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" ABSTRACT ©

* Classification of Digitized Curves .
Represented by Signatures and Fourier Descriptors
s ‘ Ve
-- Hussein S. El Buaeshi

~

This is to study a classification of discrete coytom“s via signaturas.
Two algorithms to cdmpute the signature have been d;evelopcd. In
the first algorithm a,multidimensional sorting is used. The sccond
algorithm is based on simple geometrical considerations. Two types
of signatures are cc;néidered —the leﬁgth signature and the arca sig-
nature. Statistical features based on Fou;ier descriptors are derived

from the signatures. In the classification stage the k-NN algorithm is

~ used wherek and the size of the featire vector have been experimen-
télly \chosen.- The aléorithms have been tested. on 840 handwritten,
totally unconstrained characters from Suen’s data base. The recog-
nition Success rates of 91% and 93% were achieved for the length

and area signature respectiyely.
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Notations
S )
Symbol Explanation -
i,jl,r,t,w,z,m,0,e vertex indices or’loop index.
P, ‘ _ the first vertex of the polygon. i
P, _ . the last vertex of the polygon.
P, the first vertex to the left of the current link.
I ' the last vertex to the left of the current link.
Vi | the ** vertex. '
, /,\() - array contains the vertices to the left of
‘ . the current link. )
+ . the left side of the link. )
- the right side of the link.
T ' the unit polygon.
Sty - the signature at point t.
S=(t), §*'(t) the normalized signature.
T, U x-coordinate of a vertex.
Y v y coordinate of a vertex. - \ |
U * union of two sets.
n number of vertices of a polygon. -
'd,s the slope of a tangent line. '
Nilj) : array contains the good indices of the vertices and
their reflections.
L . the total length of the polygon.
Q " the current link. 3
-~

L




LT

Py

3

L Symbol Explanation | R
M- number of subsets. - - o :l ¥
g ‘loop index. o ;. *i::'u
my the slope of the ray k, ' - W
Joi "the 7*h index of a vertex in the subset q. “'
t ‘ “#"the arg, length. C
am s the fnt* Fourier coeflicient. ‘ - .
Qp, ' the mth phase angle. - ' a “o
Re ap, the real partyof the Fourier coefﬁcfent . .
,Iman the i 1mag1na,r part of the Fourier coefﬁcnent Q.
Ap, Al the m* amplitude of the Fourier coeﬁcxent ) .
{Am,om }2 the Foyrier Descriptors. - . ‘
sigﬁature‘(-)..lengt'h the length of the ntumeral on and to
:, the left of the current link:
- signatu_re(f).areal the area of’ the numeral to - BRI \_T C
the left of the curre®link. _=w. B
Multi-algorithm  thé multidimensions sortin—g aLgSrithm ‘
- o | (Length signature). - - A ’
Simpie*algori,thm . the,g’eomet;ricgl.coqgjdgration alogrithm
~ D (Length signaéure). . ‘
Area—algorlﬁhm ‘the algorithm f:oirnputes the area (Area-signature)®
Al the length of the link. 3
k(3) the number of the subset within whxch 7 lies. .
¢ * the length or area to the left of the current 1mk
I . the indicator functxon of set A = [l,..t, li ]
| N
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Chapter 1

Introduction ,

In many patgérn recognition applications and digital image BPhocess-
ing the sh'ape of a simply connected object is represented by its outer
contour. Many. shape recognition techniques deal with the bound-
' -ary of the entire object, the silhouette, the intensity profile or range
map. These include sucha methods as Fourier descriptors of the ob-
ject boundary [2,6,7,9,12,13,17,18,20], moments of the silhouette (3],
and circular autoregressivé models [8]. Among different techniques,
Féﬁrier descriptors and curve- signatures are distinguished by the
invariance to. the standard silape transformations such as scaling,
1otatxon and translation. Some functions of Fourier descriptors are
also invariant to mirror reflections and changes in the starting point
[9,17]. In this project the shape recognition problem using Fourier
descriptors (FD’s) derived from the curve signatures will be stud-
ied.” This approach combines the simplicity of curve signatures with
invgrimice of Fourier descriptors. The length signature proposed by
O’Rourke [13] is used here and the area signature is also introduced.
The latter is shown to be more robust v(rith‘respect to shape distor-
.tiqn. Efficient aigorithms for computation of curve signatures have

been proposégj and implemented. “In shape classification features

-

t
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ed on Fourier descnptors have also been used. Fourier descri iptors

~denved from the sighatupe are characterized by invariance to-afine
transformatlons and chazges in the starting point. Sevefal versions
of Fourier descriptors lfave been studied and compared. The‘slmpv
répreséntatiop methods proposed‘ in this project have been tested
in uﬁconstfaihed haridwﬁtten’ numerals B“Lsic.cmnpo‘nont,s of the
1mp1emented recognitions system are shown in Flgme 1.1.
The féature extraction module consists of two sub-modules: a
'sxgnature module and a Fourier descrlptors module. In the sxbuat,uré
“module the algorithm based on the geometrical consxdomhonq Las
been ‘used to compute the length/area signature of the numgral. The
. - Fourier descnptors module computes the FD’s of the numerals from
‘ the}r-s@ghatpres. The classification module -is divided into two sub-

modules as follows: ’

1. k-NN Sub-m'lodul‘e to find the k-nearest neighbor using brawuck
. and boul}ld‘algorithm [4]. - .

2. signature verification sub-module to separate distinct numecrals

with similar FD’s. _. '

In sub-module 1, FD’s alle used a,lqhe. In sub-module 2, classification

is ba.sed on the signature. R _

o

p . . i
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Chapter 2 )

Feature Extraction

' The most popular feature extraction techniques used in shape récob-
nition are: Fourier descriptors [7,17,20], boundary line encoding [12],
polygonal approximation and directional and curvature feature ex-
traction (see [19] for review).” Here and in the following scctions,
feature extraction methods based on the signatur.é and Fourioi\{ de-
scriptors will be presented.
2.1 Curve Signature S
O’Rourke defined a sighature of a plane curve [14]: Let T" be a con-
tinuous, directed curve in the Euclidean piane, parameterized by its
arc length t. The signatur:e S(t) of I' is the function which associates
_ with each point t of T' the length of T' which is on or to the left of
a tangent line at point t —Figure 2.1. The alternative version of
the signature is defined as an area to the left of a tangent line in-
stead of the length to the left —Figure 2.2. The following formula

is used to calculate the -area of the polygonal figure with vertices

-V—l=($1ay1)"--aVn=(xnayn)’ ~

1,8 _ ~
area = 3| 3 zi(gisr = yiz1)l (2.1)

- i=1

-a,
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_ where subscripts are reduced modulo n and \yo =0.

The mam advantages of curve signature'are its simplicity (the
hlstogram represents the signature of a polg'gon) and its invariance
to shifts and rotations (so long as the starting point is maintained).
The main weakness of the signature is that it does not uniquely iden-
tify the curve that it is derived from, except for rectilinear curves )
[14]. For instance, all convex curves of unit length are mapped on
the constant signature at one or zero depending on the orientation.
Nevertheless, the curve signature is a valuable tool in shape recog-
nitic;n as will be shown in the following sections.

In this project we consider the normalized signatures obtained by
' dividing the value of the signatu’re at point t by the total length of
the curve and by taking S*(t) = S(Lt), where L is the length of T
t € [0,1].

2.2 Fourier Descriptors

Fourier descriptors of plane curve were first introduced by Cos-
griff [1] and were subsequently used by a number of researchers
[2,7,9,12,13,17,18,20]. It is well known that similar shapes regard- .
less of their size and location usually fall into the same cluster in
~ the Fourier descnptor space using the Euclidean metric distance.
New Fourmr descriptors derived from the coefﬁments of a Fourier
series that correspond to either the length or the area signature are.
iproposed here. |

Only polygonal curves are considered. Assume that the curve I



— . r

' Vhas n vertiéés Vo,..., Vo = Vo and that the edge (V;-1,V;) has the
length Al. The Signature is a step function given by equatxgn

S*(t) = Zle IAJ.(Lt) . ) (22)
J= Ce

Where‘Aj = [l;-1,0), i = Z{=1 Al and I4(+) is the indicatoxxfdnction
" of a set A. Coefficients ¢; denote either the length of T to the left of
the edge (V}-1, V;) in case of the length signature or the area bounded
by I' to the left of the edge (V;_1,V}) in case of the arca signathre.

Fourier coefficients of'S*(t) are given by the following equation:
el

1 2 m2ml s m2n Al;
am=—chexp( ( Jl-——z—))(ekp —=i(- T )——1)

mm =1

L Al
-where i is equal to v—1 . Coefficient a,, may be expressed in the

‘magnitude-phase form as:

am = Apexp(iom)

Am = (Rez(am +Im2(am))% —(2.3)

1 mm . mw ’
Re(?n,)/ = ;—n—;;:lcj cos( T (201 + IJ)) sin TAI
. mm
. _.Im(a,,-f) = }-n_%;cj sin (———(ZIJ 1+ Al )) sin —Z-'Ali
, Im(an)
‘o = arct
O arctan Re(an)




| scaling (that follows from the definition of S*(¢) and eq. (2.3)), but
\ ¢ alsoto changes in the starting point (see Lemma 2.1). On the other .
‘

hand rotations affect the phase angles «,,’s which can be used to
distinguish between curves which are rotated versions of each other,
for example characters 9 and 6.~The problem of the éhoice of the

number of FD’s will be addressed in the following sections.

Lemma 2.1 IfT’ and T' are two curves which only differ in a sense
. that they are translation, rotations, or scaled version of each other

or they only differ in the starting point by Aly units of arc length

then
S , ¢ A /
\ Am :-. m
om = angd mAtg
*l For the proof see appendix C.
\ / B
{ /
T //
s * k‘// :
Y
v //

.
s



I‘/igure 2.1: The continuous line is a signature value at link Q of tle polygon.
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" Figure 2.9: The filled area is another signatm\"g value at link Q of the polygon.
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<\Signature Computation -

Chapter,_,3 |

~ In this section, efficient algorithms which calculate the signature of
. a plane curve are presented. Algorithms 1 and 2 find the vertices to
the left of the current link of the polygon. The first algorithm uses ,

\multidimensional sorting [5]. The second algorithm uses the simple
géo£netrical propertieé of a polygon. Both algorithms use algorifhm
3 to calculate the length or the area, to the left of the current link
of a polygon. These algorithms were written in Paécal language and
executed on the Micro\/:ax II'workst_a,Xon. Algorithm 2 is on average
four times faster than algorithm 1. In the following sections, we will
provide for each algorithm (1) algorithm descfiption; (2) pseudo-
code of the algorithm; and (3) for some algorithms a description of

the, algorithm steps— the analysis of the algorithm.

e
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3.1 Algorithm 1.
~ | .

\_\__

-Description. The algorithm presented here uses the multidimen-

. sional sorting of [5]. It translates the coordinate system origin to a’

polygonal vertex P,,-rz = 1,...,n; reflects each vertex P; # P;, with
respect to P; yielding a vertex P,,+J, and sorts the vertices and their

reflections cn"cularly about FP;, the order within each ray about P

- being 1mmater1al In order to obtain the vertices to the left of the

current origin P; only the original 1ve.rtices from the ray P;P; to the

ray P;P;., counterclockwise have to be identified.

3.1.1 Pseudo-code of algorith;n 1

. Input: P, = (zi,%:),1 <i< n.

Output: Signature;(i ).length/area‘, 1<i<n.
1. Fori=1,...,n do step 2 to 8
2. i"orj =1,...,n do u; = zj — i, v; = ¥;
3. For j =1,...,n, if (y;,v;) # (0,0) call j “good”.

4. For every good j = 1,...,n-let uj4n = —uj, Vjyn =¢=j, and
Sjtn = -:-’é—, provided that u; # 0.0.

5. The indices {jlj is good } U{n + j|j is good} are to be sorted

into subsets as follows

(a) {jlu; > 0; s; —key}

« (b) {jluj =0,v; >b

!



(c) {jlu; <’O; 3; —key} T m
(d) {jlu; = 0,v; >0}.

6. Find the vertices‘to the left of the current link PP; by tak- -

1ng the original vertices gomg -counterclockwise from the ray

. '
e

- containing P; to the ray contammg its reflection Pjqp. /

o 7. Sort the vertlces t0 the left of the current link usmg the index

/ . as the key #

—

8. Signature(? ). lgngth = the length of the polygon to the left of
the current link (use algorithm 3).
Signature(: ).area = the area bounded by the pofnts on and to
the left of the current link (use eq. 2.1 and algorithm 3).

-, 3.1.2 The analysis of algorithm 1 -

Step 1 and 2 translate the coordinate system origin to a polygonal

- vertex FP;. Step 3 designates P; as good if P; # P;. Step 4 reflects
P; with respect to P; and finds the slope of P.P;. Step 5 sorts the
vertices and their reflection circularly about F;. §teps 6, 7 and 8 are
very clear.

R . A

2
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3.2 Algorithm 2 Lo
Describtidnfﬁgi‘l}is algorithm is based on the simple’geometrical
) L20 .
properties .of é?‘p'/olygoxg. It proceeds as follows. For each link of the
~
polygon the coordinate system is rotated and translated se-that the
origin coincides with the starting vertex of the link. The x-axis is

then aligned with the poljrgon link. The vertices (z, y) to the left

of the link are the ones with y > 0.0 se; Figure 3.1.

Y

Yl

{

. ) - X
Figure 3.1: The translation and rotation of the coordinate system. .

BN

3.2.1 Pseudo-code of algorithm 2
Input: P; = (z;,4:),1 <i < n.
Output: Signé,ture(i).length/area 1<i<n.

1. Fori:l,‘...,ndostep2t06. ‘//
{
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.Letj=17+1.

. Translate the coordinate system OX Y by the vector OP to
the coordinate system P, X'Y" as follows: |

eFor m=1,...,ndo

LW ' !
Ty = ZTm— Ziy, Ym =Ym — Ui \

. Rotate the coordinate system P.X'Y"' through an angle § about

the origin P; to the new coordinate system FX" Y as follows:

P
(o

eFor m=1,...,ndo
zh = znmcosf 4+ y:sinf

y! = —z! sinf + y! cosb.

. Find and sort all vertices yj, > 0.0 to the left of the current link
P;P; of the polygon using the index as‘a key. '

'

. Sigl_latﬁre(zl )length = the length ofpthe curve to the left of the
current link (compute the iengph using a,lgofifchm 3).

Signature(: ).area = the area bounded by the points on and to .
the left of the current link (use eq. 2.1 and algorithm 3.)

The steps of this algorithm are self explanatory.

LEN
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3.3 ~ Algorithm 3, T
This algorithm finds:

1. the irtersection pomts between the ray contammg the current
' link and the other 11nks of the polygon B

L3

2. the length of the line segments connecting the p(;ints%on and to
the left of the current link.,

‘

3.3.1 Pseudo-code of aigorﬁ:hm 3

Input: PPJ, vertices to the'left of the current lmk numb’er of ver-
, t1ces to the left of the current link. t

Output: the total length of the line se\gr‘nents' to the left of the -
cuprent link. | N '
Le Po Pn, and P1 Pn+1

1. Le Pf and ‘P, be the ﬁrst and last pomts to the left of the

. current link.
2. if f# 1 or e # n then - S
begin | |
e Let P.be a poin’gﬂ of the polygon such that k = f — 1.
e Find the intersection betweenhF;T}_"-j and P;P, say P"w.

¢ ‘Find the distance between 'Pf— angi P, (which is the part of
the link to the left of the current link.)

e Let P,bea point_of' the polygon such that z=e+1.. ‘

L4

\



e Find the intersection between F;P; and F, P, say P,.

‘lo Find the distance between P, and P,, (which is the part of
the link to the left of the current link.)

’ s

| end.

3. else find tﬁe distancé between P; and P,.
: " . a .

- 4. Compute the length of the line segments connecting the vertices

Py, ..., P, as follows: ‘ S
) o Let B, an_ci P. be two consecutive \;ertices to the left of the
current ﬁlink such that ¢ <7 |
’. o if t — r = 1 then find the distance between Pt and P,.
| ' -olft-—r#lthen
. “ begin , ‘ .
; L 'Find the intergeétion between P,P; and PP, say Po.
L e Find the distance between P, and P, (which is the pari; of
, | the link to the left of the current link.)
. | e Find the intersection between 73’:}_91 and F,P,_, say P,.
& o Find the \dis.tance between P, and P, (which is the part of_
R the link to the left of the current link.)
‘, end.
5. Tbtal—length = the sum of the length of the line segments corm-
puted in either step 2 or step 3 and step 4.
. :
AN \
2 - «
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3.3.2 The analysis of algorithm 3-

Step 2 computes the length of the first and last line segment to the
left of the current link, when both vertices P and P, do not occur

together to the left of the current link—Figure 3.2 and Figure 3.3.

The following ﬁgurés explain the remaining steps of algorithm 3. R

-

8,

A | 1 . 1 .
Figure 3.2: Finding the length P;P  to the left of the current link P;P; , where -

P; # Py, (step 2.)



L Y—— e e,

-
+
T T —T — .
. Figure 3.3: Fihding' the length P.P,, to the left of the current link F;P; , where
P, £ P,, (step 2.) - . .

! L) /
Figure 3.4: Finding the length PP, to the left of the current link FP; , where

P. = P, and P; = P, (step 3.)
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Figure 3.5: Finding the length PP, to the left of the current link FP; , where
t<r, |t=r| =1, (5tep 4.) ) - : -
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Figure 3.6: F xndmg the length P¢P to the left of the current link PP, , where

il

t<r, |t—r|#1, (step 4.) | : - i '

’
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Figure 3.7: Finding the length P, P, to the left of the current link P.P; , where

t<r,|t—r|#1, (step 4.)

Y

P

~3.4 Changes to algorithm 3
. (-
In order to qalculat? the area to the left of the current link in steps

1 to 4, find the intersection points between the ray containing the
current link and the other links of the polygon. Put these points in

their topological order with respect to the order of the other vertices.

Change ste;; 5 to find the area enclosed by the polygon defined by

the vertices found in steps 1 through 4 using eq. 2.1.
}



Chapter 4

Classification -~

In this section curve signatures and Fourier descriptors arc used to
classify totally unconstrained, handwritten nurmerals on envelopes
collected by United States postzﬂ service. In [15], similarity mea-
sures based on the signature, angular and positional distance are
contrasted. The signature is known to be quite insensitive to such
distortions as slant and perspective. queover it does not degrade
considerably under random noise. Nevertheless, the signature proves
to be a useful tool for character classification. A recognitionocxpcr-
iment was performed on 840 digitized characters which represented
numerical digits 0 through 9, in which tile learning and testing se-
quences consisted of 461 and 379-characters respectively. These
handwritten characters of 30 different styles represent a smali subset
of Suen’s data base [12].. Samples of characters used in the exper-
iment with their length and area signatures are shown in Figures
4.1, 4.2 and 4.3. The classification module (refer to.introduction)
consists of k-NN rmodule and signature verification module. In the
first module a rough classification was accomplished by using only
the FD’s as ‘the feature vector while in the second the ambiguous

characters were separated using the signature as the feature vector.

20
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~ Figure 4.1: Some of the numerals used in the experi}nent.

The size of the feature vector and the number of the nearest

neighbors k which minimized the misclassiﬁcation&rate‘ were. experi- N
mentally chosen. The optimal k turned out to be 5 (see Table 4.1 and e
Table 4.2). The effect of mixing the amplitudes A,, and the phase . %

angles o, in the feature vector were also explbred. It was discovered

~

- v
..' L
\ ‘ .
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that the phase angles alone behaved pt;orly (24% success rate for the
.length signature and 39% for the area signature (see Table 4.3 and
Table 4.4). It was then decided to use only FD’s amplitudes as the
. features in the k-NN module. The optimal number of An’s ampli-
tudes was 6 fér the lengtil signature and’ anfor the area signature.

With that choice of parameters, an overall recognition rate of 85.5%

" _for both the length and the area signature was achieved (see con-

fusion matrices in Table 4.5 and Table 4.6). These results compare -
 favourably with the literature.. Using different FD’s Persoon aid Fu
[17] obtained 84.6% rate and Shridhar and Badreldin [18] 66% rate

on a set of carefully selected handwritten characters.
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Figure 4.2: The length sigr;a.tures of some numerals.
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Ta.ble 4.1 Classxﬁcatlon rates for different sizes of feature vector (FD’ (amplitu_des)

of the length signature) and different number of k-nearest neighbors.

k | number of features (amplitudes)
6 | 9 | 11 15
4l - | - | — 84.43
5 185.49 | 85.22 | 84.43 | 84.96
7 185.22 | 74.93 | 73.61 —
8| — | — | — 80.74
9 |79.65|80.21|80.21| 80.47
‘ . . |10|7889| — | — 82.59

/

Table 4.2: Classification rates for different sizes of feature vector (FD’s (phase-

angles) of the length signature) and different number of k-nearest neighbors.

'k | number of features (phase angles)
6 15 |
35.88 24.27
24.54 16.89

10 — 17.68




Table 4.3: The confusion matrix for classification using the FD's (phase-angles) of

26

the length signature. ‘
pumerals | 0 [ 1 | 2 {3 }4f 5 {6|7]8}9]| No. of misclassification
0o [13]12]3|10]4] 4 [2[1]2]¢4 42
1 1423 1(6|1] 4 (0[3{1]3 33
2 6 (101512 1 {113(3}0 25
3 1413 (240 1 (4202 31
4 94|07 0 |2/0(0]0 22
) 7111510 2 |110(2]1 24
6 {7 |4]4a{1]o |5]o]1]4 32
7 2181 ]2}1] 0 1{3]0]2 17
8 6 194 (4|1 0 [1[1]1]1 27
9 Jjof12y2|6fof 3 jo0jof1}4 34 ’
* The overall results
Total percentage
No. of numeral(s) correctly classified 92 24.27
No. of numeral(s) misclassified- 287 75.73




'

Table 4.4: The confusion matrix for classification using the FD’s (phase-angles) of

the area signature.

numerals [ 0 { 1 {2 |3 14(-5 |6 |7|8| 9 | No. of misclassification
0 [osfi2]s]s[2] 0 [1]o]4]s 32
1 1611915 16 (0] 1 31051 . 37
N\. 2 [8[s5]15[5]0] 0 [1]o]o]1 20
3 7131213310 0 412131 22
4 516 (7]0(5[0 [4]1]0]1 24
) 6 ([7]013]0}1 4 13111 25
6 (5|7/0o|1fo|l1 |18]2]1]2] 19
7 3131416100 3 |1]0]0 19
8 3|s5|7(6]of'1 [ofo]|3]3 25
o Ji2][s[3]s]o[2 [2]o]o]n 27 |
' The overall results B
Total percentage
No. of numeral(s) correctly classified 129 $34.04 ,
No. of numeral(s) misclassified 250 - 65.96




o
5

.
id .

.

Table 4.5: The confusion matrix for classification using FD’s (amplitudes) of the

A

length signature.

Mg

numerajs | 0 | 1 ] 2,1 31456 | 7| 8|9 |No of misclassification
0 [55]0 ojojojo|o]o]oO 0 "
1 1(53(0Fojojojolofo}2 3
2 (oo lsfo]of2]o]o]2]1 \5
3 0(0j0(55{0|0|0j|j0O0|O0}]0O 0
4 0{4 (501700 |2]|0]1. 12
5 0{ol3[0j0o|28{0|0fo0]0 3
6 0|0|0|0j0]|0]22{0]0]I5 15
7 0]0({0}]0]2 6 112|010 8
8 1{3(0(0¢}0 010[23|1
o 9 1{0}j]0}j0}0¢{0;2;0}]1]34
The overall results
‘ Total ~ percentage .
No. of numeral(s) correctly classified 324 $85.49
No. of numeral(s) misclassified 55 . 14,51




!

.Table 4.6: The confusion matrix for classification using FD’s (amplitudes) of the

_ area signature.

<

No. of numeral(s) misclassified

numerals | 0 (1 [ 2 {3 |4 |5 |67 /(8] 9 |No ofmisclassification
0 551 0 0}]0]010}10]01]0 0
1. 1o0]s{ojo]1fofofo]2]1 5
2 0|10 |34{0f L {O0OO[O|1]0 1
3 o |0olss]0]o{olo]a}o 0
4 0(3]2|1|22{0]0 1]0]0 N
o9 0|0 |4 /0]0(22|]0j0]0(0 4
6 [ofof[2]ofofofir[o]o]1s 20
7 0101210({510{2)10;0171 - 10
% |2|1]/0foflofo[0]o][25]0 3
| 9 "Jojofojolo]ofao-|1 |33
i The overall results
Total percentage
No. of numeral(s) correctly classified 324 85.49
55 14.51

(4}

*?
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A glance at the confusion matrices reveals that in many cases:@¥"
were misclassified as 9’s, and 4’s and 5’s as 2’s and vice wversa, and
6’s.as 7’s. The reason for this phenomenon lies in the rotational in-
variance of A’ in eq. (2.3r)“z;nd mirrog reflection invariance of the.
signature function (so long as the same tracing direction is main-
tained). Some other numerals are misclassified due to the noise in

their outer contour. For example for the length signature:
e 1 is misclassified as 9 , .

o 2is miscla,ssiﬁéd as 8 ‘ : | ‘ ,/

?

e 2 1s misclassified as 9
e 4 is misclassified as 7 and vice versa

. 4 is miscla‘ssiﬁ!éd as 1 é,nd 9
Y : .
. ® 8 is misclassified as 9 and vice versa —see Figure 4.4

. 9is misclassif'ied as 0 Ny

For the area signature:

\ ¢ 1 is misclassified as 9
\ ' : ,

2 is misclassified as 4 and 8

.® 4is misclassified as 1,3 and 7 o

\

e 6 is misclassified as 2

‘e 7is misclassified as 2,4 =~ ' R

-t
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@ 9 is misclassified as 8

Other numerals Which were m;s\classiﬁed because the most important

features have almost disappeared are:
e Fat 1 is misclassified as 8 :
. ® f‘at 1is miéclassiﬁéd as 0
. Fat 8 is misclassiﬁea as 0 -e\see Figure 4._5_ _

e Thin 8 is misclassified as 1

_*' LI i L

Figure 4.4: Numeral 8-misclassified as 9, because the lower part is small compared -

to the upper part of the numeral '



T T T
Figure 4.5: Fat numeral 8 misclassified as 0

! o
4.1 Differentiation Scheme

In order to separate the characters which are mirror reflections or -
rotations of one another a differentiation scheme is used based on
Athe signature itself. The signature is clearly sensitive to reflections,
and changes in the starting point; therefore, it is used to find the
set of discriminating inequalities which are then used to distinguish
between easily confused characters. The inequalities in Table 4.7
and Table 4.8 are found experimentally after testing thelarge set of

characters from the learning sequence.



ql ' qz qs ,q4' ' -
p Length of the side

Figure 4.6: The four equal intervals of the signature. -

-For the length signature the following differentiation scheme is

used.

1. For each character, divide the domain of the signature (step
" function) into four equal intervals and calculate the correspond-

ing areas under the signature) q, ..., g4, see Figure 4.6.
2. For each category count the number of times ¢; < g;, where
1<4,j<4,i< ] 2
- 3. Choose the best 3 inequélit'ies with the highest count number
(Table 4.7) to be the template for the category.

4. Assign the character to a class with the maximum number that

can satisfy the inequalities in Table 4.7.
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Table 4.7: The differentiating inequalities for the length signaturé.
‘character inequalities
2 Q<B|a<qu|g<g
4 N<@la<gp|an<g
5 |a<a|e<a|e<s
6 q1>94|q2>q3 | G2 > g4
7 <@ |R<B|aE<g
9 g2 <gs|q2<gs|qs<qy ;
Table 4.8:. The differentiating inequalities for the area signature.
character inequalities
2 N<@|a<B|a<a|@p<@G|gp<qu|gp<a
4 Q<@ |a<g|qa<q|q@>q]|q>q|q<
.9 Q> |la<@|a>a|e<ag|p<alg>a
6 Q1>q | Q>0 | q>q|q>0|q2>0|q>
7 N>@ | a<@G|a<au|e<g|g<g|p<a
9 N>R N> 0n>a9|9<q|q2<q fJ3<fI4/

)y
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The similar differentiation scheme for the area .signat‘ure is used
except that 6 “inequ‘ah'ties are taken instead of 3 and Table 4.8 is
used instead of Table 4.7. These inequalities show the relationship
between the four quadrant regions of the numeral. Using these in-
equalities the class of the confused numeral can easily be identified.

The classification procedure is as follows: using FD’s as the co-
ordinates of the feature vector the incoming numeral is assigned by
the k-NN module to one class of either set u; or set pp. If the in-
coming numeral is assigned to one class of set p;, the real identity-
of the numeral has been reached. If the incoming numeral is as- -
signed to one class of set s, the k-NN module calls the signature
verification module to distinguish between the cohfused numerals.
For example: if the incoming numeral is assigned by k-NN module
to class 5 (a member of set py), the signature verification module is
used to distinguish between 5 and 2 using the differentiation scheme.
The classification schemes for the length and the area signatures in-
corporating the differentiation schemes are shown in Figure 4.7 and
Figure 4.8.

" The confusion matrices for the length and area signatures using
differentiation schemes are presented in Table 4.9 and Table 4.10.
Th erall recognition rates using these schemes are 91.03% and
93(?4/7;()' for the length and area signatures respectively. This clearly

shows the superiority of the area signature over the length signature.
14
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Table 4.9: The confusion matrix for the classification scheme using the length sig-

nature.
numerals [ 0 | 1 | 2 [ 3|45 |67 8] 9 |No. of misclassification
o (s5]/ojojofojolofojolo .0 ]
1 115300170 )010})01}1 "3
2 |ojo|32{o|1]0o]ofo|z2]o0 3
3 o[0(O0}|35510(0}0{0(01}{0 0
4 o{4{4afolis{1jof2]o0]o 11
5 o(0|3|]0]0|23|]0(0|O0}0O 3
6 0(0|0|O0[O0O]O0({370([O0]0O 0
7 o{ojo|o0]2 0 {140} 4 6
8 1]3(0]0}0 110230 ) 5
9 1]0{0]0]ofs0|1]0]1]35 3
The overall results .
Total percentage
No. of numeral(s) correctly classified 345 91.03
34 8.97 ’

No. of numeral(s) misclassified




'Table 4.10: The confusion matrix for the classification scheme using the area signa-

ture,
numerals | 0 | 1] 23415 |6]7]|8] 9 |No. of misclassification |
0 55(0|0|0j0{0]|0|0O]|O0O}O 0
1 0f(s1j0j0|1|0}j0]0]2]|1 5
2 010134010 j;0]0]|1} 0" 1
3 0/0j0|5|0{0}0]|0]0]|0O0 0~
4 0321|2001 01}0 7
5 0{o;1{0fjof2s{0]0fo]o0 "1
6 0/0|0{0|0]|]21|3|0(0/|0 2
7 0|0j2|0j0|0]0]|15|0]3 5
8 211{010{0(0]0}0]25{0 3
9 0jo0[0|0}jO0O|]0O}]1]0]1]36 2
The overall results
Total percentage
No. of numeral(s) correctly classified 353 93.14
No. of numeral(s) misclassified 26 6.86




- .| Using only amplitudes of FD’s

.| the incoming character is either :

.'ul :r ¢0y, ‘1,, ‘3’,;4’, 573, iR I or 2 :r c2)’ ‘5,, ‘6’, ‘g

[sTtoP ] 2,5

v : use the differentiation scheme to distinguish
* between the numerals of the leaf node. .

v v v
l l2” 5 _J l ‘6”,‘7’7 ‘g’ ] L‘4y, ‘6', Y ] ) -

Figure 4.7: The classification scheme for. the length signature
@ . ,

o

i <Hsing only amplitudes of FD's 4 < o F
the incoming character is either '
" :l ‘0’, ¢1,, ¢31’ (71, ‘8’ j ) 01" 4 :L 527’ 44‘9' ‘5), LGS’ ‘g ‘
- .
. J
l STOP l ‘2, ‘5’
use the differentiation scheme to distinguish
between the numerals of the leaf node.
- v ¥ v |
. I (21’ ‘5! l ‘ ‘47’ o l [ . ‘6’, ‘! J
4 > -
Figure 4.8: The classification scheme for the area signature

«f



Chapter 5

"Conclusion

In this project two kinds of curve signatures have been discussed and
implemented. Fourier descriptors invariant to affine transformations
2 (trénslations, rotations and scaling) and changes in starting point
have been derived for both signatures. To distinguih between con-
tours which are rétatior;s or mirror reflections of one another the
differentiation scheme has been implemented. It has been noted
that the area signature performs better than the length signature
both with respect to the classification rate and the com;;utational
complexity. It is interesting to know how nonlinear distortions af--
fect th‘e signature performance. Another unanswered open questibn
* is the f?st parallel implementation of the signature computation-al-

‘ gprithm.
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. Signature expansion °

Appendix A |
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Figur;z A.1: The signature function.

Wherel =1{_ 1+AI .

¢ % ‘ .
The signature S*(t) = T7L;¢; Ia,(t) is a piecewise smooth furiction on the

interval {0, L]. In the Fourier series, it can be expanded as follows:

~
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—i2rml;\ [ —i2rml;_y
L ) T ExP (—T—'—

4 . -9 -\
ECJ exp( >exp ("—"—"—"z2w£nlJ-l> {exP (————”'LJFAI ) - 1}

Z: c; exp

T 3=1

f2rmliy 7w . [=i2rmAl\ .
() o (22) ) o

The real and ifnaginary parts of a, are found to be.

: ;ax 27rml -1 T\ cos 2mml;_y o . ,n 2rml;_, T
Pl I "2) T \TIT Ty TR 2.
2rmli—y W\ 2rmly,  w 21rml,-1 . W
cos ( 7 - 2) = COS L cos2 -+ sin T sin 3
. 2xmlioy ' '
= sin— , (A.2)
—sin (——-———mej’l - -g) = -1 {sin 21rnzl,-_1 cos -;E ~ sin er- cos ————1-—27"21." }
2rml;y
= —1 { cos — }
= icos Zrmlioy . ' : - (A3)
" I .. -
equation A.%4 equation A.3 = sin glrinill— + icos -2—1-‘-’:%1-"-1 (A.4)
—i A l; !
exp (______z27erAl,) = cos 21rn2A 2 —isin 27m11JA 2 (A.5)
Substituting the equations A.4 and A.5 in the equation A.1 the following is obtained:
_ . . 2rml; =1 R QWij_l
Qy = 27rm Ec, {sm T ~+ 1 cos T } | -
27rmAIj o 2rmAl )
\ yeos 7 isi 17
1 2emliy  2mmAl; . 2mml_
= Zwm,z_;q {sin rn}J cos wrz 2 — sin —1:%-2—1
+ cos 2rml;q " 2rmAl; +i {cos 27rnzlj_1
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Appendix B

. Detailed Pseudo-code of algorithm 1

Input: P; = (zi,3:),1 <1< n.

Output: Signature(i ).length/area, 1 <2 < n.

L.

Fori=1,...,n do step 2 to step 9.

For j=1,...,ndo u; M&; — 2, v; = yj — ¥i. -

. For j =1,...,n,if (u;,v;) # (0,0) call j-“good”".

.o, : . v
For every good j = l,...,n let ujun = —uj, Vjyn = —vj,,and ;44 =.‘-¢,

~ provided that u; # 0.0. - .

The indices {]l] is good } U{n + jlj is good} are to be sotted into subsets as

follows

(a) {jlu; > 0;8; —key}
(b) {jlu; =0,v; > 0}
() {ilu; < 0;8; —key} , | ‘
(@) {ilu = 0,0;>0). | . . .

. Foreachk=1,.... M

o let Ni[j] = j such that { j 3 j is good and each N contains the indices

of one ray }.

Find the vertices to the left of the current ’link T’TF,- as follows: —whiere k(7)
means the nuinber of the subset within which j lies.
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o let g = 0 and let k(j) = k; ; where Ny, [j] = j;
o let k(j + n) = ky; where Ny, = j +n;
o if k(j + n) > k(j) then n
begin
~ Fore=k(j)+1,...,k(j+n)—1do
beging=g+1
* For p =1 to n do begin if N.[u] = then Ag) = P, end
end ' ~ R \

-

end

o ifk(j + 1) < k(j) then
begin ) \
. -
- Fore=k(j)+1to M do
" beging=g+1 -
For 1 =1 to n do begin if N,[u] = i then A(g) = P, end

end

~ For-e=1}tto k(j +n)~1do
begin g=g +1
‘For 1 =1 to n do begin if N.[u] = u then M\g) = P, end

end

end

-

8. Sort the vertices in the A(-) array using the index as a key.
’ I

~

9. Signature(i ).length = The length of the numeral to the left of the‘cufrent
link. (Compute the length using algorithm 3).
Signature(s ).area = The area bounded by the points on and to the left of the

current link. (use eq. 2.1 and algorithm 8).

(In (a) and (c) a list of subsets is obtained; the erder within each subset is
irrelevant) the result of step 5 is said to be:

Jll"""’ll],'")JMI""’JM""
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] . Where the points with indices J, . .., Ji,, constitute an entire subset and there ar®
M subsets all togther.
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Appendix C

Proof of Lemma 2.1

Lemma 2.1. If " and T afe two curves which only differ in a‘sense that they

are translation, rotations, or scaled version of each other or they only differ in the

starting point by Alo units of arc length then

!
m

On = a:n + mlAty
Proof: rotation, translation and scaling does not effect the normalized signature

$*(t)'so FD’s remain the same. Consider the change in the starting point. let
zo = U(!) and 2z, = U'(l) be the starting point of I' and I' respectively.

U'() = Ul + Aly) — S*'(8) = S*(t + Ato) SN

where Aty = 80 and L = 1. The Fourier coefficients of S*'(t) are

1

1, _
a,, = /;S (‘t)exp(-z21rmt)dt

: 1 om [t

= 27(/ S (2 )pr(—zmt)dt

t

( +At°) exp(—imt)dt

/ (t +2f t°) exp{—tm(t + Ato)}d(t 4+ Ato)

%’IH

exp(imAto)
)

i

exp(tmAty)am

Therefore

’

am = a:,,+mAtq
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