W s ol P e LA e v gt we v Aeae YRR T N T or
f

.*l National Library Bibliothéque netionale
of Canada du Canada
Canadian Theses Service
Ottawa, Canada
K1A ON4
NOTICE

The quality of this microformis heavily dependent upon the
uality of the original thesis submitted for microfilming.
very effor! has been made to ensure the highest quality of

reproduction possible.

If pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the universily sent us an infericy photocopy.

Reproduction in ful orin part of this microtorm is governed
by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and
subsequent amendments.

NL-339 (r.88/04) ¢

Service des thases canadiennes

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfiimage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

S'il manque des pages, veuillez communiquer avec
l'université qui a conféré le gradn.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées a l'aide d'un ruban usé ou si l'université nous a fait
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielie, de cette microforme est

soumise a la L.ni canadienne sur le droit d'auteur, SRC
1970, ¢. C-30, ¢t ses amendements subséquents.

. Canada

Combinatorial sesrching for Coverings by Rook Domains
using the Blokhuis and Lam method

Alain Pautasso

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montréal, Québec, Canada

May 1988

© Alain Pautasso, 1988

Permission has been granted
to the National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

L'autorisation a &té accordée
3 1la Bibliothdque nationale
du Canada de microfilmer
cette thése et de préter ou
de vendre des exemplaires du
film.

L'auteur (titulaire du droit
d'auteur) se réserve les
autres droits de publication;
ni la thése ni de 1longs
extraits de celle-ci ne
doivent @&tre imprimés ou
autrement reproduits sans son
autorisation écrite.

ISBN 0-315-51356-x

ABSTRACT

Combinatorial searching for Coverings by Rook Domains
using the Blokhuis and Lam method

Alain Pautasso

The search for all coverings by Rook Domains of the set V[of all n-tuples
(z1,%2y...,Zn) With z; € Z; may take an enormous amount of time. Blokhuis
and Lam developed a constructive nicthod for finding coverings by Rook Domains.
This method, although not completely exhaustive, did allow the authors to find
improvements in some cases. We concentrate on designing suitable tests to speed
up their method by pruning the search tree. These tests take place, at each given
level, while a partial solution is being processed as well as just before moving to
the next level. The software was implemented on both VAX-11/780 and SUN 3/50

computers.

iil

ACKNOWLEDGEMENTS

I wish to thank my Thesis Director Dr. C. Lam for his kind supervision and
help. I wish to acknowledge my debt to him for clarifying my ideas about Combi-
natorial Searching.

My thanks also go to the Computer Science Department of Concordia Univer-
sity for its warm hospitality during the preparation of this work.

Some financial support has been provided by the Natural Sciences and En-
gineering Research Council of Canada and by the Fonds pour la Formation de

Chercheurs et I’Aide i la Recherche.

v

TABLE OF CONTENTS

TITLE PAGE

SIGNATURE PAGE
ABSTRACT
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
TABLE OF FIGURES
CHAPTER i. INTRODUCTION

1.1 Problem 1: Football Pool problem for n matches
1.2 Problem 2: Rook Domain problem
1.3 Other problems related to the Rook Domain problem

1.4 Some definitioas and results concerning the Rook Domain problem

CHAPTER 2. COVERING BY ROOK DOMAINS USING
THE BLOKHUIS AND LAM METHOD

2.1 Blokhuis and Lam method

2.2 Construction of a covering by Rook Domains using
the Blokhuis and Lam method

7;.3 Isomorph rejection

2.4 Illustrated example

il
iii

iv

vii

10
18

24

CHAPTER 3. IMPLEMENTATION OF THE BLOKHUIS
AND LAM METHOD

3.1 Major components of our Pascal programs

3.2 Results

REFERENCES
APPENDIX 1. Program gencover which generates the covering matrices
Part A: Routines from the ISOM package developed by Lam,
used in the program gencover
Part B: Program gencover

APPENDIX 2. Program rooks which generates the coverings

33

33
39

41
43

44

47

53

vi

vii

LIST OF FIGURES

1.1 Values of o(n, k) known to September 1985 7
1.2 Values of o(n, k) known to May 1988 7
3.1 Procedure generate 38

oo

CHAPTER 1
INTRODUCTION

This thesis is concerned with searching for coverings by Rook Domains. It
starts with the Football Pool problem. We shall first define this and several other

related problems. Finally we shall summarize our achievements.

1.1 Problem 1: Football Pool problem for n matches.

We define a forecast for n football matches as the set of possible outcomes
(win, lose or draw) based on the results of the home teams. The Football Pool
problem for n matches is to find the minimum cardinality of a set S of forecasts for
n football matches such that there is at least one forecast in S with at least (n — 1)
correct resuits (one error result at most), irrespective of the actual outcome of

these matches.

The Football Pool problem was first posed by Taussky and Todd {10}, who also
proved that the minimum number for 4 matches is 9 forecasts. The problem for
5 matches was solved by Kamps and van Lint [5], who proved that 27 forecasts
is necessary and sufficient. The problem for 6 matches is still open. Weber [21],
proved that 79 forecasts are sufficient. Recently, Wille {12], using the method of
simulated annealing, proved that 74 forecasts are sufficient. There are also a few
known results for 7 and 8 matches. For 7 matches, Blokhuis and Lam [2] proved
that 216 forecasts are sufficient. For 8 matches, Fernandez and Rechtschaffen (3]
proved that 567 forecasts are sufficient. For 13 matches it has been proved that

310 forecasts are necessary and sufficient.

The Football Pool problem is related to many other problems which we shall

now state.
1.2 Problem 2: Rook Domain problem.

Let V be the set of all n-tuples (z4,...,2za) With z; € Z; = {0,1,...,k - 1}.
We define the Hamming distance d on V;*: if £ ard y are in V[, then the distance
d(z,y) between z and y is the number of coordinates in which the two points z
and y differ. We define the Rook Domain R(z) of a point z in V! as the set of
all points y in V; such that d(z,y) < 1. The Rook Domain problem tor V" is to
find the minimum cardinality of a set S of V) such that S is a covering by Rook
Domains, i.e. V[* = UzegR(z).

Kamps .nd van Lint [6] give some known values of the minimum cardinality
of a covering by Rook Domains of V?, for k=1,...,7andn =1,...,13. In 2],

Blokhuis and Lam give some improvements.

It is clear that Problem 1 is a special case of Problem 2 with £k = 3 and
an identification of the set of possible outcomes (win, lose or draw) with the set
Z3 = {0,1,2}.

1.3 Other problems related to the Rook Domain problem.

Problem 3: Dominating number of a graph.

A set of vertices in a graph G = G(V, E) where V is the set of vertices and
E is the set of edges, is said to be a dominating set if every vertex not in the
set is adjacent to one or more vertices in the set. A misnimal dominating set is
a dominating set such that no proper subset of it is also a dominating set. The
dominating number v(G) of a graph G is the size of the smallest minimal dominating
set. The problem of the dominating number of a graph G is to find the dominating

number v(G) of the graph G.

Problem 2 is a special case of Problem 3. We define the graph G = G(V, E) as
follows: V = V;* and (z,y) is an edge if the Hamming distance d(z,y) between z
and y is equal to one.

Problem 3 may also be formulated as an operations research problem to min-
imise the number of transmitting stations.

Problem 4: Transmitting stations problem.

Given [cities ¢y, ..., ¢}, transmitting stations are to be built in some of them so

that every city can receive messages from at least one of the transmitting stations

through at most one link. The problem is to minimize the number of trcasmitting

stations.
Problem 4 with the graph G = G(V, E), where the set V' of vertices is the set
of cities {¢y,...,¢;} and the set E of edges is the set of links {e = (¢;,¢;)} between

the cities, is the same as Problem 3.
Problem 5: The warehouse location problem.
Given
1) a certain product P
2) the destinations 1,...,7,...,..
3) the demand d; for the product P at destination j.
4) the possible sites 1,...,%,...,m for building warehouses.
5) the capacity k; of a warehouse built at site ¢.
6) the fixed cost f; of a warehouse built at site <.
7) the unit shipping cost ¢;; from the warehouse 1 to the destination j.
The problem to be solved is the following: determii.e the number of warehouses
to be built, where to build them and what shipping patterns to use so that the

demand is satisfied and the total cost is minimized. This is a standard problem in

4 g

operations research 1], p.64.

Problem 4, the transmitting stations problemn, is a speciai case of Problem
5, the warehouse location problem. We can let both the destination = and the
possibles sites be the cities. The demand d; for every destination is 1. The capacity
k; at every warehouse is oo. The fixed cost f; for building every wz-chouse is 1.
The shipping cost ¢;j = 0 if 3.2 cities ¢ and j are connected by a link; otherwise
e;j = 0o. With this formulation, the minimum cost is equal to the minirum number
of warehouses, which translates to a minimum number of transmitting stations.

Now, before stating our next problem, we introduce some notation. If z;; is
the amount of product P from warehouse 7 to destination j, we have x;; >0 and
>_i%1 z;; must be greater than the demand d; for destination j. It follows that the
capacity k; of each warehouse : must be greater or equal to Z§'=1 z;;. Therefore,

we must have: l
Zx,-j Skyfort=1,...,m
i=1

{ 1 if wareliouse ¢ is opened,
=

0 if warehouse 1 is not opened.
Problem 5 can now be formulated as the following linear programming problem.

Problem 6: A linear programming problem.

Minimize
m m
2D esmig+) S
j=1j=1 i=1
subject to
{

injskiyi fori=1,...,m
-

m
Z""ij 2 dy foryj=1,...,1
1=1

T;; >0fori=1,...,mij=1,...,i

y; =0orlfori=1,...,m.

Problem 1 to 6 are NP-hard problems. Tc obtain a solution of at least some
instances of these problems, a combinatorial search with computers is used.
1.4 Some definitions and results concerning the F.ook Domain problem.

We will work -essential'ly on Problem 2, the Rook Domain problem. We now
éive some definitions and some known results.

We have already cefined V[as the set of all n-tuples or points (Z14---12n)
with z; € Z, the Hanuming distance and the Rook Domain R(z) of a point z of
V.

Definition 1.1. Covering of V' by Rook Domains.

A subset § of V' is a covering by Rook Domains if V] = Uzes R(z).

Example.

Ifk=3,n=2 then

V¢ = {(0,0),(1,0),(2,0), (0,1), (1,1),(2,1),(0,2), (1,2), (2, 2)}.

The sets $; = {(0,0),(1,0),(2,0), (0,1)} and S2 = {(0,0),(1,0),(2,0)} are two
coverings by Rook Domains of V32.
Remark.

We have Sy C S;. S; has three points and Sy has four points. It can be easily
proved that one cannot find a covering S by Rook Domains with only two points
of V:Z.

Definition 1.2. Minimal covering by Rook Domains of V.

A subset S of V' is a minimal covering by Rook Domains if the following

conditions are true:
a) S is a covering by Rook Domains of V,*.
b) If Sy is a covering by Rool. Domains of V] then |S1| > |S| where |S| denotes

the number of points in S.

Our contributions.

We introduce a new construction to generate coverings of V,:‘. This construction
is based on the definitions of hyperplanes of V,;‘ and content of a hyperplane.

We have searched for coverings by Rook Domains of Vf with 75 points without
success. On the other hand, we have found a covering by Rook Domains of V\,f
with 55 points, improving the previous result of 57(6).

Since Willie, [12], found a covering by Rook Domains of V36 with 74 points, we
can search for coverings by Rook Domains of V36 with 72 points using the Blokhuis
and Lam method.

Notation.

We denote by o(n, k) the number of points of the known minimal coverings of
v
Results.

The following Figure 1.1 gives the known results of Rook Domains in September
1985, when we began our thesis work. Figure 1.2 gives the known results in May

1988,

The definitive values of o(n, k) are in bold face.

i
i 3 4 5 6 7 8 9 10 11 12 13
|
; 2 4 T 12 16 32
, 5 9 3% 79 216 567 2(3%)5(3%) 310
! 8 24 43
| 13 57 5t 55
18 12
| 25 76
Values of o(n, k) known to September 1985.
Figure 1.1
n
3 4 5 6 7 8 9 10 11 12 13
2 4 7 12 16 32
5 o9 33 74 216 567 2(3%)5(39) 310
8 24 43
13 55 3¢ 58
18 712
25 76

Values of o(n, k) known to May 1988.

Figure 1.2

CHAPTER 2
CONSETRUCTION OF A COVERING BY ROOK DOMAINS

USING THE BLOKHUIS AND LAM METHOD

In this chapter, we will give the mathematical facts which will help us build
our software, for finding coverings by Rook Domains using the Blokhuis and Lam
method.

2.1 Blokhuis and Lam method.
In (2], Blokhuis and Lam introduced a new constructive method for finding a

covering by Rook Domains. We shall first explain their method.

Definition 2.1. Covering matrix.
Given Z; and 1 < r < n, a covering matriz is an r X n matrix A = (I; M)

where I is the r x r identity matrix and M is an r x (n — r) matrix with entries

from Zy.
Definition 2.2. Covering of V| using a covering matrix 4 = (I; M).

A subset S of V[is a covering of V[using an r X n covering matriz A = (I; M)
with columns a;, 1 <1< n, if V] = {s+ aa;;s € S,0€ Z},1 <7 <n}. Suchaset
S is called a covering of V[using the matrix A = (I; M).

The following theorem converts a covering of V|| using an r x n covering matrix
to a covering by Rook Domains of V. In order to distinguish r-tuples of V{ from
n-tuples of V* and because matrix multiplication is involved, we shall write the

r-tuples as column vectors and the n-tuples as row vectors. The transpose of a

vector is denoted by w®.

THEOREM 2.1(Blokhuis and Lam). If S is a covering of Vk' using an r X n covering
matrix A = (I; M) thenW = {w € V,;‘;Aw‘ € S} is a covering of V' by Rook
Domains and |W| = |S|k"".

Proof. (From [2].)

We shall first prove that W is a covering. Let z € V. We have to prove that
there is w(z) € W such that d(w(z),z) < 1. Since Az® € V] thereisan s € S, an
« € Zi ,and an g;, 1 < i< n suchthat Az = 5 + aq;.

Let ¢; = (0,...,0,1,0,...,0) € V* be the i** unit vector. We have (Aef)! = q;
and (A(z — ae;))t = s, s € 5. Therefore w(z) = z—ae; € W and d(z,z— a¢;) < 1
(the it% coordinate is the only one where z and z — ae; may differ).

Next we show that |W|=|S|k"". Let = (Z{,...,Zr,Tr415...,2Zn) EVI. If
% = (Z£1,...,2Z¢) and v = (Z;41,...,Zn) We have:

Azt = A(u;v)?,

Azt = (I; M)(u; v),

Az’ =u+ Myt € V],
For each s € S the equation u + Mv? = s represents a linear system with r
equations and n unknowns z1,...,%r, Tryy,--.,Zn in Zg, 1 < r < n. We choose
Zyyly.-.yTn arbitrarily and we solve for zy,...,z, using u = st — Mvt. There
exist k™" choices for v = (Zy4y,...,Tn). Since S has |S| elements, we have
W| =[Sk []

Example. Consider the case n = 4,k = 3, and r = 2, with the matrix

1 011
A= .
0 1 1 2

The set S = {(0,0)} is a covering of V;? using A. By following the construction in

AT e e SR TR

Theorem 2.1, we obtain the set
w = {(0,0,0,0),(2,1,0,1),(1,2,0,2),

(2,2,1,0),(1,0,1,1),(0,1,1,2),

(1, 1,2,0),(0,2,2,1), (2,0,2, 2)},
which is a perfect covering of V34 by Rook Domains.

The advantage of the method of Blokhuis and Lam is that the problem of
finding a covering of V] is usually much smaller than that for V}!'. Moreover, many
of the minimal coverings can be construc‘ted in this manner. However, it is not an
exhaustive method in the sense that even if one cannot find any covering S with
a given size |S| of V] by any r x n matrix, there may still exist a covering W of
VI with |W| = |S|k""". Thus, the method of Blokhuis and Lam can only reduce
the upper bound of o(n, k), but it does not give a lower bound, except if one takes
n=r.

2.2 Construction of a covering by Rook Domains using the Blokhuis and Lam
method.

This thesis is concerned with an implementation of the method of Blokhuis
and Lam. Given a set of values, n, k,r and |S|, the program first generates all
non-isomorphic r x n covering matrices A = (I; M). The question of isomorphism
of covering matrices is discussed later in this chapter. For each of the resulting
covering matrices, one attempts to generate a covering set S, recursively. We
introduce a new construction of the covering set based on the idea of successively
refining the contents in the hyperplanes of V;”, which we now introduce.
Definition 2.3. Hyperplane H; ;, , of order l in V.

Let 1 <1 <r. Hjj. 5 is the set of z € V| whose first | components are
equal to ji,72,...,J;, i.e., a ” partial path ” in combinatorial search literature. The

cardinality |Hy, ;... ;| of Hj .. ; is equal to k™%,

10

Deflnition 2.4. The slice of a set S in a hyperplane.

Let S C V] and let Hj; be a hyperplane of order / in V{. The slice of S in

Hjp 5 18Cjig. s =SNHp, . The content of theslice is 0,5, + = |C

il
Definition 2.5. Hyperplanes brothers (or buddies) of order I of V.
Two hyperplanes of order [in V][are brothers (or buddies) if their first (I - 1)

components are the same.

Example.

Consider V&. The two hyperplanes of order 4, Hyg3s and Higzs, are brothers

(or buddies).

Definition 2.6. Coverage Cov(Hj, 5, ;,%) of a hyperplane Hj, ;,..; by a point z of
V{ using the matrix A = (I; M).

Cov(Hj, ;. 4»%) = |{points of Hj ;, . covered by z}|,
=|{ye H j1jzegis 3@ € Z, and a column a; with y =z + aa;}|

LEMMA 2.1. Let Hj,, ; bea hyperplane of order |. Let HJ-{J;".J-{ be any hy-

perplane of order I. Then, for any z,y € HJ-{J;.“,'{ we have Cov(Hj, 4. 515Z) =

Cov(Hj, 5.5 Y)-

Proof.

For any z,y € H; 151,41, We can find w € V|, where the first | components are

J k]

zero, and such that

y=z+ w.

The function f(z) = z+ w mapping

{points of H;

ivdaedi : covered by y},

.covered by z} to {points of Hj i

11

is evidently an injective function. If z = z + aa;,a € Z,a; a column of 4, is

covered by z, then z + w = (z + w) + aa; is covered by y. Therefore we have

Cov(Hj, 4. %) < Cov(Hj ;. 5,9)-

Similarly, we have
Cov(Hj ;,..5:¥) S Cov(Hj, 5 oy z).
The lemma is proved. D

Because of this lemma, we can define the coverage of a hyperplane by another

hyperplane.

def
CO"(H3'1jg...jn HJ{.,’;J:) = C""(Hjljz...jnz) for any z € HJ;J;],'

THEOREM 2.2. If S is a covering of V| using the matrix A, then for each hyper-

plane H;

17200t of order |, 1 <! < r, we have

| Hy o] < Z 93134 COV(Hiy oo Hit...j1)-
(717303)EZ},
where ojtt..g 1S the content of the slice Cj{ ! of S in the hyperplane H 1 gl
Proof.

Since S is a covering of V] using matrix 4, S covers any hyperplane

Hj1jz---jn 1 <! <r. We have:

|Hjyg3..5] < Z Cov(Hj,j,...» T)-

zeS
1 y T L g— ., . . oy :
Since S C V] and V[= U(J{,15,...,J,')EZLHJ{Jé---J{’ we have
D Cov(Hjj. 3o2)= 3. |Hyg.;0SICov(H i Hjtjy...it):
z€S (Ji ljéw-rj[')ezllg

= Z 5134t OOV H ..o iy 53...50)-
(A hoeenif) €24

12

Therefore

|5}yl £ Z 5t jtoeit COVHjigacin Hpt 1. 0 H
(5113353)EZ

Theorem 2.2 gives the basic theory for the recursive construction of S. Initially,
we only know that the set S should consist of |S| elements. We now consider the
hyperplanes of order 1. The |S| elements have to be distributed amongst the &
hyperplanes of order 1. Thus we have

k-1

Z o, = |S|.

n=0
We can generate all the k-partitions of |S| and test each one of them using Theorem
2.2. For each of the partitions that survive, we can consider the further partitioning
into hyperplanes of order 2, and so on, until we arrive at hyperplanes of order r.
Each hyperplane of order r is an individual point in V[. If its content is nonzero,
it implies that the corresponding point is in S; otherwise, it is not. Thus Theorem
2.2 is the main backtracking test for our recursive construction of S.

In order to reduce the number of partitions that one has to consider to go from
hyperplanes of order ! — 1 to those of I, we use the notions of an upper content and
a lower content to restrict the range of possible values for the content of a slice of

order /. We now describe these concepts in more detail.

Definition 2.7. Partial covering of order / of V]| using the matrix A.

A subset S of V[is a partial covering of order l if for every hyperplane Hj, ;. 4

of order I, we have

|5}, 555 S DO fghegt N S|Cov(Hyy s s Hytir t),
(113853)EZ;

= Z 951723 C OV (Hjy go.ivn Hjt 1. 1)
FH -3

r

W, ey e — TR

Notation. The coverage of Hj ;, . by the set S is denoted by Cov(H; ;. ;,S)-

Usually, when we talk about a partial covering S, its elements are not com-
pletely determined. The set S is determined only to the extent of the cardinality
of its intersections with each of the hyperplanes of a particular order.

Definition 2.8. Potential covering of order ! + 1 of V.

A partial covering S of order [is also called a potential covering of order [+ 1.

We sonr.etimes call a set S a potential covering of order | + 1 to emphasize the
fact that S is a partial covering of order [and that we are in the process of refining
S to make it a partial covering of order ! + 1.

Definition 2.9. Upper content and lower content.

Let S be a partial covering of order ! — 1. Let C; be a non-zero slice of

172+ J1—1

the covering S of order [~1. A k-partition of the content o ; .

of C;

f2-Jt-1

will give us some contents of non-zero slices of order [. Conversely, the content
0}, 7z...;; Of @ non-zero slice of order ! is an element of a k-partition of the content
04 j2.iiy Of @ non-zero slice of order ! — 1. Consequently, we have the following
relation:

k-1

Z O51gz.ft-1% = 1320511 °
u=0

Each content 0,5, .., of a slice of a potential covering of order [then has a

lower bound of zero and an upper bound of Oy jzegiot®

Y

For each slice C,,;, ., we define the lower content g ; . and the upper

content 7, ; .. They are maintained in a manner such that if the content g5, ;,
of Cj .5 is not in the interval [-ol]'u'z---J}’61’11'2---12] then it cannot be part of a
partial covering S of order [, which arises from the given partial covering of order

| — 1. Initially, =0and @ L =0

D522t J1J2--q J1d2-edt-1"

Our goa! is to derive a good set of lower bounds and upper bounds for each

14

slice before performing any partitioning step. These derivation steps are based on

the concept of coverage.

Definition 2.10. Exterior (or outside) coverage of a hyperplane H ;..

The exterior (or outside) coverage of Hj,,. ., is the coverage made by the

slices of S other than those from Cj ; .. We denote this exterior coverage by

Covert(Hj, j,..;;) and it is given by:

Covezt(Hjyj,...5) = Z "J'{---J}'C"”(HJ'U':---J':’HJ'{JZ---J}')'
Jioee JFEJ1e i
Definition 2.11. Maximum exterior (or outside) coverage of a hyperplane H ;. ..

The maximum exterior (or outside) coverage of H; is the coverage made

132++:01

by using the upper contents of the slices of S which are distinct from C; We

1200

denote this maximum exterior coverage by Coveze(H 7 _7-2___]1), and it is given by:

Coveze (Hjljg...ﬁ) = Z aj{.‘.j,’cov(Hle'Zu-J'l’ HJ‘{J;--»J}')‘
e d{F Tl
Definition 2.12. Interior (or inside) coverage of a hyperplane Hj . ..

The interior (or inside) coverage of H is the coverage from the slice

JiJae Tt

Ciyiaeni

by:

of S. This interior coverage is denoted by Covini(Hj, 5, ;) and it is given

Covins(Hjyj,..5) = 05,535 COUH iy By ...

Definition 2.13. Minimum interior (or inside) coverage of a hyperplane H, . ..

The minimum interior coverage Cov;n(Hj,4,...;) of Hj 5.5 is given by:

Q_@.int (H .

i) = 21'11'2---]':Co”(HJ'm’z---Jk'Hju'zo--ja)'

15

T Y

A2 ot

AT

g e = T A e T

Definition 2.14. Exterior deficit coverage of a hyperplane H it

The exterior deficit coverage Ezd(H ;, _.,S) of a hyperplane H. jijaeqy DY @ COV=

ering S is given by:

EZd(HJ'xja---Ji’S) = lHJ' il — Cov“‘(HJ'ljz---J'l)'

13’3... n

Definition 2.15. Minimum exterior deficit of a hyperplane H,

13208

The minimum exterior deficit Ezd(H,;, ;> S) of a hyperplane H;

1720 by a

covering S is given by
—E—'ﬂi-(Hjljz---jl' §) = lHJ'LJ'z--- il= Coveqt(Hjjj,..5)-

If S is a potential covering of order [, we want to increase the lower contents
and to decrease the upper contents of the slices so that the length of each interval

(@512 52 T jsuni] 18 Teduced.

LEMMA 2.2, If S is a partial covering of order { then:
Covezt(Hjljg...j() +———zcov'nt(Hj1j2...]}) 2 IHJl]'z--- n |-

Proof.
It follows from Theorem 2.2 and the definition of lower contents and upper
contents. D

If for some set S and some hyperplane H;

1jags the inequality of Lemma

2.2 is not satisfied, the minimum interior coverage has to be raised. Since
Cov(Hj ;. jisHj j,..;1) is a non-negative quantity, Covips(Hj j,.. ;) can be raised
by inc.easing the lower content g, 5, .. If the newly raised lower content is greater
than the corresponding upper content, then we have arrived at a contradiction and

the current branch of the search does not have to be investigated any further.

16

Definition 2.16. Excess coverage of a hyperplane H , . by a partial covering S

of order [.

For any hyperplane H ;

172 OF order [, wehave Cov(H,

jrgzedr S) 2 Hjy .. Jll
The excess coverage of the hyperplane Hy, ;. . by the covering § is given by:

Eze(Hj ;. ;5) = Cov(H;

J1Jaedi? S)

l J132.- J'

LEMMA 2.3. A necessary condition for S to be a partial covering of order | is

that the excess coverage of HJl Jaeeedim1

for 0<u < (k-1).

is greater than or equal to the total excess

coverage of Hj ;=

Proof.
Evident. D

The idea of maximum exterior coverage and minimum interior coverage allows
us to raise the lower contents. The idea of excess coverage, which we will study
next, allows us to reduce the upper contents. The problem is how to compute

the excess coverage of H; when the contents of the slices of order [are

JiJz -1
unknown. The fact that it is used to reduce the upper content, gives us a hint.
We shall compute the coverage, as is required by Theorem 2.2, by using the lower
contents except for one particular slice Cj el For this slice, we use the upper
content &1 . Now we shall compute a guaranteed minimum excess coverage if

T+ ais used. This is defined as

.71.7;"'.7[
D i11iz o)y s 7end) —a—iﬂ'z wCovHjy gy i Hiyig.ir)
+ e IC’)'U() l ,
o v e T a) = J17a¢ 3egir JlJa A Nfae N
E*C(H]Uz...]xlajijé...]l') =

or

0 if the above quantity is negative,

Thus Lemma 2.3 can be restated in a more useful form as follows:

17

18
LEMMA 2.4. A necessary condition for the system of lower contents 9.5 and
upper contents 7;, ;, _ to be acceptable is that for any hyperplane Hm2 i1 of
order | -1 and for each upper content & Oj138..50 We have
k-1
Z Ezc J1eedi- 1“‘0.71.72 ') = Ezc(Jfaedi~ 1’3)
u=0
If the inequality of Lemma 2.4 is violated, the upper content T 5t bl should
be reduced. Our iast remark has to do with the relationship between the contents
of the buddies. Since,
Z Oj172.edt-1% = Pifzedi—1?
u=0
we have
a’—jljZ'--jl—lu < aj;jz...j[..l - Z Q—J‘;J&---J}-li’ (2.1)
y=0)
:¢u
Zjifpfi—18 2 Gy J2ie1 E O j15200lim18 (2:2)
rd
:;éu

Thus, whenever a lower content Gy 1S increased, the upper contents of its
buddies may be reduced and vice versa.
2.3 Isomorph rejection.

Next, we consider the idea of using isomorph rejection to reduce the size of our
search. Isomorph rejection can be used in two places: in reducing the number of
covering matrices and in reducing the number of partial coverings. We shall first
consider the covering matrices.

Given a covering matrix A = (I; M), we can construct other covering matrices
by using one or more of the following operations:

1. Multiply a row of A by an a€ Z;, with ged{a,k) = 1.

2. Multiply a column of 4 by au. a € Zj with ged(a, k) = 1.

3. Permute two rows of A.
4. Permute two columns of A.

Of course, if we only multiply one row of 4 by a nou-zero a, we destroy the
identity matrix portion of A. This identity portion can be restored by multiplying
the corresponding column by o1

The important question is whether these four transformations on the cover-

ing matrix preserve the property of having a covering set of a specific size. The

following theorem provides an affirmative answer.

THEOREM 2.3. Suppose Sy is a covering using a covering matrix Aj and sup-
pose that Ag is a covering matrix obtained by applying one of the following four
operations:

1. Multiply a row of Aj by an « € Z), with ged(a,k) = 1.

2. Multiply a column of A; by an a € Z;, with ged(a, k) = 1.

3. Permute two rows of A;.

4. Permute two columns of A;.

Then there exists a set Sp such that S; is a covering using Ag and |Sy| = |Sa|.

* Proof.

Let ay,...,an be the columns of A;. We define the set

B= U {s+aa;} CV{.

€S
a€Z
a{

The fact that Sy is a covering using A; implies that
B=V][.

Firstly, if two columns of A; are permuted, the set B has not changed. Thus in

case 4 we can choose S = 5).

19

20
For case 3, suppose that row ¢ is interchanged with row 7, ¢ < j. We define a

new set Sy from S by

S = {(T1s+ 002 Tim1sTjs Tiglae oo s Tj—1s Tis Tjp1se o o Tr)|(T15 -+ o 2 Tr) € St}

Thus, Sy is obtained from Sj by interchanging the s-th and j-th components of

every vector in ;.

Now if we want to cover a vector y = (y1,...,Yr), by using S and Ag, we first
consider how to cover ¥ by S; and A;, where ' is obtained from y by interchanging

the i~th and j-th components. Since B = V|, there exists €8y, BE Zand a]
such that

s+ ﬂa:; =y

By interchanging the i-th and j-th components of both s’ and a.ﬁ we obtain
s+ fa; =y

with s € S; and a; a column of Ay. Thus S is a covering using Aj.
For case 2, the set B has not changed if one replaces A; by Ap. Thus we can
take Sy = S:.

For case 1, suppose row 7 is multiplied by «. We define Sp by
Sy ={(T1,-+-yTia1, QT Ti 15 -+ -5 Tr)| (21, - - - Zr) € S}

In other words, each vector in S; is obtained from S; by multiplying the i~th com-
pornent by a. Now, suppose we want to cover y = (y1,...,Yr). Since ged(a, k) = 1,
then o~! exists. We construct a new g’ from y by multiplying the i-th component

of y by a~l. Since B = V], there exists ¢/, and a] such that

s+ ﬁ’a:- = y'.

If we multiply the i-th component of ¢,a} and y’ by «, we obtain an s€ Sz, an

a; € Az such that
s+ ﬂ'a,- =y.

Thus, Sp is a covering using Aj. D

We now consider how Theorem 2.3 can be used to reduce the number of covering
matrices 4 = (I; M). Since the identity portion must stay invariant, we can restrict
our attention to M. The four operations in Theorem 2 3 imply that if a matrix
M; can be obtained from Mj by a combination of row and column permutations
and multiplying the rows and columns by o's such that gecd(a,k) = 1, then we
only need consider either My or M. In order to determine which one to consider,
we define an order relation on the {n — r) columns of M. We shall consider only
those matrices M which rank the lowest.

Definition 2.17. Order relation in the set of columns of a matrix.

Given any two columns ¢; and ¢; of a matrix M, we say that ¢; < ¢; if the
column ¢; has less zeros than ¢; or if the two columns ¢; and ¢; have the same
number of zeros then for the first row index z such that ¢; and c; differ, we have
(e))z < (¢j)z-

We now analyse the matrix A = (I; M): more precisely, the matrix M.

THEOREM 2.4. Given a covering matrix A = (I; M), with columns ay,...,an,
and matrix M with columns ¢y = ap4+1,...,Cp—~y = Gp, W€ can assume:

a) If1 <i< j < (n~r) then the number of zeros in column c; is less than c;.

b) The first column ¢y contains only O and 1, and all the zeros are on the top.

¢) The first non-zero entry in a row of M must be a one, if k is a prime.

d) The first non-zero entry in a column of M must be a one, if k is a prime.

21

a1

B v

Proof.

This theorem follows from Theorem 2.3 and the definition of an ordering on
the matrix M. [|

When we have to generate all the covering matrices, we can use Theorem 2.4 to
restrict the possibilities. Even if all the matrices satisfy the properties of Theorem
2.4, it may still be possible that two of them are isomorphic. Thus, for each possible
covering matrix, we apply all the possible combinations of operations and accept
it only if no better, i.e. previous in order, covering matrix is found.

Next, we consider the question of reducing the number of partial coverings by
isomorph rejection. The following two theorems establish two operations which

can map one covering S; using a matrix A to another covering Sy using the same

matrix A.

THEOREM 2.5. Let § = {s1,...,8;,...,8N},8; € V] be a covering using the
matrix A. For any v = (v1,...,vr) € V[, the set
S+v= L FUyeey8+0,...,8y +V}

is also a covering using A.

Proof,

Let w € V[. We have to prove that there exist ¢,j and a with 1 <7 <
N, 1<j < n, a € Zj such that s; + v+ aa; = w. Consider w —v = ((wy —
v1) mod k, ..., (wy —v,) mod k), where mod denotes the least non-negative residue.
Since w —v € V[and S is a covering using A , there exists 7,7 and a with 1 <
it <N, 1<j<n, a€ 7 such that s; + aa; = w — v. Thus (8i +v) + ag; = w,
and therefore S + v covers w. D

If we choose v to be the i-th unit vector ¢; = (0,...,0,1,0,...,0), with the 1 at

the #-th position, then the new set S + ¢; is obtained from the old set S by adding

22

one to the i-th component of every vector in S. In terms of the contents of slice,
this transformation fixes all the o} ;, . for | <4 but takes Ojiaegi 1O O5iga.git1s
Thus, for each partial covering of order 7, we can apply this transformation to one
set of buddies to force an ordering on their contents.

For example, for k = 3 and ¢ = 1, we can use this transformation to force
09 < 01 and oy < 0. Suppose |S| = 26. One of the possible partitions of 26 is
7 + 9+ 10. Even though there are 6 ways to associate the values 7,9 and 10 with

09,01 and 032, Theorem 2.5 implies that we only have to consider two cases, namely
g9 = 7,01 = 9,00 = 10 and oy = 7,03 = 10,09 = 9.

Suppose we choose o = 7,01 = 9 and 03 = 10 and we want to consider the
possible coverings of order 2. The contents satisfy ogg + 093 + 092 = 7. We can

now use Theorem 2.5 with v = e to force ogg < 091 and ogg < g3.

THEOREM 2.6. Let S = {81,..-58;5.+-,SN} C Vi be a covering using the matrix

A = (I; M) and B € Z, such that ged(8,k) = 1. Then:
BS = {Bsy mod k,...,Bs; mod k,...,Bsy mod k}
is a covering using the same matrix A.

Proof.

Since ged(f,k) = 1 there exists v € Zj, such that 8y mod k = 1. For each w €
V,;', we have to prove that thereexist i,j and awith 1<i< N,1<j<n, a€ Z;
such that fs; + aa; = w. Consider yw. Since yw € VJ and s = {s1y--+s8N} is
a covering with matrix A, thereare 1 <71 < N, 1 <5 < n, o € Z; such that

s +a a; = yw. Multiplying the two sides by § we get:

Blsi + olaj) = Blyw) = w

23

NPT

R TN Ty

Ly

This means that f§s; covers w. D

Theorem 2.6 is typically used on the first level. Let us continue our example
for k = 3 and |S| = 26. The possibility g = 7,07 = 10 and 02 = 9 can be
eliminated because if we choose @ = 2 then it maps this case to the previous case
og =T7,01 =9 and oy = 10.

2.4 Hlustrated example.
Finding a covering for the case k = 3,n =4,r =3 and |S| =3.

We shall search for a covering S of V33 using a 3 x 4 covering matrix A with
|S| = 3. We will use Lemma 2.2, Lemma 2.4, inequality (2.1) and inequality (2.2).
The fact that we find such a covering S will prove by Theorem 2.1 that we can get
a covering of Vi with |5(34~3 = 9 elements.

First, we will give some definitions. The hyperplane of order 0 is V33. Therefore
the slice of a covering S with the hyperplane of order zero has 3 elements. The
contents of the slice of S with the hyperplane of order zero is denoted by 0. Observe
that for a covering S using a covering matrix A with columns a; we have

vi= U {o+aa),

3€S
aEZy
as

Therefore, the maximum number of elements of V33 covered by an element of S
using a matrix A is equal to 1 + 2(4) = 9, that is, the maximum number of
elements of V} covered by S is equal to 3(9) = 27. Then the maximum excess
coverage at order zero is equal to zero.

For each order r we will consider the upper contents and the lower contents
matrices. Since we build non-zero contents at any order from the non-zero contents
at the previous order, only the upper and lower contents from non-zero contents

at the previous order will be represented in the upper contents and lower contents

24

PRIy ——n

madtrices.
At each level I we will consider the upper and lower contents matrices &l
and g[l], and eventually the contents matrix o[l]. Suppose that there are m_;

hyperplanes of order [— 1 with non-zero contents, namely

Hjl"...jl"_l, Hjlz"'jlz—x" vey Hj:"-l..-]',"_"l—l
fon o 2 TiRugh g ees Ojmim1 mimy are the non-zero contents of order ! — 1, we
have _ _
94520 Oil.gt .1 0551 .2
T 7, 4
all] = 32.98,0 2.t JR.03..2 ,
g my_ JNY g my_ Sy my.. Jny
P =1 '-7!—‘1 lo]11 1."]‘_—“ 11 7] 1."]"1 12
Zgt iy Zitodit Zid il
g2 72 g g2 52 1 g2 2 9
all] = Hodicy Idiag Jidieg ,
g .my M1, G .mioy Mo, Gmyoy miey
1 -1 0 T -t 1 77 Jiy 2

Itk .0 T5tgi gl 5.t .2
Uj’...g?__lo o'jf...jf_ll ‘73;2...3';*'_12

all] =

om.y Mmooy, O.may May, O.mao Moy
N1 eedig 0 T3y N | h wlioy 2

We have three cases to annlyse because we have three non-isomorphic covering

matrices A, namely

1 00O 1 000 1 001
A;j=]10 10 0|,A4,=]0 10 1},and43=|0 1 0 1
0011 0 011 00 11

In matrix Ay, there is a duplicated column. Hence the maximum number of ele-

ments of V33 covered by an element of S is only 7 instead of 9. With S equal to 3,

25

the maximum number of elements of V§ covered is 3(7) = 21, which is too small.
Next we consider Aj.

Covering matrix is A,.

Level 1. Before partitioning o = 3, we will try to decrease the entry values of the

upper contents matrix and increase the entry values of the lower contents matrix

of order 1. These two matrices are :
o{ll=(3 3 3)andgfl]j=(0 0 0).

We consider the children Hy, H; and H; of the hyperplane V33 of order zero. For
these three hyperplanes, Lemma 2.2 is not satisfied. The hyperplane Hy must
satisfy Lemma 2.2 if @y > 1. Since the upper contents of the buddies &; and 7,
must satisfy inequality (2.1), we find that the maximum value allowed for @; and
02 are 2. Since the upper contents &y and @5 are changed, we check inequality (2.2)
to see whether the lower contents of their buddies must change. Nothing changes.

Now, the upper contents and lower contents matrices are:
g(1]=(3 2 2)andgfl]=(1 0 0).

Next, we find that H; must satisfy Lemma 2.2 if ¢; > 1. Applying inequality (2.1)
to its buddies, we find that the maximum value for @y is equal to 2 and the maxi-
mum value for 73 is equal to 1. Since the upper contents &y and @, are changed,
we check inequality (2.2) to see whether the lower contents of their buddies must
change. Nothing changes. Now, the upper contents and lower contents matrices
are:

glll=(2 2 1)andg[l]=(1 1 0).

Finally, we consider Hjy. Because of Lemma 2.2, we find that the maximum value

for the lower content g, is equal to 1. Applying inequality (2.1) to the upper

26

contents of its buddies, we find that the maximum values for 5y and &, are equal
to 1. Since the upper contents &y and 7; are changed, we check inequality (2.2)
to see whether the lower contents of their buddies must change. Nothing changes.

Finally, the upper contents and lower contents matrices are :
gll}=(1 1 1) andgflj=(1 1 1).

These upper contents and lower contents satisfy Lemma 2.4. Therefore the only
3-partition of o = 3 we need at level 1is (1,1,1), and we have g = 1, 0; =1 and
o9 = 1. Before considering level 2, we compute the coverage of every hyperplane of
order 1. If the three hyperplanes are covered by S, we compute the excess coverage

for every hyperplane. We have
Cou(Hy, S) = 09gCov(Hy, Hy) + 01C ov(Hy, Hy) + 02Cov(Hy, Hy).
Following the first row of matrix Ay, we get
Cov(Hy, Hy) = 1 + 2(3),Cov(Hyp, Hy) = 1,Cov(Hp, Hy) = 1.

Therefore, the coverage Cov(Hg, S) is equal to 9 and then the excess coverage
Ezc(Hg,S) is equal to zero. We get the same results for the hyperplanes H; and
H,. Before partitioning op, 01 and oy, we initialise the upper cortents and lower

contents matrices :

o0 To1 OJo2 1 11
o2=|Tw o1 T2 |=|1 1 1],
00 O21 022 111
and
900 201 202 0 00
e2|]=] 20 211 g2 | =0 0 0
220 921 922 0 00

Level 2. At this level, there are 9 hyperplanes, namely H;; with 0 <4,5 < 2.

We test on each hyperplane whether Lemma 2.2, Lemma 2.4, inequality {2.1) and

27

inequality (2.2) are satisfied and change some upper and lower contents if necessary.
No changes are necessary. Therefore, we consider a 3-partition of a non-zero slice
of order 1. Suppose we partition gg first. By Theorems 2.5 and 2.6, we have to

consider only the partition (1,0,0). The upper contents and lower contents matrices

1 00 1 00
g2l=11 1 1} andg2]=|0 0 0
1 11 0 0O

The upper contents and lower contents of the hyperplanes Hyg, Hg; and Hgs
satisfy Lemma 2.2, Lemma 2.4, inequality (2.1) and inequality (2.2). Now if we
consider the children of H;, Lemma 2.2 is satisfied. However, if we compute

Ezc(Hy0|F10), where TF1g is used, the guaranteed minimum excess coverage of Hyg,

then we have
Ezc(H1o|T10) = goo Cov(H10, Hoo) + T10C0ov(Hyg, Hio) — |Hiol
=1(1)+1(3) -3 =1.
Thus %‘:0 Ezc(H14|o10) = 1 + 0+ O is greater than the excess coverage of the

parent Hy, which is zero. Therefore, @19 must decrease, so it must be zero. Now,

the upper contents and lower contents matrices are :

1 00 1 00
G2l=]0 1 1]|,andg[2]=]0 0 O
1 11 0 0O

After checking the other children of H; and discovering no changes, we fi-
nally consider the children of hyperplane H;. If we compute the expression
2?“___0 Ezc(Hgy|Gy0), we find that F9g must decrease and consequently must be

zero. Now, the upper contents and lower contents matrices are :

28

Further checking reveals no other changes. Next we partition o1. There are two
possibilities (0,1,0) and (0,0,1). Each of these possibilities leads to different ma-

trices for the contents of slices of S for order 2, namely

10 0 1 00
01 O)jand O O 1
001 01 0

We consider the first matrix, which corresponds to the non-zero contents
o = 1,011 = 1,092 = 1.

We verify whether each hyperplane of order 2 can be covered by the set S given
by its contents ogg, 013 and 099, using matrix Ap. Checking the coverage of each
hyperplane of order 2, we see that each hyperplane can be covered by S. In fact,

for each hyperplane Hj ; the excess coverage Ezc(H f

172 e S) is equal to zero. For

example, if we consider the hyperplane Hyg, we have

Cov(H0,S) = 00Cov(Hyo, Hop) + 011Cov(H 19, Hy1)

=1(1) +1(2) = 3 and

Ezc(Hyg,S) = Cov(Hjg, S) — |Hio| = 0.
Before considering the 3-partitions of ¢qg, 011, and o33 we consider the upper and
lower contents matrices of order 3. By applying Lemma 2.2, Lemma 2.4, inequality
(2.1) and inequality (2.2) if necessary, we try to eliminate some 3-partitions which
cannot give a covering S of order 3 (in our example, a covering S of order 3 is a

covering of V33). The upper contents and lower contents matrices are :

000 Ooor 0002 111
gB8]=| T Ty G2 =11 1},
220 0T221 0222 111
and
2000 Zoor 2002 00O
af3]=| g0 11 o112 |=|0 0

o
(@]

9220 2221 2222

29

Level 3. At this level, there are 27 hyperplanes, namely H;;j, with 0 < 4,5,k <
2. After an initial checking which reveals no changes to the upper contents and lower
contents matrices, we start to partition ggg. There are three possibilities, namely
(1,0,0), (0,1,0), and (0,0,1). By theorems 2.5 and 2.6, we only have to consider
(1,0,0).

The upper contents and lower contents matrices of order 3 are :

1 00
a3l=1]1 1],
111
and
1 00
af8|=10 0 0
0 00

We check Lemma 2.2, Lemma 2.4, inequality (2.1) and inequality (2.2). For the

children of Hy;, Lemma 2.2 is satisfied. However, if we consider

2
Y Ezc(Ho1u[7110)s

u=0

Lemma 2.4 is not satisfied. We have

2
> Ezc(Ho1ulF110) =

u=0

(¢000C ov(Ho10, Hooo) + T110C ov{Ho10, H110) — |Ho1ol)
+(2g0oC ov(Ho11, Hooo) — [Hou1l) + (0),
= (1(1) + 1{1) = 1) + (1 — 1) + (0) = 1 > Ezc(Hgy, S).

Therefore, G119 must decrease, so it must be zero. The upper and lower contents
of the buddies Hy1; and Hjjo satisfy inequality (2.1) and inequality (2.2). Now,

if we consider Zﬁ=0 Ezc(Hg14|G111) we see this expression contradicts Lemma

30

2.4. Therefore, 111 must decrease, and then @y1; = 0. The inequality (2.2) is not

satified by g;12. In fact, we have
2112 =0< 011 —T110 — T111-

Therefore g119 must increase, and then gy19 = 1. Now, the upper contents and

' lower contents matrices are :

1 00 1 0 0

o3]=10 0 1} andg3]=|0 0 1

111 0 0O
We continue the verification of Lemma 2.2, Lemma 2.4, inequality (2.1) and in-
equality (2.2). There is no change until we consider the children of hyperplane
Hyy. The hyperplanes Hygq, Hoz1, and Hpgg satisfy Lemma 2.2. The expression
3=0 Ezc(Hgg,| T20) does not satisfy Lemma 2.4. Therefore, 320 must decrease,
and then Fgg¢ 1s equal to zero. Inequzlity (2.1) and inequality (2.2) are satisfied by

the buddies Hgp; and Hpge . Now, the upper contents and lower contents matrices

are .

00 100
3l=|0 0 1| andgf3]=}0 0 1
011 00O

Since the expression Z?‘:o Ezc(Hggy|0292) does not satisfy Lemma 2.4, the upper
content Fap2 must decrease and becomes equal to zero. Inequality (2.1) and in-
equality (2.2) imply that go9; must increase and then gs9; is equal to one. Finally,

the upper and lower contents matrices are :

100 100
73]=|0 0 1{andg3l=|0 0 1
010 010

Therefore, the non-zero contents of order 3 of S are :

gooo = 1,0112 = 1 and g29; = 1.

31

T T T

We continue our verifications for every hyperplane, but there is no change. Now,
for each hyperplane H;, .1'2..1'3’ we compute the coverage by the contents of order 3.

Each coverage C’ov(Hj1 jzjs,S) is equal to one. Consequently, the set
S = {(0,0,0),(1,1,2),(2,2,1)} c V3§
is a covering of V33 using matrix

1 00
A=|0 01
0 1 1

o = O

Therefore, V3 can be covered by a covering S’ by Rook Domains such that |S/| =

|S134~3 = 9 elements.

32

CHAPTER 3

IMPLEMENTATION OF THE BLOKHUIS AND LAM METHOD

We use the mathematical facts from the previous chapters to implement our
software in the Pascal language.
3.1 Major components of our Pascal programs.
The major components of the program are .
a. Generate the covering matrices.
b. Generate the coverings S using a given covering matrix.

We shall describe each of these two components in the subsequent sections.
3.1.1 Generate the covering matrices.

Suppose that r, the number of rows, and n the number of columns are given.
Given the first j columns of a covering matrix , r < j < 5, a Faccal program
generates the other columns of the matrix, recursively, column by column.

Isomorph rejection is used to reduce the number of covering matrices that one
has to consider. We use the results of the Chapter 2, particularly Theorem 2.4,
and the ISOM package developed by Lam. This package allows us to compute the
automorphism group acting on each covering matrix and to know its orbit. The
matrices are ordered. In each orbit we can choose the greatest matrix and keep

only that one.

33

3.1.2 Generating the coverings.

We first describe some of the data structures used in the program. In Chapter 2,
the hyperplanes have a variable length subscript string. For example, a hyperplane
of order! H; ja...j; Das a subscript string of length l. Partly because of the difficulty
of handling such -ubscripts, and partly for reasons of efficiency, we code each
subscript string of length [into one single index, using the indexing function. The
single index is obtained by treating the expanded subscript string as an integer in
base k, witl the most significant digit on the right. An array AV translates from
the single index version to the subscript string version. For example, consider the
casen=4,r=3,and k= 3.

AV[1] = (0,0,0), AV (2] = (1,0,0), AV[3] = (2,0,0),
AV[4] = (0,1,0), AV[5] = (1,1,0), AV[6] = (2,1,0),
AV[7] = (0,2,0), AV (8] = (1,2,0), AV[9] = (2,2,0),

AV[10] = (0,0,1), AV[11] = (1,0,1), AV[12] = (2,0,1).

AV[22] = (0,1,2), AV (23] = (1,1,2), AV[24] = (2,1, 2),

AV(25] = (0,2,2), AV[26] = (1,2,2), AV[27] = (2,2,2).
The same translation table AV is used for hyperplanes of all orders . For example,
the index for the hyperplane Hqy of order 2 is 3, and the index for the hyperplane
Hjyp of order 3 is also 5. Essentially, we expanc the string of subscripts to length
r by appending zeros on the right.
Hyperplanes’ contents.

The contents 0}, ;, _.; of hyperplanes H, ;, . arestored in an array plane(l,ind|,

where 1 <[<randl1l<ind< k!. For example, in the previous case, oy is stored

in plane(1,2], 0,5 is stored in plane(2, 5], and c1;q is stored in plane(3,5].

34

Upper contents and lower contents.

For each level /, the upper and lower contents are stored in the arrays mazpart(l]
and minpart|l]. For example, in the previous example, G312 = 1 is represented by
mazpart(2,8] = 1.

Coverage of hyperplanes.

The coverage of each hyperplane H; ; . of order ! is stored in an array
cov(l,ind|, where AV [ind] = (j1,725-.+,J1,0,...,0).
Order of partitioning the hyperplanes.

Given a partial covering S of order /, we have a choice of the order in which
the contents are partitioned. Heuristically, we choose an ordering which tends to
minimize the size of the search. This ordering is stored in the array ordering. It is
chosen in the following manner:

Find the hyperplane of order [with the smallest coverage, cov(!,]. Now consider
all the hyperplanes which have an influence on the coverage of the hyperplane
H,y (i These hyperplanes are to be partitioned in the order of increasing contents.
If there still exist hyperplanes whose order is not yet determined, we find the next
smallest coverage and iterate.

The reason for choosing this ordering is because the coverage of H AV[i] is most
restrictive if cov|l,1] is the smallest. Thus, if one considers its partitions first, as
well as all the hyperplanes that potentially can cover the partitions of H 4y (i)’ the
number of successive partitions are the smallest. This technique minimizes the
branching factor at the early stages, when the analysis of upper and lower contents
is least powerful. This ordering is built in the procedure buildarrays.

Now we give a brief descripuiun of the important procedures and functions.

35

Function minmaxforce.

Lemma 2.2 and Lemma 2.4 are implemented in the procedure minmaxforze.
It updates the upper and lower contents of the hyperplanes at the level being
considered. Given a hyperplane at level lev and with index ind, we find all the
hyperplanes which have an influence on the coverage of this hyperplane using ma-
trix A. We then check Lemma 2.2. If we need to change a component of minpart,
first we check whether this component of minpart is smaller than the correspond-
ing component of mazpart. If not, there will be a backtrack. If the component
minpart|l,ind] is smaller than mazpart(l, ind|, procedure updateminmax is called.
Procedure updateminmax updates minpart[l,ind] and the buddies if necessary

(from inequalities (2.1) and (2.2)). If there exist contradictions in the upper and

lower contents, then we can backtrack.

Next, we check Lemma 2.4. If we need to change a component of mazpart,
we first check whether this component of mazpart is greater or equal to the corre-
spondant component of minpart. If not, there will be a backtrack, otherwise, there
is a call of updateminmax.

Function minmaxdriver.

The function minmaxforce is called by a boolean function minmaxdriver for
the current level. Function minmaxdriver uses minmaxforce for all the indices at
the current level, i.e. for each hyperplane at the same level. The fundamental
procedure generate. calls minmaxdriver each time we choose a k-partition for a
non-zero content planell,indez] at current level [, and before calling generate(l +

1,1). Each time that minmaxdriver is not true there is a backtrack in generate.

36

3.1.3 Isomorph rejection.

We use Theorem 2.5 and Theorem 2.6. We recall that these theorems etablish
two operations such that any composition of these operations map one covering Sy
to another covering Sy using the same matrix A.

Procedure generate.

As discussed before, the partial coverings are generated recursively level by
level. This process is controlled by the procedure generate, as shown in Figure 3.1.

The Procedure generate first uses the lower and upper contents to restrict the
range of possible partitions of a given pareut content. Then, for each partition,
it performs a number of tests. The first test is a simplified version of isomorph
rejection, which is based on Theorem 2.5 and Theorem 2.6. It then applies Lemma
2.2 and Lemma 2.4 to improve the lower and upper contents. ii the contents give
a contradiction, the test fails. The complete isomorph rejection test is applied as
a last step, only when the partial covering is complete for this level.

The cc 1plete isomorph rejection test is based on the fact that the levels them-
selves cal. . permuted. Permuting levels implies a permutation of the rows of the
covering matrix. Thus, a level permutation is allowed if and only if the correspond-
ing row permutation preserves the covering matrix. If there exists an allowed level
permutation which maps a partial covering to an earlier one, then it is rejected.

If a partial covering passes all the tests, then we decide whether further recur-
sive calls to generate are required. If ‘iis can be done with no change in level,
then we need only call generate(level, index + 1). If the level has to be changed,
we have to first initialize the data structures required for the next level. Some
examples of such data stuctures are the arrays ordering, minpart and mazpart.

After these initializations, we then call generate(level + 1,1).

37

38

Procedure generate(level, index : integer);
{ Recursive procedure to generate the acceptable partitions of
glm.ze[level ,ordering[indez]|, which is the content of the hyperplane.}
egin
Extract from the maxpart and minpart arrays the maximum and minimum
values of the possible partitions of plane|level, ordering[indez]|;
For each possible partition do
begin
Perform the following tests, if any of them fails, exit the procedure;
Test 1: simple isomorph rejection;
Test 2: minmaxforce;
Test 3: If the partial covering is complete for this level, then
do the complete isomorph rejection;
{ Now, the partition is acceptable }.
If the partial solution is incomplete then
begin
If the covering is incomplete for the current level then
generate(level,index + 1)
else begin
initialization for a new level;
generate(level + 1,1);
end
end
else process the partial solution;
end
end;

Procedure generate
Figure 3.1
3.1.4 Estimation.

The procedure generate is written in such a way that it can be used to provide
an estimation of the amount of time required to run the program, as well as the
possibility of restarting the program.

Whenever we have to solve a particular parameter set, we first run the program
from level 0 up to a certain intermediate level !. This level [is chosen so that
the number of partial solutions is not so small, nor too large. A value of about
1000 is roughly our aim. These partial solutions are written to a file, called the

CASESFILE.

Now, we take a few partial solutions at random and we run them to completion.

The product of the amount of time taken per case times the number of partial

solutions in the CASESFILE give us an estimate of the total running time.

During the running of the program, every time a case is finished, a message is
written onto the file NEWSTART, which identifies the case just completed, as well
as listing some statistics of the run. If the computer should stop for some reason,
the program can be restarted by renaming the NEWSTART file as OLDSTART.
It then skips all the cases which have been completed previously, copying all the
information from the OLDSTART file to a new NEWSTART file. Then it restarts

processing the case which was interrupted.
3.2 Results.

We obtained one result in November 1986, namely, o(4,5) < 55. In (6], Kamps

and van Lint state that the minimum covering o(4,5) of V;! satisfies
46 < o(4,5) < 57.

We searched for a covering S of V53 of 11 elements using a 3 X 4 covering
matrix A. In this case n = 4,k = 5 and r = 3. Then, by Theorem 2.1 we would get

a covering W of V54 with
W| = [S|k™" = (11)5*3 = 55.

We have two possible 3 X 4 covering matrices A, namely
1 00O 1 0 01
A1=]10 1 0 1] andA;=}0 1 0 1
0 01 1 0 0 11

There is no covering S with 11 elements of V53 using the matrix Ay, and there are

39

two non-isomorphic coverings with 11 elements using the matrix A, namely:
S1 = {Hoz1, Hoas, H111, H130, H210,
Has4, H303, H322, H402, Ha23, Hyq3}

and
Sq = {Hoga, Hi22, H203, Ha30, H301,

H310, H312, H321, H333, Hy14, Hygn}-
Using the covering matrix A;, we could not find a covering S of V53 with 10 ele-
ments. By Theorem 2.1, this would imply a covering S of V54 with 50 elements.
We recall that this result does not imply that there is no covering S of V54 with 50

elements, because our method is not an exhaustive one.

40

REFERENCES

[1] R. L. Ackoff and M. W. Sasieni, Fundamentals of Operations Research, John
Wiley and Sons, New York, 1968. -

(2] A. Blokhuis and C. W. H. Lam, More coverings by rook domains, J. Combin.
Theory, Ser. A 36 (1684), 240-244.

[3] H. Fernandes and E. Rechtschaffen, The football pool problem for 7 and 8
matches, J. Combin. Theory, Ser. A 35 (1983), 109-114.

(4] C. M. Hoffman, Group Theoretic Algorithms and Graph [somorphism, Lec-
tures notes in Computer Science, no. 136, Springer-Verlag, New York, 1982.

[5] H.J. L. Kamps and J. H. van Lint, The football pool problem for 5 matches,J.
Combin. Theory 3 (1967), 315-325.

[6] H. J. L. Kamps and J. H. van Lint, A covering problem, Colloq. Math. Soc.
Janos Bolyai, pp. 679-685, Balatonfiired, Hungary, 1969.

[7] D. E. Knuth, Estimating the Efficiency of Backtrack Programs, Mathematics
of Computation, vol. 29 (1975), 121-136.

[8] C. W. H. Lam, Combinatorial searching, Lectures notes, Concordia University
Press, (1985).

(9] E. Rodemich, Coverings by rook domains, J. Combin. Theory 9 (1970), 117-
128.

[10] O. Taussky and J. Todd, Some Dircrete Variable Computations, Proc. Symp.
Appl. Math. 10 (1960), 204-205.

(11] E. W. Weber, On the Football Pool Problem for 6 matches: A New Upper
Bound, J. Combin. Theory, Ser. A 35 (1983), 106-108.

(12] L. T. Willie, The Football Pool Problem for 6 Matches: A New Upper Bound

Obtained by Simulated Annealing, J. Combin. Theory, Ser. A 45 (1987), 171~

41

177.
[13] N. Wirth, Algorithms + Data Structures = Programs, Prentice-Hall, Engle-
woods Cliffs, N. J., 1976.

42

APPENDIX 1

Program gencover which generates the covering matrices.

43

44
APPENDIX 1

Part A

Routines from the ISOM package devel:;pped by Lam, used in the program gencover.

(t:t::st::

This is the declaration of routines provided by the
user dependent part Qf the isomorphism problem

for the covering matrix for the Rook Domain problem.
They can be used by the main program to invoke the

user dependent part of the isomorphism testing.
t*lttt*)

const
maxrowsize =5;

type
matrixtype=
array[1..maxrowsize] of permvect;

var
canonical : boolean;

45

(* keeps track whether the original matrix stays canonical

or not *)

zerocount : permvect;
(* zerocount{i] is number of zeros im col i *)

procedure testisomorphism(var a: matrixtype; ar, nc,
lastc: integer; quick : boolean);

external’ ’

(* apply isomorphism testing to matrix a. it has ar rows
and nc columns. when canonical is true, once a better
aperm is found, the procedure extendpermutation will
not continue. Otherwise, it continues untili a new
canonical form is found, together with the new
automorphism group. The parameter lastc specifies
that columns 1 to lastc have been tested before. *)

procedure inituserdebug(var option: optionlisttype);
external;
(* procedure to initialize the debug options of
the user part. *)

procedure printmatrix(var a: matrixtype; rl,r2,s: integer);
external;
(* Prints out a matrix with s columns, betwen the rows
1l and r2. *)

procedure teadmatrix(var inp:text;var 2: matrixtype;
r,s: integer);
external;

(* Reads in an r*s matrix, one row at a time
*)

nrocedure retrieveamax(var a: matrixtype);
external;

(; Returns to the calling routine the current amax.

function zeroincolsum(var a: matrixtype;
col, rl, r2: integer):integer;
external;
(* Finds the number of zeros in column col of matrix a
between rows rl and r2. *)

46

APPENDIX 1
Part B

Program gencover.

47

program gencover(input,output);
(* Program to read in a covering matrix and test whether
it is canonical.
Input required:
number of rows, number of columns,
isomoptions [1..10],
useroptions [1..10],
covering matrix.

*)

#include ’'../isom/isomdcl.h’
#include ’'userdcl.h’

const

prime = 3;
maxcolsize = 7

type
linetype = permvect;

var
encount: array (1..maxrowsize, 1..maxcolsize] of integer;
* counts the number of times generate is called *)
timel, time2: integer;
(* to compute elapsed cpu time in ms *)
solncount: integer; (* count of number of solutions *)
autogp: svtype;
(* automorphism group of the covering matrix *)
psize: integer;
(* size of permutations *)
cmat, cbest: matrixtype;
nrow, ncol: integer;
debug: optionlisttype;
ii,jj: integer;
enoption : optionlisttype;
* 1: turns on isomorph rejection test *)
(* 2; prints out size of auto gp with each solution *)
(* 3: traces for partial matrices generated *)
givenstart : integer;

procedure readoption(var a: optionlisttype);
(* Reads in an option list *)

var
i,x:integer;

begin (* readnption *)
for i:=1 to axoptionlist do
begin
read(x);

afi]:=(x=1); 49
end;
end; (* readoption *)

function goodchoice(row, col, t:integer): boolean;
(* Returns true if the choice of t for the [row, col]
entry in cmat is good else returns false. *)

label 30,40,50,90,99;

var
i: integer;

begin (* goodchoice *)
goodchoice:=false;
if col<>1 then goto 30;
(* special testing f~v column 1 *)
(* column 1 contains only 0’s and 1°’s *)
if t>1 then goto 99;
(* all the zeros are on top *)
if row>1 then
bezin
if (t=0) and (cmat{row-1,1]<>0) then goto 99;
end ;
goto 90; (* exit with success*)
30: (* test for other columans *)
(* first nonzero entry in a column must be a 1 *)
if (zerocount{col]=(row-1)) and (t<>0) then
begin
if t>1 thep goto 99 (* unsuccessful exit *)
else goto ,J; (* successful exit *)
end;
(* zerocount of current column cannot be greater than
that of column 1 *)
if t=0 then
if zerocount{col]>=zerocount[1] then goto 99;
(* first nonzero entry in a rowmust be a 1 ¥)
if t>1 then
begin
for i:=1 to col-1 do
if cmat[row, i] <>0 then goto 40;
gotc 99
¢ad;
40: (* continues testing *)
(* The current column must be greater than the previous
column. *)
if t<=cmat[row, col-1] then
begin
for i:=1 to row-1 do
if cmat(i,col-1)<> cmat([i, col] then
goto 50; (* Skip to next test *)

if t<cmat{row, col-1] then

goto 99; (* The current column is smaller *)

if row=nrow then
goto 99;

(* The current column is the same as the last

column *)
end;
50: ; (* continues testing *)
90: (* Successful exit *)
goodchoice:= true;
99: (* Unsuccessful exit *)
end; (* goodchoice *)

procedure solution;
(* Handles a solution when it is found *)

begin (* solution *)
solncount:=solncount+1;
writeln(® solution ’,solncount:4);
printmatrix(cmat, 1, nrow, ncol);
if genoption[2] then
begin (* Retrieves group information *)
retrievesv(autogp);
printgroup(autogp, true, psize);
end; (* Retrieves group information *)
end; (* solution #)

procedure recordchoice(row, col, t: integer);
(* Records the choice of t for cmat{row, col] *)

begin (* recordchoice *)

cmat[row,col]:= t;

if t=0 then zerocount{col]:=zerocount[col]l+1;
end; (* recordchoice *)

procedure unrecordchoice(row, col: integer);
(* Undos the recording of the choice of cmat[row,

begin (* unrecordchoice *)
if cmat[row, col] = O then
zerocount{col]:=zerocount{col]-1;
end; (* unrecordchoice *)

col] *)

50

procedure generate(row, col: integer);

(* Recursive procedure to generate the covering
matrix cmat. This call is responsible for
generating the [row,col] entry. *)

label 90;

var
t:integer;

begin (* generate *)
gencount{row,col]:=gencount{row,col]+1;
for t:=0 to prime-1 do
begin
if goodchoice(row, col, t) then
begin
recordchoice(row, col , t);
if row < nrow then
begin
generate(row+l, col)
end
else begin
if genoption[1] then
begin
testisomorphism(cmat, row, col,
ncol-1, true);
if not canoaical then
goto 90
end:
if genoption(3] then
begin (* trace for partial solutions *)
printmatrix(cmat, 1, nrow, col);
end;
if col<ncol then
begin
generate(1, col+1)
end
else solution
end;
90: unrecordchoice(row, col);
end; (* t 1s a good choice *)
end; (* for t-loop*%
end; (* generate *)

begin (* gencover *)
writeln(’ pls input nrow, ncol and givenstart’):
read(nrow,ncol,givenstart);
psize:= nrow+ ncol + 2*(ncol-1);

writeln(’ isomoptions, useroptions and genoptions’);

readoption(debug);

51

initisodebug(debug); 52
readoption(debug);
inituserdebug(debug);
readoption(genoption);
writeln(’ given covering matrix’);
readmatrix(input, cmat, nrow, givenstart);
writeln(’ original covering matrix’);
printmatrix(cmat, 1, nrow, givenstart);
(* initialize zerocount *)
for ii:=1 to ncol do
zerocount([ii]:=0;
for ii:=1 to givenstart do
zerocount[ii]:mzeroincolsum(cmat, ii,
timel:= clock;
generate(1l, givenstart+1);
time2:= clock;
writeln(’ node counts’);
for ii:=1 to nrow do
begin
for jj:=1 to ncol do write(gencountlii,jjl:6);
writeln;
end;

writeln(’ elapsed time’,(time2-time1):6,’ms’);
end.(* gencover *)

1, nrow);

APPENDIX 2

Program rooks which generates the coverings.

53

program rooks(input,output,results,casesfile, 54

oldstart,newstart);

(* program which generates non-isomorphic coverings

(*

*)

by rook domains using the Blokhuis and Lam method *)

how to read input:

number of samples

samples

seed (the random number generator)
debugoption

option

covering matrix

const

nbrow = §;

(* number of rows in the covering matrix *)

S = 24; (* cardinality of the coverings *)

outcome = 3; .

(* each component of an element in an hyperplane
and each entry of the covering matrix are integers
modulo outcome.’ Qutcome’ is the number 'k’ of the
previous chapters *)

outcomlessl = 2;

outcmless2 = 1;

nbcol = 12;

(* if the covering matrix has x columns then
the reduced matrix (’partial covering’) of order
nbrow has nbcol = x{outcomlessl) cclumns.

We multiply each column of the covering matrix

by 1, 2,..., outcomlessl to get outcomlessli

columns of the reduced matrix of order nbrow. *)
totalav = 243; (* outcome power nbrow *)

lastpart = 1000;

(* terminator for a set of partitions *)

maxoption = 10;

(* number of available options,
for debugging and running the program *)

maxpartsol = 60;

(* number of partial solutions used f-r each level *)

nbsample = 130; (* number of available samples *)

stacksize = 17200;

(* A stack is useful for the procedures
recordchoice and erasechoice *)

linelenght = 80; (* used to print out *)

interval = 4; (* used to print out *)

blanks = 3 ; (* used to print out *)

type
typebuildav = array[0..outcome] of integer;
(* For building the array AV of all hyperplanes *)
comprestype = (worse,indifferent,better);

* For isomorph rejection of partial solutions *)
typeposition = array[0..nbrow,1..S] of integer;
(* For enumerating non-zero slices *)

typecol = array[1..nbrow] of integer;

(* for column vector in the redurcd matrices *)

longcolvector = array[1..nbcol] of typecol;

(* columns of the reduced matrices, for each level *)

typeextcol = array[0..nbrow] of integer;

(* for enumerating some informations we want to know
for each level such that the number of so.utionas,
the number of elements in a hyperplane *)

available = array[1..totalav] of typecol;

(* for enumerating the hyperplanes *)

typepartition = array[O..outcomlessl] of integer;

(* for enumerating the partitions of a non-zero slice *)

typeredmat = array[1..nbrow,1..nbcol] of typecol;

(* for enumerating the reduced matrices (partial
covering matrices) *)

typelayer = array[l..totalav] of integer;

(* for enumerating the contents of the slices and
the coverage of the hyperplanes *)

typecoverage = arrayl0..nbrow] of typelayer;

(* for enumerating the coverage of the hyperplanes *)

typeused = array{1l..totalav] of buolean;

(* for ordering the hyperplanes with non-zero slices
before to move to a next level *)

typeplane = array{0..nbrow] of typelayer;

(* for enumerating the upper contents, the lower contents
and the contents of the slices *)

typestack = array[1..stacksize] of integer;

(* for implementing a stack for the procedures
recordchoice and erasechoice *)

longvector = array[1l..nbcol] of integer;

(* for computing the columns order of the matrices with
1 rows and nbcol columns, for isomorph rejection *)

debugoption = array[1l..maxoption] of boolean;

x

e

print out the ordering at each level

print error in procedure initpart

print changes to min in minmax matrix

print changes to max in minmax matrix

print out coverage

print out new choices

print out final minpart and maxpart

print out the statistics at the end of the run
print out partial solutions

print out details of permutation test

®e 00 %0 se se 0o e 4o

SOOI NE W

1
*)
typeoption = array[1l..maxoption] of boolean;
(>

print out the partial solutions that are accepted
create the file casesfile

use procedure givenconfiguration

print out the estimates

print partial solutions on file results

not used

not used

restart the program

not used

not used

e® 60 06 €0 v oo oo s o0

[y
QO NRNNEWN

*)
typeallpart = array[0..nbrow,1..S] of typepartition;
(* for printing all the partitions for a given level *)
typepartsol = array{1..maxpartsol,0..nbrow,1..S] of
typepartition;
(* for enumerating some partial coverings for a given
level *)
realtypecol = array[0..nbrow,1..S] of real;
(* for computing the estimation of the search tree *)
typesample = array[l..nbsample,1..outcomless1] of
integer;
(* for implementing the different samples we want for
running the program *)

var
results : text;

(* file where the partial solutions, some statistics
as well as some information on group permutations
size may be printed *)

oldstart,newstart:text;

(* files needed for restarting the program *)

casesfile : text;

(* After we get the partial solutions from a sample,
each partial solution represents a case which we
want to complete to a covering after we restart
the program *)

casescount : integer;

(* for enumerating the cases in the file casesfile *)

skipline : boolean; (* used for printing *)

nbbyline : integer;

(* pumber of layers in an output line *)

canonical : boolean;

(* for checking whether a partial solution (partial
covering) may be a potential canomical solution
(canonical covering) *)

multiplier: integer;

(* for searching the numbers x smaller than ’outcome’,
such that gcd(x,outcome) = 1, for isomorph
rejection *)

permedredmat : longcolvector;

(* the image of a reduced matrix by a row permutation *)

56

(* permedredmat and sortedredmat are used for 57
isomorph rejection *)
sortedredmat : array[1l..nbrow] of longvector;
(* the reduced matrix ordered by columns *)
shift : typecol;
(* acts on the subscripts of hyperplanes at a given level,
application of Theorem 2.5 for isomorph rejection *)
perm : typecol;
(* for enumerating the row permutations on
a reduced matrix *)
ptestlevel : integer;
(* choice of a level for a complete isomorph rejection *)
psize: integer;
* for enumerating the size of the automorphism group of
the (partial) coverings *)
base : integer; -
(* for finding the AV indices of the sons of
an hyperplane *)
used : typeused;
(* for building the array ordering, allowing us
to order the hyperplanes with non-zero contents
for a given level *)
firstlev , firstindex :integer;
(* auxilliary variables *)
stoplevel , stopindex: integer;
(* auxilliary variables *)
solcount,nonsolcount : typeextcol;
(* number of soluticns and number of canonical solutions
for each level *)
bounds : typeextcol;
(* Number of elements in each hyperplane of order:
1: outcome power (nbrow - 1) ,
2: outcome power (mbrow - 2) ,...,
nbrow - 1: outcome, nbrow: 1 *)
AV : available;
(* for enumerating the hyperplanes *)
ordering : typeposition;
(* for generating the partitions of the non-zero slices *)
lastordering : array[O..nbrow] of integer;
(* the last partition to generate from a non-zero slice
for a given level *)
redmat : typeredmat;
(* gives the reduced matrix for each level *)
lastav : array[O..nbrow] of integer ;
(* Number of hyperplanes of order:
0 : 1, 1: outcome , 2: (outcome) power 2 ,...etc *)
powerofoutcm : typecol;
(* 1 : 1,2: outcome, 3: outcome power 2,... etc *)
(* used to translate from a typecol element to AV,
used with var table *)
lastcol : typeextcol;
(* lastcol{i] = number of non-zero columns in the
reduced matrix of order i, redmat[i] *)
zerocol : typeextcol;

(* zerocol[i] = nbcol - lastcol[i] = number of zero 58
columns in the reduced matrix redmat{i] *)

stack : typestack;

(* stack for the procedures recordchoice
and erasechoice *)

stackptr : integer; (* stack pointer for the stack *)

plane , minpart , maxpart : typeplane;

(* gives the contents of hyperplanes, the iower contents
and upper contents of the slices *)

coverage : typecoverage;

(* for computing the coverage of each hyperplane *)

table : integer;

(* use for translating from a typecol element to an
hyperriane (index in array AV) *)

tempco’ : typecol;

(* ussd only to compute table *)

option : debugoption;

estoption : typeoption;

inflist : longvector;

(* for giving the list of hyperplanes which have an
influence on the coverage of a given hyperplane
for a given level *)

sizeinflist : integer;

(* number of hyperplanes which are in the list inflist
for a given hyperplane for a given level *)

tstat : typeposition;

(* tstat[l,iﬁ is the number of elements for level 1l and
hyperplane (array AV) index i *)

seed : integer; (* for the random number generator *)

estimates : realtypecol;

(* The estimation for the element (1,i) where 1 is the
level and i is the hyperplane (array AV) index is
equal to estimates[l,i] = tstat[l,i] * scale. *)

total : real;

(* average of estimated total size of the tree *)

scale : real;

(* amounts the present count should be scaled by *)

starttime ,stoptime : integer;

(* cpu time spent to rum a program *)

tstarttime , tstoptime : integer;

(* cpu time spent on a case by case basis:
procedure restart *)

choicecount : integer;

(* number of acceptable choices found at a level
where random selection is to be made *)

partsol : typepartsol; ,

(* for enumerating a partial covering for a piven level *)

part : typeallpart;

(* for enumerating partitions *)

lastsample : integer; (* number of samples we want *)

startsample , stopsample : typesample;

(* gives the level and the index of the starting point
and the stopping point of a sample *)

59

function min(x , y : integer) : integer;
*

: e
(* Returns the minimum of x and y *)
begin (* min *)
if x <y then
min := x
else
min = ¥y
end; (* min *)

function max(x , y : integer) : integer;
(* Returns the maximum of x and y *)

begin (* max *)
if x > y then
max :~ X
else
max := y
end; (* max *)

function ceiling(a,b:integer) : integer;

(* Gives the ceiling of a/b. If b divides a then the
ceiling of a/b is equal to the quotient of a by b,
other?ise it is equal to the quotient of a by b plus
one *

begin (* ceiling *)
ceiling:=(a+b-1) div b;
end; (* ceiling *)

procedure initsamples;

(* Reads the number of samples.
Initialises the samples with their components
startsample and stopsample *)

var
i ¢+ integer;

begin (* initsamples *)
read(lastsample);
for i (= 1 to lastsample do
begin

read(startsample{i,1],startsample(i, 2]);
read(stopsample(i,1],stopsample[i,2])
end
end; (* initsamples *)

procedure initialise;

var
i, j,k , t : integer;

begin (* initialise *)
k := (outcome * interval) + blanks;
skipline := false;
if (outcome * k) <= linelenght then
nbbyline := outcome * outcome
else
begin
i = 13
while (i * k) <= linelenght do
i = i+ 13
nbbyline := outcome * (i - 1) ;
skipline := true
end;
for i 1= Q0 to nbrow do
begin
solcount[i]:=0;
nonsolcount[i]:=0;
end;
read(seed);
bounds[0] :=totalav;
lastav[0] := 1;
t = 1; j := totalav div outcome;
for i (= 1 to nbrow do
begin
powerofoutecm[i] := ¢t;
t := t * putcome;
bounds[i] := j;
j = j div outcome;
lastav[i] := t

end;
orderinﬁ[o.ll tm 1
plane[0][1] := _§;

lastordering[0] := 1:
for i := 1 to maxoption do
begin
read(t);
option[i] := ¢t = 1
end;
for i := 1 to maxoption do
begin
read(t);

60

estoption[i] := t = 1 61
end;
estimates[0,1] := 1.0;
tstat[0,1] := 0;
total := 0.0;
scale = 1.0;
end; (* initialise *)

procedure initfiles;
(* For initialising the files ;ou want to use *)

begin (* initfiles *)
if estoption[5] then
rewrite(results);
if estoption[2] then
begin
rewrite(casesfile);
end
else
begin
reset(casesfile);
reset(oldstart);
rewrite(newstart)
end
end; (* initfiles *)

procedure initrestartfiles(var casescount : integer);
(* Reads oldstart file and copy to newstart file,
scan for the last completed case.
Reinitial nonsolncount, position the casesfile *)

var
¢ , i ¢ integer;

begin (* initrestartfiles *)
while not eof(oldstart) do
begin
read(oldstart,c,i);write(newstart,c:5,i:6);
for i := 1 to nbrow do
begin
read(oldstart,nonsolcount[i]);
write(newstart,nonsolcount{il:10)
end;
readlh(oldstart); writeln(newstart);
end;
c.sescount := c + 1
end; (* initrestartfiles *)

function randomchoice(range : integer) : integer;
(* returns a random integer number between 1 and range *)

begin (* randomchoice *)
randomchoice := trunc(range * random(seed)) + 1
end; (* randomchoice *)

procedure buildredmat;

(* We say that column i < column j if the row number
of first non zero entry of column i is less than
the row number of the first non zero entry in
column j. In the data f°le, we enter the column of
nbrow rows and nbcol columns in ” column order 7,
each column on one input line, and each columu j
input line is preceeded on the same line by the row
number of the first non zero entry of column j *)

var
i, j,k, col , tcol , lev : integer;

begin (* buildredmat *)
lastcol[0] := 0; zerocol[O] := nbcol;
col := 1; read(lev);
while col < nbcol do
begin
tcol := col;
for j = 1 to nbrow do
read(iedmat{lev,col][j]);
for k := lev + 1+ to nbrow do
redmat{k,col] := redmat{[lev,col];
for i := 2 to outcomlessl do
begin
k := col + 1;
for j := 1 to nbrow do
redmat[lev,k][j] :=
(i * redmat[lev,tcol][j]) mod outcome;
col := k;
for kK := lev + 1 to nbrow do
redmat[k,col] := redmat[lev,col]
end;
if col < nbcol then
begin
read(k);
if ¥ <> lev then
begin
lastcol[lev] := col;
lev := k
end;

62

col := col + 1
end
end;
lastcol[nbrow] := nbcol;
for j t= 1 to nbrow do
zerocol[j] := nbcol - lastcollj];
for j :t= 1 to nbrow - 1 do
for col := 1 to lastcol[j] do
for k := j + 1 to nbrow do
redmact[j,col][k] := 0O
end; (* builredmat *)

procedure pushminmax(lev : integer; var a : typelayer);

(* Pushes all the entries of a[l..lastav[lev]]
onto the stack *)

var
i ¢ integer;

begin (* pushminmax *)
for i := 1 to lastav[lev] do
stack[stackptr + i] := a[i];
stackptr := stackptr + lastav[lev]
end; (* pushminmax *)

procedure popminmax(lev : integer; var a : typelayer);
(* Pops from stack and recreates a[l..lastav[lev]] *)

var
i ¢ integer;

begin (* popminmax *)
stackptr := stackptr - lastav[lev];
for i := 1 to lastav[lev] do
ali] := stack([stackptr + il
end; (* popminmax *)

procedure buildav(r , b : integer);
(* Builds the array AV of all hyperplanes *)

var
count , i , j , k : integer;
a : typebuildav;

begin (* buildav *)

af0] := b;
if r > 1 then
begin
j := lastav[r - 1];
count := a[0];
for i := 1 to outcome do
ali] := a[0] + i * j;

k = 0;
while kK <= putcomlessl do
begin
for i := al[k] + 1 to aflk + 1] do
begin
count := count + 1;
AV[count]{r] := k
end;
k := k + 1
end;

for i := O to outcomlessl do
buildav(r - 1,alil)

end
else
begin
count := a[O],
al1] := a[0] + 1; a[2] := a[0] + outcome;
for i := a[1] t a[2] do
begin
count := count + 1;
AV[count][r] := (count + outcomiessl) mod outcome
end
end

end; (* buildav *)

procedure extractminpmaxp(lev , ind : integer;
var minp,maxp : typepartition);
(* extract from minpart , maxpart the minimum values and
the maximum values for the partition of
plane[lev][ordering[lev,inc]] *)

var
il , 11 , t : integer;

begin (* extractminpmaxp *)
11 = lev + 1;
base := ordering(lev,ind];
for il := 0 to outcomlessl do
begxn
t := base + il * powerofoutcm[11];
m1np[11] := minpart[11,t];
maxp(il] := maxpart[ll,t]
end
end; (* extractminpmaxp *)

64

65

procedure readpartition(var p : typepartition);
(* Reads a given partition *)

var
i : integer;

begin (* readpartition *)
for i :=0 to outcomlessl do
read(pli])
end; (* reradpartition *)

procedure printpartition(var f : text;
var p : typepartition);
(* prints out the partition p on file f *)

var
i : integer;

begin (* printpartition *)
for . := 0 to outcomlessl do
begin
write(f,pli] : 4);
end;
writeln(f)
end; (* printpartition *)

procedure printtypecol(var x: typecol; l: integer);
(* prints out the column x[1..1] *)

var i:integer;

begin (* printtypecol *)
for i:=1 to 1 do
write(x[i]l:3);
writeln;
end; (* printtypecol *)

procedure printlayer(var f : text;
var x : typelayer; xsize : integer);
(* prints out one layer of size 1..xsize *)

var
i , £ integer;

begin (* printlayer *)
k := outcome * outcome;
for i := 1 to xsize do
begin
write(f,x[i] : 4);
if (i mod outcome) = O then write(f,’ °');
if (i mod nbbyline) = O then
begin
writeln(f);
if skipline then
if (i mod k) = O then writeln(f)
end;
end;
if (xsize mod nbbyline) <> O then writeln(f)
end; (* printlayer *)

procedure initpart(lev , ind : integer;
var p , minp : typepartition);
(* Initialises the partitions of the non-zero content of
the hyperplane AV[ordering[lev,ind] *)

var
i : integer;

begin (* initpart *)
for i := O to outcmless2 do
pli] := minp[i];
p[outcomlesslg := plane[lev][ordering[lev,ind]];
for i = 0 to outcmless2 do
ploutcomlessl] := ploutcomlessl] - plil;
if option[2] then
begin (* error checking *)
if ploutcomlessl] < minp[outcomlessi] then
begin
writeln(
* impossible to satisfy minimum partitioning’);
write(
* lev,ind,ordering[lev,ind],plane entry =');
writeln(lev : 4,ind : 4,ordering{lev,ind] : 4,
plane[lev][ordering[lev,ind]] : 4);
printpartition(output.minpg
end
end
end; (* initpart *)

66

procedure nextpart(var p , minp : typepartition);

(* Generates the next ?art1tlou, for a given partition p.

If none exists, p[0] is set to lastpart *)

label 99;

var
i : integer;

begin (* nextpart *)
i (= 1;
while p[i] = minp[i] do
if i = outcomlessl then
begin
plO] := lastpart;
goto 99
end
else i (= i + 1;
pli] :=- p[1] - 1;
if i = 1 then p[O] := p[o] + 1

else
begin
if p[O0] > minp[0] then
begin
pli - 1] :=p[i - 1] + pl[0] - minp[O] + 1;
p{0] := minp{O]
end
else p[i - 1] := p[i - 1] + 1
end;

99 :
end; (* nextpart *)

procedure addvector(l : integer ;
var vl , v2 , res : typecol);
(* res[1..1] := vi1[1..1] + v2[1..1] mod outcome and
zero out res[! + 1...nbrow] *)

var
i ¢ integer;

begin (* addvector *)
for i := 1 to 1l do
res[i] := (v1[i] + v2[i]) mod outcome;
for i := 1 + 1 to nbrow do
res[i] := O
end; (* addvector *)

function transcoltoplane(l : integer;

67

N

T A

var col : typecol) : integer; 68
(* Translates from a typecol element to an AV index
of hyperplanes. col{1..1] is defined *)

var
i , t : integer;

begin (* transcoltoplane *)
t = 1;
for i = 1 to 1 do
t :=t + powerofoutcm[i] * colli];
transcoltoplane = t
end; (* transcoltoplane *)

procedure influence(l , ind : integer;
var list : longvector;
var sizelist : integer);
(* 1 is the level and ind is the AV index.
Returns in list{1..sizelist] the list of indices

with an influence on the coverage of the hyperplane
AV[ind] *)

var
tvect : typecol;
i, t : integer;

begin (* influence *)
sizelist := 0Q;
for i := 1 to lastcol[l] do
begin
addvector(l,redmat[1l,i),AV[ind],tvect);
t := transcoltoplane(l,tvect);
sizelist := sizelist + 1;
list{sizelist] := t
end
end; (* influence *)

function nextind(l : integer): integer;

(* Returns the index j such that coverage[l,j] is
smallest amongst those with used[j] being false.
If none found , returns nextind = -1 *)

label 10 , 99;

var
i , tcover , tind : integer;

begin (* nextind *)

(* scan for the first unused index *) 69
for i := 1 to lastav[l] do
if not used[i] then

begin
tind = i;
goto 10
end ;
nextind := -1;
goto 99;

10 : tcover := coverage[l,tind];
for i := tind + 1 to lastav[l] do
if not used[i] then

begin
if coverage[l,i] < tcover then
begin
tcover := coverage[l,il;
tind = i
end
end;
nextind := tind;

99 :
end; (* pextind *)

procedure updateminmax(11 , forcedby, pos : integer;
newminmax , indx , parent : integer;
var minent ,maxent : typelayer;
var conflict : boolean);

(* First, updates the lower content minent[indx] (case 1 or 2:
from Lemma 2.2) or the upper content maxent[indx] (case 3
or 4: from Lemma 2.4). Next, updates some upper content or
some lower content if necessary, using inequality (2.1) or
inequality (2.2). *)

label 99;

var
t , tl , temp , total , lev : integer;

begin (* updateminmax *)
conflict := true;
lev = 11 - 1;
case forcedby of
1, 2 : begin
minent{indx] := pewminmax ;
if option[3] then write(’' new min’)
end;
3 , 4 : begin
mazent{[indx] := newminmax;
if option(3] then write(' new max’)
end

end;
if option[3] then
writeln(’ent[’,indx:3,’]’ ,newminmax: 3,’ type °’,
'forcedby :3,’ pos’, pos:3);
if minent{indx] > maxent{indx] then goto 99;
(* compute max total or min total of buddies *)
total := 0;
for t := 0 to outcomlessl do
begin
tl := parent + t * powerofoutcm(11];
case forcedby of
1 , 2 : total := total + minent[t1l];

3 , 4 : total := total + maxent[tl]
end

end;
(* change maxent or minent of buddies *)
for t := 0 to outcomlessl do
begin
tl := parent + t * powerofoutcm(11];
if t1 <> indx then
begin
case forcedby of
1 , 2 :(* change maxent if necessary *)
begin
temp := plane[lev,parent] - total +
minent[t1];
if temp < maxent{t1] then
begin
maxent[t1] := temp;
if option[4a] then
writeln(’ new maxent{’,t1 : 3,']"’,
temp : 3)
end
end ; (* 1, 2 *)
3, 4 :(* change minent if necessary *)
begin
temp := plane[lev,parent] - total +
maxent{tl];
if temp > minent[t1] then
begin
minent[tl] := temp;
if option[4] then
writeln(’ new minent{’,t1 : 3,’']",
temp : 3)
end
end (* 3 , 4 %)
end; (* case forced by *)
if minent[tl] > maxent[t1] then goto 99
end; (* if t1 <>... *)
end; (* for t - loop *)
conflict := false;
99
end; (* updateminmax *)

70

71

function minmaxforce(ll , ind : integer;
var minent , maxent : typelayer;
var changed : boolean) : boolean;

(* Performs minmax forcing based on the entries of
minent[ind] and maxendfind]. If changes to minent and
maxend is done, then change is set to true.

Otherwise, it is left untouched. It returns true if

no contracdiction is found otherwise it returns false.
The types 1 and 2 test Lemma 2.2, and

the types 3 and 4 test Lemma 2.4. *)

label 5, 99;

var
slack, i,j, maxoutcover, minoutcover, lev, t,
parent, divisor, excess, deficit, fact,
newmin, newmax : integer;
tcol , tres : typecol;
conflict : boolean;
freq, influence : longvector;
inflen: integer;

begin (* minmaxforce *)
minmaxforce := false;
(* compute the outside coverage and the slack *)
lev = 11 - 1;
slack := 0O; minoutcover := 0 ; maxoutcover := O;
inflen:=0;
tcol := AV[ind];
for i := 1 to lastcol[lev] do
begin
addvector(11,tcol,redmat[11,i],tres);
j t= transcoltoplane(ll,tres);
maxoutcover := maxoutcover + maxent[j];
minoutcover := minoutcover + minent[j];
for t:=1 to inflen do
if influence[t]=j then
begin
freq[t]l:=freqt]l+1;
slack:= max(slack,
freq{t]*(mazxent[j)-minent[j1));
goto 5;
end;
inflen:=inflen+1;
influence[inflen]:=j;
freq[inflen]:=1;
slack := max(slack,maxent[j] - minent[j]);
5:
end;
deficit := bounds[11] - maxoutcover;
fact := (lastcol([l1] - lastcol[lev]) div outcomlessl;

e, —Tamy

AT T

parent := transcoltoplane(lev,tcol);
excess := bcunds[11] + coverage[lev,parent]
- bounds[lev] - minoutcover;
(* type 1 & 3 forcing *)
if (maxent{ind] <> minent[ind]}) and (11 < nbrow) then
begin
t := deficit - fact * plame[lev][parent];
divisor := zerocol[l11] + 1 - fact
(* type 1: Lemma 2.2 *)
newmin := (t + divisor - 1) div divisor;
(* ceiling function *)
if newmin > minent[ind] then
begin
changed := true;
updateminmax(l1,1,ind,newmin,ind,parent,
minent,maxent,conflict);
if conflict then goto 99
end; (* if newmin > minent{ind] *)
(* type 3 : internal excess test *)
t := excess - fact * plane[lev,parent];
newmax := t div divisor
if newmax < maxent[ind] then
begin
changed := true;
updateminmax(l1,3,ind,newmax,ind,parent,
minent,maxent,conflict);
if conflict then goto 99
end
end; (* type 1 & 3 forcing *)
(* type 2 & 4 forcing *)
if maxent{ind] = minent{ind] then
begin
t := maxent[ind] * (1 + zerocol[11])
+ fact * (plane[levl[parent] - maxent[ind]);
deficit := deficit - t;
(* type 2: Lemma 2.2 *)
if (deficit + siack) > 0 then
begin
(* minent of some outside coverage must increase *)
for i := 1 to inflen do
begin ~
j := influence[il;
newmin =
ceiling(deficit + maxent[jl*freqlil,freq(il);
if newmin > minent[j] then
begin
changed := true;
parent := j mod powerofoutcm[11];
if parent=0 then parent :=powerofoutcm[l1];
updateminmax(11,2,ind,newmin, j,parent,
minent, maxent,conflict);
if conflict then goto 99
end (* if newmin > minent[j] *)
end (* for i - loop *)

end; (* if deficit+slack *) (* type 2 *) 73
(* type 4 : external excess test *)
excess := excess - t;
if (excess - slack) < O then
begin
(* maxent of some outside coverage must decrease *)
for i := 1 to inflen do
begin
j := influence[i]:
newmax :=
(excess + minent[j]l*freq[i]) div freql[il;
if newmax < maxent[j] then
begin
changed := true;
parent := j mod powerofoutcm[1l1];
if parent=0 then
parent:=powerofoutem[11];
updateminmax(11,4,ind,newmax, j,parent,
minent, maxent,conflict);
if conflict then goto 99
end (* if newmax... *)
end (* for i - loop *)
end (* type 4 *)
end ;(* type 2 & 4 test *)
minmaxforce := true;
99 :
end; (* minmaxforce *)

function minmaxdriver(lev : integer) : boolean;
(* Is the driver for the ’'minmax’ forcing.
Returns false if contradiction is found *)

label 1 , 99;

var
redo : boolean;
11 ,ind : integer;

begin (* minmaxdriver *)
11 1= lev + 1;
minmaxdriver := false;
1 : redo := false;
for ind := 1 to lastav[11l] do
if not minpmaxforce(ll,ind,minpart[11],
maxpart[l1],redo) then
goto 99;
if redo then
goto 1;
minmaxdriver := true;
99 : if option[7] then
begin (* writes up minmax *)

writeln{’ final maxpart at level ',11 : 3,
' redo = ',redo : 7);
printlayer(output,mexpart[11],lastav[11]);

writeln(’ final minpart at level ’,11 : 3);

printlayer(ovtput ,minpart{11],lastav[11])
end
end; (* minmaxdriver *)

function initminmaxpart(lev : integer): boolean;
(* Initializes the entries of maxpart[lev + 1] and

minpart{lev + 1]. Returns false if the initial
minmax force fails. *)

var
i, J ., 11, t : integer;

begin (* initminmaxpart *)
11 = lev + 1;
for i := 1 to lastav[11] do
minpart{11]}[i] := ©O;
for i := 1 vo lastav[lev] do
begin
for j = 0O to outcomlessl do
begin
t := i + j * powerofoutcm[11];
maxpart{11,t] := min(plane([lev][i],bounds[11])
end
end;
(* call minmaxdriver once *)
initminmaxpart:= minmaxdriver(lev);
end; (* initminmaxpart *)

procedure printordering(l : integer);
(* Prints the ordering array for level 1 *)

var
i, j ¢ integer;

begin {(* printordering *)
writeln(’> ’,’printordering’);
writeln(’ ’,’lev = ’,1 : 2,’ array ordering = ');
for i := 1 to lastordering(l] do
begin
write(’ *,’ind = ’,i : 2,’ #AV = ',
ordering[l,i] : 3,’ = (’);
for § 1= 1 to 1 do
write(’ ',AV[ordering[1,ill[j] : 1,” *);
writeln(’)’

74

end
end; (* printordering *)

procedure printcoverage(l : integer; var x : integer);
(* Prints the changes of coverage given in the procedure
recordchoice, where x is the AV index. *)

var
11 : integer;

begin (* printcoverage *)
12 =1 4+ 13
writeln(’ ’,’coverage(’',11 : 2,’,',x : 3,°] *,
coverage[1l1,x] : 2)
end; (* printcoverage *)

procedure printnewchoices(l : integer; i : integer;
var p ¢ typepartition);
(* Prints the AV indices of hyperplanes with
non-zero contents for a given level 1 *)

begin (* printnewchoices *)
write(’ newchoice.lev,ind’,1 : 3,i : 3);
write(’ ordering ',ordering[l,i] :
printpartition(output,p)

end; (* printnewchoices *)

procedure printstat;

(* Prints array tstat, which gives the number of elements
in the sear:h tree, at any level and any index.
Prints the number of solutions, counted by level.
Finally, prints the cpu time for running the program. *)

var
1,1, j integer;

begin (* printstat *)
writeln(’ ’',’printstat’);
for 1 := O to stopsample(lastsample,1] do
begin
writeln(’® level =’,1 : 3);
for j := 1 to min(S,lastordering{1]) do
begin
if (j mod 9) = 1 then write(j : 3,’:");
write(tstat{l,j] : 5);

75

W TEOCEIET VD TR TSR

if (j mod 9) = O then writeln 76
else if (j mod 3) = O then write(’ ")
end;
writeln

end;
writeln(’ solution counted by level');
for i:= O 1c stopsample[lastsample,l] do
begin

writeln(nonsolcount[i]:7,’ (',solcount[il:7,’)");
end;
writeln(’ elapsed cpu time = ',

(stoptime - starttime) : 10,’ ms ')
end; (* printstat *)

procedure recordchoice(l : integer; i : integer;
var p : typepartition);
(* Records the choice of a partition of the non-zero

content of the hyperplane with the AV index equal to
ordering[l,i), where 1 is the level. *)

var
i1 , 11 : integer;

begin (* recordchoice *)
if option{6] then
printnewchoices(l,i,p);
11 1= 1 4+ 1;
pushminmax(1l1,maxpart[11]);
pushminmax(11,minpart[11]);
base := ordering[l,il;
for i1 := O to outcomlessl do
begin
table := base + i1 * powerofoutcm[11];
plane[l1][table] := plit];
minpart{11,table] := p[il];
maxpart[11,table] := p[il]
end
end; (* recordchoice *)

procedure erasechoice(! : integer; i : integer);

(* Erases the chcice of the current partition of the
non-zero conten. of the hyperplane which the AV index
is equal to ordering[l,i], where 1 is the level. *)

var
i1 , 11 : integer;

begin (* erasechnice *)

11 := 1 + 1;
base := ordering(l,i];
popminmax(11,minpart[11]);

popminmax(11,maxpart(11]);
for il := 0 to outcomlessl do
begin
table := base + il * powerofoutcm[l11];
plane[l11][table] := 0
end
end; (* erasechoice *)

procedure buildarrays(l : integer);

(* Buiids the ordering(l,i] array which orders the
byperplanes with non-zero contents, where the
ordering[l,i] represent the AV indices, and

lastordering[l] represeats the last index 'i' *)

var
i, j, t , ind , 11 , count : integer;

begin (* buildarrays *)
for i := 1 to lastav([l] do
used[i] := false;
count := 03
lastordering{1l] := O;
11 := 1 + 1;
ind := nextind(l);
while ind <> -1 do
begin
influence(l,ind,inflist,sizeinflist);
(* sort the influence list into decreasing order *)
for i:=1 to (sizeinflist-1) do
begin
ti=ij;
for j:=(i+1) to sizeinflist do
if plane[l,inflist{t]] < plane[l,inflist[j]] then
ti=i;
(* swaps inflist[t] with inflist[i] *)
jer=inflist[il];
inflist[i]:=inflist{t];
inflist{t]:=j;
end;
sizeiaflist := sizeinflist + 1;
inflist[sizeinflist] := ind;
for i := sizeinflist downto 1 do
begin
if not used[inflist[i]] then
begin
used[inflist[i]] := true;
if plane(1][inflist{i]] > O then
begin

lastordering{1]:= lastordering[1] + 1; 78
ordering(l,lastordering[1]] := inflist[i]
end
end
end;
ind := nextind(1)
end;
if option[1] then
printordering(l)
end; (* buildarrays *)

procedure buildcoverage(l : integer);

(* Builds the coverage of the hyperplanes for a given
level 1. *)

var
i, j ,r : integer;

begin (* buildcoverage *)
for i := 1 to lastav[l] do
coverage[l,i] := O;
for r := 1 to lastav[l] do
begin
if 1| < npbrow then
coverage[l,r] := coverage[l,r] +
planefl,r] * (zerocol[l] + 1);
for j := 1 to last:ol[1l] do
begin
addvector(1l,AV(r],redmat[1,j],tempcol);
table := transcoltoplane(l,tempcol);
coverage[1l,table] := coverage[l,table]
+ plane{l,r]
end
end;
(* error checking *)
for r:=1 to lastav([1l] do
‘f coverage[l,r]<bounds(l] then halt;
if option[Sﬁ then
begin (* priuts out the coverage *)
writeln(’ coverage at level ’',1 : 3);
printlayer(output,coverage[l],lastav(1])
end
end; (* buildcoverage *)

function advancelevel(ll : integer):boolean;

(* Initializes the data structures required in moving to
a new level. Returns false if it fails the initial
minmax forcing test of the next level. *)

79
begin (* advancelevel *)
buildcoverage(il);
buildarrays(11);
advancelevel:= initminmaxpart(1l1)
end; (* advancelevel *)

procedure takechoice(choice, flev, find,
llev , lind : integer);

(* Procedure to enter the choice of partial solutions
number choice representing partitions starting from
level flev, index find to
level llev, index lind *)

var
tl , ti , templ , temp2 : integer;

begin (* takechoice *)
for tl := flev to llev do
begin
if t1 = flev then templ := find
else templ := 1;
if templ = 1 then
if not advancelevel(tl) then
begin
writeln(’' in takechoice, failed advancelevel’);
halt
end;
if tl = llev then
temp2 := min(lind,lastordering[tl])
else temp2 := lastordering[tl];
for ti := templ to temp2 do
recordchoice(tl,ti,partsol{choice,tl,til);
¢ad
end; (* takechoice *)

procedure givenconfiguration;

(* allows the user to input an initial configuration
given by the positions (level,index) and the
corresponding partitions *)

var
aum , t , 1 , i : integer;
p : typepartition;

begin (* givenconfiguratica *)
read(num);
writeln(’given initial configuration’);

for t := 1 to num do
begin
read(l,i);
readpartition(p);
write(1:3,i:3); printpartition(output,p);
partsol[1,1,i] := p;
end;
if num>0 then takechoice(1,0,1,1,i);
end; (* givenconfiguration *)

procedure printresults(l : integer);
(* Prints a solution (partial covering of order 1) given by
the contents of the hyperplanes for the level 1, and for

each solution prints the size of the automorphism group
acting on the solution *)

begin (* printresults *)
writeln('soln # ’,nonsolcount[1-1] : 3,’ lev=",1 : 1,
p size=",gpsize:5);
printlayer(out ut,plane[l].lastav[l%);
if estoption(5] then
begin
writeln(results,’ soln # ’,nonsolcount{l- 1] : 3);
printlayer(results,plane[l],lastav[1]);
flush(results)
end
end; (* printresults *)

procedure printestimates;
(* Prints the estimation of the number of elements
(level 1, index i) of the search tree, from
(leval O, index 1) to the (level, index) given by
the last sample. Prints also an estimation of the search
tree.

vart
totalest: real;:
1 , i : integer;

begin (* printestimates *)
totalest := 0.0;
for 1 := 0 to stopsample[lastsample,1] do
begin
writeln(’level=", 1:3);
for i := 1 to min(S,lastav{1]) do
begin
totalest := totalest + estimates[1,i];
if (i mod outcome) = 1 then write(i : 3,’:');

80

write(estimates[1,i]); 81
if (i mod outcome) = 0 then writeln
end;
writeln
end;
writeln(’® total size =’,totalest)
end; (* printestimates *)

procedure processpartialsolution;

(* Process a partial solution from
(level firstlevel, index firstindex) to
(level stoplevel,index (minimum of
lastordering[stoplevel] and stopindex) if
the number of the current partial solutions is
not exceeded the number maxpartsol. This number
was chosen before running the program. *)

label 99;

var
templ,temp2, tl,i : integer;

begin (* processpartialsolution *)
choicecount := choicecount + 1;
if choicecount > maxpartsol then gotoc 99;
if estoption[1] then
begin (* write out partial solution *)
writeln(’ partial solution # ’,choicecount : 4)
end;
for tl := firstlev to stoplevel do
begin
if t1 = firstlev then
templ := firstindex
else templ := 1;
if tl = stoplevel then
temp2 := min(stopindex,lastordering[tl])
else temp2 := lastordering[tl];
for i (= templ to temp2 do
partsol[choicecount,tl,i] := part[tl,i];
if estoption{[1] then
begin
writeln(’' level =',tl : 3);
for i := templ to temp2 do
printpartition(output,part{tl,i])
end
end; (* for tl-loop *)
99
end; (* processpartialsolution *)

82
procedure computelinescase(var num : integer);
(* Number of lines printed on casesfile in the
current casescount number. *)

var
tl : integer;

begin (* computelinescase *)
if firstlev = stoplevel then
num := min(stopindex,
lastordering[firstlev]) - firstindex + 1
else
begin
num := lastorderi-g[firstlev] - firstindex + 1;
tl = firstlev + 1;
while ti1 < stoplevel do
begin
num := pum + lastordering(tl];
tl = tl + 1
end;
num := num + min(lastordering{stoplevel],stopindex)
end
end; (* compitelinescase *)

procedure writecasesfile(var indexcases : integer);

(* Writes on the file casesfile a partial solution
from (level firstlev, index firstindex) to
(level stoplevel, index (minimum of stopindex and
lastorderinglstoplevel])). The current number ’indexcases’
of partial solutions is indicated by its negative
- indexcases’, useful for reading in the file casesfile
these partial solutions, when we want to restart the
program, in collaboration with the files oldstart and
newstart *)

var
templ , temp2 , tl1 , i ,t , tnum : integer;

begin (* writecasesfile *)
indexcases := indexcases + 1;
computelinescase(tnum);
t := - indexcases;
wriieln(casesfile,t : 4 , tnum : 4);
for tl (= firstlev to stoplevel do
begin
if tl = firstlev then
templ = firstiadex
else templ := 1;
if tl = stoplevel then
temp2 := min(stopindex,lastordering(tl])

else temp2 := lastordering[tl];
for i := templ to temp2 do
begin
write(casesfile,tl : 3,i : 4);
printpertition(casesfile,part[tl,i]);
writeln(casesfile)
end
end (* for ti-loop *)
end; (* writecasesfile *)

procedure nextindices(step : integer;
var firstlev, firstindex,
lastlevel ,lastindex : integer);
(* Gives the starting level, the starting index and
the stopping level and the stopping index from the
given samples. We use these informations for running
the program through these data. *)

begin (* nextindices *)
firstlev := startsample[step,1];
firstindex := startsample([step,2];
lastlevel := stopsample[step,1];
lastindex := stopsample[step,2]
end; (* nextindices *)

function comppartition(var p,q: typepartition): boolean;
(* If p<q then returns false *)

label 99;
var i: integer;

begin (* comppartition *)
comppartition:= false;
for i:=0 to outcomlessl do
if p[il<>q[i] then
begin
if plil<q[i] then goto 99
else begin
comppartition:= true;
goto 99
end
end;
comppartition:= true;

end; (* comppartition *)

83

84

function gecd(a , b : integer) : integer;
(* Returns the greater commun diviscr of a and b *)

var
t : integer;

begin (* gcd *)
while b > 0 do
begin
t i= a
a = b
b = t
end;
ged := a
end; (» gcd *)

mod b;

function badpartition(lev,ind : integer;
var p,maxp: typepartitioa) : boolean;
(* Performs rhe simple isomorphism rejection. Checks if
the entries of p are at most equal to those in maxp.
If the partition is rejected, returns true *)

iabel 99;

var
s, mult, i : integer;
tpl, tp2: typepartition;

begin (* badpartition *)
badpartition := true;
for i := O to outcomlessl do
if pli] > maxp[i] then goto 99;
(* applied orly to ind = 1 *)
if ind <> 1 then
begin
badpartition:=false;
goto 99
end;

(* apply the cyclic rotation test¥*)
for s:=0 to outcomlessl do
begin
for i:=0 to outcomlessl do
tpl[i]:=p[(i+s) mod outcom:];
if lev<>0 then
begin
if not comppartition(tpl, p) then
goto 99
end

else begin 8s
(* for level O, combine with the multiplication test *)
tp2[0]:=tp1[O];
for mult:=1 to outcomlessl do
begin
if ged(mult, outcome)=1 then
begin
for i:=1 to outcomlessl do
tp2[i]:=tp1[{(i*mult) mod outcome];
if not comppartition(tp2, p) then
goto 99
end
end (* for mult *)
end;
end; (* for s-loop *)
(* finished all tests , returns false *)
badpartition := false;
99 :
end; (* badpartition *)

procedure sortlongvector(var a : longvector; n : integer);
(* Sorts a[l..n] in increasing order by insertion sort *)

var
i, t , j : integer;

begin (* sortlon%vector *)
for i := 1 to (n - 1) do

for j := (i + 1) to n do
if af[t] < alj] then t := j;

(* S“Mf a[i] with a[t] *)
j o= alil;
ali) := alt];

alt] := j

end

end; (* sortlongvector *)

function complayer(var a , b :typelayer;
n: integer): comprestype;

(* Returas

worse : af1...i] = b[1..i] and a[i+ 1] > b[i + 1], i < n
indifferent : af[l...a] = b[1...n]
better : a[1...i] = b{1...i] and al[i + 1] < ®b[i + 117,

i < n*)

label 99;

var
i : integer;

begin (* complayer *)
for i = 1 to n do
if a[i] <> b{i] then
begin
if ali]l < o[i] then complayer := better
else complayer := worse;

goto 99
end;
complayer := indifferent;

99 :
end; (* complayer *)

function eqiallongvector(var a , b : longvector)

(* Returns true if al[1...nbcol] = b[1...nbcol] *)

label 99;

var
i : irteger;

begin (* equaltlongvector *)
for i := 1 to nbcol do
if al[i]l <> b[i] then
begin
equallongvector := false;
goto 99
end;
equallongvector := true;
99 :
end; (* equallongvector *)

function action(l , ind : integer) : integer;

(* Returns the resulting index when ind at level 1

86

boolean;

if acted on by the index permutation perm and the
shifts in shift[1...1] as well as the multiplier *)

var
tcol : typecol;
i : integer;

beéin (* action *)

* Apply perm first,note perm{i] is where the i-th
index is from, then shift , then multiplier *)

for i = 1 to 1 do
tcol[i] := ((AV[ind,perm[i]] +
shift[ig) * multiplier) mod outcome;
action := transcoltoplane(l,tcolg
end; (* action *)

87

function goodperm(l , choice : integer;
var perm : typecol) : boolean;
(* Returns true if perm[1] = choice is acceptable *)

label 99;

var
i ¢ integer;
tlvect :longvectar;

begin (* goodperm *)
goodperm := false;
for i := 1 to (1 - 1) do
if perm[i] = choice then goto 99;
perm[1l] := choice;
(* add one row to permedredmat *)
for i = 1 to nbcol do
permedredmat[i,l] := redmat[nbrow,i,choice]l;
(* convert lomgcolvector to longvector *)
for i := 1 to nbecol do
tlvect[i] := transcoltoplane(J),permedredmat[i]);
sortlongvector(tlvect,nbcol);

goodperm := equallongvector(tlvect,sortedredmat{1]);
99 :
end; (* goodperm *)

procedure ptest(l : integer);
(* Permutation test for the next level *)

label 50, 99;

var
tlayer : typelayer;
x, ind, i , j , k ¢! integer;

begi-. (* ptest *)
%* find perm[1] *)
for i := ptestlevel downto 1 do
begin
if goodperm(1l,i,perm) then
begin (* find shift[l] *)

for j:=0 to outcomlessl do 88
begin
shift[1l] := j;
(* create permedlonvector *)
for k := 1 to lastav[l] do
tlayer{k] := 0;
for k:=1 to lastav{ptestlevel] do
begin
x:=action(l,k);
tlayer{x]:=tlayer{x]+plane[ptestievel, k];
end;
(* first compare the partition of
lane[l-1,ordering(1-1,1] *)
ind:-orderingfl-l,l];
for k:=0 to outcomlessl do
begi-~
x:=ind + kK * powerofoutcm[1];
if tlayer(:]J<>plane[l,x] then
begin
if tlayer[x]l<place[l,x] then
begin
canonical := false;
goto 99
end
else goto 50
(* worse, skip further comparison,
indifferent, continues *)
end;
end; (* for k-loop *)
case complayer(tlayer,plane[1],lastavi1l]) of
better : begin
canonical := false;
goto 99
end;
indifferent : begin
it 1 < ptestlevel then
begin
ptest(l + 1);
if mot cannnical then
goto 99
end
else gpsize:=gpsize+l
end;
worse : (* do nothing *)
end; (* case of *)
50:
end; (* for j - loop *)
end; (* find shift{1] *)
end; (* for i-loop *)
99 : if option{[10] then
begin (* writes out the result of the ptest *)
writeln(' canonical =',canonical:6,’' at ‘eve’,1:3);
if not canonical then
begin (* writes out better permutation *)

writeln(’ use multiplier=’,multiplier:3);
write(’ perm= ’'); printtypecol(perm, 1);
write(’ shift='); printtypecol(shift, 1);
writeln(’ better plane is');
printlayer(output,tlayer, lastav[1])
end
end
end; (* ptest *)

procedure initptest(lev : integer);
(* Initial call to ptest *)

label 99;

begin (* initptest *)
gpsize:=0;
ptestlevel := lev; canonical := true;
for multiplier := 1 to outcomlessl do
if gcd(multiplier,outcome) = 1 then
begin
ptest(1);
if not canonical then goto 99
end;

99 :
end; (* initptest *)

procedure createsortedredmat;
(* Creates the sortedredmat (the reduced matrix for
each level ordered by columns *)

var
i, j : integer;

begin (* createsortedredmat *)
for i := 1 to nbrow do
begin
for j := 1 to nbcol do
begin
sortedredmat{i,j] :=
transcoltoplane(i,redmat[i,j])
end;
sortlongvector(sortedredmat{i],nbcol)
end (* for i - loop *)
end; (* createsortedredmat *)

89

procedure writerestartfiles;

* Prints on the file newstazt, the case number from the
file casesfile, the number of partial solutions and the
cpu time to get them *)

var
i : integer;

begin (* writerestartfiles *)

write(newstart,casescount:5,
(itstoptime - tstarttime):10);
for i .:= 1 to nbrow do
write(newstart,nonsolcount[i] : 10);

writeln(newstart);
flush(newstart)

end; (* writerestartfiles *)

procedure skipcasesfile(indexcase : integer);
(* Skips the cases until caseno = indexcase *)

var
tcount : integer;

begin (* skipcasesfile *)
read(casesfile,tcount);
while(tcount + indexcase) <> 0O do
begin
readln(casesfile);
read(casesfile,tcount)
end
(* given configuration at case number indexcase *)
end; (* skipcasesfile *)

procedure readconfiguration;

(* Reads in the file casesfile a case given by
a partial solution from a number 'num’ of
(level 1, index i) with a partition of the contents of
the hyperplane of order 1 with AV index i. *)

var
j,oum , t , 1 , i : integer;
p : typepartition;

begin (* readconfiguration *)
read(casesfile,num);
for t := 1 to num do
begin

read(casesfile,1,i);
for j := 0 to outcomlessl do
read(casesfile,p[j]);
partsol[1,1,i] := p
end;
if num > O then
takechoice(1,0,1,1,i)
end; (* readconfiguration *)

procedure sampler ; forward ;

procedure restart;

begin (* restart *)
initrestartfiles(casescount);
skipcasesfile(casescount);
repeat
writeln(’ newcase’,casescount:6);
readconfiguration;
tstarttime := clock;
sampler;
tstoptime := clock;
writerestartfiles;
read(casesfile,casescount);
casescount := - casescount;
until casescount <= O;
end; (* restart *)

procedure generate(l : integer; i : integer);

(* Recursively generates the partitioning of the coverings
by generating the partitioning of the non-zero contents
plane{1]{ordering(l,i]] of the hyperplane of order 1
with AV index equal to ordering{1l,i] *)

label 9 , 50;

var
tminp , tmaxp : typepartition;
11 : integer;

begin (* generate *)
extractminpmaxp(l,i, tminp, tmaxp);
initpart(l,i,part{l,i],tminp);
11 := 1 + 1;
while part{1,i][(0] <> lastpart do

91

begin
* sim, le isomorph rejection *)
if badpartition(l,i,part{1l,i],tmaxp) then goto 50;
recordchoice(l,i,part[l,i]);
(* prepare for minmax test *)
if not minmaxdriver(l) then
goto 9;
if i=lastordering[l] then
begin
%‘ call ptest: complete isomorph rejection *)
solcount[l]:=solcount[1]+1;
initptest(11);
if not canonical then goto 9;
nonsolcount{l]:=nonsolcount{1]+1;
if option[9] then printresults(l1)
end;
tstat{1,i] := tstat[l,i]) + 1;
(* check whether next recursive call is necessary *)
if ((1 <> stoplevel) or
(i <> min(stopindex,lastordering[1]))) then
begin (* another recursive call is required *)
if i < lastordering{!] then
generate(l,i + 1§
else
begin (* advance one level *)
if advancelevel(l1) then
begin
generate(11,1)
end
end
end
else
begin
processpartialsolution;
if estoption[2] then
writecasesfile(casescount);
if estoption[5] then
printresults(l);
end;
9 : (* restore data structure *)
erasechoice(l,i);
(* find next partition *)
50 : nextpart(part[l,i],tminp)
end (* while part.... *)
end; (* generate *)

procedure sampler;
(* Procedure to perform estimation based on the given
samples *)

label 10, 99;

var
step , ti , tl : integer;
templ, temp2 , j: integer;

begin (* sampler *)
for step := 1 to lastsample do
begin
nextindices(step,firstlev,firstindex,
stoplevel,stopindex);
choicecount := O;
if firstindex = 1 then
begin
(* initialization for advancing one level *)
if not advancelevel(firstlev) then
goto 10
end;
enerate(firstlev,firstindex):
* store the estimates *)
10: for tl := firstlev to stoplevel do
begin
if tl = firstlev then
templ := firstindex
else templ := 1;
if tl = stoplevel then
temp2 := min(stopindex,S)
else temp2 := §;
for ti := templ to temp2 do
estimates{tl,ti] := tstat[tl,ti] * scale;
end; (* for tl-loop *)
if choicecount = O then goto 99;
if step = lastsample then goto 99;
scale := scale * choicecount;
if choicecount <= maxpartsol then
j := randomchoice(choicecount)
else
j = randomchoice(maxpartsol);
(* take the choice *)
writeln(’ choice taken=',j:4);
for tl := firstlev to stoplevel do
begin
if tl = firstlev then
templ := firstindex
else templ := 1;
if tl = stoplevel then
temp2 := min(stopindex,$S)
else temp2 := §;
writeln(’ level =’,tl : 3);
for ti := templ to temp2 do
printpartition(output,partsol[j,tl,ti]);
end; (* for tl-loop *)
takechoice(j,firstlev,firstindex,stoplevel,stopindex)
(* continue the loop to do more sampling *)
end; (* for step loop *)

93

99 :
end; (* sampler *)

begin (* rooks *)
initsamples;
initialise;
initfiles;
buildredmat;
buildav(nbrow,0);
createsortedredmat;
starttime := clock;
if estoption[3] then
begin
givenconfiguration;
sampler
end
else
if estoption[8] then
restart
else sampler;
if estoption[2] then
writeln(casesfile,’0’);
stoptime := clock;
if option(8] then
printstat;
if estoption[4] then
printestimates
end. (* rooks *)

94

