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.\j ‘ ' This ;hésis compares two inference control’ techniques’,

o partitioning (Glaser, 1982) and. random sampling (benhing, lQéd).

d ——

°4

: In ' particular’, ‘the hierarchical partitioning algérithm and

=q

. . ‘responsé strategy dggélopedQ by David Glaser is examined. A

Vo { comparatiyé measure for determining the gobdness of a partition

[ - is defineas An ‘extension to Glaser's response strategy 1is

= .. presented, rendering a strategy free from information loss. - The

theory benind a possible method .of compromising random sampled
¢ . 9
datapases is introduced. S ' .
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' CHAPTER 1

\
INTRODUCTION
N
1.1 Database Security. .
A .

@

The area of :@ﬁearch in data security encompasses different
aspects of a database environmé%g. ’Denning'[LB] clasgifies these
areas into four categories: access control} flow control, data
encryption, and infe:encL ccontrol. The first of these, access
control, refegs to the kinds of éechniques émployeg in verifying
;he validity of a user in a given:situ;tion. General acceéi to

a
any computer facility coufd be maae dependent upon some init&al
identification scﬂeme; a password,: a fingerprint, or a voice
pattefn without which access to the computer "would be deniéd.
Another problem which a good access control methoa should handle

n ‘

is that of memory access. Without such a control, a .program

might overwrite areag of memeory either accidentally or

intentionally resulting in destruction of information.

Flow control is best aescribed using a hierarchy of user
types. The higher a user is on the scale, the more privileged he
is as far as data manipulation is concerned. A user can make
informagion available to a user at a higher level, but never ﬂo 5
user at a lower level than himself. 1In this way, data may be
clas;ified as top secret, at the highest level, down to g;;eral

information at the lowest, corresponaing to the hierarchy of user

types.

-5
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If confiadential inform&tion is storea on a removable mecium
such as magnetic tape or hara disk or must be sent 1in a
communication channel from one location to another, ghen ihat
information should be encrypted so that, shoula it be stolen or
intercepted the cuiprit would not be “able to decoae the
information to suit his purposes. Data encryption can accomodate B
many security aspects besides tnat of hiding information. Some
of these include authentication of .the author and prevention of

unwanted data insertion. ' -

Sometimes, it is necessary- - to generate a report on a
population where group information is required but individual
infofmation must not be revealed. Databases containing thig kind
of information, called statistical databases, must make use of
some security system to prevent a wuser from inferring
cohficential information. Inferencé happens when a user combines
his preknowledge of the database contents with group informatiqgn
in querying the system to gain information about a particular
record in thé database. 'Many inference control techniques have
béen suggested and the next section gives a historical éverview

’

of sone of these techniques.

o

1.2 Review of Research in Statistical batabase Security

\

Hof fman and Miller (23] were the first to realize the dangers
involved in releasing statistics about the confidential records

stored in a database. For example, compromise is possible when a

combination of the values from some of the attributes in the
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database uniguely identifies a record. This combination of
values actually becomes the identifying feature of the record
even though the usual identification; name, social insurance

number, etc., have been removed. Say a user's preknowledge

includes 1) the fact that there exists a record in the database:

describing the characteristics of an individual x, and_ 2) the
ﬁature of a subset of those characteristics. Let us suppose that
x is a female analyst who is married ana the uséf knows this
information.. Then, if the answer to the query "How many reco?ds

satisfy the characteristics: female, analyst, and magried?" is 1,

this is sufficient information to infer the rest of the

éharacteriStics of x“witpin the scope of the database. The
response to the gquery "How many married female analysts earn <
'$20,00?" must be either 0 or 1. With the knéwledge géined from
the previous respdnse it can be concluded that: if the response
is 0 tﬁen x earns at least $20,000, otherwise it can be inferred

’

tihat x makes less than $20,000.

A reasonable approach to avoiding this kind of breach of

- security would be to refuse to answer queries when the response

will be based on a small group of records., If t is some
threshold setting ghé size of the smallest groups of recoras upon
which a réSponse will be formulated, then queries specifying less
than t or more than N-t records (N is the total number of records
in the database) will not be answered. Queries‘specifying‘a
large set of recoras are included in tne set of restricted

queries to prevent answering the cohplement of a qdery specifying

™
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“a small set of records. This form of inference control _‘was the

first to be suggested [23]. ¢
s \

Unfortunately, a database protected this way can be totally
gompromisea with the use of a tracker (l4]. Trackers are
reviewed in more qetail in chapter 5, but an example here will

illustrate the point.

Let the guery "How many married female analysts are there?"
be unans:we'rable due to the 'fag:t that there aré too few records
sar:isfying it, and 1let the quer'y‘ "How many part-timers are
there?” specify the required number of records to elicit a
reponse from the system. If the system is able to respond tg
query 1 ;'How many married female analysts or part-timers are
thére?' and to query 2 : "How many married female analysts or non
part—-timers are. there?". Then, the number of married female'
analysts can be calculated using the formula : response to qué:y
1 + !response to query 2 - total number of records in the
database. - Note that the total number of records is the response

-

to ™How many part-timers arfe there?" + the response to "How many

-

non part-timers Are there?".

The remaining inference control technigues to be discussed
can be catagorized into t..wo groups asJ either restriction
techniqlues or p'erturbation ‘techniques. Restriction teghniques
aim to prevent a user from receiving a response to a query which

is considered sensitive. For simplicity, a sensitive query. will

pe defined as in [l8]: a query whose characteristic formula
. aract

)
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‘'sensitive. Relative density refers
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matches either one or no recora in the database. These
téchnigques’ incluae attribute. combination based restriction,

implied query tres;;;ction, and gquery restriction basea on

querying history.s . Pertutbation techniques add noise to the

information revealed to the user. in ef attempt . to hide the
confidential aspects :gf\ the &ystem. Systematic and: random

rgunding, range respbnsg, partitioning and random -sampling fall

into this catagory. Y

-

~ ~ ¢ . . N
Several attribute .combination based query restriction

techniques are outlined 1in Denning ‘and Schlorer (18]).  The

Ejmplest form of this meﬁhgd is to set a threshold d and restrict

any query vwhose characteristic formula specifies more than d
. \

attributes. If 4 = 3, then the query ._asking for.records

satisfying the formula married ' female analyst , with 2 years

~

~ % -
emplpyment specifies’ 4 atgributes: sex, profession, -marital

status, and years of employment.. This query would be restricted.

o

Presumably, the greater the number of attributes specified in a

formula, the less chance there is that a record will satisfy it
indicating that these queriés would probably be -sensitive.’ The .

.problem is, if four attributes are specified in a farmula’, . each.
3\

of which has a small domain size, then the probability-that the

4 .

query is sensitive is-smaller than for a combination of four

» ’ ' » M . L4 ¢ ’ ~ * A
attributes whose domain sizes are large. N
. = " . , .

It follows that the relative density of sthe database. should
come imto- play when predicting -whether or not a query is

to ‘the density of «the

’ . -

4 -
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database with respectsto thne attrloutes spec1f1ed in the query

o
being . judged. Thq ‘relative density S /N yhere Sn is the

product of the domaln sizes ‘of the m attributes spec1f1ed in the

characteristic fofmula and N is the number of qecords in the

.

database. The query is judgea sensitive, and

\

therefore
restricted, if Sm/N‘ > 1/k for sgme préset k. If the number of
different professions defined in the-database is S.and.there are
100 records stored, then the query asking for female énalysﬁ
.would have a celatlve den51ty of 10/100. Fot k > lb this 'query

"would be restrlcted

-
- s » .
. 4

Implied query ;estriptioh, also discussed in (18], deals with

determining what can -be calculated from the response to a given

»

guery along with other information obtainable from the database.

If it is determined that sensitive information can be.obtained in-

a

- this wéy, then the query is restricted. 1In order tc ensure that

no sensitive information can be calculated from the response to

"the query, the worst case requires that the result of combining

the information confhiied in the response with every comBination
. |
. , v ) A
of responses , to all other unrestricted queries must be '
considered. This is too costly a method to be considered

practical.

Auditing 1is an approach based on keeping a 1log of the-

‘information revealed to a user during a session. If the .

information seems to be leading a user into'a situation'where

compromise is B ss1b1e, the user is refused further access to the

database, or’ at least, a subset of queries determiped by ‘the

FESE R
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query log beco&es restricted. Unfortunatély, .it is not fedasible
to expect the system to keep track of a user's history over many

sessions (consideerL the possible number of valid use2s whose
» ™~ .

history would be stored needlessly). It is also impossible tg

prevent a group of users from combing their information. Hoffman
, - i

and Miller {23] and Chin and dzsoyoglu [8] have researched this

3

-

area.,

The major  difficulty in developing a good restriction

teclinigue 1is k%eping the information dloss to an acceptable

minimum. The function of a statistical database is to provide

the wuser with information. If this information is denied to a
user whose intention is not that of compromising the system, then

.the database loses its functionality quickly.

0

A different approach to statistical database security can get

* around this problem of restricting information. A~ method of

@iving perturbed responses in place of exact responses should
suffice in securing the system. As long as the perturbation
factor is controlled, the accuracy of statistics can be

determined and the error kept to a minimdm, ensuring the

usefulness of the_-statistics produced. At the same time, because’

the responses will not be ekact, trackers éh uld have no effect

on compromising the security of the 'databasd.

Data perturbation could be based on perturbing information at

-

the level of the response as in rounding ana range response, at

the query level as in random sampling ana partitioning or at the

)
N N

%«:"‘ R
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database level‘as°in error inoculation and data swapping.

. ) c 4 ..
Rounding a statistic [24] regulres a rounding._base, say b.

The perturbed response is a function of b. 1In the case of

systematic rounding, the.statistic is 'rounded. to the nearest

integer multiple of b. ‘Random rounding rounds the statistic. up

or down to an integer mu;f%ple of b where the decision to round

up or down is made at random. The problem with these methods is
one of consistency. The following example with b = 5, wusing
B R N Ny ’ !

systematic rounding will demonstrate this., . l

Suppose there are 48 anal}sts in the database, 26 of which
are female, 22 of which are male. Since an analyst must be male
or female, 'the numbei_‘of female analysts + the number of male
'analysts must be equal to ths number of analysts. . 'The rounded
responges given to querie; “asking for the nu%ber of anal§st§,
female analysts, aﬁd male analysts would - be SOj 25, aﬂd ‘20

respectively. The inconsistericy becomes apparent when it is

observed that 25 + 20 = 45 # 50.

v

Alagar {4] solves the inconsistency problem by suggesting
that the range [kb,fk+l)b-l] ‘be given as the response where k
satisfies the condition that the.true reSponse‘lies within this

range. Using the same example which demonstrated inconsistency

in rounding, consistency will be illustrated for rangé\ response.

The responses given to the query asking £br the number of
analysts would be [45,50], that for female analysts [25,30] and

that for male analysts [20,25]). Without yoing into the details

\ , .

L



of range arithmetic, (this is aone in Chapter 5), it is enough to

say (25,301 + (20,25] = [45;50]. " Hence ‘the system is consistent.

Error inoculation, proposed by Campbell [5] replaces the true .

data in the database with false data. This is not desirable’

bec&hsi in " the event that  recalling the true data becomes

necessary it would not be pbssible

- 7

Data swapping,. discussed in Dalenius and Reiss [lOi suffers

»

from the flack of a means of sﬁapping‘the data while maintaininé

.

the integrity of the database. .

' . -

A good data-perturbing technique must be consistent in the
. t 2

‘perturbing factor. Thét is, if a guery is asked repeatedly, the‘

o

same response must be returnéd each time; otherwise, the

possibility of averaging out the pertubation factor will emerge.

One way of échieviqg this is to base the response to a guery
- -
on a set'of records satisfying the query. Partitioning and
r andom sanpling - both satisfy this condition. These two

-

techniques have been chosen as the focus of attention for this’

' N ) 3 »
‘thesis pin pointing some problem areas associatea with random

»

sampling and disputing some of the criticisms leveled against

partitioning.

a

1.3 Objective of this thesis

t . . 1
-The objective of this thesis is to compare the performance of
two inference control techniques: Denning's randop sampling [16]

and Glaser's hierarchical partitioning {22]. . Although random

" '

13
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sampliné seems to be a fool proof p;otébticn system, there are

two actors which indicate otherwise. There is some information

.

.loss for small query sets and there is a threat of “compromise
. . .. . . s
through range reduction. Partitioning on the other hand has been

criticised for 1)  the lack of a measure of the .goodness of a

4 -

' given partitiofl with respect to security and accuracy and 2) the
. .

: . e :
amount of information loss present.. Both these drawbacks to . the

L]
ruse of partitioned databases can be overcome. .

2

These issues concerning random sampling and partitioning will

form the basis of the thesis presented here. .

[ £4
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CHAPTER 2

OUTLINE OF METHODS
2.1 Introduction. : ‘ R o
- N ‘e Ve

The two methods to be evaluated will be presented, in this

chapter. Glaser's partitioning is discussed in Section 2.2 and

\ - .
includes the hierarchical algorithm.used for creating a partition ¥

from a collection of records and a éoad' response strategy

appropriate for the type of resulting partition. ™ Section 2.3
covers Denning's ranaom sampling and ,\gives a specific

implementation of the theory. . \ ) *

Both techniques were implemented wusing randomly generated-

v

pseudo databases. A database was represented using a file of

records of integers. Each field in & record represented an
k3 . ]

-

attribute. The domain of each attribute cdnsisted-of a range of
v .

\

_integers, [l,d] where d is the domain size of that attribute.

th

. ® »
The integer in the i field of a record iqdicated which value of

the i*f attribute that record contained.

. An example to illustrate this will convert a small database

into a pseudo database of the folm described above.

Let the database environment consist of three atttfbutes:

Sex, Age, and Marital Status. Let {Male, Female}, {0-14, 15-29,

i

30-44, 45-59, 60-74, 75-89}, and {Single, Married, Divorced,

.Separated, Widowed} be the values of the respective attributes.

The database contains the following records:

— 3

Pt

o &
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Record | " sex -Age Marital Status:
1 Male 15~29 Married ’
2 Female 0-14 Single
3 Female 75-89 wWidowed
B 4 Male 60-74 Separated

)

.The pseudo database corresponding -to this: example would.

create a mapping from the attributes to the integers; i.e. Sex =+

“

’

l, Age -+ 2, Marital, Status -+ 3, 'and from the values into/the

. intégers; Male~ 1, Female » 2, 0-14 - l,w 15-29 -+ 2, 30—?4 - 3,

45-59+ 4, 60-74+ 5, 75-89+> 6, Single - 1, Married +2, Divofced -
3, Separated + 4, and Widowea + 5. Then the records o¢f the

database would correspond in a, one-one fashion to the fpllowing

‘records: s T
. Reéord Att 1 Att 2 'Att 3
1 1 2 2 .
2, 2 1 1 v
3 2 6’ 5 )
4 1 5 4

» [ r
To access the pseudo database, pseudo fzﬁmplas were
. . 4 8 | *

formulated. A pseudo farmula  consisted of /pefators and

operands: The tﬁree logical operators NOT, OR, and AND were
fg?resenpgd by the 3 dig}t sequences 000, 001, 0?2 repectively.
The operahds were alse' represented by 3 bit seq?enﬁes where the
-lSt' Qit specified the attribuée desired and the Jqét 2 bits, the
value. Given operand x, trunc(x/100)° yielded the;atfribute while

X mod 10 vyielded ¢the value. Given x, a 3 bit integer, the

. following rule suffices to distinguish between an operand and an

!
b
|
operator; if trunc(x/100) = 0 then x = an.operato%, otherwise x =

an opgrand.

~ o

!
¥
4
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Take for example the formula "Sex = Female AND Marital Status

= Single". The corresponding pseudo formula based on the sample - .

database apove would be 102 002 . 301 and the set of recordé

satisfying it would be {2}.
L .

From this point on, pseudo databases will be refered to as

a

simply aatabases and pseudo formulas as formulas.
. . [

) -
2.2 Glaser's Hierarchical Partitioning and Respanse Strategy

»

Unlike.most partitioning schemes which try‘to merge records
together to form groups, this hierarchical scheﬁe starts ;ith one
group containing all records and then tries to split ‘this group
into smaller groups. Essentially, it is é tqQp down approach.

The basic algorithm actually‘\processes!the databases three times,

-

the 279 apg 3rd passes hopefully improving the situation but nota

necessarily so. 1 s

. S .
2.2.1 Partitioning Algorithm

-

3
&

(All the records in the databases are initialized to one group
and fthis'group is repeatedly split in an attempt to maximize the
number of groups. The process of splitting can best be

represented using a tree. Coq;f;gr this initial group as the

‘root of the tree. " Splitting takes place at a node according to

the values' of a given attribute. Either a split is successful,
in which case the records of the node being split are distributed
accordingly among the new nodes, or it is not, in which case the

next attribute is tried. The actual splitting requires that 4

] ' L]

2
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consistg of a subset of the records.® The subset is obtained by

14 .

. \
size of the attribute being u

i

number of sons of this node ar cre;teé, wnere d is the domain

ng to )cérry out the split.
Distribution of records among the sén nodes occurs depenaing upon
the value of that attribute present in an§ record previously
assigﬂéd "to the node éeing split. A ;p}it is successful if each
of the resulting d nodes contains at least t records.. Recall
that t is the threshold such that any collection of ;ess'tﬁan the

threshold number of records does not gualify as a group. After

all attributes have been tried, the first pass is complete.

1]

The second pass is sifilar to first pass with the exception

that the initfa; node, instead of consisting of all records,

collécting the reco}ds from the groups resultiﬁg from pass 1
which néve at least 2t records. This ig because, é group of size
2t or more is considered large and therefore undesirable. Pass 2
may result in splits which create more groups and hence smaller
groups. If pass 2 splitting does not produce any refinement of
the original partitiorn 'obtained in pass 1 then the initial
partition is kept as the partition which then undergoes the third

pass

’

Finally, there. may still be large groups presént in the
partition and it is the job of the final pass to attempt to
eliminate them. At this point each large group is processed
separately. The records of ; large group are distgibuted on the

¢

values of each attribute, If M is the number of attributes,

there will pe M different ways of splitting up the records of a

~

+

[l
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large group. For each way, adjacent recoras are merged until

groups can be formed. The split which causes the most groups and

the most uniformly sized groups is kept.

To 1illustrate the algorithm consider the database shown in
figure (2.1) with 20 records and 4 attributes with domain sizes of

!

A =2,A, =3, ay =4, and A, = 3. o

The partition resulting from applying the hierarchical

‘partitioning algorithm to this da&abase, with a threshold of 2,

is ootained as follows,

"Pass 1l: Order the attributes on descending order of domain

size; Ag, Ay, Ay, Aj. Splitting on A; results in one group

’

containing one record only, record 1ll. Trying A2 we get g, =
{4,6,13,19}, 9, = {3,8,10,14,15,17}, and 93 =

{1,2,5,7,9,11,12,16,18,20}. Splitting each group on A, yields

4
one successful split, on 95- Now the partition 1is: g9, =

{406113119}1 92 = {318710114115117}1 95 = {115}1 94 =
}

{7,9,11,12,16,18}, and g = {2,20}. A split on any of these

- -

groups using Al will be unsuccessful,

»
Pass, 2: Group together the big groups whose size exceed

4. i.e., 91/ 93¢ 94 Reorder the attributes placing the unused
attributes first; Ay, Ay, Ay, A, Splitting on A is

unsuccessful. Splitting on A; gives the new partitio

9,
{4,6,7,9,11,12,13,14,18}, 9, = {3,8,10,15,16,17,19}, g, = {1,5}.,
and 34 = {2,20}. This partition has fewer groups then the *one

previously found in pass l; therefore it is disregarded. Splits
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Figure 2.% Sampl? Dataqs§e N
,:75: Record Att 1 Att 2 Att 3 Att 4
\"‘4&:‘;‘: Ve - - o N . P
s | 1 3 3 1 . ‘
2 1, 3 4 3 ~
3 3 2" 3 "2 :
. 4 1 1 3 3 f
5 1 2 1 !
6 1 1 2 3
7 1 '3 3 2
8 2 2 2 1
9 1 3 3 2 A
10 2 2. 4 Tl :
- 11 1 3 1 2 .
12 1 3 3 2 i
. 13 1 1 2 2 \'“ ,
/ 14 1 2 3 1 g
15 2 2 3 2 i
. 16 2 * 3 4 2 :
17 2 2 ¢ 2 i
‘ o
18 1 3 3 2 ; !
19 2 1 - 2. 3
20 2 3 2 3
I L)
o«

on A, and A, are not successful.
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" Pass 3: Pass 3 will process each big group formed in pass 1
separately siarting with 9, = {3,8,10,14,15,17}. ' The

distribution %f the values of the records of 9, looks like this:

Ay A, A3 Ay
vy 1 : 0. 0 3 / ,
vy g o 1 3
A 0 3 0 o
V4 8 2 ,

[ ' '
Combining adjacent cells to eliminate cells with 1less than ¢t

records we ¢get: °
! B A By o

s Ve Vo vy e
M

The distribution of ,values over the 4th attribute -is the best,
i.e., it produced the most groups with the smallest size
variation. . Therefore, 9, is broken down into  two dgroups

{8,10,14} and {3,15,17}.

-

similarily for g, = {7,9,11,12,16,18}, the distribution of:

values for the 4 attributes is: - © \\

P

.
P



= {4,6,13,19}, g, =

[
: -1 18
\ ‘ 3
ST ) Ay . Ay
' \
Y ' Q'
Vl 5 0 1 0 ’ Y
V2 1l . 0 0 6 ’
v o ’ N
vy 1 “.

o

Combininé ad]acent cells to eliminate the cells with less than 2

records resulgi in the following:

in this case, the records.{7,9,11,12,16,18} remain as a gtoup.

{2 20}- 93

and g9g ™

The partitin resulting from pass 3 is 9; = {1,5}, g, =
{s,10,14}, g5 = {3,15,17},

{7,9,11,12,16,18}. Since this partition is superior to the one

resulting from pass 1 aione, (there are more groups) this becomes

[

the partition returned.

The cost of this algotithm, as derived in Glaser(22]), is the

cost for pass 1 + the cost for _pass 2 + the cost for pass 3. In

- .

the worst case, ‘the cost for all three passes is O(MN) where M is

the number of attributes and N 1is ‘the number of
e

Therefore the total cost is O (MN).,

records.

......
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Although this will be .covered in detail in Chapter 3, it is
worth doting here that intuitivély speaking, the. partitions

obtained by the hierarchical .approach are.good, ' That is, the
‘.

N k2 K \ . '
combination of passes 1,2 and 3 works hard to maximize the

number of groups output while thé very nature of the splitting

maximizes the similarity of records whithin a group with respect

to those attributes upon which a split was successful.

-~

\ . A

2.2.2 Response Strategy ( N . 5 R

It is important to note at this point that a respénse

-

strategy for a partitioned database does not depend on the

partioning’ algof@thm used' to form the gréups. The strategy

/

considers only thé groupings themselves. A response is -initiated

when a query is posed. A query is of the form ”funcﬁionllogica}

formula, data attribute)". 1In our case, function will‘be limited

to Freq (for frequency) and Avg (for average). C will stand’ for

any logical formula, ana tﬁe data attribuge is absent @hen-'£ne
function is Freq. Thgl average age of married males. from the
sample database above would belrepresgnteﬁ as Avg (Sex = Male AND
Marital Status = Married, Age); The quéry set réfegs to the set

of records satisfying C. v
a Al

The foliowing definitions’ will be wused in describing the

response strategy for frequency and average querjies. : )

o
'

Let Gi be the ith group, n,; the‘numﬁer of récorQs in the 1

th

group, ¢ the number of records in the 1“9 group which satisfy C,

v an ,
s the number of groups -.in the partition, r the number of groups

[~3

B e

N



which contain at least one record from the query set and Ai' the

]
average value in the jth field over all recoras in Gi'

Let Pfreq(C) be the perturbéd frequency given in response to
a query of the.form‘Frequ) and Tfreg(C) be the true €£frequency.

r L
We define Pfreq(C) = (I ciy / (L ny
i=1 L i=l .

in [22] that Pfreq(C) is close to Tfreq(C) when the yariaﬁion in

) * (r/s). It is proved

group sizes is small. Since the hierarchical partitioning yielus
groupé with small group size variation, this response strategy
would produce good results "{f used with a database which was

partitioned in this manner.

B

Let Pan(C,j)'be the perturbed response corresponding to

Avg(C,J) and ‘Tavg(C,j) 'be the true response. Glaser defines

r r

Pavg(C,j) to be I ((c, /I cl) * A,.). In general, Pavg(C,]) is
: i=l 1=l ]

close to Tavg(C,j) when the records in a group are similar. For

example, if the n, records in Gy contain the same value for the

jth‘ attribute, (in other words, the records are identical with

-

respect to the jth attribute,) then Ai which is the averaée'over

3

all records in G; would be eqhal to the average over the c;

recokds in G, which.satisfy C. 1If the same was true for all Gyv

N

. ¥
.i = l.to r, then Pavg (C,j) would égual Tavg|(C,]).

5
' t

This again is compatible with the hierarchically part:it:i‘oned'|

database from the stand-point of accurate responses in that the

records. of a group are similar. The strategy which produces the

partition groups the records together according to the

R |
distribution of the values of the attributes used to split.

!
.

-

(&
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2.3 Denning's Random Samplinyg

The second method of securing‘a statisgﬁcal-database to

aiscussed is presented in this section. This method takes

e N

o - \

completely different approach to the problem from that of
partitioning methods. Partitioning is based on grouping reco
of the database together so that the response to a query

obtained from a superset of the query set. Random sampling

the other hand bases the response on a subset of the query set

-

2.3.1 Sampling algorithm

Let XC be the query set corresponding to the logical form
* ) ’ - * .
C, and let. X, be the random sample taken from X.. X, consists
a subset of the records ‘in Xa s choseh at random. Similarily

* *
n. be the size of Xc and ne the size of Xn- befine a match

function f : (formula, record) =+ {1,0} such that f(C,i)

~

implies record i is chosen, and £(C,i) = 0 implies record i

not chosen, and define p to be the probability that. £(C,i) = 1

Random - sampling was, implemented’ in the following way;

[16] for full details ‘ '

1. Dgfine a mapping R, from a repo:é i of the database

the bit sequence {0,1}" of length m.

2. Define a mapping G from a 1logical formula C to
‘:‘
sequence {0,1,*}" of length m such that k < mis the nunber

|
bits and m - k is the number of *'s.

N\

be
a
the
rds
is
on

ula-
of
let .
ing
=1
is

see

to

the

of
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3. Define a match vetween i and C if, given that a * is a 0
or a 1, R{i) = G(C). For example, if R(i) = 10 0 0 1 ana G(C) =

1 * 0 0 * then i matches C.
' !

Choose i for the sample if i does not makch Cc, i.e., £(C,1i) =
0 if i matches C and 1 otherwise, Because there are K bits in
G(C), the probabilkty of a match is ( %)k., Therefore the
probability that a record is chosen to "be includea in the

responsé set is 1 - (’%)K.

The algorithm for converting a recora into a bit sequence is
straightforward. Create a 2 dimensional table Rmap with one " row
for each record and m columns. Generate N random bit, sequences
of length m and store them in Rmap. Given record i, R(i) = ith

row of Rmap.

Finding G(C) 1is more involved. Given C, procesg C as

follows:

1. Convert the 3 bit oéerancs to m bit random seguences.

’

2. Process C applying the operations to the m bit operands

to produce an m bit sequence representing C.

3. Place k *'s in this binarized C at random.
. e

2.3.2 Responsé Strategy \ {

* .
Once XC has been found, the reponse is formulated based on

, . * . -
the records contained in Xct Again, only frequency and average

queries will be considered.

e

i L

=3
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The. perturbed :frequency is given by the equation Pfreq(C)

* \
nC / DN.

*
The perturbhed average of C with data attribute j is (l/nc)

»

L . V;. where v,. is ‘the value in the jth field of the ith
leXo J J .
record. ' ‘ -

For queries with small query setsffthere is a good chan?e
that Xé = Xp. For tﬁis reason, Denning adds the condition to the
response strategy that if n. falis below a certain threshold, the
response is restrictqd. We also assume that the user M aware of

the values of p and N for the random saﬁbled database being used.

» This 4s necessary to.give the user an idea of the amount of noise

present in the statistics produced.

:ad

an
.

-~
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CHAPTER 3

GOODNESS OF A PAKTITIONING, STRATEGY

1 i .

3.1 Introduction . . ' .

)

A criticism of partitioning as_ a means of securing a

» &
statistical database“Lstems from the fact that "good" 1is a

y relative term. How cah a good partition be’ distinduished_from a

bad partition? by/Glaser's definition, a good partition is one

‘which satisfies two conditions. 'The first is that the groups of

L J [ - .
a good partition are as numerous as possible, maintaining that

=]

each grgyp'is at least as big as a predetermined threshold, where

, - the wvariation in group size is small. The second condition is

[

. o that the records in each group are as similar as possible. The

~ B

justification for this can be seen in terms of the accuracy of

©

responses éesired, given that the ]response to a gquery is
\\g R " determined by all the records in'ghe groups containing those

records which satisfy the querys The . proportion of records
involQed. in a 'perturbed response which did not belong to the
original query set will be small if thg groups themselves are

small (and therefore numerous). Every one of these records is

{ “ contéined in a group which contains at least one record/from the
ax\\ query set, and if the second condition is met, this record will
% be similar to the rest of the records in the group and hence to

\ . )
those in the ;query set. At the extreme, if a query set is the

union of a subsét of groups of a partition, it is"obvious that

+ the\ statistic will not pe perturbed at all, yielding 100%
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accurgcy. Fértunately, the chance of this happéning,is small, a;
tpis would céfeét the object?vg of injecting noise into the
information revealed to the user. Even in the event -that this
did happen, the user wo&ld not be aware of it and so could not
use the information to compromise the system. On the other hand,
the noise is Rept to a minimum ensuring the usefullness of the

.

database.

3.2 Entropy .

i

. -f :
The very nature of the two conditions leads to the idea that
the goodness of a paréition can be measured using the concept of
entropy. Given a random variable X with Py the probability of

event x, occurring,” and the number of events is s, then the

l

. S
entropy of X is ‘'defined as H(X) = =L
i

-
2 =

Ipi 1092 pi.‘ An  important
characteristic of entropy is that .it is proportional to the
numpber of events involved as well as to the similarities among
the probabilities of the events occurring. In this case, H(X) is
proportional to both s and the similarity of the s pi's. These
cparacteristics form the basis of the fo}lowing section which

uses the concept of entropy in comparing partitions.

~

’
3.3 Partition Entropy

Two entropy measusres have been defined, corresponding to the

two conaitions mentionea above, which together can determine

whether or not one partition is better than' another. The
s

partition entropy, PE,(X), is equal t© -L- p; log, p;, where X
i=1 '

is the random variable for which the events are .the groups of

¢




T evepny

v e e s e g

-

partition’p, s is the number.of groups in the partition, ana Py =
| n;l/N, (|ln; |" = size of group i), is the probability of fiqaing
a record in group 1i. PEp(X) is maximum for a fixed s when P =
pj for all i # 3, indicating that all the groups are the same
size. EEP(X) is also uproportional_to S- Therefore PEp(X).is

maximum when P; = py for all i not equal to j and s approaches
L

]

"N/t, where N 1is the number of records in the database ana t is
]

the threshold. !

For example, given a database with N = 100, t = 3, and three
partitions as follows:
1) Partition p such that s = 20, all groups are of size 5,

PEP(X) = 4,32,

-

2). partition p' such that s = 20, 10 groups are of size 3, 5

of size 6, and 5 of size 8, PEP.(X) = 4.15,
3) Partition p" such that s = 33, 32 groups are of size 3, 1

of size 4, PEP,(X) = 5.04.

The above entropy measures are absolute quatities. In order
to compare two different partitions which may have different
values for N and t, we can normalize the absolute entropies using
the jﬁﬂﬁmum entropies for a given N and t. For our example of N
= 100fand t = 3, the maximum number of groups possible would be
33, with all but one group consisting of 3 records and one
consisting of 4 records. If we call thié "best" paétition B,
then PEB(X) = 5.04. 5o the normalized entropies fqr p, p'., and

p" are: PE (X) = .857, PE_,(X) = .831, and PE_, (X) = 1.000. !
. nP nP nP

0

y
¢
H
A
"
r
i




Comparing p and _p', PEp(x) > PEP.(X). This is to be expected

o

since /ﬁor’/ér fixed s of 20, the records in p are equally

distributed among the groups; the records in p' are not.

>

Comparing p" with p, PEP”(X) > PE,(X). The reason for this
is also obvious since not only are the records evenly distributed

in p", but s is maximum.

The above conclusions remain the same if we -compare the

normalizea entropies.

3.4 Group Entropy

The second condition necessary for a good partition is .that
-

the records in a group are as similar as possible. Even though

the PEP(X) of a partition is maximum, if the similarity of

records in the groups is small, this situation could lead to

inaccurate responses. The group entropy, GEj y(X), where X is
[
the random variable representing the distribution of the values
d.
.th . . . ]
of the j attribute within a group y is -Z f./F. log, £. /F.
k=1 JK 3 2 T3k 3

where dj is the domain size of attribute j Fj is the frequency
of records in group y with some value of j, (i.e. Fj is the size
of the group since every record has exactly one value in its jth
field), and fjg = frequency of records with the k" value of
attribute j. The similarity of records in a group y for a

specific attribute j is inversely proportional to GEj y(X).
f [

For example, let the distribution of values of the first

attribute for a ygroup y containing 5 records be such that there
3
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are 5 values in the domain of attribute 1 and each record in the

“group has a different value in the field reﬁresenting attribute

1. Then flk = 1 for all k =1..5, and Fy = 5. Thérefore
GEl,y(x) = 2.32.for this group.

Now let the distribution of values of the first attribute in
a group‘y' with 5 records be’such that each record contains value
2 in the field representing attripute 1. In this case, flk = 0
for k not egual to 2 and 5 for k = 2 and Fj = 5., Therefore

GEl,y'(x) = 0 for this second group.

It is Kknown that the recoras in y' are more similar than the

records, in y with respect to the first attribute and this is

verified by the fact that GE, y.(x) < GE, y(X). Averaged over
. r ’ .

all groups and over all attributes to come up with the average
group entropy, this measure can be used to determine the superior
partition.

The relative group entropy can be calculated similar to that

of the relative partition entropy. The maximum group entropy for

a given group may be obtained with respect to each attribute j by

equating tne fjk's for all k = 1l..d:. This would .give an

J
indication of the group entropy for the worst group. The results

could then be normalized as with the partition entropy to obtain

the relative messure.

To ‘'sum up, for two partitions p and p', if the partition
entropy of p is larger than that of p', this indicates that the

nunper of groups in p is larger and their sizes vary less than in

. o )

\
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p'. 1If the average group entropy is smaller for p then this
implies that the similarity of recondé in a group of p, on the
average, is greater than th¥t of a group in p'. The conclusion

is that p is a better partition than p'.

To verify the results, we consider Yu gnd Chin's [30]
partitioning method, known to be inferior to Glaser's

hierarchical methéd.‘ See Glaser [22].
3.5 Yu and Chin's Rectangular Partitioning Method

The partitioning adlgorithm is as follows:

[y

1) Take the first two attributes and determine a grid with

the first attributes = y axis and the second attribute = x axis.

2) Fill grid according to the values of the recofds in those
two fields, i.e., the pair of values represents the coordinates
of the grid into which the record is placea. Let size(i,j)} =

number of records in cell(i,j).

3) Partition the grid scanning from left to right, top to
pottom. For every cell with (1 <= size (cell) <; threshoid) do;
look right 1 cell, look aown 1 cell, look left 1 cell, look up 1
éell, look right 2 cells ... until enough cells are found &uch

that size{old cell) + size(new cells) >= threshold.

4) Whenever a non empty cell is found, if it is to the right
“(unaer), the old cell, move everything in each cell in the column

(row) of the old cell to the column (row) of the new cell.

~
4
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Otherwise, if new cell is éo the ieft (above) , moye contents of
the column (row)‘ of new cell to column (row) of old cell.
Eliminate the column (row) from ﬁwhich recoras were ’mo;ed by
setting size(cell) = -1 for all cells in column (row) to be
eliminated.

!
[ 4

5) Scan grid again and mark each non empty cell. At this
point a cell 1is non empty if size(cell) > threshold. Every

marked cell corresponas to a group. The collection of marked

cells make up the partition.

6) Repeat the process until all attributes have been used,

modifying the algosithm slightly: inste%g of associating an

. attribute with the y axis, the groups of the most recent

partition are used, each group representing a row of the grid.

The next attribute to be used becomes the x axis.

Data was collected for two different partitioning methods,
Glaser's hierarchical and Yu and Chin's rectangular, varying the
distribution of data values, the sizes of the attribute domains,

the threshold, and the nﬁmber'of recordé.

.
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I

3.6 Results ( .
Results for M = 5, Domain Sizes = 2,4,5,5,5, Distribution =

Unif&rm, Threshold = 2, and varying N.

Partition Entropy

N Glaser's Yg and Cﬁfn's
100: 5.0053 4.3405
350 6.8385 5.9044
500 7.4521 6.3870 5
Averége Group Entropy ‘ ) ) \
N Glaser's Yu and Chin's
100 . 4390 . 7019
350 .3171 . . 4889
500 .2508 .4243

Results for M = 5, Domain Sizes = 2,4,5,5,5, Threshold = 2, N '=

500, and varying Distribution.

Partition Entropy

pDistribution . Glaser's Yu and chin's

Uniform 7.4521 6.3870 /
Normal . 7.1554 5. 6088
Exponential 4.0461 4.0461

Average Group Entropy

Baan St K W e it i A% ¥ e

.
Distribution Glaser's Yu-and -Chin's
Uniform .2508 - .4243
Normal . 1551 .4361 : .
Exponential .5304 .530@ : !
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_Results for M =5, Domain Sizes = 2,4,5,5,3, ‘Distribution =

Uniform, N o= 500, and varying Threshold.

Partition Entropy ~

Thresheld Glaser's Yu-anmd Chin's
¢ 2 7.4521 6.3870
3 6.9049 6.1155
5 6.0608. 5.4851

Average Group Entropy ' ) ’

Threshold Glaser's Yu and ¢hin's

2 .2508 . 4243 '
3 .3689 . 5704

5 .5860 . .8198

-

Results for M = 5, Threshold = 2, Distribution = Unifo}m, N;
o \'
500, and varying Domain Sizes. ,

Partition Entropy v

_Domainr Sizes Glaser's Yu and éhin's '
\j ,

5,5,9/5,5 7.2511 ' 6.8189
2,4,5,5,5 - 7.4521 6.3870
2,2,3,3,3 6.5167 5.8987 ° .

Average Group Entropy .
‘Domain Sizes Glaser's Yu and Chin's
5,5,9/5,5 .4340 -.5618 .
2,4,5[5,5 - 02508 .4243 «
2,2,3,3,3 .0049 . 1032

ry + ) Drie . i
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I¥’ can be seen ffom;tge results that tne partitipn entropy is .
v * ° . « -~ N . )
. ¢ ’, . . o
greater and .the. average group entropy is smaller @pr quser[s ,
‘ N P .‘ N “ N ® .- ) *
; , . parnltion in each case. Frdm this _we :conclude that Glaser's
\' ‘ ) metnod is better than Yu ana C\in\s with respect to the number of .
- . “. i/ 0
- ' groups. and size’ varlatlon as well ‘as to the 51m11ar1ty of .records .
o within a group. . These results are consistent with our '
-expectations, ,i.e., we khow'that Glaser's partition 1is -superior
- A o L
’. . .to Yu ana Chin's and we expect that the paztitxou w1th the larger :
, part1t1on entropy and smaller average group entropy value would
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“ CHAPTER 4

Y

&

GOODNESS OF RESPONSE ST?ATEGY IN PARTITIONED DATABASES

o o /

. 4.1 Information Loss : .

]
B
“

The amount of informatigg,denied to a user as a result of the

inference protectiorn measures employed in a sfatistical database

‘environment i$ the aefinition given to information loss by

"Schlorer [29]. , Thig‘ is something to be ‘considered when

b .evalugting any respo?se ‘strategy. A good response strategy
should hgve little or 'no information loss. Information loss can

;c , Be me;surea iﬁ terms of characteristic formulas. With every.
formula is ‘associated a set of records. The records in ‘the sFt

are related to each other on séme subsét of attribButes. These
sets ;e}ay i;farqation to the user about the contents .of the
databasefj Restricting a query implies restrictiﬁg‘the amount of
fﬂféimaﬁibn available to the user, i.e., information is lost.

N\

4.2 ‘Schlorer's Response Strategy

A v ' ! ' ;
\ o ’ s
) Scﬁ}prer's response strategy is based on two rules: query set
N Nt ' ;
— - . restriction ana*‘qugty attribute restriction. Query set ;
s \—v\ . M‘,’—"/* e Pre 5

z

réstrictiop,@nsures/that the true response is returned only when
the set of records satisfying a formula C is a union of 1 or more
groups. Otherwisé no response is,given. ' In other words a query

will not be responded to if there exists a group g such that |gn

i
{.
;
:
:
:

) Xc | # 0 and |g -"XC| A 0, where X, is the set of records
satisfying C. Note that since |gn {}| = 0, queries with'X, = {}

TSN -

\( ‘ . ) . 3 K
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are answerea despite the risk of negative disclosure.

J

The justification for téis~rule is that queries with query
sets of size 1 are restricted, since the partitioning strategy
stipulates phgt ali groups are\ét least as big as some threshold
> 1. Thggé particular queries ?re the ones which are singled out

as posgibly leading to compromise due to the threat of tracker
. ‘

attacks. . .

-

Query attribute restrictiop prevents an attributs not used in
partitioning the database from being used in.a formula C./ For
example, . if Age, an -attribute of a database, was not used to
partition that database then a guery such as "How many reéords

-

satzgfy Age = 15-29" would be restricted.
. |
An’ elementary k-sét is defined as the set of' records
correspohhing to a characteristic formula wﬁicH specifies values
for k aitferent atgfibutes: For example, C = (Stﬁtus = Student)
corresponds to an elementa;y l-set.

-
Given the above approach to responcihg, Schlorer . (29]
demeonstrates that the amount of inférmation loss is high. That‘
is, accor&ing to his definition of information loss, the number
of restricted queries whose formulas specifying elementary
K~sets, for k = 0‘.. M, is‘lérge. Here, M 1is the number of
| attributes used in the partitioning. To daemonstrate this

consider the following.

&
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o
There exists a relationsnip between tne number of elementary
{
\
M-set queries whose duery sets are of size one (which are

themselves restricted) and the, number of elementary l-set queries

.
n

]
which are restricted. @ An elementary l-set is not necessarily

mpty and the information corresponding to these sets may not

aa to compromise. The restriction of these gqueries therefore

does not enhance the security of the system,-however, due to the

[N
3

N
rigidity of the response , strategy, information is lost

unnecessarily.

One way of attempting to correct this situation is to

increase the density of the database in such a way that there are

M
fewer M~sets of size one., Given SM = d,, di is the size of

i=1
the ith domain, N is the number of records in the database, sM/N

is inversely proportional to the density of the database. The
density 1is inversely proportiocnal to the nunber of elementary

M~-sets of size one. Therefore, if- a small sM/N, i.e;, a denser
+
database, can be achieved, this should lead to fewer elementary

M-sets of size 1 and nence less information loss.

One way of decreasing Sy/N is to reduce the size' of Spi

chcose less attributes on which to partition. Buﬁ this leads to
/
still more information losg, not due to query restriction, but

rather to the query formulation property that no attribute can be
used in a query if it is not usea in partitioning, even if the

resulting query aoes not lead to compromise.

»

.
3

|
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The other oopvious
AN

way to decrease SM/N is to increase N by
introducing aummy records.
i

As Schlorer points out,° although it
is possiblé}xp inject these dummy records in such a way that the

error in the resulting average query response has zero bias,

" the

/

same is not true for responses to frequency gqueries.

In other words, a significant amount of information lo§s is
pouna to be present when a user 1is operating under Schlorer's
response strategy. The drawbacks are two fold; while information
not contributing to compromise is inhibited, queries which
lead

could
to compromise, i.e., queries with empty query sets are not,
A user can obtain negative disclosure because the system does
respond to these queries. '
\ Three things

should be included in a new response strategy:

1) true responses should not be given to gqueries of size 0
in order

or 1
to prevent negative as well as positive compromise, 2)

all queries should be responuaed to, whether the response

is the
true response or a perturbed one, and 3) all attributes .should be
allowed to be used in a characteristic formula.

.

Schlorer's response strateqgy for a partitioned
-
basea on two

database is
rules: 1) an answer to a query is given only when
the query set size is a union of groups, and 2) only attributes
used in the partitio&ing can be gueried Qni These rules cause a
significant amountlof information loss when the strategy 1is
applied to a hierarchically partitioned aatabase. This is
because the only queries which will result in a query set being
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\
the union of groups are thosg which specify attributes for which
(P

a successful split occured for -every son present at the time of
the split. The chance of this happening i; small and therefore
the proportion of queries available to the-aﬁbr is also limited.
Also, the“ pierarchical partitoning strategy does not guarantee
that ail attributes will be used in the partitioning process, so

the number of attributes allowed on which to query could be

small.

4.3 Extending Glaser's Response Stratégy

Glaser's response strategy, outlined‘in Chapter 2, results in
less information loss where only queries with set sizes of 0 are
unanswerable. It is the aim here to establish an extension to
Glaser's response strategy which will take ;nﬁo account queries
with empty query sets. If a strategy can be found which provides
a perturbed response to such queries while preserving the

accuracy of the system, then the revised stgategy will be

completely free from information loss. -
\

i
1

Two kinds of queries could result in an empty set of records
satisfying it. One type is the invalid query. An invalid query
is one which violates the database integyrity rules. For example
a query which asks for information about "males who are pregnant"
in most applications would be considerea an invalid query, and
there would be no records satisfying it. A strategy {s neaded to

\\

distinguish between valid and invalid queries after it is ‘found

that tne query set is empty. It is enough to check only those

<
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gueries which are found to have empty query sets because if the
guery set is not empty then it fg&%ows that tne gquery 1is valid.
When an invalid query is detectedz instead of supplying the user
with a pertrubed statistic, as this could 1leave the user with
serious doubts as to the reliability of the system, the system
will respond with " query not meaningful *. This 1is equivalent
to letting the user know that there are no records satisfying the
query. Because a response is given, there is no information léss
in the sense of guery restriction. At the same time though, the
security of the system is not jeopardised because a user should
know the scope of the database and intuitively be able to
recognize an invlaid query by himself. Information is not gained

in terms of compromising sensitive information.

The second type of empty set guery is one which is meaningful
despite the fact that the query set size is 0. These are a
subset of the valid queries. 1In order to eliminate information

loss all together, valid queries with 0 set size should be

r r
responded to, but because I C, , L n., and r all = 0,
i=1 ! i=1 !
Glaser's usual response strategies used for non empty valid

gueries 1is not applicable. The next section gives some sample
databases. For each, a,list of integrity rules were ‘l‘hed to
demonstrate that the ability exists to detect invalia queries.
Section 4.3.2 assumes this ability to distinguish between invalid
and valid queries and proceeaes to present strategies for

responding to valid gueries with empty query sets.

e e |
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4.3.1 Detecting Invalid Queries

The approach taken here is based On semantic integrity rule-

" enforcement. A query is invalid if it breaks at least one of the

integrity rules associated with the database. An integrity rule
has the form: if expression 1 then expression 2. Any query which
asks for the intersection of records satisfying expression 1 with
those satisfying the compliment of éxpression 2 is invalid. A
rule preventing a quggy'asking for all pregnant males could be if

Sex = Male then Status # Pregnant.

The following examples 1list poSsible\ integrity rules for
three different applications; a studenE aétabase, a company
personnel database, and a hospital database. The environments
are described by the attributes and corresponding values.

STUDENT DATABASE

Attribute Vvalue

Status Full
Part
Indep

Level Ugrad
Diploma
Mastegs
Phd \

Year ' . 1,2, e 4O
* Credits Earned 3,6,9, ... ,lSOW’
Credits Registered For i 3[6. P 1
Faculty Arts & Sci

Eng
Comm

~

RPN
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Rule
Rule
Rule
Rule

Rule

Rule
Rule
Rule
Rule
Rule

A 4 oo 41, Aohatir 13w
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Major

Sex
Age

Citizenshipq

Bayroll .

- Salary

Minor

Math

Comp Sci

Elec Eng
Build Sci '
Manag ,
Account
Finance

Male
Femqle

20,30, ... ,60
cdn

Landed Imm
Other

Yes
No

4,000, 7,000, 10,000,
.e. 16,000, Null

Math.

. Comp Sci

Marketing
Null

INTEGRITY RULES FOR STUDENT DATABASE

o> W=

Elec Eng)

w
(23

Finance)

=OCuad

[

P13

1f Status = Part then Credits Registered For
if Status = Full then Credits Registered For
If Faculty = Arts & Sci then Major = Math

If Faculty = Eng then Major in (Comp Sci, Build Eng,

If’ Faculty = Comm then

6

<
> 9

Major in (Manag, Account,

If Major = Math then Minor # Math

If Major = Comp Sci then Minor # Comp Sci
If Citizenship = Other then Status = Full
If Payroll = No then Salary = Null

0 : If Level # Ugrad then Minor = Null'

,._“..,_..,.._.....

PR
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COMPANY PERSONNEL DATABASE .

Attribute . value

Department . - Sales
Computing
‘ h Shipping/Receiving, .
‘ : ©  Accounts
| \ : Personnel !
{ \
. Position . ' Manager
| Salesman
¢ - Programmer
i . ' ) : Analyst
. Shipper
Receiver
\ ‘ . Accountant
Receptionist '
Tranee
Operator
7 Secretary
Personnel Category *  Part/Temp
. Part/Perm
Full/Temp :
Full/Perm s
. Years of Service l1...°'50
Yearly Salary ' 7,000 ... 100,000
Commission . ‘ Null, 1,000,
- ... 50,000
—"7 ‘ .
\ INTE@GRITY RULES FOR COMPANY PERSONNEL DATABASE , - '
Rule 1 : 1f Department = Sales then Position in (Manager, °
. Salesman, Secretary)
Rule 2 : If Department = Computing then Position in
{(Programmer, Analyst, Tranee, Operator)
R Rule 3 : I1f Department = Shipping/Receiving then Position in
' (Shipper, Receiver)
Rule 4 : If Department = Accounts then Position in
(Accountant, Secretary)
Rule 5 : If Department = Personnel then Position in (Manager,
Receptionist, Secretary) !
Rule 6 : I1f Position = Tranee then Years of Service < 1 ' !
Rule 7 : If Position ¥ Salesman then Commission = Null ‘
Rule 8 : If Position = Manager then Salary > 50,000
Rule 9 : '

_If Position = Tranee then Salary =~ 7,000

v
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Rule 10

¢ _Rulee 11
Rule 12

Rule

Rule
Rule

Rule

Rule

Rule

Rule

Status

I1f Personnel Catagory = (Part/Temp or Part/Perm) the
B Saldry < 10,004
If Position = Receptionist then Salary < 15,000
If Position # Manager then Salary < 50,000

HOSPITAL POPULATION DATABASE

Attrxibute

Specifics

43

[+

Y

¢ 5

vValue

Doctor Patient /
Staff /

Cardiology //
Neurology

Gynecology
Cardiac
Neural

¢ Psychiatric
Urology
Pediatrics
Nurse
Orderly
Intern
Intensive Care
Recovery
Maternity

Male
Female

0 ... 100

INTEGRITY RULES FOR HOSPITAL DATABASE v

If Status = Doctor then
Neurology, Gynecology, Psychiatry, Pediatrics)
If Status = Doctor then Age > 25

If Status =

Patient

4

Specifics in (Cardiology,

then™ Specifics in (Cardiac,

Neural, Psyciatric, Intensive Care, Maternity,

Recovery)

If Status = Staff then Spec1flcs in (Nurse, Orderly,

Intern,

Recept

Technichian)
If Status = Staff then Age > 18

If Status =

Patient

ionist, Operator, Lab

and~ sSpecifics = Maternlty or

Gynecology then Sex = Female
If Status = Patient and Specifics = Pediatrics then

Age < 13

Gt .
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4.3.2 Responding To Valid Empty Set Queries

The response strategies presented will be 1limited to

' responses to frequency queries and responses to average queries.

T -

Given s = § of groups in the partition, ana N/s = average

group size, order tne sizes of groups such that n; > ni_qe where

ni = size of ith group. Choose smallest ny such that (s * ni) >

N, that 1is, choose the smallest group size greater than the

average. Now let n = n, for this i. For all frequency queries

with O set size, the perturbed frequency will be 1/ (n*s) setting

L
X ¢; ana r to 1. Let C bc any query whose gquery set size is
i=1l ¥

~exactly 1, ana the record satisfying C is containea in a group of

size n. Then, from the response strategy, Pfreq(C) = (l/n *

1/s). But this is also the perturped ffrequency for any query of
4

size 0. In this way 1/(s * n) will be the perturbed statistic

for two different classes of queries. This‘duplication is enough

to discourage the user from inferring that the true count of the
formula C 1is O when the perturbea frequency Pfreq(C) is 1/(p *

s).

The absolute error in this response is |1/(n * g) - 0| = 1/(n

* s} © 1/N which is small when N is large.

Responaing to aveérage queries is more difficult to do without
changing the meaning of tne query. The strategy 1s based on

modifying the query -using the nature of the attributes present in
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the query. - | !
Query structure: The query/Eb be maodifiea has the structure

1

fvg(C,D) where Avg = aGerage, C = chiractefistic formula or set
4 !
of records Eatisfying a characteristic!formula which in this case

is the empty set, ana D is the data attribute over which the

average will pe calculated. \

For example, the average salary of female PHD stuaents would

be written as Avg{Sex = Female and Level = PHD,Salary).

. . T~

Furthermore, for t¥® time being, operators present in C will
be limited to the single operator "AND". Queries including "NOT"
and "OR" operators will be considered later. 1In general, C can
be represented as {A, = v. v. AND ... AND A_ = v. }.

e ] 32 k Ik
Note that -from the integrity constraints, since C contains only

AND Az =

the AND operator every Ai specified in C is specified only once.

Dependency matrix: Although any attribute may be specified in
}
C, only a subset of the attributes of the system qualify as

candidates for D. Call the attributes of this sﬁbset the aqata

)

The dependency matrix is formed 7y concatenating the
attributes with the data attributes. A cel} in the dependency
matrix corresponds to an (attribute,data attribute) pair, (A,D)
pair for short. Each cell can have one of three values, no, yes,
or partial, depending on the felationsnip between the attributi
and the data attribute involved. Dep(A,D) = no implies that for

)




any possible recora, the value in the D*? field and the value in
the Ath field will be indepenqent‘ﬁd} all values of A. Dep (A,D)
= yes implies that tne value in the ptP field of a record depends

on the value in the ath field. Dep(A,D) = partial implies that

the value in the Dth field of a record determines a propef”subset
of the values of A which can occur in the Ath  field of that
recorac without changing the meaning of that record with respect

to D.

s

Table 4.1 is an example of a dependency table for the Student

Database where the data attributes are Credits Earned, Credits

0

Registered For, Age, and Salary.

The infotﬁation contained in the dependency table is wvital

wnhen modifying a query in order tqQ ensure that the new query is

semantically similar to the original gquery. .

Similarity operator: Consider A, an attribute specified in C
such that v is the wvalue of A specified and D is the data

~

attribute. Let ~ be an operator such that if v, i5 a value in

the domain of A, Va A v, then v

[}

A VvV ifcC

A) aescribe the same relative environment with respect

(A = v) and C' = (A =
vVor A=V
to D. i.e. we expect that the true answer to the query Avgéf,D)

would be close or equal to the true answer to Avg(C',D) if both C

ana C' were not empty set queries. Call ‘the similarity

operator.

Partition Function: For all pairs QQ,D) such that dep(A,Q) =

partial, Parition(A,D) aefines a partitioning of the values of A

6
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Table 4.1 Depenaency Table; Stucent Database
Credits Credits Age Salary
garned Registered . .
. ) For
Status no ‘yes ' no yes
LeyéiP no yes . yes yes
R ' Year yes no yes, yes
'f Credits - ) .
Earned - no e yes vyes
o } .
Credits )
"Registered ’ -
) For no - no - no' y
! Major no no no partial
Minor no no no no
N Faculty no no’ no yes
Sex no * no no no
‘Age yes no - no
Citizen- . ) C
) ship no yes no no
Payroll no no Jqo yes
Salary yes no no -"

into disjoint groups, {giJ, such that if vy and \Zy a}e in the

. domain of A and are elements of the qam! group of partitioﬁ(A,D)

tnen v. °

mixing

to the -

(

i

opérator wheneyer dep(A,D) = partial.

)

1 vy with respect to D, In other words the set of values
- : T

upf the qomain'of A are partitioned into groups accordin

et
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The followingiexample-of a partition list for the Student

~

Datapase illustrates tnis.' From Table 4.1, it is /true that ™ .

i
— e

1 the .

~.

(Major,salary) = partial; this is the -only (A,D) pair in
table with this  property. Define Partition(Major,Salary).g1 =

{Math}, Partition(Major,Salary‘).g2 = {Comp Sci, Elec Eng, Builad
\ ' ;

Sci}, and Partition(Major,Sa;ary).93 = {Manag, Account,.Finance}

-~ ~ ~

where (Comp Sci Elec Eng Build Sc¢i) and (Manag Account

Finance), ana {91,92,93} partition attribute Major. .

The interpretation of this is that the value in the salary
fiela is partitally aependent on the value in the major -field.-
&he assumption here 1is that the salary of two stuaents in the
same faculty, say Edg, have a gooa ¢hance of being equal despite

* the fact that their respective majors, say Comp Sci and Build. Sci

. . <mayidiffer.

Attribute set structure: Refering back to the structure of C,

let Zc = {Al,’AZ,l..,Ak} b?‘the set of all attributes specified ‘

.

« in C. For each data attribute D, 2. can be partitioned into

. three groups; ZCI, the set of attributes Ai such that dep(Ai,D) =

)

ﬁOr ZCII, the set of attriputes Aj such that dep(Aj,D) = partia;,
and icIII, the set of attribputes A, such that dep(A_,D) = yes.

Note that Zc = ch + zCII + ZCIII.

Again the Student Database will be used to make this 'point
. ‘ . ¢Clear, The attr}butes are catagorized first for the data
{

attribute Salary and secona for the data attribute Age.
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Without consiaering any particular formula C, the attributes
are catayorjzed as follows for data attribute = Salary. ZI type
attriputes = {Creaits Registered For, Minor, Sex, Citizenship,

Age}, 2II type attributes = ({Major}, 2ZIII type attributes =

>
<

{status, Level, Year, Credits Earned, Faculty, Payroll}.

: A different~ data attribute woula specify -a different
breakdown of the attributes. For example, the classification
with respect to Age is 2I type attributes = {status,’ Credits

Registered For, Major, Minor, Faculty, Sex, Citizenship, Payroll,

Salary}, ZII type attributes = {}; and 2III type attributes =

{Level, Year, Credits Earned}. For some¢ formula C and data’

attribute D ZC n 2I = ZCI, ZC n 211 = ZCII, and 2 2III =

c N
ZCIII..

Query types: the set of possiple queries of the form
specified above can Be catago;ized into two classeg; classl' =
queries with Z.I y %4 II # {} and class2 = queries with z2_I y Z,II

C
= {}. Define "extend C to incluge v of A," as follows: if C =

(... AND Ai v. AND ...) then after extending C to include v

i

(... AND (Ai = Vji OR Ai = v) AND ...).

Extending C to include every value of Ai is equivalent to

-

ofﬂAi we get C

dropping Ai from C.

"

For example, given C = (Year = 1 and Status = Indep) where Ai

= étatus then vj. = Indep, extending C to include v = Part yields
i

C' = (Year = 1 AND (Status = Indep OR Part)). Extending C over

all values of status gives C" = (Year = 1 AND (Status = Indep OR

b e R 0

o
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Part OR Full )) = all year 1l stuuents. Therefore C" is the same

as (}%ar = 1).

’

Moaifying class I queries: let Avg(C,D) be a class I query.

X, = {} and ZoI U 2 ID A {}. Find PAvg(C;D), the perturbed
average,‘based on a set of k moaifiea queries Avg(Ci,D) where the
C and Ci are semanticallQ similar for D, for all i = 1 to k, k =
|ZCI v ZCIII. Ci is obtainea from C by dropping Ay from C if A,

is in Z.I or extending C to include all v in Partition(a;,D).g

(where v. is in Partition (A;,D).g) when A. 1is in 2.11I.
Ji K 1 . b C
PAvg (C,D) = § AVg(Ci,D)/k. Let C = (Citizen = Can AND Major =
i=1
Comp Sci, D = Salary). 2.1 = ({citizen}, 2.II = {Major}.
Avg (C1,D) = average (Major = Comp Sci,Salary), Avg(ci,D) .=

average (Citizen = Cdn AND (Major = Comp Sci OR Major = Elec Eng
OR ... OR Major = Build Sci),Salary). PAvg(C,D) = [Avg(Ci,D) +

Avg (C},D)1/2.

Modifying class 2 gqueries: now let Avg(C,D) be a class 2
query. That is 2.I v 2,II = {}. Mouifying C by extending or
dropping any attribute in ZC will, in this case, affect the
meaning of the query. Therefore, to average out the error over
all the attributes iﬁ'ZC, the following scheme is ﬁsea: drop‘each

attribute in Z, one at a time to obtain K different C{. again

assuming there are k attributes in Z.. Avg(Ci,D) is calculated

C
kK
and PAvg (C,D) = [ Avg(Ci,d) / k as for class 1 gqueries. The
i=1

‘difference between the perturbed response of class 1 queries and

tnat of class 2 gqueries is that the class 1 response gives an

inaication ot reality whereas the class 2 response is calculated

s sl ™ =
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in order to come up with a number based on the attributes present

in the query, but aoes not necessarily give any information about
)

reality.

If at any stage in calculating PAvg for either  class of
‘
guery, a Ci is produced which is empty then the class of Ci is
getermined ana a series of C? are produced according to the

appropriate * algorithm, until a PAvg(Ci,D) is found. This value

is used in place of Avg(C},D).

An example of a class 1 query is Avg (Sex = Female AND Major
bl ~
= Comp Sci AND Status = Full,Salary). I, = {sex, Major, Status},

cIl = {Major}, and Z.III = |{status}. Since {2.I u

ZCI = {Sex}, 2 c C

ZoI1} # {}, C is a class I query.

The ﬂpdification of Avg(C,D) is done as follows. Cl = (Major
= Comp Sci and Status = Full). Note that Sex is dropped from C.
,Cz = (S5ex = Female AND (Major = Comp Sci OR Elec Eng OR Build
Sci) AND Status = Full). Note that Comp Sci ~ {Elec Eng, Build
Sci} because Partition(Major,Salary).g, = {Comp Sci, Elec Eng,

Build Sci}. Therefore Avg(C,D) = (Avg (Cy,D) + Avg(C,,D))/2.

An example of a class 2 guery is Avy(C,D) where D = Age and C

= (Level = Masters ana Year = 2). Z, = {Level, Year}, 2ol = {1,

2oII = {}, and 2,I1I = {Level, Year}. sSince {2,I v 2.II} = ({}

this is a type II query.

The moaifided query is found as follows. Cl = (Year = 2) and

Cz = (Level = Masters). Therefor Avg(C,D) g (Avg(Cl,D) +

QN
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Avg (C,,D))/2.

Thnis takes care of gueries witn C of the form Ay = vy AND
1
«es AND Ak = vj ). The final issue to be considered is allowing
S
for OrR and NOT operators. This reguires some normalization

procedures to reduce C to its disjunctive normal-form and replace
all NOT operations with an appropriate sequence of OR operations.

C in this form can be expressed as Cl OR cz'oR ... OR Ck where

Cijr i = 1 to k is a conjuction of attribute values of the form
consiadered initially. C is empty iff Cy is empty for all i = 1
to k. Modifying any C; woula be sufficient to force a non empty

query, but for the sake of consistency each C, must be modified.

PAvg(Ci,D)/k.

K
PAvg (C,D) = g
' i=1 ‘

Analysis: the time to fina 2.1, 2T, GpIII is constant for

each element of i To find C' the worst case happens'wh&n Z,11

C
= I This is because although modfying using members of ZCI or

2,111 requires constant time, modifying using members gf 211 does

not, For all A in Z-II, Partition(A,D) must be accessed and then

the group g found such that v is in g where v is the value

specified by A in C. The worst case for finaing g happens when

every value of A is checked before the group which contains v |is
4

founa. This implies a sequential search. If this is the case

for all A in 2. then the work to find C': would be = |2 *

cl

maxdomain + |2.| * work to calculate PAvyg(C',D) by Glaser's

response strategy. '

!
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4.4 Provability That an Empty Query is Valid

The extra work required to respond to valid empty queries can
be Jjustified "if gheir propability of occurrence is small. This

probability can b® calculated for a given database as follows.

Define a cell as an M-tuple, where the i th entry in the

M-tuple 1s some value from the domain of the i attribute.

Given di' the size of the domain of the itn attribute, there are

M

I di unigue M-tuples or cells. Every record in the database
i=1

specifies exactly one value for eacn attribute and therefore can
pbe associated with a single cell. Consider a cell non empty if

at least one record is associated with it and empty otherwise.

Every formula aefines a union of one or more cells. For
example, let Z. = set of attributes specified by formula C. If C

is of tne form A, = vil AND A, = vi2 ... AND Ay = viM then call
C an elementary formula with |ZC| = M. Corresponding to this

elementary query is the M-tuple (v, ,v. , ... v, ), 1i.e. C
T R In
specifies one cell. ‘

Not all formula have IZCI = M. The number of cells specified

M
by any formula C is (H di /I d.) * 1

(V. ;| where V
1=1 Aiez. 3 B.ez, C'I
-zh C C

C,3
v ! J
is the set of values of the j attribute OR'ed in C, If C has

Y

only the "AND" operator then the number of cells specified by C =

M
(I a,/ I d.) since |V. .| = 1l for all A. in Z..
is) ¥ Ajen, €3 i c

B sasssmr i s e =
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Let p pe the numper of cells specified by C, 121 the numoer of

valia cells, ana p, the number of invalia cells. Then p =

= pl +

Pg. Proo([C = empty | C is valid] = (Prob(cell = empty | cell is
. Pl o : P2 :

valid]) * (Prob[cell = empty | cell'is invalid]) . It is

known that Prob{cell = empty | cell is invalid] = 1 because by

definition, no records can satisfy an 1invalid M-tuple and

therefore Prob{C=empty | C is valia ] = (Prob{cell = empty | cell
p
is valida]l) l. It is now necessary to find Proo[cell = empty |

cell is valid] ana Pq-

4.4.1 Prob[cell = empty | cell Is valid]

M
Let g = total number of cells, i.e. g = ]

°i' gl = total
i=1

numpber of valid cells, ¢2 = total number of invalid cells; ¢ = ol

+ g2.

Prob[cell = empty | cell is valid] = % empty valid cells / #
valia cells, Let f(ol) = § of empty valid cells. f£(ol) = # valid

cells - # non empty valid cells. If § = # non empty valid cells,

then 8§ can be found using the algorithm

l. &6 := 0g

2. For all records r;, i=l..N do )

if L; # £ for all j = 1 to i-1
then § = § + 1.

the notation r; refers to the M-tuple representingy record 1i.

Tnerefore 1< & < N and ¢ depends on both the density and the

Y
distribution of values in the database.

PRI RS
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To find ¢l, first fina ¢2; the number of invalid cells, using

the principle of inclusion on the set of integrity rules. With

every integrity rule I, there corresponas an invalid formula
which covers all possiple violations of that rule. Let E be a
function which takes any formula and returns the set of cells

associatea with that formula.
r -
g2 = [ IE(Qi)| -z | E(Q; AND Q, )+ ... (=)
i=1 lii <12<r 1 2

|E(Q, AND Q, AND ... AND Q)|

r + 1

where r = the numpber of integrity rules. As was noted earlier,

M
le(Q)} = (g d;/ 1 dj) * I |v
1=1 AjeZQ AjELQ

Q.

To find IE(Qi AND Qj)|, note that if A is in 2, and A  is

Q; k

h

in being the k" attribute, ana {v = {} then

20, Bk Q; .k “Vuj.k}
E(Q., AND .) = {}. 1If {v nv } # {} then |V | =
1 J erk erk Ql n lek

nv ‘

Vo ok Vo, kl

The same 1is true for the intersection of more then two sets

of cells.

From ¢ and 02, gl is founa to be o - ¢2. From this, f (gl) =
gl - 4 can pe determined ana Prob{cell = empty| cell is valid] =

f(gl)/gl is solvea. It remains to find Py.

First P, will be found by the princple of inclusion and
exclusion similar to the way that g2 was founa, For any gquery Q
corresponaing to an lntegrity rule I, Q AND C specifies a subset
of the cells that C alone specifies. More specifically, Q AND C

specifies a subset of the P, invalia cells that C specifies. If

-

.
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E(C) = the set of invalia cells specxfxed by C, then E(C) = Union

E(C AND ¢;) for i = 1 to r. Therefore p, = |E(C)| = g |E(C AND

el - |E(C AND Q; AND @; )| ... (=1) r+l* |E(C AND' Q,
: 1 21

1<i.<i.<r
) -"1 " 2w
AND Q, AND.... AND4QI)|. Hence, p; = P ~ P,.
Thexprbbability that C is empty given C is valid is ((cl -
P - . (]

For example,let C = (Al‘= vy OR Vaq Ok v5) AND (A2 = v, OR v

2 3)

AND (A3=V2)),M=5, dl=6, d2=3' d3=5, d4=2' ds = 2.

c,1 = prvaevs)e Yy = (vpev3)y Vo 53 = (V5).
I3 5 N
Therefore |E(C)| = ([ d; / 1 d.) * it A

i=1 * " §e1,2,3 3 j=1,2,3 °*3
[(6*3%5%2%2)/ (6%3%5)] * (3*2*1) = 24. Let Q; = (A} = vy OR v3),

zc = (Aerz 7A3)r \"

Qp = ((Ay = v3) AND (A} = v,)), and Q3 = ((A] = v, OR v ) AND (A4

= Vv3)). Then |E(Q; AND Q,)| = 0 since le’l = {v,,v;} and VQZJl

=5{v4} and lv QL n Vuz,l‘ = 0. similarily [E(Q; AND Q3)| =
* C o
(f,ld / gl,l 3 dj) Yo, AND 0y,3° Note that Vo, anp 05,1 {vyh.

Therefore |E(Ql AND Q) | ‘= ((6%*3%*5%2%2) /(6*5)) = 12,

L

Consider the féilowing subset of the student database with a

subset of rules ana correspondiny queries.

i s ko R i s o s 5§ Amtar s bttt £ o e

PP
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DATABASE .
#  Attrioute ¢ - value domain .
. size ’
I Status 1 Full 3 4
- 2 Part
3 Indep
2 Credits ' 1 3 10 -
Registerea 2 6
For ces oo -
10 30
3 " Major 1 Math 7 :
2 Comp Sci
3 Elec Eng
4 Buila Sci
5 Manag
6 . Account
7 -~ Finance ‘
4 Faculty 1 Arts&Sci 3
2 Eng
3 Comm
. 5 Sex ol Male 2
2 Female
6 Citizenship 1 Can 3
2 Landed Im
* 3 Other
n \ i
" RULES
] -
‘., Rule l : If status = Part then Credits Registered For < 6.
, - * Ql : (Statys = Part) AND (Credits Registered For = 9 OR 12 OR ... *
! A OR 30)- ‘
’ ' . . . \
le = {AI'AZ} - -\
Vo 1 = vl c
S T S A AT U R '
' *. ' Therefore |E(Q))]| = (7%3*2*3)(8)
v \ ,‘ P ) \ .. ,
\ z \\ L ;
M [ \ i 3 ‘1 .

eer e tos i




58

o
-~ NﬂRule 2 3 If Status = Full then Creaits Registerea For > 9
Q, : (Status = Full) AND (Creaits Registered For = 3 OR 6)
. 2y, = 1A1sa,]

Yy,,1 = vl
Vo,,2 = tvyimol .
Therefore IB(Q2)| = (T*3%*2%3) (2)

§ A \ . ~

_ Rule 3 : If Faculty = gng then Major in (Comp Sc}, Elec Eng,

_ Build sci) - \

‘ N~
Q3 : (Faculty = Eng) AND (Major = Math OR Manag OR Financé OR
Account) ‘
B, = {aginql | N
Vu3,3 = {vyvgivgrvyl .
Vog,4 = vl . '
Therefore |E(Q,)| = (3*L0*2+%3) (4) ‘ \

» Rule 4 : If Faculty = Arts & Sci then Mdjor = Math
Q : (Fdgulty = Arts & Sci) AND (Majo? = Comp Sci OR Elec Eng OR
Build Sci OR Manag OR Account OR Finance) ,
, Z“4 = {A3,A4}

N

Vo,,3 = [Varvar vaivsiveivgl

Co Yo .4 " tvy} .. ‘
B Therefore |E(Q,)| = (3*10*2*3) (6) ¢

. { \ .
Rule 5  : If Faculty = Comm then Major‘-(Mange or Finance or
. v C ‘
Account

v b ety te e Y PR . . wwr 4 ey




59

~

—

Comm) ana (Major = Matn or Comp Sci or Elec Eng

1

QS*’ (Faculty
or Build Sci) |

Gy, = Hagy)

Vo ,3 = vyl

Vu5,4 = {vpvgevaivgl , . : .
Therefore [E(Q.)| (3*10%2*3) (4)

.

Calculating IE(Qi AND Qj)| we get E(Q; AND Q,) = {} since A,

e le and b, € zQ2 and (le'z n Vuz,z)‘= {}. . For E(Q) AND @) we

see that Ql AND @3 = (Status = Part) AND (Credits Registered For

= 9 OR 12 OR ... OR 30) AND (Faculty = Eng) AND (Major = Math OR

Manag OR Finance OR Account). ZQl AND Qg = {Al,Az,A3,A4}. VQl
AND Q,,1 ~ tvahy Yo, mp Qg,2 " {vgivg «ov Vigh Ya, A Qg3

{v'l,vs, V6-'V7}’ ana VQl AND QB'4= {vz}.

Qy) | = (2%3) (8%4) = 192.

In this way all sets E(Qi AND Qj AND (. ) can be . found
- M
yielding 02 and o1 = I d; - g2. To find p, take the
i=1
intersection of each Qi and C to find Poe the number of invalid

cells specified by C. If C = (Sex = Female) AND (Faculty = Eng)
then C AND Q, = (Sex = Female) AND (Faculty = Eng) AND (Status =
Part) AND (Credits Registered For = 9 OR 12 OR ... OR 30). ZQ

1

= {a;a,), 3 = {pgeagl so Zg, anp ¢ {a;Ay, A ACL le AND

c'l = tvz}' VQl AND Clz = {v3 ts . Vlo}' le AND C'4 = {vz}l and
VQl AND C,5 = {v&} Therefore the number of cells specified by

Q, AND C = (I a, / .1 d;) - % V
1 ) ! j=1,2,4,5 3 . 'Qy AND C,2

Therefore |E(Q, AND.

b e
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. .
(3¥10*7*342%3) /(3X10%3%2) * g,

¢

“ . ' Repeat this to find |E(Q; AND C)I for Q AND C for all i
{ integrity rules ana find E(Q; AND Q AND C) for all i,j such that
.]__<_1<J:r and so on. From this ¥, is obtained angd Py follows

i immediately.

PaR

From table(4.2) below, the behavior of this probability can J

‘be observea. It decreases as tne uniformity of the adaistribution

&

i 1 o

of records increases -and as the density of the database

. A
; incceases.
!
| _ " . , 5
B ¢ Table 4.2 Behavior of p = Proo([C=empty | C=valid] for
Increasinq.pl and Varying Param‘\aters; Distributién, N, and ¢,
M a ol N ) Distribution Py p
o ' K;\
1 - Cr
o 5 1024 560 300 226 Unifotm 1 0.60 ‘ ?
. ) ¢ 2 0.36 S
3 . 3‘4 0‘ 21 . M i‘
i ) 5-560 0.00 |
h ‘ [
% Normal - 1-10 0.99 -
. 11-22 0.89 _ Lo~
. 23-35 0.78
‘ ' 36-50 0. 68
" ) 51-68 0.58 ¢

8 69-90  0.48
91-119 0.38

iy o e e

™~ . ] 120-162 0.27 - .
'+ 163-243  0.17 B
B : " 244-560 0.00 >
{ LT ‘ . - Exponential, 1%10 0.99
| ' ‘ ‘ 11-22 0.89
¢ 23-35 0.78

36-50 ° 0.68

o
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. N
51-88  0.58
69-90 0. 48
a - 91-119  0.38
- © 120-162  0.27
. : 163-243  0.17
v ' 244-560  0.00
5 1024 560 100 -89  Uniform 1 0.84
: + ~ 2 0.71
A} P - ’ 3'4 0.59
' : 5,6 0.42
: - . 7-9 0.30
v _ ' 1o-l14 0,18
' . : 15-560 " 0.00
300 1 0. 60
: ‘ : 2 ' 0.36
7~ 3'4 ’ 0-21
- LY 0.08
‘ 6-5600. 00
\
500 1 0.2
2 0.17
3 0.07
4-560  0.00 -
5. 1024 560 300 226 Uniform 1 0.60 -
2 0.36
+ 3'4 ' 0 21
5-560  0.00,
.3 125 68 66 1 - 0.03
' 2-68 © . 0.00 .
3 24 13 13 1-13 0.00
’ 1.. -\' 8 N .

4.4.2 Consistency of responses’

The following. . example will point- out the type of
inconsistencies to be expected from. such a response strategy.
‘e

Given Q = mAVg(Séx < Female AND Level = PHD AND Faculty =

Eng,Salary), where C ‘- (Scx = Female AND Level = PHD AND . Faculty’

‘- ENg) 89ecifres no tecorot, Q must be 0. Also known is the fact
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that Cl = (Sex = Female AND Level = PHD AND Faculty = Eng AND

Sﬁatus

Fulltime), C2 = (Sex = Female AND Level = PHD AND

Faculty Eng AND Status Parttime), and”C3 = (Sex = Female AND

Level = PHD AND Faculty Eng AND Status = Indep) all spécify‘no
records and Fregq (Sex = Female AND Level\= PHD AND Faculty = Eng)
must be equal to Freq(Cl) ;V?req(cz) + Freq(C3). But since all
the characteristic formulas specify U records, the perturbed
frequency will be 1/s*n for each of them. This leaves the
situation wnere 1l/s*n = 1/s*n + 1/s*n + 1/s*n, hence an
inconsistent situation. Similarily the perturbea average can be

seen to be just as inconsistent.

What are.the dangers of using such an obviously inconsistent

system? Since in our example the user can know that the

frequency of (Sex = Female AND Level = PHD AND Faculty = Eng),

1/s*n .is the perturbed sﬁaﬁis;ic, could be 0, 1/N, 2/N, then the
response to an average query is based on a small population and
conclusions drawn from it shoulc not be considered as accurate.
A valid user probably would not use the average in this case
since he knows it is basea on a small population. The accuracy
of the data base is not necessarily violated by the information
because if. there are no reéords satisfying Female and PHD and
Eng, it cannot pe concluaed that the salary.of these non existent
records 1is lower or.higher on the average then those of Male and

PHD and Eng.

The integrity of the aatabase suffers hq. small measure 1in

this situation due Ité the inconsistencies mentioned above.

PR
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However, this shoula not affect the usefulness of '‘the system
because the user must'be aware of the fact that empty gqueries are
responaéd to as 1/s*n for ffequency queries and a response based
upon tne semantics of the database ana gquery for average queries.
Tnen these inconsistencies snould come as no surprize. On the
other hand, the.purpose of pegturoing the statistics at all, is
for tne reason that in the event a user is trying to compromise
the system, these inconsistencies appearing for sensitive queries
(whose set size is 0) would be enough to block his efforts.
, ’ ‘ &
In the case of frequency queries, a valid empty set query can
be answered as follows: Pfreq(C) = 1/sn where n is the size of
the smallest group bigger than the average group of size N/s. If
the partition is a "gooa" partition, the size of the groups
should not vary too much from the value of N/g. Therefore, most
frequency quergies of size 1 will responded to with 1/sn,
preventing comptomiséf A user on receiving a responsélfor pfreq
= 1/sn will not know if the true frequency is 0 or 1/N. The

accuracy of the response, all though’not exact, is sufficient for

statistical summaries.

- /

SN~
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CHAPTER 5

/ PROBABILISTIC TRACKER ATTACKS

!

- 5.1, Introduction )

Given an environment where true responses are given to
gueries and query set sizes are restricted to a certain range,
15chlorer [29] and Denning ([14] cgevelopea the iuea of track;rs as
| N a means of compromising sensitive information.‘ Denning [16]
successfully eliminates the threat of straightforward tracker
attacks- by peréurbing the reponses to queries ;n. her random
sampling approach to securinyg a database. This section reviews
the notion of trackers and presents the theory behind a possible
method of using them to‘break Denning's random sampling system.
The method is based on range reauction teéhniques introauced 'by,
. | Alagar [4]. This strategy narrows down the true answer to a

range, based on the perturbed responsé, and éﬁen systematically
queries the syste& in such a way as to reauce this range to the
correct answer. This is done with some determinable degree of

I
probability. Once it is established that the true size of a

query set can be aetermined, trackers can be app%ﬁédﬁin the usual
way. Although the reéults will be less than 100% accurate, they
may be as much as 90 - 9% %-aééurate.
Recall the notation for ranéom sampling from Chapter 2: xc is
And tné set of records satisfying C, nc is the size of xc and xé and
né are, respectively, the recoras in ana size of the sample taken

) /
from Xg. The sampling criterion is determinea by the value of
(.

AN
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3
f(C,i), C is the characteristic formula, ana i a record ¢ xc. If
£{C,1) = 1 then i is kept for the sample and p is the probapility

of this happening. The perturbed statistics are calculated from
*
e

the random samples; the perturpea frequency = oV the perturbea

average = l*-* L , V.. where vij is the value in the jth field

e ij
nc 1eXC
of record i.

. 5.2 Trackers

Trackers were aeveloped as a tool to be used in compromising
systems using small gquery set restriction as a means of securing
its information. Let t be the threshold stipulating the smallest

3
allbwable gquery and N-t the largest. A general tracker 1is a

formﬁia T whose query set size, i, is in the range [2t,N-2t]. T
is used to find t;e gquery set size of C, an unanswerable query,
ana possibly to fina more about inaividuals satisfying the
characteristics aescribed by C then is allowed. Given that the
function Count, whicn returns the siie of the Query set
specified, is available to the user, ana n, < ¢t for this
particular C, then queries of the form Count (C+T), Count(C+ T),
Count (T}, ana Count( T), w&ll all be answefable. Count (C) of
course woulad pe restricted but coula be calculated from the
formula

’Count(C) = Count (T + C) + Count| f + C) - [Count({(T) + Count ( T)](

which is the same as

Count (C + T) + Count(C + T) - N.

s

-
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66
because ranuom sampling does not give true answers to
gueries, the tracker attack oreaks aown when appliea to a system

protected py ranagom sampling. It woula seem tnat the maximum

* .
C+T and Ne 4 e (see
* *
C+T + Ne ym ~ N. Therefore, for

section 5.3). But Count(C) #¥ n
trackers to be effective, nC +T and Ne 4+ must. be obtained from

* *
fc+r and ne 4 q-

It is the aim of the next 2 sections to show that it is

*
possible to obtain ng, from ng for some @, with some degree of

probability, but it is not yet known whether or not with a

dedicatea computer system hQ could be obtained for all possible

Q.
5.3 Provabilistic Ranges

It is assumea in Denning [l6] that the user fnows both p, the
sampling probability and N, the tcotal number of records in the
system. From this information and the perturbed response to a
frequency query, & range {[a,b] can'be calculated such that the
size of the query set lies within (a,B] with some predetermined

propability.

The first step 1in calculating [a,p] 1is to transform the

pertuxpea response Pfreq(C) into the size of tne random sample
*

* , . . . "¢

ne. This can be done since it is known that Pfreg = EN.

Tnerefore p*N*Pfreg(C) = né.



-

67

Suppose the range for tne true answer is to be found with. 95%

procability. [a,b] 1s obtained in two steps.

* L DL .
Firstly, a = no- This is because it is true that the size of
the sample taken from the guery set must be at most as big as the
*

guery set itself. Therefore ne is > ne- ~

A first approximation to [a,b] coula be to choose v as N

*
because with 100% probapility, ne is a member of [nc,N]. This

' . . *
first approximation is not very useful since [nC,N] becomes large
. * . .
guickly as nC pecomes smaller than N. The next approximation

results from minimizing the upper bound of (a;b].

*
A discussion of the behvior of ne and N will help in
developing a methoa of reducing b from N to a number closer to a,
bearing in mind that as b aecreases, the probability that ne is

in [a,b] also uecreases.

Given a query with a true count of n. = X, make the following

assertions
1. Probin. > X] = 0,
C
X " . *
2. ¢ Prob[nC = K] = 1, that is Prob[nC e [0..Kk]) =1,
k=0

* X X--k
3. Probing = k | no = x] = (M)pR(1-p) *7K,

Given a query whose random sample is of size k, i.e. n, = k,

assert that

4. Prob(nC < K] = u, \
N

5. I Prob[nC = X] = ), that is Prob[nc e [kK..N}]] = 1.
" X=Kk
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A graphic representation can be found in figure (5.1) wnere’
the X axis represents the value of n. and the k axis represents
*
the value of n.. Interpret the gyraph to mean for any X ana any
. '
kK, (X,k) is = Prob[nC = k | n. = X] which in words means the

*

probability that thne sample n- taken from Xo is k when n. = X.

This probalility can be computea from the formula given in 3

above. Note that the line X

L]

k splits the  plane 1into two
regions., Points on or pelow X = k are non zero. Points above X
= K must be zero. From 1 ana 2 above, if n. = X then né must be
between 0 ana X. A sample is never larger than the size of the
set from which it was chosen. Also, froq 4 and 5, 1if n; = Kk,
then it is known that n, must be between k and N by a similar
reasoning. For example point (5,3) lies Deléw X = Kk indicating
that Prob[né = 3 | n. = 5] # 0. This agrees with our initial
assertions that the size of the sample must be ¢ [0,5] given the
size of Xc is 5, and the size of the original set must be ¢ {[3,N]
given the size of the sample is 3. Point(3,5) lies above X = Kk
indicating that Prob[n; = 5 | n. = 3] = 0, also in line with the
nature of the system. That is, the size of the sample can never

be more than the size of tne set, and the size of the original

set can never be ,smaller than the sample.

The task here is to find Prob[nc = x | = k], the

*
e
probability that . = X given that the size of the sample taken
from XC is k. So fix kK ana the horizontal sample space for K
becomes the points (X,k) for X = O0..N. The provability

associatea with one point out of this space is

e rran e Nt a e o — o m———an)



- 2 - * -
figure 5.1 Proo[nC = X | n, = k]' / )

K=K

X
I wt(X,k)
k=0

n 3
[

N | S . '
I we(X,k) =1 :
X=k

k=1
I wt(X,k) =0 : )
x=Q ;

Prob{ne = X | nd ® k] = wt(X,k)/N
I we(X,k)
J Xmk
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N

weight (X,k)/LI- weight(x,k). But weight (X,k) = 0 for X = 0..k-1.._
N o

x=0
Pherefore weight (X,k)/L weignt(X,k) is =
X=K
* : *
Proo(n. = k | n, = X] / ;-k Prob{n. = k | n, = X]

which is Prob[n, = X | n. = K].

~ Fipally, given a 95% certainty for the range of the true

. b o - S T

response, find b such that I Prob[nC = X | ne = k] > .95, b <
X=k ) - =

N. Now it can pe saia with at least 958 certainty, n is in

C
{a,o].

5.4 Properties of Ranges

Because range manipulation plays an 4important role 1in
estimating the size of a query set, this section lists some of
the properties of ranges along with examples to illustrate them.

1

See Alagar[4].
Properties:

(1) Adaition

} ) {a,pl+[c,d] = [a+c,b+d], . .
if x € [(a,b] and y € [c,d] then x+y ¢ [a,b]+[c,d]-

Ex. [2,5]+[7,10] = [9,15], |

i

349 = 12 € [9,15]

(ii) Subtraction
{a,p}] - {c,d] = [a=a,b-c],
if x ¢ [a,b) and y € [c,d] then Q—y € [a,b] - [c,d]
Ex. (7,10) < [2,5] = (2,8], |

. 8-2 = 6 ¢ LZ,B] ’
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(iii) Intersectign

‘{a,b] n [¢c,d] = [max(a,c),min{o,d)]

Ex. , [2,101 n [5,30] = [5,10]

(iQ) Reuﬁction
if x ¢ [a,b] and x € (c,d]
then x ¢ {a,b}] n [(e,d]
< CEx. 9 € (7,100 n [2,20]
({v) One element range
a = {a,a],
Ex. 5 = [5,5] . ' N
2N\ -

/-

5.5 Formula Partitioning {

If C is the formula for which the query'set size 1is sought,
and [aC,bC] is the corresponaing range obtained for the size of
Xe
formulas to carry out the-reduction process on [ac,bC]. If C is

; then it will be necessary to partition C into a number of

a formula and Cy4 C,, ... C, is a partiton of C, then f{Ci},
i=1,.k, has the following properties:

(1) union{X, } for i=l..k = X, and
i
(2) intersection{xc'} = {},
i
wnere X, is the query set of Cy-
i

obtained by intersecting C with every value of some attribute.

A partition of C can be

For example, if C = (Marital Status = Single) then Cl = (Marital
Status = single AND Sex = Male) and C2 = (Marital Stat‘s = Single
AND Sex = Female) form a partition of C. The intersection of

single male$s with single females is obviously {} just as the

*

B




union of all single males ana all single females is all single

1

persons ;§> the datapase. Another partition would be Cy
(Marital -Status = Single AND (Age = 0-}4 OR 15-29)), C

2

(Marital Status = Single AND (Age = 30-44 OR 45-59)), and C3

(Marital Status = Single AND (age = 60 =74 OR 75-89)).

In general, if {al,az, ...+ @, is a partition of the values
of attriobue A anu , = OR'ing of all values in ajr Uy = OR'ing of
all values in COTERRE Qk = OR'ing of all values in a, then

Cp = (C aND Q). C, = (CAND Qy), ... C, = (C AND Q)

which £forms a partition of C. Tne values of an attribute can be
partitioned in many ways ana each way gives a differqpt @;;Edtion
for C. To push the peint even further, once C has been

partitionea into say {Ci}, i=l..k, each of the k ci's can be

partitioned on another attribute.

The point of this exercise will beccme clear in the next
section on range reauction in the random sampling environment.

5.6 kange Reduction

‘Let [ac,bc] be the range founa for the true count of C and

let P = probability that n. € [ac, bC]. C can’ be partitioned

into Cl, Cor vv- C, anda ranges [acl,bcl] .oe [aCK,bCk] found

sucn that n € [a b, ] n € f{a. /b~ 1, ... and n €
) "% G €2" ¢ k

[ac +be ], all with p_ * 100s probability. It is true that n, =

K -k ¢ ‘

n. + <n + ... + n and therefore from property(i) n. €

xLl C2 K Ck ‘ ¢

Z {a. ,p. ] with (p.) * 100 % probability. From property(iv),

i=l Ci Ci ok € k

since n. ¢ X [ac ,bC ] with (pc) * 100 % propability and n

€
ial Ci 4 c

9

i
k1
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[aC'DG?l with p, * 100 + probability, 'this implies n; ¢

. K ' K+1
. . . o
. & [aC.’DCi] n [ac,nc] with (p_) 100 s probability. If the

i=
interézction results in a one element range, this element is the
true count with probability (pc)k+l. If the intersection fails
to isolate one number, then C cén bpe partitioned differently and .
thé prdcess repeated. Or Cyr -++ Cy can each be partitioned in
an attempt to reduce [aC.'bC.]' for 1i=1..Kk, their respective
ranges, down to onel eiement ranges. Obviou;ly, better
approximations occur when successive k's are small, as the error
propagation is less. It might not be possible to obtain a one
7 \“ﬁuelement range intersection in every case, but the following

results show that it is at least possible in some cases.

5.7 Successfull Probabilistic Range Reductions

This section demonstrates probabilistic range reduction for
foﬁr formulas. The size of tne random sample taken was obtain;d
in each case from a psuedo database containing 500 records, with
S attributes each having domain size of 4. Remember that in a
formula, a number of the form i0j means the jth value of the itn
atribute 1is being specified. For simplicity, * denotes
intersection anda + aenotes union.

alh. , : ..

}

Example 1. For C - (101 * 401), né = 31. With 95%

s+ Pprobability, n. is found to be € (31,34]. Let C; = (101 * 401) *

edes femrn e et oens -

(201 + 203 + 204) and C, = (101 * 401) * (202), n. = 21 and n"

€

l
Y
"

= 7. With 95 propability, we have founa n. € [21,23) ana n
: 1l
{7,8]. Since n, = nCl + ncz, ne € {21,23]) + [7,8] = (28,31). 1If

n. € {31,34]) ana ne € (28 ,31] tnen ng € [31,34) n {28,31] =

0
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[31,31] with (.95)3 * 100% which = 87¢ probability. Since
[31,31] = 31, the true count of (L0l * 401) has been found with

86 probability.

Example 2. Fof b\= (101 * 402) * (201 + 202 + 203), n’ = 20.

wWith 95% probapility, Do € [20,22]. Let Cl = (101 * 402) * (201

+7 202 + 203) * (301 + 303) and 02 (101 * 402) * (201 + 202 +

; = 11 ana né = 11. With 95% probability,
1 2 :

nC was found to be ¢ [11l,13] and n
l .

203) * (302 + 304), n

¢ [11,13]. Since n, = n

C C

C2 .
[22,26]) and n

+ N, N o€ {1i,13] + [11,13] = [22,25]. If n
2

1
C
22. Hence with

c €
e {20,22] then n. e (22,26] N (20,22]).= (22,22]

-(.95)3 * 100% which = 87% probability, the itrue count of (101  *

-

402) + (201 + 202 + 203) is 22.
\ .

Example 3. For C = (101 * 403) * (201 + 203 + 204), n; = 28.

With 95% probapbility n, e [28,31].° Let C; = (101 * 403).* (201 +
203 + 204) * 303 ana C, =(101 * 403) * (201 + 203 + 204) * (301 +

* *
302 + 304), ncl = 4§ and nc2
found nCl e [4,5] an§ nC2 e [(21,23]. ©Since n. = nCl + ncz, nC.E
[4,5) + [21,23]) = [25,28]. 1If n- € [25,28] and nC’e (28,31] then

= 21. With 95% probability we have

ne e (25,28] o (28,31) = [28,28] = 28. Hence with (.95)° * 100%

= 87% probability, the true count is 28.

W

Example 4. For C = (101 * 404) * (301 + 302 + 303), né

With 95 probability, N~ € [26,29]. Let C; = (101 * 404) * (301

+ 302 + 303) * 202 and C, = (101 * 404) * (301 + 302 + 7303)

(201 + 203 + 204), né = 7 and né‘ = 18. With 95 probability we
1 2 / L

have found n e {[7,8) and n. € [{18,20]. Since n., = n + n
€1 C2

[ 4
c " e, ',

= 26.
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.querying a random samplea aatabase.

‘experimentally as nigh as the theoretical hit rape«of

5-

-

~ “'
with (.95)% * 1060% which = 90%

¢

n. € [28,28]) = 28.

C

1

Hence

probapility, tne 'true count is 28.

¥

5.8 Consequences of Probabilistic Range Reduction

Take for granted, for the moment, that true counts of gueries

could be estimated with a large "degree of probability when

If these counts were fsea in
trackers in the usual way, then the catabase could pe compromised
database py small &uery‘ set -

in the same way as a protectea

restriction, albeit only to the degree of probability that the

the true counts were estimatea, a degree of probability < 100%.

Thie examples of total range reductions given above are ‘nough

to spark- interest in the potential of compromising in this way.

. For these consequences to be a serious threat to the security of

random sampled statistical databases though, both the'gase of

range reauction (the probawility that range reduction could be

any given formula) would have to be found feasible

* l

5eductions.

achieved for

and the hit ratio (the

v

actually

frquency of range which
ﬁound‘
k+1

(Po) *

- €

returned the true count) would have o bé

100%.

~

R

.
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: CHAPTEK 6 ' .

CONCLUSION Mh“‘\\

In Chapter 2, the criticisms of partitioning as a means of

securing a statistical database were cited. They included the

absence of some measure by which a pakticular partition of a '

aatabase coula e ratea. Without such a \measure, partitioning
has the dr;wbacks that éue:ying on the iil—formed groups would
lead to inacturate responses, renaering the database useless as
an information tool.  This critipisﬁ was overcome witn the
qevelophent of two techniques for measuring " the appropriaté{
entropieswof a partition indicating the relative number of groups
in the partigiop dna their size variation as well -as the

, } ]
similarity of the records. within a group. The partition and

.average group entropy values could be galculateﬁ' for ° the

thegretically best possible partition for any given applicition.

If‘ a nunmber of act;al partitions are ‘available for that
application, comparfg their entrGpies to the one calcuiated for
the begt pa;;ition would aid in choosing the best partition froﬁ'
the ones available. \ . ‘ o ’

Pl /

Another criticism of paftitioning was based on the amount of
information loss inherent: {fn the :espona;‘ strategy employed.
Although qu;er”s response stritegy fared better than that of
Scnlorer's, ft came up short with respect to queries ‘with empty

guery sets, Strategies for responding to these queries for

.gverage ana frcquohcy statistics when the semantic integrity of

t

-
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»

tne aatabase was not violated, ana a means for recognizing those

.
queries whicn aia violate tnis inteygrity were presentea.

)

Glaser [22] pointea out that a database can pe partitioned

efficiently so that there is accuracy of statistics and security
|

of information. In addition he indicated how 1t can cope with a
QYnamic database. However there were the few gaps noted above.
The results of this thesﬁs fill the gaps and establish

b

P < . .
partitioning as a souna and safe technique for securing a
|

statistical aatabase. &

Random sampling fares we%l as a security measure in that the
work involved in ootaining the samples is minimal, the statistics

prodicea are accurate ana it

an certainly support a changing
Ienvironment. Unfortunately, random sampling suffers slightly in
the areas of information loss|ana compromise. The 1information
loss is limited to information associated with queries wnose
gquery sets are small; and an attempt to overcome this results in

useless statistics due to the

’

nature of the sampling probability.

-
’

It -was shown in Chapter| 5 how an attempt at compromising a
adatabase under random sampling| can be maae. The basic igea is to
obtain a contidence interva for the number of records in the
query set of some query with high probability and then wuse the
range - reduction techniques™.af Alagar [4] to obtaij the exact
number. As far as we knhow thi is the first and aply known

attempt at compromising tne ranuom sampling methoa. Our results,

tnough not exhaustive; have cleprly shown that in some dases tne
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true count of a query was founa . <here is potential for further
stuay in this area in aetermining how much ébmpromise is possible

and how easy it is to achieve it.
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