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ABSTRACT

Spectral Approximation by the

Polar Transformation

Wei Hua Zhou

Central potentials V(r) are considered which admit the polar repre-
sentation V(r) = g(h(r)), where h(r) = sgn(q)r?, q is fixed, and ¢
is the polar transformation function. This representation allows the
Schrodinger eigenvalues generated by V to be approximated in terms
of those generated by the polar potential h(r). In many cases the
optimal values {q1, g2} of the power ¢ can be chosen so that the corre-
sponding polar functions {g;,g»} have definite and opposite convex-
ity. For such cases, the spectral approximations provide both upper
and lower bounds for the entire discrete spectrum. The example »f
the central potential V(r) = ar? + br2/(1 + cr?) in R? is studied in
detail: optimal bounds are determined for a wide range of the poten-
tial parameters. The method is applicable, essentially unchanged, for

problems in any number of spatial dimensions.
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CHAPTER I
INTRODUCTION

We consider a single particle which moves in an attractive central
potential V(r). The number of spatial dimensions is, in principle,
arbitrary but, for definiteness of our presentation, we shall usually
take it to be three. For convenience we assume units in which A =

2m = 1. Thus the Hamiltonian H may be written
H=-A+V(r). (1.1)

The class of potentials we consider comprises those that admit the

polar representation

V(r) =g(h(r)), h(r)=sgn(q)r?, (1.2)

where ¢ is a constant and the polar transformation function g(h) is
monotone increasing. For definiteness, and to allow broad generality,
we shall assume (in three dimensions) that ¢ > —2, ¢ # 0. In Sec-
tion III.1 a detailed analysis of the transformation g(h) is presented.
However, the approach can easily accommodate special Hilbert spaces

required, for example, by more singular potentials.

Our principal tool is still the “potential envelope method” which,
in the particular case of the polar ‘envelope basis’ h(r), allows us
[14] to approximate the eigenvalues by means of the following semi-

classical expression

E.= Er(;?) () = ?5%1 {(Pn;(Q) )2 + V(r)} ) (1.3)
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where the positive numbers P,;(q) are determined [15] (see Section
II1.1) by the eigenvalues of the pure polar potential h(r). A very
important property of the approximate eigenvalues E,(j) (q) is that
they are monotonically increasing functions of g : from (1.3) it is clear
that they increase monotonically with P, and it has been proved [15]
that the P are monotonic with respect to ¢ (see Section IV.2). The
transformation function g(h) does not appear in this expression but
it plays a vital role in establishing energy bounds: if g is convex, we
obtain lower bounds, and if g is concave, we obtain upper bounds.
These bounds are valid for all the discrete eigenvalues, and they hold
for all values of the parameters in V(r) for which the appropriate

convexity condition is satisfied.

Our main example is the perturbed harmonic oscillator

br2

V(r) =ar?+ 1Ta2

—3» &be>0, (1.4)

This problem has received much attention in the literature [16—31]
mostly in one spatial dimension. It is the aim of this thesis to com-
plete the investigation started in an earlier paper [1] by formulating
the envelope method in such a fashion that it yields both upper and
lower energy bounds for a wide range of the potential parameters.
The formulas we obtain apply equally well to any number of spatial
dimensions. For definiteness, we discuss the general problem in three
dimensions and present some numerical results for both one and three
dimensions. In Section IV.3 we shall determine the optimal values
{q1,492} of q (depending on the parameters) which guarantee respec-
tively that ¢’ > 0 and ¢” < 0 so that, with these values of g, the
formula (1.3) yields lower and upper energy bounds.
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The potential envelope method was established based on the Min—
Max Principle and the Comparison Theorem [2]. In Chapter II we
discuss the background of the method. In Chapter III we present
a sketch of the theory, and the procedure of the method. The pure

polar potential will serve as an introduction to the general geometrical
theory.

In Chapter V specific numerical results are presented with the poten-
tial parameter values, and the optimal choices for the power g. Our

conclusions are presented in Chapter VI.



CHAPTER II
BACKGROUND

I1.1 The Minimum—Maximum Principle

Let H be a complex Hilbert space having the scalar product (¢, ) and
the corresponding norm ||¢|| = (¢,v)/2. Note that, we shall retain
this definition of # throughout the thesis. Let H be a self-adjoint
operator on a domain Dy dense in H. We shall always assume that
H is bounded below and that the lower part of its spectrum consists
of a finite or infinite number of discrete eigenvalues \; < Ay < Az ...,
each having finite multiplicity.

First of all, we give a variational characterization of the discrete spec-
trum of H. This is the starting point for our discussion of the vari-
ational theory of eigenvalues. The following principle, which charac-
terizes the eigenvalues without any reference to the eigenvectors, is

often useful in theoretical work.

The Min—Max Principle [2]:
Let D, denote any n—dimensional subspace of H contained in Dy
(n=1,2,3,...). We define the Rayleigh quotient as

(HY, ¥)
01>

Let 8 be the maximum of the Rayleigh quotient with ¢y € D,,. The 3
depends, of course, on the choice of D,, and will be denoted by 8(D,,).
Then the eigenvalues of H are characterized by the equation

R(Y) = Wb # 0. (2.1.1)

An = min §(Dn), (2.1.2)
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or

_ (Hy, ) _ .
An nll)_lnnfel%ﬂc WE = 1%1:1 ‘%?E‘i (Hvy,v). (2.1.3)

Remarks: In what follows the restriction ¢ # 0 is always imposed.

a) To find the nth eigenvalue according to this Min—-Max princi-

b)

ple, one has to proceed as follows: Take the maximum 3 of the
Rayleigh quotient, not on the set of all vectors in Dy but rather
the restricted maximum on an n—-dimensional subspace D,, of H
contained in Dgy. That is to say, D, = Span{¢1,¥2,..c,¥n},
where ¢¥; € Dy, 1 =1,2,...,n. “min” over “D,” means that the
minimum value is over all possible n—dimensional subspaces D,

so constructed.

For a given angular momentum subspace of £2(R3) labelled by
the spherical harmonic Y™(6, ¢), where [ is fixed, m = -, - +
1,...,], the nth eigenvalue E,; of the Schrédinger operator H

satisfies
En.= LBm max (Hy, ¢), (2.1.4)

¢'€Dn[
lell=

where D,; C Dy is a finite-dimensional subspace of H of fixed

dimension n (n = 1,2,3,...) given by
Dnl = Span{¢1, ¢27 cesy ¢n}v Ipi € DH’

Y =ui(r)Y"(0,4), i =1,2,..,n.



I1.2 The Comparison Theorem

From the Min-Max principle, there follows an important theorem
which in many cases allows comparison to be made between the eigen-
values of two operators. This can have both quantitative and qual-
itative consequences. Before formulating the theorem, we need the

following definition.

Definition:

Let H; and H> be self-adjoint operators that are bounded below, and
Dy, C Dp,. Then we say

H, < H, (2.2.1)

if and only if
(Hi¢,¥) < (Ha9, ¥) (2.2.2)
for all ¥ € Dy, .

As an immediate consequence of this definition and the Min—Max

principle, we have the following theorem.

The Comparison Theorem [2]:

Let H; and H; be self-adjoint operators that are bounded below,
where H; < H,. If A\, and p, are eigenvalues of H; and H, respec-

tively, and set out in sequences of increasing magnitude, then

An < fny, n=123,.. (2.2.3)
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In the case (H1%,%) < (Ha29,v) for all ¢ € Dp,, it is clear that in
(2.2.3) we have a strict inequality, and therefore

An < fn, n=1,23, ... (2.2.4)

The principal class of operators we shall look at in this thesis is the
Schrodinger operator H = —A + V(r) acting on a suitable domain
Dy in £2(R3). Here —A is the Laplacian kinetic—energy operator,
V(r) = vf(r) (r = |r|), is the potential energy operator, f is the
shape of the central potential, and v is a positive coupling constant.
If

H, = —A + Vi(r), (2.2.5)

Hy = —A + Va(r), (2.2.6)
with the same boundary conditions and
Vi(r) < Vo(r) for all r > 0, (2.2.7)

then the Comparison Theorem provides that

An < pn, for all n, (2.2.8)
since we have

(Hi9,%) < (Hotp, )  for ally € Dy, . (2.2.9)

This result is often called the Comparison Theorem of quantum me-
chanics [3]. The fact that the order between potentials implies cor-
responding the order of the eigenvalues is an essential tool for solv-
ing many problems of quantum mechanics: it allows us to bound the

eigenvalues by the use of comparisons with soluble potentials.

7



Remark:

A central potential [4] is a real-valued function that is a function

of r = |r| alone. In this case, if F is an eigenvalue of H = —A +
V(r), then {¢Y|Hy = E} is a rotationally invariant subspace of
L£2(R3) and is spanned by vectors which may be written

P(r) =r~ p(r)Y™ (8, ), (2.2.10)

where Y™ are the spherical harmonics and

/0 " 1p(r) Pdr < oo, (2.2.11)

and [ is the usual angular momentum quantum number (I =
0,1,2,...). If ¥ € D_4, it is bounded and continuous, so p(r) is
continuous and p(0) = 0. Moreover , p obeys the radial differen-

tial equation

r2

(—A + (1) + V(r)) p(r) = Ep(r). (2.2.12)



I1.3 Operators: Self-Adjoint and Bounded Below

Definition [5]:

Let H be a linear operator on H, with domain Dy which is dense
in H. Denote by Dg- the set of all vectors ¢ € H which are such
that for each ¢ there is one and only one vector ¢* which satisfies the

equation

(6%, %) = (¢, HY), for all ¥ € Dy, (2.3.1)

the mapping
H*: ¢—¢* ¢€Dy-, (2.3.2)

is a linear operator, called the adjoint of H.

Definition [5]:

The linear operator H acting in # is symmetric if it has an adjoint
H* and H C H*. A symmetric operator H is called self-adjoint if
H*CH,ie,H=H".

Here, H C H* means that H* is an extension of H, which defined on
Dy~ D Dy coincides with H on Dy i.e. H*¢ = H¢ for all ¢ € Dy
—mutatis mutandis for H* C H. Clearly, H = H* implies Dy = Dg-.

Self-adjoint operators play a major role in mathematical physics,
and in functional analysis. Since the physical interpretation requires
that operators which represent measurable physical quantities must
be self-adjoint: the eigenvalues (if any) are real and may therefore

correspond to the outcomes of physical measurements.



Remarks: It is important to note that [7]

a) The spectrum of a self-adjoint operator is entirely on the real

axis.

b) A real scalar multiple of a self-adjoint operator is self-adjoint.
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Definition:

A symmetric operator H on Dy is said to be bounded below if there

exists a constant k (possibly negative) such that
(H¢, %) 2 kl|p||>  for all % € Dy. (2.3.3)

A symmetric operator H on Dy is bounded above if there exists a

constant k such that

(H,¥) < kl[y]|*  for all ¢ € Dy. (2.3.4)

Since the spectral properties of operators on infinite—dimensional
spaces are more complicated than on finite-dimensional spaces, some
limitations will have to be imposed on the operators under consider-
ation. One obvious difficulty is that the eigenvalues may now extend
all the way to 400 or —oo , if the operator is unbounded. For in-
stance , the kinetic-energy operator —A = —d?/dz? on the domain
D_a of function ¢(z) with two continuous derivatives in 0 < z < 1,
and satisfying ¢(0) = ¢(1) = 0 gives rise to eigenvalues A\, = n2xr?
(see Remark b below), and clearly A, — +00 as n — oo.

We can therefore only hope to have a Min—Max principle which works
its way up from the low end of the spectrum (that is, starting from
A1). In our discussion we shall consider only semi-bounded operators,
that is, operators which are either bounded below (as in the example
just given, —A) or bounded above (for instance, the operator A, A =
d?/dz?). In particular, we consider those bounded below, since, mutais
mutandis, we can easily state similar results for operators bounded

above.

11



Remarks:

a) The definition for a bounded operator H is as follows: There

b)

exists a constant ¢ > 0 such that
|26l < cllwll,  for all ¢ € Dy (2.3.5)
By Schwarz inequality we have
(Ew, )| < | Elll#]l < clll?, (2.3.6)
—cl[w|l? < (H, v) < cll¥|l2, (2.3.7)
so that a bounded operator is bounded above and below.

Consider the operator —A in one dimension. We can find those

values A, for which the differential equation

d’
—g = And (2.3.8)
has non-trivial solutions, satisfying the conditions
$(0) = #(1) = 0. (2.3.9)

The general solution of equation (2.3.8) can be written in the

form:

¢(z) = Csin\/Anz + C1 cos /A z. (2.3.10)

The condition ¢(0) = 0 gives C; = 0 and ¢(z) = CsinvA,z.
From the condition ¢(1) = 0 we have that Csin+/A, = 0. Here
C # 0 as otherwise we would have only the trivial solution ¢ = 0.
Thus sin v/, = 0, and we find the eigenvalues

An = n272, n=1,2,..., (2.3.11)



and eigenfunctions
¢n(z) = Cy sin(nnz). (2.3.12)
The constants C,, are obtained from the normalization condition
1
lpnll? = C;zl/ sin®(n7wz)dr = 1,
0
whence C,, = V2 and

bn(z) = V2sin(nrz). (2.3.13)

The Schrodinger operators for atoms such as Hydrogen and He-
lium, also yield self-adjoint, semi—bounded operators of the type
described above [5,6].

13



II.4 Functions: Convexity and Concavity

Definition:

Let g(h) be a continuous function. We define g(h) to be strictly convez

on an interval of the real line if
g(Ah1 + (1 = A)h2) < Ag(h1) + (1 — N)g(h2), (2.4.1)

for every pair of distinct points h; and hy (h; > hy) within the interval
and forall real A\in 0 < A < 1.

Geometrically this means that the chord joining any two points on the
function always lies above the function between those points. Though
this basic analytical definition of convexity is available regardless of
whether any derivative of the function exists, if we suppose that g(h)
is a smooth function (i.e., C'—function, which is a continuous function
with continuous first derivative), then it follows by calculus that g(h)

is strictly convez if and only if
g(h1) — g(h2) = (h1 — h2)g'(h2) > 0 (2.4.2)

for every pair of distinct points h; and ho within the interval. The
geometrical interpretation is that the function lies above its tangent
line at every point except at the point of contact of the tangent line.
This is illustrated in Fig.2.4(a) for a C'-function. By interchanging
hi and hg in (2.4.2) we have

g(h2) — g(h1) — (h2 — h1)g'(h1) > 0, (2.4.3)
and adding the two results we get
(h1 — h2)[g'(R1) — g’ (h2)] > O, (2.4.4)

14



i.e., the slope of a smooth strictly convex function is monotonically

increasing.

Weakly convez is defined by writing > in these inequalities so that
equality can hold for some distinct pairs of points, thus permitting
straight line segments (Fig.2.4(b)). Convexity without an adjective

often means weak, but can mean strict, depending on the context.

A concave function is a convex function turned upside down, so that
the foregoing inequalities are reversed. The C'—function never rises
above its tangent line at any point. In the format of (2.4.2) we can

define g(h) to be strictly concave if
g(h1) — g(h2) — (h1 — h2)g'(h1) >0 (2.4.5)

for every pair of distinct points, the derivate now being evaluated at
the opposite end of the interval compared to (2.4.1) (Fig.2.4(c)).

A C?-function is a continuous function with continuous first and sec-
ond derivatives. If g(h) is a C2-function, integration by parts shows
that

hy
/h (hy — h)g"(B)dh = g(h1) = g(ha) — (ks — ha)g'(Ba),  (2.4.6)

2

and

hy
/h (h2 — h)g"(R)dh = g(h1) — g(h2) — (h1 — h2)g'(h1). (2.4.7)

From (2.4.2), (2.4.6) ((2.4.5),(2.4.7)) we see that a necessary and
sufficient condition for g(h) to be strictly convex (concave) is that

15



g”’(h) > 0 (¢"(h) < 0) everywhere. A necessary and sufficient condi-
tion for weak convezity (weak concavity) is g"(h) > 0 (¢”(h) < 0) at

every point.

If we take a nonlinear change h = h(r) of the independent variable
r, for the function V(r) = g(h) = g(k(r)) we have dV/dr = g'dh/dr,

and
&2V &P, dh

a7 =79 (G
by the chain rule. Clearly, the first term on the right can cause the sign

)2g", (2.4.8)

of the curvature of V(r) to change even if g” has constant sign. For-
tunately, the approximation theory we develop only requires definite
convexity of g(h), where g(h) is a smooth increasing transformation
of h, and g(h(r)) = V(r).

Remarks: It is noteworthy that concave functions g have the follow-

ing properties [6]:
a) For h > 0, g(h) is concave if and only if hg(1/h) is concave.
b) If g > 0 and 1/g is concave, then g is convex.

c) If the functions g;(h) are concave and a; > 0, then T;o; gi(h) is

concave (i =1,2,...).
d) If g;(h) are concave, then inf; g;(h) is concave (i=1,2,...).

e) If g; are concave (¢ = 1,2), and g; > 0, then g; o g, is concave.

16



Figures 2.4(a)

and 2.4(b)
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Figure 2.4(c)
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CHAPTER III
THE POTENTIAL ENVELOPE METHOD

III.1 The Theory

The method of potential envelope was established by Hall [1]. An
essential feature of Hall’s approach to spectral geometry is the re-
formulation of the standard Min-Max characterization of discrete
Schrodinger eigenvalues in terms of mean kinetic energies.

This method makes use of the Comparison Theorem based on the
Min-Max principle and provides approximate analytical expressions
for the eigenvalues of Hamiltonians whose potential part V(r) can be
presented as a smooth transformation V(r) = g(h(r)) of a potential
h(r) corresponding to a soluble problem. These simple formulas, for
lower and upper bounds, have been shown to give good estimates for
the spectra of a number of Hamiltonians, including those with linear
combinations of different potentials [9-12]. Some refined inequalities

for energy levels have also been derived [13].

We now present a summary of this theory as a basis for understanding
the present work. All of the necessary potential-envelope formalism

may be found in greater detail in the cited references [1,10,11,14].

Suppose that we can solve the Schrédinger equation

(= A +vh(r))(r) = En(v)i(r), (3.1.1)

for the discrete eigenvalues £,;(v) of the potential h(r), where h is the
shape of a central potential. The trajectory function £,;(v) generates
an energy trajectory (v, &pi(v)), v > 0, which describes how the eigen-

value depends on the coupling constant: this functional dependence
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will be important later; if necessary, the trajectories may have to be
defined for v > v,; sufficiently large to guarantee the existence of the

corresponding eigenvalue. The trajectory functions satisfy
Ent(v) € Enn(v) (1 <n<n'). (3.1.2)

The quantum number n counts the eigenvalues in each angular mo-
mentum subspace: eigenvalues so labelled have degeneracy exactly
equal to (2] + 1).

We wish to estimate the eigenvalues when the potential is changed
to V(r), under a smooth increasing transformation g(h(r)),V(r) =
g(h(r)), where g has definite convexity, either convex or concave. That
is to say, ¢’ > 0 and either g¢"’ > 0 or g” < 0. We summarize this

situation by the relation
—A 4+ vh(r) — Eni(v), (3.1.3)

~A+V(r) — En, (3.1.4)

where the graph (v,&,(v)) is the exact energy trajectory of —A +
v h(r) with respect to h.

We now present a brief argument leading to
~ i (k)
E, =~ min {an (r) + V(r)} (3.1.5)
where

V(r) = g(h(r), K5 (r) = Eu(®) —vEn(v), h(r) = En(v),
(3.1.6)
and, < if g is concave and &~ = > if g is convex, which is the key

result used in this thesis. This formulation of the potential envelope

20



method is actually interesting for it tells us (approximately) how the
eigenvalues E,; derived from the potential V(r) = g(h(r)) depend on
the energy trajectories £,;(v) corresponding to the potential h(r).

For definiteness, we suppose that g is concave so that g” < 0 every-
where in D,. Because of the concavity of g, we know that the tangent
lines to g (as a function of k) all lie above g except at the point of

contact, and we can therefore find by calculus that
g(h(r)) < A+ vh(r), - (3.1.7)
where
A=g(h(t) —h(t)g' (h(2), v=g'(h(t), te(0,00) (3.18)
and h(t) is the point of contact of V(r) with its tangent potential
VO (r) = A(t) + o(e)h(r). (3.1.9)

Since the operators we consider are self-adjoint and bounded below,
now we can employ the Comparison Theorem of quantum mechanics
which tells us that the potential inequality (3.1.7),

i.e. g(h(r)) < A+ vh(r), implies the spectral inequality

Eat < A(t) + Ent(v(t)), (3.1.10)

that is
Eni < g(h) — hg'(h) + En(g'(R)), (3.1.11)

where h = h(t).
We minimize the right-hand side of the inequality (3.1.11) with re-
spect to the variable h, since the upper bound is a function of A.

21



The necessary condition for the minimum is obtained by differenta-
tion with respect to h and cancellation of the factor g”’(h) < 0 (by
hypothesis, g is concave). This yields the critical point

h=E&),(v), v=4d(h). (3.1.12)

In view of (3.1.11), (3.1.12) and the known [14] concavity of trajectory
functions like £,;, we can reformulate the expression (3.1.11) for the

best upper bound by a Legendre transformation [8] as follows:
B < min {K M () + V(r)} (3.1.13)

where

V(r) = g(h(r)),
(3.1.14)
K (r) = En(v) = vEn(v), h(r) = Eq(v).

The K~functions K (%) ; (r) (relative to h) are well defined by (3.1.14)
because &,;(v) is concave so that £/ ,(v) is monotone and is invertible;
they are positive definite and represent mean kinetic energies in the
envelope approximation. Note that we have used the original variable
T in place of the parameter ¢: in the energy picture there will be no
confusion.

What we have in (3.1.13) is a semi—classical approximation which is
valid whenever the potential V (r) is a concave transformation g(h(r))
of the potential h(r); if the transformation g is convex, then the in-

equalities are reversed and one obtains lower bounds-i.e.
. h
En 2 min {ES )+ V(r)}. (3.1.15)
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If the potential V(r) depends on various parameters, then the depen-
dence of the energies on these parameters is automatically given by
the approximation (3.1.5). A more general formulation of this geo-
metrical theory described in Hall’s paper [11], which allows also for

sums of soluble potential terms.

For our specific application in this thesis we now consider a smooth

transformation g of the pure polar potential h(r),
h(r) =sgn(g)r?, ¢> -2, q #0, (3.1.16)

which we shall need in Chapter IV.

Here the sign factor sgn(g) is included to guarantee that the potential
is attractive when ¢ < 0, that is to say, so that A’/(r) > 0. For most
physical situations the restriction ¢ > —1 is appropriate, but from
a mathematical point of view [4] we can allow ¢ > —2. We have (a

proof is given in Remark (b) below):
—A +vsgn(q)r? — E9(v) = v/ etV D (1), (3.1.17)

where the £(Q)( ) are the {n,[} eigenvalues of H = —A + vsgn(q)r9,
[l =0,1,2,3,..., is the usual angular momentum quantum number,
and n = 1,2,3,..., is a radial quantum number which enumerates the

discrete eigenvalues in each angular momentum subspace, that is
EDw) < €EDw), 1<n<n. (3.1.18)

For g > —2, g # 0, all these discrete eigenvalues exist [3].
From (3.1.6) and (3.1.17), we find that

KD (r) = (Pulg)/r)?, (3.1.19)
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where

2 1/q 1/2
Pu(q) = €@ )/ 2L g 5 s

2+g¢ 24+q
(3.1.20)
Consequently, (3.1.5) becomes:
o Ay [ Pri(g)\?
Eu ~ B () =min {(7£2) +V(n ], (3.1.21)

where

V(r)=g(h(r)), h(r)=sgn(g)r?,

and g has definite convexity,
~=< if g is concave,

~=> if g is convex.

By rearranging (3.1.20) we obtain the defining expression for the
£9(1), that is

£ (1) = sgn(a)n(q) [Pu(@PY/ P9, ¢> -2, ¢#0, (3.1.22)

where the function 7n(q) is defined by

@D
, g#0; n(0)=1 (3.1.23)

o= (g1

A useful interpolation formula is provided [15] b

[en+1— )" —(a+0]]", a=32307
(3.1.24)

Pulg) = [(r 4D+ 132

which is exact for ¢ = —1, 2, and for Sftl))(l).
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P,:(g) is smoother, less complicated, and easier to approximate than
5,(:,’) (1) [15]. The approximate values for Py;(g) given by (3.1.24) yield
the pure polar eigenvalues (3.1.22) to within 0.8% (usually much less)
for n,l < 5, and —0.5 < ¢ < 2.5. In the next section we shall see that
the functions Pp;(g) behave ‘nicely’ as functions of g. In particular,

they are monotone increasing.

Remarks:

a) The method of potential envelopes is employed to derive a com-

b)

plementary energy-bound formula (3.1.5) valid for all the discrete

eigenvalues. The index n of E,; has been chosen to start at n = 1.

Here we prove the relation

81(:11) (v) = U2/(Q+2)51(L<II)(1).

Suppose H = —A + vsgn(q) r(?, and 5,(:{) (v) are discrete eigen-

values of H, i.e.

H(r) = £, (v)9(r).
Now, let v = r/o, (6 > 0), #(y) = ¥(r), then

o _ a1
dr?2  dv? o2’
and,
1 A q q _8(‘1)
[_ = + vo9sgn(q) v ]¢— nl (V)9
i.e.

[ -A+ va"+2sgn(Q)'r"] ¢ =oED (v)g.
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d)

f)

If we take 092y = 1, then 02 = v~ 7+, and

[ - & +sea(@)r?]¢ = v D ()9, (3.1.29)
or equivalently
[ - A+sen(g)r?]s = €2 (1), (3.1.30)

Hence, we have £9 (v) = v?/ (a+2)£la) (1)

Whenever the trajectory function &x(v) is known for the kth
excited state of the base problem —A + v h(r), the corresponding
energy bound formula yields a bound on the kth eigenvalue E},
of the transformed problem —A + V(r), since the Comparison

Theorem applies to each eigenvalue separately.

It is of interest to note that the transformation function g does
not itself appear in (3.1.5), g is only used to establish the energy
bounds by its definite convexity.

It is easy to remember “~ =< if g is concave, and ~=> if g is
convex” because, for example, if g is concave, then the tangents
to V = g(h) lie above V, and we therefore obtain upper bounds;

similarly it is clear that we get lower bounds in the convex case.

If the convexity of g varies, we can still perform the minimization
in (3.1.5) which gives us a critical point 7. We can then deter-
mine the convexity of g(h) at A = h(7), and see if the tangential
approximation V®(r) = ¢'(h) (h(r) — A) + g(h) lies entirely on
one side of V(r). If these conditions are met, then we can again
be sure that E,; is an upper or a lower bound. Unfortunately, if
these conditions are not met, we cannot tell whether the approx-

imations are upper or lower bounds.
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ITI.2 The Procedure

A principal application of potential envelope theory is to exploit ex-
act solutions of the Schrédinger equation to approximate solutions of
intractable problems. It follows from the discussion in Section IIL.1
that the potential envelope method should be applied with great care
to the choice of transformation function g(k). In the usual procedure,
the basic guidelines are: the first thing we do is to choose the ba-
sis potential h(r) carefully such that H = —A + vh(r) corresponds
to an exactly soluble problem. Then we must choose the convex or
concave transformation g(h) of A which generates the new operator
H = —A +g(h), where g(h(r)) = V(r), whose eigenvalue we seek. In
order to be sure about energy bounds, we must study the transfor-
mation function g to determine its convexity. Once this analysis is
completed, the function g can be ignored since the eigenvalue approx-

imations are given by (3.1.5) and no longer involve g.

We should mention at this point that two different choices can be made
for V(r). Ideally one seeks a dual representation for the potential V()

in the form
V(ir)=a (hl (7')) = gz(hz(r)), (3.2.1)

where g, is convex, leading to a lower bound, and g is concave, leading
to an upper bound, without the use of a trial function. For example,

for the pure linear potential we can write

r=—(—r"1)71 = (y2)1/2 (3.2.2)

where
r=ag (hl (T’)) = —(hl (7‘))—1, hl('l‘) = —1"_1, (32.3)
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and
r=ga(ha(r)) = (ha(r))*?, ha(r) = r2. (3.2.4)

Clearly, g;"” > 0, for all hy(r) < 0; g2” < 0 for all hy(r) > 0. Hence
g1 is convex and g, is concave.

Naturally we look for basis potentials h;(r) and hs(r) that closely
resemble V(r), thus leading to good eigenvalue approximations. The

corresponding K-function K ,(l’;) (relative to h) are as follows,
—A +vh(r) — Eni(v), (3.2.5)

KLP(r) = Eni(v) — vEL(v), h(r) = EL,(v), (3.2.6)

nl

Since the basis potentials, by hypothesis, yield soluble eigenproblems
they have usually been discussed in some earlier published work. For
example, among the pure polar potentials, the well-known examples
of the Coulomb potential and the harmonic oscillator are given [14]

respectively by

h ~1 g(_l) UZ
(r)=—r"" &, " (v)= It l)?
I\ 2 (3.2.7)
S EP0) = (22
h(r) =r% — 8,(3) (v) = v7(4n + 2] — 1)
on 41— Ly2 (3.2.8)
- kP = (——=2)".

Meanwhile, in one spatial dimension we have, for the harmonic oscil-

lator
h(z) = 2> — KM (z) = (n — 1/2)?/2?, (3.2.9)
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and for the sech-squared potential [14]

1 n(n —1)

h = — h2 — K (k) =
(=) sech™(z) n (2) sinh? 2z sinh?

. (3.2.10)

wheren = 1,2,3,....

We now look at the question of critical points in (3.1.5). Usually
they are given analytically by the equation E'(r) = 0, where E(r) =
K 1(1’;) (r) + V(r),(r > 0), and the prime denotes differentiation with
respect the variable r. We may use any root—finding method to solve
the equation for 7; then substitute this 7 in E(r) to yield the eigen-
value bound E(7). The question whether E(7) is an upper or lower
bound depends on the convexity of g(h). Sometimes the bounds will
turn out to be rather weak. It may then be possible to improve the ac-
curacy by optimizing the bounds over classes of basis potentials. For
example, if we take the pure polar potential h(r) = sgn(g)r? (3.1.16)
as basis potential for V(r), a proper treatment would necessarily in-
volve the choice of an ideal value of the power g, our policy would
be to keep V' (r) fixed, and to adjust h(r), by varying q in order to
choose the optimal ¢ for each bound, whilst maintaining the appro-
priate convexity of g. We believe that the accuracy of our results may
be improved even further with a better choice of g. In Section IV.3

we will see this effect.

Remark:

All our general arguments apply in the same fashion for problems in
one dimension. (or, indeed, to problems in any number of spatial
dimensions). In one dimension, the power-laws f(z) = |z|? for ¢ < 0

require a special vanishing condition on the wave function at z = 0
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and consequently we cannot use families of such functions to model
a nonsingular potential because the problems have different Hilbert
spaces. Thus, for nonsingular potentials, hyperbolic envelopes (¢ =

—1) are not generally useful in one dimension.
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CHAPTER IV

A PERTURBED
HARMONIC OSCILLATOR

IV.1 The Potential V(r) = ar? + br?/(1 + cr?)

Since 1977 there has been much interest in the quantum potential

2
V(r)=ar®+ 1—%1'_ a,b,c>0, (4.1.1)

5
from both the physical and mathematical points of view, and a va-
riety of techniques have been employed to obtain approximate eigen-
values and eigenvalue bounds [16-31]. One of the earliest studies was
by Mitra [16] who calculated the ground state and first two excited
state energies (in one dimension) by using the Ritz variational method
in combination with the Givens-Householder matrix eigenvalue algo-
rithm. The physical interest in this potential arises in several areas,
as summarized by Mitra: in laser theory it arises out of the Fokker—
Planck equation for a single-mode laser; in field theory it provides
a simple zero-dimensional model possessing a nonlinear Lagrangian.
Unfortunately, little information is available in the context of three—

dimensional quantum systems with this potential.

In 1980, when Hall first introduced “The Method of Potential En-
velope”, he considered the potential (4.1.1) as an illustration of the
theory [1]. The results were obtained by an application of the simple
universal formula which gives Fy and Fj, (the subscripts refer to ”up-
per” and ”lower” bounds) directly in terms of the potential shape f.
In this paper [1] the energy of an N-boson problem was related to the
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