied Mechanics, 38:pp.530-532, 1971.

[8] Whitney, J. M. and Leissa, A. W. “Analysis of a Simply Supported Laminated
Anisotropic Rectangular Plates®. AIAA Journal, 8(1):pp.28-33, 1970.

210




BIBLIOGRAPHY 211

[9] Leissa, A. W. “A Review of Laminated Composite Plates Buckling“. Applied
Mechanics Reviews, ASME Book No. AMRO019, 40(5):pp.261-270, May 1987.

[10] Von Karman, Th. “Festigkeitsprobleme im Maschinenbau®. Encyk. der Math.
Wiss., Vol. IV(4):pp.348-352, 1910.

[11] Von Karman, Th., Sechler, E. E. and Donnell, L. H. “The Strength of Thin
Plates in Compression“. Trans. ASME, 54:pp.53-57, 1932.

[12] Cox, H. L. “The Buckling of Thin Plates in Compression“. R. & M. No.1554,
British A.R.C., 1933.

(13] Timoshenko, S. P. and Gere, J. M. Theory of Elatic Stability. McGraw-Hill Book
Co., second edition, 1962.

[14] K. Marguerre. “The Apparent Width of the Plate in Compression®. Technical
report, English Translation, NACA, TM 833, 1937.

(15] Minguet, P. J., Dugundji, J. and Lagace, P. “Postbuckling Behavior of Lami-
nated Plates Using a Direct Energy-Minimizatior Technique*. AIAA Joumal,
27(12):pp.1785-1792, 1989.

[16] Levy, S. “Buckling of Rectangular Plates With Built-In Edges“. Trans. ASME,
J. of Applied Mechanics, 9:pp.A171-A174, 1942,

[17) Coan, J. M. “Large Deflection Theory for Plates with Small Initial Curva-
ture Loaded in Edge Compression“. Trans. ASME, J. of Applied Mechanics,
18:pp.143-151, 1951,

(18] Yamaki, N. “Post-Buckling Behavior of Rectangular Plates with Small Initial
Curvatures Loaded in Edge Compression“ irans. ASME, J. of Applied Mechan-
ics, 26:pp.407-414, 1959,



BIBLIOGRAPHY 212

[19] Yusuff, S. “Large Deflection Theory for Orthotropic Rectangular Plates Sub-
jected to Edge Compression“. Trans. ASME, J. of Applied Mechanics, 19:pp.446-
450, 1952.

[20] Harris, G. Z. “Buckling and Postbuckling of Orthotropic Plates“. AIAA Joumnal,
14(11):pp.1505-1506, 1976.

[21] Prabhakara, M. K. and Chia, C. Y. “Postbuckling of Angle-Ply and Anisotropic
Plates“. Ingenieur-Archiv, 45:pp.131-140, 1976.

[22] Prabhakara, M. K. “Post-Buckling Behaviour of Simply-Supported Cross-Ply
Rectangular Plates“. Aeronautical Quarterly, 27/4).pp.309-316, November 1976.

[23] Stein, M. “Loads and Deformations of Buckled Rectangular Plates". Technical
Report R-40, NASA, Langley Research Center, Hampton, Virginia, 1959.

[24] Chandra, R. and Raju, B. B. “Postbuckling Analysis of Rectangular Orthotropic
Plates“. Int. J. Mech. Sci., 15:pp.81-97, 1973.

[25) Walker, A. C. “The Post-Buckling Behaviour of Simply Supported Squareplates*.
Aeronautical Quarterly, 20:pp.203-222, 1969.

[26] Rhodes, J. and Harvey, J. M. “Plates in Uniaxial Compression with Various
Support Conditions at the Unloaded Edges“. Int. J. Mech. Sci., 13:pp.787-802,
1971.

[27) Stein, M. “Postbuckling of Orthotropic Composite Plates Loaded in Compres-
sion“. ATAA Joumal, 11(12):pp.1729-1735, 1983.

[28] Turvey, G. J. and Wittrick, W. H. “The Large Deflection and Post-Buckling
Behavior of Some Laminated Plates“. Aeronautical Quarterly, 24:pp.77-86, May
1973.




BIBLIOGRAPHY 213

[29)

[30]

(31]

[32]

[33]

(34]

[35)

[36]

[37]

[38]

Chia, C. Y. Nonlinear Analysis of Plates. McGraw-Hill Inc., New York, 1980.

Harris, G. Z. “The Bockling and Postbuckling Behaviour of Composite Plates
Under Biaxial Loading®. Int. J. Mech. Sci., 17:pp.187-202, 1975.

Turvey, G. J. “Biaxial Buckling of Moderately Thick Laminated Plates®. J.
Strain Analysis, 12(2):pp.89-95, 1977.

Tung, T. K. and Surdenas, J. “Buckling of Rectangular Orthotropic Plates under
Biaxial Loading". Journal of Composite Materials, 21:pp.124-128, 1987.

Lo, K. H., Christensen, R. M. and Wu, E. M. “A High-Order Theory of Plate
Deformation, Part 1: Homogeneous Plates“. Trans. ASME, J. of Applied Me-
chanics, 44:pp.663-668, December 1977,

Lo, K. H., Christensen, R. M. and Wu, E. M. “A High-Order Theory of Plate
Deformation, Part 2: Laminated Plates®. Trans. ASME, J. of Applied Mechanics,
44:pp.669-676, December 1977.

Reddy, J. N. “A Refined Nonlinear Theory of Plates with Transverse Shear
Deforination“. Int. J. Solids Structures, 20:pp.881-896, 1984.

Reddy, J. N. “A Refined Shear Deformation Theory for the Analysis of Laminated
Plates“. Contractor Report 3955, NASA, Viginia Polytechnic Institutc and State
University, Blacksburg, Virginia, 1986.

Cho, K. N., Stiiz, A. G. and Bert, C. W. “Bending Analysis of Thick Bimodular
Laminates by Higher-Order Individual-Layer Theory“. Composite Structures,
15:pp.1-24, 1990.

Chang. J. S. and Huang, Y. P. “Geometrically Nonlinear Static and Transiently
Dynamic Behavior of Laminated Composite Plates Based on a Higher Order
Displacement Field“. Composite Structures, 18:pp.327-364, 1991.




BIBLIOGRAPHY 214

[39] Moazzami, M. and Sandhu, R. S. “A Higher Order Discrete Theory for Laminated
Plates“. Composite Structures, 23:pp.205-220, 1993.

[40] Kaat, T., Pavichandran, R. V., Pandya, B. N. and Mallikarrjuna. “Finite Element
Transient Dynamic Analysis of Isotropic and Fiber Reinforced Composite Plates
Using a Higher-Order Theory“. Composite Structures, 9:pp.319-342, 1988.

(41] Yuan, F. G. and Miller, R. E. “A Higher Order Finite Element for Laminated
Beam“. Composite Structures, 14:pp.125-150, 1990.

[42) Berger, H. M. “A New Approach to the Analysis of Large Deflection of Plates*.
Trans. ASME, J. of Applied Mechanics, 22:pp.465-472, 1955.

[43] Zaghloul, S. A. and Kennedy, J. B. “Nonlinear Behavior of Symmetrically Lam-
inates Plates*. Trans. ASME, J. of Applied Mechanics, 42:pp.234-236, 1975.

[44] Sathyamoortby, M. “Vibration of Plates Considering Shear and Rotatory Iner-
tia“., AIAA Journal, 16:pp.285-286, 1978.

[45) Timoshenko, S. P. and Woinowsky-Krieger, S. Theory of Plate and Shells.
McGraw-Hill Book Co., second edition, 1959,

[46] Szilard, R. Theory and Analysis of Plates. Prentice-Hall, New Jersey, 1974.

(47} Elzein, A. Plate Stability by Boundary Element Method. Lecture Note in Engi-
neering, Vol.64, Springer-Verlag, 1991.

[48) Laschet, G. and Jeusette, J. P. “Postbuckling Finite Element Analysis of Com-
posite Panels“. Composite Structures, 14:pp.35-48, 1990,

[49] Chen, W.-H. and Yang, S.-H. “Buckling Analysis of General Compcsite Lami-
nates by Hybrid-Stress Finite Element Method“. AJAA Joumal, 29(1):pp.140-
147, 1991.




BIBLIUGRAPHY 215

[50) Swanson Anaysis Systems, Inc. ANSYS User’s Manuals for Rev. 4.4A & Rev.
5.0. Swanson Anaysis Systems, Inc., Houston, U.S.A., 1993.

[51} J. F Mandell. “An Experimental Investigation of the Buckling of Anisotropic
Fiber Reinforced Plastic Plates. AFML-TR-68-281 pp.315, Technical Report
for Air Force Materials Lab., Wright-Patterson Air Force Base, Ohio, 1968.

[52] Ashton, J. E. and T. S. Love. ““xperimental Study of the Stability of Composite
Plates“. Journal of Composite Materials, 3:pp.230—243, 1969.

[53] Spier, E. E. “Stability of Graphite/Epoxy Structures with Arbitrary Symmetrical
Laminates“. Ezperimental Mechanics, xx:pp.401-408, November 1978.

[54] Englestad, S. P., Reddy, J. N. and Knight Jr., N. F. “Postbuckling Response and
Failure Prediction of Graphite-Epoxy Plates Loaded in Compression“. AJIAA
Joumnal, 30(8):pp.2106-2113, 1992.

[55] Chai, G. B., Banks, W. M. and Rhodes, J. “An Experimentai Study on Lami-
nated Panels in Compression“. Composite Structures, 19:pp.67-87, 1991.

[56] Libove, C. “Buckling Pattern of Biaxially Compressed Simply Supported Or-
thotropic Rectangular Plates“. Journal of Composite Materials, 17:pp.45-48,
1983.

[57] Bathe, K. J. Fin te Element Procedures in Engineering Analysis. Prentice-Hall
Inc., Englewood Cliffs, 1982.

[58] Tsai, S. W. and Hahn H. T. Introduction to Composite Materials. Technomic
Publishing Co., Lancaster, Pennsylvania, 1980.

[59] Tsai, S. W. Theory of Composite Design. Think Composites, Dayton, Ohio,
1992.



BIBLIOGRAPHY 216

(60} Scu.uwell, R. V. “On the Analysis of Experimental Observations in Problems of
Elastic Stability“. In Proc. of the Royal Society ef London, number Vol. 135 in
A, pages pp.601-616. Harrison and Sons, LTD, 1932.

[61) Kim, Y. S. and Hoa, S. V. “Biaxial Buckling Behavior of Composite Rectangular
Plates“. The 2nd International Symposium on Composite Materials and Struc-
tures (ISCMS), Beijing, China, Edited by Sun, C. T. and Loo, T. T., pp.495-500,
1992.

[62] Kim, Y. S. and Hoa, S. V. “Effects of Load Combination on Biaxial Buckling
of Laminted Composite Rectangular Plates. Proceedings of the 9th International
Conference on Composite Materials(ICCM/9), Madrid, Spain, Edited by A. Mi-
ravete, Vol. IV, pp.495-502, 1993.

[63] Kim, Y. S. and Hoa, S. V. “Postbuckling Behavior of Simply Supported Compos-
ite Rectangular Plates Under Biaxial Loading. The Second Canadian Interna-
tional Conference on Composites(CANCOM’93) Ottawa, Canada, pp.787-797,
Sept., 1993.

[64] Kim,Y.S. and Hoa, S. V. “Biaxial Buckling Behaviour of Composite Rectangular
Plates“. Composite Structures, Accepted in Nov., 1993.

[65) Kim, Y. S. and Hoa, S. V. “Effects of Stacking Sequence on the Biaxial Buckling
of Laminated Composite Plates. International Conference on Design and Manu-

facturing Using Composites(ATMAM’94), Montreal, Canada, pp.365-374, Aug.,
1994.





