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Abstract

Bounds on the Diameter of Some Families
of Linear Congruential Graphs

Rogelio Pabros

A linear congruential graph (LCG) on n vertices, denoted by G(F,n) where F is a
set of linear functions, is a graph whose vertex set is {0,1,...,(n — 1)} in which two
vertices r and y are adjacent if y = f(z) mod n for some f in F. This family of graphs
is known to generalize the de Bruijn graph and to contain large graphs with diameter
smaller than those of known graphs with the same degree and order. However, no
explicit bounds on the diameter of these graphs have been known.

If the functions in F' have the same multiplier, then we call the graph uniform-
multiplicr LCG, or UM-LCG. The case when n = 27 and the functions have an odd
multiplier # 1 is studied. For |F| = 2, a classification according to connectivity is
given and an upper bound of order O(log n) on the diameter is obtained.

We then consider the case of |F| = 2 when the functions do not have the same
multiplier. When the functions are noncommutative modulo n, again we obtain an
upper bound of order O(logn) on the diameter of some of the graphs. When the
functions are commutative modulo n, we obtain a lower bound on the diameter which,

on the contrary, is of order O(y/n).
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Chapter 1

PRELIMINARIES

1.1 Introduction and Motivation

A distributed computer system is made up of processing elements (or processors) that
communicate with each other by means of physical links. A typical example is a local
area network that consists of several computing statious placed at short distances
and exchanging data information at very high speeds [2]. These distributed systems
have many properties that can be studied using graph models. In particular, each
processing element can be represented by a vertex of a graph and cach direct link
between two of these elements by an edge of the same graph. Hence, in the design
and implementation of distributed computer systems, the study of interconnection
networks in graph theoretical setting is an indispensable tool.

To develop realistic and feasible network models of these systems, a lot of consid-
eration is given to the switching mechanism used between a processor and a link, the
transmission delay between any two processors, and the reliability and fault tolerance
of the whole system. The switching mechanism should be relatively easy to install,
and since there can be thousands of switches to be used in the system, it is desirable to
use a uniform type, e.g. one that can attach a fixed number of cables to a processing
element. Correspondingly, the graph model should be regular. When one processing,

element communicates with another in the system, the closer they are, i.e. the less



number of intermediary processing clements between them, the faster the information
is exchanged. Thus to minimize the transmission delay, the distance between any two
clements should be small. This means that the graph used to model the intercon-
nection network should have a small diameter. Distributed systems should function
even if there is an accidental failure of some of its elements. For example, in case of
a breakdown of a number of processors, the whole system should be able to continue
its task. To realize this, the graph representing the interconnection network should
be highly connected.

Because of this relation between computer systems and graph theory, the problem
that has been the subject of several scientific papers is to find a large graph to be used
as an effective interconnection model with the desired properties, particularly small
diameter, regularity and high connectivity. Hypercubes and de Bruijn graphs, for
example, have been shown to have interesting properties, such as low diameter, high
connectivity, and recursive structure. The Moore bound, which gives the minimum
diameter that a graph of a given order and degree can have, has never been achieved
for large graphs, although a randem regular graph has been shown to have a lower
bound on its diameter which is fairly close to the Moore bound [8].

Recently, a new family of graphs called linear congruential graphs, or LCG for
short, was proposed in [21]. It has been shown in [21] that it contains large graphs
of low diameter. A subfamily of LCG called disjoint consecutive cycles {22], abbrevi-
ated to DCC-LCG, contains networks that are k-regular (for any positive integer k),
larger than other graph constructions of the same degree and diameter, of maximum
connectivity for even degrees, and have a recursive property reminiscent of hyper-
cubes. However, the results concerning the diameter were obtained by calculating
it for specific graphs, and the question of a general bound on the diameter of these
graphs was left open. Using the Moore bound (8] for graphs with n = 2? vertices and
degree 4, the diameter of LCG is greater than or equal to logs 2P —1/2. Observing the
zesults in [21] and {22], it is reasonable to conjecture that the diameter of the LCG
in general, and of the UM-LCG in particular, has a logarithmic bounc.

The main contribution of this thesis is the study on the bounds on the diameter



of some subfamilies of LCG. We define a subfamily of LCG cal'ed uniform-multiplier
L.CG, or UM-LCG for short. We study some of the properties of giaphs in this
subfamily and give an upper bound on their diameter which is ¢ order O(log n),
where n = 27 is the order of the graph. We also give upper and lower bounds on the
diameter of other graphs in the LCG family, and generalize the recursive property of
the LCG.

For the rest of this chapter we will review some graph theoretic terms, give the
formal definitions and sxamples of LCG and UM-LCG, and cite some graph network
constructions related to UM-LCG's. Chapter 2 deals with the classification of UM-
LCG'’s with 2 generators and ord.r 2P according to connectivity. Chapter 3 introduces
some operations on the vertices of UM-LCG’s. Chap‘er 4 uses the results in the
preceding two chapters to obtain our main results. And lastly, Chapter 5 discusses the
general cases of LCG’s with 2 generators. When the generators are noncommutative,
the results of Chapter 4 are used to obtain the diameter upper bound of some graphs.
When the generators are commutative, the diameter lower bound is obtained. The

generalization of the recursive property of LCG is also given.

1.2 A Review of Definitions from Graph Theory

Using the definitions and terminologies of [7], we define a graph (' to be an ordered
triple (V(G), E(G), ¥) that consists of a nonempty set V(G) of vertices, aset £((),
disjoint from V(G), of edges and an incidence function ¢ that associates with
each edge of G an unordered pair of (not necessarily distinct) vertices of G.

If e is an edge and u and v are vertices such that ¢g(e) = uv, then ¢ is said to join
v and v, and the vertices u and v are called the ends of e. Moreover, we say that the
ends of an edge are incident with the edge, and vice versa. An edge with identical
ends is called a loop and an edge with distinct ends is called a link. A graph is
simple if it has no loops and no two of its links join the same pair of vertic:s.

A graph H is a subgraph of G, written H C G if V(H) C V(G), E(H) € V(()
and 1y is the restriction of ¥ to E(H). If H is a subgraph of G such that V() C



V(G)or E(H) C E(G), we write H C G.

The degree d(v) of a vertex v in a graph is the number of edges of the graph
incident with v, each loop counting as two edges. A graph G is k-regular if d(v) = k
for all v e V(G). If for some k a graph is k-regular, then it is a regular graph.

For any positive integer k, a walk of length k in a graph G is a finite non-null
sequence W = we1v;€2v; -+ - €xv, whose terms are alternately vertices and edges such
that for 1 < ¢ < k the ends of e; are v;_; and v;. We say that W is a (v, v)-walk
traversing vo, €1,V1, . - . , €k, Uk and we call vo and v, the origin and terminus of W,
respectively. If the edges €;,¢€,,---, e, are distinct, then W is called a trail. If, in
addition, the vertices vg, vy, -+, vx are distinct, W is called a path. The walk W
is closed if its origin and terminus are the same. If W is a closed trail such that
vy, U1,...,Vk~ are distinct, then W is called a cycle of length £.

In this paper we will use the term path a little bit loosely in the sense that
we will allow it to mean a walk. In this regard we define a cycle to be a closed
path. Two other notations that we will use for a (v, v&)-path are (vg,vy,...,vk) and
Vg =3 V] = + »+ — Vg,

A Hamilton path of G is a path that contains every vertex of G, and a Hamilton
cycle of G is a cycle that contains every vertex of G. If the graph G contains a
Hamilton cycle, then it is said to be hamiltonian.

Two vertices u and v of G are said to be connected if there is a (u,v)-path in G.
The vertex set V(G) can be partitioned into nonempty subsets V;(G), V2(G), ..., Vo(G)
such that two vertices u and v are connected if and only if both v and v belong to
the same set V;(G). The subgraphs whose vertex sets are V1 (G), Va(G), ..., V,(G) are
called components of G. If n =1, then G is said to be connected.

If vertices u and v are connected in a graph G, the distance between u and v
in G, denoted by dg(u, v) or simply by d(u,v), is the length of a shortest (u,v)-path
in G. If there is no path connecting u and v, we define d(u,v) to be infinite. The
diameter of G, denoted by Diam(G), is the maximum distance between any two

vertices of GG.



1.3 Definition of LCG and UM-LCG

We now give the formal definition of the two families of graphs studied in this thesis.

Definition 1.3.1 [21] Let N denote the set of nonnegative integers. Let n be a
positive integer and F = {f(r) = ar + ¢; : 1 < i <t, and aj,¢, € N} be a sct
of linear functions. A linear congruential graph G(F,n) on n vertices is the
graph whose verter set ts V = {0,1,...,(n = 1)} in which each verter & is adjacent
to fi(x) mod n for every i. The functions in F are called the generators of G(F,n)
and in turn G(F,n) is said to be generated by the functions in F.

We abbreviate the word linear congruential graph by LCG. Using the terminolo-
gies of Knuth [18],if f(x) = az+b is a generator of an LCG, we call a the mulitiplier

and b the constant of the function f.

Definition 1.3.2 A uniform-multiplier LCG on n vertices, o UM-LCG for

short, is an LCG on n vertices whose generators have the same multiplier.

Figures 1.1 and 1.2 give us the diagrams for the graphs G, = G({z+19,7z+1},30)
and G2 = G({5z + 3,5z + 11},32). We also see that G({z 4+ 19},30) C G, is a
Hamilton cycle and that G({7z + 1},30) C G; is not connected. On the other
hand both G({5z +3},32) and ({5 + 11}, 32) are Hamilton cycles of G;. Morcover,
the generators fi(z) = 5z + 3 and fy(z) = 5z + 11 commute with cach other, i.c.
fifo(z) = fafi(z) = 25 + 26 mod 32, which may not be true if the order of G is
n > 32. Both graphs G; and G; are said to be cyclically symmelric because we can
move each figure in a cyclical (clockwise or counterclockwise) fashion, with a turn of
less than 360 degrees, and come up with one identical to the original. For example,
G: can be turned such that vertex 0 assumes the position of vertex 3 which assumes
the position of verlex 18, etc., and the resulting graph is G, itself.

For suitable multipliers and constants, LCG’s are shown in [22] to be regular and
of degree 2¢. Although LCG's that are of odd degrec can also be defined, we will not

consider them in this paper.



Figure 1.1: G; = G({z +19, 7z + 1}, 30)



8
11
26
5x+3
— 5x+11

Figure 1.2: Gy = G({5z + 3,5z + 11},32)



In particular, our study is mainly on UM-LCG’s with 2 generators on n = 27
vertices where p is any positive integer. This is a good start in the study of this
family of graphs because a UM-LCG with 2 generators is always contained in a UM-
LCG with more than 2 generators, and in general, the results on 27 vertices may be
extended to mP vertices, where m is a prime number, which in turn may be extended to
m}'m}? . .. m}* vertices, where my,m,, ..., my are prime and py, ps, . . . , px are positive

integers.

1.4 Related Constructions

UM-LCG's are an interesting class of LCG graphs. Some of them are not entirely new
subjects of research and have been studied extensively, with some in slightly different
context. In this section we will cite some of the network constructions closely related
to UM-LCG’s. But first let us review the definition of a directed graph.

As in [7] we define a directed graph D as an ordered triple (V(D), A(D), ¢p)
consisting of a nonempty set V(D) of vertices, a set A(D), disjoint from V(D), of
arcs, and an incidence function p that associates with each arc of D) an ordered
pair of (not necessarily distinct) vertices of D. If a is an arc and u and v are vertices
such that ¥ p(a) = (u,v), then a is said to join u to v. We abbreviate ‘directed graph’
to digraph.

We can have a directed version of an LCG by replacing each of its edges by an
arc in the following manner: if uv is an edge such that v = f(u) mod n, where
f(z) = ar + b is a generator of the LCG, then it is replaced by the arc (u,v). We
shall call the resulting digraph LCD. We can conversely say that an LCG is an

undirected version of an LCD.

1.4.1 Loop networks and circulant graphs

Loop networks are graph networks with at least one Hamilton cycle [2]. We observe

that some LCG'’s are loop networks because apart from those with hamiltonian cycles



— 15x+14

— 15x+1

Figure 1.3: G({15z + 1,15z + 14}, 32)

there are connected LCG’s without hamiltonian cycles. An example is the UM-
LCG on 32 vertices with generators fi(z) = 15z +1 and fy(z) = 15z + 14 whose
diagram appears in Figure 1.3. The multiple fixed step digraph denoted by
G(n; sy, S2,...,8k), is a digraph on n vertices 0, 1, ..., (n = 1) where vertex « is
adjacent to k other vertices z + 83,z + S2,...,2 + s mod n. The undirected version
of this digraph, denoted by G(n; £s1,%s3,...,+s4), is called multiple fixed step
graph, also known as circulant graph (see [5]). Wesee that these areidentical to the
UM-LCD and the UM-LCQG, respectively, on n vertices with generators f,(x) = z+s,,
1 =1,2,...,k, where the uniform multiplieris 1.

The UM-LCG G({z+1},n), also known as distributed double loop computer
network (19, 27, 28] has a diameter of |n/2]. The UM-LCD G({z + 1,z - 2},n),




generators order diameter
e+ 1,z 43¢ 3t2 +1 3t-1
t+ 1,z -3t 3t2 + 2 3t-1

e+ 1,243+ 13242041 | 3t
g+ 1,43+ 2|32 +3t+1 | 3t
t+1,z-3t—2 |32 +4t+1 | 3t
z+ 1,243+ 3|32 44t+2 | 3t+1
g4+ 1, z4+3t+4 |32 4+51+2 | 3t+1
e+1,z-3t+4 |32 4+6t+2 | 3t+1

Table 1.1: Diameters of some LCD’s

also known as daisy chain loop, has diameter [n/3] +1 (see [12]). The diameter
of UM-LCD G({x + 1,2 + /n},n) is approximately 2,/n (see [29, 24, 23, 25]). In
fact, the diameter is exactly 2y/n — 2 (see [29]). Some UM-LCD’s given by Fiol
et al [10] and cited by Bermond et al [2] are listed on Table 1.1. The diameter
upper bound for the UM-LCD G({z + 1,z + s},n) has been found by Hwang and
Xu (16]. For any s and for n > 6348, the diameter of this graph is less than /3n +
2v/3n + |3vn— 1/y/n) — 3|/n/3]. Erdés and Hsu [9] proved that for any € > 0
there exists ng(€) such that if n > ng(e) then there exists a number s such that
Diam(G({z + 1,z + s},n)) < (1 + €)v3n.

In the case of the UM-LCG G({z + s1, = + sz}, n), the minimum diameter over
s1 and s; is found to have been greater than or equal to [(v/2n =1 — 1)/2] (see
[3, 6,29, 30]). This lower bound can be achieved by taking s; = [(v2r —1 — 1)/2]
and s; = s; + 1 (see [6, 3, 1]). Another interesting and important result is in [3, 30],
that Diam(G({z + 51,z + $3},2t* + 2t + 1)) =t if and only if s; = ¢p mod n and
s2 =(t+ 1)p mod n where p < n and gcd(p, n) = 1. For the more difficult problem of
solving min, Diam(G({z + 1,2+ s}, n)), Hsu and Shapiro {14] showed that an upper

bound is given by (/n/2+ Wn/8+ 2.

10



We observe in the preceding examples that the diameter upper bound for a UM-
LCG with multiplier a = 1 is in the order O(3/n) + O(¥/n). In contrast, we will
show later that for many UM-LCG's with multiplier a # 1 and with order n = 2" the

diameter upper bound is in the order of O(log, n).

1.4.2 The k-ary de Bruijn graph and related networks

The r-dimensional k-ary de Bruijn graph, or DBG(r, k) for short, is a 2k-regular
graph with k" vertices, each of which corresponds to an r-digit number xyzy-- -,
with 0 < zy,29,...,2, < (k — 1) (see (19, 13]). The vertex x;ry---x, is adja-
cent to yr1Z2- - Tyr~1 and to zz3- T2z, where 0 < y,2 < (k —1). If each edge
(z1z2 -+ T,,T2x3 - x,2) is changed into an arc, then we have the k-ary de Bruijn
digraph, abbreviated DBD(r, k), where each vertex has indegree and outdegree equal
to k.

We observe in the DBD(r, k) that two vertices zyx5 -+ 2, and ;- - - Y, are con-

nected by a path

T1Z2' Ty D T TelYt > T3 TenYo = .0 2 Telile Yt P YIY2 Y

which is of length r, and, in addition to this in DBG(r, k), by a path

122 Ty — YrT1T2° °  Troy = YraYrT1 " Tr—2 7 oo > Y2 Yr T
- Nl Y

which is also of length r. Hence, both D BG(r, k) and DBD(r, k) have a diameter of
r = log, n. This is the least possible for the case of a regular digraph with the same
order, indegree and outdegree as the DBD(r, k) [19].

The generalized de Bruijn digraph has been defined in many different ways.
The definition of Reddy et al [26] and Imaseh and Itoh [17] fits that of a UM-LCD
of order n with generators f;(z) = kz + 1, where 0 < i < (k — 1). The digraph
DBD(r,k) is obtained when n = k", while the generalized de Bruijn graph is

obtained if each arc is changed to an edge.

11




The r-dimensional k-ary Kautz graph is a subgraph of the DBG(r,k). The
main difference is that in each vertex z;z;-- - z, no consecutive digits are the same
[4]. There is a definition for the generalized Kautz digraphs proposed by Imaseh
and Itoh [17] which can be presented as a UM-LCD on n vertices with generators
filz) = —kz — 1, wherel < it < k. We obtain the Kautz digraph by setting
n = kP 4+ kP! for some D, in which case the diameter is D.

Both the generalized de Bruijn digraph and the generalized Kautz digraph have in-
and outdegree equal to k and diameter at most [log; n]. We can define an undirected
version of these digraphs by replacing each arc by an edge, each vertexhaving a degree

equal to 2k. The diameter of these undirected graphs is still of order log n (see [2]).
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Chapter 2

CLASSIFICATION OF
UM-LCG’s

It is not surprising that some aspects of LCG’s can be studied using the properties
of linear congruential sequences and functions. So the first part of this chapteris a
review of their definitions and properties. A natural extension of these properties is
apparent on LCG’s with one generator and are discussed in the second section. We
extend these properties furtherin Section 2.3 to discuss the classification of UM-LCG’s
with two generators. We will give tables to summarizethe results in Sections 2.2 and
2.3.

The scope of our study of UM-LCG’s is restricted to those with order n = 2" and

with a maximum of 2 generators.

2.1 Linear Congruential Sequences and Functions

Let N denote the set of natural numbers and let n € N. If a,b€ N, wesay that ¢ is
congruent to b modulo n, written ¢« = b mod n, if n|(a — b). If n f(a — b), we say
that ¢ and bare incongruent modulon. A complete system of residues modn is
a set of integers such that every integer is congruent modulo n to exactly one integer

from the set.
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Let us denote by Z, the ring of least nonnegative residues modulo 7, which is
precisely the set {0,1,...,n — 1} equipped with the operations of addition and mul-
tiplication modulo n. Z, is a commutative group under addition modulo n, while
the set U, = {u € Z,| ged(u, n) =1} of units in Z, is a commutative group under
multiplication modiulo n. We denote the additive inverse of m € Z, by —m, while
the multiplicative inverse of u € U, by u~!. In particular, if n = 2P then U, consists
of all the odd integers in Z,.

A function f(z) = ar+b modnis called a linear congruential function on
Z, where « € N isthe multiplierand & € N the constant of f. Given zq € Z,, this
function produces a linear congruential sequence of integers zo,7;, x2,... from
Z.,where ;41 = ar, + bmod nn. The number zo € N is called the starting point of
the sequence which we denote by {az, + bmod n;zo € Z,}. We say that f forms a
sequence of period A, where 1 <k < n,if k is the least integer such that z;4x = ;
for some i. In particular, if k = 1, we say that f generates a loop at r;.

We have the following proposition for an even multiplier of a linear congruential

function.

PROFP'OSITION 2.1.1 Let n =2 and a,b€ N. Ifa is even, then

(i) f(z) = az +bmodn forms ezactly one loop, which is at z = (a — 1)"(—0)

mod n.

(ti) f(z)= ax+bmodn does not form a sequence of period greater than 1.

Proof. (i) If ais even,then 2= f(z) =az +bmod n® ax —z= —bmod n &
zfa—1)=-bmodn < z=(a —1)"1(—b) mod n.

(it) Suppose f forms a sequence of period k, for some integer ¥ > 1. Then
¢ = f¥(z) = a*r + b(a - 1) (a* - 1) mod n has a solution. Solving for z, we have
(a*-1)x = —b(a—1)""(a*~1) modn & z = —b(a-1)"? mod n sinceged(n,d*-1) =
1. But by (7) this is precisely the point where f forms a loop. Hence k=1, a

contradiction. ]
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The pieceding proposition guarantees that if a is even then the sequence {ar, +
bmod 7; zo} terminates intoa loop at r = (a-1)"1(~b) mod n iur any starting point

79 € Zn. Toillustrate this, let us look at the following example.

Example 2.1.1 Letn = 16,a = 6,b=3. Wehave (a—1)"1(=b)= (13)(13) = 16 =

9mod 16. The elements of the sequence {6z, + 3 mod 16; 4} are the following:
1. whenzo =0:0,3,5,1,9,9,9,...
2. whenry =1:1,9,9,9,...
3. when o = 2: 2,15,13,1,9,9,9,...
The function f(z)=6x 4 3 mod 16 forms a loop at r = 9. O

If @ isodd thenitis of the forma=2'k+10or a=2'k —1for somei> 2, ke N
where &k isodd. Inother words, (a -1) is either divisible by 4 or divisible by 2 but
not by 4. We will cite a theorem from [11] in order to prove the next proposition for

an odd integer a.

THEOREM 2.1.1 [11] The linear congruence az = bmod n has a solution if and
only if ged(a,n)|b. If there is a solution, then there are exactly s = ged(a, ) incon-

gruent solutions. n particular, if s=1, then the congruence has a unique solution.

This theorem tells us that for n =27, a has inverse modulo n (which is unique up

to modulo n) if and only if a is odd.

PROP OSITION 2.1.2 Let f(z) =ez + bmod 27 and a, b€ N such that a is odd.
Leti,k € N withi>2 and k odd. Ifa = 2'k+ 1, then

(i) f does not form a loop if and only if 2'fb.
(i) f forms 2 distinct loops if and only if 2'|b.
i) f does not form a sequence of period 2 if and only if 2'[b.
q
(iv) f forms at most 2'*! distinct sequences of period 2 if and only if 2'|b.
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Ifa=2%k-1, then
(v) [ does not form a loop if and only if b is odd.
(vi) [ forms 2 distinct loops if and only if b is even.
(vii) [ does not form a sequence of period 2 if and only if b is odd.

(viii) f forms at most 2'*! distinct sequence: of period 2 if and only if b is even.

Proof. Let n = 2P. The function f forms a loop if and only if r = az + bmod n
or z(a ~ 1) = —b mod n has a solution. By Theorern 2.1.1, there is a solution if and
only if D = ged(a — 1,n)|b. If a is of the form @ = 2'k + 1, then D = 2°. Hence, we
have (i) and (ii). If a is of the form a = 2'k — 1, then D = 2. Hence, we have (v)
and (17).

Consider the congruence ¢ = f*(r) = a(az+b)+bmod n = a’z+b(a+1) mod n,
or equivalently, z(a?— 1) = ~b(a +1) mod n. Let D' = gcd(a?~1,n). If e = 2'k + 1,
then D' = ged((a — 1)(a + 1),n) = ged(2'k(2'k + 2),n) = 2'+!, By Theorem 2.1.1,
there are 2'*! solutions if and only if 2'*? divides —b(a + 1) = —2b(2"~'k + 1), i.e. if
and only if 2'|b. Hence we have (iii). However, if y is a solution, it can also mean
that y = f¥(y) mod n for all k. Hence we can only conclude assertion (iv), that f
forms at most 2'*! distinct sequences of period 2. Similarly, if a = 2'k — 1, then
D' = ged({a = 1)(a +1),n) = gcd(2(2 'k — 1)2°k,n) = 27! and —b(a + 1) = —2'bk.
Hence, there is a solution to the congruence x = f*(z) mod n if and only if 2¢+1|--27bk,

i.e. if and only if & is even. Thus we have (vii) and (viit). !

To illustrate assertion (iv) of Proposition 2.1.2, we have:

Example 2.1.2 Suppose a = 2%(3) +1 =13, b = 8, and n = 16. We have gcd(a® —
I,n) = ged(168,16) = 8 dividing b(a + 1) = 8(14). By Proposition 2.1.2, f(z) =
13r + 8 mod 16 forms at most 8 sequences of period 2. Indeed, the following are the

sequences formed by f:
(0,8,0,...).(8.0,8....),(1,5,9,13,1,...),
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(2,2,...0,(3.15,11.7,3,.. ). (4.12.4,...),
(12,4,12,...),(6,6,...),(10,10,...),
(14,14,...).

Only four of these sequences are of period 2. Four others are loops. ¢

The following is a special case of a theorem in 18] for n = 2P. It gives the require-

ments for a linear congruential function modulo n to form a sequence of period n.

THEOREM 2.1.2 [18] Let n = 27 with 2 < p € N. The linecar congruential
sequence formed by the function f(z) = ar + b mod n has a period n if and only if

(i) b is odd, and

(ii) (a — 1) is a multiple of 4, i.e. a = 2k + 1 for some i 2 2 and positive odd

integer k.

By this theorem we can always say that if a is odd and of the form a = 2'k — I,
i.e. if a — 1 is divisible by 2 but not by 4, then f(r) = az 4+ b mod n does not form
a sequence of period n, hence it must form one of a lesser period. To illustrate this,

we have the following examples.

Example 2.1.3 Since 5 = 22(1)+1 and 3 is odd, the function f(z) = 5z +3 mod 16

forms a sequence of period 16. With starting point zo = 0, the elements are:
0,3,2,13,4,7,6,1,8,11,10,5,12,15,14,9,0,...
o

Example 2.1.4 Since 7 = 23(1) -1, f(z) = 7z +3 mod 16 does not form a sequence
of period 16. In fact, the sequences it forms are all of period 4. With starting point

Zgo, these sequences are:
1. when 20 =0: 0,3,8,11,0,...
2. when zp =1: 1,10,9,2,1,..
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3. when zo = 4: 4,15,12,7,4,...

4. when z¢ = 5: 5,6,13,14,5,...

2.2 Linear Congruential Graphs with One Gen-

erator

By definition, a linear congruential graph G(F,n) is generated by the elements of a
set F of linear functions. If we take any f € F', where f(z) = az +b, and consider the
subgraph G = G({f},n) of G(F,n), we see that there is a natural association between
G and the linear congruential sequence S = {az, + b mod n;zo € Z,} formed by f.
In particular, for any starting point xo, each element z; of S corresponds to a vertex
z, of G, and each pair (z;,z;4+;) of consecutive elements z, and x,4; of S corresponds
to an edge z,2,4; of G where z;;; = f(z;) mod n. Conversely, each vertex z and
cach edge zy in G such that y = az 4+ b mod n correspond to an element and a pair
of consecutive elements, respectively, of a linear congruential sequence S formed by
f. In general, if z,,x,41,...,Zi4k are consecutive elements of .S, then there exists a
corresponding path in G that traverses the vertices ,, Zi31,.. ., Zitk, in that order.
In this regard, § itself corresponds to a walk in G. Hence, if S is a sequence of period
k, it corresponds to a walk with a cycle of length k in GG, e.g. a loop formed by f
corresponds to a loop in G. Therefore, in studying LCG’s with one generator, the
properties of linear congruential sequences are an important tool.

The proposition and the last theorem in the preceding section were about linear
congruential sequences. In this section we give their versions for LCG’s with one

generator.

PROPOSITION 2.2.1 Let G = G({az + b},n) where n = 2°,q,b € N. Ifa is

cven, then
(i) G has ezactly one loop which is located at the vertez z = (a —1)"!(—b) mod n.
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{(i1)) G contains no cycle of length > 2.

Proof. (i) By Proposition 2.1.1 the linear congruential function f(r) = ax +
b mod n forms one and only one loop at ¢ = (a — 1)"'(=b) mod n. This loop, as a
sequence (z.7,...), corresponds to a loop at the vertex of the same label in G.

(ii) By Proposition 2.1.1 there is no sequence formed by f(z) = ar+bmod n that

is of period greater than 1. Hence G contains no cycle of length 2. O

Recall that a simple graph is one that has no loop and no cycle of order 2. The
preceding proposition tells us that if a is even then G = G({ax + b}, 27} is not simple
because it contains a loop. However, it is connected because each sequence formed
by f(z) = ax + b mod n terminates into the loop. When a is odd, the following gives

the requirements in order for G to be simple.

PROPOSITION 2.2.2 Let G = G({az + b},2") where a is an odd number and b
is an integer. Let i,k € N such thati> 2 and k is odd.

(i) If a is of the form a = 2'k + 1: G is a simple graph if and only if b is odd or b
is of the form b = 27h for some j,h € N such that h is odd and j < 1.

(ii) If a is of the form a = 2'k — 1: G is a simple graph if and only if b is edd.

Proof. (i) By parts (i) and (iii) of Proposition 2.1.2, G does not have a loop
and cycle of period 2 if and only if 2 does not divide b. This leaves us with the two
possibilities: b is odd, and b factors into 2’k, where j < 7 and h is odd.

(ii) follows directly from parts (v) and (vii) of Proposition 2.1.2. O

The linear congruential graph G({f},n) is connected if and only if every sequence

formed by f has period n. Rephrasing Theorem 2.1.2, we have:

THEOREM 2.2.1 [18] Let a be an odd integer. Then G({az +b},27) is connccted
if and only if b is odd and a = 2'k + 1, where i,k € N with i > 2, k odd.

Thus far we have explored all the possibilities regarding the connectivity and

simplicity of G = G({az + b},27). If a is even, then G is connected but not simple.
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G({az + b}, n)

b a=2%k+1 a=2k~-1
odd Simple Simple
Connected Not Connected
even | (b=2h,j <i) | Not Simple
Simple Not Connected
Not Connected
(b=2h,j > i)
Not Simple

Not Connected

Table 2.1: Classification of G({az + b},n) according to simplicity and connectivity

If a is odd, we summarize the results in Table 2.1 where n = 2P, ¢ > 2, 7 € N and

h, k are odd integers.

2.3 UM-LCG’s with Two Generators

Let f(r) = ax + b mod n be a linear congruential function on Z,, where n = 2°.
If there exists a linear congruential function g(z) = cz + d mod n on Z, such that
f(g(x)) = g(f(x)) = z mod n for all 2 € Z,, then we say that f is invertible and
that g is the inverse function of f on Z,. We observe that if g is the inverse of f
then f is the inverse of g on Z,. We sometimes write the inverse of f as f~!.

For g to be the inverse of f, we must have solutions for ¢ and d in terms of a,
b and n in the congruence z = f(g(z)) = acz + ad + b mod n that also satisfy the
congruence r = g(f(x)) = acz + bc + d mod n. These solutions exist if and only if
a is a unit in Z,, which is true if and only if a is odd. Therefore f is invertible if
and only if a is odd, in which case we have ¢ = a ' modn and d = ~a~'bmod n.

Since the values of ¢ and d are unique up to modulo n, it is clear that the inverse g
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of f is also unique up to modulo n. We observe that if g is the inverse of f on Z,,
then G({f},n) = G({g},n). We shall say that two invertible functions f; and f, are
distinct modulo n if f; £ f, mod n and f~! # f; mod n.

We restrict our study of UM-LCG to thos: whose generators are invertible and
have a multiplier a not equal to 1. We will see in the next chapter the importance of
the existence of the inverse of a generator in the calculation of the diameter bound.
We will not cover the case when the multiplier is equal to 1 as there have already
been studies made on the subject (See Bermond et al [2] for a survey).

In this section we will classify the two-generator UM-LCG according to its con-
nectivity. The parity of the constants of the generators and whether a is of the form
2'k 4+ 1 or 2'k — 1, where k is odd and i > 2, are the two most important factors
to be considered in the classifications. Another factor that may also be important is
the classification of the LCG generated by each of the generators, as shown in the

following proposition.

PROPOSITION 2.3.1 Let G = G({ 1, f2},n), G1 = G({f1},n) and Gy = G({ [},
n) be LCG’s where fi and f, are linear functions. Then G is connected if either (7,

or Gy is connected.

Proof. It is easy to see that V(G) = V(G,) = V(G;) and E(G) = E(G)UE(G,).
Hence, a path in G; or G, is also a path in G. This means that if vertices x and y

are connected in Gy or G, then they are connected in G. a

Remark 2.3.1 We observe that the above proposition is true in general for any
n € N. In particular, for n = 2P, G is connected if at ieast one of the generators has

an odd multiplier of the form 2'k + 1 and an odd constant.

When both G, and G, are not connected, it is possible that G is not connected,

as shown in the following:

PROPOSITION 2.3.2 Let f; = az+b and f; = az + ¢ be distinct invertible linear
functions on Zy» where a is odd, and b,c are even. Then G = G({f1, f2},2") is not

connected.
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Proof. If £,44, ZTeven € V(G) such that 2,44 is odd and z..en is even, then fi(Zeven)

and fi(Zeven) are even and f1(zoda) and f2(z,qq) are odd. This means that G is made
up of at least two components, one that is composed of vertices which are even and
another one that is composed of vertices which are odd. In other words, there are no
edges in G that are incident to a pair of vertices of different parity. Hence, G is not

connected. 0

If both Gy and G, are not connected, it may still be possible for G to be connected,
particularly when the multiplier is of the form 2'k ~ 1. For instance, as shown on
Figure 2.1 G({11z + 1,11z + 3},16) is connected although G({11x + 1},16) and
G({11z+3},16) are both not connected. In Proposition 2.3.3 we will give the criteria
for a UM-LCG G to be connected even if G; and G, are not. But first let us consider

the following theorems used in the proof of that proposition.

THEOREM 2.3.1 [20]. If gcd(a,n) =1, then the period of the sequence {az; +
bmod n;zy € Z,} is the period of the sequence {y; + 1 mod (n/d);yo = 0} where
d = gcd(n,zo(a — 1) + b).

THEOREM 2.3.2 [15). Let Z denote the set of integers. Every subgroup H of the
additive group Z is cyclic. Either H= (0) = {0} or H = (m) = {mt:t € Z}, where

m s the least positive integer in H.

PROPOSITION 2.3.3 Letn = 2%, a,b€ N be odd and d = 2’h where j >0 and h
isodd. Let G = G({f1, f2},n) be an LCG with distinct generators f; = ax+band f; =
az +b+d whose inverses are g; = a”'z —a~1b and g, = a~ 'z —a"1(b+d), respectively.

Define A = {[f2¢1]'(0) mod n : t = 0,1,2,...}, ;1(A) = {g1{f2¢1]}(0) modn : t =
0,1,2,...}, and A* = AU g:(A). Then

(i) A= {2tmodn:t=0,1,2,...} and |A| = 2°77. Hence, if d is odd, i.e., if
7 =0, then A =V(G).

(it) gi(A) = {g1(27t1) + 2t mod n : t;,t, € N} ard |g1(A)| = |A|.
(i) AN gi1(A) = Q. and hence |A*| = 2|A| = 2P77%) | forj > 1.
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Figure 2.1: (a) G({11z + 1},16); (b) G({11z + 3},16); (c) G({11z + 1,11z + 3}, 16)
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(iv) Fora=2'k—1 € N wherei > 2 and k is odd, and and for j > 0, the elements of
A", together with the edges in G that are incident with them, form a component

of G if and only if dlb(a+ 1), i.e. 7 <1i.

(v) Fora =2k —1¢€ N wherei > 2 and k is odd, G is connected if and only if
d = 2h.

Proof. (i) For any z, [f29:1)(z) = ¢ + d mod n. Hence [f,61]'(0) = td mod n
for any nonnegative integer t. So the elements of A are those of the sequence {z; +
d mod n;zo = 0}. By Theorem 2.3.1, the period of this sequence is the period of
the sequence {y, + 1 mod m;yo = 0} where m = n/gcd(n,d) = 2°~7. Since this
period is precisely 2?77, we must have |A| = 2°P~7. We can think of the elements of A
as numbers forming a cyclic subgroup of Z,. Since 27ht mod n € A for any integer
t, when ht = 2°~7 + 1 mod n, i.e. when t = 2?74~ 4 h~! mod n, we must have
2ht = 2/(2777 +1) = 22 mod n € A. This means that the smallest positive element
of Ais 27. By Theorem 2.3.2, A = (2’) = {2?t{mod n:t=0,1,2,...}.

(1) From (i), A= {2t mod n : ¢ € N}. So we have g;(A) = {¢:1(2’t) modn : t €
N}. For any t1,t; € N, |g:1(27t:) — g1 (212)] = |@”1(27t1) —a~'b— a1 (2/ty) + a~'b| =
l[a='2i(t; —t3)| = 27|a~*(t; — t2)|. Hence, if 2,y € g1(A), then |z — y| is a multiple of
27,

Let y € N and r = a7}(2’t) — a”'bmod n € g,(A) for some t. Then |z - y| =
2’s mod n for some s = a7Vt ~a"Vb—y = +Psmodn = y = a2t —a" bt
2smod n = a™'(2’(t + as)) — a”'bmod n. Hence, if r € g;(A) and |z — y| is a
multiple of 27, then y € g,(A).

That |gi(A)| = | A| follows from the fact that g, as a linear function is a bijection
on Zy.

(iii) Suppose AN g(A) # ©@. Then by (i) and (ii), there exist t,t5,t3 € N
such that 2t} = ¢,(2t2) + 2tz modn & 0 = ¢,(27¢;) + 2(t3—t)) modn & 0 €
91(A) < there exists t € N such that 0 = ¢;(2't) = ¢~ }(2t) +a bmod n & a~lb =
—a” Y (2)modn & b= —2tmodn & bis even, which is a contradiction. Hence,
ANg(A) = Q. By (i) and (ii), we have |A*| = |AU g1(4)] = |A| + lg1(4)] =
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2P=1 4 2P=1 = 2P-i) for j > 1,

(iv) Each z € A™ is of the form [f2¢1]'(0) mod n € A or g1[f2g1)*(0) mod n € g1(A)
for some ¢t € N. We would like to show that A* is closed under fy, fa, g1, and g3 if
and only if d|b(a +1). We take note that d|b(a +1) & 27h|2'kb & 2|2'hbh™ & j < |.
Moreover, dib(a +1) ¢ d|b(a + 1)a™! = b(a™! + 1); hence, d|b(a~! + 1) & j < 1.

Suppose = = [f201)'(0) = tdmodn € A. Then for some s € N, fi(x) =
Qilf201)°(0) modn € g1(A) © atd + b = gy(sd) = a'sd — a 'bmod n & atd +
b+ a"'h =alsdmodn & a’td + b(a + 1) = sd mod n. By Thm. 2.1.1, there is a
solution for s if and only if d|b(a + 1), i.e. j <i. Hence, fi(z) € gi(A) if and only if
J < i. We know that fo(x) = fi(z) + d. Since d is a multiple of 22, by (ii) we have
f2(z) mod n € g1(A). By definition, g1(x) = g1[f21)'(0) mod n € g,(A), and by (ii),
g2(z) = gi1(z) — a”'d mod n € g,(A).

Suppose t = g1[foq1]'(0) = g:1(¢d) = a'td — a™'b = a~'(td — b) mod n € g;(A).
Then gi(z) = g1(a7!(td = b)) = a Y (a "} (td— b)) —a™'b = a~?(td—b) —a~'b = a~%td —
a~'b(a~! +1). There exists a solution for r in the congruence a=?td—a~'b(a=' +1) =
dr mod n if and only if d[b(a™! + 1), i.e. j < i. Hence, g/(z)modn € A if and
only if j < i. We also have g(z) = ¢1(z) — a~'d mod n € (A) by (i). By definition
fi(z) = [f201)'(0) mod n € A, and by (i), fo(z) = fi(z)+d = fi(z)+2h mod n € A.

Hence, we have shown the closure of A* .

(v) By (iii) and (iv), the 2P=7*1 vertices of A" together with the edges incident to
them comprise a component of G if and only if 1 < j < i. Hence, A* = V(G) if and
only if j =1, i.e. d = 2h. This means that G is connected if and only if d = 2h. O

Example 2.3.1 We illustrate parts (i)-(iv) of the preceeding proposition using n =
2 a=2k—1=T7wherei=3and k=1,b=1 and d = 27h where h = 3.

l. For j = 2: Wehaved = 2%3) = 12, fi =Tz +1, fo = T+ 13, A =
{0,12,24,4,16,28,8,20} = {4t :t =0,...,7},¢:(A) = {9,29,17,5,25,13,1,21}
={14+4t:t=0,...,7}. Part (a) of Figure 2.2 shows A = AUg,(A)}, together
with the incident edges, as a component of G({7z + 1,7z + 13}, 32).

2. For j = 3: Wehaved = 22(3) = 24, fi =Tz + 1, f = T2+ 25, A =
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{0,24,16,8) = {8t : t = 0,...,3}, ;1(A) = {9,17,25,1} = {1 48t : t =
0,...,3}. Part (b) of Figure 2.2 shows A” = AU g1(A), together with the
incident edges, as a component of G({7x + 1,7z + 25}, 32).

3. For j = 4 We have d = 2%(3) = 16 mod 32, f; = 7Tz +1, fo = Tz + 17,
A=1{0,16} = {16t: t = 0,1}, ¢:(A) = {9,25} = {9+ 16t : ¢t = 0,1}. Part (c)
of Figure 2.2 shows that A* = AUg;(A), together with the incident edges, does
not form a component of G({7z + 1,7z + 17}, 32).

&

Lastly, when the multiplier is odd and the constants are of different parity, it turns
out that G is connected even if the multiplier is not of the form 2k + 1, as proved by

the following:

PROPOSITION 2.3.4 Let fy =ax+ bmodn, f, = az + b + d mod n be distinct
invertible linear congruential functions on Z, where n = 27 and a,d € N are odd.

Then G = G({f1,f2},n) is connected.

Proof. Let the inverse of fi be g;. Then we have [f2g1](z) = f2(a"'z—a~')) mod
n=a-—b+ (b+d) modn =+ d mod n. Since d is odd, [f291](0) = d generates all
elements of Z,, i.e., (f201(0)) = (d) = Z,. This means that if z,y € Z,, then there
exists t € N with 0 <t < n — 1 such that y = [f,¢:1]'(z) mod n. Hence, vertices =

and y are connected in G, and G is a connected graph. 0

We summarize the results in Table 2.2. Here we have f; = az +band f; = az +¢,
n = 2°, a is the odd multiplier, ¢ = b+ d, and h is an odd integer. ‘Case I’
refers to a = 2'k + 1 and ‘Case 2’ refers to a = 2'k — 1, where ¢ > 2 and k is an
odd integer. In each of these cases are four subcases according to the parity of the
constants. For example, Case 1.3 refers to a = 2'k+1, b is even and d is odd whereby
G({axr + b,ax + b+ d},n) is connected.

In the classification, Case 1.1 is by Remark 2.3.1, Cases 1.2, 1.3, 2.2, and 2.3 are
by Proposition 2.3.4, Cases 1.4 and 2.4 are by Proposition 2.3.2 and Case 2.1 is by
Part (v) of Proposition 2.3.3.
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Tx+1 Tx+13
A = {0,12,24,4,16,28,8,20}
g (A)=1{9,29,17,5,25,13,1,21}

(a)
0 0
9 1
9 |
24 8 24 8
17 25 17 25
16 16
(b) (c)
Tx+1 Tx+] ==
Tx+25 Tx+17
A = {0,24,16,8} A= {0,16}
g, (A)={9,17,25,1} g, (A) = {9,25}

Figure 2.2: Components of UM-LCG’s containing A and ¢,(A)
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G({f1, f2}:n)
Subcase | b c d Case 1 Case 2 l
0.1 odd | odd | even | connected | (d = 2h)
connected
(d # 2h)
not
connected
0.2 odd | even | odd | connected | connected
0.3 even | odd | odd | connected | connected
0.4 even | even | even not not
connected | connected

Table 2.2: Classification according to connectivity of UM-LCG's with two generators

Example 2.3.2 We illustrate Case 2.1 in Figure 2.3 where d = 6 and in Figure 2.4
where d = 8. Note that G({11z+3,11z+9}, 32) is a connected graph while G({11z+
3, 11z+11},32) has two components. The figures also illustrate how a small difference

in the constants of the generators can mean a big difference in the appearance of the

graphs.
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Figure 2.3: G({1lz + 3,11z + 9}, 32)
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Figure 2.4: G({11z + 3,11z + 11},32)
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Chapter 3

OPERATORS ON THE
VERTICES OF A UM-LCG

In this chapter we will define operations on numbers in base a notation in preparation
for the computation of the diameter bound of the UM-LCG in Chapter 4.
Let n = 2P, Given the graph G = G({fi, f2},n), where fy = ar +band f, = ar +

2—e¢"tband gy = a7 ' ~a~'(b+d)

b+d are invertible functions with inverses g, = a~
on Z, and odd integer a # 1, we know that the vertices are precisely the elements of Z,
and we can represent each vertex z by a number in base a of the form (z, ..., 72,7} ),
modulo n, where r = zxa*! + ... 4+ z2a¢ + ; mod n. We shall adopt the notation
(Tk,...,22,T1) without the subscript a to mean that the digits z4,..., 2,7 can
be any integer and the notation (zx,...,x2,z;), with the subscript a to mean that
0<zi<a-—-1forl <t <k. In each case we will drop the notation ‘modulo n’ as
we will always refer to the number as an element of Z,.

First we observe that the value of & in the notation (zy,...,z;) depends on a and
n. Let n = (ngynk-1,...,n1)e. Then mpa* ' <n=zd'<n=k-1<logn=

k <1+ log, n. Maximizing the value of k, we have
k=1+ [log,n] = [log, n]

since ged(a,n) = 1.
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Example 3.0.3 If a = 21 and n = 2!, then k = [log, 2''] = 3 and we have
11 = 4(21)2 +13(21) + 11. o

3.1 Shift Operators

Definition 3.1.1 An invertible function f on Z, is called a shift operator if
f(z) = (zk,...,21,%0) for any z = (ak,...,21) and for some integer zo, i.e. if f

shifts (zk,. . .,21) one place to the left and puts an integer zo in the last digit.

Linear functions with multiplier a, in particular fi and f, fall in this category.

We have, for example,

fi(z) a(Tky...,z1)+ b

= a(zga* '+ Fra+2)+ b
= (rpa* + -+ 290+ z1a) + b
= (Thy...,T2,Z1,b).
Definition 3.1.2 An invertible function g on Z, is called the inverse of a shift

operator if g(z) = (zx,...,22) +a~'c for any = = (x4, ..., 1) and for some integer

¢, i.e. if g dropsxy, shifts the rest of the digits to the right and adds an integer a™c.

For instance, if z; = b, then ¢ = 0 and g = g, the inverse shift operator of f;. We

have

g(z) = aYzg,...,22,0)—a"h
= a N zxa* '+ 4 z00a+b) —aMh
= xkak‘2+~--+13a+m2

= (l‘k, . ,1'3,3.'2).

3.2 Last-Digit Operators

Definition 3.2.1 A function f is called a last-digit operator if f(z) = (zx,..., 22,
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21+ ¢) for any ¢ = (x4, ..., 1), or in other words, if f(x) = r + ¢, for some integer

C.

In particular, the composite functions [f;¢1] and [fyg2] are last-digit operators on

all the elements of Z,. Applying the functions from right to left, we have:

[f20:)(z) = fala™'z —a7'b)
= ale'z —a”Tb) + (b+d)
= 24d
= (Thy...,To2,21) +d

= (Ik,--.,$2,1‘1+d)

and

[fig2l(z) = fila 'z —a™'(b+d))
= ala”'r—a"(b+d)) +b
= r—d
= (Tky...,Z2,21) —d

= (Tky...,Z2,77 —d).

Similarly, (g1 f2] and [g2f1] are last-digit operators because [g) f2)(7) = v 4+ a~'d
and [g2/1](z) = = — a”'d. We also classify the identity operator (i}, where [i] =
[fig] = [g1£fi] = [fag2) = [g2f2), as a last-digit operator because [i)(z) =z +0 = r

for all z.

3.3 r-Digit Operators

Definition 3.3.1 A function f is called an r-digit operator, where | <r < k, of
flz) = (zhy. oy Tpyeeay 1)+ (CryeneyCt) = (Thy ooy Trg1y Tr + Cryo oy Ty + €4) for any
T = (Zk,...,21) and for some integers c,,...,cy; in other words, if [ operales on the

last v digits of z by adding the constants c,....,c,.
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In particular, a last-digit operator is a ‘1-digit’ operator, and the composite func-

tion [f2[f192)¢1] is a 2-digit operator. We have

[falfige)ai)(z) = falfigal(a™ 'z — a'b)
= fala™'z—a"b - d)
= a(a”'z—ab—d)+b+d
= z-b—ad+b+d
= (ZTky.-.y22,71) —ad+d
= (zgy...,22 —d, 1 +d).

In general, from a 1-digit operator [f), g, ] where j1,k € {1,2} we can build up an

r-digit operator as given by the following proposition:

PROPOSITION 3.3.1 Let f,(z) = az + b, and gi,(z) = a™'z — a™by,, where
Ju k. € {1,2} for any positive integer i, such that f,gi(z) = = + ¢, is a last-digit
operation on z, where ¢, = b, — by,. Then for any integer r, with 1 <r < k,

[f]l [sz[' ot [f.ir—l [f]rgkr]gkr—l] " ']gkzlgk.](x)
= (IL‘k, ey Trg1y Ty F Cry Ty F Crooty ooy T1 F Cl)-

Proof. We can prove this by induction on r. We have seen that the assertion
is true for r = 1. Let us suppose that it is also true for the first ¢ positive integers.

Then

Inlfal - UnlUsikai lgn] - - lgk. ok )(=)
= fulful - Ul 9rnlon] - Jonl(a™ e — a7 by,)
= ful(a™'e —a b, ) +(0,...,0,¢Ci41,Ciy . . . , €3, C2)]
=z 4 (b, — by,)+(0,...,0,c41,6,...,€3,62,0)
=z 4+(0,...,0,641,Ciy...,C3,€2,C1).

Hence, the assertion is also true for ¢ + 1. a

Since the proof is by induction, the proposition is true for any value of % and for

any value of r, with r < k.
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Example 3.3.1 Let n = 23 = 8192, fi(2) = 92 + 5, and fo(xr) = 9r + 8. We
have [logg 2'3] = 5, gi(z) = 97'a — 971(5) = 3641xr + 6371 mod n, gz(x) = 97w +
9-1(8) = 3641z + 3640 mod n. [f1g2)(z) = = —~ 3, and [fag}(x) = ¢ + 3. Since
2172 = 2(9)3 + 8(9)2 + 7(9) + 3, we can write 2172 = (0.2,8,7,3) and we have
[f2f1 /19:9191)(2172)

= [fol(lfi92)91]9:)(0,2,8,7,3)

= (0,2,8-3,7+0,3+3)

= (0,2,5,7,6) = 1932.

To check, we have:

[f2f1f1929191](2172)
= f2f1/19291(1151)
= f2/1£192(2858)
= f2/1£.(5778)
= f,f1(2855)
= f,(1124) = 1932 mod 8192.

O

In the above example we see that [f2[fi[f192]91)g1] is a 3-digit operator and is
actually a cluster of three last-digit operators — [fig2] acting on the third digit,
[fig1] on the second and [f2g1] on the first.

Note that for each last-digit operator [f, gx, ], the functions f, and gk, can be
permuted, and so it is possible to have an r-digit operator which is a permuted

version of the one given in the proposition.

3.4 Mixed Operators

Definition 3.4.1 A mixed operator on r = (zy,...,2;) is any combination of the

above operators.
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We pay close attention to the fact that an inverse operator adds a constant a™’¢
after shifting (zx,...,22,2;) to (zx,...,22). Hence, the result of a mixed operation
may not be conveniently expressed as a k-bit sequence in terms of x,..., 24, partic-
ularly when ¢ # 0. We will try to avoid this case by considering only mixed operators
in which the number of shift operators is greater than or equal to the number of their

inverse shift operators.

Example 3.4.1 The operator A = f29:f2f2f29192f192f1 can be thought of as the
combination, denoted by square brackets, [k] = [f2g1][f2)[f2f29192][f192][ f1]. To com-

pute for the value of z under this operation, we have:

(Nl
(IA,._.’:C2’:L") LLIN (.’Ek,...,.’l)g,xl,b)
e (g, zay 21, b= d)
{(f2f29192]
— (‘Tka--'vthl'*'dab—d)

— (l‘k,...,.’[z,wl-}-d,b—d,b-l-d)
' (zky..., ;1 +d,b—d,b+d+d)

where (zy,...,z2,1),0) is the image of (xx,...,z,,2;) under the operation {f1], (z4,
...,&2, 71, b~ d) is the image of (zy,...,Ts,21,b) under the operation [fi4.], and so

on. We apply modulo n for the final step. <
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Chapter 4

AN UPPER BOUND ON THE
DIAMETER OF

G({az + b,ax + b+ d}, 2P)

The main objective of this chapter is to give an upper bound on the diameter of a
connected UM-LCG, of order n = 2P and with 2 generators, which is in the order of
O(log n). By definition, for any function B(n), we have B(n) = O(logn) if and only
if there exist a and ng such that B(n) < alogn for all n > ng. We are not concerned
so much about the value of a or any other constant in the formula, as our goal is to
show the logarithmic nature of the bound.

Normally, to find the diameter of a connected graph G we start with an arbitrary
vertex and calculate its maximum distance from any other vertex. Repeating this
process for all the vertices in the graph, we then get the diameter of the graph
which is equal to the maximum distance over all the vertices. However, since we are
interested only on the upper bound on the diameter of G, it suffices to find the upper
bound on the distance d(Z, z) of a fixed vertex T from any other vertex z in G. This

is because if y and z are vertices in G and G is connected, then

d(y,2) < d(T,y) + d(Z, z)
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by the triangle inequality. Hence, we have

Diam(G) < 2{22%2) d(z,z) : T € V(G)}

where max;ev(c) d(Z,z) denotes the maximum distance of T from any vertex z in G.

We have to consider, of course, only the case when G is a connected graph, so we
pay attention to the properties discussed in Chapter 2. We will find the upper bound
on the diameter of G in each of the cases in which G is connected as presented on

Table 2.2.

4.1 The Set A ={[foq1](0) mod n:t =0,1,...}

Let G be a UM-LCG on n = 27 vertices generated by f; = ax +band f, =azx +b+d
with inverses gy = a”'t — a”'band ¢, = a”'r — a”}(b+ d), respectively. We first
considered the set A = {{f2¢1)'(0) modn:t=0,1,...} ={td modn : t =0.1,...}in
our study of the connectivity of G in Chapter 2. Since it plays an important role in
our computations, in this section we study some of its properties.

We observe that A C V(G), with A = V(G) if d is odd. Since the function
[f291] = = + d forms a periodic sequence on Z,, the elements of A are traversed by a

closed path in G, namely the path

0 — g1(0) = f201(0) — 91201 (0) = [f2¢1)*(0) — -+ [f21)°(0) = 0 mod n

for some s > 0. Hence any two elements of A are connected in G.
Using the notations from Chapter 3, the elements of A can be written in the form

of a k-bit sequence (z4,...,x;) modulo n, where k = [log, n], as follows:
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((a—=1)d,0,...,0),

((ea—1)d,(a — 1)d,...,(a - 1)d).
Hence we can think of A as
A= {(]kdvsjld)o SJ: _<_(1~ 131 S ? Sk}

If we fix an element 7 = (%(a - 1)d,..., 3(a = 1)d), we observe that any other

element z of A can be expressed as
=T + (jid, . . ., j1d)
where —-%(a -1)£7, < %(a — 1) for 1 <7< k. Hence, we can also think of A as

A={z eV(G):r=T + (jid,. .., 1d), where— L(a-1) < j < 3(a-1)

Let us use the notation

h
(Ikv“ °axl)[—l (yka”'syl)

to indicate that the imageof x = (z4,. . .,7;) under the operation [h]isy = (yx,.. - 1)
With this notation we say that y can be obtained from x in one step using the opera-
tor [h], where [h] is either a shift, a last-digit or an r-digit opcrator. This means that
z and y are connected in G via a path defined by [h]. For example,if (k] = [f2/1¢29i]
then, in the graph G, z is connected to y via the path

z = gi(z) mod 2 — gy01(z) mod 2P — fig29,(x) mod 27
= fifig2g1(z)mod 2P = y.

Hence, there exists a path from z to y of length 4, which is equal to the: number of

functions in [A]. This, however, does not mean that d(z,y) is equal to 4 because 4 is
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merely an upper bound on d(z,y). In general, the length of a path from z toy is an
upper hound on d(z, y).
We give the maximum distance between any two elements of 4 in the following

proposition.

PROPOSITION 4.1.1 Let G({f, = az+ b, fy = az + b+ d},?) be a UM-LCG
such that a # 1 is odd and b, d are positive integers, and let the inverse of f; on Zy
be gr =a'z —a7'b. Define A ={[fog1]'(0) mod 2 : t =0,1,...}. Ifz,y € A, then

d(z,y) < 2(a — 1)[log, 27].

Proof. Let 7= (1(a-1)d....,}(a —1)d) € A. If z,y € A, then by the triangle
inequality, d(z,y) < d(T,r) + d(7,y). So, to prove the proposition we only have to
show that d(T,7) < k(a-1) for any r, where k = [log, 27]. We use Proposition 3.3.1
in our calculations.

CASE 1: fa =T 4+ (jid, . .., jid) where =1 <j, < 1 forl < i <k then we apply
one of the following operations to the vertex T in order to obtain z.

(Case 1.1) 1 ji,...,jp=0and j # 0,

78 L0, )

wvhere
fagr if n=1
}Il = Y .
figz if jy=-1
(Case 1.2) M ji,...,j3=0and j; # 0,

78 2100,...,0,52d, j1d)

where

h — f‘l[f2g] ]g,, if j2 :]
2=
ffl{leZ]g,, if j2 = -—1

in which the last-digit operator [f;,g,,], where t,,s, € {1,2}, is used to obtain j, d.
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(Case 1.3) ¥ ji,...,jq =0and j3#0,

7 P74 (0, God,jod jird)
where

_ ftl fiz{f2gl]g.!2g$1 if ja=1
fix flz [flg2]gszgn if y=—1

in which the 2-digit operator [ fz, f,,0:,9s, ] is used to obtain the digits jod and jid.

ha

(Case 1.k) If 7, #0,
T ™Mz Gid. . id)

where

_ fufo. - ftk-l{f2gl]g-’k-l oo gsgs i =1
Jesfuo oo fo f192]g0e - - Gogsy i ji= —1

b

in which the (k —1)-digit operator [fy, - - - fi,_,gsx_, *** g5, ] is used to obtain the digits
Je-1d, . . nd.

Thus, in order to obtain vertex ¢ from vertex 7 in one step, we need an r-digit
operator [h,], where r < k, which contains at most 2k functions. llence we have
d(z,z) <2k.

CASE2 If 2 =T + (jud,...,5id), where =2 < j, < 2for 1 < i<k, wedo the
following steps:

(Step 1) Use the results of Case 1:

z Bz (id,.. .50

where [A']is an r-digit operator, r <k, and -1 < ;' <1 for1 < i < k. Here we have
j1=0ifj;=0,j'=1ifj,=1 or%and jl=—1ifj, = —1 or —2.
(Step 2) Apply an r-digit operator [h"] to (jid, ..., jid):

— . . A . .
T +(jid, ...,k d) L7+ (Gid,... , 1)
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where [h”] = [ft, tet ftkgak e gal] with

fag1 if jrm =2
Jtnam =14 i if fom = !
fig: [ jn = -2
for 1 <m < k. Since each of [h] and [h"] contains at most 2k functions, we have
d(T, z) < 2(2k) = 4k. Hence, we can obtain = from 7 in two steps, each step consisting

of at most 2k functions.

CASE ¢t: Similarly, for any value of ¢, ifz = T+(jkd,...,j1d) where —t < j, < tfor
1 <7 <k, we can obtain z from 7 in ¢ steps, each consisting of at most 2k functions.
In particular, if t = (a —1)/2, in which case all the elements of A are represented,
we can obtain r from 7 in (a - 1)/2 steps using at most 2k[(¢ - 1)/2] = k(a - 1)
functions. Hence, d(T,z) < k(a-1), where & = [log, 2. 0

The following example will illustrate the above proposition and the method used

in its proof.

Example 4.1.1 Consider G = G({f; = 9z + 3,2 = 9z + 8},22! = 2097152) in
which a = 9 and d = 5. We have k = [log,2*'] = 7. By Proposition 4.1.1, if
ny € A= {[fig.})'(0)mod 22! : ¢t = 0,1,...} = {5t mod 22! : ¢t = 0,1,...}, then
d(z,y) £ 2(8)(7) = 112. Let ¥ = ((a-1)d,...,3(a - 1)d) = (4(5),...,4(5)) =
1471660 mod 2%, and consider z = (0, 8(5), 4(5),5(5), 7(5),2(5),1(5)) = 417183 mod
2!, We observe that ¢ = T + (~4(5),4(5), 0,1(5), 3(5), -2(5),~3(5)). To find an
operator [h] such that [A](F) = z, we use the result of Proposition 3.3.1 and do the
following steps:

7 8 7 4 (21(5),1(5),0,1(5), 1(5), = 1(5), = 1(5))

where [b1] = [fifi fafofif2 F192019191019292)
Bal 24 (—206),2(5),0,1(5), 2(5), —2(5), ~2(5))

where [ha] = [fifi fafifife £19:919191919292]
Ll 7 4 (=3(5),3(5),0,1(5), 3(5), —2(5), ~3(5))

42



where [hy) = [fififafi 1 f2i201 13191 92)
Bl 74 (—4(5),4(5).0,1(5), 3(5), —2(5), ~3(5))

where [h4] = [f7 f2fi92919])

Hence, we have [h] = [hshahah;} which consists of 56 functions since each [h,], i =
1,2, 3,4, consists of 14 functions from the set {fi, f2. g1,9:}. We conclude that there
exists a path from F to r of length 56. O

In general, the set A can presented in other ways. Since {f,4,](0) = d generates
the whole set as a cyclic additive group, we have A = (d mod 27) = (—d mod 27) =
{lg2£1)'(0) mod 2? : £ =0,1,...}. This enables us to see the closed path traversing the
elementsof A interms of the edges formed by g, and f;. In the preceding proposition,
for instance, we could use this last definition for A.

We observe that the closed path traversing the elements of A also traverses in
between two elements of A a vertex not in A. In particular. if xr € A, then gi(r) ¢ A

is traversed by the path. Hence, we have the following corollary.

COROLLARY 4.1.1 Let G = G({fi = ax +b,f2 = ar + b+d},2") be @ UM-
LCG where @ # 1 s odd. Define A = {[f2g1]/(0) mod 2" : ¢t =0,1,...}, n(A) =
{g21[f201]'(0) mod 27 : t =0,1,...}, and A" = AU (A) vhere gy is the inverse of [,
on Zyp. If x,y€ A", then d(x,y) < 2(a-1)[log, 2].

Proof. This follows from the fact that the closed path traversing the elements of

A also traverses the elements of A®. 0

Other properties of A are given by the next proposition. But first we need the

prove the following two lemmas.

LEMMA 4.1.1 If a = 2°k +1 for some integer i > 2 and positive odd integer k,
then for all nonnegative integert, a® + 1 is dzvisible by 2 but not by 4.

Proof. By the Binomial Theorem, we have

. t
d+1=2k+1)+1 =1+ ()2k)y
1=0
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=243 2&)1—2{1+}: )21k}

=1

0

LEMMA 4.1.2 Ifa = 2'k + 1 for some integer i > 2 and positive odd integer k,

3
then a::II is divisible by 27 for any positive integer j.

Proof. We use induction on j. If j = 1, then

¥ 21
- =2 =a+1=2%k+2=22""k+1)
a-1 a—1
is divisible by 27 = 2.
If =2, then
21 -1
- = £ =d*+d®+a+1=d*a+1)+(a+1l)
a-1 a-—1

= (a+1)(a®+1) = (2'k + 2)(2%h* + 27k + 2)

is divisible by 27 = 4.

In general, for any positive integer j, we have \he following formula:

2! p-i
(lp—l ” AJl - — A -
-1 —l41 2= -1
— = @ 4 4dT 4 +a? g ta ]

= 7@ e+ D@ e+ )

= (@74t 1)@ +1)
a2j-—l
Assume that Py is divisible by 27 for j = 1,2,...,r for some r, and consider
a""“ -1 2(r+1)-1_1 2(r+1)-1
p— = (a +:-+a+1)(e +1).

L is divisible by 2", and by Lemma 4.1.1,
! +1
~—=L is divisible by 2+!. By the

By hypothesis, (a* "1 4 -+ 4 a+1) =

(a® + 1) is divisible by 2 but not by 4. Hence, £

. - . . 2’— . . . . - - . .
hypothesis of induction, aa_ll is divisible by 2/ for any positive integer j. a
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PROPOSITION 4.1.2 Let G({fy = av+b, f = ar +b+d},2°) Y a UM-LCG such
thata = 2'k+1, b is odd and d = 2'h wherei > 2, j > 0 and h and k are positive odd
integers. Define A = {[f2g:]'(0) mod 27 : ¢t = 0,1,...} and f{(A) = {f{(x) mod 27 :
€ A} fors =0,1,.... Then

(i) A= f¥(A), and hence f{(A) = f¥*+"(A) for any integer r.
(ii) AN f*(A) = O for allm € N such that 0 <m < 27.

(iii) fi(A)N fi(A) = O for integers t and q such that 0 <t < ¢ < 2'. (In other
words, A, fi(A), ..., f£7Y(A) are pairwise disjoint.)

(iv) V(G)= AU fi(A)U---U fF71(A).

Proof. (i) For any integer j we have fZ(A) = {fZ(z) mod 27 : v € A} = {«¥a +
b(a¥ —1)/(a—1) mod 27 : 2 € A}. If z € A, then z is divisible by 2/ by Propusition
2.3.3 (i). By Lemma 4.1.2, (a® —1)/(a — 1) is divisible by 27. Hence, if z € A then

¥ (z) € Ai.e., f(A) C A. Since f¥ is a bijection, we have |A| = | f¥ (A)| and hence
A = f¥(A). Moreover, if r is any integer, we have fI(A) = fIf¥(A) = fZ*"(A).
(Note that g1(A) = f{'(A) is the inverse of f; on Zy.)

(i) Let me N,0<m < 2. If z € A, then z is even and fi(z) is odd. This
means that if m is odd, then f]*(z)N A = Q. So let us assume that m is even. Then
there exists an odd positive integer s and an integer ¢ > 1 such that m = 2's. Since

m < 27, we have 2ts < 27, or
t + logss < j.

Now for any integer r, 2r mod n € A. We observe that

i b(a™ -1
f] (2’1)=a"‘2’r+—a—_1——)
where
m __ 2'3_ - t=
a 1 - ¢ l=a2""1+a2"'2+---+a2 I Ll R |
a-—1 a—1

(a2'—18+1)(02‘—15—1+"_+a+1)
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= (@A D)@+ )Tt at )

= @+ )@@ +1) (@) (@ a4 e+ ),

The last term in the above expression is an odd integer because s is odd. By
Lemma 4.1.1, each of the other t terms in the expression is divisible by 2 but not
by 4. Therefore a;"_-ll is divisible by 2 but not by 2!*!. But ¢ < j, hence, a:_—ll
is not divisible by 2?. Therefore f"(2’r) mod 2 ¢ A for any r, which implies that
AN fM(A) = 0.

(iii) Suppose that f{(2’r) mod 27 € f7(A) for some integer r, where 2/r mod 27 €
A. Then

a'2r +b(at""+ - +a+1)mod 2 € f}(A)
== there exists an integer s such that
a2r +bat 4 +a+1)=a'2s+b(a” '+ +a+ 1) mod2?
=3 a'2?r = a'(a®'2?s) + b(a? 1 + - -+ + a') mod 27
= a'(a?7'2s) + a'b(a?" "1 4+ +a+ 1) mod 27
= Vr = (a""'2s) + b(a® "' +--- + a + 1) mod 2° because gcd(a!,2?) = 1.
= Yrmod 2 € fI"'(A), where0 < g —t < 27
— ANJIT(A) £ O.

which is a contradiction to (7).

(iv) By (iii), the sets A, fi(A), f2(A),..., f' "(A) are pairwise disjoint. Because

/1 is a bijection, we have |A| = |fy(A)] = -++ = |fZ"'(A)|. By Proposition 2.3.3 (i),
|A] = 2773, Hence, |AUfi{(AUSF(AU---UfF 7 (A) = |Al+A(A) |+ -+ (A)] =
2 |A| = 22P=1 = 2°, Therefore, V(G) = AU f1(A)U---U fZ1(A), o

Each vertex of G is an element of a set f™(A) for some m, 0 < m < 27. Hence,
the implication of the preceding proposition is that we can get an upper bound on the
distance between any two vertices in G if we know the distance between any two ver-
tices in f*(A) and if we know how the sets A, fi(A4), -+, f2'"!(A) are interconnected.

We will discuss this in more detail in the next section.
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4.2 An Upper Bound on the Diameter of
G({az + b,az + b +d},2P)

From Table 2.2, the graph G = G({f; = ax + b, fo = ar + b+ d},n = 2"), where
a # 1 is an odd integer, is connected if and only if one of the following conditions is

satisfied:
1. dis odd
2. a=2'k—1, bis odd and d = 2h (where h is odd)
3. a=2'%k+1, bis odd and d = 2°h (where h is odd)

fori > 2, 7 > 1 and odd integers k and h. We will show that in each of these cases
the upper bound on the diameter of G is of order O(log 27).

The bounds that we obtain are not necessarily close to the actual values of the
diameter, but this is a significant progress in the search for the diameter of LOG's
and related graphs. Because of the logarithmic nature of the bound, we can be sure
that the diameter increases only in a logarithmic rate as the order of the graph is

increased.

4,2.1 The case when d 1s odd

When d is odd, we have A = (d) = V(G) by Proposition 2.3.3 (i). By Lemma 4.1.1,
if z,y € V(G), then d(z,y) < 2(a — 1)[log, 27]. We have thus proved the following

proposition.

PROPOSITION 4.2.1 Let G = G({az + b,az + b+ d}, 2%} where a # 1,d are odd
integers and b € N. Then

Diam(G) < 2(a — 1)[log, 27].

Example 4.2.1 Let G = G({f; = 9243, f; = 9z +8},n) where n = 2% = 2097152,
a=09, [logg2?'] =7, and d = 5. Then Diam(G) < 2(7)(8) = 112,
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If we change f; to 9z + (3 +2'°(11) 4+ 1) = 9z + 11268, we will still have the same
upper bound 112. &

Example 4.2.2 Let G = G({fi = Tz + 3, f» = Tz + 11268},2*') where a = T,
[log, 22'] = 8, and d = 2'°(11) + 1. Then Diam(G) < 2(6)(8) = 96. o

4.2.2 The case when a =2k — 1, b is odd and d = 2h

If « = 2k — 1 and d = 2k for some odd integer h, by Proposition 2.3.2 (i) we have
A= {[f201]}(0) mod 27 : ¢t = 0,1,...} = {2ht mod 27 : t = 0,1,...} = {2t mod 2" :
t =0,1,...}. Hence, A contains all the even integers in V(G), while the set g;(4)
contains all the odd one. Therefore, V(G) = A U ¢(A). By Corollary 4.1.1, if
r,y € V(G), then d(z,y) < 2(a — 1)[log, 2P]. We have proved the following:

PROPOSITION 4.2.2 Let G = G({ax + b,az + b+ d},2?) wherea =2'k—1, bis
odd and d = 2h for 0 < i € N and odd integers k and h. Then

Diam(G) < 2(a — 1)[log, 27].

Example 4.2.3 Let G = G({fi = Tz +3,f2 = Tz + 3 + 6},2%') where a = 7,
[log,2%'1 = 8, and d == 6. Then Diam(G) < 2(6)(8) = 96. o

4.2.3 The case when a =2 +1, bis odd and d = 274

Ifa=2%k+1, bis odd and d = 2’h for some j > 1 and odd integer h, consider
the set S = {4, fi(A),...,fF 1 (A)}, where A = {2tmod 2? : t = 0,1,...}. By
Proposition 4.1.2 (iii) and (iv), the elements of S are pairwise disjoint and that their

union is equal to V(G). Moreover, by Proposition 4.1.2 (i), f{(A) = f&*"(A) for any

integer r. In particular, f7?7 (4) = %7 (A) = fZ7'(A). Hence, we also have

TP (A) = fETTH(A)

P74 A4) = f274(A)
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FETETIA) = T = A,
So we can also write S as follows:
S = {7 AP T A L STYAN A (A, TN A), T (A))

Hence, for 2, € f*(A) such that « € {27 +1,...,~1,0,1,...,27'} we have
fre(za) € f(A) = A, and

d(24,0) < d(za, f7(2a)) + d(f7°(20),0) < |a] + 2(a - 1)[log, 2"]

by the triangle inequality and Proposition 4.1.1 The maximum value of |al is 27!,

Therefore, for any z,y € V(G), we have
d(z,y) < 2(max{la| + 2(a — 1)[log, 2°1}) = 2’ + 4(a - 1)[log, 2"].
Hence, we have proved:

PROPOSITION 4.2.3 Let G = G({fiy = axr + b, f2 = ar 4+ b+ d},2") where
a=2k+1,bis odd and d = 2°h for someci > 2, j > 0 and odd intcgers k and h.
Then

Diam(G) < 27 + 4(a — 1)[log, 27].

Example 4.2.4 Let G = G({fi = 9z + 3, f, = 9z + 15},2%) wherc a = 9, d =
22(3) = 12 and [logg 2?'] = 7. We have Diam(G) < 4 + 4(7)(8) = 228.

Note that if we change f2 to 9z + 3 + (2!°11) = 9z + 11267, where 27 = 2!, we
have Diam(G) < 21° 4+ 224 = 1248. <

4.3 Table of Upper Bounds

We summarize the results of Propositions 4.2.1-4.2.3 in Table 4.1.
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Upper Bound on the Diameter
of G({azx + b,az + b+ d},n),
a b d where n = 27
2k +1 odd odd 2{a — 1)[log, n]
(i > 2) 27 h 2 + 4(a — 1)[log, n]
(k is odd) G =)
(h is odd)
even odd 2(a = 1)[log, n]
2k -1 odd odd 2(a — 1)[log, n]
(1>2) 2h 2(a - 1)[log, n]
(k is odd) (h is odd)
even odd 2(a — 1)[log, n]

Table 4.1: The upper bound on the diameter of a UM-LCG with 2 generators
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Chapter 5

THE GENERAL CLASSES OF
LCG’s

Let n = 2°,a.b,c,d € N such that @ # 1 and ¢ # 1 are odd. The generators
fi = azx+band f; = cz+d of an LCG on n vertices, where a and c are not necessarily
equal, can be classified in general as commutative or noncommutative. We say that
fi and f, are commutative generators if for any vertex r we have f, fo(r) =
f2fi(z) mod n; otherwise, we say that they are noncommutative. A necessary and
sufficient condition for j, and f, to be commutativeis that ad+b = ac+d mod n. This
is because f, f(z) = fi(cz+d) = acz+ad+b, and f,fi(z) = fo(ax+b) = acxr +cb+d.

The first two sections of this chapter deal with these two types of generators. In
Section 5.1 we apply the results that we have from Chapter 4 in order to obtain an
upper bound for the diameter of some LCG’s having noncommutative generators. In
Section 5.2 we discuss a lower bound for the diameter of LCG’s with commutative

generators. Then in Section 5.3 we discuss the recursive property of the LCG family.

5.1 LCG’s with Noncommutative Generators

The generators f; and f; of the graph G = G({f1, f2},n) are noncommutative if

and only if ad + b # cb + d mod n. Hence, in this case, we can consider the graph
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H = G({hy,h2},n), where h; = fif, = acz+ad+band hy = fof) = acx +cb+d, as
a UM-LCG generated by two distinct functions. We observe that the generators have
constants of the same parity and are invertible because they have an odd multiplier.
Two vertices in H are adjacent if and only if in G they are connected by a path of
length 2 via the composite functions fi f2, f2fi, g192 or g291, where g, and g, are the
inverse functions of f; and f;, respectively.

By definition, if H is connected then G is also connected. However, the converse is
not true. For example, if n = 32 and G has the generators f; = 3z+1 and fo, = Sz +7,
then I has the generators hy; = 15z 4+ 22 and h; = 15z + 12. We see from Figure 5.1
and Figure 5.2 that, indeed, G is connected but H is not. This classification of H 1is
consistent with Table 2.2.

Now, suppose that H is connected and z,y € V(H). Denote the inverses of A,
and hy by h7! and k7!, respectively. If d(x,y) = k in H for some k, then there
exists a string of functions 6,,0,,...,0, from the set {hy,hy, h7',h3'} such that
y = 0102+ 0k(x) mod n. But {hy, ko, k' 03} = {fifo, fofh, (fifo) ™2, (1)1} =
{fif2, f2f1, 9291, 9192} Hence, z and y are connected in G such that y = 6,0, - - - 6,(z)
mod n where 01,0,,...,0c € {f1f2, f2f1,9291, 9192}, 1.e. the distance of z and y in G
is at most 2k. This means that if UBD(H) and UBD(G) are the upper bounds on
the diameters of H and G, respectively, then UBD(G) < 2{UBD(H)}.

In summary, we have

PROPOSITION 5.1.1 Let G = G({fi = az + b, fz = cz + d},2P) be a connected
LCG such that fy and f; are noncommutative. Define H = G({hy = fif2,h2 = f2f1},
2P). If H is connected, then

UBD(G) < 2{UBD(H)}
where UBD(G) and UBD(H) are the upper bounds on the diameter of G and H,

respectively.

Thus, if there is a logarithmic formula for UBD(H), then there is also a logarith-
mic bound on the diameter of G. Table 5.1 gives us the diameter upper bound of G

whenever H is connected.
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G({f] =3z +1,f, =5z +7},32)

Figure 5.1: G
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2430 148

Figure 5.2: H = G({h1 = 15z + 22, hy = 15z + 12}, 32)
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Case when H upper bound upper bound

is connected on the diameter on the diameter
of H of G

ac — 1 5 0 is divisible by 4
ad + b is odd
ad+b—cb—d=2h
(where j > 1, h is odd) 27 + 4(ac — 1)[plog,.2] | 22! + 8(ac — 1)[plog,. 2]
ac — 1 # 0 is divisible by 2

but not by 4
ad + b is odd

ad+b—cb—d=2h
(where h is an odd integer) 2(ac—1)[plog,. 2] 4(ac ~ 1)[plog,. 2]

Table 5.1: Upper bounds on the diameters of H = G({acz + ad + b, acz + cb + d},27)
and G = G({az + b,az + b+ d},27)
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5.2 LCG’s with Commutative Generators

The key element to obtain a logarithmic upper bound on the diameter of an LCG G
with noncommutative generators f; and f; is the possibility of transforming this case
into that of a UM-LCG H with distinct generators hy = fi1f, and hy = fof;. If fi
and f; are commutative, then h; = h; mod n and H can have a diameter as large as
n/2. Consequently, (' can have a diameter upper bound as large as n. In this regard
there is no meaningful generalization for the diameter upper bound of G when its
generators are commutative.

In this section, however, we will discuss a method which gives a diameter lower
bound for G which is proportional to v/n if G has commutative generators.

First we observe that the commutativity of fi and f; is inherited by their inverses
g1 and ga. We have fifs = fofimodn = (fifz)™! = (fofi) ' modn = g9 =
9192 mod n. Moreover, go91 = g1g2mod n = (fi92)91 = go mod n. Since g; =
(92f1)g1, we must then have fig2 = g2 fy mod n. Similarly, fog1 = g1 f» mod n. Hence,
if fi and f; are commutative, for any sequence of functions hjhs - - - h,, where h; €
{f, f2,91,92} withi=1,2,..., m, we have

hihy o hp(x) = uu
m; mz
where 8, € {f1,91} and 6, € {f2, 9.} and m;, m; are integers such that m; +m, < m.

The consequence of this in the graph G is that any vertex can be reached from a

fixed vertex z using the composition function 6]*'63*2. Hence, using z as the reference

vertex, each vertex of G is represented in one or more of the following forms:
o fiMf"(x)
o f"g?(x)
* 9" f7(2)

* 97977 (x).
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Let us define an fi fy-path of length m from & to fi*! f3'*(x), where my + my = m,
to be the path ¢ — fo(z) — -+ — % (2) = fife?(x) = - = MM (1) mod n.
For example, the f)f;-path of length 5 from z to f2f3(x) is given by = — fy(r) —
f2(z) = fi(z) = fif3(z) = fif3(z) mod n. Since the value of m; can run from 0
to m, we see that there are exactly m + 1 distinct f; fo-paths of length m. Hence, the
number of distinct f; fo-paths of length from 1 to m is giveu by

m(m + 3)
2

which is also the number of distinct fig5-, g1 f2- and gyg2-paths of length from 1 to

243444+ m+(m+1)=

m.
If D = Diam(G), then from z the total number of distinct 8;0,-paths of length
at most D is given by

4{%1)(1) +3)} = 2D(D +3).

Because D is the maximum distance of any vertex from z, all the n vertices of (7 are
reachable from z using 6,8;-paths of length at most D. Hence, we have the following

inequality:
2D(D +3) 2 n.
Solving for D, we have:
D2y3+3- %
In summary, we have the following proposition for n = 2°:

PROPOSITION 5.2.1 Let G = G({f1, f2},2P) where fy and f, are commutative

linear functions modulo 2°. Then

Diam(G) > \/2P-1 4+ 3 —

This lower bound compares well with the result from [3, 6, 28, 30] that the lower

[SHA

bound for the diameter of the graph G({z + 3;, ¢ + s2},2”) for any integers sy and s,
is
291 % -

1
2
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As a matter of fact, we have

VETEE -1 \e

o f
-

for all positive values of p.

For small values of n, /7 and logn are essentially not very different. But the
difference between these figures is very large if n is very large as seen from the fact
that lim,_(logn/\/n) = 0. Thus, when we aim to obtain a linear congruential
graph having a diameter of logarithmic bound for a large order n, we should consider
the ones that have noncommutative generators. This is a reiteration of a statement
from [22] and [21].

We give as an example the degree-4 DCC-LCG as given in [22]. The DCC-LCG’s
with degree greater than 4 have noncommutative generators, but here we show that
those with degree 4 have commutative generators. Hence we can compute for the

lower bound on their diameters.

Example 5.2.1 Let n = 2?. A degree-4 DCC lirear congruential graph G on n
vertices is generated by fy = ax + band f, = cz + d, where a = 2%¢+ 1, b=2r + 1,
c=2¢+1and d = 2(2r + 1) for some positive integers ¢ and r. We observe that

ad+b = (2%q+1)2(2r +1)+(2r +1)
= (2r+1)(2(2%+1)+1)
= (2r+1)(2%¢+3)

and

cb+d = (Pg+1)(2r+1)+202r +1)
= (2r+1)(2%g+1+2)
= (2r+1)(2% +3).

Hence. f; and f; are commutative. By Proposition 5.2.1, we have Diam(G) >

71423 O

58




In the next example we extend our result to the known results when the multiplier

is equal to 1.

Example 5.2.2 Let G = G({f1, f2},2"). If the generators are given by f; =z + 1
and f; = z + d, then they are commutative. Here we havea =1, b=1, ¢ = | and
ad+b=d+1 =d+cb. By Proposition 5.2.1, Diam(G) > \/2”‘—‘4——2— 2. Recall that
Hsu and Shapiro [14] showed thzt the upper bound for the diameter of G is giv n by
V2T 4 ¥/2p-3 4 2, Hence, for specific values p =10, 15 and 20, the diameter of &
falls in the intervals (21,27), (126,138] and (722, 746), respectively. <

5.3 Recursive Property of LCG’s

It is known from [22] that the DCC-LCG on 2P*? vertices generated by a set F of lincar
functions can be constructed from two copies of DCC-LCG on 2? vertices generated
by the same set F'. The same is true, as shown in [21], for an LCG in which theve
is a function that generates all the vertices. In what follows we will discuss some
properties that will allow us to generalize this construction for LCG’s gencrated by

functions with odd multipliers on n vertices, where n is any positive integer.

PROPGSITION 5.3.1 Let G, = G(F,n) wheren € N and F is a sel of lincar

congruential functions with odd multipliers < n. Suppose (z,y) € E(G),) such that
y = f(z) mod n where f(z) =az+be F.

(i) If0 < f(z) mod 2n < n, then (z,y),(z + n,y+n) € E(Ga,).

(it) Ifn < f(z) mod 2n, then (x,y), (z+n,y+n) € E(G2,) but (z,y+n), (c4n,y) €
E(G3r).

Proof. (i) The fir.t assertion is obvious sincey = f(a) mod n = f(z) mod 2n.

Now, f(x+n)=azx +an+b= f(z)+ an = f(z)+n + (¢ - 1)n. Hence,

flz+n)mod 22 = (f(z) +n+(a — 1)n) mod 2n
= (f(z) mod 2n + n mod 2n + (¢ — 1)n mod 2n) mod 2n
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= (f(z) mod n+ n mod 2n + 0) mod 2n
since (a — 1) is even
= (y + n mod 2n) mod 2n
= (y +n) mod 2n.
By definition, f(z + n) = (y + n) mod 2n if and only if (z + n,y + n) € E(Gan).
(it)n < f(z)mod 2n and y = j{z) mod n if and only if there exists an integer k
such that
f@)=y+2k+1)n=y+2kn+n (5.1)
Hence,y # y +n = f(x) mod 2n. Therefore (£, y) € E(G3,) but (z,y+n) € E(Gzn).
Now, we have f(z + n) = ar + b+ an = f(z) + an. By formula 5.1, there is an
integer k such that
flr+n)mod2n = (y+2kn 4+ n+an) mod 2n
= (y+2kn+ n(a+1)) mod 2n

= y mod 2n.

Hence, (r+n,y) € E(G2.). However, sincey # y+n mod 2n, (r+n,y+n) € E(Gzn).
a

Using the above proposition, we can now have:
Construction 5.3.1 Let n € N and G, = G(F,n) where F is a family of linear

functions with odd multipliers. We can construct Gz, from two copies of G, in the

following manner:
1. Relabel each vertez on the second copy of G, by adding n.
2. If (r,y) € E(Gy) such that n < f(z) mod 2n, then replace (x,y) and its copy
(t+n.y+n) by (z,y+ n) and (z 4 n,y), respectively.

Example 5.3.1 We illustrate the above construction using F' = {11z + 8,7z + 3}
with n = 25. In Figure 5.3 we have the graph G5 in which the edges to be replaced
are drawn concave upward. In Figure 5.4 these edges and their copies are replaced to

construct Gsg. o
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Figure 5.3: G({l1z + 8,7z + 3},25)
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