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ABSTRACT

Capability of Permutation Decoding of Cyclic Codes

Ming Jia, Ph.D.

Concordia University, 1995

Error-trapping decoding employs a very simple combinational logic circuit for error
detection and correction. It is most effective for decoding single-error-correcting codes,
some short double-error-correcting codes, and single burst-error-correcting codes. However,
when the error-trapping is applied to long and high rate codes with large error-correcting
capability, it becomes very ineffective and much of the error-correcting capability of the
codes is sacrificed.

Permutation decoding is essentially an improved variation of error-trapping decoding,
with extended capability and effectiveness. This thesis aims to aralyze the performance
of permutation decoding. The study determines whether a specific code is permutation
decodable (PD), and if it is PD, how many permutation steps are needed to decode the
code.

The tight lower bounds for 2-step and 3-step (T, U) permutation decodable cyclic
codes (for odd-valued t) have been investigated in [33]. In the first part of this thesis, the
tight lower bounds for 3-step (7', U) permutation decodable cyclic codes (for even-valued
t) are derived to complete the investigation on the bounds of 3-step (T', U) permutation
decodable codes. With these bounds, we can determine if a given cyclic code is 3-step
(T, U) permutation decodable or not.

In the second part, this thesis investigates the performance of multiple-step (7', U)
permutation decoding of cyclic codes. At first, the characteristics of the error-free gaps
of an error pattern in different permutation domains are investigated. It is shown that
the gap lengths in the error pattern after a U permutation can be expressed as linear
combinations of the gap lengths in the error pattern before U permutation. The relationship

of gap lengths between any two consecutive or non-consecutive permutation domains is

iii



derived. An insight into how the gap lengths change and therefore the capability of (T, U7)
permutation decoding increases is also given.

The characteristics of the code rate are studied in this thesis. From the concept of the
optimum permutation step, the way to estimate the number of [/ permutations needed
o decode a permutation decodable code is shown. The code rate of (T, U) permutation
decodable codes R’ and the code rate of error-trapping decodable codes are compared to
determine the effective region of the (T, U) permutation decoding technique.

Permutation decoding using primitive elements as multipliers is also examined. 1t is
shown that by using primitive elements of a prime field as multipliers the capability of
permutation decoding to decode cyclic codes of prime length can be increased. The imple-
mentation structures for both serial and parallel permutation decoding are also discussed.
A scheme to combine both (7, U) and M, permutation decoding strategics is introduced.
In this scheme, after using M, permutation to permute a code into an equivalent code,
parallel (T, U) p;ermutations can be used in different code domains. In this way, the error-
pattern detection capability of permutation decoding can be dramatically increased while

the decoding circuit remains simple.
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Chapter 1

INTRODUCTION

1.1 Introduction

Controlling errors for reliable reproduction of data becomes more and more important for
efficient digital data transmission and storage systems. The possibility of achieving reliable
digital transmission over a noisy channel was originally introduced by Shannon in 1948
(1, 2].

Since the appearance of Shannon’s classic papers in 1948 and 1949, a great deal of
research has been devoted to the problem of designing efficient schemes by which informa-
tion can be coded for reliable transmission across channels which are corrupted by noise.
From a practical standpoint, the essential limitation of all coding and decoding schemes
proposed to date has not been Shannon’s capacity but the complexity (and cost) of the
decoder [4]. For this reason, efforts have been directed toward the design of coding and
decoding schemes which could be easily implemented.

The major engineering problem of error control coding is to design and implement the
channel encoder/decoder pair such that (1) information can be transmitted (or recorded)
in a noisy environment as fast as possible, (2) reliable reproduction of the information can
be obtained at the output of the channel decoder, and (3) the cost of implementing the
encoder and decoder falls within acceptable limits [3]-[23)].

The basic idea of error correcting and detecting codes is to increase the distance between



information-bearing signals by the addition of redundancy [5]. There are two approaches
to adding this redundancy: block codes and convolutional codes. The encoder for a block
code breaks the continuous sequence of information digits into k-symbol sections or blocks.
It then operates on these blocks independently according to a particular rule employed by
the code so that each possible information block is associated with an n-tuple of channel
symbols (where n > k) which is called a code word. Since the n-symbol output code word
depends only on the corresponding k-bit input message, the encoder is memoryless, and can
be easily implemented with a combinational logic circuit. The encoder for a convolutional
code operates on the information sequence without breaking it up into independent. blocks.
The encoder processes the information continuously and associates each long information
sequence with a code sequence containing somewhat more digits. The encoder breaks its
input sequence into kg-symbol blocks, where kg is usually a small number. Then, on the
basis of this ko-tuplc and the preceding information symbols, it emits an ng-symbol secticn
of the code sequence. This process can be easily implemented by passing the data sequence
through a linear shift register circuit. The redundant data stream is derived by modulo-2
addition of the sample contents of the shift register. The redundancy lics in the fact that
for every input bit there is more than one output bit from the encoder. For the purpose of
this thesis, we restrict our attention to a subclass of all block codes, the linear bleck codes
[4].

A desirable property for a linear block code to possess is a systematic structure as shown
in Figure 1.1.

A linear systematic (n, k) block code is completely specified by a kx n generator matrix

Redundant Message
check part part

l— nek digits —>f=— k digits —>]

Figure 1.1: Systematic format of a code word.




G of the following form:

go Yoo Po1 70, n—k—1 1

g1 P1o 1 P1,n—k-1 0

G=] g P20 P21 P2, n—k-1 0
| Bk-1 | | Pk-1,0 Pk-1,1 Pk-1,n—-k-1 0 |

where p;; is from a prime field GF(p)!. Let u = (ug, ug, ..., ug—1) be the message to be

encoded. The corresponding code word is

v = (UOI v11v2y"‘1vn—l)

= (uoy U1, ...y Uk—1) - G. (1.1)

So, the rightmost k digits of a code word v are identical to the information digits
Ug, Uy, ..., Uk-1, and the leftmost n — k redundant digits are linear sums of the information

digits.

1.2 Description of Cyclic Codes

The most important class of linear block codes is the class of cyclic codes in which each
codeword is a cyclic shift of another codeword, i.e., if (vg, v1, v2, ..., Un—1) is a codeword,
then so is (vp—1, Vo, ..., Un-3, Un—2). Cyclic codes are of pariicular interest because of
their easy implementation [5]. Most linear codes used in practice are cyclic codes [3]. The
structure and description of cyclic codes are based on polynomials whose coefficients are
from a field with ¢ elements. These polynomials constitute an extented field of a prime
field GF(g), which is denoted by GF(¢g™)2. Each element in GF(g™) is a polynomial which

represents a cyclic codeword.

'Finite fields are also called Galois fields, in honor of their discoverer. A Galois field of g element is

denoted by GF(q).
2For any positive integer m, it is possible to extend the prime field GF (q) to a field of ¢™ elements which

is called an extension field of GF(g) and is denoted by GF(q™)[3].



There are many articles in the literature describing cyclic codes in detail, so they will
not be repeated here. The reader interested in the structure and properties of cyclic codes
may find (3, 4, 5, 6, 12, 14, 15, 16. 17, 34, 44] useful.

On memoryless channels, the channel noise affects each transmitted symbol indepen-
dently, hence transmission errors occur randomly in the received sequence. The codes
devised for correcting random errors are called random-error-correcting codes. On channels
with memory, the noise is not independent from transmission to transmission, therefore
transmission errors occur in clusters or bursts. The codes devised for correcting burst
errors are called burst-error-correcting codes.

In general, codes for correcting random errors are not efficient for correcting burst errors.
Cyclic codes are very effective for both random- and burst-error detection and correction.
Many effective cyclic codes for correcting burst errors have been discovered [3, 10, 11].

The error-correcting capability of a given code is largely determined by the minimum
pair-wise H~:nming distance d between any two codewords. In theory, a knowledge by the
decoder of all the 2¥ possible codewords enables it to compare the reccived word with all
such codewords. In the BSC (Binary Symmetric Channel} case, the best decoding decision
is to select the codeword having the smallest Hamming distance from the received word.
On this basis, the decoder guarantees the correction of any error of weight t = [i;—'—J or

less, where | | denotes the (nteger portion of the enclosed expression.

1.3 Decoding Techniques for Cyclic Codes

The Meggitt decoding technique can be considered as the most general decoder for cyclic
codes, and it applies in principle to any cyclic code However, the complexity of its error-
pattern detection circuit increases rather rapidly as the number of errors to be corrected
grows. There are cases in which the error-pattern detection circuits are simple, but in gen-
eral, refinements are necessary for practical implementation. For decoding Bose, Chaudhuri,
and Hocquenghem (BCH) codes, the iterative algorithm devised by Peterson, Berlekamp,

and Chien [40, 4, 41] is much simpler than the Meggitt decoder.




In general, algorithms devised for decoding BCIH codes are composed of three parts,

namely,

1. Syndrome computation;
2. Finding the error-location polynomial;

3. Computation of error-location numbers and error correction.

These algorithm require the implementation of multiplication and division of two variables
over a Galois field.

There are some other decoding schemes which do not require the implementation of
Galois field multiplication and division of two variables and they are much simpler than
the algorithms based on algebraic calculation. However, these algorithms have their own
limitations. They can only decode relatively short and low rate codes (e.g., error-trapping)
and/or are limited to a small number of codes which are supposed to have the necessary

structural characteristics (e.g., majority-logic decoding).

1.4 Majority-Logic Decoding

Majority-logic decoding is an effective scheme for decoding certain classes of block codes,
especially for decoding certain classes of cyclic codes. The first majority-logic decoding
algorithm was devised in 1954 by Reed [42] for a class of multiple-error-correcting codes
discovered by Muller [43]. Reed’s algorithm was later extended and generalized by many
coding investigators. The first unified formulation of majority-logic decoding algorithms
was due to Massey {8]. Most majority-logic decodable codes found so far are cyclic codes
[3] or quasi-cyclic codes [19).

Consider an (n, k) cyclic code C with dual code C43. Suppose there exist J vectors in

the dual code,

Wy = (ww, WLy oo oy wl,n-—]),

*The dual code of C is the null space of the (n, k) linear code C generated by matrix G (i.e., for any

vEC andany w € Cyq, ¢c- w =0).



w2 = (w20u Wary o v vy w'l,n-—l).

wr = (wgo, Wyry ..y Wynot), (1.2)
which have the following orthogonal properties:
® Wip_] =Wyn—y =""+= Wyn_1 = I,
e For i# n — 1, there is at most one vector whose i-th component is a “17.

Then any error pattern of [%—J or fewer errors can be corrected.

Majority-logic decoding is a remarkably simple technique but it is limited to a small
number of codes which have the necessary structural characteristics. When J is small
compared to the minimum distance d,;,;, of the code, one-step majority-logic decoding
becomes very inefficient, and much of the error-correcting capability is sacrificed.

The concept of ore-step majority-logic decoding can be generalized in such a way that,
many cyclic codes can be decoded by employing several levels of majority-logic gates.
Multiple-step majority-logic decoding can increase the number of orthogonal vectors by
loosening the restriction from orthogonal on a special digit to orthogonal on a set of error
digits. Because any error pattern of I_%J or fewer errors can be corrected by majority-
logic decoding, more cyclic codes can be decoded. A code is said to be L-step majority-
logic orthogonalizable or L-step majority-logic decodable if L steps of orthogonalization are
required to make J orthogonal vectors which are orthogonal on a single error digit. A code
is said to be completely L-step orthogonalizable® if J is one less than the minimum distance
of the code. Since majority-logic gates are used to estimate selected sums of error digjts
at each step of orthogonalization, a total of L levels of majority-logic gates are required
for decoding. The number of gates required at each level depends on the structure of the
code. For an (n, k) L-step majority-logic decodable code, no more than k majority-logic

gates are ever required (8], but for a given L-step majority logic decodable cyclic code, there

*This process of getting orthogonal vectors which are orthogonal on a set of error digits until a set of J

or more check sums orthogonal on only a single error digit obtained is called orthogonahzation (8].




is no known syslematic method for minimizing the number of majority-logic gates except
trial-and-error. For almost all known classes of L-step ma jority-logic decodable codes, the
number of majority-logic gates required is an exponential function of L [3]. For large L,
the decoder is likely to be impractical.

It has been shown [8] that the (2™ - 1, 2™ — m — 1) Hamming code is completely
orthogonalizable in m — 1 steps. Thus, the Hamming codes can be decoded by majority-
logic decoding. However, the error-trapping technique for Hamming codes which will be

described in Section 1.6 can be more simply implemented than majority-logic decoding [3].

1.5 Information Set Decoding

The use of information sets as the practical basis of a decoding algorithm for group codes
was first proposed by Prange in 1962 [26]. In an (n, k) linear block code an information set
is defined to be any set of k positions in the code word that can be specified independently.
The remaining (n— k) positions are referred to as the parity set. Since the symbols contained
in the information set can be specified independently, they uniquely define a code word. If
there are no errors in these positions, then the remaining symbols in the transmitted code
word can be reconstructed. This property provides the basis for all information set decoding
algorithms. In accordance with this property, the information set decoding procedure may

be described in three steps:

1. step 1. Select several different information sets according to some rule;

2. step 2. Construct a code word for each set assuming that the symbols in the infor-

mation set are correct;

3. step 3. Compare each of the hypothesized code words with the actual received se-

quences and select the code word which is closest.

Given a code of error correcting capability ¢, if for every possible error pattern there always
exist at least one information set which is error free, then the code is information set

decodable.



There are mainly two ways to select information sets [12], namely:
e Predetermined sets;
o Random search.

Generally, there are no satisfactory solutions to determine the minimum number of distinct
sets and how to find them. Notice that the required size of the collection of information
sets is very sensitive to the number of errors that must be corrected, and it has been shown

that the smallest number of information sets needed to decode a code N, is bounded by

[13]:

n n—1 n—t+1
[ > B
Aco"—[n—k[n—k——l [n—k—t+1] 11 (1.3)

where the symbol y = [z] denotes the smallest integer, y, such that y > «. From (1.3) it
can be seen that for high rate codes (k is large) with large error-correcting capability, N.,,

is a very large number. For example, for a (127, 106, 7) BCH code, the smallest number of

information sets N.,, is bounded by®
Neoy 2 343,
while for a (255, 123, 39) BCH code, N, is bounded by

Neow > 20,155,400

In practical applications, it is very difficult to find an optimum information set with such
a large size. Generally speaking, information set decoding has its difficulty in finding the
information sets®. Because of the considerable inherent algebraic structure of cyclic codes,
a practical information set decoding implementation of cyclic codes can be very simple
(21, 24]. The limitation of this technique is that it may use only a small part of the

information sets which are needed to decode a code to its full error-correcting capability.

5This code cannot be decoded by (T, U) permutation decoding. However, when the primitive clement
permutation decoding technique (Chapter 4) is applied, the BCH code of the same code length with error

correcting capability ¢ = 2, 3, 4, and 5 can be decoded.
5Even if the information sets needed to decode a certain code are known, the logic circuit needed to

generate these information sets can be extremely complex.




1.6 Error-Trapping Decoding

A distinctive property of cyclic codes is that every successive k information bits form
an information set. Based on this property Mitchell and Rudolph [21, 24] independently
devised a decoding technique using a very simple combinational logic circuit for error
detection and correction’.

Error-trapping chooses information sets by simply cyclic shifting a code word one bit
at a time and always taking the first & bits as a new information set. Since after the n-th
cyclic shift the original received code word is obtained, the number of distinct information
sets is fixed, and is equal to the code length, n. Obviously, for a code to be error-trapping
decodable, there should exist at least one set of k consecutive bits which is error free in
every possible error pattern (notice that the information sets are formed by k& consecutive
bits).

Error-trapping is most effective for decoding single-error-correcting codes, some short-
double-error-correcting codes, and single burst-error-correcting codes. However, when the
error-trapping is applied tolong and high rate codes with large error-correcting capability, it
becomes very ineffective and much error-correcting capability is sacrificed. This is because
for long and high rate codes with large error-correcting capability, it is unlikely that the
errors will be confined to (n—k) consecutive positions (so that the chosen information set is
error free). Again, let us take the (127, 106) BCH code as an example. An error-trapping
decoder provides n = 127 information sets. But from the previous discussion, we know
that for an information set decoder to decode a (127, 106) BCH code without sacrificing
its error-correcting capability, the lower bound on the number of information sets required
is 343. By comparing the number of information sets provided by error trapping (which
is 127) with this lower bound, it is easily seen that the basic error-trapping technique is

unable to provide a sufficient number of information sets to correct all the error patterns

?Error-trapping technique can also be viewed as a practical variation of the general decoding method of
Meggitt [3], ia which the error-pattern is detected when the error-pattern is identical to the syndrome of

the shifted version of the received code word.



within the error-correcting capability of the code.

Since 1962, several improved error-trapping methods have been devised in an effort
to extend the capability and effectiveness of the error-trapping decoder for multiple-error-
correcting cyclic codes [24]-[27]. These methods have been developed to achieve the same
purpose: to get k (information bits) consecutive error free positions in a code word. T'he
main two methods, namely Kasami’s error-trapping and permutation decoding, use two
different ways to get these k error free consecutive positions. Kasami used covering poly-
nomials to eliminate the effect of errors that can not be moved into the (n — k) parity check
positions, and permutation decoding uses permutation to permute the error positions to
get k error free consecutive positions. Both methods increase the capability of the error-
trapping decoder but they are still oniy applicable to relatively short and low rate code.
However, their restrictions are different. For a Kasami decoder, when the code length
and error-correcting capability ¢ become large, the number of threshold gates required in
the error-detecting logic circuits becomes very large and impractical. For a permutation
decoder, when the code length n and error-correcting capability ¢t become large, the number
of permutation steps required to decode a code increases so that the decoder becomes very
slow (if parallel processing is used, the decoding time will not change, but the complexity

will increase [38]).

1.7 Kasami’s Decoder

In 1964, Kasami proposed a decoder which is a variant of the information set error-trapping
technique [25]. Kasami's error-trapping technique uses covering polynomials to eliminate
the effect of errors which cannot be moved into the n — k parity check positions. It requires
finding a set of polynomials [@Q;(z) ;.V=1 of degree k — 1 or less, so that for any correctable
error pattern e(z), there is one polynomial Q;(z) such that z"~*Q,(z) matches the message
section of e(z) or the message section of a cyclic shift of e(z). The polynomials Q,(z) are
called the “covering polynomials”.

Although these decoding techniques are rather simple in principle, they are still only
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applicable to relatively short and low rate codes. When the code length n and error-

correcting capability ¢ become large, the number of distinct information sets or covering
polynomials in [Q,(:zc)]j.v=| become very large. Also, to select the set of covering polynomials

[Qj(ar:)];\':l for a specific code is not an easy problem [3].

1.8 Permutation Decoding

The interest of this research is in the decoding technique known as permutation decoding,
which is essentially an error-trapping technique introduced by Prange [26]). A serial decoder
based on this treatment was given by MacWilliams [27], who made use of code preserving
permutation sets to obtain k error-free positions from which the rest of the code word could
be reconstructed.

TFor every cyclic code C' in the vector space F™ of dimension n, with symbols from the
finite field F' = GF(q), where ¢ is the size of the field, there are various code preserving
permutations [33]. In this thesis we specifically use the following group (T, U) permutation
which is applicable to cyclic codes:

Let C be a (n, &, 2t + 1) cyclic code over GF(q). If ¢(z) is a code polynomial, that is
c(z) € C, then

n—1 .
T) = z bz,
1=0
where b, is a symbol from GF(q). The group (T, U) permutation is defined as follows:
n-1 )
(z) = TPe(z) = Y 6,2 (mod 2" - 1),
=0
and

"(z) = Ule(z) = Zb 2P (mod £ -1).

where p is the characteristic of GF(q), and the symbols of the cyclic code C are trom GF (q).
If p is relatively prime to n, then the code is invariant under group (U) permutation [27) .

So, when p is relatively prime to n, for ¢(z) € C,
U'T?[e(@)] = (([e()}")2? mod (a" - 1))

11



is also a code word.

Suppose r(z) = c(z) + e(x) is the received codeword polynomial where e(), the error
pattern polynomial, is of weight t or less. Then the syndrome of the permuted received
word

sip(z) = (=f[r(2)]”" mod (=" - 1)) mod g() (1.1
is

si5(z) = (ePe(z)]P' mod (2" - 1)) mod g(r) (1.5)

We define e(z) to be a permutation decodable (PD) pattern if values of i and /3 exist
such that e;g(z) = ((zP[e(z)])”') mod (2" — 1)) has degree (n — &k — 1) or less. That is,
all the errors in the permuted e(z) are confined to the first n — & parity-check positions
and s;p(x) = eip(z). In this case the error patternis ((z7# - s,5(z))? " 'mod (2" — 1)) [6).
If these conditions on i and S hold for every e,g(z), such that the error e(x) is P with
t=0,1,...,5 < v, where v is the least integer satisfies that (p” = 1 mod n), then we
say that the code C is (s+ 1)-step PD. It should be noticed that for a s-step permutation
decodable codes, the number of information sets that we can use is s x n.

Permutation decoding does not need to select the distinct information sets or the set of
covering polynomials and it is best suited to codes which are invariant under a large group
of permutations [27]. In essence, permutation decoding increases the number of selected
information sets according to a predetermined rule so that more error patterns can be
correctnd,

Recently, tight lower bounds on the code length n for (n, &, 2t+1) cyclic codes have been
found by using group (T, U) permutations, for: 1) 2-step (T, U) permutation decodable
binary cyclic codes with ¢ being odd or even valued and 2) 3-step (T, U) permutation
decodable binary cyclic codes with ¢ = 2 and odd-valued ¢ [33]. In the next chapter,
we extend these results for the case of even-valued ¢t (¢ > 4). The results show that the
improvement of 3-step PD with respect to 2-step PD is proportional to the value of k or
t, and this implies that this variation of error-trapping decouding can be applied to higher

rate and larger error correcting cyclic codes.
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1.9 Advances in This Work

In this thesis, we first derive tight lower bounds on the block code length n of three-step
permutation-decodable cyclic codes. That is, for a fixed number of permutation steps s = 3,
we present the tight upper bounds on the code rate of permutation decodable cyclic codes.

The more important contribution of the thesis is the study of the performance of
multiple-step (T, U) permutation decoding of cyclic codes. We derive the mapping ma-
trix, which gives a compreheusive relation between gap lengths in different domains. We
prove that the gap lengths in an error pattern after U permutation is actually a linear
combination of the gap lengths in the error pattern before U permutation. We characterize
the relationship of the error pattern gaps between any two consecutive or non-consecutive
domains. This gives insight into how the gap lengths change and therefore how the capa-
bility of (T, U) permutation decoding increases. The characteristics of the code rate of
permutation decodable codes have also been studied in this thesis. From the concept of the
optimum permutation step, we show how to estimate the required number of U permuta-
tion steps to decode a permutation decodable code. We compare the code rate R’ of the
permutation decodable codes and the code rate of error-trapping decodable codes, which
shows the effective region of the (T, U) permutation technique. In this effective region,
some rowerful BCH codes (e.g. (127, 113, 5), (127, 106, 7), etc.) can also be decoded.

The last contribution concerns permutation decoding using primitive elements as mul-
tipliers (M; permutation decoding). We show that by using primitive elements of a prime
field as multipliers we can increase the capability of permutation decoding method in decod-
ing cyclic codes of prime length. The implementation structures for both serial and parallel
permutation decoding are also discussed. Finally, the idea of combining both (T, U) and
M, permutation decoding methods is examined, i.e., after using M; permutation to permute
a code to an equivalent code, parallel (T°, U) permutation can also be used in different code
domain. In this way, the error-pattern detection capability of permutation decoding can
be increased dramatically while the decoding circuit complexity remains simple.

It may be noted that some of the results given in this thesis have been presented

13




published elsewhere [35]-[39).

1.10 Plan of the Thesis

This thesis is divided into five chapters. A brief description of each chapter follows.
Chapters 2 through 4 cover the main contributions of the thesis. In Chapter 2, we
derive the tight lower bounds on the code length n, or equivalently upper bounds on the
code rate % A study on the performance of multiple-step (T, U) permutation decoding of
cyclic codes is presented in Chapter 3. It is shown that the relation between the gap-length
vectors of the permuted error polynomials are related by a linear mapping. Based on this
property, the capability of (T', U) permutation decoding is studied and the relationship
between the number of permutations s and code parameters n, k and t of a permutation
decodable cyclic code is established. The idea of permutation decoding using primitive
elements as multipliers is presented in Chapter 4. Some illustrative examples are also given
to show the effectiveness of this method. Remarks and conclusions of the results of this

work are given in Chapter 5, together with some suggestions for further study.
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Chapter 2

TIGHT LOWER BOUNDS FOR
3-STEP PERMUTATION
DECODABLE CYCLIC CODES

In Chapter 1, we introduced various cyclic codes decoders, including error-trapping and
its variants. One of the improved forms of error-trapping is permutation decoding. In this
chapter, we derive tight lower bounds on the code length n of (n, k, 2t + 1) cyclic codes
which can be decoded by a permutation decoder.

First in Section 2.1, we present a summary of known results as the starting point of
our work. Then, we introduce some preliminary notations and definitions in order to make
this chapter self-contained. In Section 2.3, we derive the tight lower bounds for 3-step
permutation decodable cyclic codes. Section 2.4 contains conclusions and some numerical

results.

2.1 Summary of Known Results

Since MacWilliams proposed (T, U) Permutation Decoding in 1964, a lot of research has
been done to determine the decodability of cyclic codes by using (T, U) permutations

[29)-[33]. Here, we summarize the known lower bounds on n as follows:
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1. A binary (n, k, 2t + 1) cyclic code C is 1-step PD if and only if:
n> kt.

Notice that 1-step permutation decoder is the original form of error-trapping tech-

nique and therefore 1-step PD codes can be decoded by cyclic shift permutations [27).

2. The bounds for 2-step PD (n, k, 2¢ + 1) cyclic codes are: [29]-[33]

e Whent =2:
n> k.
2’
e When £k = 2:
n>§—t
5
e When k and ¢ are odd:
n>t-k;

o When k is even and t is odd:

n>t-(k—1);

When k is odd and t is even:

n>(t-1) k;

When k and t are even:

n>(t—1)(k-1)+2;
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3. The bounds for 3-step PD (n, k, 2t + 1) cyclic codes are: [33]

e When k and t are odd:

t_
n=t-k—2020+1), if k=21+3 and ogz<--—2—1;
e When k is even and ¢ is odd:
t—1
n=t-(k—-1)-2(20+1), if k>204+4 and 0$l<—?—;
o Whent =2:
n=k+£€;—1 for k >3;
o When k£ = 2:
n23t—1.

2

4. The following codes are not permutation decodable:
e For any t, the (n, k, 2t 4+ 1) cyclic codes with
n=46-1,

where § < k, and 7 < t, are not PD.

o If the (n, k, 2t + 1) code is not s-step PD, then the (n', k, 2t + 1) codes with
n=n-2"1.0  for I>1,

are not s-step PD.
e For any t, the codes (n, k, 2t + 1) with

n=§6-r,

where § < k, 7 <t,and § -7 # 0 mod 8, are not PD.
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2.2 Notations and Definitions

Let an n-symbol error polynomial E(z) = 1+ 2% + ...+ z%-! with weight ¢, over GF(2),
be represented by a vector é, é = {e,, i = 0,1,...,¢t — 1} is called the Error Pattern
(EP), where eg,ey,€2,...,€,_1 are the error positions and ey < €; < €3 < ... < €1—1-
For simplicity in analysis, it is assumed that one of the errors is fixed at the zero position
(eo = 0). The gap length G in an EP is the number of consecutive error-free coordinate
positions between any two consecutive error locations. The pattern associated with the
result of permutation by U is referred to as the EP in the R,-domain.

Suppose that the EP in the R,-domain is not (i + 1)-step PD, then the corresponding
error locations in the [2; domain can be divided into two classes, Namely, Class 1 contains
even-valued errors (presented as “o0”) and Class 2 contains odd-valued errors (presented
as “x”). These “o” and “x" errors in the R,4;-domain correspond to the error positions
in the R;-domain which are located before and after the |2 ]-th location in the pattern,
respectively.

We then distinguish two types of patterns as follows:

1) y-type pattern:
(o X o) or (x o x)
2) o-type pattern:
(o X X 0) or (x o 0 x)

The number of y-type and o-type patterns in an EP are denoted by N, and N,,
respectively.

It is noted that there may be many other patterns in an E'P. However, in our analysis
we consider the worst case, and hence, we are only concerned with these two patterns.
This is because it can be proven that the other types of patterns will result in smaller
gap-lengths [33].

NOTE 1. All the variables with subscripts “e” or “o” are considered as even, or odd

valued variables, respectively.
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NOTE 2. When we say that an (n, k, 2t + 1) code is (s + 1)-step PD, we mean that
such a code is decodable with Sgg(z), Sig(z), ..., Ssp(x); we do not imply that such a
code exists.

NOTE 3. The zero coordinate place, in the analysis of the F' Ps in all R;-domains, i < 1,
has a “double parity” feature. For n odd, the zero location is considered as an even-valued
number for the first gap, and it is considered as an odd-valued number for the last gap in
the pattern.

NOTE 4. In this thesis, whenever we refer to a code we mean a binary cyclic code.

2.3 Tight Lower Bounds for 3-Step Permutation Decodable

Cyclic Codes

For 3-step PD codes, no bounds existed for the case of t an even number (¢ > 4). In this
thesis, we have addressed this problem and in the form of Theorems we are going to extract
tight lower bounds for the case even-valued ¢. First the results for the codes which are not

3-step PD are given in the form of Theorems as follows.

2.3.1 When k& is odd

Theorem 2.1 The (n, ko, 2t. + 1) codes with n = k,(t, — 1) — 2(2l + 1), for

are not 3-step PD.

Proof of Theorem 2.1: It is sufficient to prove the theorem for an error vector of weight
te that does not have any gap of length G < k, in the Ry-, R;- and Rj-domains. Now, Let

us consider an error pattern {e,} in Ry-domain:

€0=0,

ei=1(ko~2)-k,+6, for1<i<t,-—1.
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The gaps between any consecutive error position pairs in (2.1) arc obtained as:

G(er, €0) = 3,
Gleiyr &) =k, =3, for1<i<t, -2, (2.2)
G(n, e,-1) =k, — 3.
Thus, when k, > 5, no gaps G > k, exist. Also, no gaps G > k, exist in the corresponding
patterns in R;- and Ry-domains. In the case k, = 3, we consider the following error pattern

in Rop-domain:
ee=1, for0<i<t, -2, (2.3)
€.—1 = le.

It can also be verified that none of the gap-lengths in the Rp-, R;- and Ry-domains are

greater than k, — 1. This concludes the proof of Theorem 2.1.

Q. E. D.

Theorem 2.2 The (n, ko, 2t + 1) codes with n = ky(t, — 1) - 2(2l + 1) for

are not 3-step PD.

Proof of Theorem 2.2: Similar to the proof of Theorem 2.1, we give an error vector

of weight ¢, that does not have any gap of length G > k, in the R,-, R;- and R3-domains.

We also divide the proof into two cases: for l‘-ﬂ,‘,;‘— being even and for L“f-l— being odd.
Case I, for 5"2‘—‘ being even:

Consider the error pattern in the Ry-domain:

(
eo=0,
€1=4,
1 €2=8, (24)
E3=k0—1,
‘ e,=(i~3)k, ford<i<t.-1.
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The gaps between any consecutive error position in Equation (2.4) are obtained as:

(

G(et1, ) =3, fori=0,1,
G(eg, 62) = ka - 10,
{ Gles, €3) =1, (2.5)

Gley1, €)=k, -1, ford4<i<te-2,

{ G(TL, C’ge_l) = ko - 1.
Thus, from (2.5) we can conclude that the pattern is not one-step PD. It can also be verified
that none of the gaps G > k, exist in the corresponding patterns in R;- and Rp-domains.

Case 2, odd L‘ﬂ;—':

Consider the error pattern in R;-domain:

€0=0,
€ :4)
€9 =8,
< (2.6)
€3=’Co,
€4 =ko+1v
ei=(1-3)k, ford5<i<t.~-1.

I'rom (2.6), the gaps between any consecutive error position are obtained as:

( G(el’-{-lv et) = 3’ fOT 1= 0, 11
G(e.’h 62) = ka - 93
A G(e.,, 63) = O, (27)

G(e,+1,e.)=ko——l, f07‘4SiSte—2,

{ G(n, ete—l) = ka - 1.
Similarly, we can verify that no gaps G > k, exist in the Ry- and R;-domains. This

completes the proof of Theorem 2.2.

Q.E.D.

Fact 2.1: A (53, 7, 21) code is not 3-step PD.
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This is because there are several error patterns in this code which do not have gap of
length G > 7.

So, from Theorems 2.1, 2.2 and Fact 2.1, we conclude the following result for the codes
with k odd which are not 3-step PD:

Result I The (n, k,, 2t + 1) codes with n = (t, — 1) - k, — 2(20 + 1), for

ky — . —
21 or 13! 24

are not 3-step PD.

Now, we will give the results for the codes with & odd which are 3-step PD.

Theorem 2.3 The (n, ko, 2t + 1) codes with n = (t¢ — 1) - k, - 20204+ 1), ko > 2 + 3,

0 <1< =8, except the code (53, 7, 21), are 3-step PD.

Proof: This theorem will be proven using the principle of contradiction. Suppose code
C is not 3-step PD. Then, consider different types of patterns o and v in the R;-domain,
for any error pattern which is not one- or two- step PD in the worst case, are shown in
Table 2.1. (Note that the other types of patterns will result in lower gap lengths). Thus,

in the Ro-domain, by using Table 2.1, the following relationship can be obtained:

2N + Ny =1t — 1,

(2.8)
te + Nogo + Nygy + gc 2 kolte — 1) — 2(20 4 1).
From equation (2.8), we have
N, ¢ 2kt 4@I+Y) Bk 29)

- ko +1 T ko+17
in the R)-domain. Since {. is even, so N, must be odd [33]. Now, we proceed to the cases
of No = 1, N;, = 3 and N, = 5 by considering the EPs in the R;-domain with respect,
to the EPs in the R)- and Rp-domains. Let us denote the number of the o-type patterns
of EP in the Ry-domain as N/. Then according to equation (2.9) we can conclude that

N} < 5. Thus we have the following three lemmas:
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Table 2.1: Gap lengths associated with ¢ and 7- type patterns

(with gap lengths < k,) in R,- and R,;,-domains

Type of { Number of The type of patterns and The corresponding gap-
Patterns Patterns gap-lengths in R;;;-domain lengths in R;-domain
<k,-2
e N
o X X 0
a Ny < 2k, -1 9o S Bz 4 k-1
X o o x
<k,-2
<ko—1 <ky,-1
N e,
(4 X o
0% Ny <2k, -1 Gy < ko —1
X 0 X
<k,—-1 <k,-1
1 X o ge <k, —1

1st odd-value last even-value

(central-gap)

Note: The central gap is referred to as the gap in the R;-domain, which corresponds

to the first odd- and the last even- error positions in the R4 -domain.
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Lemma 2.1 Suppose that N, = 1. Then the corresponding patterns in the Ry-domain for

Nz =1, 3 or 5, except for the code (57, 7, 21), are 3-step PD.

Lemma 2.2 Suppose that N, = 3. Then the corresponding patterns in the Ry-domain for
N, =1, 8 or 5 are 3-step PD.

Lemma 2.3 Suppose that N, = 5. Then the corresponding patterns in the Ry-domain for
N, =1, 3 or 5, are 3-step PD.

Proof of Lemma 2.1: We prove this lemma using the principle of contradiction. The
proof of the lemma will be divided into the following three cases:

Case 2.1.1, for N! =1:

In this case, if for n = k,(t.—1)—2(2/+1) the pattern is not decodable, then there should
be a collection of gaps of lengths (k, — 1 — 2j) in Rj-domain, where 1 < j < [+ 2. Now, in

the worst case (i.e., when j = 1), the following relation should exist in the R;-domain:
(2ko — 1)+ (ko = 1)+ 2(ko —3) + (te —4 — ) (ko = 1)+ (t. —2) =7 (2.10)
where z is the number of gaps of length (k, — 3). From (2.10) we have:
z=2+1 (2.11)

Therefore, in the worst case, the code length n, as shown in Figure 2.1, should satisfy:

(4ko — 1) + (20 + 2) (ko — 3) + (te — 5 — (21 + 2)) (ko ~ 1) + (tc — 4) > 7, (2.12)
or
(te = 1) - ko — 2(20 +2) > . (2.13)

in Rj-domain for t. > 10. The condition in (2.13) does not satisfy the assumptions of
Theorem 2.3. For the cases of t, < 8, we consider the following options (all the E'Ps used

here make the E'Ps have the largest spans):
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R4 - domain

< 4ko—l

Figure 2.1: A sketch representing the case N, =1 and N) = 1 in the worst case.

X, ) X9

/ - y-/\-\ ("\\ R | - domain
i) 0 0
(o] (o) .
R ., — domain
\ — A/ 2
X X

Figure 2.2: The case ¢, = 6.

Option 2.1.1.1: The case t, = 6
As shown in Figure 2.2, for 2| + 2 + 2 = n in the Ry-domain, only the following two
choices can have:
=4k, -1, zh=k,-3; or (2.14)
Ty =4k, -3, zh=k,-1.
In Choice 1, the correspondence of z3 in R;-domain, x5, will equal to k, — 2, which is

impossible since z; should be even. Similarly in Choice 2, 2 will equal to 2k, — 2, which

is also impossible since z, should be odd.
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< ko-l < ko-l
/\
( — o
J0 o x 0 Rl— domain
CK, X 0O 0 )0 X o} Rz_ domain
N
< 4k0-1

Figure 2.3: The case t, = 8.

Option 2.1.1.2: The case t, = 8
Similarly, we can get the number of gaps of length (k, — 3) in the worst case in the

Rji-domain such that:
(2ko = 1)+ (ko = 1)+ x(ko = 3) + (te —4 —a) (ko — 1)+ (le - 2) =n (2.15)
From (2.15) we have
r=2l+1 (2.16)

So, in the worst case, the code length n, as shown in Figure 2.3, should satisfy:

(4k, — 1) = 2(20 +2) + (te — 5) (ko — 1) > n, (2.17)

or

Tk, — 2(20 + 4) > n. (2.18)

which is a contradiction.
Case 2.1.2, for N/ =3
We prove this case in two steps: k, = 4i — 1 and k, = 4i + 1.
Option A, fork, =4i -1
Similar to the proof of Case 2.2.1, we can get the number of gaps of length (k, — 3) in

the Rj-domain as follows:

26




R [ domain

R 2~ domain

2k -1

Figure 2.4: A sketch representing the case N, = 1 and N, = 3 in the worst case

k, =41 - 1.

ko — 3) + (ko — 1) + (2ko — 3) + x(ko = 3) + (te =z — 9)(ko — 1) + (te = 2) = n, (2.19)

-k, -3
=t

T

or
(2.20)

\
| If k, > 4l — 1, z '< negative. This is impossible. When &k, < 4/ — 5, then z > 1.

Therefore, in the worst case, the code length n, as shown in Figure 2.4 should satisfy
3(2ko — 1) + (2ko — 5) + (te — 10 = (z + 1)) (ko — 1)+ (z + 1) (ko — 3) + (te — 7) > 7, (2.21)
or
ko(te = 1) = 2(20 + 2) > n. (2.22)

in Ry-domain for t, > 14. The condition in Equation (2.22) does not satisfy the assumptions
of the Theorem 2.3.
Option B, for k, =4¢ +1

Similarly, we can get the number of gaps of length (k, — 3) in R,-domain as follows:

-k, -

If ko > 41 — 7, x becomes negative, which is impossible. When k, < 4/~ 11, we have z > 1,

so in R-domain the code length n, as shown in Figure 2.5, should satisfy:
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Figure 2.5: A sketch representing the case N, = 1 and N, = 3 in the worst case

R | domain

x O O R, ~ domain

Figure 2.6: The case t, = 6.

3(2ko - 5) + (Qko - 1) + (te - 10)(1‘70_ 1) - (41 - ko - 7) + (te - 7) 2 n,

or

ko(te — 1) — 2(2+ 3) > n.

for t. > 14. Which again is a contradiction.

From Options A and B we conclude that Case 2.1.2 for t, > 14 is 3-step ’D. Next, we
continue to derive the result for £, < 12.

Option 2.1.2.1, The case t, =6

In the worst case, the code length n, as shown in Figure 2.6, should satisfy:

k,— 3

3(2

J+2ko—1)+ (ko —2)+62n
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R, — domain
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A o« &J R, ~ domain

<4k -1 k -1 k_-2

(V] 0 V]

Figure 2.7: The case ¢, = 8.

in Rj-domain. That is

which is a contradiction.
Option 2.1.2.2, The case t, = 8

In the worst case, the code length n, as shown in Figure 2.7, should satisfy:
(4ko_1)+(ko—1)+(ko—2)+(te—5) Zn

in Ra-domain. That is:
ko <4l+1

As for t. = 8, I only equals to 0 and 1. That is, k, < 1 when [ = 0 and k, < 5 when
I =1, which is contradiction with respect to assumptions of Theorem 2.3.

Option 2.1.2.3, The case t, = 10

Note that the gap of (o x) type pattern must be even, so when k, = 4¢ - 1, the
corresponding gap of (o o) in Rj-domain should be 5"2‘—3; and when k, = 4i¢ 4 1, should
be -’5“2‘—5 When k, = 4i — 1, in the worst case, the code length n, as shown in Figure 2.8,

should satisfy:
(4ko_ 1)+(ka_2)+(2ko"'1)+(ko—1)+(te—6) 2 n,

that is:

ko < 41 - 1. (2.24)
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if k =4i-1

R‘ - domain

R 5~ domain

4k -1 2k -1 k,-!

Figure 2.8: The case t, = 10.

As for t, = 10, and according to the assumption of Theorem 2.3, the limit on [is | < 2. So

ko £ -1 whenl=0,
ko <3  whenl=1, (2.25)
ko <7 when | = 2.

Only the case k, = 7, [ = 2 does not contradict the assumption of Theorem 2.3, that is
to say, except for the code (53, 7, 21), Option 2.1.2.3 makes a contradiction with k, = 4¢—1.
When k, =4i+ 1, in the worst case, the code length 7, as shown in Figure 2.8, should
satisfy
(4ko — 1) + (ko — 4) + (2ko — 1) + (ko — 1) + (te — 6) > n,

that is,

ko, <4l - 3.

which contradicts the assumption of Theorem 2.3 when ! < 2.

Case 2.1.3, for N =5

Assume that there exists an error pattern such that N, = 1 and N! = 5 which is not
3-step PD. Therefore, for such an EP, in the worst case, the code length =, as shown in

Figure 2.9, should satisfy:

3(2ko — 1) + 2(ko — 2) + (te — 11) (ko — 1) + (tc - 6) > n,
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R - domain

R e domain

—~ O———— O

o o
) ) \ /

A4 V 4

2k -1 2k -1 2k - i

Figure 2.9: A sketch responding the case N, =1 and N} = 5 in the worst case.

? °© ° °/< 0 R, - domain

R, ~ domain

Figure 2.10: The case t. = 10.

or

ko < 20— 1 (2.26)

in Ry-domain for t. > 12. The condition in (2.26) does not satisfy the assumptions of
Theorem 2.3.
For t, = 10 (as t. < 10 is impossible in this case), in the worst case, the code length =,

as shown in Figure 2.10, should satisfy:

ko -1

5(ko — 2) + 5( ) +te > 1,

or

81-1
ko < ——
°= 3

in Ry-domain. Clearly, it contradicts the assumption of Theorem 2.3 when | < 2. This

completes the proof of Lemma 2.1.
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0O =-==-- Rl - domain

QO ~-==-- Rz-domain

~ O=—0 —

<10k -1

Figure 2.11: A sketch representing the case N, = 3 and N = | in the worse case.

Proof of Lemma 2.2:

This Lemma will be established through contradiction. Similar to the proofof Lemma 2.1,
we consider the following three cases:

Case 2.2.1, for N, = 1:

In this case, let us assume that there exists an EP such that N5 = 3 and N} = 1 which
is not 3-step P.D. Therefore, for such an EP, in the worst case, the code length n, as shown

in Figure 2.11, should satisfy:

(10k, = 1) + (te — 13) (ko= 1) + (te — 12) > n

or

ko < 2141 (2.27)

in R2-domain for t, > 14. The condition of Equation (2.27) contradicts the assumptions of
Theorem 2.3. For the cases of t < 12, we consider the follows:
Option 2.2.1.1, The case t. = 6:

In the worst case, the code length n, as shown in Figure 2.12, should satisfy:

dko—12>n

in Ro-domain. That is to say, k, < 1, which is a contradiction.
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R ) domain

x O o x O R, — domain

Figure 2.12: The case t. = 6.

k -3
<2k, -1 —%—— 2k _-1 k_-I
A A A\
lo) o Y-/W o Te) (o) Rl—domain
o x ©O x O © x O R, — domain

Figure 2.13: The case t, = 8.

Option 2.2.1.2, The casef, = 8:

In the worst case, the code length n, as shown in Figure 2.13, should satisfy:

2(ko—1) + (ko — 3)/2+ (ko — 1) > n

in Ha-domain. That is

8l -5
0 L ——
ko < —3

As for t, = 8, according to the assumption of Theorem 2.3, the limit for /is / < 1. When
I =0, then k, < -1, which is impossible; when I = 1, then k, < 3, again it contradicts the
assumption that k, > 2/ + 3.

Option 2.2.1.3, The case t, = 10:

In the worst case, the code length n, as shown in Figure 2.14, should satisfy:

(2.28)
z+(4ko_ l)+2(ko_1)+(te—6)2n

33




R | domain

R2 — domain

< 4k0—1

Figure 2.14: The case t. = 10.

< 2k -1 < ko—2 g2k0—l

/\ 7\
Cki' o O o o o Rl—domam
Cﬁ x 0 © X Ol X °| x © x O Rz—domain
N
_J 1
~
< 4k -1 < 2k -3
0 0 < 4k -1

Figure 2.15: The case t, = 12.

in Ry-domain. From (2.28), we have:

41>z >3k, — 22 +1) — 1,

that is:

As t. = 10, so according to the assumption, ! < 2. When (=0, k, < 3;1=2, k, <5.
All are contradictions with respect to the assumption that k, > 2/ + 3.

Option 2.2.1.4, The case t, = 12:

In the worst case, the code length n, as shown in Figure 2.15 should satisfy:

2(41‘70—1)+(2ko‘3)+2‘(ko"1)2n
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R | domain

R 5" domain

IN

2k, -1 < 2k -1 < 2k -1

Figure 2.16: A sketch representing the case N, =3 and N! = 3 in the worst case.

in R;-domain. That is;

ko < 21

which is a contradiction with the assumption that k, > 2/ + 3.

Case 2.2.2, for N) =3:

For an P which is not 3-step PD, in the worst case, the code length n, as shown in

Figure 2.16, should satisfy:
3(2ko — 1)+ (te = (ko = 1)+ (te —6) > 1

or

ko <2041

in Rg-domain, for t, > 12. Which is a contradiction with respect to the assumptions of
Theorem 2.3. For the cases of t. < 10, we consider as follows:
Option 2.2.2.1, The case ¢, = 6:

In the worst case, the code length n, as shown in Figure 2.17, should satisfy:

3k°

;3'*'3(’90"1)'*'62""

or

ko < 8l+1=1.
Which is a contradiction with respect to the assumption of k, > 21 + 3 = 3.
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R [~ domain

R 5 = domain

Figure 2.17: The case t, = 6.
k_ -3

Figure 2.18: The case t, = 8.

Option 2.2.2,2, The caset. = 8:

— domain

% * — domain

In the worst case, the code length n, as shown in Figure 2.18, should satisfy:

(te — 4) +2(2ko — 1)+ (ko — 3)/2+ (ko — 1) > n,

81+ 3
ke < ——.
3

Ast. = 8,so when [ =0, k, < 1; when ! = 1, k, < 3; which contradict the assumption of

Theorem 2.3.

Option 2.2.2.3 The case t. = 10:

In the worst case the code length =, as shown in Figure 2.19 should satisfy:

32, — 1)+ (ko = 1) + (t. = 6) > n

in Rp-domain. That is:

ko <2041
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Figure 2.19: The case t. = 10.

(o]
(o]
o
o

o ~=--- o 0 Rl-domain

O x 0 0 x 0 0 x 0 0 x 0 O x x 0 —==- R, - domain
\—V—A—"—v A \% A Vv /
2k - 1 2k -1 2k_- 1 / ——
2k - 1 2k - 1

Figure 2.20: A sketch representing the case N, = 3 and N/ =5 in the worst case.

which contradict the assumptions of Theorem 2.3.
Case 2.2.3, for N! = 5:
For an E'P which is not 3-step PD, in the worst case, the code length n, as shown in

Figure 2.20, should satisfy:

5(2ko — 1) + (te - 14) (ko — 1) + (£, — 10) > n,

or

in Ry-domain for t, > 16. Which is a contradiction with respect to the assumption of
Theorem 2.3. For the cases of t. < 14, we consider as follows:
Option 2.2.3.1, The caset, = 10:

In the worst case, the code length 7, as shown in Figure 2.21, should satisfy:
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R | domain

R2 - domain

Figure 2.21: The case t, = 10.

202((2k, — DN+ (ko —2)+2)+ 1) =1 - 2n,
(2(( )+ ( )+2)+1) (229)
x4+ 2(2k, 1)+ (ko —2)+4 2 n.

From Equation (2.29), we have
dky—2(20+1) <z < ko +2(20+1) - 3,

or
by < 4(20 + 1):_2
3
Since t, = 10, then | < 2. When [ = 2, k, < 5. Clearly, it contradicts the assumption that
ko, > 214 3.
Option 2.2.3.2, The case t, = 12:

In the worst case, the code length n, as shown in Figure 2.22, should satisfy:

3(2k, — 1) + 2(ko — 2) + (ko — 1) + (t — 6) > m,

or

k,<20-1

in R;-domain. It contradicts the assumption that k, > 20+ 3.
Option 2.2.3.3, The case t, = 14:

Similarly, the code length of n, as shown in Figure 2.23, should satisfy:

3(2ko — 1) + 2(ko — 2) + 3(ko — 1) + (t. — 6) > n,
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Figure 2.22: The case t. = 12.

<2k -1 < 2k -1 52k0-l

Figure 2.23: The case t, = 14.
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or

k, <21

in Rp-domain. Again it is a contradiction with respect to the assumption that &, > 20 4- 3.

This completes the proof of Lemma 2.2.

In the same way, we get Lemma 2.3.
The proofs of Lemma 2.1, 2.2 and 2.3 complete the proof of Theorem 2.3.

Q. . D.

Next, we present the result for the case when K is even.

2.3.2 When k is even

Theorems 2.1, 2.2, and 2.3 give tight lower bounds on the code length u for the codes with
k odd. Now, by the following theorems we present the bounds for the codes with & being

even.

Theorem 2.4 The (n, k., 2t.+ 1) codes withn = (t,—1)-(k.—1)=2(2l+1), for! = tad

orn = (te — 1) - (ke — 3) +4, are not 3-step PD.
Proof of Theorem 2.4: Let k. =k, + 1, then

no= (te—1)(ke—1) - 202+ 1)

= (te= 1)k, —2(2L+1)

According to Theorem 2.1, (n, ko, 2l + 1) codes with n = (L, - 1)k, - 2(2L + 1), for the
case | = i‘éi, are not 3-step PD. Therefore, it becomes obvious that the (n, k., 2L, + 1)
codes cannot be 3-step PD cither.

Q. E.D.

40




Theorem 2.5 The (n, ke, 2. +1) codes with n = (te—1)(ke—=1)=2(21+1), for ke < 21+4,

are not 3-step PD.

Proof of Theorem 2.5: We will divide the proof into two parts: when (/2 is even and
when t./2 is odd.

Case 1, t./2 even:

Based on the proof of Theorem 2.1, it is sufficient to prove the theotem by finding an
error pattern of weight t. that does not have any gaps of length G < k. in the Ro-, R;-
and Rg-dom.ains.

Now consider the error pattern in Ra-domain:

4

eg = 0.
e; =4,
¢y = 8,
{ e, =i(ke—~1)—2ke+6, for3<i<te—3, (2.30)
B te(ke — 1) — 5ke + 12,  for k./2 being even,
PN ke = 1) — Skt 14, for k/2 being odd,
L €1 = to(ke — 1) — 4k + 12.

From (2.30), the gaps between any consecutive error position pairs in the R,-domain are:

,

G(ey1, €,)=3, fori=0,1,

G(es, €2) = ke - 6,

Gle1, €) =he—2, for3<i<te—4,

| Glewn, ens) = 2 for k./2 being even, (2.31)
4 for k./2 being odd,

k.—1, for k./2 being even,

Get,-1y €1.-2) =
k,—3, for ke/2 being odd,

G(n, e,—1) = k. — 6.

Thus, when k. > 6 (! > 1), no gaps are greater then k. — 1 in the Rp-domain. It can be

verified that the corresponding patterns in Rj- and Ro-domains also have no gaps G > ke
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exist. For the case k. = 1, we can also find I Ps which have no gaps ¢ > k. — 1 in the Ro-,
R;- and Rg-domains.
Case 2, odd t./2:

Similarly, first consider an error pattern in the Rp-domain:

€y = 0,
€ = l,
€2 = 8v
ﬁ (2.32)
e =i(ke—1) —2ke+6, for3<i<gt. -3,

er—2 = le(ke — 1) = 4k, + 6,

| eoor = te(ke = 1) = Ak + 12

From (2.32), the gaps are:

{

Gewy, ¢)=3, fori=01,

G(Cs, (32) = ke - G,

Glewr, ) =ke—2, for3<i<t. -4,

1 (2.33)
G (et -2, €te —3) = ke = 4,

G(e,e_l, ele — 2) = 5,

L G(n, ey 1) = ke — 6.

So, when k. > 6, no gaps are greater then k. — 1 in the Ry-domain. It can be verified
that there are also no gaps G > k. — 1 exist in the corresponding [£Ps in either the ;- or
the RZo-domains. In the case k. = 4 ({ = 0), it can also be proven that for some £ Ps there
are no gaps G > k. — 1 exist in the Rg-, R;- and Ry-domains.

This completes the proof of Theorem 2.5.
Q. E. D.

Fact 2.2: The following (n, ke, t.) codes are not 3-step PD:
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This is because there are several error patterns in these codes which do not have any
gaps of length G > k, in either the R,-, R1-, and R;-domains.

So, from Theorems 2.4 and 2.5, and Fact 2.2, for the codes with & even which are not
3-step PD we conclude the following:

Result IL: The (n, ke, 2.+ 1) codes with n = (t. — 1)(ke — 1) —2(2/ 4+ 1), for [ 2 &2‘—1

orl> 5‘51, and the following codes are not 3-step PD:

1.1=0, te=86, ke=G6,8, 10, 14,

8St¢:§10a ke:G;

Next, we will present the result for codes with k even which are 3-step PD.

Theorem 2.6 The (n, ke, 2t+1) codes with n = (te —1)(ke—1)-2(2{+1), for ke > 2146,

0<I< 1‘;’—@, are 3-step PD, except for the following cases:

1.1=0, t= 6, k. =6, 8, 10, 14,

43




Proof of Theorem 2.8: This theorem will be established by the principle of contradic
tion. Let us assume that the (n, ke, 2te + 1) codes with n = (t. = D(ke = 1) = 2020 4+ 1)
and k, = 21 + 6, are not 3-step PD. Moreover, let us assume {e,} is an > in Ry-domain
which is not 1-step, 2-step or 3-step PD. With reference to (2.8), for the ditferent types of
patterns v, o in the EPs given in Table 2.2, in the worst case the following refationships

should hold:

IN, + Ny =t. -1,

(2.34)
te + Nogo + Nogy + gc > (te — 1)(ke — 1) = 2(20 + 1).
where g, < (ke - 1)+k=2:g;gW <hke—2;ge <hke-1.
From (2.34), we have
42 L e —
N, < 121 + 1) + 2k, < 6k, — 20 (2.35)

- ke —4 = ke —14
in Ry-domain. Since t. is even, so N, must be odd [9]. Consequently, from (2.35), we get
N, < 7. Thus we have the following four lemmas:

Lemma 2.4 Suppose that N, = 1. Then the corresponding pattcrns in the Ity-domain for

N! =1, 3, 5 or 7, except for the following codes:

1.1=0, t,=6, 6<ke<10,

8<te <10, k.=6;

are 3-step PD.

Lemma 2.5 Suppose that N, = 3. Then the corresponding patterns in the It2-domain for

N! =1, 3, 5 or 7, except for the codes:

1.1=0, t.=6, k =6,8,10, 14,

Bstcsloske=6;
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Table 2.2: Gap lengths associated with o and - type patterns

(with gap lengths < k.) in R,- and R;y-domains

1st odd-value  last even-value

Type of | Number of The type of patterns and The corresponding gap-
Patterns | Patterns gap-lengths in R,;,-domain lengths in R;-domain
<ke-1
ot
) X X o
g Na _<_2ke_'1 gag'k"f_'z"*‘ke—l
o o X
N’
<k.-1
<k.—-2 <k.-2
s, e N
4 X 0
¥ N, <2k -3 Gy S ke — 2
X 0 X
A
<ke—-2 <Lke-2
1 X o] gc S ke - 2

(central-gap)

Note: The central gap is referred to as the gap in the Ri-domain, which corresponds

to the first odd- and the last even- error positions in the R;;j-domain.
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are 3-step PD.

Lemma 2.6 Suppose that N, = 5. Then the corresponding patterns m the Ry-domam for

N! =1, 3, 5 or 7, ezcept for the codes:
L1=0, t,=10, k. =6;
21=1, t.=10, 8Lk, <10;
3. 1=2, t,=12, k =10;
Ll=3, to=12, k=12

are 3-step PD.

Lemma 2.7 Suppose that N, = 7. Then the corresponding patterns in the 1ty-domain for

N!. =1, 3,50r 7 cre 3-step PD.

Proof of Lemma 2.4: We prove this lemma using the principle of contradiction. The
proof of the iemma will be divided into the following four cases:

Case 2.4.1, for N} = 1:

In this case, there should be a number z, of gaps of lengths (k. —~ 2~ 2j) for j > 1. In
the worst case (when j = 1), consider the EP in Figure 2.24 (All the £2Ps used here make

the E Ps have longest spans.), the relationship:
(2ke ~3)+ (ke =2) + (ke —4) +(te —4—2z)(ke=2)+ (L. - 2) =7 (2.36)

should exist in the R;-domain, where z is the number of gaps of length (k. — 4). From
(2.36), we have:

=241
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oO---- R1 - domain

0 ---- Rz—domain

5‘“‘:'5

Figure 2.24: A sketch representing the case N, = 1 and N! =1 in the worst case.

<2k, -1
\.

3
o O R, - domain

O<—-——0\

x O x X o Rz—domain

Figure 2.25: The case t, = 6.

Thercfore, in the worst case, the code length n, as shown in Figure 2.24, should satisfy:

(1ke = 5) + 2 3 1(ke = 4) + (te =5 = [5 1) (ke = 2) + (te —4) 2 m (2.37)
in Rp-domain for t, > 10. By substituting for 2[£] = 2/ + 2 in (2.36), we have
(te = V)(ke—1)-2(20+2) 2 n

which is a contradiction with respect to the assumptions of Theorem 2.6. For ¢, < 8,

consider the following cases:

Option 2.4.1.1, The case t. = 6:

In the worst case, the code length n, as shown in Figure 2.25, should satisfy:

4k -12mn (2.38)

in the Ry-domain. Equation (2.38) contradict the assumptions of Theorem 2.6 except for
the code (23, 6, 13).
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Figure 2.26: The case t. = 8.

Option 2.4.1.2, The case {, = 8:

In the worst case, the code length n, as shown in Figure 2.26, should satisfy:

(4ke = 1) + (2kc = )+ (t. = 6) 2 n (2.39)

in the Re-domain. Equation (2.39) again is a contradiction, except for the codes (33, 6,
17), (43, 8, 17), (57, 10, 17). So except the codes (23, 6, 13), (33, 6, 17), (43, 8, 17), (57,
10, 17), the Case 2.4.1 is three-step PD.

Case 2.4.2, for N, = 3:

We divide this case into two parts: Case A, k. = 41; Case B, k. = 41+ 2.

Case A:, For k., = 4i:

Similar to the Case 2.4.1, in the worst case (when j = 1), and considering the I/ in

Figure 2.27, the following relationship

d(ke = 2) + (ke — 4) + (2ks — 3) + T(ke = 4) + (te — T — 9) (ke — 2) + (te —2) =7 (2.40)

should exist in Rj-domain. From Equation (2.40), we have:

22 + 1) - k.
2
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R | domain

R 5~ domain

< 2k 2 < 2k -3

Figure 2.27: A sketch representing the case N, = 1 and N! = 3 in the worst case.

If k, > 4l + 4, z is negative. This is impossible. When k. < 41,z > 1 is an odd number.

For the corresponding EP in the Rp-domain, the total code length n, should satisfy:
(2ke — 2) + 3(2k, — 3) + 2{%1(1% —4)+ (te - 10 - 2[%1)(1% )4 (te—8) >0 (241)

By substituting

in (2.41), we get
(te — D(ke=1)=2(2[+2)2n

which is a contradiction.
Case B:, For ke =41+ 2:
Similar to the Case A, consider the EP in Figure 2.28, we get

x=2(21+21)_k*+1

in the Ry-domain. If k. > 4l + 2, z is negative. When k. < 4l + 2, we have z > 1 is
an odd number. So in the Ry-domain, we have the same relation as Equation (2.41). By
substituting
2|.§.| _ 2(2l+21) -k, 492
in (2.41), we get:
(te = 1)(ke=1)=-2(204+3) 2 n
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R | domain

R, = domain

< 2k -2 < 2k -3

Figure 2.28: A sketch representing the case N, = 1 and N, =3 in the worst case.

< k2
~ 1N
A (1\0 (A\O R, - domain

x O X x O R2—domain

Figure 2.29: The case l. = 6.

which again is a contradiction. Note that Figure 2.27 and 2.28 only exist for 1. > 12, s0
we should consider the cases ¢, = 6, 8, 10, separately.

Option 2.4.2.1, The case t, = 6:

In the worst case, the code length n, as shown in Figure 2.29, should satisfy:

ke -2
2

3( Y+ (ke = 1) + 2(ke — 2) + 6 2 n,

or
ke < 10.

in the R;-domain. Which is a contradiction when k. > 12.
Option 2.4.2.2, The case t, = 8:

In the worst case, the code length n, as shown in Figure 2.30, should satisfy:

50




0 O x x O o x © Rz—domain
A A
vV \v4
< 4k, -1 <2k, -4
Figure 2.30: The case ¢, = 8.
<2kc—3
)
o x O o x O © X x ©O Rz—domain
{ « ) N ~ AV)
54kc-5 52kc—3 skc—2

Figure 2.31: The case t. = 10.

(4ke"'1)+(2ke"4)+22n

This is a contradiction for k. > 12.

Option 2.4.2.3, The case t. = 10:

In the worst case, the relation as shown in Figure 2.31 should exist. We consider this
option with k. = 4i and k. = 47 + 2 separately. Suppose k. = 4i, then according to

Figure 2.31, the code length n should satisfy:

(k, — 5) + (ke — 3) + (2ke = 3)+ (ke —2) + (te —6) > n
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o - en - -
R| - domain

Figure 2.32: A sketch representing the case Ny = 1 and N/ = 5 in the worst case.

in the Ry-domain. It is a contradiction. When k. = 47 + 2, then according to Figure 2.31,

the code lenght n should satisfy:
(dke=5) + (ke = 1)+ (2ke = 3) + (br = 2)+ (1, —6) 2 n

in the Ry-domain. Again it is a contradiction.

Case 2.4.3, For N] = 5:

In the worst case, the code length n, as shown in Figure 2.32, should satisly:

(4ke — 5) + 2(ke — 1) + 2(2ke — 3) + (te — 13) (ke - 2) + (t. — 8) > n, (2.42)

or
ke <2042 (2.43)

in the R,-domain, which is a contradiction with respect to the assumption k. > 2[4 6.

Note that (2.42) and (2.43) are satisfied only for t, > 14, so we continue to consider the

cases of t, < 12.
Option 2.4.3.1, The case t. = 10:

In the worst case, the code length =, as shown in Figure 2.33, should satisfy:

k, —
(4ke = 1) + (2k, = 3) + (ke = 1) + 2 2

+(te—6)2n
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R 1= domain

R2 — domain

Figure 2.33: The case t. = 10.

o} 0 0 (o] (o] Rl — domain

0O O x O Rz—domain

o X
N N D B

Figure 2.34: The case {, = 12.

or

ke 645 (2.44)

in the Ro-domain. As t, = 10, then | < 2. So except for the cases: [ =0, ke = 6; [ =1,
k. = 8; | = 2, k. = 10; the (2.44) is a contrediction with respect to the assumption that
ke > 20 +6.

Option 2.4.3.2, The case t, = 12:

In the worst case, the code length n, as shown in Figure 2.34, should satisfy:

3(2k, —3) 4+ 2(ke — 1) + ke =2+ (te —6) > 1
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0 (o] O ~=w=-= 0 (o] 0 R |- domain

x O O x O x O x O x O x O —=--- Rz—domain
)

< 10k, -3

Figure 2.35: A sketch representing the case N, =3 and N. =1 in the worst case.

or

ke <2042

in the R,-domain, which is a contradiction with the assumption that & — ¢ > 21 4 6.
Case 2.4.4, for N, =T:
This part of the proof is very similar to those of Cases 2.4.1, 2.4.2 and 2.4.3, and will
be omitted.

So these cases together complete the proof of Lemma 2.4.

Proof of Lemma 2.5: This Lemma will be established through contradiction. Similar
to the proof of Lemma 2.4, we consider the following four cases.

Case 2.5.1, for N = 1:

In this case, let us assume that there exist an I'P such that N, = 3 and N} =1 which
is not 3-step PD. Therefore, for such an E P, in the worst case, the code length n, as shown

in Figure 2.35, should satisfy:
(10ke — 5) + (te — 13)(ke — 2) + (te —12) 2 n

or

ke <2l+4 (2.45)
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<2k, -1
S\
( N )
o (o o o Rl —~ domain
o x O o X X R2~domain

Figure 2.36: The case t. = 6.

<2k -1
[
l« (\____A___\
N\
{ h] )
(‘) o ;\ o 0 x © Rl-domam
o x O x ©O © x O Rz-—domain
A, A
N
< 4k -1 <2k -4

Figure 2.37: The case t. = 8.

in the Ry-domain for t, > 14. The condition of Equation (2.45) is a contradiction with
respect to the assumptions of Theorem 2.6. For the cases of £, < 12, we consider as follows:
Option 2.5.1.1 The case ¢, = 6:

In the worst case, the code length n, as shown in Figure 2.36, should satisfy:
4k, -12n
or
ke <4l+6=6

So, except for the code (23, 6, 13), it is a contradiction with respect to the assumption
that k. > 2146 =06.
Option 2.5.1.2, The case t. = 8:

In the worst case, the code length n, as shown in Figure 2.37, should satisfy:
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( 3
c[ 0O O (¢] ) RI - domain
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A4 Vv
< X < 4ke—5

Figure 2.38: The case t, = 10.

(2k, — 4) + (dke - 1) + 22> 0 (2.46)

or

ke < 4l+6

in the Ry-domain. With t, = 8, and according to the assumption of Theorem 2.6, I = 1.
Except for the codes (33, 6, 17), (43, 8, 17) and (57, 10, 17), the condition of (2.46)1s a
contradiction with the assumptio. that k. > 2/ + 6.

Option 2.5.1.3, The case t. = 10:

In the worst case, the code length n, as shown in Figure 2.38, should satisfy:

3k, — 4 -2(2 +1) < 84 2(2 + 1),
ke < 4+ 22D,

(2.47)

With t. = 10, according to the assumption of Theorem 2.6, [ < 2. Except the codes (57,
8, 21) and (71, 10, 21), the condition of Equation (2.47) is a contradiction with respeet to

the assumption of k., > 2! + 6.
Option 2.5.1.4, The case t, = 12:

In the worst case, the code length n, as shown in Figure 2.39, should satisfy:

(4ke — 5) + (2ke — 5) + (dke — 1) + 2 ~ (ke — 2) 2 n,
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R |- domain

Rz-domain
o - -
Rl - domain
o - = .
R2—domain

Figure 2.40: A sketch representing the case N, = 3 and N, =3 in the worst case.

or

ke <2042

which is a contradiction.
Case 2.5.2, For N/ = 3:

In the worst case, the code length n, as shown in Figure 2.40, should satisfy:

3(2ke — 3) + (te — 9) (ke — 2) + (te — 6) > n, (2.48)

or

ke <2042
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< ¢t
~ 3y N v
A O
o o(/\ o 0 o or/\\ (-/\O o(A\ R, - domain
0O x x O O «x 0O x x O © L R, - domain
a b

Figure 2.41: The case t. = G: a: k, =41 b ke = i + 2.

for t. > 12 in the Ra-domain. The condition of (2.48) is a contradiction with respect. to

the assumption of Theorem 2.6.

For the case ¢, < 10, we consider the following options.
Option 2.5.2.1, The case ¢, = 6:
We consider this option by two parts: k. = 47 and ke = 4i 4+ 2. When k. = 44, in the

worst case, the code length of n, as shown in Figure 2.41, should satisfy:

-
[

3(ke — 1) +3( )46 > n,

or

ke <8

in Rj-domain. So, when k. > 12, it is a contradiction.
When k. = 4i + 2, in the worst case, the code length of n, as shown in Figure 2.41,

should satisfy:
ke —2

2(ke_l)+3( )+62n$

or

ke < 10+4(20+1) (2.19)

in R;-domain. So, except for the codes (23, 6, 13), (43, 10, 13) and (63, 14, 13), condition

of Equation (2.49) is a contradiction (Note that [ =0, as t. = 6).
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0 © O O© (o] Rl—domain

o O x x O © x O R, — domain
) \ J L
4
<2k -1 < 2k -3
€ ¢

Figure 2.42: The case t. = 8: a: k. = 4t b: ke = 41+ 2.

O 0 3 o) o] (0] o Rl—domain
o x O O x O O x O R, — domain
—A A A A
\ * / Ske"2
s2ke—3

Figure 2.43: The case t, = 10.

Option 2.5.2.2, The case t, = 8:

In the worst case, the code length n, as shown in Figure 2.42, should satisfy:

(2, — 1) + (2ke — 3) + (ke = 1) + (k. —2) + (te — 4) 2 n,
or
k. <4+2(20+1) (2.50)

in R,-domain. As t, = 8, so [ < 1. Except for the codes (33, 6, 17), (43, 8, 17) and
(57, 10, 17), the condition of Equation (2.50) is a contradiction with the assumption that
ke > 214+ 6.

Option 2.5.2.3, The case ¢, = 10:

In the worst case, the code length n, as shown in Figure 2.43, should satisfy:

3(2k. -3)+ (ke — 2) + (te — 6) 2 m,
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R domain

0 x 0O x 0 0 x 0 0 x 0 O x x O=-==--
N “~ A — A “ A y y R, -~ domain
<2k, -3
Figure 2.44: A sketch representing the case N, = 3 and N; =5 in the worst case.
or

ke <2042

in Re-domain, which is a contradiction with respect to the assumption k. > 20 4 6.
Case 2.5.3, For N, = 5:

In the worst case, the code length n, as shown in Figure 2.44, should satisfy:
5(2ke ~ 3) + (te — 14) (ke — 2) + (tc — 10) > n,

or
Al + 1)

k3 < 3

for t, > 16 in R,-domain, which is a contradiction with respect to the assumptior of
ke > 21+ 6.
For the cases of t. < 14, we consider as follows:

Option 2.5.3.1, The case t. = 10:

In the worst case, the code length n, as shown in Figure 2.45, should satisfy:

2((2(2ke = 1)+ (ke = 1)+ 2)+ 1) =1 -z > n,
z+2(2ke—3)+ (ke —1) +4 2 n

in Ry-domain. That is:

4k, — 6 - 2(2+1) < z < ke + 84 2(20 4 1), (2.52)
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or

As t,

<k -1

3

s2k -1 <2k
A
Y \ a ,
ol (o] o C|> RI - domain
0O x x O © x x O © X R, - domain
< X szke—S 52ke—3
Figure 2.45: The case t. = 10.
o o o o 0 R, - domain

x O R, - domain

A A A A A

T/

_ e
<k -1 52kc3

Figure 2.46: The case t, = 12.

k< 14+4(321+1).

10, so | < 2. Except for the codes (43, 6, 21), (57, 8, 21) and (71, 10, 21),

Equation (2.52) is a contradiction with respect to the assumption of k. > 2! + 6.

Option 2.5.3.2, The case t, = 12:

In the worst case, the code length n, as shown in Figure 2.46, should satisfy:

or

3(2k. — 3) +2(ke — 1) + (ke —2) + 6 > n,

ke <2042

in Ry-domain. Which is a contradiction with the assumption of k. > 2[4 6.
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<k, -1 <2k, -3

Figure 2.47: The case t, = 14.

Option 2.5.3.3, The case ¢, = 14:

In the worst case, the code length n, as shown in Figure 247, should satisfy:
3(2ke - 3) + 2(ke - 1) + 3(k¢' -2)+ (te - 6) > n,

or

ko < 20 +2

in Ry-domain, which is a contradiction with respect to the assumption of k. > 2! 4 6.
Case 2.5.4, For N, =T:
This part of proof is very similar to these of cases 2.5.1, 2.5.2 and 2.5.3, and will be
omitted.

Therefore, Cases 2.5.1,2.5.2, 2.5.3 and 2.5.4 together complete the proof of Lemma 2.5,

Proof of Lemma 2.6: This Lemma will be established through contradiction. Similar
to the proof of Lemma 2.5, we consider the following four cases:

Case 2.6.1, For N, = 1:

In this case, let us assume that there exist an EP such that N, = 5 and N, = 1 which
is not 3-step PD. Therefore, for such an EP, in the worst case, the code length n, as shown

in Figure 2.48, should satisfy:

(4k, - 5) + 2(dk. — 1) +2(2k. — 1) + (t. — 21) (ke ~ 2) + (te — 16) 2 n,
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R2 - domain

54kc—5 5“{’ 54ke-1 sch-l

Figure 2.48: A sketch responding the case N, =5and N, =1in the worst case.

O x O x x ©O X O R
4

o ¥ ) ~ domain
/

~—
< 4ke—1

Figure 2.49: The case t, = 10.

or
241

ke < =~

for t. > 22in Ry-domain.
For the cases of te < 20, we consider as follows:
Option 2.6.1.1, The case t. = 10:

In the worst case, the code length n, as shown in Figure 2.49,should satisfy:
(4ke — 1) +3(ke - 2) + (te—6) = n,

or

ke <21+ 4

in Ry-domain. Which is a contradiction with the assumption that k. > 2[4 6.
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o] Rl - domain
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< 2k o 1 < 4k . 1
Figure 2.50: The case t. = 12.
52kc—3 szke—B sZke—l
N\ 7\ /N
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-V k\/‘* Vv *W_L N ) R

< 4k -5 <k -1 < 4k -5 < 2k -1 <4k -

Figure 2.51: A sketch representing the case N, = 5 and V] = J in the worst case.

Option 2.6.1.2, The caset, = 12:

In the worst case, the code length of n, as shown in Figure 2.50, should satisfy:
(ke — 1)+ (2ke — 1)+ 3(ke = 2) +(t. — 7) 2 1,

or
ke <2044

which again is a contradiction with the assumption of k, > 2/ + 6. In the similar way, we

can have the result that when 14 < t, < 20, the error pattern also make contradiction with

respect to the assumption in the worst case.

Case 2.6.2, For N, = 3:

In the worst case, the code length n, as shown in Figure 2.51, should satisfy:
2(4k, - 5) + (4ke — 1) + (2ke — 1) + (ke — 1) + (te = 19) (ke — 2) + (L. — 14) > n,
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Figure 2.52: The case t, = 10.

or

for t, > 20 in Ra-domain, which is a contradiction with the assumption of k. > 2/ + 4.
FFor the cases of t, < 18, we consider as follows:
Option 2.6.2.1 The case t, = 10:

In the worst case, the code length of n, as shown in Figure 2.52, should satisfy:
(4ke=1) 4+ (2ke — 1) + (ke — 2) +3 2 n,
or
ke <4421

in Rz-domain, which is a contradiction with respect to the assumption of k. > 2/ 4 6.
Option 2.6.2.2, The caset, = 12:

In the worst case, the code length of n, as shown in Figure 2.53, should satisfy:
2(4ke - 1) -1+ (ke - 2) + (te - 10) 2 n,
or
ke <2044

in Ryo-domain, which is a contradiction.
In the same way, we can have the result that when 14 <t, < 18, the error pattern also

make contradiction with the assumption in the worst case.
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Figure 2.54: A sketch representing the case N, = 5 and N, = 5 in the worst. case.

Case 2.6.3, for N. =5:

In the worst case, the code length n, as shown in Iigure 2.54, should satisfy:

3(dke — 5) +2(ke — 2) + (te — 17) (ke — 2) + (te — 12) 2 n,

or

ke <2042
for t, < 18in Rz-domain, which is a contradiction with the assumption of k. > 2! + 6. For

the cases of t, < 16, we consider as follows:
Option 2.6.3.1, The case t, = 10:
In the worst case, the code length for n, as shown in Figure 2.55, should satisfy:

ke —2

5—) +5(ke ~ 1) +10 2 n,

5(
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Figure 2.55: The case t, = 10.
ske—l ske—l ske-z
o X x O O X x O © X x O R, - domain
<2ke-l 52ke—1 52ke-1

or

(2.53)

As t. = 10, so according to the assumption of Theorem 2.6, [ < 2. Therefore, except for
the codes (43, 6, 21), (75, 10, 21), Equation (2.53) is a contradiction with respect to the
assumption of k., > 2/ + 6.

Option 2.6.3.2, The caset, = 12:

In the worst case, the code length n, as shown in Figure 2.56, should satisfy:

3(2k, — 1) + 2(ke = 1) + (ke — 2) + (te — 6) 2 n,

or

ke < 6421 (2.54)

in the Ry-domain. For ¢, = 12, according to the assumption of Theorem 2.6, ! < 3. So,
except for the codes (53, 6, 25), (71, 8, 25), (89, 10, 25) and (107, 12, 25), (2.54) is a

contradiction with respect to the assumption that k. > 6 + 2/. A computer was used to
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search for the error pattern of the codes (53, 6, 25) and (71, 8, 25), with the result that no
EPs exist in these two codes. So the codes (53, 6, 25) and (71, 8, 25) are also 3-step ’D.

Case 2.8.4, for N, = T:

This part of the proof is very similar to those of cases 2.6.1, 2.6.2 and 2.6.3, and are
omitted here.

Cases 2.6.1, 2.6.2, 2.6.3 and 2.6.4 together complete the proof of Lemma 2.6.

In a same way, Lemma 2.7 can be proven.

Lemmas 2.4, 2.5, 2.6 and 2.7 together completes the proof of Theorem 2.6.

Q. k. D.

Based on the results obtained above, we give tables 2.3 and 2.1, for the specific numbers
of correctable errors t. = 6 and t, = 10, as illustrative examples. These tables show the
tight lower bounds on code length n, for a given information length £, for I-, 2- and 3-step

PD codes.

2.4 Conclusions

In this chapter, we have developed tight lower bounds on the code length n, or equivalently
the upper bounds on the code rate % The results are for 3-step PD codes with even valued
te. We present the main results as follows:

RESULT 1: The (n, ko, 2t + 1) codes with n = (t, — 1)k, — 2(20 + 1), for | = =54,
orl= @05‘—1, and the code (53, 7, 21), are not 3-step PD.

RESULT 2: The (n, k,, 2L, + 1) codes with n = (t, — 1)k, — 2(20+ 1), for k, > 214+ 3,
0<I<L 1‘;—6, except for the code (53, 7, 21), are 3-step PD.

RESULT 3: The (n, ke, 2t.+1) codes with n = (t,—1)(ke—1)~2(20+1), for [ = =4,

orl= 5—‘2‘—“, and the following codes:

1.1l=0, t.=6, k.=6,8, 10, 14,

8<t. <10, ke=6;
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Table 2.3: Tight lower bounds on the code length n for t, = 6

k I-step PD codes 2-step PD codes | 3-step PD codes
— 2 13 11 11
3 19 17 13
4 25 19 17
5 31 27 23
6 37 29 29
7 43 37 33
8 49 39 37
9 55 47 43
10 61 49 47
11 67 57 53
12 73 59 53
13 79 67 63
14 85 69 67
15 91 VT 73
16 97 79 73
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Table 2.4: Tight lower bounds on the code length n for t, = 10

k 1-step PD codes 2-step PD codes | 3-step PPD codes
2 21 17 17 |
3 31 29 25

4 41 31 29

5 51 47 39

6 61 49 47

7 71 65 o7

3 81 67 61

9 91 83 71

10 101 85 79

11 111 101 89

12 121 103 89

13 131 119 107

14 141 121 107

15 151 137 125

16 161 139 125
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2.01=1, 8<t, <10, B<k. L1

3.0=2, t.=12, k. =10

are not 3-step PD.
RESULT 4: The (n, ke, 2te + 1) codes with n = (t. — 1){ke - 1) — 2(2] + 1), for

k. > 20 46,0 < =58 are 3-step PD. Exceplions are:

1.1=0, t.=6, ke=6,8, 10, 14,

4 1=3, le=12, k=12

The above resuits provide the following two bound improvements:

BOUND 1: The lower bounds on n for the (n, k,, 2t + 1) codes have been improved
by as much as 2(2/ 4 2), where | = min{%;l; h";‘"—é}, compare to 2-step permutation
(Theorem 2 of [33]).

BOUND 2: The lower bounds on n for the (n, k., 2t. + 1) codes have been improved
by as much as 2(2! + 3), where | = min{%ﬁ; —’Eﬂf-g}, compare to the 2-step permutation
(Theorem 3 of [33]).

Note that the bound improvements in both bounds: 2(2/+2) = min{2(¢.-4); 2(k,—1)}
in Bound 1 and 2(2/+ 3) = min{2(t. — 3); 2(k. —3)} in Bound 2 are proportional to k, or
k. and .. From the above mentioned results, it can be concluded that when ¢, > k. (or
ko), the codes (n, ko, 2te + 1) are improved more than the codes (n, ke, 2t. + 1).

Further note that the improvement of 2-step PD with respect to 1-step PD is propor-
tional to k or t [33], and this is also true in the improvement for 3-step PD with respect to
2-step PD. These results show that error-trapping decoding can be applied to higher rate

cyclic codes.
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Chapter 3

CAPABILITY OF
MULTIPLE-STEP (T, U)
PERMUTATION DECODING OF
CYCLIC CODES

3.1 Introduction

The exact lower bounds on the performance of s-step permutation decodable cyclic codes
with s < 3 were derived in [33, 35]. One can expect that a specific cyclic code is more likely
to be permutation-decodable by increasing s. However, the general relationship between
the required number of permutations s and the code parameters n, k and t of permutation
decodable (PD) cyclic codes is unknown.

In this chapter, we examine a lower bound on the code length n for a given set of k,
t and s, where t is odd. Then, the turn-point parameter k™ is introduced and a general
relationship between s and the code parameters n, k and ¢ of permutation-decodable cyclic
codes is established. An optimum permutation step which provides the largest improvement

in code rates of PD codes is also defined. Based on these results, we will show how the
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code rate of a (T, ) permutation decodable cyclic code increases when the permutation
step increases.

This chapter is organized as follows. In Section 3.2, the characteristics of error-free
gaps are discussed. The capability of multiple-step (T, U) permutation decoding is given
in Section 3.3. In Section 3.4, we present a bound on the code rate and a study on the
relationship between the code parameters n, k, ¢ and the number of permutation steps s
required to decode the code. The characteristics of the code rate and some related examples

are given in Section 3.5. Section 3.6 presents the conclusions on the obtained results.

3.2 Characteristics of Error-free Gaps

A permuted error polynomial, U'e(z), containing ¢ errors can be written as
t .
U‘C(.’E) - Zepj(l)mp](i)
i=1
where p; (i) < p2(i) < -+ - < p(i) represent the error positions. The difference
gl =pit1(8) = p, (9)

indicates the length of the error-free gap between two adjacent error positions p, (¢) and
p;j+1(i). The objective of applying (T, U) permutation is obviously to rearrange the error
positions in the permuted error polynomial in such a way that we can obtain at least one
error-free gap length larger than or equal to k. Therefore, it is important to understand
the characteristics of the error-free gaps. For this reason, we will study in this section
the relationship between the error-free gaps in two permuted error polynomials U'e(z)
and Ule(x),1 # L.

Due to the properties of cyclic codes, we can assume that one error position is at
p1(i) = 0 without loss of generality. This even-valued error position remains unchanged
when permutation is applied. In the following analysis, we consider only the 7 pattern with
alternate even-valued and odd-valued error positions as shown in Figure 3.1. It is obvious

that there are other error patterns. However, it was shown in [33] that the v error pattern
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1% even number positions

X odd number positions
Figure 3.1: Error pattern with alternate even-value and odd-value error positions.

results in the worst case in terms of error-free gaps (more about this will be discussed in
Section 3.3).
Let g; be a £ x 1 column vector called the gap-length vector corresponding, to the

permuted error polynomial U'e(z), and defined as

T
gl: [gzl’ g;zv MR ] (],l]

We note that
t
thj =n-1
=1

The following theorems cstablish the relationship between two gap-length vectors g,

and gi.

Theorem 3.1 (RELATION BETWEEN g; and g.) If the error palterus of the per-
muted error polynomials U,e(z) and U,y e(z) are of v type, then their respeelive gap length

vectors g, and g, are related by the following mapping:

8141 = M ‘B

where the t x t matriz M is called the mapping meiriz and has the following structure:

-

M= _ . (3.1)

-1 -1 ... -1 1 1 ... 1

That is, every row in M is the 1gith cyclic shift to the left of the previous row, and the

first row can be viewed as the -‘;—lth cyclic shif! to the left of the last row.
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g g, g}
( —N % N\ N N\ N error pattern of Ule(x)
o o
l o i+1
w A A J error pattern of U e(x)

N N N
1 2 3
gl g 4 g 1+1

Figure 3.2: Gap relations between U'e(z) and Uitle(z) for the case t = 3.

Proof of Theorem 3.1: We will prove Theorem 3.1 by induction.
First, consider the case for ¢ = 3 over GF(2).
By applying another permutation on U'e(z) to obtain Uttle(z), the gap between two

adjacent error positions in U'e(z) is doubled.

9o + 9241 =29,
gia + g = 293 (3.2)
9:‘l+1 +g?+1 = 29:‘2

which can be written in its matrix formn

[ 1 1 -1 -
g+1=| 1 -1 1|8 (3.3)
L -1 1 1 |
It follows that i i
1 1 -1
M=] 1 -1 1/{,
i -1 1 1 ]

which satisfies the properties mentioned in Theorem 3.1.
Now, suppose that the Theorem is true for t = ¢;. We are going to prove that the
Theorem is also true fort = t, + 2.

Figure 3.3 illustrates the relationship of two consecutive error domains with v type error
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t+1 t+3

g g g.2 8,2 g
N e e o :
o x O=-——==- % o g — = o error patternof U ¢(x)
i+l
o X o  x O —==---=-===-- X o error pattern of U ¢(x)
1 2 3 4 el
Biet Bt Bin Bin Birt  Bis

Figure 3.3: Gap relations between U'e(x) and U'*'e(x) for the case f = 1.

patterns for t = ¢, i.e.,

O+ 05 = 29
] 3 _ : 2 :
G H 0 = 24,
3 4 2
g1ty =2
) i+1 141 ! (3.‘1)
te—1 te te
g toin = 2
" + ¢ _ .:;;1
| Jiv1 T iy T 4G

Equation (3.4) can also be represented in a matrix form:

gi+1 = Mg,
where } .
1 1 P -1 -1 -1
1 -1 -1 1 1 1

-1 -1 ... -1 1 1 ... 1| t.xt

Now, consider the case t = t. + 2, where there are 2 additional errors inserted into the
error pattern shown in Figure 3.3. Since the error patterns of U'e(z) and U't'e(z) are of
the y-type, the two additional errors should be inserted into U'e(z) with one before % and

the other after 2. These two errors will be mapped onto two adjacent positions in Uttle(z).
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Therefore, for the case t = t.+2, the gap relationship between two consecutive domains

becomes: )
gy + 9 = 2
) 3 tets
g1 + 9n = 247
3 4 2
) i+1 . 141 1 (35)
te+1 42 te+2
!},'++1 + g,'+"1' = 2¢; +
tet3
te+2  _
{ gyt o5 = 2,7

For the first (t; + 1) rows of (3.5), if we add all the rows with odd sequential number then

subtract all the rows with even sequential number, we get:

t 5 t 7 t 1
3 teds tet? Y
g -t =20 -9 +9}-9,7 +-- 49, -9 (3.6)

Now, we add (3.6) to the last row of (3.5) and after some manipulation, we get:
tetd ted5

=g ttg? — (g, +4gi?) (3.7)

On the other hand, (3.5) can be converted into the following closed form relations:

1 )
1 .
g;’:‘l = 2gl * - g{+1 J=1,3,, t;
£r..‘iﬁ+.L .
93:11 = 29,% *-gl, J=2,4, -t 13 (3.8)
43
gist? = 26,7 —gh

The above equation indicates that, for the case odd j =1, 3, .-+, ¢,

2t

+1
ng+1 = 2¢;° - .‘]f+1
211
= 2¢;° -m;g;
= Mmjngi
where my, my, ..., m, represent the ¢t rows of matrix M. That is to say, if we first change

the signs of the j-th row of M, then change the sign of the J'Jzith element of it from -1
to +1, we get the (5 + 1)-th row of M (later we will show that the ﬁz'—’th element of m; is
—1). Equation (3.7) is the case j =1, i.e.,

Jip1 = MG
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where

my={11...1-1-1

s\

te$d 4
2 2

Now, for the case even j = 2,4, .-+, {.+ 1,

: L3
+1 +1
Q.J+1 = 2g,° ‘gf+1
bflg
= 2¢, - m,;g,
= m418. (3.10)

Therefore, if we first change the signs of the j-th row of M, then change the sign o 0
(tF3 + £)-th element of it from —1 to 41, we get the (j + 1)-th row of M (latey we - 1l

show that the ({f2 + 2)-th element of m, is —1). From (3.8}, we have:

gk = 29/ -9l
_ 1
= 29, —mg,

= =1 —-1..-111... Ug

tet) tetl
2 2

= mag;. (3.11)

From (3.9) and (3.11) we can see that mg is the {tth cyclic shift to the left of m;.

Similarly, from (3.10) and j = 2, we have:

o5

!]?+1 = 29, ? - gi2+1
tets
= 2¢;* —myg

= [-111... 1-1—-1..-1

RN

if-,‘:,ﬁ Lni——l

= mag,. (3.12)

Therefore, mj is the lﬂg—lth cyclic shift to the left of mj,. The difference between m; and
ms is that mga is the (¢, + 1)-th cyclic shift of m, to the left, which is also equivalent. to
cyclic shift of m; once to the right. A similar relation also exists between mz and my.

In general, suppose the relation between m,_; and m, (when j is odd) is the same as
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S

the relation between m; and mj, then m, takes the form:

-1 -1...-1 1

R

L1 —1-1...-1] (3.13)

te—1+2
2

~E4:*‘

L':l
2
and
gaj+1 = m;g;. (3.14)
From (3.8), we have

241 .
J+1 J
g = 29;% -9

= 2¢;,° -m;g;, (3.15)

and

. tcia lil
+2 7+ 1+1
941 = 29 2 -0

g o
i -2, +m;g,

= m'g;+ m'gi+ m;jg,

= (m'+m" +m;)g; (3.16)
where n.' is a vector with the (!“2ﬂ + -‘L';l)—th element being 42 and other elements being
0, m” is a vector with the j—;ith element being -2 and other elements being 0. From the
definition of the mapping matrix M, we know that

+2
gy = mjpg.

Therefore, by combining (3.16) and the above equation, we obtain

! "
m; 2 =m +m + mj.

Since in (3.13) the (if-}g + j—'.E—')-th element is —1 and the i;-'lth element is 41, m;42 has

the following form:

t-1..-1211..1-1-1_.. -1 (3.17)
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which is again equivalent to cyclic shift of m, once to the right. Note that the L;—'th
element in equation (3.17) is —1 while the Jt—lth element of m, is -+1.

Similarly, we can prove that when j is even, m 42 is also equivalent to a cyclic shift of
m, once to .he right.

From above, we see that when j increases by 2, then m, is shifted to the left (¢ +1)
times which is equivalent to saying that it is shifted to the right only once. lence, my,

should be the {==L1th cyclic shift to the right of my, which is

m,=[z1-1..-1011.. 1-1] (3.18)

and my 4 should be the iﬂg—lth cyclic shift to the right of m;, that is:

mtc+1=[j 1... L:l—l.—L l] (3]9)
tokl tett
2 2
Therefore,
yf'++1] = My 418i
totl
= 2¢;* -mg
tetl
= 2¢g;% -gi%, (3.20)

As for gi<t?, it can be shown that

meqz=[-1 -1..-1 11... 1] (3.21)
tetl tetd
2 2
and
gist? = my g8

= 2¢¢? - my g
= 2g;t? - g{st! (3.22)

(3.20) and (3.22) are in agreement with (3.8). This completes the proof of Theorem 4.1.

Q. E. D.
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Corollary 3.2.1 (STRUCTURE OF THE ROWS OF M) The j-th row of M has

the following form:

= S gt
~-1 -1 -1T11...1=-1-1...-1 (3.23)
if J is odd, and
2 =1 t=gl
Z Y 7
T1...1%1-1...-111..1 (3.24)
if j is even.
Corollary 3.2.2 (STRUCTURE OF THE COLUMNS OF M) (a) The first

column of M has the following structure:
(1) Its first element is 1;
(i1) The values of its remaining elements alternate between 1 and —1.

(b) Forl = 2, 3, ..., t, the I-th column is the second cyclic shift to the bottom of the
(I — 1)-th column. It follows that the first column is also the second cyclic shift to the

bottom of the last column.

Proof of Corollary 3.2.2: Consider the first column of M. (3.23) and (3.24) indicate
that the first element has value —1 when the number of the row is odd, except the first row;
and the first clement has the value 1 when the number of the row is even. This is because
there are 5! —1sin a row, and when 3 < j < ¢, the —1 part at the beginning of the row

always exists (since 1 < -Lg-l < %) Therefore, the first column of M is of the form:
l1-11-11...-11-1" (3.25)

One important point to note is the relationship between j-th row and (j + 1)-th row.
When j is odd, all the elements of the (j + 1)-th row are of the opposite sign of the j-th
row, except the (j';—l)-th element (which is 1 in both rows). Since j < t, so -7—';—‘ < dl
That is to say, the (iiz'—l-)-th element is located in the left part of M. It is easy to verify

that a similar relation exists when j is even, but with the (ﬁ'-;i'-l)-th element having the
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same sign + in both rows and this (ji'%*—l)-th element can only be located in the right part
of M.

Suppose 7 is the sequential number of a column. When
1+1
< —_——

ST

]

from the above discussion, we know that the column has the form:

_ _ - _ 1T 0
l-11..1-11, 1 -11..-11-=1 (3.26)
2r—1 2r

This is because the (j—;f—l-)-th element of the j-th and (j + 1)-th rows are both +1 (where j
is the odd sequential number of rows), and this (-Ui'—l)-th element is located in the left part

of M. From
L%lzr
we get:

j=2r-1.

That is, two adjacent +1 s appear at the positions of (2r — 1) and (2r) in the 7-th column.
So the r-th column is the second cyclic shift to the bottom of the (r — 1)-th column.
For the case r = 41 and

j=1 t+1

2 2’
according to (3.23), the (%)-th elements of the odd rows always have the value +1.
Similarly, because
j4+1 t+1

5 <72

for j < (t — 1), from (3.24), the (141)-th elements of the even rows always have the value

—1. Therefore, the (1£!)-th column has the form
M -11...-11-11

which is also the second cyclic shift to the bottom of the (£5%)-th column.

Similarly, when
t+1

r>-——2—,
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the column has the form:

~~ "
(11 =1 ...1 =1 1L "1 =1 = . (3.27)
2r—t—1

This is because the (J—%Ll)-th element of the j-th rows are both +1 (where jis the even

sequential number of rows), and this (L*;;il—)mh element is located in the right part of M.

From
el
5 =
we have:
j=2r—t -1

That is, two adjacent +1s appear at the positions of (2r —f—1) and (2r) in the r-th column.
So the r-th column is the second cyclic shift to the bottom of the (r - 1)-th column.

For the last column, since r = ¢, it has the form
11 -1 ...1 =11 1"

From this form, we can see that the first column is the second cyclic shift to the bottom of

the last column.

Q. E. D.

Thenrem 3.2 (RELATION BETWEEN g, and g,4,) If the error patterns of U'e(x)
and Uit e(z) are of y-type, then their corresponding gap length veclors g, and gy, arc

related by the following mapping
8i+u = M - g;

where the matriz M" is defined as

M*=MxMx...xM,

u

and has the following properties:

1. The sum of all the elements in a row of M* is I;
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2. All elements in M* have only two integral values: a® and =™, where a®® >

0, b > 0;
3. al®) 4 plv) = 2u.,

4. BEvery row in M" is the nﬁu)-th cyclic shift to the left of the previous row, and the
first row can be viewed as the n,()u)th cyclic shift to the left of the last row, where ngu)

is the number of elements with value -b(¥) in a row.

Proof of Theorem 3.2: We prove this theorem by induction.
For M, according to Theorem 3.1, it is shown that these properties are satisfied. Ir

this case, we have

aM =
= 1;

t+1

o= g

1 _ t -1

le —_“2 .

Assuine that for M¥~!, these four properties are satisfied, now we prove that for M*,
all four properties are also satisfied.

Suppose M*~! has the form:

ale=1 PO ) I a(u—l) —pluv—1) _b(u—l) —plu-1)
Mu-—-l=

_b(u-—l) __b(u—l) L _b(u—l) a(u—l) a(u—l) . a(u—l)
t Xt

and the numbers of elements with value a{*~1) and b(*~1) are n&“_l) and b(==1) respectively.

We partition the proof for two cases: even n"™*) and odd n{*~%).
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1
Case 1, even e ).

Since

M = Mu—-l R l\’I,

it follows that

a(u—l) a(u—l) a(u-—l) __b(u—l) _b(u—l) __b(u—l)

~plu=1)  _pfu=-1) _plu-1 alv-1) qle=1) alv=1)

(3.28)

txt

Because the first column of M takes the form of {1 1 -1 ... 1 = 1]7, and each column

of M is the second cyclic shift to the bottom of the previous column, it is easy to verify

that when n{“~" is even, the first row of MY is:

™ a® ... o™ —p) _p@ ) (3.29)
TLE‘) ng‘,:

with
a(u) = 2(1(“_1) + b(u"])

pl) = p(u=1)
(w) _ nfe")
a 2

u u- (u-1)
ng)::ng 1)+—“—n 57—

By adding all the elements in the first row of M", we obtain:

J:
Z my; = ng")a(“) + ngu)b(")
J=1

(u-1) u-l
- Tla (2a(“'1)+b("")) (n (u~1)+ 28 y(=blum1)y

— nc(lu—l)a(u—l) _ ngu—l)b(u—l)

= 1. (3.30)
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where mny, is the j-th element in the first row of M¥. Notice that the two values in M* are

a') and (-b™). Hence,

™ 4600 = (2a+V 4 b1y 4 plu-1)

= 2(alvD 4 ple-1), (3.31)

Because we assumed that

a(u—l) 4+ b(u—l) — 2u—1,

is true, it follows that

o 4 5 = v,

So far Properties 1, 2 and 3 have been proven. Next, we prove that property 4 is also

satisfied.

Suppose m™ is the i-th row in M¥. Since m{*™" is the n,(,u_l)-t.h cyclic shift to the

left of mff?l), mfu_l) is also the n{*~")-th cyclic shift to the right of mf’jl).
From (3.28), we see that
mfu) = mfu-l)M.

If we designate (m,(-f;l))lr_m(u_l) as the n* V_th cyclic shift to the right of mff}l) and

M'z-m‘““’ as the nt(,“_l)-th cyclic shift of the rows to the top of M, we can rewrite the

above equation as:

-1
mfu) = (m(ul ))|r——mf,"_’)M

(u=1) (3.32)

Since cach column of M is the second cyclic shift to the bottom of the previous column, the

effect of cyclic shifting the rows of M to the top n.(lu_l) times is the same as cyclic shifting

. {u=1) | . . (u—1) . .
the columns of M to the right 24— times. That is to say, m*) is the Ba.—_th cyclic shift

to the right of mf’i)l, which is also the (t — Eg"izj)-’ch cyclic shift to the left of mgf)l. Notice

that
n,(,“) = t-n¥
(u—1)
Mg
= t- 7 (3.33)
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(u)

1

Case 2, odd 11.(1"_1):

therefore m, "’ is the nf,")-th cyclic shift to the left of 7”@1- This satisfies the Property .

Similarly, since the first column of M takes the formof {1 1 —1 ... 1 — 1], and each
column of M is the second cyclic shift to the bottom of the previous column, it is casy to

verify that when n((,“"” is odd, the first row of M" is:

a® o ... o™ —pt) ) -] (3.34)

—

'nS;u) n {,")

with
a(u) = a(“_l)

ple) = glu—1) 4 oplu-1)

(u) _t ale=t)
ng = Hta—
(u—1)
(u) _ ny
'n.b = 3 .

By adding all the elements in the first row of M*, we get the sum of it as:

J=t
Yomy; = afMa™ 4+ n{p()
=1

-1

~

(u-1) (u
t+ nq (u—1) ny
= () + (2

— nt(lu—l)a(u—l) _ ngu-l)b(u—l)

)
_)(_u(u-l) — 2b{u=1h

= 1 (3.35)
Notice that the two values in M* are a(*) and (—b(*)), so that
a® 45 = =) 4 (alv=1) 4 b))
= 2(al*=1) 4 p(e-1)), (3.36)

therefore,

a™ 4 p() = o,

So far, we have proven that the Properties 1, 2 and 3 are satisfied. Now we prove that,

Property 4 is also satisfied.

If we designate (mS'j}")],_m(u_,) as the ni“-l)-th cyclic shift to the left of mff;') and
b
M|b_m(.._,) as the nﬁ"'l)-th cyclic shift to the bottom of M, we can rewrite the equation
b

m = m* ) x M
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s

m™ = m*),,

(-1 X M
b

m{*7" x M|, - (3.37)

Since each column of M is the second cyclic shift to the bottom of the previous column,

the effect of cyclic shifting the rows of M to the bottom ngu—l) times is the same as cyclic
(u=1) (u-1)
shifting the columns of M to the left 7”—'17— times. That is to say, mfu) is the 5-2—-4,11

cyclic shift to the left of mfi),. Notice that

ngu) = t—nf,")

niu—l)

= (3.38)

therefore, 11qu) is the ng")-t,h cyclic shift to the left of m;

(’_‘_)1. This satisfies Property 4.

Q. E. D.

3.3 Capability of Multiple-step (T, U) Permutation Decod-

ing of Cyclic Codes

Using the theorems developed in Section 3.2, the capability of multiple-step (T, U) per-

mutation decoding is determined. The results are given in the following theorems.

Theorem 3.3 The (n, k., 2t+1) codes with n = t(ke—2°"14+1)+25"1, ke > t(2°72-1)+1

fJor t=5 and k. 2> 82572 - 1) =272 43 jor t > 7, are s-step PD.

Proof of Theorem 3.3: First, we prove the existence of M*®.

The mean gap size of the error patterns with ¢t errors in a (n, ke, 2t + 1) code is:

n-—1
m =
t
23—1
= k.—-2"1+ ; (3.39)
So that,

s—1

ke—m=2"1 - Z-t—



For t = 5,

ke > 82572 — 1) + 1,
therefore,

ke _ A0t 1
75—(ke—771) > 2f 3(1_.1+?)_§+r

> 0.
When s > 3 and t = 5, from the above equation, we have:

ke
— >k, —m.
) > m

Similarly, for ¢ > 7, since

ke >t(2572-1)=-2"%43,

therefore,

When s > 3 and ¢t > 7, from the above equation, we have:

k
?c > ke —m.

Now, suppose that gp is a gap-length vector of e(z) and

gs—1 =M1 .gg

(3-10)

(3.41)

(3.42)

(3.43)

is the corresponding gap-length vector of U*~'e(z). Theorem 3.2 shows that elements of

gs-1 are linear combinations of the elements in go. We can view it as there are two parts, one

(s-1)

consisting ny ' consecutive positions and the other consisting n,()’_l)

Therefore,

nle—t)

a 2
gly = ) Y gl Y7 g
1=1 (s-1)

Jj=ng

— a(s—l)(ngs—l)m+ A(s—l)) _ b(s—l)(n'(:"l)m - A(a 1))

m+ 23—1A(s-—-1),
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where m is the mean value of the gaps and

7153’—”

AL = 3" gf —nl=tm,
1=1

Note that in (3.44) we used two relations:

nff"”a(s—]) - nf(,s"l)b("") =1,

and

ate) 4 4(8) = 9.

Similarly, gJ_, can be obtained in the same way as (3.44) but with cyclic shifts of the sums

to the left by (j - n{®™") times.

Now, we prove that there is at least one gap of length

g(]s-l) = m+ 271 ALY

> ke (3.45)

When the condition n = t(ke — 2571+ 1) +2°7!, ke > £(2°°2~1)+1 for t =5 and
ke > (2272 -1)—2°"243 for t>7 are satisfied, from (3.41) or (3.43), we have

-IES>ke—m.

2

In other words, there always exists a A=Y, which makes the code decodable but satisfies
m—2"1AG-1 5 0

(note that m > %{-) From the proof of Lemma 4.2 in [33], it is known that M? exists.
According to the previous discussion, the mapping form of M* exists for v > 3. Therefore,
M™* exists for all u.

Next, we prove that when the mapping form of M? exists, if a (ns41, k, 2t + 1) code is

not (s + 1)-step permutation decodable, then the (n}, k, 2t + 1) code with
ny = ngpq +2°7

is not s-step permutation decodable.
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Note that the error patterns take the mapping form of M* from the Ry-domain to the
R,-domain is the most stable pattern. This is because property 1 of Theorem 3.2 caun be
applied. Since all the elements in M have the values +1 and -1, cach element of g, is a
linear combination of the t elements of gs—;. Actually, it equals the sum of (uj—') elements
minus the sum of other (5-;—1) elements of g,_;. Therefore, the elements of g, intend to
duplicate the elements of g,_;. The extreme case is that all the t-gaps in the /2,_-domain
equals to the same average value m, then after cach M mapping, the gaps in the R,-domain
remains the same as gaps in the R;_i-domain. So if m < k, the code with this kind of
pattern is not permutation decodable, no matter how many U permutation steps arc used.
The error pattern that needs the maximum number of steps to decode is the error pattern
which is not decodable in the Rg-domain and is most stable after each U permutation.
That is to say, if a code is not decodable, and the error pattern takes the mapping form of
M from R,_;-domain to R;-domain, then there must be at least one error pattern of this

form which makes the code undecodable.

Now, we divide our proof into two parts:

1. When n$™V is even;

2. When 2™V is odd.
Case 1, even ni®™:

The gap vector in the R,-domain has the form:
gs =M’ -go

where g, and g are the gap vectors in the R, and Ry domains and M* has the form

a®) @) ... el —p) b —ple)
M’ = (3.46)

b —ps) o _pls) qls) g gl®)
txt

Suppose that g} has the largest value (for other gaps in the R,-domain, the analysis is

the same), since it is not decodable in the R,-domain, gl < k..
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Now consider the code (n), k,, 2t + 1) with
n' = ngyy + 2570

Since !, increases 2271t relative to ngyq, the effect is that each gap in the [gs=1] increases

by 2°7! and the mean value becomes
m =m+2°7L

s—1) . -1 -
Because n,(f Vin M1 s even, M3~! has the form:

a5=1) b1 gm0 _pls=1) _ps=1) o _pls=1)
M =
_pls=1) pls=1) o _pls=) =) gls=1) o g(s=1)
txti
(3.47)
with n&™" = 211((13), and n,(,s_l) = "t(;s) _ ),
Suppose the largest gap in [g;_,] is !];(—1}, then g;(_f} can be expressed as:
N C N e B e SN )
== n’ + 28—1A(s-l)
= m+2°7  p207tAl, (3.48)
If

the codes (n}, ke, 2t + 1) is not (s — 1)-step decodable. (3.48) can be rewritten as:
gy - g} = 2070240 - AL~ -),

Therefore, if

2A() — Als=1) _1 > 9, (3.50)

then the code (n}, k., 2t + 1) is not (s — 1)-step permutation decodable.
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Since 2" = 22” and nf, = ng ),
(1) nt) R !
AR als=D [ 2nm 4 [ 1 - =< ) AL = pls=) (n“ - n(“)) m - | 1= 2] AW
s a n( ) b a (=)
b "l'
1 n$?)
= m+27 A, (3.51
O
b
Therefore,
n?
AG=D = - 2] Al (3.52)
n{” )
b
and the (3.50) can be rewritten as
) (s)
( n(‘)) AL > (3.53)
b

Notice that we used the mean value of gaps covered by ns, b but not by n( ) as

)
m = nlhm - ==AM
ny’

in the derivation of (3.51). Actually, we can look at both sides of nt™ positions which is
covered by n( %) and choose the smaller one. But for simplicity, we use mean value instead.
Since

n,((l’) + nés) =1

we rewrite (3.53) as

AW ¢ > (3.54)

(9)
For A(®) > ﬂ‘;—, the condition of (3.50) is always satisfied. Because

)
AL = Z gl = n{m, (3.55)
J=1
we get
n(’) (3)
Al - b Z gl — nldm (3.56)

Now let us look at the case when the above equation has the smallest value. Suppose that
n.(,’) = 1 and with the gap length k. —y, where y is an integer of even value; and ni"’ =t-1

with the gaps take the gap length k. —y and k. — y — 2 alternatively. Note that other
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patterns will result in consecutive gaps with gap length k. — y or k. — y — 2, which makes
AB) have larger value. (3.56) can be rewritten as:

(s)

A")_'—";— = (k—y+2)—"—t—-£—1+%
t=len Hip 2
= heyi2- 20 y)+12( yt )-1+%
= 0 (3.57)

Therefore, (3.54) holds, so does (3.50).

Similarly, Case 2 can proven. The only difference in the proof is that 2n£s) = n,(,’_l) is
used instead of 2n{") = nf,’—l), as in Case 1.

According to Theorem 14 in reference [33], if (n}_,, ko, 2t 4+ 1) is not (s — 1)-step
permutation decodable, then (ng_1, ko, 2t + 1) is not (s — 1)-step permutation decodable.

For s = 3, it has been proven that the result is true [33]. Now suppose for s-steps, the
result is true, but for (s + 1)-steps, it is false.

Since the code with

Ngpr = t(ke — 2° + 1) +2°

are not (s+ 1)-step permutation decodable, according to the previous discussion, the codes

with

ng = n5+1+2’_1(t—1)

= tlke =21+ 1) 425! (3.58)

are not s-step permutation decodable. But we have supposed that the codes with ns are

s-step PD, so the codes with nsy are (s + 1)-step permutation decodable.

Q.E.D.

Theorem 3.4 The (n, ko, 2t+1) codes with n = t(k,-2°"1 +2)+25"1, k, > t(2°72-1)

for t=5 and ko, >t(2°°2-1)-2"242 for t > 7, are s-step PD.
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Proof of Theorem 3.4: Suppose k. = k,-+1, then all the conditions in Theovem 3.4 will
be equivalent to that in Theorem 3.3. Because under these conditions the code (n, k., 21
1) is s-step permutation), the code (n, ke — 1,21 + 1) is also s-step PD. Noting that
ko = k. — 1, therefore, Theorem 3.4 holds.

Q. K. D.

The following Theorem and its Corollary show that if the condition k, > 12474 1) -

25=2 4 2 in Theorem 3.4 is not satisfied, than the code is not permutation decodable.

Theorem 3.5 The (n, ko, 2t + 1) codes with n = t(k,—=2° 1 42) 2571, &, = ¢(22%-

1) - 252 for t > 7, are not s-step PD.
Proof of Theorem 3.5: When
ko =1(2°72 - 1) = 2°72

The code length n becomes

n=ko(t —2).

With reference to the Theorem 13 in [33], the codes are not s-step PD.

Q. E.D.

Corollary 3.3.1 The (n, ko, 2t + 1) codes with n = t(k, — 2°7' + 1) + 271, k. =

t(2°°2~1)-2"241 for t>7, are nots-step PD.

This is apparent because if we substitute k. = k, + 1 into Theorem 3.5, we know there

exists no error free gap with gap-length larger or equal to k. — 1.

3.4 Bounds on the Code Rate

Lower bounds have been found on the code length n of the s-step permutation decodable

cyclic codes. For a better understanding of the general relationship between the number
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of U/ permutations and the code parameters n, k and { of the corresponding permutation
decodable cyclic codes, we present bounds of the code rate R, for binary (n, k, 2t + 1)

permutation decodable codes in the following two theorems:

Theorem 3.6 The code rate R. of s-step PD codes with k > k* and t = 5 is upper

bounded by
1
t—242°

where k2 =1-(272-1)=2 and k; =t-(2°"2-1)- 1.

Proof of Theorem 3.6: llere, we just give the proof for &,, the proof for k. is similar

to k,. Suppose the code length given in Theorem 3.3 and 3.4 are used, then
OR, t4+2572(1-t)
ok, n?
< 0 (3.59)

That is to say, R, decreases with k,. On the other hand, at the point where k, = k¥, the

relation between R, and s is given by the following equation:

OR. _ 1
Js ko=k} t—2 + t(—zgg;l—f——l‘);_—i

> 0 (3.60)

That is, R. increases with s, and the limit is:

. 1 .
el T T2 2 (3.61)
Therefore, for k, > k* and s > 4, the inequality
R. < 1 (3.62
“Si-24 2 62)

holds.

Q. E. D.
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Table 3.1: A comparison between

Land K

t 1 R R';l
1 1 1 0%
2 0.5 0.8 | 60%
3 | 03333 | 05 | 50%
5 02 | 0294 | 47%
7 | 01420 | 02 | 40%
9 | 0.1111 | 0.1428 | 29%
11 | 0.0909 | 0.1111 | 22%

Theorem 3.7 The code rate R,

than %5, where k) =1-(2°"% -

Proof of Theorem 3.7:

Similarly, since

and

the inequality

holds.

of s-sitep PD codes with k > k* and t > 7 is less

1) —-2°% and k=1t (2724 1)-2"2 41,

IR,
ok <0
1
Relpps - T3
1
] —
e < t—2

Q. E.D.

It would be helpful to have an idea of how large R’ is compared to the limit % (which

is the code rate bound of the codes decodable by a basic error trapping decoder), and

this provides an estimate of the efficiency of a (T, U) permutation decoder. A comparison

between + and R’ is given in Table 3.1 and plotted in Figure 3.4.
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From Figure 3.4 we can see that the (T, U) permutation decoder is most powerful for
the lower error correcting capability of cyclic codes.
In the previous analysis, we have given two bounds for t = 5 and ¢t > 7. They can be

rewritten in the form of

Re=ra—1w)

where f() is a function of ¢, with
f8) =
f(y =

=R

For t > 7, f(t) should be a number smaller than 0 (zero). Therefore, for ¢ > 7, the bound
here is not a tight bound, and it is shown from the simulation results that R, will decrease

as t increases, but at a lower rate than 1.
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3.5 Characteristics of the Code Rate

One practical question in using permutation decoding is “How does R, increases with &7,

First, we examine the rate of increase in R, as s increases. Let R, and R (441) denote
the code rates of the s-step and (s + 1)-step PD-codes respectively. The increase in the
code rate at the s-step is

AR = Rc(s+l) - Res.
Since

OR. k,25"2(t — 1) In2
Os n?

> 0 (3.63)

and
O0*R,. ko(ko + 1)t(t — 1)2°~21n?2
fs? n3

> 0 (3.¢4)

when k > k*, AR increases with s. Consider the case ¢ =7 as an example. The cases

of t =3 and 5 are similar. For an s-step permutation,

k:=1(272-1) —2°"% (3.65)
Therefore
Ak = Ky -k
= kI4t (3.66)

In other words, for each additional U permutation, k* is increased by (k* + ), i.e., more
than doubled.

On the other hand, when k < k*, the code length n does not decrease at the rate
An = A - t, so the increase in the code rate R is very slow. AR, increases with s, to

the extent that k* is large enough and k < k* is satisfied.
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We call the step correspaus ding to the largest A R, the optimum permutation step which
makes the largest increase in the code rate of PD codes. For a given (n, k, 2t + 1) code,
the optimum step is the step which makes k < k™ satisfied. Since k™ can be calculated from
Theorems 3.6 and 3.7, which is a function of s, the concept of an optimum permutation
step can be used to estimate the steps needed to decode a certain PD code.

The following example shows how AR, increases as the number of permutation steps
s increases, and illustrates the concept of an optimum permutation step.

Example:  For a given k and ¢ of a (T, U) permutation decodable cyclic code, find
the optimum number of steps s, and the corresponding code length n.

Here, we consider two cases: Case (i): t = 3 and k, = 195; Case (ii): ¢t = 3 and k, = 21.
The optimum number of steps corresponding to these two cases are 8 for Case (i) and 5 for
Case (ii).

The optimum value of s and corresponding code length n are also given in Tables 3.2
and 3.3 for (n, 195, 7) and (n, 21, 7) cyclic codes. In these tables, the third column
indicates the maximum achievable code rate for s-step PD codes (R;), the fourth column
represents the improvement in the maximum achievable code rates from (s — 1) steps to ¢
steps. Notice that the values in the fourth column corresponding to the optimum number
of steps are the maximum values.

Results given in Tables 3.2 and 3.3 are plotted in Figures 3.5 and 3.6, respectively. They
show how the code rate of permutation decodable codes increases with the number of U
permutation steps.

The relations between R, k and s can also be illustrated in Figure 3.7, where

1 —
m fOI‘t——5

R =
ﬁ fort > 1.

For the region of k < k*, the code rate of PD codes is around R'. Some codes are
restricted by their smaller d, while some other codes which have larger d may enjoy higher
code rates when s continues to increase.

Another important feature which can be seen from Figure 3.7 is how k* increases as
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Table 3.2: Optimum value of s for

PD (n, 195, 7) cyclic codes

s n R, = f—l -ﬁ?_‘: -1
1 585 0.33333

2 585 0.33333 0%

3 585 0.33333 0%

4 575 0.33913 1.7%
5 559 0.34884 2.9%
6 527 0.37002 6.1%
7 463 0.42117 13.8%
8 | 335. | 0.58209 38.2%

Table 3.3: Optimum value of s for

PD (n, 21, 7) cyclic codes

s n R; = % 'RLjfT -1
1| 63 | 0.33333

2| 63 0.33333 0%

3 63 0.33333 0%

4 | 53 | 0.39623 18.9%
5 | 37 | 0.58757 43%
6 | 37 | 0.56757 0%
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Figure 3.5: Illustration of the optimum value of s for the PD (n, 195, 7) cyclic code.
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Figure 3.6: Illustration of the optimum value of s for the PD (n, 21, 7) cyclic code.
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Figure 3.7: The relation between R, k,t and s.

each additional U permutation is applied, i.e., for each additional U permutation, A* is
more than doubled. This figure also shows how AR, increases with s, to the extent that
k* is large enough and k < k* is satisfied (which is the optimum permutation step). Finally,
Figure 3.7 shows that when k increases, R, approaches %, i.e., (T, U) permutation is more

efficient for short cyclic codes.

3.6 Conclusions

This chapter presented a study on the performance of multiple-step (7', U) permutation
decoding of cyclic codes. The characteristics of error-free gap lengths in the permuted crror
polynomials were examined. It was shown that the relation between the gap-length vectors
of the permuted error polynomials are related by a linear mapping. Based on this property,
the capability of (7', U) permutation decoding was studied and the relationship between
the number of permutations s and code parameters n, k£ and t of a permutation decodable

cyclic code was established. The following results can be summarized:

1. When k — oo, the rate of s-step PD codes decreases and approaches %
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. When k — k*, R, approaches to R', where

1 —
R’-_— m fOI‘t-5

1
— fort > 7.

. For each additional step, k* is more than doubled. In the region of k < k%, R, is

around the value R'.

. ARy = Ry(s41) — Res  increases with the number of permutations s until & <k* is

satisfied.

. There exists an optimal value of s which makes the largest improvement in the code

rate of PD codes.
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Chapter 4

PERMUTATION DECODING
USING PRIMITIVE ELEMENT'S
AS MULTIPLIERS

4.1 Introduction

In Chapter 3 we introduced the general relationship between the number of times that U
permutation is used and the code parareters n, k and t of the corresponding permutation
decodable cyclic codes. From these results, the performance of (T, U) permutation decoding
method is bounded by the code rate R'. Actually, when k& < **, the capability of the (7°, U)
permutation decoding depends on the code length n, and it is possible for some specific
code lengths to decode much higher rate codes. One such case can occur when p is the
primitive element of a prime field of order n. To have a more general idea of the limit
of the permutation decoding technique, we will consider permutation decoding which uses
primitive elements of a prime field as multipliers to increase the capability of permutation-
decoding method in the region of k < k*.

First, let us give an example. For BCH codes with code length n = 127, the maximum

number of U permutation that can be applied is 6, and all the BC'H codes of this code
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length have a code rate higher than R’ and cannot be decoded by (T, U) permutation
decoding. But if we use 13 as a multiplier instead of 2, the BCH codes are decodable for

t =2, 3,4, and 5. The code rate of these codes is compared with R’ in the following table:

Table 4.1: A comparison between R’ and the code rate of BCH codes

with code length 127 which can be decoded by multiplier 13

t R RecH

2 0.8 0.89
3 0.5 0.83
4 0.78

5 | 0.294 0.72

The corresponding figure is shown in Figure 4.1:

It should be emphasised that if we do not consider whether the codes under considera-
tion exist or not, then the code rates of cyclic codes which are permutation decodable by
multiplier 13 will be higher than the code rates listed in Table 4.1. From Figure 4.1 we can
also sce that as the error correcting capability ¢ increases the code rates of permutation

decodable (with multiplier 13) BC'H codes decrease much slower than R’ does.

4.2 Using Primitive Elements as Multipliers

It is also possible to decode cyclic codes by using permutations which may not preserve the
code. However the decoder must have the ability to correct error patterns in the equivalent
codes. In order to define the generator polynomial g(z) by the equation
9() = [] (= - o)
keK
we must specify both a, a particular primitive nth root of unity. and K, the set of powers
of o which are roots of g(z). Although different codes arise from different choices of «,

these different codes are equivalent in the sense that they are permutations of each other.
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The error correcting capability t

Figure 4.1: A comparison between R’ and the code rate of the BCII codes with code length

127 which can be decoded with multiplier 13.

107




Clearly, the decoder can correct an error pattern in any code when all errors lie in or can
be shifted into the “parity” portion of the codeword.

Let us consider a Linary cyclic code with length n equal to a prime number p, then the
set S = {0,1,2,...,p—1} is a field of order p under modulo — p addition and multiplication.
In fact, the set S can be partitioned into subsets! which are invariant under U permutation.
For example, for p = 31, these subsets are (0), (1, 2, 4, 8, 16), (3, 6, 12, 24, 17), (5, 10,
20, 9, 18), (7, 14, 28, 25, 19), (11, 22, 13, 26, 21), (15, 30, 29, 27, 23). The union of any
number of invariant subsets is also invariant under U; and this limits the improvement
of the permutation decoding technique. These subsets exist because 2 is a non-primitive
clement of the field {0,1,2,...,p — 1}. Because (2° mod p = 31) = 1, so the maximum
number of possible permutation steps is 5, and the subsets contain at most 5 elements each.

Now we consider the use of a primitive element of the field GF(p) as a multiplier. We

define M, permutation as:

n—1
L
Mic(z) = Z bjz* 7 mod 2? — 1.
=0
which is equivalent to

) $.q .
?r—2*7 moda® -1, i,se€S.

If M,-permutation is used (s — 1) times to decode a certain code, then we say the code is
s-step permutation-decodable.

Since GF(p) is a prime field, there exist some primitive elements ¢ with order p — 1
which satisfies ?~! = 1. So we can perform M; permutation (p — 2) times. Because the
field GF'(p) cannot be partitioned into subsets which are invariant under M; permutation,
the capability of the permutation method is expected to be increased. As an example, for
the BCH (31, 11, 11) code, if we use 12 (which is a primitive element) as a mu'tiplier, it is
6-step permutation-decodable (PD). However, it is not a PD code if we use U permutation,
i.e., by using the primitive element as the multiplier, the code rate in the region of k < k*

is increased.

!"The subsets in the partition of S are called cyclotomic cosets [12]
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Because p is a prime number, every multiplier i (1 < ¢ < p ~ 1) is relatively prime to p
(the block length of the word), and the mapping M, is an automorphism. When 2 is not
the characteristic of GF'(q), the permutation will not preserve the code, but it may map
one cyclic code into another equivalent cyclic code.

The condition on which a cyclic code will be mapped to another equivalent cyclic code

is given in the following theorem.

Theorem 4.1 If the generator gy(x) of a linear cyclic code C*y 15 mapped to a codeword of

another equivalent cyclic code Cs, then Cy is mapped to Cy.

Proof of Theorem 4.1 2: Suppose g,(z) are the generator polynomials of C,(i = 1,2).
If g1(z) is mapped to a codeword of Cs, then go(x)|M,(g:(x)). For 2hgy(x)(1 < h < k), it

is mapped to the codeword
(zh g1 (z))! mod (z"—1) = zM(g(x)) mod (&" - 1)
= M ((gi(z)) mod (2" - 1)) mod (£" - 1)

= &M . M, (g:(x)) mod (z" 1)

which is the hjth cyclic shift of M,(g\(2)) and it is also a codeword of ;. Clearly this
mapping preserves addition and multiplication. If % = 2% (mod z?), then (u - v)j =
0 mod p. Since pis a prime, j is relatively prime to p, this implies that i — j = 0 mod p or
z"* = z". Hence this mapping is an isomorphism, and the above condition holds.

Q. . D.

4.3 Example
Consider the BCH (31, 16, 7) code. Suppose the code C| is generated by

2it has been proven that if C is a binary cyclic code of length n, then the permutation M, maps C onto

another binary cyclic code C’ or onto C itself [44].
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Then, with My permutation, ¢; is mapped into a code word
e(z) L B L QU R L g C B LT LR JTeL R |
which is divisible by
ga2(z) = RN R | RPN, T TR a

Therefore, My maps the code C) into another BCH code C'; which is generated by ga(z).
Similarly, with M), permutation, C- is mapped into other BC'H codes which are generated
by

ga(.’l:)=$]5+.’EM+1'12+£L‘“+$l0+$8+$6+$4+$3+1‘2+1
and

!M(.’l?)=1215+IL‘H+1,‘13+1‘l2+1}10+3}8+2}7+1‘6+$5+1‘4+1

successively. Therefore we can use the primitive element 12 as a multiplier to decode this
code. This code is found to be 4 - step permutation decodable. The comparison of U and
M4 permutation for decoding the BC'H codes of length 31 is summarized in the following

table.

4.4 Implementation of U and M; Permutation Decoders

There are two ways to realize the permutation decoding of a certain cyclic code: parallel
processing and serial processing. For s-step permutation decodable codes, s syndrome
registers are needed in parallel processing. As shown in Figure 4.2, the received vector
is shifted to the s syndrome registers at the same time, so the time needed to decode
is almost the same as the basic error-trapping decoder (ETD). The block diagram of a
permutation decoder using serial processing is given in Figure 4.4. In this case, only one
syndrome register is need, but the decoding time is approximately equal to the number of
steps needed to decode the code multiplied by the decoding time of a parallel processing

permutation decoder.
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Table 4.2: A comparison between U and M,

permutation of decoding BCH codes of length 31.

BCH Code | Multiplier | Steps (PD or NPD)

(31,16,d=17) 2 5 - step PD

12 A - step PD
(31,11,d = 9) 2 4 - step PD

12 3 - step PD
(31, 11,d = 11) 2 NPD

12 6 - step ’D
(31, 6, d = 15) 2 4 - step PD

12 3 - step PD

If parallel processing is applied for fast decoding, the M, permutation decoder is simpler
than the U permutation decoder because the former requires a smaller number of syndrome
registers than the latter.

If serial processing is used for decoding, then the M, permutation decoder is slightly
more complex than the U permutation decoder because the M, permutation may not
preserve the code, and, therefore, a logical circuit is needed to control the feedback of
the syndrome register. However the decoding time of a serial M,-permutation deceder is
shorter than that of a serial U-permutation decoder. The syndrome register of the My,

decoder for the BCH (31, 16, d = 7) code is shown in Figure 4.4.

4.5 Remarks

1. In some cases, the capability of the permutation decoding method is expanded. For

example, the BCH (31, 11,d = 11) code is not permutation decodable by (7', U)
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Permuter

Permuter

ETD: Error Trapping Decoder
Figure 4.2: Permutation decoder using parallel processing.
permutation, but it is a 6-step permutation decodable code by (7, M;;2) permutation.

M; permutation decoder is simpler with parallel processing than U permutation de-
coder, it is also faster in both parallel and serial processing decoding. However, in
serial processing, since M, permutation may not preserve the code, an additional
logical circuit is needed to control the feedback in the syndrome register of the M;
permutation decoder, this makes the M, permutation decoder slightly more complex

than the U permutation decoder.

When ¢ increases, more permutation steps are required. The maximum number of
required syndrome registers equals the number of existing equivalent codes. After the
code is permuted so many times by the primitive multiplier, it will be mapped back

to the original one.

. The code rate of the permutation decodable codes decreases much more slower than

the code rate of the (T, U) permutation decodable codes does, that is to say, this

method is very efficient in increasing the code rate of the permutation decodable
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codes with higher error correcting capability.

Please notice that permutation decoding does not solve the two basic problems in in-

formation set decoding, i.e.,
1. What is the minimum number of distinct sets?
2. How does one go about finding these sets?

What permutation decoding does is to increase the number of selected information sets
according to a predetermined rule so that r.ore error patterns can be corrected. It should be
emphasized that permutation decoding by using a fixed multiplier may not be an optimum

way of choosing an information set because:

1. The distinct sets chosen by fixed multiplier may not be the minimum number of

distinct sets needed to decode a code;

2. The existence of invariant subsets for every fixed multiplier limits the capability of

permutation decoding,.

The way to solve this problem is to use different multipliers to decode a code. This
can be done in a serial or parallel manner. The key point here is that we don’t use a
fixed multiplier, but several multipliers to decode a code, and each multiplier is not used to
its limit (which is determined by the size of invariant subsets). In this way, the decoding
circuitry can be much simpler than the one using primitive element as a fixed multiplier;
the time used in decoding a code can be much shorter (suppose serial processing is used);
and the decoding capability can be much higher (car decode all the existing code as long
as we can find an appropriate multiplier set).

One point deserves to be noticed is that by using a primitive element as a fixed multi-

plier, the total information sets can be searched by a decoder is n x n.
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We can see that the bound improvements in both bounds: 2(2/ + 2) = min{2(t. —
4); 2(ko - 1)} in Bound 1 and 2(2{ + 3) = min{2(t. — 3); 2(k. — 3)} in Bound 2 are
proportional to k, or k. and t,. From the above mentioned results, we can also conclude
that when t. > k. (or k,), the codes (n, k,, 2t, + 1) get more improvement than codes
(n, ke, 2+ 1).

In Chapter 3, we studied the performance of multiple-step (T, U) permutation decoding
of cyclic codes. We proposed the mapping matrix, which gives a comprehensive relation
between gap lengths in different domains. We proved that the gap lengths in the error
pattern after U permutation is actually a linear combination of the gap lengths in the error
pattern before U permutation. We characterized the relationship of the error pattern gaps
between any two consecutive or non-consecutive domains. From the proof of Theorem 3.3
and 3.4, we gave an insight into how the gap lengths changed and therefore the capability
of (T', U) permutation decoding increased.

Chapter 3 also presented the general relationship between the permutation step s and
the code parameters n, k and t of a permutation decodable cyclic code. From this general

relationship, we got the following conclusions:
1. When & — oo, the rate of s-step PD codes decreases and approaches %

2. When &k — k*, R, approaches to R’, which is

1
to—-2+ 2

and

to — 2

for t, =5 and &, > 7 respectively.

3. For each additional step, k™ more than doubles. In the region of k < k*, R:is

around the value R'.

4. ARy = R (s41) — Res  increases as the permutations steps s increases until k* is

large enough and k < k* is satisfied.
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5. There exists an optimal step which makes the most improvement in the code rate of

PD codes.

The characteristics of the code rate have also been studied. From the concept of the
optimum permutation step, we showed how to estimate the U permutation steps needed to
decode a permutation decodable code. We compared the code rate 1’ with the code rate of
error-trapping decodable codes, which shows the effective region of the (T, U) permutation
technique. In this effective region, some powerful BCH codes (e.g., (127, 113, 5), (127, 106,
7), etc.) can be decoded.

Chapter 4 discussed permutation decoding using primitive clements as multipliers, from
both invariant subsets point of view and information set decoding point of view. In Chap-

ter 4, we presented the following main results:

1. In some cases, the capability of the permutation decoding method is expanded. Lor
example, the BCH (31, 11, d = 11) code is not permutation decodable by (7', U)

permutation, but it is a 6-step permutation decodable code by (7', M,3) permutation.

2. M; permutation decoder is simpler with parallel processing than U permutation de-
coder, it is also faster in both parallel and serial processing decoding. However, in
serial processing, since M; permutation may not preserve the code, an additional
logical circuit is needed to control the feedback in the syndrome register of the M;
permutation decoder, this makes the M; permutation decoder slightly more complex

than the U permutation decoder.

3. When ¢ increases, more permutation steps are required. The maximum number of
required syndrome registers equals the number of existing equivalent codes. After the
code is permuted so many times by the primitive multiplier, it will be mapped back

to the original one.

4. The code rate of the permutation decodable codes decreases more slowly than the

code rate of the (T, U) permutation decodable codes does, that is to say, this method
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is very efficient in increasing the code rate of the permutation decodable codes with

higher error correcting capability.

Furthermore, Chapter 4 suggested a new way of applying information set decoding, i.e.,
use the (T', U) permutation and (T', M,) permutation at the same time. By mapping a code
to different equivalent codes and using (7', U) permutation decoding parallelly in these code
domains, the capability of permutation decoding techniques can be increased dramatically.
In this way, we explored the full advantage of both the (7', U') and the (T, M;) permutation
decoding. This may provide the most powerful permutation decoding technique while keep

the decoder relatively simple.

5.2 Further Work

The permutation decoding method for decoding cyclic codes can be studied further in the

following ways:

1. Using primitive elements as multipliers is very efficient in increasing the code rate of
the permutation decodable codes with higher error correcting capability (Chapter 4).

This type of decoder should be investigated further.

2. Permutation decoding using fixed multipliers may not be an optimum way of choosing
different information set (Chapter 4). To find a rule in choosing multiplier sets is an

important way to apply permutation decoding to higher rate codes.

3. By combining both (T, U) and M; permutation decoding, (i.e., after using M; per-
mutation to permute a code to an equivalent code, purallel (T, U) permutation can
be used in a different code domain) the capability of permutation decoding can be
increased while the complexity and the time needed for decoding remains the same as
with the (T, M;) permutation decodirg alone. It is believed that the effective region
of this combined technique is significantly larger than the region using the (T, U)
permutation alone. This is because the number of information sets used in decoding

is significantly increased in the combined case.
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