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ABSTRACT

Charge Particle Method For Thinning
Of Binary Images

Akilandeswari Arumugam

A new sequential thinning methodology, namely Charge Particle
Method (CPM), is presented. According to this method, the
dark pixels in a binary pattern are considered as particles
having certain magnitudes of charge of the same type (positive
or negative) and negligible mass. The movement of these
particles towards the medial line location with respect to the
boundary geometry is accomplished by the interaction of the
electrostatic forces between the particles and the entire
boundary. This movement of particles shrinks the pattern
which is used in the CPM to generate the skeletons of binary
patterns. The skeletcns thus generated are found to possess
all the required properties concerning the connectivity,
topelogy and shape of the pattern.

The performance of the proposed CPM algorithm is compared with
four other thinning algorithms [15,18,34] published recently.
Overall, the CPM is shown to have superior characteristics
with respect to processing speed, connectedness and
reconstruction. The execution time of the CPM is found to be
dependent on the width of the patterns to be skeletonised.
For the sake of consistent evaluation of the thinning
algorithms, a new bench mark input data set is introduced.

(iii)
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1. INTRODUCTION

1.1. Optical Character Recognition (OCR)

Machine recognition of both handwritten and printed characters
is becoming a prime requirement in many applications. Typical
examples include automatic mail sorting, reading and verifi-
cation of cheques and transaction sheets at banks, reading of
price tags at super markets, capture and process directly from
the handwritten records and in the development of interactive
information management systems. It has been found that recog-
nition and classification of handwritten or printed characters
into discrete classes is highly dependent on the quality and
variability of the data used and there is always a margin of
error. The major goal in designing a character recognition
system is to minimize such errors and achieve a low probabi-
lity of misclassification and/or misidentification. With this
goal in mind, this thesis looks into an important aspect of an
OCR system, namely thinning, the output of which plays an
important role in the later stages of recognition, classi-

fication and identification of characters.

A block diagram of an OCR system is given in the Figure 1.1.
An OCR consists of the three main stages viz.,

Digitiser

Preprocessor

Feature Extraction/Detection

Classifier
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Digitiser: 1In order to process a given pattern by a computer,
it is necessary to convert the original analog pattern into an
array of numbers. This conversion is carried out at the digi-

tiser stage by the processes of 'sampling' and 'quantization'.

Preprocessor: This stage performs transformations on the
input character structure in order to increase the quality of
the data. Thinning, smoothing and normalisation are the three
primary functions performed during the preprocessing stage. Of
these, thinning plays a very important role in the successful
realisation of an OCR system. Thinning generates skeletons
from the scanned or digitised input patterns. The redundant
characteristics in the input image pattern are eliminated,
retaining only essential characteristics and preserving the
basic structure of the pattern. Thinning helps to reduce
processing time and storage space in the subsequent stages of

the OCR.

The smoothing step of the preprocessor stage remnves the noise
in the input image. Typically such noise is random in nature
and is dependent on diverse factors such as the resolution of
the scanner or digitizer, the quality of the pen used for
writing and also on the style of the writer. The smoothing
algorithm consists of essentially moving a 3 x 3 window across
the binary image and comparing the state of the central

element of this window with its eight neighbours to decide



vhether this state(pixel value) should be retained or changed.
smoothing helps to avoid spurious tails and distortions which

would otherwise affect the performance of the classifier.

Finally, normalisation is carried out to remove the distor-
tions introduced by variation in size, orientation and skew.
one of the normalisation operations is centring the character
in the image field. Characters may have varying sizes and
hence normalisation of the character dimension in order to
have uniformity in the size of the characters. thereby making
the pattern matching process easier. Also the slopes intro-
duced by the writer have to be eliminated to obtain a better

classification. This is achieved by rotating the characters.

Feature Extraction: The character recognition process depends
on a set of a prinri determined features. The feature extrac-
tion is a stage in which the features are extracted from a
thinned pattern. The thinned image is decomposed into its
subpatterns or primitives. Primitives, for instance, could be
horizontal, vertical lines, curved lines, number of loops,

end-points or intersections [1].

Classifier: The preprocessed image is generally classified in
two stages namely,
i) The structural classification method

and



ii) The relaxation matching.
Under structural classification methodology, classification of
a character is based on the particular features present in its
skeleton as well as the relative interconnection among those
features. Based on the configuration of the primitives and
extracted features, the patterns with simpler structures are

classified with the use of decision trees (2].

In relaxation matching the patterns that are not recognised by
the structural classifier are matched against a set of
reference patterns using a relaxation process. The likelihood
of the match is decided based on the proximity of the
features. A number of relaxation matching algorithms exist

and are reviewed in [3].

1.2. Thinning
The subject matter of the thesis, namely Thinning, transforms
the input binary pattern to thin line drawings known as
Iskeletons' which retain the connectivity and the original
shape of the pattern. The advantages of deriving the skeletons
for patterns are:
i) to reduce data handling (both storage and
processing time)
and

ii) to reduce transmission requirements [4,5].



In most of the applications the width of the pattern is not of
importance as it contains very little useful information.
Hence the skeletons can be used to represent the patterns,
thereby reducing the storage space and time for 1later
processing. The skeletons are in general used for the
structural shape analysis needed in the recognition of 1line
drawings' [6] and alphanumeric characters. Other typical
applications are include:
1. Biomedical systems (eg. chromosome analysis) [7],
2. Fingerprint classification [8],
3. Logic and electrical circuit interpretation [9],
4. Soil Crack Analysis [10].
Extensive research has been done in the area of thinning for
the past three decades and numerous thinning algorithms exist.

We first review certain basic definitions.

1.2.1. Definitions

Pixels: In picture processing, the binary digitised pattern
is normally represented by a matrix where each element is
assigned a value of either '1' (dark-point) or '0' (white-
point). These points are also called as pixels. The actual

pattern consists of all the dark-pixels in the matrix.

Thinning: It is the transformation of a digitized pattern to
a unit width 1line, preserving the shape of the original

pattern and lying along the medial axis known as 'skeletons’'.



Medjal-Axis: of a pattern is the locus of points within the
pattern such that for each point P on the locus, there exists
at the least two points on the pattern boundary that are
equidistant from and are closest to P. The medial axis is

thus another definition used to refer to the 'skeleton' of a

pattern.

Medial-lines and Core-lines: are other terms that are commonly

used to refer to skeletons.

8-neighbours: Figure 1.2 defines the 8-neighbours of an
arbitrary pixel P. These are the pixels P, to Pg, that are

adjacent to the pixel P.

Figure 1.2: Neighbours of a Dark Pixel

4-neighbours: The pixels P,, P3, Py and P, are known as the
direct 4-neighbours or D-neighbours of pixel P whereas the
pixels P,, P,, P¢ and Pg are known as the jndirect 4-neighbours
or I-neighbours of pixel P.



Edge-Point: A dark-point having at the least one of its

D-neighbours a white-point is termed as an edge-point. The
edge-points are further classified as left, right, top and
bottom edge-point depending on which of the 4-direct
neighbours P,, P;, P; or Py respectively are white-points.
Edge-points are also sometimes referred to as Boundary or

Contour Points/Pixels.

Border or Contour: The set of edge-points of any pattern form

the contour or the border of the pattern.

End-Point: End point is a dark point having utmost one dark
8-neighbour. An end-point test, during thinning ensures that
the end-points are retained and are not eroded in the process

of thinning.

Break-Point: This is a dark-point the deletion of which would

result in breaking the connectedness of the pattern.

8 or 4-connectedness: Digitised picture is 8 or 4-connected
if for any two points p and q there exists a sequence of
points p = Py, P, P2/ «+¢+s Pp-1r Pp = d such that p; is a 8 or

4 neighbour of p;_; for 1 < i < n.

Crossing Number: This is the first measure of connectivity

introduced by Rutovitz [11]. For any pixel P, the crossing

8



number is defined as
j=8
j=1
This is used to count the number of black-to-white transitions

in the 8-neighbourhood of pixel P.

Connectivity Number: The connectivity number CN introduced by

Yokoi in 1975 [12], is defined for any dark pixel P as

k=j+2
CN =2 (Py - II_PR) for 4-connectedness
jes k=]
k=j+2
CN = S (?j -1 P,) for 8-connectedness
zj

where

Pj's correspond to an 8-neighbour of pixel P

S

{1,3,5,7}; if X > 8 then k = k - 8.

P.

3 1 - Py

The dark pixel P 1is classified as an isolated, edge,
connecting, branching or crossing-point depending on the value
of CN computed being 0, 1, 2, 3 or 4 respectively. If the
value of CN = 1, then the dark pixel is an edge point and can

be deleted.

Distance Transformation: It is the transformation of the

binary pattern by which each dark-point in the input binary



pattern is assigned a value equal to the 1length of the
shortest path from that dark-point to the nearest white-point.
If the path consists exclusively of horizontal and vertical
steps of unit length, then the distance transform is known as
city block or 4~distance transform. On the other hand, if the
distance is computed based on the 8-neighbours, the transform

is known as chess board transform.

Maximal Blocks: Any given binary pattern can be considered to
be made up of a series of non-overlapping blocks of varying
sizes. If all such blocks are chosen such that:

a) they are of maximum possible size,

b) all of them touch the boundary at least once,

and

c) they do not cross the boundary,
then they are referred to as 'Maximal Blocks'. Depending on
whether the maximal blocks are derived from circles or
squares, they are respectively termed as maximal circles or

maximal squares.

1.2.2. Classification of Thinning Algorithms

Thinning algorithms are classified primarily based on the
method by which the skeletons are derived. Further sub-
classification is done based on the implementation or

processing method.

10



Under the primary classification, there are two subclasses

viz., the medial-axis transforms (or skeletonising algorithms)
and the thinning algorithms.

The medial-axis transform was first proposed by Blum {13] to
describe a figure or shape of an object. This method
generates the skeleton by joining the centres of the maximal
blocks defined across the pattern. It does not involve the
process of iteratively deleting the contour points. The
skeletons thus derived are isotropic, sensitive to boundary
noise and have the ability to reconstruct the original pattern

from the skeletons.

The thinning algorithms consist of removing contour points at
each iteration, thereby shrinking the original pattern until
a unit width line is formed. The contour points are normally
tested against a mask of given size (usually a 3x3 window)
such that the removal of the contour points does not affect
the connectivity of the pattern. The scanning can be done
either by conventional method (raster scanning) or by contour
tracing. In contour tracing method, only the successive
border points of the pattern are processed; whereas in the
raster scan method the entire pattern is scanned during every

iteration.

11



Each of the above categories can be further sub-classified as

Sequentjal algorithms or Parallel algorithms.

ia innin orithms: In this case the edge-points
are processed one at a time and the result of processing a
dark point in the k'M iteration depends on the set of points

for which the result of the kP iteration is known.

Parallel Thinning Algorithms: Parallelism is attained by

breaking a given iteration into several distinct subiterations
(process partitioning) or by segmenting the input pattern
(data partitioning). In this method all the edge-points are
processed simultaneously. The result of processing a dark-
point at the kth iteration depends on the values assigned to

the point and its 8-~neighbours at the (k - 1)tP iteration.

1.2.3. Literature Survey

Ever since the generation of skeletons for discrete images was
proposed by Rosenfeld [14], enormous work has been done in
this area. In this thesis we review only the well known
sequential thinning algorithms of the recent past (since
1984). Naccache [15] has reviewed and compared the most
commonly referenced thinning algorithms that have been

proposed up to 1984.

12
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In general all the thinning algorithms are based on 1local
operations in the 8-neighbourhood of a pixel ( 3x3 window) and
they differ in the method used for ensuring the connectivity
in the skeleton and preserving the end-points of the pattern.
Naccache et al have proposed a new thinning algorithm namely,
the Safe Point Thinning algorithm (SPTA) ([15] for binary
patterns. It has been concluded in [15] that SPTA algorithm
is found to be generating good quality skeletons and the
fastest among the algorithms used for comparison with the

ability to reconstruct the original pattern from the skeleton.

In 1985 Arcelli et al [16]) proposed a method which first
derives a set of points symmetrically placed with respect to
the contour parts of a figure and are further thinned by using
the topology preserving operation. Finally a pruning stage is
included to eliminate the noisy spurs. From computational
point of view this method is independent of the size of the

pattern and requires the same fixed number of passes.

A two phase method of thinning resulting in good quality
skeletons and having good resistance to noise was derived by
Chu and Suen in 1986 [17]. The first phase of this algorithm
consists of alternate smoothing and stripping of contour
points and the second an adjusting phase to obtain the medial
skeletons. This method is time consuming because of the

smoothing process involved in each iteration.

13



Suzuki et al came up with a width independent thinning
algorithm [18] using distance transformation to locate the
medial lines. 1In this methodology contour tracing is used to
process the pattern and hence a priori knowledge of the
contours in the pattern is required. In addition a post-

processing stage is needed to derive unit width medial lines.

Dill and Levine [19] provided an algorithm to compute multiple
resolution skeletons of noisy images which is used for the
study of pseudopods in leucocyte locomotion. This algorithm
generates skeletons at different resolutions of the picture
from which a filtered version is obtained. This algorithm is

found to be as fast as the algorithm of Arcelli [16].

A sequential thinning algorithm based on contour tracing was
proposed and implemented by Govindan [20]. This algorithm
incorporates shape adaptivity to eliminate the asymmetry in
the skeletons of even thickness patterns with T-corners, and
to preserve the exact shape at right-angle and acute-angle
corners of patterns. Such shape preservation reduces the

complexity of some of the pattern recognition problems.

Kwok [21] proposed a thinning algorithm based on contour
generation wrich is much faster than the [15], [22] and [23].
The chain codes are generated for every closed contour and
safe-points are detected for every contour by using the values

assigned to the pixels as they are visited.

14




A connectivity preserving shrinking algorithm based cn
Hilditch [7] was proposed by Ye et al [24) for the visual
inspection of printed circuit boards. The error indications
due to the sharp corners, digitisation noise and small
protrusions can be eliminated by using extra connectivity

preserving shrinking operations.

Xia implemented for the first time, Blum's idea of fire
propagation to the thinning of discrete images [25]. The wave
propagation is simulated by means of contour traversals and is
relatively faster as it does not involve much computations
because of the elimination of neighbourhood testing

operations.

Kwok [26] proposed a connectivity preserving shrinking
algorithm based on contour generation. The algorithm uses the
distance transformed pattern and removes successive contour as
new contours are being generated. The distance value is used

to for the isotropic erosion.

Wang [27] proposed a thinning algorithm based on contour
tracing which is faster than those of Naccache [15], Lu [28]
and Zhang [21]. This algorithm is flexible in that it can be
implemented either in sequential or in parallel mode and

structure preserving.

15
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Xia explains in detail the implementation of the thinning
methodology based on Blum's model for discrete images [29].
It is found that the algorithm does not result in unit width
lines at the curved branchings and intersections. Further
since the algorithm is based on contour tracing it is not

suited for the processing of composite characters or patterns.

Table 1.1 shows the characteristics of the various algorithms
that are reviewed in this thesis. The table lists the method
employed for processing, the type of connectivity in the
skeletons generated and reported testing as to whether an
extensive, average or minimum amount of data set is used for

testing the algorithms.

1.3. 8cope of the Thesis

In this thesis a new thinning algorithm namely, the Charge
Particle Methodology (CPM) 1is proposed. The detailed
explanation of the algorithm which is based on the force of
interaction between charged particles, its implementation and
analysis are given in Chapter 2. The reconstruction ability

of the algorithm is also given in this chapter.

In Chapter 3, the selection criteria used for choosing the
four thinning algorithms for the comparative study with the
proposed algorithm are described. Then the four algorithms

and their implementation are detailed.

16
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In Chapter 4, the Data set selection criteria and the basis on
which the thinning algorithms are compared are discussed

initially. Then the essence of the comparative study based on

the experimental results is presented.

Finally in Chapter 5, the concluding remarks on the work done

in this thesis and the scope for future work are given.

18



2. PROPOSED ALGORITHM

The aim of any thinning scheme is to obtain the conrected
skeleton of unit width along the medial axis of the given
binary pattern. 1In addition, in order to obtain good quality
skeletons, a thinning scheme should have the following
characteristics:

i) The resulting skeletons should inherit all the
topological features of the original pattern,

ii) No undue erosion of the ends of the skeletons,

iii) Be immune to the salt and pepper noise,

iv) Have good reconstructability,

V) Be robust enough to produce identical skeletons
irrespective of the orientation of the patterns,
and

vi) Have a fast throughput.

The new sequential thinning methodology presented in this
thesis, namely Charge Particle Method (CPM), meets the above
requirements. In this chapter the formulation, implementation,

as well as the performance of the CPM are detailed.

2.1. Basis of the Charge Particle Method (CPM)

In the Charge Particle Method, the dark pixels in a binary
pattern are considered as particles having certain magnitudes
of charge of the same type (positive or negative charge) and
negligible mass. The movement of these particles towards the

medial line location with respect to the houndary geometry is



accomplished by the interaction of the electrostatic forces
between individual particles and the entire boundary. According
to Coulomb's law, the electrostatic force of repulsion between
any two charged particles of the same polarity is proportional
to the product of the charge magnitudes and is inversely
proportional to the square of the distance between the two
particles. The resultant force acting on a particle due to
several neighbours is a vector sum of the forces due to all the
surrounding particles. Physically the particles are free to
move anywhere on the continuous plane. However, by suitably
charging the boundary of the binary pattern, the charge
particles representing the dark pixels can be forced to move
away from the boundary. This results in a shrinking of the
pattern, which is used in the CPM to generate the skeletons of

binary patterns.

For example, consider the binary pattern shown in Figure 2.1.
The dark pixels in the pattern are considered to represent
charged particles of the same polarity, (say positive) and
having the same charge magnitude. The boundary is maintained
at a higher potential. Due to the electrostatic force of
repulsion between the particles and the boundary, the particles
within the boundary tend to move away from the boundary,

thereby resulting in a thinning of the pattern.

The pixels marked as 'l' ailong the boundary of the pattern are

pushed towards the centre as indicated by the arrows since the
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Figure 2.1: CPM Concept

force due to the boundary is greater than that of the particles
inside. These particles now take up the positions marked as
'2'. The process continues till the charged particles attain
a state of equilibrium at which time the net force acting on
them is zero. The pixels marked by '*' are the final retained

pixels representing the skeleton.

2.2. Analogy to Grassfire Concept

The CPM can be considered as somewhat analogous to the well
known Grassfire concept proposed by Blum [13], in that both are
based on a phenomenon which occurs over a continuous plane,
suitably adopted to the discrete process of thinning. As per
the Grassfire concept, the region comprising the dark points of
a binary pattern is considered to be analogous to a grassland

topology.

A fire is started along the perimeter or the boundary. The fire

spreads uniformly from the boundary towards the interior of the
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grassland. This spreading of fire burns the grass along the
boundaries in layers. The "propagatiocn" of the fire front
models the motion of the dark pixels. As the fire front moves
across the pattern, the dark pixels on its path are eliminated.
Finally when the fire fronts from different directions meet,
the fire is considered to be quenched. The locus of the '"quench
points" corresponds to the required skeleton. Figure 2.2 shows
the initial patch of grassland. Once the fire has started
along the perimeter, the pixels marked 'l1' in Figure 2.2 will
burn first, followed by those marked as '2' and so on. Finally
the pixels marked by '*!' form the quench points where the two
fire fronts meet. These final quench points form the skeleton.

Xia [29] has adopted this concept to thinning.

Figure 2.2: Grassfire Concept

In the case of CPM, the movement of the particles starts from
the boundary and proceeds towards the interior of the pattern,
which is analogous to the inward movement of the fire front in

the Grassfire concept. The quench points in Grassfire concept
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at which the fire extinguishes correspond to the skeletal
points; whereas in CPM this corresponds to the equilibrium
position reached by the charged particles. A charge particle
reaches an equilibrium position when the resulting force acting
on it is equal to zero. 1In the case of Grassfire concept, the
deletion of dark pixels along the border is due to burning
whereas in CPM, their deletion is due to the resultant

electrostatic force acting on them being not equal to zero.

Comparing the skeletons generated by the CPM and those by
Blum's Grassfire model [29], it can be seen that the skeletons
generated by the CPM are of much better quality. For example,
for patterns having curved intersections the skeletons given by
the Grassfire mocdel (Figure 2.3b) have more multiple pixels

than the skeletons given by CPM (Figure 2.3a).
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Figure 2.3: Skeletons Generated by the CPM and the
Grassfire Model
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2.3, Description of the CPM Algorithm
In this section, the adaptation of the CPM concept to thinning,

is detailed.

Theoretically, the resultant force acting on a particle, is due
to the cumulative effect of all the other particles in the
plane. However, in our adaptation of the concept for thinning,
only the forces due to the immediate eight neighbours of a
particle are considered to be significant. This assumption is
valid since the force between particles is inversely
proportional to the square of the distance between them and
hence the effect of forces due to the pixels outside the first

eight neighbourhood are negligible.

Following the above assumption the particle motion is also
restricted to be in one of these eight directions. The boundary
which would define the shape of the object under analysis is

conceived to be a series of suitably charged particles.

Force Calculation
With the above assumptions it is necessary to_determine only
the effective force on a particle due to the eight immediate
neighbours. The force of repulsion between any two particles
is given by Coulomb's law as:

Q Q Q; Q;

F= —— =k —— (2.1)
4 e R? R?
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Q; = magnitude of charge of particle 1
Q, = magnitude of charge of particle 2

R = separation distance between particles

m
i

permittivity constant, a property of the

surrounding medium

kX = proportionality constant = 1/(4 7 €)

Consider the particle P; surrounded by the particles P,, P,,..Pg
as shown in Figure 2.4. To establish the condition for the
movement of the particle P;, the resultant force on particle P,
from all other particles Py (J = 1 to 8) is required. The
force which particle P, exerts on the particle P, lies along
the unit vector drawn from particle P; to particle P,. When

many particles are present, net force is the vector sum of all

the forces.

Y
Py
Pg | P, | Pp
P, | P; | P;
G
Pe | Ps | Py .
Py

Figure 2.4: Eight Neighbours of a Dark Pixel

For each particle P; a separation distance Dy; to the particle

P; can be found as:
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Dji = V/ (PXi - ij)2 + (Pyi - Pyj)z (2.2)

where
Pyis Pyy = % and y coordinates of point Py
Pyyr Pyy = x and y coordinates of points P; for j

varying from 1 to 8.

Using the equation (2.1), the force Fys which Py exerts on P;
can be writtaen as

. Qy Q;
(2.3)

Fj' = >
Dji

1

Lastly, the net force on particle P;, due to the immediate

eight neighbours can be expressed in x and y components as

i=8

in = Fji . Cos Gji (2.4a)
i=1
j=8

FYi = 2 Fji . Sin Gji (2-4b)
i=1

where

Fyiy = X component of the resultant force acting on P; due
to Pjo

Fyi = y component of the resultant force acting on P; due
tO Pj'

8;; = orientation angle of particle Py with respect to

particle P;.
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From Figure 2.4,
Cos Gji = (PXi - PXj)/Dji (2.5a)

Substituting the wvalues for Fyi, Sin 84y and Cos 044 in

equations 2.4a and 2.4b we get the following equations for F,;

and Fyi'
j=8
in = K 2 QjQi(PXi - ij)/Djia (2.6a)
3=1
3=8 )

From the x and y components of the force, the motion of the

particle P; can be determined.

CPM Algorithm

Thinning of a binary pattern in this method is accomplished by
a number of passes. In each pass, a set of edge-points are
deleted from the input pattern. The algorithm consists of the

steps 1 to 4 statea below.

Step 1: Scan the input binary picture from top to bottom and
left to right. When a dark pixel is encountered, check if it
is an edge-point or not. If it is an edge-point then go to
step 2, else continue the scanning till the lower right end of

the pattern is reached.
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Step 2: Each edge-point is tested against the following
conditions for their removal:
(a) The number of dark pixels in the first eight
neighbourhood is greater than cne.
(b) The eight connectivity number CN (12] is one.
(c) The net force as calculated from equation (2.6) is
not equal to zero.
The edge-points satisfying the above conditions are flagged for

their deletion.

Step 3: Repeat steps 1 and 2 till there is no deletable pixel

in any pass.

Step 4: This is a postprocessing stage where the redundant
pixels in the binary pattern are deleted. This is achieved by
scanning the result of step 3 and deleting each of the dark
pixels satisfying any of the configurations [30] given in

Figure 2.5.

The final retained pixels correspond to the skeleton. 1In the
above formulation, it is found that after each pass the
boundary is reduced by unit depth. Hence the maximum number of

passes required would be equal to W

m/2 . where W, is the

maximum width of the object.

2.4. Implementation of the Algorithm

The CPM algorithm has been implemented and tested on a Cyber
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CDC830D system using Pascal language. The input binary pattern
is stored in a two dimensional matrix of integers. 1In order to
distinguish the boundary from the pattern to be thinned, the
dark pixels are assigned a positive charge value of unity and
the white pixels are assigned an arbitrary negative charge

value of - MAX, where MAX corresponds to a high integer value.

The whole process of thinning is accomplished on this single
matrix. Thinning of the object is done by successively removing
the boundary pixels in distinct successive iterations or pass.
The scanning can be done either in a rowwise or a columnwise
fashion. Thus choice of scanning direction does not affect the
resulting skeleton. During each iteration only the dark points
are processed from which the edge-points are detected. The
edge-points are then flagged for their removal if the three
conditions listed below are satisfied. The flagged edge-points
are assigned a value of (i - MAX), where 'i' corresponds to the

iteration number.

(a) Test for excessive erosion of End points

In order to avoid the excessive erosion of end points, each
edge-point is tested against the immediate eight neighbours to
determine if it is an end point or not. This is done by
counting the number of dark pixels in the eight neighbourhood
and if this number is greater than one then the pixel under

consideration is not an end point.
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(b) Test for Connectivity/Breakpoint
Another important criterion for a skeleton is to preserve the
connectivity of the original object. This condition is tested

by determining the eight connectivity number CN [12] given by

k= j+2

CN = % ('15j - B,) (2.7)

jes k=j

where
s = {1,3,5,7}; 1if k > 8 then k = k - 8
Pj=11ij<0

If the value of CN = 1, then the pixel can be deleted.

(c) Force Calculation

The net force due to the eight neighbours is determined using
the equation (2.6). If the resultant force is not equal to
zero then the pixel can be deleted. The direction of motion of
the particle is determined from the relative magnitudes of x

and y components of the net force.

The edge-points satisfying the above conditions (a) through (c)
are flagged but not removed, as their removal in the same pass
would affect the force calculation for the rest of the dark
pixels in the image. At the end of each pass we have a set of
undeleted dark-points with a value of unity, flagged points
with a negative value (i - MAX) and the white points of value
(- MAX). During the next pass the points with values less than

or equal to (i - MAX) are considered as white points. The
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flagging technique [15] used thus eliminates the necessity for
an additional scan through the binary pattern to delete the
flagged points. 1In addition it helps in the reconstruction of

the criginal pattern from the skeleton.

In each pass one layer of boundary pixels are removed. The
thinning process stops when no further deletion occurs. To
delete the redundant pixels, the resulting thinned pattern is
then scanned and every dark pixel is tested against the Boolean

expressions given in equations 2.8 to 2.11.

P1*P3*P6 = 1 (2.8)
P3*P5*%Pg = 1 (2.9)
P5*P7%*P2 = 1 (2.10)
P7*%P1#*P3 = 1 (2.11)

These expressions correspond to the configurations given in
Figure 2.5. If any of these expressions has a true value, then

the dark point under consideration is deleted.

2.5. Analysis and Performance of the Algorithm

It can be seea from section 2.3 that the steps 1 and 2 can be
performed in one raster scan. In every pass every pixel has to
be examined for dark point and hence the number of operations
is proportional to the area of the input pattern. The number
of passes is dependent on the thickness of the object. Thus
the time complexity of the algorithm can be written as O(n*m#*w)
where n and m are the raster scan area measurements and W is

half the largest thickness of the object.
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Figure 2.5: Configurations for Redundant Pixel Removal

The skeletons generated by this algorithm have been found to be
able to preserve well the connectivity with no excessive
erosion of end points. In addition the topology of the object
is also maintained by the skeletons. For evaluation purposes,
a set of binary patterns from various papers published in the
literature have been chosen. We have also added some charac-
ters from Chinese and Tamil 1languages which are typically
complex in shape. Table 2.1 shows the test patterns and the
processing time required for each of the patterns. The set of
binary patterns and the generated skeletons are given in the
Appendix. Pixels retained as skeleton are denoted by '#' and

pixels deleted from the original patterns are denoted by '~-'.

It can be seen from the results that the skeletons produced are

lines of single width and are also smooth and the processing
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Table 2.1: CPU Times for Thinning of Characters in the Data Set

CODE CHARACTER CPU TIME
c1 A 0.546
v c2 B 0.218
: c3 E 0.692
% ca G 0.217
1 cs H 0.446
E cé 0 0.884
: c7 Q 1.091
cs R 1.081
‘ co s 0.198
C10 Y 0.754
c11 X 1.037
ci2 e 0.781
J c13 g 0.971
; C14 n 1.037
~ c15 u 0.915
c16 & 1.058
| c17 g 0.662
L cis e 1.272
c19 D 0.740
c20 @ 1.702
c21 o 1.270
c22 6 1.110
c23 - 0.194
c24 2 0.929
: c25 4 0.534
c26 5 0.551
: c27 6 0.240
: c28 8 0.234
; c29 A 2.138
f c30 -] 1.371
j c31 &) 1.390
; C32 * 0.882

A
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time required ranges from about 0.2 to 2.15 CPU seconds for
matrix sizes of 10 X 20 to 60 X 60. The processing time is
found to decrease considerably with the patterns produced by a
low resolution scanner. Since the algorithm is based on the
raster scan of the binary image, a priecri knowledge of the
contours is not needed as in the case of contour tracing
algorithms. This makes the algorithm desirable for characters
with islands and for composite characters containing multiple
components or radicals like many of the Chinese and Tamil

language characters.

Figure 2.6 shows the skeletons produced for two pixel wide
horizontal, vertical, diagonal, intersecting lines and squares
of dimensions 2x2 and 3x3. These are considered to be difficult
test patterns for thinning algorithms [31) and are useful for
identifying defects in the connectivity and medial curve
preservation. It is found that the algorithm produces no
redundant pixels and that the images are reduced to single line

thickness for these typical test patterns.

Consider the skeletons generated for the characters 'A' and 'H'
respectively embedded with salt and pepper noise, shown in
Figure 2.7a and 2.8a. It is found that a spurious tail is
generated for the 'H' and a loop is formed in the 'A', The
algorithm treats the presence of any salt noise as an island
and so a connection is provided to it. This results in the

loop formation as denoted by a circle in Figure 2.7b. By using
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the smoothing algorithm introduced by Chu and Suen [17] to
remove the salt and pepper noise, it is found that the spurious
tails can be removed. Thus filtering results in good skeletons

(Figures 2.7c and 2.8c).

The skeletons produced by CPM follow the variations along the
boundary very closely. In Figure 2.3 the filling of the salt
noise in character '2' does not eliminate the spurious tail as
seen in Figure 2.9c. The loop in the skeleton of Figure 2.9b
due to the salt noise is eliminated but the tail still exists
because of the protrusion along the boundary. In situations
where the input patterns contain thick patches, such as the
character 'Y' and 'the moving man' shown in the Figure 2.10,

this algorithm introduces end point erosion.

The performance of the algorithm is tested against four other
algorithms reported in the literature and has been found to be
the second fastest, next only to the Distance Transformation
(DT) method. With thin characters the CPM is found toc be faster
than the DT method. This makes the algorithm more desirable
than other methods for processing of binary patterns generated
by a low resolution scanner. Details of the comparison between
various algorithm are given in Chapter 4. The CPM has the
ability of reconstructing the pattern with the least amount of
mismatch with the original pattern. The reconstructability of

the algorithm is explained in detail in the following section.
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Figure 2.7: Effect of Salt Noise (CPM)
a) Original Pattern
b) Skeleton with Salt Noise
c) Skeleton without Salt Noise
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Effect of Pepper Noise (CPM)

a) Original Pattern with Pepper Noise
b) Skeleton with Pepper Noise

c) Skeleton without Pepper Noise
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. (c)
Figure 2.9: Examples
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Figure 2.10: Results of CPM Illustrating End Point Erosion
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2.6. Reconstructability of the Pattern

Reconstructability is one of the desirable features expected of
a thinning scheme. This feature becomes useful in the data
compression and transmission applications like storage of maps
and facsimile transmission [4,5). A good skeleton should keep
all the topological properties of the original image. Thus
starting from an ideal skeleton 1lying on the ridge of the
Euclidean distance transformation, the original image can be
reconstructed. However, in practice, the skeletons derived are
not ideal since they are based on the discrete approximation of
the continuous Euclidean space. Thus exact reconstruction is
not feasible. There is always some salt and pepper noise
present. Davies et al [32] concluded that the reconstructed
pattern should lie within the original pattern. Further they
stated that the reconstructed pattern with a one pixel width
mismatch along the boundary of the original pattern is an
acceptable standard. Applying the Pavlidis algorithm (33] for
reconstruction to the skeletons obtained by CPM algorithm, it
is found that the reconstructed images are generally of

acceptable standard with some exceptions (Figure 2.11).

The Process of Reconstruction:

Initially, as described in section 2.3, thinning is performed
on the input binary picture. For every dark-point in the
skeleton its 4-direct white neighbours are tested. These 4-
white neighbours will have either a value of (- MAX) corres-

ponding to white pixels or a value of (i - MAX) corresponding
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to the dark pixels deleted from the pattern. The minimum among
these values is taken and to this (MAX + 1) is added. The
resulting value is assigned to the dark-point under

consideration.

This wvalue is used in performing the reconstruction of the
pattern. Starting with the highest wvalue among the skeletal
points, say i_,., the skeleton is scanned for pixels carrying
the value i ... For each of these pixels the direct 4-neigh-
bours are examined for their existence in the skeleton. If they
do not exist then, they are added to the skeleton with a value
- 1). During the next scan the pixels with the value

of (ijax

of (i - 1) are considered. The above process of checking

max
for the existence of the direct 4-neighbours and adding them to
the skeleton is repeated until the value of i ,, becomes unity.
The final resulting pattern made up of the pixels with values
greater than zero, corresponds to the reconstructed pattern for
the skeleton under consideration. The skeletons and the recons-
tructed patterns for the characters 'e' and 'n' are shown in

Figures 2.11 and 2.12 respectively. The points of mismatch are

indicated by '-' in the reconstructed image.
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3. BELECTION OF ALGORITHMS8 FOR COMPARISON

In order to evaluate the performance of the proposed CPM
algorithm, four existing algorithms in this area are chosen
for comparison. Their selection is based on the different
methodologies employed for thinning. As described in section
1.2, algorithms published in the literature can be broadly
classified into two groups viz., thinning algorithms and
skeletonising algorithms. Thinning algorithms are further
classified depending on whether the picture is raster scanned
or contour traced in obtaining the skeletons. We have selected
the Safe Point Thinning Algorithm (SPTA) since it is a raster
scan based thinning algorithm and has been proved to be the
fastest [15]. Our second selection is based on the contour
tracing which uses the Distance Transformation [18] and is
referred as DT. Similarly for the skeletonising methodology,
a modified versions of the Maximum Sguare methodology (MSM)
[34] and the Maximum Circle methodology (MCM) [34] have been
chosen. In the following section all the above four algorithms
and their implementation details are described. All the
algorithms are implemented on Cyber CDC830D computer using

Pascal language.

3.1. Bafe Point Thinning Algorithm (B8PTA)
3.1.1. Description of the Algorithm
The Safe Point Thinning algorithm was implemented by Nabil J

Naczache [15]. This algorithm is based on the raster scanning



of a binary pattern. It produces skeletons with no spurious
tails if the input is a smoothed pattern. This algorithm
first classifies each edge~point to be either left, right, top
or bottom edge-points as described in Chapter 1. For each of
these edge-points a Boolean expression is specified which
would check if the point is a "safe-point". A safe-point is
either an end-point or a break point and the removal of it
from the pattern would result in excessive erosion or break
the connectedness of the pattern. These Boolean expressions
are based on the four windows shown in Figure 3.1, which are
the only configurations to be tested for the end-point, break-

point and excessive erosion conditions.

* X X X X
P X ) X
x | % X * p 4
X x| x| x
p * P
X X X | x
x: Don't cares *: Dark points

Figure 3.1: Safe-Point Pixel Configurations [15]
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The algorithm consists of two scans per pass and the labelling
technique used helps in the reconstruction of the original
pattern. 1In the first scan the left and right edge-points are
processed, and in the second scan only the top and bottom
edge~-points are considered. Scanning can be done in either
rowwise or columnwise fashion. The thinning process consists
of a number of passes and in each pass a set of dark points
are flagged for their deletion from the pattern. The steps

involved in each pass are as follows:

Step 1: Scan the binary pattern. Once a dark point is
encountered check it for edge-point condition. 1If the dark
point is an edge-point go to step 2, else continue the

scanning.

Step 2: Depending on the type of the edge~point (left or
right), apply the appropriate boolean expression given below.
If the value of S is false, then the dark point under
consideration is a safe-point and hence is not flagged for

removal.

For Left Bafe-Point:
S = P3.(P4+P5+P1+P2). (P5+P6) . (P1+P8) (3.1)
For Right Safe-Point:
S = P7.(P8+P1+P5+P6) . (P1+P2) . (P5+P34) (3.2)

where P's are dark points and P's are white points.
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Step 3: Repeat steps 1 and 2 till the very end of the pattern

is reached.

Step 4: Start the second scanning of the same pass and repeat
steps 1, 2 and 3 looking for only the top or bottom edge-
points now. Identify the safe-points and flag those top and
bottom edge-points that are not safe-points by using the

appropriate Boolean Expression given below:

For Top Bafe-Point:

S = P5. (P6+P7+P3+P4) . (P7+F8). (P3+P2) (3.3)

For Bottom Safe-Point:

S = P1.(P2+P3+P7+P8) . (P3+P4). (P7+P6) (3.4)

Repeat the steps 1, 2, 3 and 4 until no single flagged point

is encountered in a pass. Then the thinning process stops.

3.1.2. Implementation of the Algorithm

The input binary pattern is read onto a matrix of integers
with the dark points assigned a value of '0' and the white
points a negative value of, say (- MAXINT), where MAXINT is
the largest number that can be stored in the computer. As
stated earlier each pass consists of two scans and in each
scan only the edge-points are tested. Each pass consists of

the following two steps.
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Step 1: 1In the first scan the right and left edge-points are
identified. The Boolean expressions (3.1) and (3.2) are
evaluated depending on the type of edge-point to determine if
it is a safe-point or not. 1If it is a safe-point, then it is
assigned a value of 'i', which corresponds to the pass number
and a non-safe-point is assigned a negative value of

(i - MAXINT).

Step 2: Similarly in the second scan of the same pass, the
top and bottom edge-points are identified and tested for a
safe-point or not using the equations (3.3) and (3.4) and

assigned values accordingly.

Thus at the end of a pass we have a set of white-points marked
with value (- MAXINT), flagged non-safe-points marked with a
value of (i - MAXINT), safe-points marked with value i and
dark-points marked with value 0. During the next pass, only
the edge-points with value 0 are processed. Those points
below 0 are automatically considered as white points and the
necessity to have a third scan in each pass to delete the
flagged non-safe-points is avoided. The points having a value

greater than zero form the skeleton.

In order to reduce the processing time, the following
refinements are done:

(a). Minimising number of scans: As described in section
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3.1.1., each pass consists of two scans and the first scan
flags only the left and right edge-points, whereas the second
scan flags only the top and bottom edge-points. If in the
first scan of a pass, only the left edge-points are flagged
then during the first scan of the next pass only the left
edge-points have to be tested for flagging. Also if nc points
were flagged during a scan, say the second scan of a pass
then, during the next pass only the first scan has to be
initiated. This is because if the second scan did not flag
any points in a pass, then it will not flag any point in the

subsequent pass.

(b). Testing Boolean expressions: The Boolean expressions
(3.1) to (3.4) given in section 3.1.1 are evaluated by using
the decision trees given in Figure 3.2, thereby reducing the

number of points to be checked.

(c). Labelling technique for reconstruction: The labelling
technique used in the implementation has the following two
advantages: In each pass only the dark points with value 0
are considered for processing. This eliminates the necessity
for having a third scan in each pass to delete the flagged
non-safe-points which are assigned a negative value of

(i - MAXINT). Secondly this labelling technigque helps in the
reconstruction of the original pattern as described later in

section 3.1.3.
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c) Tree for Left Safe-Point d) Tree for Bottom Safe-Point

Pj: 8-neighbour being visited
S : Safe-Point

F : Flag-Point

t: Denotes Boolean value True
fe.

: Denotes Boolean value False

3

Figure 3.2: Tree Structure for Boolean Expressions [15]
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3.1.3. Analysis of the Algorithm

The skeletons produced by SPTA are smooth and have well
preserved connectivity. They are of single width thickness
and have no redundant pixels. The binary patterns and the
corresponding skeletons generated by the algorithm for
characters 'A' and 'H' with salt and pepper noise are shown
respectively in Figures 3.3 and 3.4. It has been found that
the spurious tails are generated due to such noise. Hence the
input binary pattern has to be preprocessed. The resulting
skeletons are also affected by small protrusions along the
border of the input binary pattern as can be seen from the

skeleton generated for the character '2' in Figure 3.5.

Since the algorithm is based on the raster scanning of the
pattern, the presence of islands or composite characters do
not affect the speed of the algorithm "drastically" and hence

makes it suitable for Tamil and Chinese languages.

In case of the lines with double width, the algorithm
generates fairly good results as illustrated by Figure 3.6.
The algorithm is also isotropic as the skeletons generated for

various angles of rotation are the same.

The algorithm has the ability for reconstruction. The
Reconstruction algorithm used is the same as that of Pavlidis

[33), described in Chapter 2. It has been found that the
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reconstructed pattern is of acceptable standard. The skeletons
and the reconstructed patterns are shown in Figures 3.7 and

3.8 for characters ‘e' and 'n'.

3.2. Sequential Thinning of Binary Patterns using Distance
Transformation (DT)

3.2.1. Description of the Algorithm [18]

This is a sequential thinning algorithm based on the contour

tracing technique. This algorithm makes use of the distance

transformation information in order to avoid the overshrinking

at the end points. The algorithm consists of the following

steps:

Step 1: Apply the "4-neighbour distance transformation" for
the input binary picture. According to this transformation,
the density value of every dark pixel will become the distance
of that pixel to the nearest white pixel i.e. the distance is
determined as the length of the path from the dark point to
the nearest white point where a path consists of horizontal

and vertical steps of unit length.

Step 2: Scan the resulting picture of step 1 till a dark
pixel with a density value of one is encountered. Starting
from this point, trace the border in a clockwise direction.
Delete the border points which satisfy all the following

conditions (a) through (d). If either condition (a) or (b)

57



——— -t

ey B et et

BB s WS W W WD

Figure 3.7:

-111111111~
-11222222222111
--1221111111232221
-1211 1233321
--121 -1234321
1121 1234321
-1221 1234321
12321 1234321
12321 -1234321
1234321 1234321-

1234432111111111111233321--
1234543222222222222222221-~~
-1234321111111111111111} -~~~
1234321
-12321
-12321
-12321
1234321
1234321
1234321
1234321
-1234321
123454321

12344321

123454321

123454321 121

=-1234543211 11121

~=-1234543221----- 1112221
-12344333211112222321
--123344432222333221

-1223333333322211
1122222222111
111111111

11~
121
-121

Reconstructed Pattern (SPTA)

58




Cateh

cmmm mmeeeeee. 1111 11111-112
---------------- --- 1122221 -122222:222:
---------------- 32333 ecmane --1122333221-11222333223321
celmmemmem- 222----- I34mmun -122224444221222222222444321
---3445-35422-=---==m- PR -1234455324321111111122454322
----- PR —————yee- 12245633322~ -1234432}
----- ERRP ———den- -122454221 1224328
s Lot §oun 1234221 1224322
eem3e=  ee- je-n -1232 1234328
O — jeum -1232: 1224321
. - S -12222 1234321
e — PR -1232 1224321
ceedem  eea jomm -1222: 1234322
emedem  eee §emm -12222 1234322
cem3em ema PR -1232: 1234321
B - P -1232: 1234321
—eelae —emie-- -12321 1234322
cme3ee e 4emm -12321 1234321
e LT PR -12321 1234321
——e3e- TP 12320 1234321
cmelee eae TR 12321 1234322
—me3ee e jomm 12221 123432:
“==3-=  ee- juun -1222: 1234322
. - 12222 1234320
R L jo== 12221 1234321
cee3em  ee- jomm -12221 1234321
B - PR -1232: 1234321
B — geem 123221 1234321
cemmdmme ame PR -1234221 1224321
R e 122424321 12344321
---33--=33-- --=33--13-- 112333233321 11233333321
--222-===o== 22+ ==222e----- 22-- -12222221222221-  -.222222222221-
clemememmmm——— 1e  eleeeecwssees 1= -1111111-1311111-  -1111111111111-

Figure 3.8:

Reconstructed Pattern (SPTA)

59



does not hold, then the dark point under consideration is a
final point.

(a) The 8-connectivity number of the border point
under consideration is one.

(b) The number of dark pixels in the 8-neighbourhood
is more than one.

(c) There exists no dark 4~-neighbour which satisfies
the condition "the value of the border point
minus the value of the dark 4-neighbour is one".

(d) The border point under consideration is not a
final point.

The density valiues of the deleted pixels are changed into zero
and those of the final points are set to a large value greater
than the maximum distance value. This process of border
tracing and peeling continues until no more pixels can be

deleted.

Step 3: Check the input picture for the existence of any holes
or islands. If an is island present in the picture, then
repeat step 2 starting from the interior border and working
towards the exterior and tracing the border in a counter-

clockwise direction.

Step 4: This is a postprocessing stage where the two pixel
wide skeletons are reduced to single pixel wide lines. This

is achieved by scanning the resulting picture of steps 2 and
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3, deleting the dark points which are not candidates for final
points and satisfying condition (a). Finally the dark points

that are retained form the skeleton of the input picture.

3.2.2. Implementation of the DT Algorithm

The scanned binary picture is represented as a matrix of
integers, where the dark points are assigned a value of 0 and
the white points are assigned a value of (- MAXINT). This
initial binary picture is then distance transformed [36] using

step 1 of section 3.2.1.

The transformed matrix is scanned from left to right and top
to bottom. Once a dark point is encountered, the contour
tracing is started and is done in clockwise direction. The
dark points along the contour are tested against the
conditions (a) through (d) given in step 2 of section 3.2.1.
If the border point under consideration is a final point then
it is assigned a value of MAXINT, and for the deletable points
the value assigned is 0. the contour tracing is continued
until there are no deletable pixels in a complete round of the

contour.

The raster scanning is continued looking for islands and
additional characters in the input matrix. If there are
islands present then the contour tracing and peeling are done

for each island in a counter-clockwise direction starting from
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the interior boundary and working towards the exterior.
Similarly for each of the additional character in the input
pattern, the exterior and interior (if an island is present)

contour tracing and border peeling are carried out.

Finally the postprocessing is done to reduce the two pixel
wide skeletons to single pixel wide skeletons. This is
achieved by scanning the resulting pattern and deleting the
dark points which are not final points and yet they satisfy
condition (a) in step 2 of section 3.2.1. The skeleton is
formed from the dark points with a value of MAXINT. The
distance transformed pattern and the skeleton generated by the

algorithm are shown in Figure 3.9.

3.2.3. 2Analysis of the DT Algorithm

The border peeling and the prevention of excessive shrinking
result in medial 1line for most cases. For patterns with
protrusions on the border, as in character '2' of Figure 3.10,
this algorithm produces noisy branches. Hence, the algorithm

needs a "shape smoothing", prior to the thinning process.

Presence of salt and pepper noise also tends to deteriorate
the performance of this algorithm. Figures 3.11 and 3.12 show
respectively the effect of salt and pepper noise on the
skeletons generated by the algorithm. The results obtained

after smoothing [17]) are better in the sense that there is a
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reduction in the number of noisy branches produced. In the
case of patterns with islands and composite characters the
algorithm takes more time for processing, because additional
border tracing and peeling processes are required. Hence,
this algorithm is optimal for languages like Tamil and Chinese
as the majority of characters in these languages have multiple

characters and one or more islands.

The Distance transformation algorithm requires only four scans
of the pattern and border tracing(s) irrespective of the width
of the binary patterns. The processing time is found to
increase slowly with an increase in the width of the binary
pattern. Table 3.1 shows the processing time in CPU seconds
for a rectangle as the width is increased from 2 to 10. Hence
this method is best suited for patterns which contain highly

varying widths.

Oon the average this method is found to be the fastest among
all the five algorithms under consideration. The DT method is
however slower than the CPM methodology in the case of thin

input patterns of width less than 5 pixels.
By making use of the distance transformation values corres-

ponding to the skeletal points, the original pattern can be

reconstructed by applying a reverse distance transformation.
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Table 3.1: CPU Times for Thinning Rectangles of 40 x n

n CPM DT SPTA MSM MCM

10 0.622 0.404 1.170 1.202 2.005
9 0.540 0.384 1.055 l1.108 1.721
8 0.485 0.344 1.012 1.037 1.610
7 0.407 0.327 0.928 0.961 1.421
6 0.360 0.291 0.887 0.906 1.224
5 0.289 0.269 0.814 0.851 1.102
4 0.246 0.236 0.771 0.845 1.031
3 0.190 0.217 0.714 0.825 0.920
2 0.156 0.178 0.695 0.821 0.845
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The original and the reconstructed pattern are shown in
Figures 3.13 and 3.14 for characters 'e' and 'n' respectively.
It is found that the reconstructed patterns have more mismatch

points than the CPM.

3.3. Tracing Centre-Lines of Digital Patterns using Maximal
8quare Moving Algorithm (MSM)

3.3.1. Description of the Algorithm

The Maximal Square moving methodology proposed by Wakayama
[37]) generates a structural description of the skeletons
obtained from the input binary pattern. This algorithm is
based on the medial axis transformations applied to discrete
images. It is distinct from the conventional methodolc ries in
that it is based on an "input-time tracing principle". a
modified version of the algorithm which was implemented and
tested by Abairid ([34] is used in this thesis for the
comparative study. Squares of zero width are initially formed
which are then expanded to higher sizes as the scanning
proceeds. Hence the name "Maximal Square Moving". The
modified version allows the maximal squares to have a few
white points on the periphery of the squares and thereby
reduces the number of noisy branches in the skeletons as it
accommodates ruggedness along the edges of the pattern. The
core lines are successively developed as the input binary
pattern is read in row-major form and by simultaneously moving

maximal squares across the pattern. The algorithm operations
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are composed of the definitions of a square and enlargement of
square. It has the advantage of reconstructability of the

original pattern from the core lines.

Consider the digitised binary pattern shown in Figure 3.15.
The ordered pair <(i,3j),1> is used to denote a square where i
and j correspond to the row and column of the upper left most
corner of the square and 1 is the side length. In Figure 3.15
as the first row is input, two squares <(1,3),0> and
<(1,10),0> are initially defined. When the second row is
input, the squares <(1,3),0> and <(1,10),0> are enlarged to
squares <(1.3),1> and <(1,10),1> respectively. Similarly when
the third row is input, the above squares are enlarged to
<(1,3),2> and <(1,10),2>. When the fourth row is input the
square <(1,3),2> is enlarged to <(1,3),3>. However, the
square <(1,10),2> cannot be enlarged and it is the only
maximal square at that point. The pixels on the sides of the
ma.<imal squares are further used to define and derive new
squares. Enlarging operations are carried out on these newly
derived squares. Thus from the maximal square <(1,3),3> two
new squares <(2,2),1> and <(3,7),0> are derived. From the
maximal square <(1,10),2>, the square <(2,12),2> is derived.
The derivation from <(3,7),0> and <(1,10),2> leads to the
maximal square <(3,3),2>. The adjacent maximal squares are
successively connected to each other and the core-lines are

formed by joining the centres of the adjacent squares as shown
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T

Columns 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Row 1 6 01 1 1 1 0 0 0 1 1 1 0 0 O
Row 2 6111 110 0 0 1 1 1 1 1 0
Row 3 611 1111 1 1 1 1 1 1 10
Row 4 6 o1 1 11 0 1 1 1 0 1 1 1 O
Row 5 6 0 60 0 o 0o 0 111 0 0 O 0 O

Figure 3.15: Digitised Binary Pattern

- - -~

- :0riginal Pattern * :Skeletal Points

Figure 3.16: Core-line Representation
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in Figure 3.16. Thus the core-line connectivity is defined in
terms of the maximal square adjacency relation instead of the

4 or 8 neighbour connectivity.

3.3.2. Implementation of the MSM Algorithm [35]
As a first step, the input binary pattern is stored in a link-
list structure instead of the matrix representation by using

the following definition of Groups.

Group: A group 1is a set of consecutive dark points in the
same row and each row may contain more than one group. Each
group consists of a beginning point B and an ending point E.

Let Mat(K,N) be the input matrix of size KxN.

The mt? group G in the Jt" row is defined as

G, = { Mat(J,P) ! Mat(J,P) =1 ;

P = BJm' (B+1)Jm' LI I EJm.

With reference to Fiqure 3.15, there are 9 groups for the
input pattern. Row 1 has 2 groups, Row 2 has 2 groups, Row 3
has 1 group, row 4 has 3 groups and row 5 has 1 group. This
input pattern can be finally represented by a link-list
structure as shown in Figure 3.17, by storing the beginning B
and ending E points of all the groups, taking care to maintain

the adjacency between groups of the same row and between rows

74



nEo0x

Columns

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1l 1l - 1 1 h |
\ A |
1 1 1 1 1 =1 1 1l 1 1 1

Figure 3.17: Link-list Representation for Figure 3.15
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by applying the Rule 1 given below. This link-list structure
is used to define the squares.
ule 1:
{ (Bjs;™ < E;”) and (E;;,™ 2 B;") 1}
where

J represents the row number and m,n are group indices.

Step 1: Define a Square:
At the beginning of each group in every row, a square of size

zero width is initially defined.

Step 2: Enlarge the Squares:
The above defined squares of unit size are further enlarged by
using the B and E of the current group in the Jth row along
with a group in the J+L'P group where L satisfies the Rule 1
and Rule 2 given below. The value of L is incremented by 1 if
both Rules 1 and 2 hold and another group from the row J+L is
tested by rules 1 and 2 for a possible bigger square. This
iterative process of enlarging the square continues until one
or both the rules fail. At this point L also represents the
number of groups comprising the square. When the squares
cannot be further enlarged then go to step 3.
ule 2:

a: { (Bjy " < P and (E;," > P;"+ L) }

b : The pixel at position (P+L) in all groups

comprising a size (L) square must be black

76




m,n : group indices in rows J and J+L

P : B, B+1, ..., E~-1, E.

Step 3: Redundancy Check for the Squares Derived:
The newly derived square is added to the maximal square list
depending on whether it is a duplicate or is inside a larger

sguare previously defined and derived.

Step 4: Propagation:
Advance to the next pixel of the current group and repeat

steps 1 through 3 unless the following condition is true:

Maximal Square Condition:
The Ending point (E) of the first group in the square

is less than or equal to (P+L).

If the above condition is true then advance to the group in

the next row which satisfies the Rule 1 and invoke step 1.

It is found that the presence of spurious tails in the output
can be eliminated or reduced by having a few white pixels on
the periphery of the maximal squares. However, the number of
white pixels allowed on the periphery should be < L, where L

is the size of the maximal square. The outputs for a pattern

is shown in Figure 3.16. It is found that the maximal square
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centres do not always lie on the pixel in the binary picture
due to the following reasons:

(Cl). The centre of the maximal squares of even pixel
width (2,4,..) cannot be represented in digital
co~ordinates.

(C2). Overlapping squares are not always the same size.

The pattern is expanded so that the centres of the maximal
squares fall on a pixel. This takes care of the problem C1
stated above. Secondly to provide 8-connected centre-lines,
a filling algorithm is used which is explained in the

following section.

Filling Algorithm: The implementation considered makes use of
a 66-pixel window as shown in Figure 3.18a. Generally the
size of the window is chosen based on the longest path between

the two centres of the maximal squares encountered.

Step 1: The window is moved along the pattern from one
maximal square to the other from left to right and from top to
bottom. As the window is moved the current maximal square's

centre is aligned with the point 'C' in the window.
Step 2: If a maximal square's centre 'S' occurs within the

points marked as '*' and the 'C' then fill the gap between the

‘'C' and the 'S' with '*!',
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Step 3: Ignoring the first row of the window, look for the
occurrence of another maximal square centre within the window
with the shortest path from point 'C'. If this is found then
fill the gap. If there exists two centres which are equi-
distant from the point 'C' and the distance between them is
greater than 3 pixels, then £ill both the paths; otherwise

fill the gap between the point 'C' and the leftmost centre.

Step 4: Repeat steps 1 through 3 until all centres are
covered. An example of the filling algorithm is shown in the
Figures 3.18b and 3.18c, for both the original and the

expanded pattern.

3.3.3. Analysis of the MSM Algorithm

In the implementation of this methodology, instead of the
conventional way of storing the binary pattern in a matrix
form, a link-list structure is employed and so the image
memory required is less. However, the skeletons generated and
the processing speed very much depend on the sequence in which
the binary pattern is read. Generally, this algorithm produces
good medial lines for some patterns but noisy ones for others
as can be seen from the Figures 3.19 and 3.20. Also it is
found that the medial lines follow closely the variations
along the boundary of the input pattern. Further in certain
cases as can be seen from Figure 3.21, double centre lines are

generated. This algorithm sometimes introduces connectivity
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(a): 66-Pixel Window

Original Pattern Expanded pattern
not filled not filled

- o o o
0= ©0=0-00- @ = e e e e - e - - -
o--0--0 =-- o o o
-=-0=-- =-O- - -0 - - - - -

—— - o
(b)
Original pattern Expanded pattern
filled filled
- - - 0000000 - -
- o o o o000
Oo- 000000~ -0~ - - 0 - =-O- - -
0--0--0~ -- o] o o
-00-=- =0O=- - 00000 = -0 -
-— -- o

(c)
Figure 3.18: Illustration of the Filling Algorithm
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Figure 3.19: Skeletons Generated by MSM Algorithm
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Figure 3.20: Examples of Noisy Skeletons Generated by MSM
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Figure 3.21: Double Centre Lines Generated by MSM

83



between two disjoint strokes or parts of a pattern as can be
seen from the Figure 3.22. This is due to the filling
algorithm which does not take into consideration the adjacency
relation between groups of the same row or between rows. When
patterns have straight edges (horizontal or vertical) as in
Figure 3.23, the MSM algorithm produces better results. Aas
the thickness of the character is reduced, the processing time
also decreases since the time required for the enlargement
phase of the algorithm is less. The processing time is found
to increase with an increase in the number of branches in the

input pattern, because each branch is processed independently.

The algorithm has the ability of reconstructing the original
pattern from the core-line information. The core-line
information generated by the algorithm consists of the
coordinates of maximal squares defined along with the size of
the squares. From this, the original pattern can be
reconstructed by initially starting with a matrix of white
pixels and then adding dark pixels that make up each maximal
square. The reconstructed patterns for the characters 'e' and
'n' are shown in Figures 3.24 and 3.25 respectively. The
reconstructed pattern for the character 'e' is better than
that of the other algorithms at the rounded corner and also
the number of mismatch points is in general less than that of

the CPM, SPTA and DT algorithms.
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Figure 3.23: Skeletons by MSM for Straight Line Patterns
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111111- 11111111

11111113111111131311111111111
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-111111111111111111111111-
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--1111111111111111~-
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-: represents mismatch points between the original pattern
and the reconstructed pattern

Figure 3.24: Reconstructed Pattern (MSM)
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-: represents the mismatch points between the original and
the reconstructed pattern

Figure 3.25: Reconstructed Pattern (MSM)
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3.4. Tracing Centre-Lines of Digital Patterns using Maximal
Circle Moving Algorithm (MCM)

3.4.1. Description of the Algorithm

This algorithm is a modified version of the MSM algorithm

described in section 3.3, in that Circles instead of the

Squares, are moved across the pattern, the centres of which

form the skeleton of the pattern. The use of circles instead

of squares allows curved shapes to be included.

3.4.2. Implementation of the Algoritam [35]
This methodology follows the steps 1 through 4 given in
section 3.3.2 of the MSM algorithm except for the following

changes in rule 2 and the maximal circle condition needed in

step 4.

Rule 2:

{ (By,," < P;" = C) and (Ez ™ 2 E;” +C) 1}
where

C : fixed value for each group in the circle.

current row.

[

current circle size.

b

m,n: group indices in rows J and J+L.

P : B, B+1, B+2, .... , E-1, E.

For the test patterns under consideration, the largest circle

size is found to be 15 pixels wide at the centre and the
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constant 'c' in the above rule is predetermined and given in

Table 3.2 [35].

Maximal Circle Condition :
For all groups passing through the maximal circle
{ (Eg4; < Eo) } is true
where
R : is first group of the circle.
i :0,1, ...., L (circle size).

C : group passing through circle centre.

3.4.3. Analysis of the Algorithm

In general it is found that the processing time for the
Maximal Circle algorithm is greater than that of the Maximal
Square algorithm. This is due to the fact that additional
time is taken by the MCM algorithm for the table look up to
determine the number of pixels in the various groups of a
circle as it is being enlarged. However, this algorithm
generates smoother medial 1lines than that of the MSM
algorithm. As can be seen from the Figure 3.26, the noisy
branches in Figure 3.20 are eliminated. In the case of
patterns with straight edges (comparing Figures 3.21 and 3.27)
the MSM algorithm gives better results than the MCM algorithm.
Figure 3.28 shows the medial lines generated by the MCM
algorithm for the characters 'n' and 162+, It is found that

in these test patterns, the MCM algorithm does not generate
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Table 3.2: Maximal Circle Sizes [35]

Size

1 0 1l

2 0 2 0

3 1 3 0 0

4 1 2 1 1 O

5 3 3 11 1 O

6 4 2 1 2 2 1 0O

7 6 3 1 2 2 2 1 O

8 5 4 1 2 2 2 2 1 0

s 7 3 2 2 3 3 3 2 2 0

10 8 4 1 2 3 3 3 3 2 1 o0

11 8 S 1 2 3 3 3 3 3 2 1 0

12 9 6 1 2 3 3 3 3 3 3 2 1 0

13 11 7 1 2 2 3 3 3 3 3 2 2 1 o

14 12 6 1 2 3 4 4 4 4 4 4 3 2 1 O
15 13 5 2 3 4 4 5 5 5 5 5 4 4 3 2 0

This table shows the maximal circle sizes. The second
column specifies the number of allowed white pixels in
each group needed for the MCM algorithm. The third column
specifies the number of pixels in the first group and the
rest of the columns specify the constant 'C' in rule (3).
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double centre lines in contrast to the MSM algorithm. Unlike
the MSM. the algorithm does not introduce connectivity to
disjoint parts of the original pattern as can be seen from
Figure 3.29. The MCM algorithm also has the reconstructabi-
lity feature. This is achieved in the same manner as that of
the MSM algorithm except that the pixels comprising maximal

circles are determined from Table 3.2.
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4. EXPERIMENTAL COMPARISON OF THE ALGORITHMS

In this chapter we compare the performance of the newly
proposed Charge Particle Methodology with four other
algorithms, namely, the Sequential Thinning of Binary Patterns
using Distance Transformation, Safe Point Thinning Algorithm,
Maximal Square Moving and Maximal Circle Moving Methodologies.
Each of these algorithms is described in detail in chapter 3.
Here, first we propose a standard set of data to establish
consistency in the evaluation of the algorithms. Using this
data set the selected thinning algorithms are experimentally

compared with respect to the following factors:

a. Need for preprocessing.

b. Quality of the skeletons generated.

c. CPU time required for the processing.

d. Reconstructability of the original pattern from

the skeleton.

4.1. Data set Selection

In order to achieve consistent evaluation of the selected
thinning algorithms, a new bench mark input data set is
introduced in this thesis. The characters and binary patterns
in the data set, listed in Table 4.2 and given in Appendix,
have been selected in such a way that the following charac-

teristics occur at least 5 to 6 times in the entire set:



[ e )

1. Multiple branches.

2. Characters with single or multiple islands.

3. Characters with uneven line thickness (as in
character 'e', 'o¢¥' and the moving man).

4. Thin characters or output from leow resolution
scanner.

5. Composite characters (&, L, o, df).

Multiple branch patterns are included to study the behaviour
of thinning algorithms at the junction of branches. It is of
importance as it provides valuable information such as the
location and the number of branches at the junction points
needed for the recognition stage. In addition the effect of
multiple branches on the processing time can also be studied.
The necessity for including thin characters is to test the
performance of the algorithm in order to preserve the end
points and connectivity of existing thin lines. Characters
with multiple islands and composite characters are primarily
included to establish the processing time requirement of each
of the algorithms. Further they are also used to study the
ability of algorithms to provide connected skeletons without

merging adjaceat islands.

The data set consisting of the various input patterns that
satisfy the above mentioned requirements are compiled and used

here for evaluation purpose. It is designed to represent
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features of characters from different languages such as Tamil
and Chinese language characters consisting of a number of
islands, arches and composite strokes. As such, in addition
to a number of characters and other binary patterns from
various papers published so far, a set of newly scanned
characters from Tamil(Indian), Chinese and English languages

are also included in the data set.

This data set and the corresponding skeletons generated by the
different thinning algorithms are given in the Appendix. It
is hoped that this bench mark data set will also be useful to
other researchers working in the field of thinning and

skeletonisation.

4.2. Performance Evaluation of the Algorithms

Preprocessing: From the discussions in chapters 2 and 3, it
is clear that all the five algorithms need preprocessing to
eliminate the effects of salt and pepper ncise. Thus all the
input patterns are initially preprocessed to remove the salt
and pepper noise using the same smoothing process [17]. This
smoothing process consists of elimirating the isolated dark
pixels as well as the small bumps in the pattern and fiiling
in holes in the input pattern. The input binary pattern is
scanned from top to bottom and from left to right. Any dark
pixel P (Figure 1.2) is set to white if the Boolean Expression

given in equation (4.1) is true and P is not a break point
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a) Removing Pepper Noise

b) Filling Holes

Figure 4.1: Smoothing Process

(Figure 4.1a). The white pixels are set to dark if the number

of dark pixels in the 4-neighbour is at least 3 (Figure 4.1Db).

B = (P1+P2+P3) (P5+P6+P7) + (P3+P4+P5) (P7+P8+P1) (4.1)

Quality of the Skeletons Generated: The following features
are generally used for judging the quality of the skeletons

[7,38]:
1. Connectivity

2. Thinness and symmetry of the skeletons
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3. End-point preservation

4. Presence of noisy branches
5. Sensitivity to orientation angle of the pattern

6. Visual Quality

conpectivity: This is the most important characteristic of a
skeleton pertaining to the preservation of connectedness in
tl'e pattern. The skeletons can have either 4 connectedness or
8 connectedness. If we have 4 connectedness, the skeletons
will have redundant pixels at the junctions and alsc stepped
skeletons will be generated. The 8 connectivity gives a
smoother skeleton and hence a better visual quality. In
general we find that the CPM, DT and SPTA generate skeletons
that are smooth and have perfect 8 connectedness. But the
skeletons generated by MSM and MCM algorithms have imperfect
8 connectedness in that there are some redundant pixels

preser:t at the junctions of branches. In some cases, as in
Figure 4.2, MSM introduces connectivity in the skeletons
generated. This is inuroduced by the filling algorithm and is
rather undesirable as the original shape of the pattern is

lost.

Thinness and symmetry of the skeletons: The primary aim of

all thinning algorithms is to generate thin skeletons of unit
thickness. The degree to which this objective is satisfied by

different algorithms is referred to as 'Thinness'. Further,
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the generated skeleton should be symmetric or ‘'isotropic'.
That 1is, the original pattern should be peeled off
symmetrically, so that the resulting skeleton lies along the
medial axis of the pattern and is not biased. All the
algorithms are found to generate almost medial line skeletons
but all of them fail in the case of the character 'e' (Figure
4.3) where the skeletal line is found to lean inwards at the
junction of the varying width strokes, ie. more points are
removed from the outer corner than the inner corner. 1In the
case of the character ' ' the junctions of the varying width
strokes are smoother and hence the skeletal lines are not
biased (Figure 4.4). Furthermore the skeletons generated by

MSM and MCM have redundant pixels.

End-Point Erosion: The end-point preservation is an important
aspect relating to the shape retention by the thinning
algorithms. The end point erosion is found to be the minimum
in the case of SPTA which introduces a maximum shrinkage of 2
points at the ends. In the case of CPM, the end point erosion
is found in patterns where the strokes are slanting and more
than 3 pixels wide as illustrated in Figure 4.5. Nevertheless
it does not deteriorate the topology of the original pattern.
All the shape information is still retained. The MSM and MCM
algorithms also introduce end point erosion when there are
thick patches in the pattern as in Figures 4.6 and 4.7. The

DT algorithm has better end point preservation than the MsM,
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MCM and the CPM and it introduces a maximum shrinkage of 3 to

4 points at the ends.

Noisy Branches: The skeletons generated by CPM, DT and SPTA
algorithms in general do not contain noisy branches. The MSM
algorithm generates noisy branches (as in Figure 4.8) and in
certain cases (Figure 4.9) introduces double centre lines.
The double centre lines and the noisy branches are eliminated
in the case of MCM algorithm as the circles cover more shapes
than the squares. The changes along the contour of the input
patterns also tend to result in noisy branches (as in Figure

4.10) and jaggedness of the skeleton in all the algorithms

considered.

Sensitivity to Orientation Angle of the Pattern: This is
another desired characteristic of any thinning algorithnm.
This requires that the skeletons generated for the various
angles of rotation of the input pattern should preserve the
geometry or the shape of the pattern. The CPM, DT and SPTA
algorithms preserve the geometry of the pattern under varying
angles of rotation even though there is no pixel to pixel
match in the skeletons generated. The MSM and MCM algorithms
also generate similar skeletons when the pattern is rotated
about 90 degrees. But in the case of other angles of rotation
(45, 30 degrees etc.,), the skeletons are not the same as can

be seen from the Figure 4.11.
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Visual Quality: This criterion is a subjective evaluation and
would normally introduce a bias of the evaluator. As far as
tne visual quality is concerned the algorithms CPM, DT and
SPTA provide better appearance. The other two algorithms

viz., MSM and MCM are comparatively inferior.

With respect to quality of the skeletons generated, as
summarised in Table 4.1, the algcrithms can be ranked in a
descending order as SPTA, DT, CPM, MCM and MSM, with the SPTA

being at the top.

4.3. CPU Time Required for Processing

All the algorithms are written in Pascal language and tested
on a CYBER CDC860 computer. The CPU time refers to the time
required for processing each character. This is obtained as
an average over 100 executions for each character processed at
various times of the day. The CPU time required in seconds
for all the algorithms is given in Table 4.2. The DT algorithm
is found to be the fastest on the average, followed by the
CPM, SPTA, MSM and MCM. The SPTA algorithm is much slower
than the CPM and in most cases, but faster than the MSM and

MCM algorithms.

The CPU time for rectangles with sizes varying from 40 x 10
down to 40 x 2 are measured and are given in Table 3.1. The

corresponding Figure 4.12 shows the graph for CPU time versus
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Table 4.1: Comparison
Algorithm

Characteristics

CPM pT SPTA MSM MCM
Connectivity p-8 P-8 P-8 I-8 I-8
Skeleton Symmetry Fair | Good Good | Fair |Fair
Thinness of the Unit Unit Unit Multiple
skeleton width width | width Pixels
Presence of End-point Yes No No Yes Yes
Erosion
Presence of Noisy No No No No No
Branches
Sensitive to Orient- No No No Yes Yes
ation of the pattern
Visual Quality Good Good Good Fair Fair

P-8: Perfect 8 connectedness

I-8: Imperfect 8 connectedness
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Table 4.2:

CPU Times in Seconds

CHARACTER | CPM DT SPTA MSM MCM
A 0.546 | 0.522 | 1.640 | 1.249 | 1.982
E 0.692 | 0.763 | 1.843 | 2.921 | 4.360
e 0.781 | 0.786 { 1.931 | 2.123 | 3.669
g 0.971 | 0.983 | 2.115 | 4.453 | 6.715
H 0.446 | 0.444 | 1.380 | 0.982 | 1.495
n 1.037 | 0.968 | 2.180 | 2.194 | 4.043
o 0.884 | 0.698 | 1.791 | 1.881 | 3.339
Q 1.091 | 0.963 | 2.407 | 3.230 | 6.188
R 1.081 | 0.987 | 2.385 | 3.353 | 6.027
u 0.915 | 0.632 | 1.740 | 1.489 | 3.047
Y 0.754 | 0.617 | 2.048 | 1.732 | 2.336
X 1.097 | 0.894 | 2.294 | 2.710 | 5.244
G 0.217 | 0.236 | 0.853 | 0.609 | 0.886
B 0.218 | 0.255 | 0.921 | 0.645 | 0.941
S 0.198 | 0.245 | 0.815 | 0.590 | 0.875
-3 1.058 | 1.118 | 2.286 | 4.378 | 7.344
g 0.662 | 0.675 | 1.74 2.083 | 3.315
e 1.272 | 1.131 | 2.605 | 3.940 | 8.411
P 0.740 | 0.844 | 2.096 | 3.418 | 5.456
& 1.708 1.249 2.850 7.240 11.88
(LY 1.270 | 1.107 | 2.728 | 4.291 | 6.998
&2 1.114 | 0.966 | 2.609 | 5.585 | 8.358
— 0.194 0.224 0.823 0.543 0.739
A 2.138 | 1.704 | 4.267 | 5.181 | 9.249
5] 1.371 | 1.373 | 2.822 | 5.066 | 8.849
) 1.390 | 1.258 | 2.771 | 5.370 | 9.518
s 0.882 | 0.819 | 2.178 | 3.285 | 4.550
2 0.929 | 0.713 | 2.216 | 2.083 | 3.207
4 0.534 | 0.513 | 1.271 | 1.142 | 1.695
5 0.551 | 0.571 | 1.736 | 1.711 | 2.708
6 0.240 | 0.260 | 1.216 | 0.776 | 1.073
8 0.234 | 0.262 | 0.856 | 0.876 | 1.237

Average 0.863 | 0.765 | 1.895 | 2.671 | 4.207
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the width of the rectangle. It can be seen from the graph
that the CPM and DT algorithms are much faster than the other
three algorithms. The curve for the DT methodology has the
smallest gradient and that of MCM has the maximum gradient.
Hence if the input patterns have uneven thickness it |is
advantageous to use either the CPM or the DT methodologies.
Although the CPM algorithm appears faster than the DT when the
width of the patterns is less than or equal to 3 pixels.
Table 4.3 shows the CPU time required by the CPM and the DT
algorithms for thin characters (up to 3 pixel wide). It is
found that the CPM algorithm is faster in general, except when
the size of the object window becomes greater than 40 x 40.
Hence it is preferable to use the CPM algorithm for 1low

resolution scanner images.

The MSM and the SPTA have almost equal CPU timings for widths
greater than 6. In general the large time requirements for
the MSM and the MCM algorithms are due to the fact that list
structures are used in the implementation and a lot of time is
spent in the final filling stage needed to provide 8-connecti-
vity to the core lines generated by the algorithm. The MCM
algorithm requires more CPU time than the MSM, as additional
time is required for the table look-up in deciding the size of

the maximum circles.
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Table 4.3: CPU Times in Seconds

CHARACTER CPM DT
a 0.490 | 0.490
b 0.521 | 0.549
c 0.401 | 0.401
d 0.602 | 0.593
g 0.971 | 0.983
B 0.218 | 0.255 ;
G 0.217 | 0.236 ;
s 0.198 | 0.245 1
5 0.551 | 0.571
6 0.240 | 0.260 é
8 0.234 | 0.262 :
& 0.710 | 0.767 ;
5 0.563 | 0.627
L 0.194 | 0.224 y
1 0.740 | 0.844 f
@ 0.897 | 0.879 g
7} 1.371 | 1.373 ;
Average 0.536 0.562
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4.4. Reconstructability

Reconstructability is one of the desirable features expected
of a thinning or skeletonising scheme. All the five
algorithms discussed here have the reconstructability feature.
The CPM, the DT and the SPTA methodologies make use of
Pavlidis reconstruction algorithm [33]. However the labelling
techniques used to identify the skeletal points are different
in each case. The readily available distance transformation
values of the skeletal points are used in the DT methodology,
whereas the CPM and SPTA use the final iteration numbers

associated with each of the skeletal points.

The MSM and MCM make use of the information in the core-line
description viz., the location and the size of the maximal
square or circle in reconstructing the original pattern. For
each of the core-line point in the skeleton, all the white
pixels in the square enclosing it are changed to dark pixels.
Due to the fact that the original pattern is reconstructed in
a single scan of the matrix, the time taken for reconstruction
by these algorithms are comparatively less than the other
three algorithms. Also the reconstructed patterns are better

than the other three algorithms.

From the above discussions it is clear that the MSM and MCM
algorithms are not suitable both in terms of quality and

processing time. Among the other algorithms CPM and DT are
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the fastest and in general result in good skeletons. The CPM
is preferable for low resolution scanner images than the DT
methodology, as the processing time required by the CPM

methodology is less than that of the DT methodology.
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5. CONCLUSIONS AND SUMMARY

S5.1. Conclusions

In this thesis a new thinning algorithm called Charge Particle
Methodology (CPM) is presented. The CPM algorithm assumes
raster scanning of the binary image. Hence a priori knowledge
of the distinct contours present in the input pattern is not
needed. The CPM algorithm results in a connected skeleton of
unit width along the medial axis of the given binary pattern.
The proposed CPM algorithm is tested using a well composed
"Test Data set". The skeletons generated by this algorithm
are found to preserve the connectivity well. They generally
do not suffer from excessive erosion at end points except when
there are slanting lines of three or more pixels wide. 1In
addition, the topology of the object is also maintained by the
skeletons. The CPM algorithm also has the ability of
reconstructing the pattern with the least amount of mismatch
between the original input pattern and the reconstructed

pattern.

For the sake of evaluation of the CPM algorithm we have
devised a "Test Data Set". This carefully composed data set
can be used by other researchers to test the performance of
thinning or skeletonising algorithms for connectivity and end-
point preservation, behaviour at junctions of uneven thickness

lines and processing time complexity for patterns with



multiple branches, islands and composite characters. In
addition to a number of characters and other binary patterns
from various papers published so far, a set of newly scanned
characters from Tamil(Indian), Chinese and English languages

are also included in the data set.

The performance of the CPM algorithm is compared with four
other recently published thinning algorithms, namely, the
Sequential Thinning of Binary Patterns using Distance
Transformation (DT), Safe Point Thinning Algorithm (SPTA),
Maximal ‘Square Moving (MSM) and Maximal Circle Moving (MCM)
Methodologies. All the above mentioned algorithms are
programmed in Pascal language and implemented on CYBER CDC800
machine. The results of the evaluation show that the
skeletons generated by the CPM algorithm are good in quality
and are comparable to those of SPTA and DT methodologies. The
CPM algorithm is much faster than the three algorithms namely
SPTA, MSM and the MCM methodologies and is found to be only
slightly slower than the DT method (0.863 Vs 0.765 CPU
seconds). Execution time of the CPM algorithm is dependent on
the width of the binary pattern whereas that of the DT method-
ology is independent of the width of the pattern. Thus with
thin characters the CPM is found to be faster than the DT
method. This makes the CPM algorithm preferable even to DT
method for processing of binary patterns generated by a low

resolution scanner
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5.2. Future Work

Firstly, the algorithm could be tested on a larger data set to
create an averaging effect. Secondly the validity and
comprehensiveness of the test data set to become an acceptable
bench mark has to be examined. The average processing time
needed for thinning a pattern by the CPM algorithm is found to
be 0.863 CPU seconds. Hence thinning alone would require
approximately 1600 CPU seconds for a page of about 2000
characters. On top of this, an OCR system would need
additional time for the latter stages of feature extraction
and classification, making the total system response too slow.
Thus, parallel implementation of the proposed CPM algorithm
and its integration into a VLSI chip should be further
explored. Application of the proposed CPM methodology to grey
level images and 3-D skeletonisation is yet another area to

explore.
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APPENDIX

List of data set and the skeletons generated by the five

algorithms (CPM, SPTA, DT, MSM and MCM).
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