National Lib
.*. ofaclg?lgda e

Canadian Theses Service Service des théses canadiennes

du Canada

Ottawa, Canada
K1A ON4

NCTICE

The quality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quatity of
reproduction possible.

If pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon o:
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microformis governed
by thé Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

NL-339 (r 88/04) ¢

Bibliothéque nationate

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la these soumise: au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

Sil manque des pages, veuillez communiquer avec
l'université qui a conféré le grade.

La qualité dimpression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées & 'aide d'un ruban usé ou si l'université nous a fait
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme est

soumise 4 la Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents.

- Canadd

i+l

Bibliothéque nationale

National Library
du Canada

of Canada

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in histher thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

L’auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées,

L'auteur conserve la propriété du droit d'auteur
qui protége sa thése. Nila these ni des extraits
substantiels de celle-ci ne doivent étre
imprimeés ou autrement reproduits sans son
autorisation.

ISBN 0-315-59181-1

(anadi

CICS LSR Buffer Simulator
(CLBS)

George Bozikian

A Major Project
in

The Department
of

Computer Science

Presented in Partial Fulfilment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

August 1990

(©) George Bozikian, 1990

ABSTRACT

CICS LSR BUFFER SIMULATOR (CLBS)

G. Bozikian

Buffering is a technique used to reduce the number of I/0
operations, but deciding on how many buffers to allocate is
difficult. Adding buffers should decrease the number of
I1/0’s, but each buffer uses up memory. CLBS has been
designed to allow users of Local Shared Resources (LSR) in
the Virtual Storage Access Method (VSAM) environment to
simulate different-sized buffer pools, thus eliminating the

uncertainty.

CLBS consists of two sets of programs. The first set
intercept all LSR I/0’s and record the address (RBA), the
name of the file, and the LSR pool being used. The second
set of programs use the data gathered above to find the
number of physical I/O’s that would have been performed had

a different number of buffers been allocated.

CLBS was used to simulate changes to the number of
buffers in different systems. The changes were then
implemented and it was found that the predictions made by

CLBS were accurate.

-iii-

TABLE OF CONTENTS

Introduction

1. Definition of DASD Concepts.
1.1 Description of DASD I/0s.
1.2 Improving DASD I/0 Responsiveness.

1.3 DASD IO Avoidance.

2. Description of Environment.

2.1 Virtual Storage Access Method (VSAM).

2.2 Local Shared Resources (LSR).

2.3 Model of CLBS implementation.

3. Types of Simulations.
3.1 Benchmarking
3.2 Simulations
3.3 Analytical Models

3.4 Prediction Technique Chosen

4, Simulation Environment.

4.1 Data Collection Programs.

4.2 Simulation Progran.

- iv -

16

20

H,,. .

R S

5. Developing the Simulator.

5.

5

5

6.
6
6
6
6
7.
8.
Appe
A,

MmO O 9w

1 Initial Validation.
.2 Example of Usage.

.3 Explanation of Results.

Improving the Simulator.

.1 Testing on Multiple Development Systems,
.2 Simulation of PRODFIN.

.3 Simulation of PRODEM.

.4 Overall wvalidity of the model.

Conclusions.

References.

ndices.

Control Block Structure.

CLBS User’s Manual.

DXCPOST Program.

DXCWRTR Program.

Conversion of Data to SAS Format.

Simulator Program.

24

39

54

57

60

INTRODUCTION

Advances in electronic components have led to very large
increases in CPU speeds. However, Direct Access Storage
Devices (DASD) contain mechanical components, therefore the
increases in DASD access times have been small in comparison.
Many software and operational solutions have been devised to
reduce the time taken by the mechanical components, e.g., the
scheduling of queued I/0 requests [LOC80, ATW82] and the
placement of data on DASD [IBM78]. The most successful
method has proved to be the elimination of a portion of the

I/0 requests.

This elimination of I/O requests is accomplished by
keeping the most recently used records in memory areas called
buffers, such that a re-access to the same record can be
satisfied without a physical I/O operation. The amount of
time required to service an I/0 request is a few microseconds
in case of a hit (i.e., record found in a buffer), but is
about 40 milliseconds in case of a miss (i.e., record not
found in a buffer). Due to this large difference in service
times, achieving a large number of hits will dramatically

improve response times.

The decision on the number of buffers to be allocated is
difficult. One is tempted to allocate many buffers so as to
minimize the number of DASD accesses. However, buffers
occupy virtual memory space, which, like I1/0, is a resource.
Overallocation would lead to more system overhead to perform
the additional paging and virtual storage management. This
additional overhead will lead to response time degradation

[DARO1, BER87} and degraded people productivity [DOHO1].

The statistics available to the person making the
decision of how many buffers to allocate, is usually limited
to the number of I/0 requests that resulted in physical I/0
operations, and the number of requests that were obtained
from the buffers without physical I/0’s. System programmers
tend to avoid changing buffer allocations because:

- The statistics tend to vary from day to day depending
on the sequence of transactions issued by the users
during a day.

- The buffers are allocated at system startup time and
cannot be changed dynamically, therefore new buffer
allocation strategies take a long time to implement.

- It is risky to implement changes on production systems
because a change in the size and number of buffer
allocations can just as easily degrade performance as

improve it, e.g., through increased paging.

The simulator presented in this paper allows system
programmers to test different buffer allocation strategies
and to choose the optimum one. The simulator consists of two
phases: the first phase records information about all I/O
requests, while the second phase consists of a program that
mimics the Least Recently Used (LRU) replacement algorithm to
evaluate whether an I/0 request would have been fulfilled

from memory or from DASD.

The CLBS simulator models an IBM Customer Information
Control System (CICS), however the model for this simulator
can be used to simulate any memory buffering system that uses

the LRU replacement algorithm.

1. Definition of DASD Concepts.

This chapter describes the components of a DASD I/O
operation, then proceeds to outline techniques for improving

DASD responsiveness.

1.1 Description of DASD I/Os.

Figure 1.1 shows the components involved in an I/0 to
DASD. The processor is connected to the I/0 subsystem via
channels, which in turn connect to DASD controllers, and
finally to the DASD units where the data reside. Each DASD
unit consists of a number of rotating platters, each having

their own read/write heads, (Figure 1.2).

Processor

Channel

DASD Controller

DASD
units

Figure 1.1 Components Involved in DASD 10

Read}rite Heads Platters

Figure 1.2: Side View of a DASD Unit.

The 4 phases of a DASD I/0 operation are described here:

1) the channel is used to send a request from the CPU to

2)

3)

4)

the DASD controller.

the read/write head of the DASD is moved to a specific
depth (cylinder) on the device. The time required to
perform this activity is called seek time.

the device waits until the platter rotates such that
the data to be read or written is under the head
(Figure 1.3). The time spent waiting for the data to
rotate into position is called rotational delay.
finally, the channel is used to transfer the data from

the DASD to the CPU.

L

B et e aTlEE I

e o E—— TrpR

REVOLUTION
OF THE
PLATTER

READ/WRITE HEAD

DATA TO BE READ

Figure 1.3: Top View of a DASD Platter.

The activities described in points 2 & 3 above are
mechanical, therefore they are the activities which take

the longest to complete.

1.2 Improving DASD I/0 Responsiveness.

An interactive user’s productivity is impacted directly
by the speed with which he receives the response. Looking at
a breakdown of response time we find three major categories:

- Network time,

- DASD I/0O time,

- Computing time.

Considering that business applications spend at least
half the time waiting for data to be accessed from, or
written to, DASD, it is not surprising that hundreds, if not
thousands, of articles and books are written every year on
ways to speed up DASD accesses. Listed here are some of the
more important techniques, [SMI8la) provides a detailed
history on this subject for IBM mainframe systems:

- Hardware changes to speed up the channel, the movement

of the head, and the rotation of the platter.

- Data placement so that the most frequently accessed

data are placed together ([IBM78].

- Scheduling of I/Os so that the data that are closest to

the head are accessed first [LOC80,ATW82].

- Predicting data that might be required and pre-fetching

them into memory.

- Introduction of caching in controllers, thus

eliminating the seek and rotational delays [SMI81b].

-

1.3 DASD I/0 Avoidance.

Compared to the large improvements in CPU hardware
speeds, there has been very little improvement in DASD
hardware performance. This has led designers to focus on

using CPU hardware (processor and memory) to reduce the need

BRI LA T BT YT TR TR SV e

e W TR a4

TR s SR

B e T R

TR

W e yweypames e s U e =

for DASD accesses. These designers used memory to store
images of the most recently accessed records (called Data
Buffering). Every time an I/O request is issued, a search is
performed through memory first and an I/0 performed only when
the required record is not found in memory. These
re-accesses from memory are a rerult of two factors as
described in [SMI81Db]},
- recently used information is retained, providing
locality by time.
- the buffer contains blocks of information rather than
just the words or bytes that were accessed,
information that is near the referenced data is also

available in the buffer.

Data buffering has been very successful in improving
access to data, and all large data base systems have
adopted it so as to provide acceptable response times to

interactive users.

However, data buffering does not come free. Memory must
be used to store the images, therefore the amount of data
buffering must be carefully chosen so as to minimize this
cost. This paper provides a model of a simulator which can
be used to predict the behavior of a system with varying

amounts of memory dedicated to data buffering.

2. DESCRIPTION OF ENVIRONMENT

Though the buffer simulation methodology presented in
this paper is applicable to any system using data buffering,
the implementation was conducted on an IBM system shown in
Figure 2.1. This environment was chosen because of its
availability to the researcher, and due to the preponderance

of such systems in use.

MVS/XA OPERATING SYSTEM

CiCs
SYSTEM

INTERACTIVE
USER

VSAM

DATA

BASE
SYSTEM

Figure 2.1: Operating System Environment

TEEETR T

ST TR Rl TR e T RAE T TS TR S AT TR T

R

The figure'shows that the environment consists of,
- Operating system: IBM Multiple Virtual System/Extended

Architecture: (MVS/XA system),

- Networking: IBM Virtual Telecommupications Access Method

(VTAM),

- Support for terminal based applications: IBM Customer
Information Control System (CICS),

- Data Base Access method: IBM Virtual Storage Access

Method (VSAM).

This chapter describes the VSAM access method and its

data buffering facility called Local Shared Resources (LSR).

These descriptions will then be used to define a model of

CLBS.

2.1 Virtual Storage Access Method (VSAM)

VSAM is an access method which performs DASD I/O
operations based on requests it receives from user
programs (in this case from CICS user programs). The data
buffering function in VSAM is called LSR, and it is this
function which is simulated by the programs presented in
this paper. Figure 2.2 shows the organization of a sample

VSAM file. The number of levels of indices is variable,

and in some files does not exist, in which case the file

can only be accessed sequentially.

,I IIT(I[I|I] eeveee oo , 1st Level Index
| 2nd Level Index
\' v
INT|I I|eeees I[I(I|I] «cv.
| ~| 3rd level index
\Y
|I|I| | 1]: H

\Y \Y

P

Figure 2.2: The Structure of a Sample VSAM File where
I is an Index (Pointer) and D is a Data Record.

.«.es Data Block

When an I/0 request is received by VSAM it will first
issue the appropriate I/0 commands to bring in the highest
index level (assuming that the file is not sequential). Once
the highest index level is in memory, VSAM will use the key
ranges in the index to find the index at the next level (if

any) and so on until it finds a pointer to the block of data

- 1] -

containing the required record. At this point the block of
data will be brought into memory and the requested record

will be made available to the application.

2.2 Local Shared Resources

The LSR option of VSAM provides the data buffering
functions described earlier. Therefore, whenever an I/O
operation is performed VSAM first searches the LSR buffers
to see if the required data (or index) record is already

in memory.

When LSR is used, buffers will be shared by a number of
files, rather than having a different set of buffers for each
file. Through this sharing, memory requirements will be
reduced, and the more active files will end up with a higher

proportion of the buffers.

Figure 2.3 shows an example of the type of data which are
supplied by CICS & VSAM, showing the utilization of the
different LSR buffer pools. The data are used to make
decisions about LSR buffer allocations, with the intent being
to either reduce the number of I/0 operations to DASD or to

reduce the amount of memory allocated to the buffers.

- 12 -

Buffer # of # of # of
Size Buff Buff Buff
Hits Miss

512 28 2,634 17
1,024 15 16,082 34
2,048 18 15,041 | 3,645
4,096 18 1,900 14
8,192 14 1,043 133
TOTALS 36,700 3,843

Figure 2.3: Sample of LSR Pool information

The data shown above (as well as all other data in this
project) comes from CICS systems running at Canadian
National. As can be seen in Figure 2.3, the system has been
defined with five different pools of buffers. There are
acrtually seven but two handled no I/0 requests during the

test periods.

The system programmer uses these data to decide how

many of each type of buffer to allocate. The success or

failure of changes can be measured by the 'Hit' ratio:

- 13 =

of Buffer Hits
Hit Ratio (HR) = ----------c--mmmmmrcr e
of buffer Hits + § of Buffer Misses

In the case above (Figure 2.3):

36,700 + 3,843

It is the system programmer’s responsibility to allocate
a number of pools of buffers. Each pool consists of a number
of equal-sized buffers; in Figure 2.3, for example, 28 x 512
byte buffers, 15 x 1,024 byte buffers, etc., have been
allocated. When a block of data is required to be brought
into memory, VSAM will use a buffer from the buffer pool with
the appropriate size; in Figure 2.3, a 512 byte block would

use a buffer from the set of 28 x 512 byte buffers.

2.3 Model of CLBS Implementation

The logic used by CLBS to simulate LSR buffering is
presented in this section. For each simulation, the user
provides the buffer pool (size), number of buffers, and an
input file which contains the sequence of I/0 requests issued

during a normal execution of the system.

- 14 -

Based on the user’s input, CLBS builds an array
equivalent in size to the number of buffers to be simulated,
and then proceeds to read the input file containing the
sequence of I/0 requests. For each I/0 request, CLBS first
checks to see if the requested record is already in a buffer
(i.e., array), if not, the new record replaces the record
which has been unused for the longest period (LRU algorithm).
However, if the record is already in a buffer, the buffer is
moved to the top of the chain. Finally, in cases where the
I/0 request is for a file which contains multiple index
levels, CLBS will repeat the insertion of an entry into the
buffers for each of the index levels, up to a maximum of four

levels,

- 15 -

Cw PRTETTTATRIE RETTTAT T R T RATREINT TR AN

e e A S e B

3. TYPES OF SIMULATIONS

There are basically three techniques available to provide
predictions of system performance [DEE84). These techniques
allow for the testing of theories before implementing the
changes in a production environment. The three techniques
are: Benchmarks, Simulations, and Analytical Models. These

three techniques are evaluated in this section.

3.1 Benchmarking

Benchmarking consists of testing theories in a
standalone mode, where user requests are generated (usually
automatically), and performance measurements taken and
compared to measurements taken before the changes were made.
The steps which would be required to carry out a benchmark
are outlines here:

- The state of the system and its data (permanent storage)
are saved, this state will be referred to as STATEO.

- The system is run normally, and a record kept of the user
requests and the attained performance.

- The state ¢f the system is saved again, this state will

be referred to as STATEL.

- STATEO is restored and the change to be tested is applied.

- The user requests recorded earlier are now reissued,
and a record kept of the attained performance.

- STATE! is restored, and normal functioning resumes.

- The performance measures taken before and after the
implementation of the change are compared and a decision
made on whether or not to implement the change in

production.

Of the three techniques being discussed here, a "Good"
benchmark provides the most accurate predictions, however it
is by far the most difficult of the three to carry out. As a
result of the large investment required in time and hardware
resources, benchmarking is rarely used in predicting

performance.

3.2 Simulations

In simulations, the functions of a system are programmed,
such that the program closely mimics the system being
measured [DEE84]. The input to a simulation [LOC80] can
either be a trace of events recorded during the normal

functioning of the system, or randomly generated events.

Simulations are less costly than benchmarks, however the
development time of simulators is still very costly when the
system to be simulated is complicated. As far as the
accuracy is concerned, a simulator is less accurate than a

"Good" bhenchmark.

3.3 Analytical Models

Analytical modelling is based on queuing theory [KLE76]
and was originally developed in the early 1900's to help
telephone companies in predicting the effects of installing
trunks between different cities. Though it is now heavily
used to model computer systems, it is recognized that
analytical models cannot properly reflect variations found in
real time systems, e.g., morning versus afternoon activity.
This deficiency makes Analytical Modelling the least accurate
of the techniques, however it is the only feasible option
available for complex systems because benchmarks and

simulations are too costly to develop.

3.4 Prediction Technique Chosen

The discussion in this chapter has highlighted that
Analytical Modelling is the only feasible technique for
developing predictors for complex systems. However, the case
at hand is a very simple system (LRU replacement algorithm),
and therefore easy to develop a simulator for. Using
simulation also provides additional accuracy [SAL86] not

available through analytical modelling.

Next we needed to make a choice between the input
formats, i.e., randomly generated events versus trace of
events. Randomly generated events should only be used when
an event trace cannot be easily obtained because trace driven
simulators are more accurate than simulators driven by
randomly gepnerated events [LOC80)]. 1In the case at hand, exit
points are provided by CICS, which can be easily coded to
provide a trace of most of the events of interest. Event

traces were therefore chosen as the input format.

- 19 -

AN W -

N Mt er s bt

P ¥ Tl i)

4. PHASES OF CLBS

There are two phases in CLBS, the first phase consists of
the setting of traps within the CICS system to be simulated,
so that data are gathered for each I/O request using the LSR
buffers, while the second phase consists of running a
simulation using the data gathered in phase 1. Since the
data are gathered from interactive CICS systems, the data
gathering is not allowed to use any locking (semaphores),
because these locks would otherwise interfere with the
operation of the CICS system being monitored. Since no locks
are used, it cannot be guaranteed that all I/0 requests are

trapped.

The simulation phase of CLBS consists of using the data
gathered in phase 1 to predict expected hit ratios, assuming
a certain (user defined) number of buffers. Using the
simulator, users can easily simulate different buffer
allocation scenarios, allowing them to choose the most

efficient scenario.

4.1 Data Collection Phase

IBM supplies exits at certain points in CICS so that
users can add functions not supplied by IBM. Two such exits
are used by CLBS to record all I/0 requests to files in the
LSR pool. The exits are:

1) XFCINC: Called whenever a read I/0 completes.

2) XFCOUT: Called whenever a write I/O is initiated.

These two exits are used because they are given control
immediately after CICS rearranges the buffers so that the
buffer involved in the I/0 is at the top of the chain of
buffers. Every time one of the exits is given control, it
accesses the buffer at the top of the chain and extracts the
following information (see Appendix A for the control block
structure used to collect this data):

1) FILENAME : Name of the file for which an I/0
request was issued.

2) RBA (Relative Block Address): Identifies the block
within the file for which the I/0
request was issued.

3) SZOFBUF : Size of the buffer which is used.

4) NUMOFBUF : Number of buffers in this buffer set.

5) NUMOFRDS : Number of physical reads (i.e., buffer

misses) which have been performed.

- 21 -

ST TEEETTTT TR VT aGmeTE N YT e A

The exits, called POST, gather the data specified earlier
and place them in a memory location. Whenever the area
becomes full, the POST exits will switch to an alternate
memory area, and will alert a program called WRTR, which will

perform the actual writing to disk.

4.2 Simulator Program

The simulation portion of CLBS is written in SAS
(Statistical Analysis System) and basically keeps a number of
buckets, equal to the number of buffers being simulated.

Each bucket contains two pieces of information: the name of
the file to which the record belongs and the block number
within the file. These two pieces of information are enough
to check whether or not the data are already in a bucket
(buffer). The simulator handles the buckets in one of two
ways, depending on whether the data were already in the

buffers or not.

1) For a record not found in the buckets, the records are
pushed down such that the oldest record falls off and is
no longer available; the new record is placed at the top
of the bucket. For example, at a certain point in time,

the contents of the buffers are as shown below (i). A

- 22 -

request is made for record D, (ii) shows the buffer

contents when the operation is completed.

(1) (ii)
c D
B c
A B

2) For a record found in a bucket, the record is placed at
the top of the chain of buckets. Consider the same buffer
contents as above except that the request is for record B
which is already in a buffer, (ii) shows the buffer

contents when the operation is completed.

(1) (ii)
c B
B c
A A

Since the simulator is driven by the events gathered by
the exits, there is no need to use probabilities or random

event generators.

- 23 -

5. Developing the Simulator

This chapter summarizes simulations performed with an
early version of CLBS, and shows ways in which CLBS can be
used. A more detailed account of these tests is provided in
[BOZ88]). These tests were carried out to ensure the
viability of the conceptual model of LSR functioning on which

CLBS was based.

5.1 Initial validation

The simulator was run in a test CICS region (TESTEM)
which provides Electronic Mail functions. Figure 5.1 shows
the results of the actual runs as extracted from CICS, while
Figure 5.2 shows a run of the simulator with the same buffer
setup. Had the simulation been perfect, the values in

Figures 5.1 and 5.2 would have been identical.

Hit Ratios (HR) were used to gauge the difference between
the actual data extracted and the simulation runs (Figure
5.3). As can be seen the simulator was found to be highly

accurate.

Buffers assigned during the runs

Buffer sizes 512 1024 2048 [4096 |8192 TOT
Number of buffers 28 15 18 18 14
Number of bytes

used for buffer 14K 15K 36K 72K} 112K| 249K
Number of I/0

requests 0] 14864 [{18136 (1472 }1040 35K
of buffer misses

(Actual I/0) 0 18 | 3624 3 | 118 | 3763
Number of bytes

read from DASD 0 18K| 7248K 12K| 944K| 8.03M
Hit ratio N/A 100% 80%| 100% 89% 89%
Number of I/O

requests O |81755 90629 |1704 |1226 171K
of buffer misses

(Actual I/0) 0 59 119132 4 94 119289
Number of bytes

read from DASD 0 59K|38264K 16K| 752K|38.17M
Hit ratio N/A 100% 79%| 100% 92% 89%
Number of I/0

requests 38 (18274 |21784 (2384 |1564 43K
of buffer misses

(Actual I/0) 1 106 4372 18 183 4680
Number of bytes

read from DASD . 5K 106K| 8744K 72K} 1464K|10.14M
Hit ratio 97% 99% 80% 99% 88% 89%

- 25 -

Figure 5.1: Data extracted from CICS on three different runs.

ke ag O N HZCOY

[\8)

LoSJ ep i e f 2]

w

Buffers assigned during the runs

Buffer sizes 512 1024 2048 14096 |8192 TOT
Number of buffers 28 15 18 18 14
Number of bytes

used for buffer 14K 15K 36K 72K] 112K| 249K
Number of I/O

requests 0 (14864 (18136 |1472 (1040 35K
of buffer misses

(Actual I/0) 0 21 3382 21 106 3530
Number of bytes

read from DASD 0 21K| 6764K 84K| 848K| 7.54M
Hit ratio N/A 100% 81% 99% 90% 90%
Number of I/O

requests O (81755 |90629 [1704 [1226 171K
of buffer misses

(Actual I/O) 0 13 118095 9 59 {18176
Number of bytes

read from DASD 0 6.5K|36190K 36K| 472K|35.85n
Hit ratio N/A 100% 80% 99% 95% 90%
Number of I/O

requests 38 |18274 121784 (2384 |1564 43K
of buffer misses

(Actual I/0) 2 79 | 4064 57 | 186 | 4388
Number of bytes

read from DASD 1K 79K| 8128K| 228K|1488K| 9.69M
Hit ratio 95%| 100% 81% 98% 88% 90%

-26 -

Figure 5.2: Simulation of the three runs listed in Figure 3.

m=Z2au

o N

L i e

8}

- il =R

¢ 0]

System Hit Ratio Hit Ratio
of actual run | of simulation
June 29 TESTEM 89% 20%
July 02 TESTEM 89% 90%
July 08 | TESTEM 89% 20%

Figure 5.3: Accuracy of the initial simulator.

5.2 Example of Usage

The data presented in Figure 5.2 permit drawing the
following conclusions about the number of buffers allocated

to each buffer pool:

512 byte buffers: The steady state is not being reached,

which indicates that the number of buffers
can be reduced.
1K byte buffers: There are a lot of requests to this
buffer, but the fact that the hit ratio is
so high (100%) indicates that the number of

buffers here can also be reduced.

- 27 -

STNITNTIIR 4 T ey

2K byte buffers: This set of buffers handles the
largest number of reguests, and the hit
ratio is the lowest of any of the sets
(81%). Therefore, this buffer set is an
excellent candidate for expansion.

4K byte buffers: A very high hit ratio is being
achieved (99%). Therefore, the number of
buffers could be reduced.

8K byte buffers: I/0's in this buffer set are costly
because of the large blocksize; also, the
hit ratio is on the borderline (90%).
Therefore, this pool should remain

unchanged.

Note that Steady state in CLBS is defined to be the point
at which all the buffers of a specific buffer pool have been
filled. 1In the case shown in Figure 2.3, steady state is
reached when 28 different 512 byte records have been

accessed.

In summary using the data supplied by CICS, one would
likely assign buffers as follows:
512x20 , 1Kx11, 2Kx38, 4Kx10, 8Kx14.
instead of the original allocation of:

512x28 , 1Kx15, 2Kx18, 4Kx18, 8Kx14.

- 28 -

Buffers assigned during the runs

Buffer sizes 512 1024 2048 |[4096 |8192 TOT
Number of buffers 20 11 38 10 14
Number of bytes

used for buffer 10K 11K 76K 40K| 112K| 249K
Number of I/0

requests 1091 115651 117067 (1769 1040 36K
of buffer misses

(Actual I/0) 10 31 | 3290 60 | 106 | 3497
Number of bytes

read from DASD 2K 31K| 6580K| 240K| 848K| 7.52M
Hit ratio 99% 100% 81% 97% 90% 90%
Number of I/O

requests 0 (86472 [87657 [2617 1226 174K
of buffer misses

(Actual I/0) 0 40 [17869 83 59 118051
Number of bytes

read from DASD 0 40K|35738K| 332K| 472K|35.72M
Hit ratio N/A 100% 80% 97% 95% 90%
Number of I/O

requests 311 (18726 |21222 (2510 |1564 43K
of buffer misses

(Actual I/0) 13 113 3961 116 186 4389
Number of bytes

read from DASD 6.5K 113K| 7922K| 472K|1488K| 9.76M
Hit ratio 96% 99% 81% 95% 88% 90%

Figure 5.4: Simulation of new buffer setup.

_29-.

mZaq

O N

< ag

<BPaq

o<

This would increase the number of 2K buffers without
increasing the total amount of memory allocated to buffers,
i.e., 249K bytes. Figure 5.4 shows the results produced when

the simulator was run with the proposed buffer allocations.

Figure 5.5 compares the results of the simulation when
the original buffer setup is assumed (Figure 5.4), compared
with the proposed setup. The comparison shows no reduction
in hit ratios, which is rather strange considering that the
number of 2K buffers was more than doubled. This shows that
had the changes been implemented, there would have been no

noticeable change in the performance of the systen.

System | Hit Ratio of Hit Ratio
the Original | of simulation
Simulation with new
Buffers
June 29 TESTEM 90% 90%
July 02 TESTEM 90% 90%
July 08 TESTEM 90% 90%

Figure 5.5: Comparison of two simulations

- 30 -

The unexpected results led us to try to find the knees of
the hit ratio curves as a function of the number of buffers
allocated to each pool. Figures 5.6 to 5.10 show the curves
for the different sets of buffers on the three days, with the
original allocations being indicated by the broken vertical
lines. The data show that for this CICS system, and with the
demonstrated load, the knee of the curve is passed at:

1) 10 buffers for .5K buffers.
2) 2 buffers for 1K buffers.
3) 3 buffers for 2K buffers.
4) 10 buffers for 4K buffers.

5) 15 buffers for 8K buffers.

5.3 Explanation of Results

At this point we decided that the pattern of activity in
the 2K buffer would be analyzed so as to explain the apparent
80% hit ratio limit. We conjectured that the access pattern
was such that a record was being accessed approximately 5
times and then never accessed again, thus the 20% miss ratio.
However, when we looked at the data from 06/29, our theory
wae not substantiated. It turned out that of the 18,687

record accesses, only 427 different records were read,

- 31 =~

0.9

0.8

0.7

0.8

0.5

04

0.3

0.2

0.1

0.9

0.8 -

0.7

0.6

0.6

0.4

0.3

0.2

0.1

June 29th Data

) -

10

20

July 8th Data

30

40

50

10

20

30

40

§0

0.9

08

0.7

08

0.5

045

03}

0.2r

0.1

July 2nd Data

0 10

20 30 40

FIGURE 5.6 : HIT RATIOS FOR .6K BUFFERS

- 82

60

09r

0.8

0.7

0.6

[X2y

0.4

0.3

0.2

0.1

0.9

0.8

0.7

0.8

0.5

0.4

0.3

0.2

0.4

June 29th Data

July 2nd Data

1 r...._._._.__-___.
08
08
07

0.8 L

0.5

—T

04 L

03

0.2

01

1 L. 1 1 0 i il

10 20 30 40 50 0 10 20

July 8th Data

10 20 30 40 50

FIGURE 5.7 : HIT RATIOS FOR 1K BUFFERS
- 33 -

30

40

60

AT =

ST T AR W PRSI TR Ty TR T T TR IR T

0.8

0.2+

0.1F

0.9

08f

0.7

0.6

0.5

0.4

0.3 I

0.2}

01F

June 29th Data

f
1 I

10

20 30

July 8th Data

40

50

10

20 30

40

50

0er

08

0.7r

o8

06

0.4

03}

0.2r

0.1}

BUFFER SIZE = 2 K

10 20 30 40

FIGURE 6.8 : HIT RATIOS FOR 2K BUFFERS

- 34

50

June 29th Data July 2nd Data
1— 1
09} 0.9 ‘
08l 08}
orf 0Tt
06 o6}
06} 06}
04f 04t
03 A 03f
0.2f 0.2f
0.1} 0.1 r—
% To 2lo :;o 4Io 510 % 1|o 2Io a'o

July 8th Data

0.9f
08F
0.7t

os]

0.4
03}
0.2+

0.1

FIGURE 5.9 : HIT RATIOS FOR 4K BUFFERS
- 35 -

e e e mt e T e b AR ™ D

0.9

0.8

0.7

0.8

0.6

04

03

0.2

0.1

0.9

0.8

0.7

0.6

0.4

0.3

0.2

0.1

June 29th Data

10

10

20 30 40 50
July 8th Data
210 3'0 410 60

0.9

o8|

0.7

08t

0.5

0.4

0.3

0.2+

0.1

July 2nd Data

10

20 30

FIGURE 5.10 : HIT RATIOS FOR 8K BUFFERS

- 36

40

50

i.e., the other 18,260 accesses were of records that had
already been accessed during the test. This indicated that a
97% hit ratio was achievable, albeit with an unreasonable
number of buffers (427). This clearly indicated that our

assumption of an 80% limit on hit ratios was not correct.

To verify this, simulations were carried out at larger
buffer sizes, the results of this simulation are shown in
Figure 5.11. It turned out that being a test system, certain
transactions were being executed, following which the
programmer might apply changes to the program (i.e.,
recompile), and then reexecute. Thus the re-referencing of

data occurs after relatively long periods of time.

In short, the data tend to be accessed about 5 times in
close proximity, after which the data are not likely to be

accessed again for a very long time.

- 37 -

B

WP ANRSTA ey f A AR

b X v g P

R}

P R L L L

S -

B R SRR PO

I Ll L o e

June 28th Data .

1 Hit Ratio

09

08+

0.7¢

0.6

0.4

03f

0.1

° 1 L Il 1
0 100 200 300 400 600

of Buffers

July 2nd Data

5 Hit Ratio

09

081

08

0.6

0.4 5

01

0 1 1 i 1
0 100 200 300 400 500

of Bulfera

FIGURE 6.11: HIT RATIOS FOR 2K BUFFERS
- 38 -

6. Improving the Simulator

The initial results (presented in Section 5) indicated
that the simulator could be used to accurately predict the
Hit Ratios for an Electronic-Mailing development region
(TESTEM). However, it remained to be seen how well CLBS
would fare in other systems. CLBS was therefore executed in
two other test (development) systems, and then finally tested
on two production systems. The two production systems were
diverse, the first system (PRODEM) being an IBM developed
Electronic Mail System (production version of TESTEM), while
the second (PRODFIN) was a financial system developed by a
supplier specializing in financial applications. The

findings of these runs are summarized in this section.

6.1 Testing on Multiple Development Systems.

The copy of CLBS used in the tests described in section
5, was a CICS 1.6 version. However, CICS systems had since
been upgraded to CICS 1.7 software, therefore, some major
modifications were required to CLBS to permit it to function

with the new software. There were also some minor

modifications which were implemented, e.g., the requirement
to reach Steady State before commencing the simulation was
dropped because it was found that this requirement did not

add significantly to the accuracy of the simulation.

System | Hit Ratio of Hit Ratio
actual run of simulation
Jan. 17 TESTD1 75% 94%
Jan. 22 TESTD1 44% 94%
Jan. 27 TESTD1 83% 93%
Jan. 16 TESTD2 26% 100%
Jan. 24 TESTD2 29% 99%
Jan. 28 TESTD2 36% 99%

Figure 6.1: Accuracy of the modified simulator.

The results of these new tests (Figure 6.1) differed from
those of the previous tests (Figure 5.3) in that the new hit
ratios (actuals) were much lower, even though CLBS predicted
that much higher hit ratios should have been attained. To
find the reason behind this problem, the data gathered by
CLBS were dumped and analyzed. The analysis showed that

there was one file which was causing the anomality and it was

- 40 -

found that the file in question was defined as

shareoption 4 (SHR4). A record in a file defined as SHR4 is
always read from DASD even if a copy of the record already
exists in a buffer. SHR4 is used to provide integrity for

files shared by multiple systems.

In SHR4 files, a request for a record will be read from
DASD even if the record is already in a buffer. This is done
because there is no guarantee that the record in the buffer
is still valid, the record on DASD might have been modified
by another system thus invalidating the copy in the buffer

[WIL9O].

It is strongly recommended [CAN87, WIL90] that SHR4 files
not be placed in the LSR pool. However, in the conversion of
the CICS systems from the 1.6 to the 1.7 level, the SHR4
files had been erroneously added. Figure 6.2 shows
simulation results when CLBS was modified to accurately
simulate SHR4 file handling, i.e., to read records from DASD
even if they are already in a buffer. Figure 6.2 shows that
with the modification, CLBS was again able to accurately

simulate Hit Ratios.

- 41 -

System | Hit Ratio of Hit Ratio
actual run of simulation
Jan. 17 TESTD1 75% 76%
Jan. 22 TESTD1 44% 44%
Jan. 27 TESTD1 83% 83%
Jan. 16 TESTD2 26% 25%
Jan. 24 TESTD2 29% 30%
Jan. 28 TESTD2 36% 36%

Figure 6.2: Accuracy of the simulator.

Next, CLBS was used to predict the effect of removing the
SHR4 file from the buffers. Figure 6.3 shows that the hit
ratios of the TESTD1l system were expected to average 91%,
while the hit ratios of the TESTD2 system were expected to
average 94%. To substantiate this, the SHR4 file was removed
from the LSR pool and CLBS was rerun to gather data from the
two test systems. Figure 6.4 shows the results of these
tests, it can be seen that the actual hit ratios were very
close to the expected (simulated) ranges. In TESTD1 the
average hit ratio was expected to move from 68% to 91%, and a
92% average was achieved. 1In TESTD2 the average hit ratio
was expected to move from 30% to 94%, and a 90% average was

achieved.

- 42 -

Hit Ratio
of simulation
Jan 17 94%
Jan 22 86%
Jan 27 93%
Average 91%
a) System = TESTD1

Figure 6.3: Hit Ratios Predicted had SHR4 files been

Excluded from LSR.

Hit
Ratio
Apr 09 91%
Apr 10 94%
Apr 17 92%
Apr 24 92%
Apr 26 89%
Average 92%
a) System TESTD1

Figure 6.4: Actual Hit Ratios when SHR4 files were
Excluded from LSR.

Hit Ratio
of simulation
Jan 16 95%
Jan 24 89%
Jan 28 97%
Average 94%
b) Systenm TESTD2

Hit

Ratio
Apr 12 88%
Apr 25 90%
Apr 27 91%
Average 90%

b) System = TESTD2

6.2 Simulation of PRODFIN

As discussed in the introduction to this section the
PRODFIN system is a production online financial system
running at CN. The results of 5 simulations are displayed in
Figure 6.5, these results again show that CLBS was able to
simulate hit ratios with high accuracy. We next tried to
use the details of the runs (Figure 6.6) to find a way of

improving the buffer setup.

The nine buffers allocated to the 16K pool jumped at us
as obvious candidates for improvement. 144K of storage were
being allocated to accommodate less than 1,000 I/O requests
in a day. The 16K buffers were reduced from 9 to 3 (minimum)
buffers. No measurements were taken after the change,
because this recommendation would have been obvious even if

CLBS had not been used.

System | Hit Ratio of Hit Ratio
actual run of simulation
Feb. 26 PRODFIN 71% 68%
Feb. 28 PRODFIN 97% 97%
May 01 PRODFIN 74% 71%
May 02 PRODFIN 76% 72%
May 03 PRODFIN 80% 77%

Figure 6.5: Accuracy of the simulator with PRODFIN.

-44_

Buffers

assigned during the runs

Buffer sizes 512| 1024| 2048| 4096|8192| 16K| TOT
of buffers 13 16 30 50 6 9
of bytes used

for buffer 6K 16K 60K| 200K| 48K|[144K| 474K
Number of I/0

requests 1K 6K 7K 15K 3K 0 31K
of misses

(Act. I/0) 8| 2652| 1889| 5158| 444 0| 3552
of bytes read

from DASD O0M 3M 4M 20M 3M 0 30M
Hit ratio 99% 54% 79%| 66% 82%| N/A 68%
Number of I/O

requests 6K 28K 47K 84K{ 15K 1K| 181K
of misses

(Act. I/0) 60| 9540(10514{32152{1133 4]53403
of bytes read

from DASD 0M 9M 21M| 126M 9M OM| 164M
Hit ratio 99% 66% 78%| 63% 93%|100% 71%
Number of I/O

requests 6K 34K 76K| 123K| 19K 1K| 259K
of misses

(Act. I/0) 47)11690]/15355}45587{1996 7174682
of bytes read

from DASD oM 11M 30M| 178M} 1eM OM| 235M
Hit ratio 99% 67% 80%| 64% 90%|100% 72%

Figure 6.6: Results from PRODFIN System.

- 45 -~

ool o e

AN

<R

= O

<R

N O

Next we looked at the 512 pool which also had a very high
hit ratio (99%) but considering that only 6K of storage were
allocated to this pool, it was decided not to change this

buffer pool.

Finally, a set of CLBS simulations were carried out for
the 4K buffer pool to try to reduce the number of bytes of
data that were being transferred. Figure 6.7 shows that
increasing the number of buffers from 50 to 100 (a 200K
increase in memory), would have resulted in a reduction of

15% in the number of bytes transferred from DASD. It was

of # of # of bytes Hit Ratio
Buffers misses | transferred of simulation
from DASD
3 75,851 300M 40%

10 60,729 240M 52%

15 57,252 227M 55%

30 50,528 200M 60%

50 45,587 178M 64%
100 38,359 152M 70%
150 32,783 130M 74%
250 26,134 102M 79%

Figure 6.7: CLBS results for 4K buffer pool (0502 data)

- 46 -

felt that the reduction in data transfers did not warrant
the large increase in memory utilization, therefore the

number of 4K buffers was not changed.

6.3 Simulation of PRODEM

Figure 6.8 shows three simulations which were run against
the PRODEM system and again it shows that CLBS was able to
predict hit ratios with high accuracy in different CICS
systems. Figure 6.9 shows the details of three runs, it can
be seen that there were two buffer pools (#1 and #2)
allocated. This was done by the system programmers to
isolate a heavily used file, by giving it its own pool (#2).
Figure 6.9 shows that most of the data transfers came from

the 8K (#1) pool of buffers.

System | Hit Ratio of Hit Ratio
actual run of simulation
May 04 PRODEM 88% 89%
May 06 PRODEM 92% 92%
May 07 PRODEM 92% 92%

Figure 6.8: Accuracy of the simulator with PRODEM.

- 47 -

s e W v,

——r v

Buffers assigned during the runs

Buffer Pool # 1 1 1 1 2 2
Buffer sizes 1024(204814096| 8192}2048|8192| TOT
of buffers 20 8 34 16 28 28
of bytes used

for buffer 20K| 16K]|136K| 128K| 56K|224K| 580K
Number of I/O

requests 78K| 18K| 32K 78K| 34K} 34K| 375K
of misses

(Act. I/0) 1389 | 120}4259]|13455]3751|7502}130476
of bytes read

from DASD iM OM| 17M] 105M 8M| 62M| 193M
Hit ratio 98%| 99%| 87% 83%| 89%| 77% 89%
Number of I/O

requests 87K| 19K| 35K 87K| 35K| 82K| 356K
of misses

(Act. I/0) 1632 201{4477113413|3681{8923(32327
of bytes read

from DASD 2M OM| 17M 13M 7M| 70M| 136M
Hit ratio 98%| 99%| 87% 85%| 90%| 75% 91%
Number of I/O

requests 14K 4K 7K 14K 6K 6K 51K
of misses

(Act. I/0) 219 2| 748)] 1569 3801092 4010
of bytes read

from DASD OM oM 3M 13M M o9M 26M
Hit ratio 898%|100%| 90% 89%| 94%| 83% 92%

Figure 6.9: Results from PRODEM System.

48 -

0o KPR hbOo KX

No Ky x

T A TT

e . _d

Simulations with different numbers of 8K (#1) buffers
were run and the results summarized in Figure 6.10. In this
case, CLBS indicated that increasing the buffers from 16 to
30 (112K bytes of storage), would have eliminated 25% of the
bytes transferred from DASD to the 8K (#1) buffer pool,
therefore it was decided to implement the change. Figure
6.11 shows CLBS predictions assuming that the number of
buffers were increased from 16 to 30, and shows that the hit

ratio was expected to average 89%.

of # of # of bytes Hit Ratio
Buffers | misses transferred of simulation
from DASD
3 22,116 173M 72%

10 15,724 123M 80%

16 13,455 105M 83%

30 10,041 78M 87%

50 7,347 57M 91%
100 4,659 3eM 94%
150 3,680 29M 95%
250 2,921 23M 96%

Figure 6.10: CLBS results for 8K (#1) buffer pool (0504 data)

- 49 -

System Actual Hit Ratio
Hit Ratio of simulation
with 16 buffers | with 30 buffers

May 04 PRODEM 83% 87%
May 06 PRODEM 85% 89%
May 07 PRODEM 89% 91%
Average PRODEM 86% 89%

Figure 6.11: Prediction of hit ratios of 8K (#1)

buffer with 30 buffers.

System | Hit Ratio

with 30

buffers
May 28 PRODEM 93%
May 29 PRODEM 85%
May 30 | PRODEM 87%
May 31 | PRODEM 92%
June 01 PRODEM 88%
Average 89%

Figure 6.12: Hit ratios when buffers were increased to 30.

- 50 -~

Figure 6.12 shows the hit ratios which were obtained when
the number of buffers were increased from 16 to 30 on the
PRODEM system, as can be seen, the hit ratio averaged 89%,

exactly as predicted by CLBS.

As a final test, simulations were run on the May 28-
June 1 data (30 buffers), assuming that only 16 buffers had
been allocated (Figure 6.13). The simulations indicated that
an average of 86% should be expected. Comparing this
prediction with the May 4-7 (Figure 6.11) data (86% hit ratio)
where only 16 buffers were allocated, we again f£ind that hit

ratios predicted by CLBS exactly match actual results.

Systen Actual Hit Ratio

Hit Ratio of simulation

with 30 buffers with 16 buffers
May 28 PRODEM 93% 90%
May 29 PRODEM 85% 81%
May 30 PRODEM 87% 82%
May 31 PRODEM 92% 89%
June 1 PRODEM 88% 86%
Average 89% 86%

Figure 6.13: Prediction of hit ratios when buffers

are decreased to 16 buffers.

- 51 -

Systenm Hit Ratio Hit Ratio
of actual run | of simulation
June 29 TESTEM 89% 90%
July 02 | TESTEM 89% 920%
July 08 TESTEM 89% 90%
Jan. 16 TESTD?2 26% 25%
Jan. 17 TESTD1 75% 76%
Jan. 22 TESTD1 44% 44%
Jan. 24 TESTD2 29% 30%
Jan. 27 TESTD1 83% 83%
Jan. 28 TESTD?2 36% 36%
Feb. 26 PRODFIN 71% 68%
Feb. 28 PRODF_N 97% 97%
Apr 09 TESTD1 91% 91%
Apr 10 TESTD1 95% 94%
Apr 12 TESTD2 87% 88%
Apr 17 TESTD1 92% 92%
Apr 24 TESTD1 92% 92%
Apr 25 TESTD2 89% 921%
Apr 26 TESTD1 20% 89%
Apr 27 TESTD2 89% 91%
May 01 PRODFIN 74% 71%
May 02 | PRODFIN 76% 72%
May 03 | PRODFIN 80% 77%
May 04 | PRODEM 88% 89%
May 06 PRODEM 92% 92%
May 07 PRODEM 92% 92%
May 28 PRODEM 91% 91%
May 29 PRODEM 91% 91%
May 31 PRODEM 93% 93%
June 01 PRODEM 90% 90%

Figure 6.14: Actual vs Simulated hit ratios.

- 52 =

-

6.4 Overall Validity of the Model

Figure 6.14 condenses all CLBS runs into a single table,
it shows that CLBS can accurately simulate LSR buffer
functioning in five different CICS systems. In 29 executions
of CLBS, 23 of the simulated hit ratios were within one

percentage point of the actual hit ratios.

Figure 6.15 compares CLBS predicted hit ratios with
actual hit ratios that were obtained when certain changes
were implemented. It shows a high correlation between CLBS
predicted hit ratios and actual hit ratios without having to

implement these changes in a live system.

SYSTEM Change Predicted Actual I/O
Using CLBS Results

TESTD1 Remove SHR4 files 91% 92%
from LSR.

TESTD2 Remove SHR4 files 94% 90%
from LSR.

PRODEM Increase Buffers 89% 89%
from 16 to 30.

PRODEM Decrease Buffers 86% 86%
from 30 to 16.

Figure 6.15: Summary of Predicted and Actual Hit Ratios.

- 53 -

7. CONCLUSIONS

DASD response time improvements have lagged behind
improvements achieved in CPUs, therefore buffering has been
used to overcome this deficiency. However, deciding on the
number of buffers to allocate is difficult because the
relation between the number of buffers and the hit ratios are
not obvious. A simulator (CLBS) has been presented here that
allows for the quick and safe testing of different buffer
configurations, before implementing the configuration in a

production environment.

The simulator was first tested in a test CICS system
(TESTEM) which provided Electronic Mail functions. CLBS was
validated by using it to predict the hit ratios for wvarious
LSR buffers when the number of buffers of each size were
unchanged. Using the data from these simulations, proposals
were made for increasing the hit ratios by changing the
number of buffers allocated to certain buffer pools.
Surprisingly, simulations using the new proposed changes
showed that the hit ratios would not have improved. Analysis
showed that the data tended to be re-accessed in close
proximity a number of times, after which the data are not

re-accessed for a very long time. This was determined to be

due to TESTEM being a test (non-production) CICS system where
programmers tested a program (period of heavy re-accesses),
then stopped testing for a while to make corrections and
recompile, and then tested again (records re-accessed

after a long period).

Next, CLBS was upgraded to function in a CICS 1.7
environment and it was re-validated by simulating LSR
buffering in two test CICS systems and two production CICS
systems. Simulations of the first production system
(PRODFIN) showed that an additional 200K bytes of memory
would have been required to reduce the number of I/0
operations by 15%. Based on these results, it was decided
not to implement the changes. Simulations of the second
production system (PRODEM) showed that an additional 112K
bytes of memory would have been required to reduce the number
of I/0 operations by 25%, the changes were therefore
implemented. The modified (30 buffers) system was traced and
the results were validated with CLBS simulations of the
unmodified (16 huffers) PRODEM. Finally, simulations with 16
buffers were run on the modified system and validated with
traces of PRODEM system before being modified. 1In all cases

the validation showed excellent accuracy.

- 55 -~

An unexpected benefit of these simulations was the
discovery that SHR4 files had been erroneously placed in LSR
buffers during the conversion of CICS from the 1.6 to the 1.7
level. SHR4 files are not good candidates for LSR because
they are re-read from .DASD, even if a copy of the record is
already resident in a buffer, thus wasting buffers. The
simulator was modified to account for SHR4 files, after which

it was successful in predicting hit ratios.

CLBS has been used in a variety of IBM CICS environments,
and has been shown to permit accurate assessment of proposed
changes to LSR buffer allocations. Although the details of
the implementation are specific to the IBM CICS environment,
the same model can be used to simulate any buffering system

that is based on an LRU replacement algorithm.

- 56 -

[ATW82])

[BER87]

[BOZ88)

[CAN87]

[DARO1]

8. REFERENCES

J.W. Atwood, A. MacLeod, Keh-Chiang Yu, "An
Emperical Study of a CDC 844-41 Disk Subsystem',

Performance Evaluation 2 (1982), pp 29-56.

F. Bereznay, "VSAM Specification and Tuning",
Proceedings of the 1987 Computer Measurement Group

Conference, pp 40-45.

G. Bozikian, W. Atwood, "CICS LSR Buffer
Simulator (CLBS)", Proceedings of the 1988 Computer

Measurement Group Conference, pp 493-503.

Candle Corporation, "VSAM Tuning in a CICS
Environment", Candle Computer Report (April 1987).
Candle Corporation, 1999 Bundy Drive Los Angeles,

CA 90025.

E.H. Daray, "OS/VS VSAM Sharing - A Technical

Discussion", IBM Manual (G320-6015).

(DEE84]

[DOHO1]

[IBM78]

[KLE76)

(LOoC80]

[sALB6]

D.C. Deer, "Evaluating Capacity Planning
Techniques", Journal of Capacity Management

Vol. 2, No. 2 (1984), pp 106-118.

W.J. Doherty, A.J. Thadhani, "The Economic Value of

Rapid Response Time", IBM Manual (GE20-0752-0).

IBM Corporation, "DASD Seek Simulator",

IBM Manual (SB21-2218-0).

L. Kleinrock, "Queueing Systems", Vol. 1,

Wiley (1976).

C. LoCicero, "An Event-Trace Study of the
Performance of the I/O Subsystem for a CDC CYBER 172
Computer", Thesis at Concordia University, Department

of Computer Science (1980).

M.A. Salsburg, "Simulation is not a Four Letter
Word", Proceedings of the 1986 Computer Measurement

Group 1986 conference, pp 128-139.

[SMI8la] A.J. Smith, "Input/Output optimization and disk

architecture: a survey", Performance Evaluation 1

(1981), pp 104-117.

[SMI81b] A.J. Smith, "Optimization of I/O systems by cache
disk and file migration: a summary", Performance

Evaluation 1 (1981), pp 249-262.
(WIL90] E. Williams, "VSAM Tuning", Candle Computer Report

(May 1990), pp 5-8. Candle Corporation, 1999 Bundy

Drive Los Angeles, CA 90025,

- 59 -

PN TR T TR R QURRY WO RN NS AR A ST Y

APPENDICES

APPENDIX A
CONTROL BLOCK STRUCTURE

R9 WHEN THE 1/0 EXITS ARE GIVEN CONTROL

FCT ENTRY

X'00' FCTDSID; DATASET NAME

X'22' FCTDSVSM; X'80' INDICATES VSAM

X'64' FCTDSSHR; X'20' INDICATES LSR OR GSR

X'80' FCTDSACB; X'AQ'; INDICATES THAT ACB FOLLOWS

ACB (STARTS WITH X'A0’)

X'04’' ACBAMBL

AMBL
X'34' AMB OF DATA PORTION

X'38' AMB OF INDEX PORTION

AMB (STARTS WITH X'40’)

X'08' BSPH

BSPH (STARTS WITH X'72')
X'0C' # OF BUFFERS IN THIS SET
X'18' SIZE OF BUFFERS IN THIS SET

X'24' 1/0'S TO BRING DATA INTO SET OF BUFFERS

X'34’ POINTS TO TOP (MOST RECENT) BUFFER

-61-

S TR TR TS T AT AR A T T

e W

APPENDIX B

CLBS User'’'s Manual

This manual shows the steps which should be taken by a
CICS Systems Programmer to set up and use the CLBS
environment., A knowledge of CICS and the SAS programming
language is assumed. The version of CLBS presented here only
works on CICS 1.7 systems, running under the MVS operating

systenm.

Set-up of the Environment
This section defines the steps required to be taken to
set up an environment under which CLBS can be executed:

a) A sequential disk dataset with LRECL=BLKSIZE=2048, must
be allocated to hold the data. The size of this dataset
depends on the amount of data to be collected, a 15 MB
dataset will accommodate 5,000 blocks of data (i.e.,
300,000 I/0s to the LSR pool). Note that the DXCWRTR
program in Appendix D, will stop collecting data after
5,000 blocks of data have been collected. If this limit
is changed, the DASD requirements will change

proportionately.

- 62 =~

b) Make the data set allocated in Step (a) available to the
CICS region to be analysed.
c¢) The following entries should be added to the DCT table.

BUFFDATA DFHDCT TYPE=SDSCI,
DSCNAME=BUFFDATA,
RECFORM=FIXUNB,
RECSIZE=2048,
BLKSIZE=2048,
BUFNO=2,
TYPEFLE=OUTPUT

R0 R0 9 RO RO RO

BUFF DFHDCT TYPE=EXTRA,
DESTID=BUFF,
DSCNAME=BUFFDATA

R0 Qo

d) The following entries should be added to the PCT table.

WRTR DFHPCT TYPE=ENTRY,
TWASIZE=0,
TRANSID=WRTR,
CLASS=LONG,
PROGRAM=DXCWRTR

RO R0 R0 RO

POST DFHPCT TYPE=ENTRY,
TWASIZE=0,
TRANSID=POST,
CLASS=LONG,
PROGRAM=DXCPOST

RO R RO Ro

e) The following entries should be added to the PPT table.

DXCPOST DFHPPT TYPE=ENTRY, PROGRAM=DXCPOST
DXCWRTR DFHPPT TYPE=ENTRY, PROGRAM=DXCWRTR

f) The two programs in Appendices C and D, should be
assembled, and the result placed in a library accessible
by the CICS to be simulated (i.e., in the RPL list).
Note that the program DXCPOST must be re-entrant.

Also note that these programs will use the first 4 bytes

- 63 -

of the user area (CSA+200) to store the address of a
getmained area. Ensure that this area is not in use at
your site. If the area is in use, the programs will
have to be modified to use a different portion of the
user area.

g) Make sure to test CLBS in a test region first, because
the code in CLBS has only been tested on systems at

Canadian National.

Data Collection

Having set up the environment, starting CLBS consists of
ensuring that the data set is allocated and opened to the
CICS to be simulated. Once this is done, the transaction
WRTR can be issued, which will enable the necessary exits,
and start gathering data for the simulation. However,
stopping the data collection is not as elegant, one needs to
access CSA+200 for the address of the getmained area.
Zapping the getmained area+l2 bytes by ‘4’ will post the Wait
ECB, which will cause CLBS data gathering to terminate. Note
that CLBS wiil automatically terminate if the limit of the
number of blocks is reached, which by default is set to 5,000

blocks.

- 64 -

Simulation

Once the data have bheen gathered on a sequential dataset,
they can be converted into SAS format using the program in
Appendix E. It is not advisable to place SHR4 (VSAM Share
Option 4) files in an LSR pool. However, if such files exist
in the LSR pool at your installation, then some modifications
must be made to the program in Appendix E. The statements
following the comment marked by;

KXAXXDZD55555) CHECK FOR SHARE OPTION 4 << xrkx,
will have to be modified. In the sample program shown in
Appendix E, two files DASDBIF and AUTOSPOL are SHR4 files
which are in the LSR pool. If there had been 3 SHR4 files in
the LSR pool, DADSBIF, AUTOSPOL, & WHATEVER, then the
following statements would have been coded:

KAXXXS555355> CHECK FOR SHARE OPTION 4 LK I XA K,

READNEW=0Q;

IF (FILENAME='DADSBIF' AND READIO='R’)

OR (FILENAME='AUTOSPOL’ AND READIO='R')
OR (FILENAME='WHATEVER’ AND READIO='R’)
THEN READNEW=1;

¥*xx%>>> END OF CHECK FOR SHARE OPTION 4 <X***x.

PP

Once the SAS files are created, the simulator (Appendix
F) can be executed. The only statements which are to be
modified by the user are the ones which execute the BUFANAL
macro, identified by '*<=====' in the program. These lines
may be modified, deleted, or added to as required, e.g., if
one is interested in simulating the effect of increasing the
2K (2048) buffer pool to 30 buffers, the following statement
would be used :

$BUFANAL (2048,30);

TcZtroow

TOWMOND
mawmoRaZ
QEPWHMOICZ
“omZTWOoOXRQaZ
oHmOT O
oOHHAKDHAQPY
OHPaQXZH®
OHH¥KEIH®
T QIH®n

I B e =

1 2048 18 18686 36 3645 7290 80.5 3400 6800 82
1 2048 25 18686 36 3645 7290 80.5 3327 6654 82
1 2048 50 18686 36 3645 7290 80.5 3327 6654 82
1 2048 75 18686 36 3645 7290 80.5 3327 6654 82

1 2048 100 18686 36 3645 7290 80.5 3327 6654 82

Figure B.1l: Sample Simulator Output

- 66 ~

Output of Simulation

Figure B.1 shows the output from a simulator run.

A description of the fields in Figure B.1 follows:

POOLNUM

SZOFBUF

NUMOFBUF :

NUMOFREC:

NUMOFMBY:

NUMOFIO

ACTBYTIO:

HITR

SIMULIO

SIMBYTIO:

SIMULHR

Buffer pool number. CICS 1.7 allows the
allocation of multiple pools.

Size of buffer pool being simulated.

Number of buffers being simulated.

Number of I/0 requests to this buffer
encountered during the data gathering phase.
Number of Megabytes of data that were
requested by the application during the

data gathering phase.

Number of physical I/Os (i.e., buffer misses)
performed during the data gathering phase.
Number of bytes transferred from disk to
memory during the data gathering phase.

Hit ratio of this buffer pool during the data
gathering phase.

Number of physical I/Os (i.e., buffer misses)
predicted by this simulation.

Number of bytes transferred from disk to
memory, predicted by this simulation.

Hit ratio of this buffer pool predicted by

this simulation.

- 67 -

Interpretation of Output

The first step is to verify the accuracy of the simulator
in your environment. This is done by executing the simulator
with the number of buffers that were allocated when the data
was gathered, e.qg., if there were 10 x 2K buffers allocated
during the data gathering phase, then the first simulation
that is run should use this value, i.e. $%BUFANAL(2048,10).
Accuracy can be weighed by comparing HITR with SIMULHR. If
the difference is more than 10 percentage points for a
certain buffer pool, the simulator should not be used for
that buffer pool. Having established the accuracy of the
simulator, new buffer allocations can be simulated,
e.g., 20 x 2K, 30 x 2K, etc. In these cases, SIMULHR of
different simulation runs can be used to find the optimum

number of buffers to be allocated.

Example of Analysis

In the case of the data in Figure B.1, there were 18x2K
buffers in the system, therefore the first step is to check

the accuracy of the simulator for this specific environment,

- 68 -~

i.e., 80.5 versus 82.2, which is within the criterion of ten
percentage point mentioned above. Having established the
accuracy to be acceptable, one can then compare the data from
the different simulations. 1In the case of Figure B.1l, it is

obvious that adding more buffers would be of little benefit.

- 69 -

T

B T e

A T ey s sy

* % *

*

APPENDIX C

DXCPOST PROGRAM

THIS PROGRAM IS THE XFCINC EXIT CALLED AFTER EVERY READ
AS WELL AS THE XFCOUT EXIT CALLED BEFORE EVERY WRITE

* REGISTER USAGE:

ZERO

RO1
INDEXAMB
RO3
AREABAR
AREA1BAR
NXTENTRY
RO7

RO8
FCTDSBAR
R10

R11

R12

R13

R14

R15

EQU 0 CONTAINS ZERO FOR COMPARES

EQU 1 PARAMETER LIST (FROM CICS)

EQU 2 POINTER TO THE AMB OF THE INDEX
EQU 3 BASE REGISTER

EQU 4 POINTS TO GETMAINED AREA

EQU 5 POINTS TO FIRST AREA

EQU 6 NEXT AVAILABLE ENTRY

EQU 7 WORK REGISTER

EQU 8 WORK REGISTER TO HOLD CB ADDRESSES
EQU 9 FCT ENTRY POINTER(FROM CICS)

EQU 10 FWA ONLY IN XFCOUT (FROM CICS)
EQU 11 VSWA ONLY IN XFCINC (FROM CICS)
EQU 12 WORK REGISTER

EQU 13 ADDRESS OF SAVE AREA (FROM CICS)
EQU 14 PROGRAM RETURN POINT (FROM CICS)
EQU 15 PROGRAM ENTRY POINT (FROM CICS)

KKKAKKAAKKAKRKAAKAA KK KAKKRKAAKRAKAR KRR XRAR K kA AR AR AR Ak kkhkkhkkhkk

EJECT

PRINT NOGEN

COorY DFHFCTDS
USING DFHUEPAR,RO1
DFHUEXIT TYPE=EP

*******************FIRST ENTRY OF FIRST AREA*************

ECBENT DSECT

USING * ,AREA1BAR

DS CL8

DS F
ECB DS F ECB
*******************FIRST ENTRY OF EACH AREA**************
rIRSTENT DSECT

USING * ,AREABAR
COND DS CL8 STATUS OF THE AREA
LASTENT DS F LAST UPDATED ENTRY

DS F ECB (ONLY IN FIRST AREA)

- 70 -

KRK A xk%k% % * *SUBSEQUENT ENTRIES OF EACH AREA** %k xxk%akxtk

ENTRY

FILENAME

RBA

LRURBA1
LRURBA2
LRURBA3

NUMOFRDS

SZOFBUF

NUMOFBUF

POOLNUM
IOTYPE

*

* % % X %

*

XXX0
XXX1
1XXX
0XXX
XX1X
XX0X
XXXX

DSECT
USING * , NXTENTRY
Ds CL8 FILENAME OF THE RECORD.
DS F RBA OF THE RECORD.
DS F RBA OF NEXT LRU BUFF.
DS F RBA OF NEXT LRU BUFF.
DS F RBA OF NEXT LRU BUFF.
DS F NUMBER OF READS
DS CL1 SIZE OF BUFFERS.
DS CL1 NUMBER OF BUFFERS.
DS CL1 # OF THE POOL BEING USED
DS CL1 TYPE OF IO

XXXX INDICATES INDEX IO

XXXX INDICATES DATA IO

XXXX INDICATES SPANNED RECORD

XXXX INDICATES NON SPANNED RECORD

XXXX INDICATES A READ OPERATION

XXXX INDICATES A WRITE OPERATION

27222 7227 INDICATES NUMBER OF INDEX LEVELS

I EE S EESEEREEEEE SR RS SRR R SRR RRRRE N SRR R R RN R RERRE RS EERE]

DXCPOST CSECT
USING *,R03

STM
LR
™™
BZ
™™
BZ
SR
LR
LR
L
L
CR
BE
LR
CLC
BE
CLC
BE
A
CLC
BE
CLC
BE
MVC
LR
MVC
B

R14,R12,12(R13)
RO3,R15
FCTDSVSM, FCTVSAMI
BYE

FCTDSSHR, FCTSHRIM
BYE

ZERO, ZERO
INDEXAMB, ZERO
RO8, ZERO
R12,UEPCSA
AREABAR,X'200' (R12)
Z2ERO,AREABAR

BYE
AREA1BAR,AREABAR
BTHARNU , COND

BYE

ARINUSE, COND
AR1INUSE
AREABAR, ARLENGTH
BTHARNU , COND

BYE

ARINUSE,COND
AR2INUSE

COND, BTHARNU
AREABAR,AREA1BAR
COND, BTHARNU

BYE

USE REG. 3 FOR BASE
SAVE THE REGISTERS
LOAD THE BASE REG.
IS THIS A VSAM DS§?

NO - GET OUT
DS'S BUFFERS SHARED?
NO - GET OUT

ZERO OUT THE REG.
ZERO OUT THE REG.
ZERO OUT THE REG.
LOAD POINTER TO CSA
LOAD ADR. OF GETMAIN
ADR. OF GETMAIN=0?
YES- GET OUT

LOAD AREA1BAR

IS DATA IN ERROR?

YES - GET OUT
IS AREA ACTIVE?
YES -

POINT TO NEXT AREA
IS DATA IN ERROR?

YES - GET OUT
IS AREA 2 ACTIVE?
YES -

NO ACTIVE AREAS -ERR

INDICATE ERR IN BOTH
AREAS & RETURN

Ny

e e a2 e

AR1INUSE
AR2INUSE

USEAREA1

USEAREA2
ISARFULL

AREAQK

ARNOTFUL

DATAAMB

EQU
EQU
L
A
ST
L
CR
BL
MVC
MVC
CR
BE
LR
B
A
CLC
BNE
MVC
LR
MVC
A
MVC
B
EQU
MVC
L
A
ST
EQU
AR
STC
MVC
MVC
CR
BNE
EQU
LA
CLI
BNE

Ol

CR
BE

*
*

NXTENTRY , LASTENT
NXTENTRY , ENTRYLNG
NXTENTRY, LASTENT
RO7,ARLENGTH
NXTENTRY,RO7
ARNOTFUL

COND, ARFULL

ECB, POST
AREABAR,AREA1BAR
USEAREA2
AREABAR,AREZL1BAR
ISARFULL
AREABAR, ARLENGTH
COND, ARFULL
AREAOK

COND, BTHARF
AREABAR,AREA1BAR
COND, BTHARF
AREABAR, ARLENGTH
COND, BTHARF

BYE

*

COND, ARINUSE
NXTENTRY , LASTENT
NXTENTRY, ENTRYLNG
NXTENTRY , LASTENT
*

NXTENTRY,AREABAR
ZERO, IOTYPE
FILENAME,FCTDSID
POOLNUM,FCTIPOOL
ZERO,RO8
INDXAMB

*

RO8 ,FCTDSACB
O(RO8) ,X'AQ!
BADACB

R08,X'04' (R0O8)

INDEXAMB,X’38'(R0O8)

IOTYPE,X'10’
RO8,X’34' (RO8)
ZERO, RO8

ZAMB

GETAMB

- 172 -

POINT TO LAST USED
POINT TO NEXT ENTRY
UPDT LAST ENTRY
POINT PAST THIS AREA
STILL IN AREA?

YES -
INDICATE AREA FULL
POST THE WRITER TASK
USING AREA 17
YES - USE AREA 2 NOW
NO- BACK TO AREA 1

POINT TO AREA 2

IS AREA FULL?

NO - ALL IS WELL
YES-BOTH AREAS FULL

INDICATE ERROR
IN BOTH AREAS
THEN GET OUT

POINT TO LAST USED
POINT TO NEXT ENTRY
UPDATE LAST ENTRY

ADD START TO ENTRY
ZERO OUT THE IO TYPE
MOVE DATA SET NAME
SAVE POOL# IN USE
INDEX AMB TO HANDLE?
YES - HANDLE IT

RO8 NOW POINTS TO ACB
IS THERE A VALID ACB?
NO - HANDLE ERROR

RO8 NOW POINTS TO AMBL
SAVE INDEX AMB ADDRESS
INDICATE DATA IO

R0O8 POINTS TO DATA AMB
IS ADDRESS ZERO

YES - HANDLE ERROR

INDXAMB EQU
L
CLI
BNE
CLI
BL
MVI
B
SETLEVEL EQU
MvVC
EQU
CLI
BNE
L
CR
BE
CLI
BNE

GETAMB

SRA
STC
MvVC
MvC

CR
BE
™
B2
oI
NOTSPAN EQU
CLI
BE
oI
EQU
MVC

WRITEOP

CR
BE
MVC

CR
BE
MVC

CR
BE
MVC

*

R0O7,X'14' (RO8)
0(RO7),X'60’
BADAMDSB
X'39'(RO7),X'10'
SETLEVEL
IOTYPE,X'OF'
GETAMB

x

IOTYPE,X'39' (RO7)
*

0(RO8),X'40"
BADAMB
R0O8, 8 (RO8)
ZERO,RO8
ZBSPH
0(RO8),X’'72"
BADBSPH
RO7,X'18' (ROS)
R0O7,9

R07, SZOFBUF

NUMOFRDS ,X'24' (R08)
NUMOFBUF ,X/0D’ (R0O8)

R08,X’34' (RO8)
ZERO,RO8

ZBUFC
1(RO8),X"40'
NOTSPAN
IOTYPE,X' 80

*

RO7 , UEPEXN
0(RO7) ,XFCOUT
WRITEOP
IOTYPE,X' 20/
*

RBA, 40(R0O8)
R07, 60(RO8)
RO7, ZERO

INDEX
LRURBA1,40(R0O7)
R07,60(RO7)
RO7, ZERO

INDEX
LRURBA2,40(R07)
R07,60(RO7)
R07, ZERO

INDEX
LRURBA3,40(R0O7)

- 73 -

RO7 POINTS TO AMDSB
IS THIS A VALID AMDSB?
NO - HANDLE ERROR
HANDLE COND OF # >X'F/

OF INDX LVL> X'F’

STORE § OF INDEX LEVELS

VALID AMB

NO - HANDLE ERROR

RO8 NOW POINTS TO BSPH
IS ADDRESS ZERO

YES - HANDLE ERROR
VALID BSPH

NO - HANDLE ERROR
RO7=SIZE OF BUFFERS
DEVIDE RO7 BY 512

NUMBER OF READS

OF BUFFERS

R08 POINTS TO BUFC
IS ADDRESS ZERO
YES - HANDLE ERROR
IS RECORD SPANNED?
INDICATE SPANNED

ADDRESS OF EXIT NUMBER
IS OPERATION A WRITE?

INDICATE A READ OP.

SAVE READ RBA OF RECORD
RO7 -> NEXT LRU BUFFER

RO7 -> NEXT LRU BUFFER

RO7 -> NEXT LRU BUFFER

_ e e

INDEX EQU *
LR R08, INDEXAMB LOAD INDEX AMB
LR INDEXAMB, ZERO ZERO OUT THE REGISTER

CR ZERO,RO8 ANOTHER INDEX TO HANDLE?
BNE AR1INUSE YES GO AND HANDLE IT
SPACE 2
BYE EQU * NORMAL EXIT
RETURN (14,12)
BADACB MVC FILENAME,=C'OBADACB'
B BYE
ZAMB MVC FILENAME,=C'0QZAMB'
B BYE
BADAMB MVC FILENAME,=C'OBADAMB'
B BYE
BADAMDSB MVC FILENAME,=C'OBADAMDS'
B BYE
ZBSPH MVC FILENAME,=C’'0ZBSPH'
B BYE
BADBSPH MVC FILENAME,=C'OBADBSPH'
B BYE
ZBUFC MVC FILENAME,=C'0ZBUFC’
B BYE
EJECT

I EE RS EE SRS RS R RS R R R R RESERRERER R AR R RS RSNt RREEEE]
* CONSTANTS AND LITERALS
KEAKXKAKKKKAKKAAKAKAAKAKAKA KN ARARAKAKAAAARNKR AN AKRARRAAKRAA A A AR AR AR A AKX X
*

KKk kX%kxxxx*POSSIBLE VALUES FOR COND KXKKRARKR KK KKK
BTHARNU DC CL8'0OBTHARNU’ NEITHER AREA IS BEING USED
BTHARF DC CL8'OBTHARF' BOTH AREAS ARE FULL

BTHARNF DC CL8'OBTHARNF’ NEITHER AREA IS FULL

ARINUSE DC CL8'OARINUSE’ AREA IS IN USE

ARFULL DC CL8'OARFULL' AREA IS FULL I.E. WRITE OUT

L E RS SR ESE SRS RS RR RS R RRRRR R R R RN RRRREE SRR RREERRRRRRERE

DECIMAL DS D

POST DC XL4'40008000’
x
ENTRYLNG DC XL4'20° THE LENGTH OF EACH ENTRY
ARLENGTH DC XL4'7EO’ THE LENGTH OF EACH AREA
SPACE 5
LTORG
SPACE 5

END DXCPOST

- 174 -

APPENDIX D

DXCWRTR PROGRAM

*

* THIS PROGRAM WRITES OUT THE READ AND WRITE EXIT AREAS
*

* REGISTER USAGE:

ROO EQU 0

RO1 EQU 1

RO2 EQU 2

RO3 EQU 3 BASE REGISTER

AREABAR EQU 4 POINTS TO GETMAINED AREA
AREA1BAR EQU 5 POINTS TO FIRST AREA

RO6 EQU 6 COUNT OF NUMBER OF AREAS WRITTEN
RO7 EQU 7 WORK REGISTER

COUNTER EQU 8 COUNTER

CSACWAR EQU 9 POINTS TO CWA

R10 EQU 10

R11 EQU 11

R12 EQU 12 ADDRESS OF TCA

R13 EQU 13 SAVE REGISTER

R14 EQU 14 RESERVED - PROGRAM RETURN POINT
R15 EQU 15 RESERVED - PROGRAM ENTRY POINT

AKXKKAKKAKXAKRKAKRKAAKAAAKKN KA RAXRAXAARARKA KRN KARNARANRAKRANRRAKNKRRKNKRR KR AR Ak kK
AKXk KAKkRkRXkARRA XXX AXXPTRFIRST AREA*************************

ECBENT DSECT
USING * ,AREA1BAR

DS CL8
DS F
ECB DS F ECB

AKXAKKKXRKXKAXKXAXAXXXFIRST ENTRY OF EACH AREAX***xkkkkkkk % kX
FIRSTENT DSECT
USING * ,AREABAR

COND Ds CL8 STATUS OF THE AREA
LASTENT DS F LAST UPDATED ENTRY
DS F ECB (ONLY IN FIRST ARERA)
BLOCKNUM DS F BLOCK NUMBER
AR KKK KK KA KKK KA KRR R AR A KKK AR KK KKK AR AR KRR AR AR KR KRR KRR AR K kK
EJECT

DXCWRTR CSECT
* x%%%%% GET ADDRESS OF CWA ***¥xx

EXEC CICS HANDLE CONDITION ERROR(BYE)
EXEC CICS ADDRESS CWA(CSACWAR)
SR R0O6,R06 ZERO OUT THE COUNTER

- 75 -

LOOP

WRITEOQOUT

DISABLE

DISABLE2

% % Kk k ok Xk GETMAIN AREAS * ok ok ok kX

EXEC CICS GETMAIN SET(AREABAR) LENGTH(GMLENGTH) X
INITIMG(X'00")

EXEC CICS HANDLE CONDITION ERROR(FREE)

ST AREABAR, 0 (CSACWAR) STORE ADDR IN CWA
LR AREA1BAR,AREABAR KEEP ADDRESS

MVC COND,ARINUSE AREA CAN BE USED
ST RO6, BLOCKNUM SAVE COUNTER

A AREABAR,ARLENGTH POINT TO AREA 2
*kkkok % ENABLE THE EXITS kK kK ok %

EXEC CICS ENABLE PROGRAM('DXCPOST') X

EXIT('XFCOUT') START

EXEC CICS HANDLE CONDITION ERROR(DISABLE2)

EXEC CICS ENABLE PROGRAM('DXCPOST') X
EXIT('XFCINC') START

EXEC CICS HANDLE CONDITION ERROR(DISABLE)

SPACE 2

EQU *

LA RO6,1(R06) ADD TO COUNTER

ST RO6, BLOCKNUM ENTER COUNTER

LA RO7,ECB

EXEC CICS WAIT EVENT ECADDR(RO7)

LR AREABAR,AREA1BAR

CLC COND, ARFULL IS AREA 1 FULL?

BE WRITEOUT YES -GO AND WRITE OUT

A AREABAR,ARLENGTH POINT TO AREA 2

CLC COND, ARFULL IS AREA 2 FULL?

BE WRITEOUT YES -GO AND WRITE OUT

MVC COND, BTHARNF NO -INDICATE THAT NO

LR AREABAR,AREA1BAR AREA IS FULL

MVC COND, BTHARNF

L RO 6, NUMOFREC SOMETHING IS WRONG,STOP

EQU *

EXEC CICS WRITEQ TD QUEUE('BUFF’) FROM(COND) X
LENGTH (AREALEN)

SR RO7,R07

ST RO7,LASTENT

ST RO7,ECB

ST RO7,COND 2ERO CONDITION OF AREA

c RO 6, NUMOFREC IS IT TIME TO STOP?

BL LOOP

SPACE 2

EQU *

EXEC CICS HANDLE CONDITION ERROR(DISABLE2)

EXEC CICS DISABLE PROGRAM('DXCPOST') X

EXIT('XFCINC') STOP
EQU *
EXEC CICS HANDLE CONDITION ERROR(FREE)

EXEC CICS DISABLE PROGRAM('DXCPOST') X

EXIT(’'XFCOUT’) STOP

- 76 -

FREE SR RO7,R0O7
sT RO7,0 (CSACWAR)
EXEC CICS HANDLE CONDITTON ERROR(BYE)
EXEC CICS FREEMAIN DATA(FIRSTENT)

BYE EXEC CICS RETURN

AAKKKAKAKAARAKAKKRAAKRKRAKAKRAKRRKARRARARAARRARARAR KA AR Rk Ak khkk kkkx%

* CONSTANTS AND LITERALS

Kok sk e ok ok ok bk sk A ok ok ok sk sk sk ok bk ke sk dk ok ok sk ok ok dk ok sk ok ok gk Sk ok sk ok ok ok ok Sk sk kK sk ok ok ok ok ok R ok ke ok k%

XKkAXXKkxkx*x **xPOSSIBLE VALUES FOR COND ARk kAKX kkk kK XX
BTHARNU DC CL8'0OBTHARNU' NO AREA IS BEING USED
BTHARF DC CL8'0OBTHARF' BOTH AREAS ARE FULL
BTHARNF DC CL8'OBTHARNF ' NEITHER AREA IS FULL
ARINUSE DC CL8'0ARINUSE' AREA IS IN USE

ARFULL DC CL8'VARFULL’ AREA IS FULL, WRITE OUT

KhkhkAXhkhkhkhkhk kA k Ak k kA hAxdhhkhhkhkhkhhhkhkkhkhkkhkkkhkokkhkkkkkkkhkkx
*

DS OF
ARLENGTH DC XL4'7EOQ' THE LENGTH OF EACH AREA
GMLENGTH DC XL2'1200' GETMAIN LENGTH
AREALEN DC XL2'800' THE LENGTH OF EACH ENTRY
NUMOFREC DC F'5000° NUM OF WRITES TO RECORD
SPACE 5
LTORG
SPACE 5

END DXCWRTR

- 77 -

APPENDIX E

CONVERSION OF DATA TO SAS FORMAT

DATA
DATAXXXX (DROP = FIRSTENT COND ENT IOTYPE);
FORMAT SPANNED READIO INDEXIO $1.;
IF DATAEND THEN STOP;
INFILE DATA END=DATAEND;
INPUT @i COND $8.
chl FIRSTENT $32. @;
BLOCK=0; RECORD+1; ENT=1;

IF COND "= !'0ARFULL’ THEN DO;
I S R SRR R SR R R R SRS E SRR EEE SRS EEEEEEEE S E SR EE SR EEERE S XSS R RS SR
kX kk k% PROCESS THE BLOCK OF DATA K hk ok khk Kk ok kkokkk ok kkkk

*******************************i************************;

NEXTREC:
ENT=ENT+32;
BLOCK=BLOCK+1;
INPUT @ENT FILENAME $8.
RBA PIB4.
LRURBA1 PIB4.
LRURBAZ PIB4.
LRURBA3 PIB4.
NUMOFRDS PiB4.
SZOFBUF PIB1.
NUMOFBUF PIB1.
POOLNUM PIB1.
IOTYPE PIB1.@;
SZOFBUF=SZOFBUF*512;
IF IOTYPE>=80X THEN DO SPANNED='S’; IOTYPE=IOTYPE-80X; END;
ELSE SPANNED='N’;
IF IOTYPE>=20X THEN DO READIO='R’; IOTYPE=IOTYPE-20X; END;
ELSE READIO='W';
IF IOTYPE>=10X THEN DO INDEXIO='D’;IOTYPE=IOTYPE-10X;END;
ELSE INDEXIO='I';
INDEXLVL=I0OTYPE;
AEXAXS555555 CHECK FOR SHARE OPTION 4 (KK rrHkx,
READNEW=0;
IF (FILENAME='DADSBIF’ AND READIO='R')
OR (FILENAME='AUTOSPOL' AND READIO='R’')
THEN READNEW=1;
*k*x7J*55> END OF CHECK FOR SHARE OPTION 4 <(<K***x*%,
OUTPUT DATAXXXX;
IF BLOCK<62 THEN GOTO NEXTREC;
RETURN ;

- 78 -

OPTION LS=80;
PROC SORT DATA=DATAXXXX OQUT=PERM.DATAXXXX;
BY POOLNUM SZOFBUF RECORD BLOCK;
RUN;
DATA RECORDS (KEEP=POOLNUM SZOFBUF NUMOFREC NUMOFBUF) ;
SET PERM.DATAXXXX; BY POOLNUM SZOFBUF;
NUMOFREC+1;
IF LAST.SZOFBUF THEN DO;OUTPUT;NUMOFREC=0;END;
PROC PRINT DATA=RECORDS;

DATA

POOL=1;

IF
IF
IF
IF
IF
IF
IF
IF
IF
ROUN;

APPENDIX F

SIMULATOR PROGRAM

R512 (DROP=BLOCK RECORD NUMOFBUF)
R1024 (DROP=BLOCK RECORD NUMOFBUF)
R2048 (DROP=BLOCK RECORD NUMOFBUF)
R4096 (DROP=BLOCK RECORD NUMOFBUF)
R8192 (DROP=BLOCK RECORD NUMOFBUF)
R12288 (DROP=BLOCK RECORD NUMOFBUF)
R16384 (DROP=BLOCK RECORD NUMOFBUF)
R20480 (DROP=BLOCK RECORD NUMOFBUF)
R32768 (DROP=BLOCK RECORD NUMOFBUF);
SET PERM.DATAXXXX;

POOLNUM=POOL
POOLNUM=POOL
POOLNUM=POOL
POOLNUM=POOL
POOLNUM=POOL
POOLNUM=POOL
POOLNUM=POOL
POOLNUM=POOL
POOLNUM=POOL

AND
AND
AND
AND
AND
AND
AND
AND
AND

* SET THIS VALUE TO DESIRED LSR POOL NUMBER;

SZOFBUF=512 THEN OUTPUT R512;
SZOFBUF=1024 THEN OUTPUT R1024;
SZOFBUF=2048 THEN OUTPUT R2048;
SZOFBUF=4096 THEN OUTPUT R4096;
SZOFBUF=8192 THEN OUTPUT R8192;
SZOFBUF=12288 THEN OUTPUT R12288;
SZOFBUF=16384 THEN OUTPUT R16384;
SZOFBUF=20480 THEN OUTPUT R20480;
SZOFBUF=32768 THEN OUTPUT R32768;

* OPTIONS MACROGEN MPRINT;
OPTIONS LINESIZE=132;
$MACRO BUFANAL(BUFSZ,NUMB);

$LET NUMBPLUS=%EVAL (&NUMB+1);

RUN;
DATA

S&BUFSZ (KEEP

= POOLNUM SZOFBUF NUMOFBUF SIMULIO
NUMOFIO NUMOFMBY NUMOFREC ACTBYTIO
SIMBYTIO HITR SIMULHR)

SET R&BUFSZ END=NOMORE;

FORMAT ACTBYTIO S.uMBYTIO 8.;

FORMAT NUMOFMBY HITR SIMULHR &.2;

RETAIN AFIL1-AFIL&NUMBPLUS '/ "

RETAIN NUMOFBUF &NUMB;

RETAIN PNUMOFRD ONUMOFRD ARBA1-ARBA&NUMBPLUS O0;

ARRAY AFIL{&NUMBPLUS} $8 AFILI1-AFIL&NUMBPLUS;

ARRAY ARBA {&NUMBPLUS} $8 ARBA1-ARBA&NUMBPLUS;

- 80 -

IF NOMORE THEN DO; *x% TERMINATION ;
IF ONUMOFRD=0 THEN NUMOFIO=0;

ELSE NUMOFIO=PNUMOFRD-ONUMOFRD;
ACTBYTIO=ROUND({(&BUFSZ*NUMOFIO /1024),1);
SIMBYTIO=ROUND((&BUFSZ*SIMULIO /1024),1);

HITR = ((NUMOFREC-NUMOFIO)/NUMOFREC)*100;
SIMULHR =((NUMOFREC-SIMULIO)/NUMOFREC)*100;
NUMOFMBY= ((SZOFBUF *NUMOFREC) /1024/1024);
QUTPUT S&BUFSZ;
RETURN;
END;
IF ONUMOFRD=0 THEN ONUMOFRD=NUMOFRDS; **%x INITIALIZE;
PNUMOFRD=NUMOFRDS;
NUMOFREC+1;
RBAO=RBA;
IF INDEXLVL=0 THEN INDEXLVL=1;
IF INDEXLVL>4 THEN INDEXLVL=4;
DO WHILE (INDEXLVL >0);
IF INDEXLVL=1 THEN RBA=RBAO;
ELSE IF INDEXLVL=2 THEN RBA=LRURBA1;
ELSE IF INDEXLVL=3 THEN RBA=LRURBAZ;
ELSE IF INDEXLVL=4 THEN RBA=LRURBA3;
INDEXLVL=INDEXLVL-1;
M=1; xx*x%xx L,OOK FOR A MATCH IN THE BUFFER;
DO WHILE (M<= NUMOFBUF AND NOT
(AFIL{M}=FILENAME AND ARBA{M}=RBA))};
M=M+1; END;
IF M>NUMOFBUF THEN DO; M=1; HIT=0; k*x*xx* BUFFER MISS;
SIMULIO+1; END;
ELSE IF READNEW THEN DO; *** SHAREOPT. 4;
HIT=0;SIMULIO+1; END;
ELSE HIT=1; **xx*%x BUFFER HIT;
DO WHILE (M< NUMOFBUF }; **x* PLACE MOST RECENT AT TOP;
AFIT {M} = AFIL{M+1};
ARBA{M} = ARBA{M+1};

M=M+1;
END;
AFIL{M} = FILENAME; ARBA{M} = RBA;
END;
PROC APPEND DATA=S&BUFSZ BASL=NUMOFRDS;
RUN;
$MEND;

MODIFY, ADD, DELETE THE;
%BUFANAL STATEMENTS FOR;
ENVIRONMENT BEING SIMULATED;

$BUFANAL(8192,10,0); * <

% BUFANAL (2048,18),0; * <

%$BUFANAL (2048,100),0; * <

OPTIONS LINESIZE=80;

PROC PRINT; ID POOLNUM SZOFBUF;

VAR NUMOFBUF NUMOFREC NUMOFMBY NUMOFIO ACTBYTIO HITR
SIMULIO SIMBYTIO SIMULHR;

SUM NUMOFREC NUMOFMBY NUMOFIO ACTBYTIO SIMULIO SIMBYTIO;

fnw
n nn

- 81 -

