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Abstract

Construction Of The Orthogonal Groups Of n x n

Circulant Matrices Over Finite Fields

Zhe Zhang

Let F be a finite field with g elements where ¢ = p™, p prime. Let M be the
algebra of n x n circulant matrices over F. The set O, , of orthogonal n x n
circulant matrices is a subgroup of M *. The major purposes of the thesis are: (1)
to explain K.A.Byrd and T.P. Vaughan’s results stated in [8], about formulas for
the orders, and algorithms for the construction, of the groups O, 4); (2) to show
new examples and develop programs to find the orders and to actually construct

the group O(, ) for any given n and q.
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Introduction

The objects of study in this thesis are the circulant orthogonal matrices over
finite fields, and the related normal orthogonal basis for extensions of finite fields.
Let p be a prime number, and m and n positive integers, call F' the Galois field
GF(q), where ¢ = p™. Our main purpose is to develop some formulas to count
the orders of the circulant orthogonal matrix groups O, q) of order n over F, and
algorithms to construct such matrices. Recall that a circulant matrix of order n

over F' 1s a matrix

ap ay ... Qp-1
A= Qn—-1 QaQ ... Qap-2
ai az ... ag

with a; € F, and also that an n x n matrix A is orthogonal if A - A = I. The
formulas mentioned above have first been obtained by F.J. MacWilliams [7]. Here
we use a new method due to K.A. Byrd and T.P. Vaughan to obtain these formulas
and to actually construct the matrices. As an extension, we use the Maple [13]
system to develop a program to construct the circulant orthogonal matrix groups
O(n,q) for any given n and q = p™. The program requires the parameters n, p and
m as input and calculates the elements of the group O, q).

In Chapter 1 we review some basic concepts of the theory of finite fields and field
extensions. In Chapter 2, we explain Byrd and Vaughan’s results as stated in [8],
and we take the liberty to expand some of their proofs. Let T be the n x n circulant
matrix with first row (0,1,0,--- ,0). Since T" = I, and any circulant matrix A as
above can been written in the form A =ap-I+a; - T+ -+ apn-1 - T"!, we can

construct an isomorphism ¢ from the ring M of n x n circulant matrices over F' to

Typeset by AAS-TEX



the ring R, = F[z]/(z™ — 1) by defining ¢(T) = z and ¢(a) =a for all a € F. This
isomorphism induces a transpose map T on R, corresponding to the transpose map
of matrices. Call O the orthogonal group of R, (that is the set {f € R, : f-7(f) =
1}). Since O(n,q) is isomorphic to O, we can concentrate on the study this later
group. This allows us to work with polynomials. Write z™ — 1 as product of monic
irreducible polynomials f;; that is z® — 1 = f'* - f3'2-.. f?r_ Then, by the Chinese
remainder, theorem we have R, = 5}% X é}%‘% X ... X gf.—’;% Equivalently we
can write R, & @:-'___1 e; R, where the e; are certain elements of R, (idempontents)
satisfying e? = ¢;, e;e; = 0if i # jand R, = F[z]/{f7) (see Chapter 2, Theorem
3.5). The transpose map 7 is an automorphism of R, that can be defined by

! and 7(a) = a for all a € F. When we restrict this map to components

m(z) =z~
eiRp, 1 <1 <r, two cases arise: (i) T(e;) = e;, or (ii) 7(e;) = e; for some j # i.
If 7(ei) = ei, the effect of T is to produce an automorphism of F[z]/(fI). If
7(ei) = e;j for 7 # j, the effect of 7 is to produce an isomorphism from F[z]/(f**)
to F[z]/(f;7). In case (i) let O; denote the orthogonal group of F[z]/(f*) and in
case (i) let O, ;) denote the orthogonal group of F[z]/(f"') x F[z]/( fi’). Then we
have O = I1;0; x I(x,1yO(«,1), where i runs through all indices ¢ such that 7(e;) = e;
and (k,!) runs through all pairs of indices {k, [}, k # [ such that T(ex) = ¢;. Hence
to find the order |O] it is enough to find the orders |O;| and |O( k.l)l- The study of
the groups O; and O ;) is done in the sections “l-cycle case” and “2-cycle case”

of Chapter 2.

As new examples of application of the method, we give, in Chapter 3, the detailed

construction of the groups O(;33) of 12 x 12 circulant orthogonal matrices over
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F = GF(3) and O,2) of 6 x 6 circulant orthogonal matrices over F' = GF(2).
Though these problems are easy to calculate by using the program given in Chapter
5, in this chapter we show the mathematical ideas involved in constructing such
groups.

In Chapter 4, we study normal orthogonal basis for extensions of finite fields. We
show that the transformation matrix between any two such basis, if they exist (see
Theorem 3.3), is circulant orthogonal, and conversely given a normal orthogonal
basis for an extension of degree n, and a n x n circulant orthogonal matrix, we
-obtain another normal orthogonal basis by nsing the transformation induced by the
matrix. This shows that the results of Chapter 2 can be used to find all normal
orthogonal basis for a field extension when one of them is known.

Finally we show, in Chapter 5, a program to construct the group O(,,q) given

arbitrary n and ¢ = p™.



Chapter 1. Review of Field Extensions and Finite fields.

If K is a field containing a field F, then K is said to be an extension field of F.
In such case we write K/F. Here we are mainly interested in extensions of finite
fields. Let K be an extension of F and let D be a subset of K. We denote by F(D)
the smallest subfield of K" which contains both F and D; this is the intersection of
all the subfields of K which contain both F and D. The field F(D) is an extension
of F.

One of the main invariants associated with a field F is its characteristic. Let 1p
denote the identity element of the field F. Then F contains the elements 15,1 +
1F,--- of the additive subgroup of F generated by 1¢ , which may not all be distinct.
For any positive integer n,let n-1p = 1p + 1p + - - - + 1p(n times). Then either
n-1lp = 0 for some n > 0 or all the elements n - 1z are distinct. In the first case
we find that the smallest positive integer n such that n-1p =0 is a prime number
p- In this case we say that the field F' has characteristic p. Otherwise we say that
the field F' has characteristic 0. Clearly a finite field must have characteristic p for
some prime p.

Any field F contains as a subfield the field generated by 1r. We call this subfield
the prime subfield of F. If the characteristic of F is p, the prime subfield of F is
F}, the field with p elements. If the characteristic of F is 0, the prime subfield of F
is isomorphisc to Q. We denote the characteristic of F by Char F. If Char F = p
(p a prime number), the map a — o” from F to F is called the Frobenius map of

F.



THEOREM 1.1. If F is a field with CharF = p, then Frobenius map of F is an

injective endomorphism.

PROOF. Since for every a € F if aP = 0 then a = 0, we need only to prove that
the Frobenius map of F is an endomorphism. Since (aB)? = oPAP, it suffices to

verify that

(c+ B =a?+ 6P Va,fEF

Let 1 £k <p-1. Since

and

ot = ko - 1),

we have p|[(%). Hence (}) =0in F.
Therefore (a + ﬂ)p = 7::0 (z)ap—kﬁk = aP + Zz;i (Z)ap—kﬁk + B8P = aP 4+

gr. O

We say that a field is perfect when either it has characteristic 0 or, it has prime
characteristic p and its Forbenius map is an automorphism. If F is a field with
CharF' = p, let FP denote the image of the Frobenius map of F.. Then FP? is the
subfield of F' consisting of the elements of F' that admit pth roots in F; and the map

a — of from F to FP is an isomorphism. It follows that a field F with CharF = p
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is perfect if and only if FP = F, hence if and only if every element of F admits a

pth root in F. For finite fields we have the following proposition.

PROPOSITION 1.2. If F is a finite field then F is perfect; i.e. the Frobenius map

is an automorphism of F.

PROOF. The injectivity of the Frobenius endomorphism of F implies that it is

also surjective if F is finite. O

If D is a finite subset of an extension K of the field F, say D = {a;,..-,an},
we will denote F(D) by F(ay,...,an). If K is an extension of F then it is a linear
vector space over F. The dimension of this vector space is called the degree of i’
over F and is denoted by [K : F|. If [K : F] is finite, we say that K is a finite

extension of F, if [K : F] is infinite we say that K is an infinite extension of K.

PROPOSITION 1.3. Let F be a field, K an eztension of F, and L an extension
of K.
(i) If (ai)ier and (Bj)jes are, respectively, linear bases of K over F and of L over
K, then (aifj)i,jyerxJ 8 @ linear base of L over F.
(i) [L: F] = [L: KK : F]

(ii) L is finite over F if and only if L 1s finite over K and K 13 finite over F'.

PROOF. We need only to prove (i), since (1) implies (ii) and (iii). Let (a:)ier
and (B;)jes be as in (i), and let | € L, then ! = 3 . ;a;B; with a; € K. Since
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(ai)ier is a base of K over F, for every j € J, we can write aj = Ziel bija;, where

b;j € F. So we have

1= aiBi= > bijeib;

JjEJ (i,7)€IxJ

which shows that [ is a linear combination of (@;f;)(, jyerxs with coefficients in F.

Assume that

l = Zajﬂj = Z b,’ja,'ﬁj =0

j€es {.pelxJ
with b;; € F and a; = Zie! bija;. Since (8j)jes is a base of L over K, and
(bijei) € K for every (i,7) € I x J, we have aj = ) ;. bija; = 0 for every j € J;
and the linear independence of (a;)ies over F implies then that b;; = 0 for every

(2,7) € I x J. Therefore (ai8;)(i jyerx s is linearly independent over F. O

If K is a finite extension of F and if oy, ...,a, is a basis of K over F, then every
element of K can be written in the form E:;l bia;, b; € F for 1 <1 < n. Since
these sums are clearly in F(ay,...,a,) we have K = F(oy,...,a,). An extension K

of F' is called a simple extension of F if K = F(a) for some a € K.

DEFINITION. Let a € K, we say that o is algebraic over F if a is a root of
some nonzero polynomial f(z) € F(z]. If a is not algebraic over F then a is said
to be transcendental over F'. The extension field K of F is said to be an algebraic
eztension if each element of K is algebraic over F. On the other hand, if at least one

element of K is transcendental over F, then K 1is called a transcendental eztension

of F.



Suppose that a € K is algebraic over F, let us consider the set J = {f €
Flz] : f(a) = 0}. It is obvious that J is an ideal of F[z]. Since « is algebraic
over F, we have J # (0). Since F[z] is a principal ideal domain, it follows that
there exists a uniquely determined monic polynomial p(a, F)(z) € F[z] such that
J is equal to the pricipal ideal (p(c, F)(z)). We have that p(a, F)(z) is irreducible
in Flz]. In fact, p(a, F)(z) has positive degree since it has a as its root, and if
p(a, F)(z) = hyh, for some h;,hs in F[z] with 1 < deg(h;) < deg(p(a, F)(z)) for
i = 1,2, then p(a, F){a) = hi(a)hz(a) = 0 which implies that either k; or h2 in J

and so divisible by plce, F)(z); it is impossible.

DEFINITION. Let a € K be algebraic over F, then the uniquely determined monic
polynomial p(a, F)(z) € F|z] generating the ideal J = {f € Flz] : f(a) = 0} of
F[z] is called the minimal polynomial of a over F. The degree of a over F is the

degree of p(a, F)(z).

THEOREM 1.4. Let a € K be algebraic over F, then its minimal polynomial
p(a, F)(z) over F has the following properties:
(1) p(e, F)(z) is irreducible in F|[z].
(11) For f € F[z] we have f(a) = 0 if and only if p(a, F)(z) divides f.

(i1i)) p(a, F)(z) is the monic polynomial in F[z| of least degree having o as a root.

PROOF. (i) was already noted above. (ii) follows from the definition of p(e, F')(z).
(iii) it suffices to note that any monic polynomial in F[z] having a as a root must
be a multiple of p(e, F)(z), and so it is either equal to p(a, F)(z) or its degree is
larger than that of p(a, F')(z). O



COROLLARY 1.5. If K/F i3 an eztension of fields and o is algebraic over F (so

it s also algebraic over K), then p(a, K)(z) divides p(a, F)(z) in K|z].

THEOREM 1.6. Every finite eztension of F is algebraic over F.

PROOF. Suppose that K is an finite extension of F and let n = [K : F]. Then
for a € K, the n+ 1 elements 1, a, ..., " must be linearly dependent over F. So we
have ag +a1a +--- + a,a™ = 0 with a; € F not all being 0, which means that a is

algebrajc over F. O

THEOREM 1.7. Let a € K be algebraic with degree n over F and let p(a, F)(z)
be the minimal polynomial of a over F. Then we have
(i) F(a)= Flz]/(p(a, F)(z)).
(i1) [F(a):F]=n and {l,q,...,a" '} is a basis of F(a) over F.

(i11) Every B € F(a) is algebraic over F and its degree over F is a divisor of n.

PROOF. (i) Let ¢ be the natural ring homomorphism of F[z] -+ F(a), defined
by ¢o(f(z)) = f(a) for f € Fz]. Namely ¢ fixes the elements of F and sends z
to a. Since p(e, F')(z) is the minimal polynomial of F(a), we have that the kernel
of ¢ is the ideal generated by p(a, F)(z). Thus we have an induced injective ring
homomorphism ¢’ : Flz]/(p(e, F)(z)) - F(a). In particular Flz]/(p(e, F)(z)) is
a domain. This gives another proof of the fact that p(a, F)(z) is irreducible. So
F[z]/(p(a, F)(z)) is a field, and, since the image of ¢’ is a field containing F and a

we have that ¢’ is a field isomorphism from F(z]/(p(a, F)(z)) to F(a).
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(ii) By (i), we know that F(a) is the image of ¢, so any given § € F(a) can
be written in the form 8 = f(a) for some f(z) € F[z]. By the Euclidean Al-
gorithm, we have f(z) = q(z)p(a, F)(z) + r(z) with ¢,r € Flz] and r = 0 or
deg(r)<deg(p(e, F)(z))= n. So that 8 = r(a), i.e. B is a linear combination pf
1,a,...,a™ ! with coefficients in F. On the other hand, if ag+aa+---+a,a®" ! =0
where a; € F, then h(z) = ap + ajz + -+ + apz™! € F[z] has o as a root.
By Theorem 1.4 it is thus a multiple of p(a, F)(z). Since h = 0 or deg(h)<
n =deg(p(a, F)(z)), we have h = 0, that is, all a; are zero. Therefore the ele-
ments 1,0, ...,a""} are linearly independent over F and (ii) follows.

(iii) By (ii), we have that F(«) is a finite extension of F, so for # € F(a) is algebraic
over F by Theorem 1.6. Furthermore, F(8) is a subfield of F(a). If d is the degree
of 3 over F, then (ii) and Proposition 1.3 imply that n = [F(a): F] =

[F(a): F(B)][F(B): F] =[F(a) : F(B)]d, hence d divides n. O

Let K be an extension of the field F, let a« € K and let p(a, F')(z) be the minimal
polynomial of & over F. Suppose that 3 is root of p(e, F)(z), then p(a, F)(z) is also
the minimal polynomial of 8 over F. By Theorem 1.7 (i), we have F(a) = F(8).

This proves the following result.

THEOREM 1.8. Let a and B be two roots of the polynomial f € F|[z] that is
trreducible over F. Then F(a) and F(fB) are isomorphic under the isomorphism

mapping which sends a to B and fizes the elements of F.

DEFINITION. Let f(z) € F[z]. Then f(z) is said to split over F if f(z) can

be written as a product of linear factor in Flz]. The field K is a splitting field of

10



f(z) over F if f(z) factors completely into factors in K|[z] and f(z) does not factor

completely into linear factors over any proper subfield of K containing F.

We say that the polynomial f(z) € F|z] is separable if it has no multiple roots
over F'. An extension field K of F is said to be separable over F if every element
of K is the root of a separable polynomial over F. Let F be a field and let K be
an extension field of F', we say that K is normal over F' or that K is a normal
extension of F if K is algebraic over F' and the minimal polynomial over F of every
element of K splits in K[z]. If K is normal and separable over F thenr we call K a

Galois extension of F.

THEOREM 1.9. (Ezistence and Uniqueness of the Splitting Field). If F is a field
and f is any polynomial of positive degree in F|z|, then there ezists a splitting
field of f over F. Any two splitting fields of f over F are isomorphic under an
isomorphism which fizes the elements of F (F-isomorphism) and sends roots of f

into roots of f.

PROOF. Let f be a polynomial of positive degree in F[z]. If g is a monic irre-
ducible factor of f in F[X], let K = F[z]/(g). The mapping a — a +(g) from F to
K is a field homomorphism (sending 1 r to 1g), therefore it is injective. We identify
F with its image by identifying a € F with a + (g). In this way we constructed
a field K in which g, and therefore f, has a root. In fact, if @« = z + (g) € K,
then g(a) = g(z) + (g(z)) = 0 € K. If the degree of f is > 1, then the we can
work with the polynomial f; = f/(z — a) € K[z] and find an extension K; of K

in which f; has a root, etc. Proceeding in this way we can find a field M in which

11



f splits in linear factors: f(z) = a(z — a;)...(z — a,), with a; € M, a € F. Call
L = F(ay,...,a,). Then L is a splitting field for f over F. This proves existence.
To prove uniqueness we proceed by induction on the degree d of f. If d = 1, then
the splitting field for f over F is F. Suppose d > 1 and that the result is true for all
polynomials of smaller degree. Let L; and L, be two splitting fields of f. Let gbe a
monic irreducible factor of f in F[z],and a € L;, 8 € L, roots of g. By Theorem 1.7
(i) there is an F-isomorphism F(a) — F(8), such that a — 8. Identify F(a) and
F(B) by means of this isomorphism and call this field F}. Since f/(z — a) € Fi[z]
has degree < d, by induntion hypothesis the splitting fields £, and L of f/(x - o}
are isomorphic, with an F;-isomorphism ¢ sending roots of f/(z — a) into roots of
f/(z — a). But then ¢ is also an F-isomorphism that sends roots of f into roots
of f. (Note that this last property is automatic, since for any root o of f and any

F-isomorphism ¢ : Ly — L, we have 0 = ¢(0) = ¢(f(a)) = f(¢(a)).) O

Since we are mainly interested in extension of finite fields, let us look some

properties of finite fields.

PROPOSITION 1.10. Let F be a finite field then
(1) CharF =p for some prime number and contains a field isomorphic to F, = Z /pZ.

(ii) |F| = p", where n = [F : F), the degree of F over Fy.

PROOF. (i) This has been proved at the begining of this chapter.
(ii) It is obvious, since for a given basis of F over F}, every element of F has

a unique represention under this basis. [

Let Fx = F — {0} be the multiplicative group of finite field F then we have

12



THEOREM 1.11. The multiplicative group F* = F —{0} of a finite field is cyclic.

PROOF. Let F be a finite field with p® elements (p prime) and let o = p" — 1.
Factor h as h = p]* --- pi™ where p; are distinct primes and r; > 1. The group F'*
has order h, so that we have to prove that there exists an element in F'* of order
h. Let h; = h/p;. Since h; < h there exists an element b; € F* which is not a root
of zhi — 1. Let a; = b?lp'ti and a = @;---@m. We have af‘ri = b* = 1 and so the
order of a; divides p[*. I af FT o 1 then b?/ P¢ = 1, contrary to our choice of b;.
Hence the order of a; is exactly p*. Since a® = 1 the order of a divides h. Suppose
that this order is not h. Then there exists some prime divisor of h, say p;, which
divides h but does not divide the order of @ as many as r; times. Then we have
ah/P = a’ll/”l ...alf?P' Since pi* divides h/p, for : = 2,...,m, we have a;'/p‘ = 1.
This implies that p]’, the order of a;, divides h/p;, which is not true. Thus a has

order h. O

Note that if @ is any generator of F* then F = Fy(a).

THEOREM 1.12. (Ezistence and Uniqueness of Finite Fields) For any prime
number p and any positive integer n there is one and (up to isomorphism) only one
finite field with p™ elements. Any finite field with p" elements is isomorphic to the

splitting field of zP” — z over Fy.

PROOF. Let F denote the splitting field of the polynomial zP" —z over F,. Since

the derivative of z?" —z is p"zP" —! —1 = —1 in Fj[z], we have that z?" — r has no

13



multiple roots. Let S = {a € F : a?" —a = 0}, by Theorem 1.1 § is a subfield of
F. On the other hand, Since S contains all roots of z?" — z, we have that z?" —
must split in S. Thus F' = S and F' is a finite field with p™ elements. This proves
existence.

Now suppose that F' is a finite field, by Proposition 1.10 |F'| = p™ for some prime
p and some positive integer n, and F contains F}, as a subfield. Since F* has order
p" — 1, we have b*"~! = 1 for all b € F*. Therefore b*" = b for all b € F. So the
p" elements of F are precisely the roots of the polynomial z?" — z, and F is the

splitting field cf this pol:momial ove F,. Uniaueness now follows from Thecrem 1.6.
= - 4 +

From now on we call Fj» the field with p™ elements. As consequences of Theo-

rems 1.11 and 1.12 we have:

COROLLARY 1.13. The finite field F,n i3 a simple eztension of F,. There ezists

an irreducible polynomial of degree n over F, for every n > 1.

THEOREM 1.14. Let Fyn be the finite field with p"™ elements. Then every subfield
of Fpn has order p™, where m is a positive divisor of n. Conversely, if m is a positive

divisor of n, then there ezists ezactly one subfield of Fpn with p™ elements.

PROOF. Since any finite field has order p™ with p prime and m positive integer,
the subfield of Fp» must have order p™ with m < n. By Proposition 1.3, we have
p" must be the power of p™, so that m is necessarily a divisor of n.

Conversely, if m is a divisor of n, then p™ — 1 divides p® — 1 and so z?” ~! — 1
divides 27" ~! — 1 in Fp[z|. It follows that zP" — z divides z?" — z in F,[z]. Thus all
roots of zP” — z are roots of z?" — z so they belong to Fyn, then Fp» must contain

14



a splitting field of zP" — z as its subfield and this splitting field has order p™. The
uniqueness is obvious, since the union of any two different subfields of order p™ of

Fyn would contain more than p™ roots of zP" —z. It is a contradiction. O

PROPOSITION 1.15. Let F, denote a finite field where q is a power of some
prime number p. The polynomial 9" — z is precisely the product of all the distinct

irreducible polynomials in F,[z] of degree m, where m is a divisor of n.

PROOF. Since 9" —z has no multiple roots, it is a product of distinct irreducible
p;lynorhials in Fy[z]. Those irreducible factors of z? .—x must have degrees dividing
n. In fact, if o is a root of a an irreducible factor g of z9° — z in Fy[z], then
degree(g) = [Fy(a) : F,] is a divisor of n by Theorem 1.14. Now, let g be an
irreducible polinomial in F,[z] of degree m, where m|n. If o is a root of g, then

Fy(a) ~ Fym C Fyn by Theorem 1.14. Therefore glz?" —z. O

Let F, denote a finite field where ¢ is a power of some prime number p, let F¢» be
a finite extension of F, with degree n, then the field Fy» is Galois over Fy (see [5],
page 499), with cyclic Galois group G =< o, > of order n generated by Frobenius

automorphism o, defined by o4(a) = a? for all a € F,. In other words we have

THEOREM 1.16. The distinct automorphisms of Fyn over F, are ezactly the

mappings 1,04,02,...,077 1, defined by oi(a) = a? fora€ Fpn and 0 <1< n—1.
P 7:% q q 9

THEOREM 1.17. If f is an irreducible polynomial in F,[z] of degree n, then f
has a root a in Fyn. Furthermore, all the roots of f are simple and are given by the

. . n—1
n distinct elements a, a9, ...,af of Fyn.
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PROOF. Let a be a root of f in the splitting field of f over F,. Then [F,(c) :
Fy] = n, hence Fy(a) = F;» and in particular o € Fyn. The last part is clear by

Theorem 1.16. O

COROLLARY 1.18. Let f be an irreducible polynomial in F,[z] of degree n. Then

the splitting field of f over F is Fyn.
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Chapter 2. Orthogonal Circulant Matrices over Finite fields.

Let F be the finite field with ¢ = p™ elements, where p is a prime. Ann x n

matrix A with entries in F is called circulant if A is of the form

ag ay ... QGp-1
4= Gpn—-1 G0 ..- QGp-2
a az ... ap

We say that A is orthogonal if A- A® = I, where A? is the transpose of 4 and I is
the n x n identity matrix.

Let O¢yn ) denote the set of n x n orthogonal circulant matrices of over F, then
O(n.q) is a group under matrix multiplication. In this chapter we will discus how
to find the cardinality of O, 4. We will also give the tools to effectively construct

this group when we know the factorization of z” — 1 in F[z], as is shown in the next

chapters.
Let
010 .. 0
0 01 0
T=1. . . . .
o . . .. 1
1 00 .. O

For A circulant, as above, we can write A = Z:':ol a;T?. Let M be the algebra of
n X n circulant matrices over F. We start by giving a convenient representation for
M. Call R, = F(z]/(z™ — 1) the algebra of polynomials mod (z" — 1) over F. The

following lemma shows that R, is isomorphic to M.

LEMMA 2.1. The map ¢ : M — R, defined by
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n-—1 n—1
Y Z a,-Ti — Za,-a:"

=0 =0

is an isomorphism of algebras.

PROOF. Let ¥ : F[z] — M be the function defined by ¥ : f(z) — f(T).
This function is clearly a surjective ring homomorphism and its kernel is the ideal
generated by (z" — 1), since z® — 1 is the minimum polynomial of T over F. So

induces an isomorphism % : R, — M. Now take ¢ = (¢) ‘.o

Let A = Y0y ! ¢;T¢ and let f(z) = E?——o a;z* be the polynomial (modulo
z" — 1) corresponding to A by Lemma 2.1. The polynomial corresponding to Alis
f(z)t := 0 an—iz’ (indexes mod n). In fact, since T* = T~!, we have A' =
Sy a7 and f(z™!) = S iz = g = S @n—izt =
f(z)t mod (z™ — 1) (where a, = ag). Therefore A is an orthogonal matrix if and
only if f(z) - f(z)! = 1 mod (™ — 1). The next proposition follows immediately

from Lemma 2.1 and the definitions above.

PROPOSITION 2.2. Let O = {f(z) € Rp : f(z) - f(z)! = 1}. Then O s a

multiplicative group isomorphic to O, q). In particular lo(n'q)l = |0|.

Call 7 the automorphism of R, given by f — f*' ( it corresponds to transpo-

sition in M). The following proposition is immediate.

PROPOSITION 2.3.
1) T2 = identity.
2) T fizes the elements of F.
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3) 7(z) =z7! (mod (z™ — 1)).

We are interested in finding O, 4)- By Proposition 2.2, it is enough to find O.

We start by investigating properties of the ring R,.

n) n2 Ny

LEMMA 2.4. If we factor the polynomial z" — 1 as z™ — 1 = f{'* - f32--- fPr |

where f; (1 <i < r) are distinct monic irreducible polynomials of F|z], then

M ) Ty

(Observation. We will see later that actually ny = - - = n, = p’, where p||n. For

Rng

the moment this is not relevant to our discussion. In fact, the results of this part

can be generalized by starting with an arbitrary orthogonal matrix T'.)
PRroOOF. This is a special case of the Chinese Remainder Theorem. [
In what follows r, f; and n; are as in Lemma 2.4.

THEOREM 2.5. Write, as above, z™ — 1 = [[[_, fI**, with f; € F[z] distinct, ir-
reducible, monic polynomials. Let R, = F[z]/(z™ —1), then the following properties
hold:

1) R, is a principal ideal ring.
2) There ezist some elements {e; : 1 < i < r}(idempotents) in R, such that
) { 0 if 1#7
3 €; €y = . . .
7 e if 1=7.
11) Z:-;l e; =1.
ui) For 1 <i<r, the ring e;R,, has a unique mazimal ideal (f;(z)) and all

its ideals have the form (fi(z))?, 0 < j < n;.
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w) Rn, =@, eiRn, and e;R, is a ring isomorphic to Flz]/(fi(z)™)

for1 <i<r.

PROOF. 1) Every ideal J of R, is of the form J = I/(z" — 1), where T is an

ideal of F[z] containing (z™ — 1). Since F[z] is a principal ideal ring, Z is principal.
So J is also principal.
2) For 1 <i<r let pi(z) = fi - ff2 - flog - fsD -+ f77 = Fcyee- Since pi(z)
and fi(z)™ are relatively prime, there exists g;(z) € F[z] such that p;(z)-qi(z) =1
mod f;(z)*. We let E; = pi(z) - gi(zr) € F[z] and let e; be the class of E; mod
(z" — 1). We have E? = 12 = E; mod fi(z)™ and E? = 0? = E; mod f;(z)™ for
i # j. Therefore E? = E; and E; - E; = 0 mod (2™ — 1) for i # j. Correspondingly
we have e? = e; and ¢; - ¢; = 0 for i # j. By the construction of the E;, we have
> i=1 Ej = 1 mod fi(z)™ for 1 <i <r, so that > i=1 Ej =1 mod (z" — 1), Thus
Yimei=1

By ii) we have !_, eiRn = Ry which, by i), is a direct sum. Let ¢ : F[z] —
e;Rn be the ring homomorphism defined by f ~— f, where f =e(f+(z" —
1)) € e;Rn. It is clear that ¢ is surjective and the kernel of ¢ is the ideal of Fz]
generated by fi(z)™ . So e;R. = Flz|/(fi(z)™). We know that F[z]/(fi(z)™),
as Ry, is a principal ideal ring. By [9], Theorem 2.6, we have a one to one order-
preserving correspondence between the ideals of F[z]/(fi(z)*) and the ideals of

F[z] containing f;(z)™ . Thus all ideals of F[z]/(fi(z)") are powers of (fi(z)) and

since fi(z) is irreducible in F[z] we have that (fi(z)) is the unique maximal ideal

of Flz]/(fi(z)™). So the ring e;R, is a local ring. O

Theorem 2.5 shows that the maximal ideal of e; R, is M = (f;(z)) and that all
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its ideals are powers of M. Also, M is nilpotent since (f;(z))™ = (0). Therefore the
lattice of ideals of e; R, is of the form e¢; R, DM DM?2 D M3 > .- D> M™ =(0).
Since for each e; associate with exactly one irreducible factor g; of z" —1 (e; R, =
F[z]/(fi(z)™) and the automorphism 7 of R, will send g; to g by the definition
but g} is an irreducible factor of z"* —1 (7(z"™ — 1) = 1 — z™ and g; is an irreducible
factor of z™ — 1), the automorphism 7 of R, must permute the members of the set
€ = {e; : 1 <i <r}. Since 72 =identity, the orbits of 7 in £ are either of the form
{e:} with 7(e;) = e; or of the form {e;,e;} with ¢ # j and 7(e;) = e;. In the first
case we call the orbit a l-cycle and in the second case we call the orbit & 2 cycie.
Let £1,...,& be the distinct orbits of 7 in €. Then the €& are pairwise disjoint

a‘nd 6 = Ut:l&k‘

For 1 £ k < t, let Sk = BeceeRn be the ideal generated by a given orbit k.
Then S is a direct sum of the rings eR,, e € £x. Whether the given orbit is a
l-cycle or a 2-cycle, the transpose map 7 of R, acts on each 3 as an automor-
phism by restriction. Since @._, e;Rn = R, we have R, = Z:::l Sk (direct sum).
Correspondingly we have the group decomposition O = Hie ik O |s., thus to find
O it is enough to study the orthogonal group in each orbit. Since an orbit is either
a l-cycle or a 2-cycle, we will work on two types of rings: (1) the local ring e; R,
where 7(e;) = e; and (2) the ring e; R, x e; R, where ¢;R,, and e; R, are isomorphisc
local rings and 7 |¢; R, x0 and T |oxe; R, are inverse isomorphisms.

In what follows F is an arbitrary field (we are mostly interested in the case

F = F).
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DEFINITION. Let ¥(z) € Flz], and let R = Flz]/(¥(z)). If an automorphism 7
of R satisfies the conditions
(1) 7% = identity,
(2) T fizes the elements of FF,
(3) () =z (mod Y(z))

(see Proposition 2.3), then we call T the transpose map of R.

DEFINITION. A polynomial f(z) of F[z] is said to be reciprocal if f(0) # 0 and
whenever a is a root of f(z) of multiplicity m, then o™ ! is also a root of f(z) of

multiplicity m.

The following proposition gives a characterization of the reciprocal polynomials

not divisible by z — 1.

PROPOSITION 2.6. Let f(z) = Y. ,aiz' € Flz]. Suppose f(0) # 0 and f(1) #

0. Then f(z) s reciprocal if and only if a; = an—; for each i, 0 <1 < n.

PROOF. Suppose f(z) is reciprocal, and let & be a root of f(z). It may happen
that @ = a™!, then we have a? = 1, in this case (since f(1) # 0) we have o = —1.
Therefore by the definition above, we can factor f(z) as f(z) = (z + 1)' [[=q(z —
ar)(z — ai') for some [ and r, where ax # ;' . Since (z — ar)(z — af') =
z? — (ax + a,:l)::: +1 and (z + 1) both satisfy a; = an—:, and since products of such
polynomials are still the polynomials which satisfy a; = a,—; for their coefficients,
f(z) satisfies the condition a; = @n—i-

Conversely, suppose f(z) satisfies a; = an—;. Let a be any root of f(z). We have
an-a”+ap-1-a® ' 4...4+a;-a+ap =0. Multiplying this equality by a™" , we
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obtain ap+an—1-a~t+---+a;-a”* "D 4ag-a~" = 0 so that f(a™!) = 0 because
f(z) satisfies a@; = a,—;. We have to prove that whenever « is a root of f(z) of
multiplicity m, then a~! is also a root of f(z) of multiplicity m. If @ = a™!, that
is clear. Suppose @ # a~!; we prove by induction on k that if (z — a)¥| f(z) then
(z —a"1)¥||f(z). For k = 1 the result follows from the comment at the beginning of
this paragraph. Now suppose that our affirmation is true for the integer k and that
(z —a)**+1||f(z). Then we can write f(z) = (z+ 1) (z— a)*(z —a™!)k - h(z) where
(h(z),z+1) = 1. Since f(z) and (z + 1)!(z — a)¥(z — a™!)* are symmetric, we have
that kis) is symmetric. Alsn k(@) = 0. Therefore h(a™") -- 0. Thai imyplies that
r —a~!|h(z) and so (z —a~!)k+!|| f(z). Clearly this implies that the multiplicities

of a and o™ ! as roots of f(z) are equal. O

Let R = Flz]/(¢¥(z)) where ¥(z) = gi(z)™ - g2(z)™? - - - gr(z)™", and the gi(z)
(1 < ¢ < r) are irreducible and distinct in F[z]. Suppose there is a transpose map
T in R. Arguing as in Theorem 2.5, we can show that R=e;R x e2R x--- x erR
where each ¢;R, for 1 < i < r is the local ring associated with the factor g**. The
map T permutes the set {e;, ez, -+, e,} and induces a decomposition of this set in
1-cycles and 2-cycles. At l-cycle {e;} (so 7(ei) = ei) the effect of 7 is to produce an
automorphism of F{z]/(g"*). At 2-cycle {e;,e;} (so i # j and 7(e;) = e;) the effect
of T is to produce an isomorphism from Flz]/(g]*) to Flz]/ (g;j ). In this case the
maximal ideals of F{z]/(¢]*) and F[z]/ (g;‘" ) are generated by the cosets of g; and
g;j respectively, and since T must match powers of the respective maximal ideals of
F{x]/(g{) and F[z]/(g;"' ), we have n; = n;. We also have that deg(g;) = deg(g;)

because the transpose map F[z]/(g:) — F[z]/(g;) induced by T is an isomorphism.
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We want to show that if ¥(z) € Flz] then Flz]/(¥(z)) has a transpose map if

and only if ¢ is a reciprocal polynomial. We prove first

PROPOSITION 2.7. If R = F[z]/(¥{z)) has a transpose map, then (zx) is recip-

rocal.

PROOF. We write (z) = [[i=, g7 with the idempotents {e;, ez, -, e, } as above,
let 1 <i < r and suppose T(e;) = e; with i # j, namely {e;,e;} is a 2-cycle. Then
T induces an isomorphism from F[z]/(g;*) to Fz]/(g}*) where deg(g:) = deg(g;)-
Let ;"' be the isomor-phism induced by 7 from F[z]/(g:) to F{z]/(g;). Since r sends

z to ! and fixes the elements of F , for z + (g:) € F{z]/(gi),

*) T'(z + (g:)) = (z + (7))

Let g;(a;) = 0 and gj(e;) = 0. Since F(a;) = Flr]/(g:) (with o; +— T) and
F(a;) = Flz]/(g;) (with a; — T), by () there exists an isomorphism from F(a:)
to F(a;) that sends a; to aj'l. So g,-(aj'l) = 0. It follows easily that the roots of
gi(z) are the inverse roots of g;(z). Since these polynomials have the same degree
and since all roots of an irreducible polynomial have the same multiplicity, we have
that the multiplicity of a; as a root of g; is the same as the multiplicity of a; ! as
a root of g;. So (gi(z)g;(z))™* is reciprocal.

If 7(e;) = e for 1 < i < r, clearly any root a; of g; has the same multiplicity

as the root o .

This shows that we can write ¥(z) as a product of reciprocal
polynomials. Therefore ¢(z) is reciprocal. O
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Now let us consider the converse of Proposition 2.7. Suppose that ¥(z) is recip-
rocal, and we factor it as ¥(z) = g1(z)™ - g2(z)"2---g-(z)"" where g; are irreducible
and distinct in F{z]. Let g;(z) = Hle(z—al) be an irreducible factor of ¥)(z). Then
gi(z) = Hf.:l(a: — a!) is also an irreducible factor since ¥(z) is reciprocal, and it
is clear g(z);||¥(x) and for each ai, o ! has the same degree as a; over F. Suppose
gi # gj, (if gi = g; we have a similar and simpler situation). Then we have that
gi and g; have the same degree, the same multiplicity k£ = n; = n; (since ¥(z) is
reciprocal), and the same splitting field over F. We will construct an isomorphism
T : Fiz]/igk) — Flr]/ (gf‘ whick fixes the elements of F aud sends « + (gF) io
(z + (gJ'? ))~!. Then 7 will be a transpose map corresponding to the 2-cycle {e;, e;}.
Since R is a direct sum of the ideals §; = @.e¢; eR which are generated by distinct
orbits (2-cycles and 1-cycles), this construction will give a transpose map on R.

We define ¢,; the natural projection from F[z] to F[z]/(g¥) that is

g ar—ra if a€F

=T =z+(gF).

LEMMA 2.8. IF[:z:]/(g;-‘)/(ngj (g5)) s tsomorphic to F{z]/(g;)-

PROOF. Let A be the usual ring homomorphism from Flz] to Flz]/(g¥)/(¢q;(g;))-
then for h € Flz], A(h) = h = (h + (g5)) + (8g;(g,)) = (h + (¢f)) + (g5 + (g}))- So
h is in the kernel of A if and only if gj||k. Also ) is surjective. Thus F[z]/(g;) =

Flz]/ ker()\) = (Fz]/(g5))/(¢¢;(95))- O
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PROPOSITION 2.9. If ¥(z) is reciprocal then R = Flz]/(¥(z)) has a transpose

map.

PROOF. As we explained above it is enough to construct the isomorphism
T : Flz]/(gF) — Flz|/ (g}c ) where g, g; are irreducible polynomials whose roots are
mutually reciprocal and gf,gfl[z/:(:z:). Assume g; # gi, let ¢4, and @,; be the ring
maps defined above. Since g; and g; are irreducible polynomials in F{z], we have
that ¢y, (z) and @y, (z) are both invertible elements. Let ¢ be the homomorphism

from F[z] to F{z]/ (g;‘) defined by

Y a—a if aelF

r— ¢yj (1')-1

Let us consider the map sequence

v ™
Flz] == Flz]/(g5) = Flzl/(9})/($4; (95)) = Flz]/(g;)
where 7 is the natural projection. Then 7 - p(z) = (z + (g;))7!. Call w = 7 - ¢.
We have that w(z) = (z + (g;)) ! and that w(a) = a for all @ € F. Then we have
w(gi(z)) = gilw(z)) = gi((z + (gj))~!). Since z + (g;) is a root of g; and since g;
and g; have mutually inverse roots, we have g;((z + (g;))™') = 0. It follows that
m-¢(gi) = 0. So that o(gi) € (¢y;(g;))- Then ¢(g¥) = [¢(g:)]* = 0. Thus the
kernel of ¢ contains the ideal generated by (g¥). Then ¢ induces an homomorphism
T from Flz]/(g¥) to lF[:z:]/(gf) and sends z + (g¥) to (:z:+(gJ’-‘))"1. It follows that 7 is

an isomorphism (recall that g; and g; have the same degree). Similarly, there exists
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an isomorphism 7’ from IF[:::]/(gf) to F{z]/(g¥) and sending x+(g}‘) to (z+(g*))~!.
If we assume g; = g;, we obtain in a similar way an automorphism r of F{z]/(g*)

sending z + (¢¥) to (z + (¢))™!. O

Combining Propositions 2.7 and 2.9, we obtain

THEOREM 2.10. If F is a field and ¥(z) € Flz] then ¥(z) is reciprocal if and

only if Flz]/(¥(z)) has a transpose map.

Let ¥(z) = g1(z)"* -g2()"2---g(z)" and let T be a transpose map of F{z]/((z))
where the g,(<) are irreducibie in F{z]. by Theorewn 2.10, if y; corresponds to a
l-cycle then g; is reciprocal, and if g;, g; correspond to a 2-cycle then they are
nonreciprocal, have the same degree and g; - g; is reciprocal. If g; is an irreducible
reciprocal polynomial and (g;, ¢ +1) = 1 then g; has even degree because the roots
a and a™! of g; are distinct and have the same multiplicity.

Recall that our main purpose is to study O, and to find a formula for |0]. We

will begin our discussion with the 1-cycle case.

1-CYCLE CASE.

Suppose that g(z) is an irreducible reciprocal factor of ¥(z) with multiplicity m.
Let R = F[z]/(¥(z)) and R’ = F[z]/(g™). Let e be the idempotent corresponding
to R/, i.e. eR = R', and let M be the maximal ideal of R’, which is generated by
the coset of g(z). Note that M is nilpotent: M™ = 0.

Let 7 : " — R’ be a transpose map. The simplest case occurs when m = 1

andg=z+£1.

27



PROPOSITION 2.11. With g and T as above, g =z 1 and m = 1 if and only if

T 18 the identity.

PROOF. If g(z) =z + 1,then T =z + (9) = Fl so 7(T) = T~ ! = 7, it follows
that 7 is the identity. Conversely if 7 is the identity, since T- 7(Z) = 72 = T we

must have T =+l and so that g(z) =z+land m=1. O

Let us return to the general situation (g irreducible reciprocal). The following

lemina gives a simple description of the quotient rings of R’.
LEMMA 2.12. R'/M*® = F[z]/(g(z)}) for 1 <i < m.

PROOF. For1 <i:<m, let

p: Flz] — R'/(g(z)*)

f(z) = f(z) + (9(=)*)

be the composition of the natural projections Fz] — R’, f(z) — f(z) = f(z) +

(9(z)™) and R' — R'/(g(z)*), f(z) — f(z) + (g(z)*). Let f(z) € kerp, then
f(z) € (g(z)*). We have f(z) = g(z)* - h(z) for some h(z) € F[z]. Thus f(z) =

g(z)' - h(z) + (g(z)™). So g(z)'||f(z). It follows that f(z) € (g(z)*). This shows
that kerp C (g(z)*). It is obvious that (g(z)?) C kerp. Therefore kerp = (g(z)*)

and the lemma follows. O

Let T be the transpose map of R’. For 1 < i < m we define 7; as the automor-
phism of R'/M* = F[z]/(g(z)) such that
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ri(r +(9(2)")) = 7(r) + (¢(z)°) where reR'.

Clearly ; is a transpose map on R'/M*:

R'/M? =5 R'/M.

In particular

R =R /M™ = R'/M™ (M™ =0).
Recall that O = {f{z) € K: f{2)- fiz}' = 1}. Cal O’ = {f(z) € R': f(z)- f(«)' =
1} and O; = {f(z) € R'/M*: f(z) - ni(f(z)) = 1}.

For i > 2, let

wi: R'/M* — R'/M*™!

be the application

r+ M=+ M

; is a ring epimorphism. We have ©;(O;) C O;_,, so ; is a group homomorphism
from O; to O;—;. If all maps p; are surjective then by composing them, we construct
a surjective map ¢’ : O — O, and O/ kery’ = O,. Since O, C R'/M and R'/M
is a field, |O;] is relatively easy to find, thus in order to find |O| it is enough to

determine |ker ¢’|.

THEOREM 2.13. Let F be a field and let F[z] the polynomial ring in one variable.

Let f, h € F[z], and assume deg h > 1. Then there ezist unique polynomials
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fo, fi--- fn € Flz]

such that either f; =0 or deg f; < deg h and

f=fo+ fih+---+ fah™

(see [2], Page 196).

The expression of f in Theorem 2.13 is called the h-adic representation of f. By this
theorem, ta.i&ing h = g, for every f € R' we have that f = f +f:1g+ coot fa—1g™ 1t
(fi = 0 or deg f; < deg g), where we can regard the f; as belonging to the field
R'/M.

We will think of R'/M" as the set of polynomials in F[z] of degree less than the
degree of g*(z) with the usual addition and multiplication mod g*(z). In this way
we have all the R'/M* as subsets of R'. We will always suppose that the elements of
R'/M? are represented g-adically. Our purpose is to determine when the polynomial
f belongs to O'.

Let f = Z;-n:;l fig’ € O' ( g-adic representation ). Then for 0 <! < m we regard
Z;___:B fig’ as an element of O; where Z;g fig’ is a simple truncation of the g-adic
representation. In this way we have fo € O1, fo + fig € O,, etc. So, to construct
an element of O’ we can select first an element f; € O, and then we must find an
element f; € R'/M such that fo+ fig € Oa, ..., an element f,,,_; € R’/M such that
fo+ figt -+ fmo1g™ T €Om =0 Let 1<i<m. If f € R let 7" djg’

be the g-adic representation of f - 7(f) — 1. We call d; the jth deviation of g.
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LEMMA 2.14. Let1<i<m-1. Iff' = Z;;(l, fig’ € R'/M* and f' € O; then
there exists f; such that f = f' + fig' € Oiy if and only if d; = 0 where d; is the

ith deviation of f.

PROOF. Suppose that f = f' + fig* € Oiy; then f-141(f) — 1 = 0 mod gi+!.
That is Zi':o d;g’ =0 mod ¢g**!. So we have dy = d; = - - - = d; = 0. Conversely,
suppose d; = 0. Since also f € O; wehavedy =d, = --- =di—; = d; =0 so
F-m(f) =1 =dit19F +dig2g"t?2 +---. Thatis f-mia(f) = 1=f-7(f) =1=0

mod g*+!. Therefore f = f' + f;g' € Oiyy. O

Recall that 7 is a transpose map of R’; in particular it is an automorphism of R’.
Since M = (g) is the only maximal ideal of R’, we must have M = (M) = (7(g)).
So 7(g9) = u - g for some unit u of R’. Let 8 : R — R'/M be the canonical

projection. Call 8(u) = ug.

LEMMA 2.15. Let u be the unit of R' such that 7(g) = u - g and let ug be the

canonical tmage of u in R'/M. If m > 2 then ug € O,.

PROOF. Recall that R' = F[z]/(¢g™). Suppose m > 2. Since 7(g) = u - g,
we have 72(g) = 7(u - g) = r(u)7(g), but 72 = 1, so that ¢ = 7(u) - u - g, thus
(rf(u)-u—1)-g=0in R'. Since g # 0 then 7(u)-u— 1 is not an unit, but R’
is a local ring i.e. it has a unique maximal ideal M, so 7(u) -u — 1 € M. Thus

T(u)-u =1 mod g, which means ug - 11(up) =1 in R'//M. O

THEOREM 2.16. Let 1<i<m—1and let f = '} fig’ € O, then f + fig' €
Oi+1 tf and only if f; satisfies (in R'/M)
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n(fi- foug + (fi - fo ') = —d;

where d; is the ith deviation of f.

PROOF. Suppose f + fig' € Oy then (f + fig®) - rix1(f + fig') = (F + fig') -
7(f + fig') = 1 mod g'*! so we have f - 7(f) + f - 7(fig") + fig' - 7(f) = 1 mod
gt ie for(f) =14 f-7(fi) -ut- g + figh - 7(f) = 0 mod g**!. Since f € O;
it follows from the definition of the deviation d; that f - 7(f) ~ 1 = d;¢* mod
g't!(sinced; =0,0< j<i—-1). Sodig"+ f-7(fi)-u'-g' + fig"- 7(f) = 0
mod g'*'. Thus (di + fi - 7(f) + f - 7(fi) - ©%) - ¢ = 0 mod g¢'*!, which means
di+ fi-7(f)+ f-7(fi)-u' =0 mod g. That is d; + fi - 11 (fo) + fo cT(fi) -ut =
mod g. Since fo € O1, 7 = 1, and up is the image of u in R'/M, 7(fo) = f3* mod
gand we have di + fi - fo ' + 1i(f5" - f:) - uf = 0 mod g. Since the process above is

invertible, the converse is obvious. O

Recall that 7, is the transpose map of R'/M, so either m; has period two or 7
is the identity. Let F; be the fixed field of r; in R'/M, then 7 + 1 is an F)-linear

endomorphism of R'/M.

THEOREM 2.17.
1) If m # 1 or Char F # 2, then ker(r +1) = {r € R'/M : 1(r) = —r} and
Im(r; +1) = F;.
2) ker(ry + 1) =rF; for somer € R'/M.
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8) Let r € (R'/M)*, then r~'7i(r) € O, and the map r — r~ 7y (r) from (R'/M)*

to O, is onto unless 1, = 1 and Char F # 2.

PROOF. 1) If r € R'/M and 71(r) = —r then (r; + 1)(r) = 0. Conversely, if
r € ker(r; + 1) then (11 + 1)(r) = nu(r) + 1(r) = n(r) + r = 0, so that 7y (r) =
—r. Let r € Im(7; + 1) then there exists ' € R'/M such that (1, +1)(r') =1
then ni(r) = 7 - (. + 1)(+') = (1, + 1)(+') = r, thus r € Fy. This proves that
Im(r; + 1) € Fy. Conversely, if Char F # 2, then for every f € F; we have
(r1 + 1)(f) = 2f. Since 2 # 0 we have f = (r; + 1)(3f). Thus F} € Im(m; +1). If
Char F =2 and 7, # 1, let 2o € R'/M be an element such that 7i(zo) # zo, then
(11 +1)(zo) # 0. Call yo = (71 + 1)(z0), we have (11 + 1)(;—'2—) = 1. So there exists
an element £ € R'/M such that (3 + 1)(z) = 1. It follows that for every f € Fi
we have (1, + 1)(zf) = zf + ni(zf) = «f + n(z)f = (z + 11(z))f = f. Therefore

F, C Im(m, +1). So, in both cases, Im(m + 1) = F.

2) If ker(r; + 1) = {0} then we take r = 0. Suppose ker(7; + 1) # {0}. Let r’ # 0
such that r’ € ker(r; +1) then 71(r') = —r'. Since for every r € ker(m +1), 1 (r) =
—rwehave 7 (5)=%. So 5 € Fy,ie. r €r'Fy. Conversely, for any r'r € r'Fy,
we have 7,(r'r) = —r'r. i.e. 'r € ker(m1 + 1). Therefore ker(m; +1) =r'F.

3) Since (r- ! (r))n(r~tn(r)) = v in(r) - (n(r))"'r = 1 we have r i1 (r) € O1.
To prove that the map (R'/M)* — Oy, r = r~17i(r) is surjective we use the idea
of the proof of Hilbert’s Theorem 90 ([2], page 323). Let a € O,. For some ¢ €
(R'/M)* the element y = ¢ + a71(c) is nonzero since 1,7, are linearly independent
([2], page 318). It follows that ari(y) = ari(c) + an(a)c = ami(c) + ¢ = y. Since

y # 0 we have a = Now weput r =y~!. O

¥
m1(y)”
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Assume 7, # 1. Let us consider the element ug € O, (in Lemma 2.15). By

Theorem 2.17 there exists rg € (R'/M)* such that

(I) 7'6_17’1(1'0) = ‘uo_l.

Let f € O;. By Theorem 2.16, f + fig* € Oit if and only if 71 (fi - fo—l)u(‘J +
(fi - f&') = —di. If we replace ug! by rg 17 (r0) we obtain 7 (fi - )+ (fi

fOrgin(rg) = —dirg 'ni(r§). So we have

fi )=_d_g_

fo-7é ro

(IT) (T2 + 1)(

By (II) and Theorem 2.17 (1) we have —%,"- € F;. Thus a choice for f; exists only

f e F;. The next lemma shows that this always happens.

LEMMA 2.18. Suppose that f € O;. Let d; be the ith deviation of f and let ro

be as in (I). Callw = g—g—. Then w € Fy.

PROOF. Since f € O; we have f . 7(f) — 1 = d;g* mod g'*!. This implies
r(f - 7(f) — 1) = 7(dig') mod gt!. So f-7(f) — 1 = u'r(d;)g’ mod gt since
= 1 and 7(g) = u -g. Comparing the congruences above we get d; = utr(d;)
mod g. Thus d; = ulm(d;) where ug is the canonical image of u in R'/M. Since

o 1T1(ro) = ug !, we have Tl(w)—-rl(—t-):;: _Q_—w 0

The next result gives the number of choices for the polynomials f; that can be

used to lift an element f € O; to an element f + fig' € Oi41, when 71 # 1.
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THEOREM 2.19. Let f € O; and assume 1, # 1. Call Sy = {fi : f + fig* €

Oi+1}. Then ISfI = |F1I.

PROOF. Recall that (m; + 1)(5%) = —w, where w = %};— € Fy. Since fo,10
and w are fixed elements, the only variable is f;. Let f! = (TL) Since for
any @, B € R'/M the condition (r; + 1)(a) = (71 + 1)(8) is equivalent to the
condition o € ker(m; + 1) + 3, by Lemma 2.18 the number of choices for f! is equal
to |ker(my + 1)|. Therefore |Sf| = |ker(m1 +1)| = |r- Fi| = |Fi| (here we used

Theorem 2.i7 (2)). T

We are assuming that g € F[z] is an irreducible reciprocal factor of ¥(z) of
multiplicity m with degree 2s. Suppose 1 # 1. Since 7; is a transpose map of
F[z]/(g) over F, 1 is an automorphism of F[zr]/(g) over F, of order 2. Let o be
the Frobenius automorphism of F[z]/(g) over F. We have r; = o* for some k,
0 <k <2s—1. Since 02 =72 =1 and the order of o is 25, we have 2s||2k so s||k.
But k # 0 since 7 # 1. Therefore k = s, that is 7y (z) = 29 for every z € Flz]/(g).
Thus Oy = {z € F(z]/(g) : z- 2% = 1}. Since F[z]/(g9) = GF(q?°) is a finite field,
(Flz]/(g))™ is cyclic and clearly O, is its unique multiplicative subgroup of order
g’ +1,ie |0 =¢ +1. ([2], page 289). Let G = {1,71}, then G is a subgroup
of automorphisms of the field F{z]/(g). Since F; is the fixed field of 7, we have
Fy = GF(q*), ([5], page 483). Let f = fo+ fig+ foa® + -+ - + fmorg™ " € O".
Since fo € O;, we have immediately that the number of choices of fy is ¢* + 1. By
Theorem 2.19, we have that the number of choices for f; (1 <i<m —1)is |Fi]| =

q°. Therefore the orthogonal group component O’ corresponding to g has order
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(**) 0’| = (¢° +1) - ¢V

Example: Let ¥(z) = 28 — 1 = (z + 1)2 - (22 + = + 1)? over F = GF(2). Let
g =z® +z + 1. Then g is irreducible and reciprocal. We have R = F[z]/¥(z) =
Flz]/(z+1)2@® F[z]/(g?). Call R’ = F[z]/(g?). The transpose map on R’ is a 1-cycle
and the corresponding orthogonal group component has order (¢* + 1) - g*(m=Y =

(2t +1)-2=6.

Now let us suppose 7 = 1. By Proposition 2.11, g = z+1. Recall that 7(g) = u-g
for some unit u in R’ = F[z]/(¢g™), and that ug is the canonical image of u in R'/M,

i.e. up = u mod g. We have

rg)=t(ztl)=zrx1=(Fl+g) ' £1.

Since (-1+g¢)-(-1-g—g*—-¢*—---—¢g™"")=1and

(+14+9) (Fl—g+g —g*+ -+ (=)™ g™ ) =1

in R, then 7(g9) = (Fl—gF¢* - F-- )£l =(-1Fg—¢g*F--")g- So
we have u = =1 Fg—g?*F---and uop = —1. Let 1 < i < m—1 and let
f=fo+ fig+ f20* + -+ -+ fi1g"”! € O;. By Theorem 2.16, we have that
f+ fig' € Oiyy if and only if 7y (fi - fo ' )ud + (fi - fo ') = —di. That is

(Fi FyHA + (-1)Y) = —da.

We want to know how to find f; in R'/M such that f + fig' € Oit1.
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Case (1). If i > 2 is even and CharF # 2, then f; = —£2%  (We will discuss the
case CharF = 2 later).

Case (2). If i is odd then d; = 0. Since f € O; and d; is the ith deviation of f, we
have f € O;4+1. Thus for every f; € R'/M we have f + fig' € Oiy;.

If f € O;, by the definition of deviation, we have

m—1
for(f) =l =dig' +dipagt +--- = Y dug*.
k=1
Applying 7, we obtain f-7(f) -1 = ;C":_,l di(tg)*. Since g = z £+ 1, 7(g) =

(-1Fg—g°F---)g, we have

for(f) —1=—dig" + (dip1 Fi-di)g" ' +---

Thus
(1I1) d; = —d;.
(IV) i-d; =0.

If CharF # 2, d; =0 by (III). So for every f; € R' /M we have f + f;g' € Oiy1.
Summarizing we obtain the following result: Let f = fo + fig + fog®> + - - - +
fm-19™"! € O’ and suppose that CharF' # 2. We have f; € O; = {+1}, so the
number of choices for fo is 2; in fact 1 = for1(fo) = f¢ if and only if fo = £1. Let
1<:<m-—1. Ifiiseven, f; = —"}’2—‘1‘ is a fixed element, if 7 is odd, then d; = 0.
So for f; we can choose any element in R' /M. Since R' /M has degree 1 over F, the

number of choices for f; is q. Thus we have
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THEOREM 2.20. Suppose that F = GF(q) has characteristic # 2 and that g =

z 1 is a factor of Y(z) of multiplicity m. Then the order of the orthogonal group
O' of R\ = Flz]/(z £ 1)™ is

2. q[-f].

If CharF' = 2 and ¢ is odd, then d; = 0 by (IV). So for every f; € R'/M we
have f + fig' € Oiyy (where f = fo + fig+ fog? + - -+ fic1'"! € O;). In this
case fo € Oy ={+1}andg=z+ 1. So f =1+ fig € O, for every f1 € R'/M.
But if the multiplicity m of g is greater than 2 we have to consider whether or not
for such f; there exists some f, € R'/M such that 1+ fig + f29% € @;. (It is not

true that for every f; € R'/M there exists such f5).

LEMMA 2.21. Suppose f =1+ fi1g+ fog®>. Then f € Oz if and only if fi =0

or fl = 1.

PROOF. Since 7(g) = (1+g+g°+---)g, we have 7(f) = 1+ fig+(fi+ f2)g +---.
Thus

For(f)+1=(fi+ g% +---
By Lemma 2.14, f € O; if and only if its 2th deviation is zero, i.e. if and only if
(fi+f2)=0in R'/M . Thus f € @3 ifandonly if fy =0 or f; =1. O
Now let us consider the case m > 2. Let f = 1+ fig+ fag? +---+ fi—19° ! € O;,
where ¢ is odd and i > 3. The same problem arises. We have f + fig' € Qi1
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for every fi € R'/M, but it may happen that does not exist a f;y; such that
f+ fig'+ fi+19"*" € Oip2. Suppose f' = f + fig' + fir19'"! € Oiyz. Since i
is odd we have f € O;1;; 50 f-7(f) = 1 = diz19't! mod gi*2. We have that

T(f') = 7(f) + fi - (7(9)") + firr - (7(g))'*'. Simce 7(g) = (L +g +g* +---)g, we

can write

(f)=r(f)+ fi-¢"+(fi + fix1) -¢"' mod g'+2.

So

fror(fY=f-r(f)+ fi-v(f)-g' + firr -7(f) - g'*' mod g2

Since f-7(f'y = f-7(f) + fi - &' + (fifs + fir1 + fi)g'! mod g**? and 7(f) =
1+ fig+(fi + f2)g2 +---,

we have

FFor(f)=Ff-7(H+fifi + fir1 + fifi + firr +fi)gi+1-
=1+ (fi + diz1)g™*!

By Lemma 2.14, f; +diy; = 0 i.e. fi; = di4;. From this we obtain the following

theorem.

THEOREM 2.22. Let F = GF(q),q =p',p = 2. Suppose that g = z+1 is a factor
of Y(z) of multiplicity m. Then the orthogonal group O' of R' = F[z]/(z +1)™ has

order
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1 if m=1
q if m=2

2421 if m>2

2-CYCLE CASE.

Now let us look the orthogonal group O’ at a 2-cycle. As at the beginning of
this chapter, let g; and g; be two nonreciprocal irreducible factors of ¥(z) with
the same degree ¢t and multiplicity m and such that g; - g; is reciprocal. Call O’
the group of orthogonal elements of F[z]/(¢™) x F[z]/(97*). The transpose map
r : Flzl/(g™) x Flal/(g") —> Fle}/(g™) x Flal/(g7) induces an isomorphism
between F([z]/(¢) and F[r]/(gT") and t(ei) = ej; thus 7 |p[s)/(grm) is inverse to
™ |reyem)- I we identify Flz]/(g7) x 0 with Flz]/(g™), 0 x Flz}/(g]") with
F[z]/(gT*), then we have T(fi, f;) = (7(f;),7(fi)) where fi € Flz]/(97"), fi €
Flz}/(g]). Since Flz]/(¢[*) x Flzl/(g]*) = Flz]/((gig;)™) and r? = 1, if f; is
invertible and f; = 7(f;)™!, then (fi,7(fi)™!) x (fi, 7(fi)~') = (1,1), the identity
element in Flz]/(g7) x F[z]/(gT*). Therefore (fi,7( fi)~!) € O'. Conversely, if
some element (f;, f;) of Flz]/(g) x F[z]/(gT*) belongs to O’ then (1,1) = (fir fi)-
m(fi. fi) = (fi, £5) - (7(£;)s 7(fi)) = (fi - 7(f5), fi - 7(fi)), so we have that f; is

invertible and f; = 7(fi)~!. Therefore the map 7 such that

m: [Flzl/(g7)]* — O

firm (fi,r(f)™h)
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is an isomorphism from the group of units of F[z]/(¢]") to O’. In particular
0] = [(Flzl/(gl)*|- Now, (Flzl/(¢)* = {fo+ figi + -+ fm-197"" :
fo € (Flz]/(9:))%, fx € (F[z]/(g:)) for 1<k < m-—1}. Hence|(F[z]/(¢"))*|=

(¢t — 1) - ¢'™~1), So we proved the following theorem.

THEOREM 2.23. Let F = GF(q), q = p', and gi, g; be a 2-cycle pair of factors
of ¥(z) (so g: and g; are distinct irreducible nonreciprocal and g; - gj is reciprocal).
Suppose that g; and g; have each degree t and multiplicity m. Then the correspond-

ing group O’ of orthogonal elements in Flz]/(g™) x Flz]/(g]*) has order

(¢" =1)- """,

Let us go back to the general situation. Suppose that (z) is the reciprocal
polynomial z® — 1. Let F = GF(q), ¢=p' and n =n, - p* with (n1,p) = 1. Thus
" — 1= (™ — l)Pk. Taking derivative for ™ — 1 we have (z"! — 1)) = nyz™ "',
Since (n1,p) = 1, we have that (z™ — 1)’ has only zero as a root, but zero is not
a root of " — 1. Thus z™ — 1 has only simple roots. So, all polynomial factors

corresponding to 1l-cycles and 2-cycles have the same multiplicity p* over F.

Let p, denote the group of nth roots of unity in the complex field C. If ¢(n)
denotes Euler’s ®-function (= number of integers a, 1 < a < n, relatively prime
to n =order of the group (Z/nZ)*), then p, has ¢(n) generators. Let (, denote a

fixed primitive nth root of unity. Then

Hn = {Cna Cf?u' e r':—l’ Crr: = 1}'

41



DEFINITION. We define the nth cyclotomic polynomial as

O.(z)= [ (-¢= ][] (z-¢%

(€un 1<a<ln
{primitive (a,n)=1

in Clz]. It can be shown that ®,(z) € Z[z] ([5], page 466).

The roots of the polynomial z™ — 1 are precisely the nth roots of unity, so we

have
" — 1= H(x—().
(el‘n

If we group together the factors (z — () where ( is an element of order d in u, (i.e.

¢ is a primitive dth root of unity ), then we have

J:n—l=]:[ H (z = ().

diirn  {€pa
{primitive

Since

2i(c)= [ =-0,

CEpa
¢primitive

we have

" —1= Héd(z).

dlin

Let us consider again the polynomial z™* — 1 defined above. We can factor it as

"t —-1= H ®4(z) over F.
diin,
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Let d be a divisor of n;. Clearly the polynomial ®,4(z) is reciprocal. So we can factor
®4(z) into irreducible reciprocal polynomials corresponding to 1-cycles, and pairs
of irreducible polynomials (whose product is reciprocal) corresponding to 2-cycles.
Let ®4(z) = g1 -g2 - -- gk be the decomposition of #4(z) in monic irreducible factors
over F, then all the g; have the same degree. In fact, with 1 < ¢,7 < k, let a be a
root of g; and 3 be a root of g; in an extension of F, then F(a) = F(8) (since 3 = al

for some [ with (I,d) = 1). Therefore deg(g;) = [F(a) : F] = [F(B) : F] =deg(g;)-

LEMMA 2.24. Let ®y4(z) = g1 -g2--- gk where g; (1 <t < k ) are trreducible in
F, suppose that for some i, g; is rectprocal with degree 2s. Then all factors of ®4(z)

are reciprocal.

PROOF. Let 7; be the transpose map of F[z]/(g:). Since m has order 2 and
F[z]/(gi) = GF(q*°), 1 is the only F-automorphism of order 2 of GF(¢**). So
n(f(z)) = f(z™1) = f(z)?* = f(z?) for every f € F[z]/(g:) and 1, inverts every
root of g;. Therefore, if a is a root of g; then a € O, = {f € F[z]/(g9:) : f -1 (f) =
f'+1 = 1}. So a?’*! = 1, and since « is a primitive dth root of unity, we have
d|lg® + 1. Conversely. if d||g® + 1 for some s, take s minimal. Then 7 (f) = 9" will
invert every primitive dth root a of unity thus g; is reciprocal. Also a has degree
2s and so g; has degree 2s over F. Since the fact that df|¢g* + 1 is independent of

the choice of g;, all factors of ®4(z) are reciprocal. O

LEMMA 2.25. Let ®4(z) = g1 - g2--- gk where g; (1 < i < k ) are irreducible
in F, if there erists g;, for some i, such that g; is nonreciprocal then all factors of

®4(z) are nonreciprocal.
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PROOF. Immediate, by Lemma 2.24. O

It follows from the proof of Lemma 2.24 that if all the factors of ®4(z) are

reciprocal with degree 2s then ®4(z) can be factored into %;i) irreducible reciprocal
polynomials of F[z], and s is the smallest positive integer such that d|jq® + 1.

Let Z} denote the multiplicative group of units of the ring of integers modulo d.
Since (g,d) = 1, there are u,v € Z such that ug + vd = 1 thus uqg = 1 mod d. Let
[q]a denote the cyclic subgroup of Z; generated by q. We can rewrite the condition

of Lemma 2.24 as following.

LEMMA 2.26. ®4(x) factors into irreducible reciprocal polynomials in F[z] if and

only if —1 € [q]4. In that case every irreducible factor of ®a(z) has degree |{qla|.

PROOF. Recall that by Lemma 2.24, ®4(z) factors into irreducible reciprocal
polynomials of F[z] if and only if d||¢® + 1 for some s and that these factors have
degree 2s if we take s minimal. That is, ®4(z) factors into irreducible reciprocal
polynomials of degree 2s of F[z] if and only if ¢° = —1 mod d and s is minimal.
Suppose that happens. Since [g]q is the cyclic subgroup of Z; generated by ¢ mod
d, ¢ = —1 € [q]4 mod d. Since s is the smallest positive integer such that ¢° = —
mod d, s is the smallest such that ¢?* = 1 mod d, i.e. [g]qs has order 2s which is

equal to the degree of the irreducible factors of ®4(z). O

By this Lemma and Lemma 2.25, we have that ®4(z) factors into nonreciprocal
irreducible factors in F[z] if and only if —1 ¢ [g]4. Since the roots of all factors of

®4(z) are primitive dth roots of unity, every irreducible factor has degree ¢, where
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t is the degree of any primitive dth root of unity over F. Let g be an irreducible
factor of ®4(z) and let a be a root of g, since a has degree t over F = GF(q),
a?~! = 1. So d||q' — 1 and ¢ the smallest such positive integer i.e. ¢ is the smallest
positive integer such that ¢! = 1 mod d. Therefore t = |[g]a|.

Now we can state the main theorem, in which we list formulas to count the orders

of all orthogonal groups of circulant matrices over GF(q).

THEOREM 2.27. Let O, ) denote the group of orthogonal n x n circulant ma-

{

trices over F = GF(q), where ¢ = p'. Write n = n; - p* with (n1,p) = 1. Given a

divisor d of ny, let hg = |[q]4|, and define O4(n,q) as follows

I) Ford=1,2
1)Ifp=2
1 if k=0
|Oa(n, @)l = { ¢ if k=1
2.4 if k>1.
2) Ifp#2
04(n,q)| = 2- g¥ "1,
II ) Ford > 2

1) If -1 € [qla

10a(n, q)| = [(g¥* + 1) - g¥he(P* D)o D/ha,

2) If -1 ¢ [qla
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|0a(n, )] = [(g"¢ — 1) - gt ~D]#/2ke.

Then

0.y = [] 104(n. )}

dlin,

PROOF. Write 2" —lasz" —1 = (2™ - I)Pk and factor z*t —lasz™ —1 =
IT dlny ®4(z) over F, where ®4(z) is the dth cyclotomic polynomial defined above.

k . .
Thewn &% — 1 =[] ., 8 (2) over F. By the definition of ®4{z), €4,{z) and ®4,(z)

are relatively prime if d; # d2, and ®4(z) is reciprocal over F. Thereforec we have

Flz]/(z" — 1) = @D Flzl/(2% (2))-
d
df|ny

For any fixed divisor d of n,, let O4(n, q) denote the group of orthogonal circulants

of F[z]/(@‘;k(z)). Then

|On,00| = [] 10a(n,9)].
dlin

It remains to calculate the [O4(n, q)|-
I) Ford =1,2.
1) If p = 2, then ®4(z) = z + 1. By Theorem 2.22 we have that the orthogonal

group Oq4(n,q) of Flz]/(z + l)Pk has order

1 if k=0
|Oa(n,q)| = ¢ if k=1
2.¢27" if k>1
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2) If p # 2, then p is odd and ®4(z) = z + 1. By Theorem 2.20, we have the

orthogonal group of Flz]/(z £ l)Pk has order

|0a(n, q)| =2-g#¢"~D,

IT) For d > 2.
1) If —1 € [g]4, then, by Lemma 2.26, every irreducible factor of ®4(z) is recip-
rocal with degree hq = |[g]4|. Since ®4(z) has degree o(d), $4(z) can be factored

into ¢(d)/h, different irreducible reciprocal factors. So by (), we have

k
10a(n, @) = [(g¥h4 + 1) - ghalP* ~D () /ha.

2) If -1 ¢ [g]q, then, by Lemma 2.25 and 2.26, every irreducible factor of ®4(z)
is nonreciprocal with the degree hy = |[g]4|. Since ®4(z) has degree p(d), ®4(z)
can be factored into ¢(d)/2hy different polynomial pairs the product of each pair

being reciprocal. So by Theorem 2.23 we have

|04(n, q)| = [(g"* = 1) - ghe(P*—D]e(d)/2ha

Example 1: To find the order of the group of 12 x 12 orthogonal circulants over
F = GF(2).

1) p=¢q=2,n=12=3-22 sothat n; = 3,k = 2.

2) The divisors of n; are d = 1,3. We have (1) = 1 and ¢(3) = 2.
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3) [gh =2 = {1},[q)s = [2Is = {2,1} = {-1,1} so that by = |[2)i] = L, k2 =

4) |0a2,2)| = [Tays 104(12,2)| = [01(12,2)] - [053(12,2)]

=(2-2%)- [(28% +1)- 282 -D)]2/2 = g . 3. 9% —[192]

Example 2: To find the order of the group of 11 x 11 orthogonal circulants over
F =GF(11).

1) p=q=11,n=11so that n; =1,k =1.

2)d=1, and ¢(1) = 1.

3) lgla = [11]1 = {1} so that hy = |[11};| = 1.

4) |0aiin| = 101(11,11)| =2-11511-D = 2. 115}
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Chapter 3. Construction of the Orthogonal

Circulant Matrix Groups O(;2.3), O,2) and O(14,2)-

Compared with the counting |O(n,q) | , the method of constructing the elements of
O(n,q) is more complicated, as examples in this chapter we construct the orthogonal

groups O(12,3), Os,2) and O(y4,2)-
Constructing O(,2,3)-

Since the corresponding polynomial is z!2 — 1 and n = 12 = n; - p* = 43,
by using the methed above we have immediately !0(12'3,5 = Hd’l‘i |24(12,3)] =
|01(12,3)] - |02(12,3)| - |04(12,3)] = |[6-6-36| Since we can factor z!2 — 1 =
(z* =12 =(z+1)®-(z —1)3- (22 + 1) where £ = 1 and z? + 1 are irreducible over
F = GF(3), and £+ 1 and z2 +1 are 1-cycle polynomials, there are correspondingly
three transpose maps 7/, 7" and 7' on F[z]/(z+1)3, F[z]/(z—1)? and F(z]/(z?+1)®

respectively, so that O = O’ x O" x O".

Case (I). O

' : Fizj/(z + 1)* — Fiz]/(z +1)®
r'(z) = —z?
Suppose f = fo+ fi(z + 1) + fo(z + 1) € O, it is easy to see that fo € {£1}, fi €
{0,+1}. We have to determinate f; = —d—"‘é& =ds - fo, where d; is fo + fi(z +1)’s
2th deviation and d; € F[z]/(z + 1) = {0, £1}.
(1) Let f =1+ (z + 1), then f-7'(f)—1=(1+=z)% Thus f=1+(z+1) has1
as its second deviation i.e. 1 +(z + 1)+ (z +1)2 € O'.
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(2) Let f=1—(z+1),then f-7(f) —1=0. Thus f=1-(z+1) has O as its
second deviation i.e. 1 + (= + 1) € O’.
(3) Let f = 1, it is obvious that f = 1 has 0 as its second deviation thus f =1 € O’.

We can write down our results in some simple tree as below

This tree displays the completed the tree for the choice fo = 1 in O]. Since this
is the kernel of the canonical map from O’ onto O}, the corresponding tree for
the choice fo = —1 can be found by multiplying the tree for fo = 1 by any one

completed path from —1. So we have the tree
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Case (II). O”

7" . Flz]/(z — 1)} — Flz}/(z - 1)

'(z) = z?

Suppose f = fo + fi(z — 1) + fa(z — 1)? € O”, as case (I) we have that fo € {£1},
f1 € {0,£1} and we will determinate fo = —2&f2 = d,- fo, where d; is fo+fi(z—1)’s
2th deviation and d; € F[z]/(z + 1) = {0, £1}.

(1) Let f =14 (zr--1), then f-7(f) =1 =0. Thus f =14 {r - 1) has J as it

second deviation i.e. 1+ (z —1) € O”.

(2) (1) Let f =1—(z — 1), then f-7'(f) —1=(z —1)?>. Thus f =1—(z —1) has
—1 as its second deviation i.e. 1 —(z — 1) +(z —1)2 € O".

(3) Let f = 1, it is obvious that f = 1 has 0 as its second deviation thus f =1 € O".

We can write down our results in some simple tree as below

1
7 X
0 -1 1
/ | AN
0 1 0
Similarly as Case(I), we can construct the tree for fo = —1 as
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Case (III). O™

£ F[:L‘]/(:Bz + 1)3 N F[x]/(z2 + 1)3

(z) = 7l =25

Since the multiplicity of g(z) = z2 + 1 is m = 3, we can suppose that f =
fo+ fi-g+ f2-g* € O so that we have to find fo, fi and f,. By (II) we have if

7 # 1 then (] + 1)(%) = —ix We will use (IT) to find f and fo.

LEMMA 3.1. Let T be a transpose map of F[z]/(g™) where g is an irreducible
reciprocal factor of ¥(z) as before. Suppose T # 1l and f = fo+ fi-g+ f2-g*>+---+
fm—1-9g™"! € O then there ezists an element a of R/M such that f; € fo-r§(a+F})

mod g for1 <:<m—1.

PROOF. By (II), let a be an element of R/M such that (1 + 1)(a) = -—g:.)f—.
Comparing it with (II) we have f;/(fo -r§) —a € Ker(m1 +1) = Fy. Thus f; €
fo-rg(a+F1). O
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From this lemma, in order to find f; it is enough to find e, fo, Fi and rp. Since
a is an element of the field (finite) of R/M, fo € O, and F; is the fixed field of
(r1 +1) in R/M, we have that «, fo, F} and rg are relatively easy to find. The next

lemma giving a way to determinate the remaining element ro.

LEMMA 3.2. If R' = F[z]/(g™), where g is an irreducible reciprocal polynomial

of degree 2s, then we may take ro = z7° mod g.

PROOF. Let F denote the splitting field of g(z) over F. Then we have cor-
responding the ring R = F[z]/(g™) which contains R’. We suppose T which
is the transpose map of R. Since g is irreducible reciprocal polynomial of F[z]
with degree 2s, in F[z] we can write g as ¢ = [[i_,(z — @i)(z — o] ') where
a; and o are not mutually reciprocal if j # k for 1 < j,k < s. So 7(g) =
(g) = [[i=,(z7! — ai)(z7! — a]'). Multiplying 7(g) by z** we have z?*7(g) =
Tio, (1 —aiz)(l —af'z) = [[i,(z —ai)(z —a] ') in F[z]. Since 7(g) = u - g for

some unit u in R’ and u = ug mod g, we have ug = 72°* mod g. Taking ro =z~

mod g we have r5!r (rg) = z°11(2°) = 22° = uy! mod g which satisfies (J). O

By Lemma 3.2 for the ring F[z]/(z%2 + 1)} we can take rp = z7! = —z mod
(z2 + 1). In general for the ring F[z]/(g™), if the degree and the multiplicity (m)
of g are relatively small number, then we can always find ro directly. In particular
for F[z]/(z? +1)3, we have 7"'(z? + 1) = u(22 + 1) mod (2% + 1)? for some unit u in
F[z]/(z?+1)® then 72 +1 = u(z%+1) mod (22 +1)3 so that z72(z2+1) = u(z®+1)
mod (z? + 1). Thus

vu=z"2 mod(z?+1)?
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ie. u =222 + 1 mod (22 + 1)2. It follows that
u=uo=—1 mod(z?+1).

Wetakerg = z~! = —rmod (z2+1) thenry ! -7"(rg) = z-7""(z7 ) =z’ = -1=uo
mod (z2 + 1) which satisfies (I).

Now let us consider the transpose map 7" : Fz]/(z? + 1)®* — F[z]/(z? + 1)3.
Since z2 + 1 has degree 2 over F = GF(3), O} is orthogonal subgroup of the group
[F[z]/(z? + 1)]* which has order ¢* + 1 = 3 + 1 = 4 where q is the order of F, s is
degree of (z* + 1) divied by 2. So O’ = {%1, &z} then we have fy € {+1,+z}. By
Lemma 3.1 we can take a = ia so that f; € fo(di + riF1) = fo(di + (—z)'F) (**)
for i = 1,2 where F} = F = GF(3).

We take fo =1, let f = fo =1 € O}’ then it is easy to see that the first deviation
of f = fo is zero so that by (*x), we have f; € {*z,0}. Since 7"(z) = —2° =

—z —zg —zg%, 7""(2?) = "(z)? = =1 — g — ¢%. Thus

Tlll(g) — Tlll(x2 + 1) =—g— gzg

Let f = fo+ fig =1+ g € OF, in order to find f2, such that f + f.g? € O™
we have to calculate its the second deviation. Since 7"/(f) =1+ 7"(z) - "'(g) =
1+zg—zg®, f-7"(f) = (1+zg)(l+z9—zg?) =1—zg—(1+1z)g°. So that f has
—(1 + z) as its the second deviation. Thus f, € [-(1 + z) — F| = {—z,—(z £ 1)}.

Let f=fo+ fig=1—zg € O, we have f-7"(f) = (1 —zg)(l — zg + zg%) =
1+ zg + (z — 1)g%. So that f has (z — 1) as its the second deviation. Thus
foe{(z—-1)—F) = {z,z £1}.
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Let f = fo + fig = 1+ 0g € O, we have f - 7"'(f) = 1 so that f has zero as its
the second deviation. Thus f, € —F = {0,+1}.

We use a simple tree to express our result as follows

0 -1 1 =z z-1lz+4+1 —2 —z—-1 —z+1

This tree displays the completed the tree for the choice fo = 1 in Of’. Since this
is the kernel of the canonical map from O" onto O}’, the corresponding trees for
the choice fo = —1, fo = z, and fo = —z can be found by multiplying the trees for

fo =1 by any one completed path from —1,z and —z correspondingly. So we have

the trees

VR IR A TN 2N RN

0 1 -1 —z —z+4+1 —-z—-—1z z+1 z-—1
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—T

RN 7 1\ A RN
0O = -z -1 z—-1 —z-11 z41 —z+1

Now we have got all elements for the groups of orthogonal circulants 0’, 0" and
O"'. Recall that Theorem 2.27, we write z" — 1 = (z™ — 1)"" with (n;,p) = 1 over

F' then we have

k
Flz]/(" —1) =@ ) _ Flz/(®} (2))-
dfn:
Let K be the set such that D = {d: d|n,}. For any fixed such d let ¢4 is an
idempotent of F[a:]/(@ﬁk (z)) and let £ = {ea: d|n1}. Then
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Flz]/
zt —-1) =
Flz]/(z" - 1) =@ Ed eq—i—— @ ()

d|n1

(% * *)

Let 7 be a transpose map of F|[z]/ (@Zk (z)), an orbit of 7 in € is a set of the form
€4 = {eq,T(€a)} such that £; are all the distinct orbits, let S = @,e&e({;@l—) be
the ideal generated by a given orbit £; which is a direct sum of the ring er .t"‘ = 3
then the transpose map 7 of F[z]|/(z™® — 1) acts on each Sy as an automorphism by
restriction. So that O = [,cp O g, (* * *x). By (* * x) and (* * *x), in order to
coustruct the clemnenis f Fiz]/(z™ — 1) it is erough o fiud cach g4. For the ring
Flz]/(z'?~1), let e1, e2 and e3 denote the idempotents of F[z]/(z+1)3, F[z]/(z—1)3
and F[z]/(z%? + 1)® correspongingly then by Theorem 3.5 we suppose that e, =
(z - 1)*(z2 + 1)3h; mod (z + 1)3, e2 = (z + 1)*(z? + 1)*h2 mod (z — 1)® and
ez = (z —1)3(z + 1)h; mod (22 + 1)® also h;(z — 1)3(z% +1)® = 1 mod (z + 1)3,
ha(z +1)3(z2 +1)®* = 1 mod (z — 1)® and h3(z + 1)3(z — 1)> = 1 mod (z2 + 1)3.

By Eucliden algorithm we get
e1 = —(z—12%z%+1) mod(z!?—1)
ez = (z+1)%*(z? +1)® mod(z!* —1)

e3 =(z —1)3(z+1)® mod(z!? —1).

As an example, we construct an element in O of F[z]/(z!2 — 1). Take path
(1,1,1)inO’, (1,-1,1) in ©" and (1,0,0) in O we have e;(1,1,1)+ea(1,—1,1) +
e3(1,0,0) € Oie. —(z—1)3(22 + 13 [1+ (z+ 1)+ (z +1)3]+(z+ 1)3 (22 + 1)3[1 -
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(z—1)+(z-1)}]+(z-1)}(z +1)® = =1 —z? + 2% — 8. This implies a circulant

of O(;2,3) whose first row is (-1,0,-1,0,0,0,1,0,-1,0,0,0).
Constructing O 2)-

Since the corresponding polynomial is z% — 1 and 6 = 3 x 2, by Theorem 2.27
we have |0(6,2)| = II4j3|04(6,2)| for 1 < d < 3. Therefore IO(6'2)| = |0:1(6,2)| -
|03(6,2)] = 2-[(2+1)-2] = 12. Since 28 — 1 = &, (z)&2(z)&3(z)®s(z) = (z—1)(z+
1)(z® + £ + 1)(z? — z + 1) over Q, we obtain 28 + 1 = (z + 1)2(z2 + z + 1)2 over
F =GF(2). Call 0 = O' x O" where O, O’ and O” are corresponding orthogonal
groups of F[:L‘]/(IL‘G +1), Fz]/(z + 1)? and F[z]/(z® + = + 1)%. Suppose that 7’ is

the transpose map of F[z]/(z + 1), 7" is the transpose map of F[z]/(z? + z + 1)%.

Case (I). O

' Flz]/(z + 1)? — Flz}/(z + 1)®
(z) =1z

Suppose f = fo+ fi(z+1) € O', by Theorem 2.20 and Lemma 2.21 we have fo = 1,

f1 € {0,1}. Thus the set O’ can be displayed as a tree

7\

ie. O'={1,14+(z+1)}.
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Case (II). O"

" Flz]/(z® + z + 1) — F[z]/(2® + z + 1)?
() =2 +z
Suppose f = fo + fi(z + 1) € O". It is clear that O} is the multiplicative group
[Flz]/(z? + z + 1)]* = [GF4)]* = {l,z,z2 4+ 1}. ie. fo € {l,z,z+1}. We
have to find f; € Flz]/(z? + z + 1) such that f = fo + fi(z + 1) € O”. By
Lemma 22 we can take r¢ = r + 1, let a = diz/rg then ¢ € Flzl/(z2 +  + 1)
and it is esay to see that (7] + 1)(a) = d;/r¢. So that by Lemma 3.1 we have
f1 € foro(diz/ro + F1) = fo(diz + F1) where F} = F = GF(2). If fo = 1, we find
the first deviation of f = fo = 1 is zero, so f; € roF} = {0,z + 1}. Thus for fo =1

the set in O” can be displayed as a tree

7N\

0 z + 1.

For fo = z the set inin O” is the tree of the tree for fo = 1 multiplying by z that

is
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VRN

Similarly for fo = z + 1 we have tree

r+1
VRN
1 r 4+ 1.

As example 1, to find the elements of @ we have to find the idempotents of
F[z]/(z® +1). Let e, e3 be the idempotents of Flz]/(z+1)? and F(z]/(z® +z +1)?

respectively. Suppose that

e1=(z2+z+1)°h =1 mod (z +1)2
e2=(z+1)2hy =1 mod (22 +z +1)>2.

By the Eucliden algorithm we have

e; = (22 +z +1)? mod (zf +1)

ez = (z + 1)%z? mod (z® +1).
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Take path (1,0) in @', (1,z + 1) in O, we obtain €,(1,0) + e2(l,z+1)=1+z +
z2 + 3 4+ r* € O. This implies that a circulant matrix of O 2) whose first row

is (1,1,1,1,1,0). Then 12 of 6 x 6 orthogonal circulant matrices over F' = GF'(2)

with the first rows are

(1,0,0,0,0,0)
(0,1,0,0,0,0)
(0,0,1,0,0,0)
(0,0,0,1,0,0)
(0,0,0,0,1,0)

(0,0,0,0.0,1)

(1,1,1,1,1,0)
(0,1,1,1,1,1)
(1,0,1,1,1,1)
(1,1,0,1,1,1)
(1,1,1,0,1,1)

(1,1,1,1,0,1)

Constructing O(14,2)-

Since the corresponding polynomial is z!* — 1 and 14 = 7 x 2, by Theorem 3.27
we have |0(14'2)| = II4j7|0a(6,2)| for 1 < d < 7. Then |O(14'2)| = |0:(14,2)] -
|0+(14,2)| = 2- 56 = 112. Write z'* —1 = (z + 1)?(z® + = + 1)?(2® + 2% + 1)? over
F = GF(2) where £ + 1, z* + £ + 1 and z3 + 2% + 1 are irreducible over F. Let
a be a root of 2z + z + 1 then a~! is a root of 3 + z2 + 1. By the definition we
have that 3 4+ z + 1 and 2% + 2 + 1 are not reciprocal but the product of them is
reciprocal. Call O = O’ x 0" where O, O’ and O" are corresponding orthogonal
groups of F[z]/(z'* +1), Flz]/(z +1)? and F[z]/(z® +z+1)? x F[z]/(z® + £? +1)%.
Suppose that 7' is the transpose map of F[z]/(z + 1)2, " is the transpose map of

Flz]/(z® + z + 1)? x Flz}/(z®* + 2% + 1)%.
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Caske (I). O’
The same as O’ of O 2y, we have O’ = {1,1 4+ (z +1)}.

Case (II). 0"

" : Flz}/(z® + £ + 1)2 — Flz]/(z® + 22 + 1)?
'(z) = z° + °

The multiplicative group of [F[z]/(z® +z+1)]* = [GF(2%)]* = {1,z,z+1,2%, 2% +
1.z2+z,2% +z+1}. Suppose f = fo+ fi(z® +z+1) € Flz]/(z® +z+1)? then fisa
unit of Fz]/(z®+z+1)? ifand only if fo € {1,z,z+1,2%,22+ 1,22 + 2,22 +z+ 1}
and f; € {0,1,z,z + 1,z%,22 + 1,22 + 7,22 + z + 1}. By Theorem 3.23 then
O" = {f x1"(f)~!: for all units f € F[z]/(z® +z+1)2}. As before let e, €2 and
e3 be the idempotents of Flz]/(z + 1)?, F[z]/(z® +z + 1)? and F[z]/(2® + z? +1)?

respectively. Suppose that

e = +z+ 1) + 22 +1)°h =1 mod (z + 1)°
e2=(z+ 1)}z +22+1)ha=1 mod (23 +z +1)2
es=(z+1)2(z2+z+1)2h3 =1 mod (z3 + 22 + 1)

By the Eucliden algorithm we have

er=(z2+z+1)2EZ +22+1)2 =1 mod (z!* +1)

e=(z+1) (2 +2+1)2° =1 mod (z'* +1)
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es=(z+1)*(P+z+ 1)z +1)=1 mod (z'*+1).

Take 1 € O' and f = 1+ z(z® + z + 1) the unit of Flz]/(z® + z + 1)?, since
(f) =2+ + 2% = 1 4 (22 + 1)(2® + 22 + 1), we have 7'(f)~! =25 + z* + 3
in Fz]/(z® + 2 + 1)2. Therefore (2% + z 4+ 1)2(z® + 22 + 1)2 + (2 + 1)%(z® + 22 +
I i+z(z®+z+ 1))+ (c+1)2 (P +z+ 1)2(z* +1)(z5 + 2 +28) =1+ + 23 +
z* + 2% + 28 + 219 4 £ 4 213, This implies a 14 x 14 orthogonal circulant matrix

with first row (1,1,0,1,1,0,1,0,1,0,1,1,0,1) over F = GF(2).
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Chapter 4. Normal and Normal Orthogonal Bases over Finite Fields.

Our purpose in this section is to investigate the relations between any two
normal bases and between any two normal orthogonal bases, as well as the existence
of normal orthogonal basis for an extension field K/F and the number of normal

orthogonal bases for K/F when one exists.

DEFINITION. Let K/F be a finite Galois extension of degree n. Let G = {0,072, -
be its Galois group. A basis B of K/F 1is called a normal basis if

B = {o1(a),02(a). -+ ,on(e)} for some x € K.

THEOREM 4.1. Let K/F be a finite Galois eztension of degree n, let G =
{01,002, ,0n} be its Galois group. Then there ezists an element a € K such
that
{o:1(a),02(a), -+ ,on(a)} is a normal basis of K over F (see [2] Theorem 13.1, or
[11] Lemma 8).

Let K/F be a finite Galois extension and let G be its Galois group. For 8 € K,
we define the trace of 3 relative to K/F as
triyr(B) = Y o(B)-
c€G
DEFINITION. A normal basis B = {01(a),02(a),-- ,on(a)} is called a normal

orthogonal basis if

trig/p(oi(e) - o5(@) = 8 =

{1 if i=j

0 otherwise.
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Let us assume now that F = GF(q), with ¢ = p™, p prime, let K = GF(q")
(a finite extension of F with degree n). The corresponding Galois group G of
K/F is then a cyclic group of order n generated by the Frobenius automorphism
o :z +— z9. So we can redefine a normal basis of K/F as a basis B such that

n—1 -
B = {a,a?,--- ,a? '} for some a € K.

LEMMA 4.2. Let F = GF(q) with q = p™, let K = GF(q") be a finite extension
of F with degree n. Then

(1) trg/rp(B) € F, BeK

(&) tr r(07) = trg r(9), Be K

('9) trK/p(aﬂ-i-b*/):a-tr(,[)’)+b-tr('7), 13176-[{7 a’beF'

PRrROOF. (1) Let 8 € K, then the trace of 3 relative to K/F is the sum of the
conjugates of 3 with respect to I/F. Suppose that f(z) € F[z] is the minimal
polynomial of # over F with degree d, then d is a divisor of n and 3,89, -, ﬂ"d—l
are the distinct roots of f(z) in K. Let g(z) = f(z)"/¢, then g(z) has degree n and
has also 3,89,--- , Bqd-l as its the distinct roots, and each repeated n/d times. This
implies that the roots of g(z) in K are precisely the conjugates of § with respect

to K/F. ie. 8,89,--- ,;3‘1"_1. Hence we have that

1

9(z) =z" +an1z" 7 4+ tao = (z = B)(z = B (z - BT ),

where a; € F, 0 <1 <n—1. A comparison of coefficients shows that

trg/r(B) = —an-1.
(2) and (3) are obvious. [J
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Note: For a matrix A = (a;j), trg/r(A) means the matrix with trg,r(a;j) as its
(z,7)th element.

We start our discussion with a simple example.

Let F = GF(5). The field F(v/2) is the splitting field of the minimal polynomial
22 — 2 over F, and F(v/2) has degree 2 over F. It is clear that 1,v/2 is a basis of
F(v/2) but it is not a normal basis. Let 81 = 1+ V2 € F(v/2) then 8, = 8} =
1—v2 € F(V/2). 1t is easy to check that 31, 8, is a basis of F((v/2) so, by definition,
it is a normal basis. Similarly a; = 2+ /2, a3 = 2 — /2 is another normal basis of
F(/2). Since oy = ~8; + 332 and o7 = 383, -- 32, the transfos:nation wmatrix fier

the basis (81,02) to (aj,az) is

(7 3)
3 -1)°
a circulant matrix with entries in F'.

In general, let K be a Galois extension of FF = GF(q) with degree n and let
B={a,a%,---,a" '} and B' = {3,8%,--- ,837" '} be two normal bases of K/F,
then there exist n unique elements ag,a;,--- ,an—1 in F such that

1

a=af+a1f'+---+ an—lﬂqn—
where a; # 0 for some i, 0 < i < n— 1. Applying powers of the Frobenius
automorphism o for a. We obtain

1

a=aB+arf'+ -+ an1f?

1

o = an18+ aof? + -+ + an_2B7
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n-—1

o =B+ af -+ aft .

So, the transformation matrix from the basis B’ to B is

Qo @y ... Qnp—1
A= Qp—-1 40 ... Qp-2
a az ... ag

We find that A is a circulant matrix.

Now we investigate the transformation matrix between any two normal orthog-

onal bases of K/F.

THECOREM 4.3. Let F = GF(q), q =p™. Let K = GF(q™) be a finite extension
of F. Then K/F has a normal orthogonal basis if and only if n is odd or n = 2

mod 4 and q is even (see [11], page 198).

From this theorem we know that it is not true that there always exists a normal

orthogonal basis for a Galois extension K/F.

LEMMA 4.4. For 1 < 4,5 < n, let A = (aij) be a n x n matriz with entries in
F and let B = (a;;) be a n X n matriz with entries in K . Then trg/p(A- B) =

A- tTK/F(B).

PROOF. Suppose that A-B = C = (c;;) then ¢;; = Y ;_, aikarj. We have
tri/r(A-B) = (trg/r(cij)). By Lemma 4.2 we obtain trg/r(cij) = trg/p (Y p=; Gikak

= (X k=1 giktrr/r(e;)) the i, ] element of A - trg/p(B). O



THEOREM 4.5. Let F = GF(q), q = p™. Let K = GF(q") be a Galois
extension of F with degree n. Suppose that B = {a,a?,--- ,a""-‘} and B’ =
{8,89,--- ,ﬂ"n-l} are two normal orthogonal bases of K/F, then the transforma-

tion matriz between B and B' is an orthogonal circulant matriz with entries in

F.

PROOF. As above, let

1

a=aB+afl+ - +an-18"

then the transformation matrix from B’ to B is

aog a ... QAp-1
A= Gpn-1 @0 --- Qp-2
ay as ... ao

We have to prove that A is orthogonal. i.e. A- AT = I. Let §' denote the row

vector (8,09,---, ﬁ""-l) and let o’ denote the row vector (&, ad,--- a?" " ), then

o' =4 AT, ()T =4-(8)T.

So that

(@)T o' =A-((8)76)- AT,

where (a')T - ' is the n x n matrix with i-th row ad (e, -+, a?" ") and (8')T4

is the n x n matrix with 2-th row ﬁqi 8,8%,---, ,3‘1"_1 )- Applying tr, we have

trc/p((e)T - ') = trgyr(A- ((B)TB") - AT).
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By Lemma 4.4 we have

triyp((f)7 - a') = A- (triyr((B)78)) - AT (+)
Since B and B’ both are normal orthogonal bases of K/F, by definition we get

S P 1 if i=j
triyr(a? - an) = tryyr(B7 "Bql) =dij = { 0 otherwise

so that by (x) wehave I= A-T-AT = 4. AT. O

We have proved that the transformation matrix between two normal orthogo-
nal bases of A'/F is orthogonal circulant. Conversely, given an arbitary orthogonal
circulant matrix A = [a;—;] with entries in F, by multiplying a given normal orthog-
onal basis, in the form of a vector B = (a,a9,---, aq"_l) of (K/F)™, with A (i.e.
finding B - A), we obtain a normal basis in the form as a vector B’ = (by, b, ..., bn)
of (K/F)* where b; = Z;é a ar_; (since A is circulant invertible and B is a
normal basis). In fact B’ is a normal orthogonal basis. To prove this observe that
B' - (BT = (B- A)(B - A)T = B(AAT)BT = I. By Chapter 2 Theorem 2.27,
for any given n = [K : F|] the number of n x n orthogonal circulant matrices with

entries in F is |O(n‘q)[. Therefore we have

THEOREM 4.6. Let K be a Galois estension of degree n of the finite field F =
GF(q). If K/F has a normal orthogonal bases then it has ezactly IO(n,q)I different
normal orthogonal bases (that is, [O(,,,q)l /n different normal orthogonal bases up

to cyclic permutations).

Example. Let F = GF(2), let K be an extension of F with minimal polynomial

z® + 22 + 1 in F[z]. Then K is a Galois extension of F with the degree 3. By
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Theorem 4.3, K/F has at least one normal basis. Let a be a root of z3 + z2? + 1.
For a; = a, as = a?, and a3 = a* = a? + a + 1, it is easy to see that o), az, a3 is
a basis of K/F. By definition it is a normal basis. Since tr(a) = a + o? + a? =1,

by Lemma 4.2 we have

triyp(al) = tryyp(ad) = trgyr(af) = 1.

Also

tra/plaiaz) =trg piar1as) = trgp(azaz) = 0.
So that a;, a3, a3 is a normal orthogonal basis of K'/F. Since [K : F] = 3, by
Theorem 4.6 K/ F has exactly [0(3,2)| = 3 different normal orthogonal bases. Now

let us use the method given in Chapter 3 (or you can use the program in Chapter

5) to construct the orthogonal group O of F[z]|/(z® + 1). Since

Flgl . Fll __ Fld
(z3+1) (z+1) (z2+z+1)

we have

Ogolxoﬂ

where @, O’ and O" are the orthogonal groups of F|[z]/(z3 + 1), F[z]/(z + 1) and

F[z]/(z? + = + 1) respectively. We have O’ = {1}, O” = {1,z,z +1}. Let ¢; and
ez denote the local idempotents of O' and O”. Since 1 = z(z + 1) + (z® +z + 1)
and [z(z + )2 =z(z + 1), (22 + 2+ 1)2 = (22 + = + 1) mod z® + 1 over F, then

we have



e1r=z>4+zc+1

ez = z(z + 1).

Therefore the first rows for the three elements of O are (1,0,0), (0, 1,0) and (0,0,1).

The corresponding three orthogonal circulants are

1 00 010 0
Ai=10 1 0}, A2=10 0 1}, A3=1|1

\0 0 i/ \1 0 0 0

o o

1
0]
0 1

/
By multiplying A;, A, and A3 with the normal orthogonal basis (a;,a2,a3), we

p—3

obtain three different normal orthogonal bases By = {a1, 2,3}, B2 = {a3,01,a2}

and B3 = {az,a3,0;}.
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Chapter 5. The Program for Constructing

the Orthogonal Group of Fz|/(z" — 1).

Let p be a prime number, n positive integers, let F,, = Z /pZ (the field of fractio:
of Z[pZ) and let F = GF(q) be the Galios extension of F, where ¢ = p*. For a:
given positive integer N, let P = z¥ —1. In this chapter we give an introduction fi
the program which can be used to construct the orthogonal group for the polynomi
ring F[z]|/(P). We separate the program into two steps: (I) Construct the fini
field F = GF(q). (II} Construct the orthogonal group of F[z]/(P).

(I) Since F' = GF(q) is a extension of F, with degree k, for any fixed p and k v
can find a monic irreducible polynomial with degree k, saying go, over Fp,. Let o |
a root of gg then go is the minimal polynomial of a over F, and the multiplicati
group [F = GF(q)]* can be generated by a. Therefore each element of F' = GF(
can be written in the form of a with go(a) =0.

(IT) This step is more complicated, first we factor polynomial P over F' = GF(q
let g be an arbitrary irreducible factor of P then g is one of the following fo
different forms.

(1) z - 1.

(2) z + 1.

(3) the factor of P is irreducible reciprocal over FF = GF(gq) which has eve
degree.

(4) the factor of P is irreducible nonreciprocal over F = GF(q) but there exis
unique one factor g’ of P, g’ has the same degree as g and g - ¢’ is an irreducit

reciprocal polynomial.
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In order to read the program easily, the all variables used in the program should
be exactly the same as we used in this chapter. Here we give a notation for some
important variables.

ng: if p = 2 we define ng = 0 otherwise ng = 1.

ni: if z + 1 is a factor of P then n; = 1 otherwise n; =0.

ny: denote the numbers of irreducible reciprocal factors of P over GF(q) (they
have even degree).

ns3: denote the numbers of irreducible nonreciprocal factors of P over GF(q).

ri.1: denote the numbers of the irreducible factors of P over GF'(q).

m: denote the multiplicity of the irreducible factors of P over GF(q) where
m = p! for some positive integer .

Let P =gJ* - g2 ---gi™* be the irreducible factor decomposition of P, then we
have ry =1y = -+ = m.; = m for some positive integer m. f p#2andz+1lisa
factor of P, we assume that g; = z+1 and g2 = z —1, it may happen that z+1 is not
a factor of P, then we assume that g; = z—1. If p = 2, we assume that g =z + 1.
For 3<i<ns+2(or 2<i<n;+ 1 depends whether or not z + 1 is a factor of
P), let g; denote the irreducible reciprocal factors of P over GF(q) (they have even
degree). For ny +2 <i < m.1 (or nz + 1 <7 < m.1), let g; denote the irreducible
nonreciprocal factors of P over GF(q). Suppose that E = {e.i : 1 <1 < m.1} where
e.i are the idempotents of g™. Let e.i = hi(z) x (P/g"), then e.i is congruent to 1

mod g™. We can obtain e.i (i.e. find k;) by using Euclid’s algorithm.

Constructing the orthogonal groups of F[z]/((z + 1)™) and F(z]/((z + 1)™).
Ifp#2(no=1).
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(1)Constructing the orthogonal group Om of Flz]/((z + 1)™) (if n, = 1).

Suppose that f = fo+ fi(z+1)+...+ fm—1(z+1)™"! is an element of orthogonal
group of F([z]/((z + 1)™), we have to determinate all f; for 0 < i <m —1. It is
easy to see fo € {1,p—1}. Fori odd, f; € F. For i even, let f = fu + Hz+1)+
..+ fi—1(z + 1)*"! belongs to O;, i.e. the orthogonal group of Flz]/((z + 1)%), let
f''= f(z7') in Flz]/((z + 1)™). Calculating f - f' — 1, we write f- f' — 1 in the
form of (z + 1)’s powers. Taking the coefficient of (z + 1)’ and denote it by d then
fi= —fo% so that we have f = fo + fi(z + 1) + ... + fi(z + 1)* beiongs to O;y;.
Now we aircady discass all cases for fj, by repeating the processing for ¢ from 0 o
m — 1 (for every different combination of f;), we can obtain all elements in O,,.

(2)Constructing the orthogonal group Oy, of F(z]/((z — 1)™).

This is almost the same processing as (1), here y is the inverse element of z in

Flz]/((z — 1)™) and we change all z + 1 in (1) to = — 1.

Ifp=2(neg =0).

Constructing the orthogonal group O, of F[z]/((z + 1)™).

Suppose that f = fo+ fi(z+1)+...+ fm—1(z+1)™ ! is an element of orthogonal
group F[z]/(z + 1)™, then we have to determinate all f; for 0 < i <m —1. It is
obvious fo = 1. Since m = p!, we have m = 2! for some positive integer [ so that
m—1lis alwaysodd. f m —1=1,then fy € F. fm —1 > 1, then f; € {0,1}.
Forieven (soi<m—1), fi e F,let f = fo+ fi(z + 1) +.. + fi(z + 1)’ belongs to
Oit1, i.e. the orthogonal group of Flz]/((z + 1)*!). Now incrementing i by 1, if
i+1=m—1then fiy; = fn_) belongsto F,elseif i+1 <m—1, let f' = f(z~1)
in Fz]/((z +1)™). Calculating f- f' — 1, we write f - f' — 1 in the form of (z + 1)’s
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powers. Taking the coefficient of (z + 1)**2 and denote it by d then fi+; = d so we
have that f = fo + fi(z + 1) + ... + fis1(z + 1)**! belongs to O;+1. Until now, we
already discuss all cases for f;, repeating the processing for ¢ from 0 to m — 1 (for

every different combination of f;), we can get all elements in Op,.

Constructing the orthogonal groups O, of F[z]/(¢g™) where g is an irreducible
reciprocal factor of P.

If ny # 0 (if some irreducible factors of P are reciprocal).

Let g be an irreducible reciprocal factor of P. Suppose that f = fo+ iG+... +
fm_lG"‘.;i is an element of orthogonal group O, of F[:z:]/(g-”‘).'Then fo € Oy, the
orthogonal group of F{z]/(g) which has order ¢° + 1 where 2s is the degree of g. To
find the group O4, let r(z) € F(z]/(g), if r(z) -r(z~!) = 1 in F|[z]/(g) then r € O;.
Let f = fo + fig + .. + fig' be an element of O;41, let d denote the degree of g.
Calculating f(z) * f(z~!) — 1 and write it in the form of g’s powers. Taking the
coefficient of g**+! and denote it by D then fiy; = fo - (S+ D + (y-1¢(d/2)) - F}) so
that we have f = fo+ fig+ ... + fix19'T! belongs to O, (F) is the fixed field of F
under the substituting £ = z~! for each element of F). f p#2, S=(p—1)/2. If
p=2,5==z/(z+ z"!). Repeating the processing for ¢ from 0 to m — 1 (for every

different combination of f;), we can get all elements in Op,.

Constructing the orthogonal groups Oy; ;) of F[z]/(g") x F[z]/(g]") where gi, g;
are irreducible nonreciprocal factors of P and g; - g; is reciprocal.

If n3 # 0 (if some irreducible factors of P are nonreciprocal).

Let g; and g; be a pair of irreducible nonreciprocal factors of P, i.e g; - g; is

reciprocal. Let z denote the root of g;, let F;* and F}‘ denote the groups of units
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of Fz]/(g") and F(z]/(gT") respectively, then F* = {fo + figi +--- + frm—g™ !
fo € (Flz]/(g:))*, fx € F[z]/(g:)}- For each element r(z) € F, let r'(z) =
#(z71) in F}* then we can find the inverse element of r'(z), saying (r')™}, in F/*.
Therefore (r,(r')~!) is an orthogonal pair of (F[z]/(g™) x (F[z]/(9T*). Repeating

the processing above for all elements of F;*, we can find all pairs of O; j)-

Finally, let O denote orthogonal group of F[z]/(zN — 1), then O = {f : f =
fl-el+ f2-e2+4...4+ f.(m.1)-e.(m.1)} where f.i (1 <i <m.l)is an arbitrary
orthogonal element in F{z]/(¢™) (for some 1, j, (f.i, f.j) may be a orthogonal pair
of (Flz]/(g{") x (F[z]/\g]")-
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APPENDIX



L7 7 e LALISL proglal willchh can De usea Lo construct an
[> # orthogonal group of nxn circulant matrix

[ > with(linalg):

[) restart:

[ > #Giving the following values for three parameters of p,

k, and N before the line of signs "###...".

2; #Give p.
2

X
U

#Let F=GF(p*k), give k.

N:=6: #Give the degree of x"N-1.
FHARGEA SR H RS H SR B E LSRR AR RSB SR R H BB BB H 44

P:=x"N-1 mod p;

(I e NN 4

v V¥V V VvV VvV v

#the following program codes (before "###...") are used
to factor the polynomial x"N-1=g[0]*g{l]*...*g[r] over
GF(q) for some r. where g[i] either is reciprocal
polynomial or g[i] is not a reciprocal but g[i]*g[i+1]
(or g[i]l*g[i-1]) is a reciprocal.

readlib(GF):

F:=GF(p,k):

d:=F[extension]:

d:=F[ConvertOut](d):

gl[0] :=subs( ? =x, d);

d:='d"':

k='k':

if degree(g{0])>1 then

alias(alpha=RootOf(g[0],x)):

fi:

if degree(g[0])>1 then

P:=Factor(P,alpha) mod p:

fi:

v VvV ¥V VvV ¥V ¥V ¥V ¥V V VvV VvV V Vv v

if degree(g{0] )<=l then
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vV ¥V VvV ¥V ¥V ¥V VvV VvV V¥V V ¥V ¥V ¥V VvV ¥V V¥V V V V V V V V ¥V V V V V V V v

P:=Factor(P) mod p:
fi:

P:=P;

nf{0]:=0:

nfl}:=1

nf2]:=0:

nf3]:=0:

g[l]:=x~1 mod p:

if whattype(P)<>~*" then
m.l:=1:

m:=degree(P):

if p<>2 then

nf0}:=1:

nfl]}:=0:

fi:

else

readlib(recipoly):
m.l:=nops(P):

P.1l:=P:

for i from 1 to nops(P.l) do
f(i):=subs(x=1l,0p(i,P.1l)) mod p:
if £(i)=0 then
m:=degree(op(i,P.1l})):

break:

fi:

od:

P.l:=Normal(P.1/g[1]"m) mod p:
if whattype(P.l)="*" then
m.2:=nops(P.l):

else

m.2:=1:
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vV ¥V VvV V V VvV VvV V VvV VvV V VvV V V V V V V V V V V V V V V V V Vv Vv v

fi:

if p<>2 then

nf{0]:=1:

nf{l}:=0:

for i from 1 to m.2 do
if m.2=1 then

if m<>1 then
f(i):=op(l,P.1l):

else

f(i):=P.1:

fi:

else

if m<>1 then
f(i):=op(l,op(i,P.1)):
else

f(i):=op(i,P.1l):

fi:

fi:
£f.1(1i):=subs(x=-1,£(i)) mod p:
if £.1(i)=0 then
gll]l:=x+1 mod p:
gf2]:=x-1 mod p:
nfl]:=1:
P.l:=Normal(P.1l/g[1]”m) mod p:
break:

fi:

od:

fi:

if whattype(P.l)="%*" then
m.2:=nops(P.1l):

elif P.1<>1 then
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vV ¥V vV VvV VvV VvV V VvV VvV VvV V VvV V V VvV V V V V V V V V VvV V V¥V V V VvV VvV Vv

m.2:=1:

fi:

if P.1<>1 then

if m.2+1=m.1 then

Ve={ }:

for i from 1 to m.2 do
if m.2=1 then

if m<>1 then
f(i):=op(1,P.1):

else

f(i):=P.1:

fi:

else

if m<>1 then
f(i):=op(l,0p(i,P.1)):
else

f(i):=op(i,P.1):

fi:

fi:

f.1(i):=recipoly(subs(alpha=2,£(i)),x):

if f£f.1(i)=true then
V:=V union {£f(i)}:
fi:

od:

nf2] :=nops(V):

for i from 1 to nops(V) do

P.l:=Normal(P.1/V[i]”m) mod p

g[i+l]:=V[i] mod p:
od:

if nops(V)+1l<>m.l then
M:={ }:
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v V¥V V¥V VvV ¥V V VvV V VvV VvV V VvV V V VvV V V V V V V V V V V V V Vv VvV v

<UL 4 LUl L L0 LOps(r.+ ) QO
if m<>1 then
f(i):=op(l,0p(i,P.1l)):

else

f(i):=op(i,P.1l):

fi

:=M union {£f(i)}:
od:
for i from 1 to nops(M) do
for j from 1 to nops(M) do
f(i,j):=evala(Expand(M[i]*M[j])) mod p:
£.1(i,j):=recipoly(subs(alpha=2,£f(i,j)),x):
if £.1(i,j)=true then
g[nops(V)+2*%1i]:=M[i] mod p:
glnops(V)+2*i+1]:=M[j] mod p:
break:
fi:
od:
od:
ni3}:=m.l-(nops(V)+nf[2}+1):
fi:
elif m.2+2=m.1 then
Ve={ }:
for i from 1 to m.2 do
if m.2=1 then
if m<>1 then
f(i):=op(l,P.1):
else
f(i):=P.1:
fi:

else
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if m<>1 then
f(i):=op(l,op(i,P.1)):

else

f(i):=op(i,P.1l):

fi:

fi:
f.1(i):=recipoly(subs(alpha=2,£(i)),x):
if £f.1(i)=true then

V:=V union {f(i)}:

fi:

od:

nf{2] :=nops(V):

for i from 1 to nops(V) do
P.l:=Normal(P.1l/V[i]®*m) mod p:
gli+2]:=V[i] mod p:

od:

if nops(V)+2<>m.l then

M:={ }:

for i from 1 teo nops(P.l) do
if m<>1 then
f(i):=op(l,op(i,P.1l)):

else

f(i):=op(i,P.1):

fi:

M:=M union {f(i)1}:

od:

for i from 1 to nops(M) do
for j from 1 to nops(M) do
f(i,j):=evala(Expand(M[i]}*M[j])) mod p:
f.1(i,Jj):=recipoly(subs(alpha=2,£f(i,j)),x):
if £.1(i,j)=true then
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vV ¥V V¥V V¥V VvV VvV V VvV VvV VvV V VvV Vv

vV V¥V V¥ ¥ ¥V ¥V ¥V ¥V ¥V V VvV VvV V V VvV Vv Vv

glnops(V)+2*i] :=M[i] mod p:

glnops(V)+2*i+1]:=M[j] mod p:

break:

fi:

od:

od:

nf{3]:=m.l-(nops(V)+n[2]+2):

fi:

fi:

fi:

fi:
SHEGHEHHHEHERERSH RS S S H RS AR R RSB E ARG AR R
#the following program codes (before "###...") are used
to find all idempotents elements of F[x]/(x”N-1).
E:=[seq(e.i, i=1..m.1l)]:

for i from 1 to m.1 do

e.i:=sort(Expand(P/g[i}”m)) mod p:

od:

T:=[seq(degree(g[i]®m), i=1l..m.1)]:

for i from 1 to m.1 do

il
.

v:=0
v.1:=0:

f:=E[{i] mod p:
V:=evala(Expand(gf{il”m)) mod p:
for j from 1 to T[i] do
r:=Rem(f,V,x,'q[i,j]"') mod p:
qli,jl:=qfi,j] mod p:

if r=subs(x=1l,r) then
q.l:=q[i,]]:

t[i,j]l:=xr-v:

qli,jl:=q.1l-v.1l:
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Vvi=x:

v.l:=q.1l:

elif r<>subs(x=l,r) then
f:=v:

for i from 1 to m.1 do

V.i:={ }:

for j from 1 to T[i] do

if t[1i,31<>0 then e[i,jl:=t[i,]j]:
V.i:=v.i union {ef[i,jl}:

fi:

od:

O.i:=nops(Vv.i):

od:

for i from 1 to m.1 do

for j from 1 to o.i do
ufi,jl:=uli,j-21-qfi,Jl*ufi,j-1]:
od:

od:

for i from 1 to m.1 do
e[i]:=evala(Expand(subs(uf[i,0]=0,ufi,o.il/t[i,0.1])))
mod p:

od:

for i from 1 to m.1 do

if degree(g{0])>1 then
ef{i]:=Factor(subs(ufi,-1]=g{i], efi]),alpha) mod p:

else
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e[i]:=Factor(subs(uf[i,-1]=E[i], e[i])) mod p:
fi:
od:

:={seq(el[i],i=1..m.1)] mod p:
HARHRHE AR EERBE SR A RSB R A SR F R BH AR RS BB LU BB LU BB H U BB B4
#the following program codes (before "###...") are used
to construct the field GF(q).
readlib(GF):
F:=GF(p,degree(g[0]1),g[0]):
beta:=F[PrimitiveElement] ():
for i from 1 to p”*(degree(g[0]))-1 do
b.i:=F["*"](beta,i):
b.i:=F[ConvertOut](b.i):
od:
b.0:=0:
F:=[seq(subs(x=alpha,b.i), i=0..p”(degree(g[0]))-1)]:
HERHH AR RS E RS AR RS GG A SRR R R B BB E BB L E R R R R 444
#the following program codes (before "###...") are used
to construct the orthogonal groups F[x]/(x+1)”m and
F[x]/(x-1)"m.
f:='£f"':
if n[0]=1 then
if n[l1]}=1 then
if m=1 then
U.l:=[1,p-1]:
U.2:=U0.1:
else
y:=-x*(m-1): # defining y, the inverse of x in
Flx]/(g(1l])"m mod p
F.l:=[1,p-1]: # defining O[1]
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for j from 1 by 2 to m-1 do
for 1 from 1 to 1 do
for k from 1 to nops(F) do
f(i,k):=F.1[1i]+F[k]*g[1]"j mod p:
f.1(i,k):=evala(Expand(subs(x=y, f£(i,k)))) mod p:
f.1(i,k):=evala(Expand(£f(i,k)*£f.1(i,k)-1)) mod p:
£f.1(i,k):=simplify(f.1(i,k),z, [x,w.l]) mod p:
f.1(i,k):=simplify(f.1(i,k),z.1, [w.l,w]) mod p:
f.1(i,k):=subs(w=0,f.1(i, k)) mod p:
f.1(i,k):=evala(Expand(f.1(i,k))) mod p:
f.1(i,k):=collect(f.1(i,k), w.l) mod p:
d(i,k):=coeff(f.1(i, k), w.L*(j+1)) mod p:
£f.2(i,k):=simplify(f(i,k),z,[x,w.1]) mod p:
f(i,k):= £(i,k)-subs(w.1l=0,
f.2(i,k))*d(i,k)/2*g[1]*(j+1) mod p:
f(i,k):=evala(Expand(f(i,k))) mod p:
f(i,k):=simplify(f(i,k),z, [x,w.1]) mod p:
od:
od:
T:=[seq(seq(f(i,k), i=1..1), k=l..nops(F))] mod p
U.l:=[seq(seq(collect(f(i,k),w.1), i=1..1),
k=l..nops(F))] mod p:
T:=subs(w.l=x+1, T):

:=nops(U.1l):
F.1:=T mod p:
l:=q:
od:
U.1l: # all elements of O in F[x]/g[1]1"m
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nops(U.1): # the order of O in F[x]l/g[1]*m
y:=x*(m-1): # defining y, the inverse of x in
F[x]/(g[2])"m mod p

F.l:=[1,p-1]: # defining O[1]

z:={w.2=g{2]}:

l:={w=w.2%m}:

z.
1:

2
for j from 1 by 2 to m-1 do
for i from 1 to 1 do
for k from 1 to nops(F) do
f(i,k):=F.1[1]+F[k]*g[2]*] mod p:
f.1(i,k):=evala(Expand(subs(x=y, f(i,k)))) mod p:
f.1(i,k):=evala(Expand(f(i,k)*£f.1(i,k)-1)) mod p:
f.1(i,k):=simplify(£f.1(i,k),z, [x,w.2]) mod p:
f.1(i,k):=simplify(f.1(i,k),z.1l, [w.2,w]) mod p:
f.1(i,k):=subs(w=0,£f.1(i,k)) mod p:
£f.1(i,k):=evala(Expand(f.1(i,k))) mod p:
f.1(i,k):=collect(f.1l(i,k), w.2) mod p:
d(i,k):=coeff(f.1(i, k), w.2*(j+l)) mod p:
£f.2(i,k):=simplify(£f(i,k),z,[x,w.2]) mod p:
f(i,k):= £(i,k)-subs(w.2=0,
£.2¢(i,k))*d(i,k)/2*g[2]*(j+1) mod p:
f(i,k):=evala(Expand(£f(i,k))) mod p:
f(i,k):=simplify(f(i,k),2, [x,w.2]) mod p:
od:
od:
T:=[seq(seq(f(i,k), i=1l..1l), k=1l..nops(F))] mod p
U.2:=[seq(seq(collect(f(i,k),w.2), i=1l..1),
k=1..nops(F))] mod p:

:=subs(w.2=x-1, T):
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gqg:=nops(U.2):

F.1:=T mod p:

l:=q:

od:

U.2: # all elements of O in F{x]/g"m
nops(U.2): # the order of O in F[x]/g’m

fi:

else

if m=1 then

U.l:={1,p-1]:

else

y:=x*(m-1): # defining y, the inverse of x in
F[x]/(g[1])"m mod p

F.l:=[1,p-1]: # defining O[1]

z:={w.l =g[1]}:

z.l:={w=w.1%m}:

1:=2:

for j from 1 by 2 to m-1 do

for i from 1 to 1 do

for k from 1 to nops(F) do
f(i,k):=F.1[i]+F[k]*g[1l]*j mod p:
£f.1(i,k):=evala(Expand(subs(x=y, f(i,k)))) mod p:
£.1(i,k):=evala(Expand(f(i,k)*£f.1(i,k)-1)) mod p:
£.1(i,k):=simplify(£f.1(i,k),z, [x,w.1l]) mod p:
£f.1(i,k):=simplify(£f.1(i,k),z.1, [w.l,w]) mod p:
£f.1(i,k):=subs(w=0,£.1(i,k)) mod p:
f.1(i,k):=evala(Expand(f.1(i,k))) mod p:
f.1(i,k):=collect(f.1(i,k), w.1l) mod p:
d(i,k):=coeff(f.1(i,k), w.1*(j+1l)) mod p:
£f.2(i,k):=simplify(£f(i,k),z,[x,w.1]) mod p:
f(i,k):= £(i,k)-subs(w.1=0,
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t.2(1,kK))*d(r,k)/2*gLL]"{(J*L) moa p:
f(i,k):=evala(Expand(f(i,k))) mod p:
f(i,k):=simplify(f(i,k),z, [x,w.1l]) mod p:
od:

od:

T:=[seq(seq(f(i,k), i=1l..1), k=1..nops(F))] mod p:

U.l:=[seq(seq(collect(f(i k),w.1l), i=1l..1),
k=1l..nops(F))] mod p:

T:=subs(w.l=x-1, T):

q:=nops(U.1l):

F.1:=T mod p:

l:=qg:

od:

U.l: # all elements of O in F[x]/g{1]™m
nops(U.1): # the order of O in F[x]/g[l1l]1™m
fi:

fi:

else

if m=1 then

U.l:=[1]:

else

y:=x*(m-1): # defining y, the inverse of x in

F[x]/g(1]1"m mod p
F.0:=[0]:

F.l:=[1]:

z:={w.1l =g{l}l}:
z.l:={w=w.1’m}:

h.l:=1:

h:=1:

for j from 0 to m/2-1 do
if 2*j+1l=m-1 then
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for 1 from 1 to h.1 do
for 1 from 1 to h do

for k from 1 to nops(F) do

£(1,i,k):=F.0[L]+F.1[i]*g[1]"(2*3)+F[k]*g[1]1*(2*j+1) mod

P:
f(l,i,k):=simplify(£f(1,i,k),z,[x,w.1]) mod p:
f(l,i,k):=evala(Expand(f(1l,i,k))) mod p:
f(l,i,k):=collect(f(1l,i,k),w.l) mod p:

od:

od:

od:

elif j=0 then

for 1 from 1 to h.1l do

for i from 1 to h do

for k from 1 to nops(F) do

£(1,i,k):=F.0[1]+F.1[i]*g[1]1*(2*F)+F[k]l*g[1]~(2*j+1) mod

p:
od:

od:

od:

F.0:=[seq(seq(seq(f(1,i,k), 1=1..h.1), i=1l..h),
k=1l..nops(F))] mod p:

h.l:=nops(F.0):

F.1:=F mod p:

h:=nops(F):

else

d:='q4':

for 1 from 1 to h.1l do

for i from 1 to nops(F) do

£(1,i):=F.0[1]+F.1[i]*g[1]*(2*]j) mod p:
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f.1(1l,i):=evala(Expand(subs(x=y, £(1,i)))) mod p:
f.1(1l,i):=evala(Bxpand(£f(1,i)*f.1(1,i)+1l)) mod p:
£f.1(1,i):=simplify(f.1(1,i),z, [x,w.1l]) mod p:
£.1(1,i):=simplify(f.1(1,i),z.1, [w.l,w]) mod p:
f.1(1l,i):=subs(w=0,£f.1(1,1i)) mod p:
f.1(1,i):=evala(Expand(f.1(1,i))) mod p:
f.1(l,i):=collect(£f.1(1l,i), w.l) mod p:
d(l,i):=coeff(£f.1(1l,i), w.l*(2*j+2)) mod p:
f(l,i):= £(1,i)+d(1,i)*g[1]1”(2*j+1l) mod p:

od:

od:

F.0:=[seq(seq(f(1l,i), 1=1..h.1l), i=1l..nops(F))] mod p:
h.l:=nops(F.0):

U.l:=[seq(seq(seq(f(l,i, k), 1=1..h.1l), i=l..h),
k=1..nops(F))] mod p:#all elements of O in F[x]/g[1l]"m.
nops(U.1): # the order of O im F[x]/g[1l]’m

fi:

fi:

BHEHHHEHS RS RS AR AR SRS A BB S SRR SR AR R H R RS
#the following program codes (before "###...") are used
to construct the orthogonal groups F[x]/(g[i])”m where
g[i]is different with x+1 or x-1 and g[i] is reciprocal
polynomial.

if n{2]<>0 then

if m=1 then

y:='y':

for 1 from n{0]+n[l1]+1 to n[0]+n{1]+n[2] do
af0]:=evala(subs(x=0,gf{1l])) mod p:
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a:=daegree(gil}):
y.l:=x*(-1)*evala(g[l]-a[0]) mod p:
y.l:=Normal(y.l) mod p:

y.l:=evala(Expand(-a[0]*(-1)*y.1l)) mod p:

y:=x*(-1)*evala(g[l]-a[0]) mod p:
y:=Normal(y) mod p:

y:=evala(Expand(-(af0])*(-1)*y)) mod p:

F.lL:=F:

q.l:=nops(F):

for i from 1 to d-1 do

for j from 1 to nops(F) do
for k from 1 to gq.1 do

f(j,k):=F.1[k]+F[j]*x*1i mod p:

od:

od:

V.0:=[seq(seq(f(j,k), j=1..nops(F)),
q.l:=nops(Vv.0):

F.l:=V.0:

od:

V.l:=subs(x=y.l, V.0) mod p:

W.l:={ }:

z:={w.1l=g[1]}:

z.l:={w=w.l}:

for i from 1 to q.1 do
f(i):=evala(Expand(V.0[i}*V.1[i]-1))
f(i):=simplify(f(i),z,[x,w.1]) mod p:
f(i):=subs(w.1=0,£f(i)) mod p:
f(i):=evala(Expand(f(i))) mod p:

k=1..g9.1)] mod p:

mod p:

if £(i)=0 then W.l:=W.l union {V.0[1i]] mod p:

fi:

od:
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q.<:FNnops(wW.1l):

W.l:=[seq(W.1[i], i=1..9.2)]: # the group O[1l]
U.l:=W.l mod p:

od:

else

y:='y':

for 1 from n[0]+n[1l]+1 to n{0]+n[1l]+n[2] do
af[0]:=evala(subs(x=0,g[1])) mod p:
d:=degree(gfl]):

y.l:=x*(~-1)*evala(g[1l]-a[0]) mod p:
y.l:=Normal(y.l) mod p:
y.l:=evala(Expand(-a[0]”(-1)*y.1l)) mod p: # defining yl,
the inverse of x in F[x]/g[l] mod p:
y:=x*(-1l)*evala(g[l]*m-a[0]”*m) mod p:
y:=Normal(y) mod p:
y:=evala(Expand(-(a[0]”*m)*(-1)*y)) mod p: # defining y,
the inverse of x in F[x]/g[1]”m mod p:

F.l:=F:

g.l:=nops(F):

for i from 1 to d-1 do

for j from 1 to nops(F) do

for k from 1 to gq.1 do
£(3,k):=F.1[k]+F[j]*x*i mod p:

od:

od:

V.0:=[seq(seq(£f(j,k), j=l..nops(F)), k=l..q.1)] mod p:
q.l:=nops(V.0):

F.1:=V.0:

od:

V.l:=subs(x=y.l, V.0) mod p:

W.l:=[ }:
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z:={w.l=g{1l]}:

z.l:={w=w.1*m}:

if n[0]=0 then

for i from 1 to gq.1 do
f(i):=simplify(v.1[i]},z,([x,w.1]) mod p:
f(i):=subs(w.1=0,£f(i)) mod p:
s:=evala(Expand(f(i)+vV.0[1]+1)) mod p:
if s=0 then

S:=V.0[1i] mod p:

break:

fi:

od:

else

S:=(p-1)/2:

fi:

for i from 1 to q.1 do
f(i):=evala(Expand(V.0[i]*V.1[i]-1)) mod p:
f(i):=simplify(£f(i),z,[x,w.1l]) mod p:
f(i):=subs(w.1=0,£f(i)) mod p:
f(i):=evala(Expand(£f(i))) mod p:

if £(i)=0 then W.1l:=W.1 union {V.0[i]] mod p:

q.2:=nops(W.1l):

W.l:=[seq(W.1{i], i=1..q9.2)]: # the group O[1l]
w.2:=( }:

for i from 1 to q.1 do
f(i):=simplify(V.1[il,z,[x,w.1}) mod p:
f(i):=subs(w.1=0,£f(i)) mod p:
f(i):=evala(Expand(f(i))) mod p:

if £(i)=V.0[i] then W.2:=W.2 union {V.0[i]]} mod
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fi:
od:
qg.3:=nops(W.2): #the order of F[l] is equal to p*(4d/2)

W.2:=[seq(W.2[i], i=1..9.3)]: # F[l1l], the fixed field of

\tau in F[x]/g[1]

W.3:=W.1:

q.4:=q.2:

for j from 1 to m-1 do

for i from 1 to q.4 do

f(i):=W.3[i] mod p:

f.1(i):=subs(x=y, £(i)):
f.1(i):=evala(Expand(£f.1(i))) mod p:
f.1(i):=evala(Expand(f(i)*f.1(i)-1)) mod p:
£f.1(1i):=simplify(f.1(i),z, [x,w.1l]) mod p:
f.1(i):=simplify(f.1(i),z.1,[w.1,w]) mod p:
f.1(i):=collect(f.1(i), w) mod p:
f.1(1):=subs(w=0,f.1(i)) mod p:
f.l(i):=evala(Expand(f.1(i))) mod p:
D(i):=coeff(f.1(i), w.1*j) mod p:

for k from 1 to q.3 do

£(i,k):=£(1)+W.1[i]*(S*D(i)+(y.1"(d/2))*F*W.2[k])*g[1]"]

mod p:

f(i,k):= evala(Expand(f(i,k))) mod p:
f(i,k):=simplify(f(i,k),z, [x,w.1l]) mod p:
f(i,k):=simplify(f(i,k),z.1l, [w.l,w]) mod p:
f(i,k):=subs(w=0, f£(i,k)) mod p:
f.1(i,k):=subs(w.1=0, f(i,k)) mod p:
f.1(i,k):=evala(Expand(f.1(i,k))) mod p:
f.2(i,k):=evala(Expand(f(i,k))) mod p:
f.2(i,k):=collect(f.2(i,k),w.1) mod p:
f(i,k):=subs(z,f(i,k)) mod p:
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I{(l1,K):=evalia(rXpand(r(i,x))) moa p:

od:

od:

W.l:=[seq(seq(f.l(i,k), i=l..9.4), k=1..q.3)] mod p:
W.3:=[seq(seq(f(i,k), i=l..q.4), k=1..q9.3)] mod p:
U.l:=[seq(seq(f.2(i, k), i=l..q.4), k=1..q.3)] mod p:
g.4:=nops(W.3):

od:

od:

fi:

fi:

HHAHEHR S H SR GRS SRS RE S SR H ARG G R R GRS
#the following program codes (before "###...") are used
to construct the orthogonal groups F[x]/(g[i])’m
*F[(x]1/(g[j]1)*m where g{i] and g[j] are not reciprocal
but g[i]l*g[j] is a reciprocal.

if n[3]<>0 then

if m=1 then

y:='y':

for 1 from n[0}+n{l1l]+n[2]+1 by 2 to n[0]l+n[l]+n{2]+n{3]
do

d:=degree(gf{l]):#g[1l] is any factor of a 2-cycle pair.
a[0]:=evala(subs(x=0,g[1+1])) mod p:
y[l]:=x*(-1)*evala(g[l+1l]-a[0]) mod p:
y[l]:=Normal(y[l]) mod p:
v[l]l:=evala(Expand(-af{0]*(-1)*y[1])) mod p: # defining
y[1], the inverse of x in F[x]/(g[1+1])"m mod p:
F.l:=F:

g:=nops(F):

if d>1 then
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for 1 from 1 to d-1 4o

for j from 1 to nops(F) do

for k from 1 to g do

£(3,k):=F.1[k]+F[j]*x*i mod p:

od:

od:

U:=[seq(seq(f(j,k), J=l..nops(F)), k=1..q9)] mod p:
gq:=nops(U):

F.l:=U:

od:

else

U:=F:

g:=nops(U):

fi:

vV:=f{ }:

for i from 1 to q do

if U[i]<>0 then V:=V union {U[i]] mod p:

fi:

od:

U.l:=[seq(V[i], i=1..9-1)] mod p: #the multiplicative
group of U

z:={w=g[1l+1l]}:

z.l:={w.l=g[l+1l]}:

for i from 1 to nops(U.l) do
t.i:=evala(Expand(subs(x=y([1], U.1[i]))) mod p:
t.i:=simplify(t.i,z,[x,w]) mod p:
t.i:r=simplify(t.i,z.1l,[w,w.1]) mod p:
t.i:=subs(w.1l=0, t.i) mod p:
t.i:=evala(Expand(t.i)) mod p:
t.i:=collect(t.i, w.l) mod p:

t.i:=subs(z, t.i) mod p:
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od:

:=[seq(t.i, i=1l..q.1l)] mod p:
V:=convert (U, “set™):
for i from 1 to nops(U) do
for j from 1 to nops(V) do
f(i,j):=evala(Expand(U[i]*V[j])) mod p:
£(i,j):=simplify(£f(i,j),z,[x,w]) mod p:
f(i,j):=simplify(f(i,j),z.1l,[w,w.1]) mod p:
f(i,j):=subs(w.1=0, £(i,j)) mod p:
f(i,j):=evala(Expand(f(i,j))) mod p:
if £(i,3)=1 then k.i:=V[j] mod p:
V:=V minus {V[jl}:
break:
fi:
od:
od:
U.(l+l):=[seq(k.i, i=1l..nops(U.1l))] mod p:
od:
else
y:='y':
for 1 from n[0]l+n{l]l1+n[2]+1 by 2 to n{0]+n[1]+n[2]+n[3]
do
d:=degree(gfl]):#g[l] is any factor of a 2-cycle pair.
af0]:=evala(subs(x=0,g[1+1]”m)) mod p:
y[l]:=x*(-1l)*evala(g[l+1]*m-a[0]) mod p:
v[1l]:=Normal(y([l]) mod p:
yv{1l]:=evala(Expand(-a[0]*(-1)*y[1l])) mod p: # defining
y[l]l, the inverse of x in F[{x]/(g[1l+1l])”m mod p:
F.l:=F:
q:=nops(F):
if d>1 then
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for j from 1 to nops(F) do

for k from 1 to q do

£(Jj,k):=F.1[k]+F[j]*x*i mod p:

od:

od:

U:=[seq(seq(f(j,k), j=1..nops(F)), k=1l..q)] mod p:
q:=nops(U):

F.l:=U:

od:

else

U:=F:

qg:=nops(U):

fi:

Ve={ }:

for i from 1 to q do

if U[i]<>0 then V:=V union {U[i]} mod p:

fi:

od:

V:=[seq(V[i], i=l..q-1)] mod p: #the multiplicative
group of U

F.l:=V:

z.l:={w.1l=g[1]}:

z.2:={w=w.1l”m}:

q.l:=nops(V):

for i from 1 to m-1 do

for j from 1 to q do

for k from 1 to gq.l1l do
£(3,k):=F.1[k]+U[j]1*g[1]*i mod p:
f.1(j,k):=simplify(f(j,k),z.1,[x,w.1]) mod p:
£f.1(j,k):=simplify(f.1(j,%k),2.2,[w.1,w]) mod p:
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£f.1(j,k):=subs(w=0,£.1(j,k)) mod p:
f.1(j,k):=evala(Expand(f.1(j,k))) mod p:
f.1(j,k):=collect(£f.1(j,k), w.1l) mod p:
f(j,k):=subs(z.1, £.1(j,k)) mod p:

od:

od:

V.l:=[seq(seq(f(j, k), j=1l..q9), k=1..q.1l)] mod p:
U.l:=[seq(seq(f.1(j,k), j=l..q), k=1..q9.1)] mod p:
qg.l:=nops(V.1l):

F.l:=V.1l:

od:

z.3:={w.(1+1)=g[1l+1l]}:

z.4:={w.4=w. (1+L)"m}:

V.3:=V.1 mod p:

for i from 1 to q.1 do
t.i:=evala(Expand(subs(x=y[1l], V.3[i]))) mod p:
t.i:=simplify(t.i,z.3,[x,w.(1+1)]) mod p:
t.i:=simplify(t.i,z.4,[w.(1+1),w.4]) mod p:
t.i:=subs(w.4=0, t.i) mod p:
t.i:=evala(Expand(t.i)) mod p:
t.i:=collect(t.i, w.(1+1l)) mod p:
t.i:=subs(z.3, t.i) mod p:

od:

U:=[seq(t.i, i=l..q.1l)] mod p:
V:=convert (U, “set™):

for i from 1 to nops(U) do

for j from 1 to nops(V) do
f(i,j):=evala(Expand(U[i]*V[j])) mod p:
f(i,j):=simplify(£(i,j),z.3,[x,w.(1+1)]) mod p:
f(i,j):=simplify(£f(i,j),z.4,[w.(1+1),w.4]) mod p:
f(i,j):=subs(w.4=0, £(i,j)) mod p:
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if £(i,j)=1 then k.i:=V[j] mod p:

V:=V minus {V[j]}:

break:

fi:

od:

k.i:=simplify(k.i,z.3,[x,w.(1+1)]) mod p:
k.i:=evala(Expand(k.i)) mod p:
k.i:=collect(k.i,w.(1+l)) mod p:

od:

U.(1l+l):=[seq(k.i, i=1l..q.1)] mod p:

od:

fi:

fi:

BHHHG RS AR R HE B R E SRR R SR B S B S SR B SR 4
#the following program codes (before "###...") are used
to construct the elements of the orthogonal group of
Flx]1/(x"N-1).

z:={w=x"N-1} mod p:

if m>1 then

for i from 1 to m.1 do
U.i:=subs(w.i=g[i],U.i) mod p:

for j from 1 to nops(U.i) do
U.i[j]:=sort(Expand(e[i]l*U.i[j])) mod p:
if degree(U.i[j])>=N then
U.i[j]:=simplify(U.i[j],z,[x,w]) mod p:
U.i[j]:=subs(w=0,U.i[j]) mod p:
U.i[j]:=evala(Expand(U.i[j])) mod p:

fi:

od:

od:
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else

for i from 1 to m.1 do

for j from 1 to nops(U.i) do
U.i[j]l:=sort(Expand(e[i]*U.i[j])) mod p:
if degree(U.i[j])>=N then
U.i[j):=simplify(U.i(j],z,[x,w]) mod p:
U.i[j]:=subs(w=0,U.i[j]) mod p:
U.ifj]l:=evala(Expand(U.i[j}]l)) mod p:

fi:

od:

od:

fi:

r:='r':

n.2:=1:

n.3:=1:

if n[3]<>0 then #if some factor g[i] of x"N-1 is

reciprocal

for i from n[0}+n{l]l+n[(2]+1 by 2 to m.1 do

for j from 1 to nops(U.i) do
r(i,j):=evala(Expand(U.i[j]+U.(i+1)[]J])) mod p:
od:

V(i,i+l):=[seq(x(i,j),J=1l..nops(U.i))] mod p:
L:=L union {V(i,i+l)} mod p:

od:

for i from (n[0]+n[{l]+n[2])+1 by 2 to m.1 do
n.3:=n.3*nops(U.1i):

od:

fi:

if n[2]<>0 then #if some factor g[i] of x"N-1 reciprocal
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ana gii] 1s different with x+l1 or x-1.

for i from n{0]+n{l]+1l to n{0]l+n[l]l+n{2] do

n.2:=n,2*nops(U.i):

od:

fi:

if n[0]=0 then
:=nops(U.l)*n.2*n.3:

else

M:=nops(U.l)*nops(U.2)*n.2*n.3:

fi:

if n{3}<>0 then

b:=1:

for i from n[0]+n[1]+n[2]+1 to n[0]l+n[l]+n[2]1+(n[3]/2)

do

for j from b to nops(L) do

if L{j]l<>0 then

U.i:=L[j] mod p:

b:=b+1l:

break:

fi:

od:

od:

f£fi:
t=nf0l+n[l]+n[2]1+(n[3]}/2):

for i from 1 to C do

n.i:=pops(U.i):

od:

Ve='V':

ve='v':

if C<>1 then

for k from 1 to C-1 do
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for i.k from 1 to n.k do

for i.(k+l1) from 1 to n.(k+l) do
v(i.k,i.(k+l)):=evala(Expand(U.k[i.k]+U.(k+1)[i.(k+1)]))
mod p:

od:

od:

V:=[seq(seq(v(i,j),i=1..n.k),j=1l..n.(k+1l))] mod p:

U. (k+1):=V mod p:
n.(k+l):=nops(V):

od:

h:='h':

for i from 1 to M do

for j from 1 to N-1 do
h(i,0):=subs(x=0,V[i]) mod p:
h(i,j):=coeff(V[i],x*j) mod p:
od:

H.i:=[seq(h(i,j),j=0..N-1)] mod
od:

o]

else

if N=1 then

if n[0]<>0 then
H.1l:=1:
H.2:=p-1:

else

H.1l:=1:

for i from 1 to M do
for j from 1 to N-1 do
h(i,0):=subs(x=0,U.1[1i]) mod p:
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h(i,j):=coeff(U.1[i],x*j) mod p:

od:

H.i:=[seq(h(i,j),3=0..N-1)] mod p:

od:

fi:

fi:

HHEA R R R AR R R RS R R R A A A AR AR ARG H S S HHRR RS R B4
for i from 1 to M do #print all orthogonal elements of
FIx]/(x*N-1).

M.i=H.i;

od;

# The end of the first program

# The second program can be used to check whether

# a matrix above is an orthogonal or not. In this
program we need the following values for four parameters
p, N, g[0], and M before runing the program.
with(linalg): with(numtheory):

p:=2: #Given p

N:=6: #Given N

g[0]:=x"2+x+1: #Given the minimal polynomial g[0]
alias(alpha=RootOf(g[0],x)):
M:=vector([alpha,alpha,alpha,alpha,alpha,alpha+1]): #
Given the first row of the matrix which you want to
check.

Id:=array(identity,1..N,1..N):

T0:=delcols(Id,2..N):

Tl:=delcols(Id,1l..1):

T:=concat(T1,T0):
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:=M[1]*Id+sum(M[i2]*T"(i2-1),12=2..N):
B:=evalm(A&*transpose(A)):
C:=array(l..N,1..N):
for j from 1 to N do:
for k from 1 to N do:
Cf{3j,k]:=modp(evala(B[j,kl),p):
od:
od:
evalm(B):

evalm(C);

# The end of the second program
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