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ABSTRACT

)
5

" Comparative Study on Sandwich Plate.
oo ) .

Finite Ele;ncnts '

i

. Behdad Jafari-Naini .

Y

+

The theories,‘dealing with sandwich platés diverge from classical
" thin plate theory In that they include’ the effects of transverse shear

strains In the core. The use of sandwich plates in the construction industry

- has been partially hindered by the lack of general éalgtical solutions. The

. finite element method has proved to be a powerful analysis tool in these
\w . . ' - -
~ situations. :

In this study, several finite elements suitable for analysis of.three

layer flat sandwich plates subjcctcd to trénsverse loading have been

considered. These' elements have -been divided nto two groups of

‘ B displacement and assumed stress hybrid elements based on the method used

* " In the derivation of thelr stiffness matri. These two methods have been

®

briefly outlined and compared.

4

.



"7~ has been studied, .
. o | )

The characteristics and.the range of applicability of elements ineach

group have been discussed. Several numerical tests were carried out in

A

order to evaluate the performance of assumed stress hybrid elements.

F,lnallg; an experimental element -has been introduced and its per{ormance

clv-
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" CHAPTERI

" INTRODUCTION  °

d
4

11 Description of Sandwich Construction
Sandwich construction is a special type of multilayer construction

where thin sheets of high stiffness materials are bonded to relatively ‘thick

lagers of lower stiffness .and density. 'In th_e’case of three layer

.construction, the outer sheets are called faces and the inner thick lagyer s

 referred to as a core. The idea behind this type of ;onstructlbn Is to place

-

ths high stiff ness matcrials as far as possible Yrom the neutral axis, whgre
they aré more efficient in rgsislirxg benﬂing ,st(sssss. without excessively "
increasing ths wzig:u, of the section, Asa result, thls type of construction
usually has a higher strength to welg;ht ratio than the conventional !upes 5r

L

ln a sandwich sectioa. the faces are the main stress carrulng |

.components due to their posltlon and high stlrrmss and resist prlmaruu :

flber‘stres'ses'parallel to the neutral axls. Typical materials for the ,(acqs

-] e N r
] - \

-

-

-1 -




include steel, aluminum alloys, reinforcedplastics and titanium.
The function of the core is to provide shear resistance and lateral

{

stability for the section and thus shouid be sthrong\epough fo resist

. transverse noral as well as shear stresses. Because of the low stiffness -
.c‘)r the co?e material, t‘he./in-plar/\e stressés in the core .arg ‘ﬁs;na'll and‘the“‘
contribution of the core to the flexural ofigidi*t'u Of the section is or'ten\
'm"glcctedi -The éore 115u5llg deforms u;\der transverse ..shea;" strcsses; and

therefore, it IS no longér possible to assume "that normals to the
mid-planes remain normal after derormatic_blr;‘ Th_é core is made of l:ighter .
and weéker materfals such as synthetic rupbér or 'st‘grofdam' which could

‘enable the core té act a§ thermal insulator for the structure. Honeycomb
and‘ corrugated ,cores h;e élso been succ_ess;ivelg used in sandw‘ich
cgrﬁtruction ‘

The bon;j betwéen tt;e gdjacgnt lguers IS very important and is usually
achieved by means of various types of adhesives. . The bond must be strong "
enougb fo maintain contir;ﬁty of displacements acrossdifferent \layers. in ;
the absen;:e of strong bonds, interlager slip may occur and as a resuit, then

: structural efficiency of sandwich constructionmay suffer.



Finally, it is important to distinguish between sandwich construction

and composite laminates. The latter consists of various layers of eimiiar

4

" properties which contribute to resisting stresses in a similar wag\smar

deformation is generally not dominant in any layer and it is often assumed

>

that the normals to the‘mid-'plane remain normals\ after the deformation.

However, it is possible that some layers of a composite laminate undergo

. significant transverse shear deformation. In such cases, sandwich

construction could be thought of as a special case of, composite laminates

where only alternate layers deform under transverse shear.

12  Objectives and Organization of the Thesis

The theories dealing with the analysis of sandwich plates have been

x"develope‘d since the late forties. These theories diverge from the classical

thin plate theory in that they take into account the transverse shear

deformations in the core. However, as in ghc' case of thin blatc theory,

: analytical solutions are often cumibersome and limited to Ease_s with

relatively simple boun&aru and loading conditions. The development of the

finite element method has paved the way for the solution of more complex




L

probiems. Since the late. sixties, a number of finite - elements have been

developed for application to sandwich plate analysis. These elements
N

)
which covera wide range of capabilities, can be classified into two groups

based on the method used in deriving their stiffness matrices. In the first

\

group are the displacement elements which are based on the 'minimization

of the total potential energy and in.the second group are the assumed

“stress ‘hybrid elements which are based on the minimization of the total

- complementary energy. |

Although the existence; of these elements ha;s facilitated the analysis
of sandwich piates;” choosing a suitable element remains a difficult ’t.ask.
As often is tr;e case, the underlying ,as.;;umptions for the elements may |
differ and consequentld the range of apblicabili’tg of the ‘elements are nc;t '
Clear. Unfortunately, at times neither the assumptions nor the extent of
the capabl‘lities of ‘an element have been explicitly. stated. Some qr these
characteristics may have bcén demonstrated by the authors throdgh the
va_riousqmrherical tests they have performed. H_owe;/er, the test problems

may differ from one élemgnt to the next, thus making the comparisonof the

' resdlts betweeﬁ'\ two or more elements difficult ir no; impossible.



/o | The objectiye of this studﬁ is to facilitate the task gf ‘choos_inga
N //_ " suitable element by
| 1 - examining the underlying assumptions,
2 y determining the range of capabilities,
3 -.evaluating the performance characteristics
of 3 number’ of available elements. | The-emphasis is placed on the linear
f churai behavior of the most commonly used type ‘of éar\dwlgh
construction, Knamelg the thrée layer . symmetrical construction
Chapter ;l includes a review. of some fundaméntal equations -in the
- analysis of sand:vIch plates.' In this chapter, the struf:tural behavbr of

'sandwic,h plates and analytical solutiudns using equilibrium equations are

discussed. Chapter Ill is a brief introdiction to the formulation of the'

.

eiemeﬁt stiffness; matrices using displaceme:nt and assumed stress hgbrid‘
* approaches. | | | | | |
| éhapter l\} deals with the displacement elieme‘nts., In this chapter,
- characteriStics of each elemént with regard to its geometric cbnf Iguratlon{ |
60c1a| degrees of freedom and' capabilities. are dls‘cussecL' phapf_er V

)

contains a similar discussion for: the assumed stress hybrid elements,

.
) S
-5 -
,
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)

3 Chapter VI outlines the descriptio"n of the numerical tests carried* «

out for various hybrid elements in order to evaluate the convergence

\

properties of each element as well as their accuracy for it erent aspect

ratios.and shear parameters.

Chaptér VIl is devofted to the discuséion of the resuits for the hybrid

1

eleménts. Chapter VIl includes the description of two new elements. The

choice of streés ruﬁcti.ons and bdundarg dispi'acem,ents for these e!emé'r&ts

are discussed. .

Finally, Ghapter IX is a summary of the f indings of thiéirgport and

L . . ’ 3

the conclusions.

A

rgxm‘\ N
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. .2.1 Governing Differential Equations for Sandwich Plates.
. R « 4

CHAPTER I
SANDWICH PLATE THEORY

L

Several theories have been developed for the analysis of three Ia;jer

éandwich platés [3,29]. " _These theories entail various degrees of

P

ref inerhent regarding the stress distribution in the layers and inclusion of

| anisotropic.materials in a given section. The following assumptions have

 been commonly adopted by these theoriés.

'l._ Displacements and strains are sufficlently small so that the
| linear theory of élastiqigg' abplies;'
2 Transverse displaé:emghts at all points on a line normal to the
mid-plam are the same. |
3 lnterlager bonds are strong enough to prevent sllppagc between
 adjacent layers.

| 4. In the core, planes normal to'the mu‘t;al‘ p-lane remalnplaﬁé but

| not necessarllg normal artbr the derormatlon N

-

Assumpuon l |s made in order to avoid mathematlcal compllcatlons

-
'

-
-7 -
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I
]
|

associated with geometric and material non-linearities. iiased on this -

P]

assumption, the membrane and bending stresses are treated iMepem%ntiu.

Assumption 2 implies that the transverse normal. strains are negligible.

* Therefore, no compaction of the layers in ‘the transversé direction is

.
e b

'permlt'ted. The effect of local bond failures on the behavior of the plate is

ignored by ass"uEnption 3. Finally, assumption 4 reétrj_éts the normals to

’

deform without warping and as a result, transverse shear strains are taken

to be+a constant through the thicknesssof the core. It should be noted that

the neutral p!éne of the section coincides with the mid-plane of the core

only for symmetrical sections.

The analytical solutions [29] whnich are presented for éomparisor. '

purposes in Chapter VII, are based onthe f oilbwing additional assumptions:

S. Faces are thin such that their flexural rig’iditieé about

their ownmid-planes are negligible.

6. The corecarries no in-plane normal stresses.

Assumptlon S lmplies that the faces act as membranes whereas assumptlon

6 excludes the contribution of the core to the bending stlffness of a

SGC‘"OI"\.

Fig(2.)) shows the sign convg_ntlon for stress resultants \actlng ona
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| segment'of a three layer sandwich plate. It is noted that the equilibrium -

equatlons ror sandwicn plates remaln identlcal to those of tnln piaie

iheorg since the equations are in terms of stress resultants.  These

N

eqqations are [29): o ) S 1
R OMyy /0K +’ar1,“u/ag - Q=0 - o i (2.i.i')<
anxu:/ax +J§fr_1bu/6u' -_ou =0 ; | o .. ‘.(2.1.2)
| . - 90,/8x *"Bleau"q=ii‘ B A "(2‘.1.3)-
, . IS

where M. My, are nofmal moments per mit length, "*u, is the twisting

.. ‘moment per unit length and Q, Q ar® the transyerse shear forces per unit

length. If all the above stresses act sinn\iltaheouslg on the plate segment .

‘i

of Fig(1), then the resulQng curvatures a(e given by Eq. (2.2) [29]: ‘/ :

Wyp = Mg /By -0 My /By - BB,/ - .('2.‘_2.[1),'

3 . i . - . (

Wiy = Myy/By O /B, 000y (2.2.2)

-

/ _where,subscripts for w refer to its partial derivatives, ¥, and b'u are the

transverse shear strains and B refers.xo the stiffness or the section in

L bending The last term in each of the above equatlons s the.rate of change

~of trarsvefse‘shear nefgrrrnation which contributes to the curvature. The

* . - 10 -



i . " . . . Ch AR
. - - : . v R
- T o
¥ ) ‘ - ‘-l < . _ v - v
. * " ' .
.
X
.

negative signs are needed for the sigri convention chosen. Accordingto

Betti’s reciprocal theorem, B,, By. vy and by are interrelated and the

4

relationship between them is: e
© Byoy =B, . L@y

o Eq(2.2) cannow be solvedfor My, and M, in terrns Of Wyy. ?Wf ?’,‘ and . -

" The resulting expressions are leen in Eq. (2.4).

o My =D, 08wy ¥, /8K + 0y Blw,v¥,)/By) L (240).
" My =Dy l8lwy3, )13y o v BB,/ 7 | (2.4.2)
. , . | o
. Where: o
T T B 2= R
Du = Bu/((\ ’\p x.uU) A _ (2.ﬂ-4)
" The expression-f r My Is shown to be (29 L S I
T My = TIBW 50/ BB /0K 2 ., e '

where T s theisting stiffness of the section. Expressions for My, Blys
My, Can now be swstituted Into Eq(21) 6 obtain three differential
equations n terms of w, %, and 3. For an isotropic sandwich plate, the

.

N - o ' t
- 11 - ' - 1
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\,'\ resulting expresslons are much simpler and are given in Eq. (2 6).

) R ¢ - - f2-

| o R L
' dl i IS " ) :
- |(82/3x2{((1-0)8%/8y2)/2-S/D) |.(w.Bx¥y} T=0 @261
. o ( : v
, | [(1e0)0%/au3yl/2 - N
v S - LT TR T ,
ll(lm)aZ/axagl/z w2k T=0 (262
. |.[((I-U)azlaxz)/2*82/3u2-S/D 17+ | |
7 c . ) v
. ' ' o '.'fq S . v .
B - Wy - /520 Ly S (263)
! o R T 7
" - wheggSis the shear stiffness of the section and: |
o [ . "l\ ) 1‘ N . ) ‘ . .
. < R AL o | , }(2.§.4) .
- . 0=D =Du | o N
. s(r{ ‘-su N L (266)
L a,ﬁs(lwu)o - . . 3 (26.7)
- — -~ . ' : . } .
s L Equati'ons (26.1) to(26.3) are the simultaneous governing equations foran. *
. : . ‘ e L
. isotropic sandwich plate. The solutions for w, ¥, and ¥, should satisfy
Y . . . . . .
) the boundary conditions. At each supported edge, three conditions are
LY b ' : N
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required instead of the two needed in thin plate theory. The boundary

conditions for most commonsupport types, at an edge with constant y, are

as follows: _
- Ft:ee: : ‘\ n99=0 ; "gx=0 : Qg=0 .“ ~(2.7.l)' |
- Simply supported:- w=0 F nw=o_ o (2.7.2)
- Clamped: - w=0 : Bw/dy+?F=0 © (273)

The third condition for simply supported and clamped éages depends onthe

existence of the transverse shear strains at the edge. If shear strain s

prevented at the support, thén '6,"=_’0. On the other hand, if shear strain ¥,
s not prevented, then n;‘u' = 0. For the case of the clljamp‘ed edge the latter
is a theo;éticél pos§ibility .which, does not commoblg occur 'in practice.
For boundary 'condi'tidr;s along an edge wjth, constant , .tﬁe x_ and y's must
be lnterchanged In the above exéresslons: B
v Fig. (2.?) shows the cross éecﬂqn c;f a three layer symmetric . |
L\ s;Mwich plate. The stifrmés expl;gsslon for this gectlon can b:e'derii)gd o
notirig the exact and assumed stress distribution lr:\‘a section as shown In ’
:Flg. (2.3) bg plain and solid lines respectively. ‘ The éenéral exbrééslon fér\B. |

for a segment of unit width of an isotropig symmetric three layer sandwich

e - - 13 -
’ )
! . L]
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FIGURE 2.2: SECTION OF ASYMMETRIC THREE LAYER SANDWICH PLATE
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. FIGURE 23 EXACT (PLAIN LlNES) VS, ASSUHED (SOLD LINES) smsss

DISTRIBUTION N’ A SECTION OF A svnmzrmc THREE LAYER smowncn
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. plate is given by Eq. (2.{3).

Y

. and the third term is I¢s than 1% of the secondir:

BEEp/6eEd2eEcc2 . - (28)

’
-4
[N

However, if ,as in the present case, it has been assumed-that thé'thin faces

~ act as membranes and the core-carries no'longithdlnal Stresses, then the

-

first.and the thirg: terms in Eq (2 8) can be neglected Therefore, B is as
e »

given in Eq (2 9)

" B= Efta2/2 o '_* | ey
ln EqQ (2 8), .1t Is noted tnat tne first term Is less than 1% of tne second fr

@m0 o

@ .o,
e v op

(u%‘,/:-:‘c-').(i*/c).(a/c')2 >667. . '(2'.'ui) o

'

' Equatlcsns (2.10) and (2.11) are normallg satisf ied for the practical range of :

material and geometric properties used for sandwlch plates Theref ore. the

3

assumptions Iead to reasonable approxlmation of the exact solutlon. thus

-

are justlf lable The shear- stirrness of the same secuon Is glven bu eltner

Eq. (212.1) or(2122) ‘ . . |
‘$‘="G-d' L S 1)
s=6c ..o e 0T T erd) .

- 15 . : :" : ?
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Eq. 212y represents the stiffness fof a section for which aEq. :(2.16)~ is
- O ' . -

-'sat,lsfled. EqQ. (212.2) Is a more limiting case where. the ratio of t fo d Is

- . assumed t_o'be very small. This is true for a sec;iori with very thin faces.

_In this case, facesact as membranes and carry no transverse shear -
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v . CHAPTERN ~

L,

BACKGROUND TO FINITE ELEMENT FORMULATION.

A\

IS . . »
3.1 “introduction N a

| ~ -AS mentioned in Chapter |, two different approaches are commoniy

"used for the formulation of the sandwich pléte finite elements.” These

methods differ basically in the choiceof the functional to be minimized. In

l . . B - . X
the displacement method, the funct»iona! chosen is the total potential

- energy. of the element, whereas in the assumed stress hybrig method, the

functional to be minimized is the total complementary energy.” The

underlying theories for these methods are extensively covered in the

literature (10, 25, 26, 34). In the following sections, -these methods are ‘

~ briefly outlined In order to iliustrate their differences. ' ‘

1

3.2 mmmmmmnm

In this method (10, 34], a displacement field Is ‘assumed over the .
entire element. This dlsplacerhent fleid Is r;elat’ed to the nodal degrees of

+ freedomby means of shape functlons-as given in Eq. (3.1): '

i

- 17 -

—s®
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) = INLd) o ' GA)
\u‘ @

" whete () Is the displacement field vector, {d} is the nodal degrees of

freedom \)gctor and [N] is the shape function matrix. Strains, (€}, can now

be expresséd in terms of nodal degrees of freedom by simply taking the
appropriate derivatives of the shape functions (Eq. (3.2)):
(¢} = [Bl.4d} B : (3:2)

where [B] is ‘obtained by taking derivatives of [N]. Stresses, {c), are

calculated from strains by applying the generalized Hooke's law (Eq. (3.3)):

(o} =[EMe - | ° | (33)

where [E] its‘the elasticity matrix. The strain energy density, Us, ‘is defined

as: ).

Ug=1/2 .[d}T.(e} . | . i | o (3,‘4)
Bﬁsﬁﬁstl'tutlng Eq. (3.3) into (3.4).and noting that [E] is symmetric:
35)°

w

Ug= V2. {dTIEMe -

The strain energy for the element, U, is obtained by integrating Uo over the'

volume of the element. Therefore:

| U_=J!u°dy | o e



“which after substitution from Eqes. (3.2) and (3.5) and.n'oting that {d) Is

. constant for anelement, canbe written as: = "

U= 1/2(d) T.Ji! lalTJELlai dv.d) (3.7)

-

A\

The pgtential energy of the applied loads, ignoring bbdg forces, is glven in

EY

Eq. (3.8).

o V=- j . {u}‘T.fp) ‘aa-“{a'}T.{P} _‘ D"(3.a) 3 -

- In £q.(3.8), . {p} is the vector of distripﬁted _apb'lied' I'oads and {P) is the
. vec'tor"of nodal forces. After substituting for {u} from Eq. (3.1), .Vcanbe

written as:'

1

vt wiwe-@te 69

The total potential energy of the element, T, is glven by:
Comeuev T o
" orafter substituting from (3.7) and (3.9): |

. . * N Ll
. » N s N
. . C -
! , ‘? . . “ . i



. . L ' L . . -
m=1/240) TL{B}UE}.{B} av.{di-(a} . f JNITplas @7 P} (3.102).
- " Accordingto the principle of minimys” potential- energy, at equilibrium n
must be stationaru; "Therefore, at equilibfium:
an/3(d) = 0 C C TG
which after substituting fromEq. (3.10.2) becomes o

L

f l[B]TIE].[Bl dy.(d} - fﬁ NTp) ds- =0 - Git2

IKifa) - (0} = 0 o ¢ (3.13).
) " where {K] is the element stiffness matrlx and {Q} is the equivalent I'oad

. matrlx and:

R (S L 817 {EUB] d¥

-

Q)= IXNIT(DM&*{P) - e (3.12,2) ‘
\ Thz mcprcssion (3.12. 2) could be expandcd ina slmllar manner to include’

o podu forces. These have been left out in the present case for simolicltg. -

\
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In this method [25 26), stresses are assumed within the element such
that they satlsfg the differential equilibrium conditions The stresses (o),
are functnons .of local coordinates and a set of independent constant
coeff icients‘ as given in Eq. (3.13). | | |

r

(o}=PLB} . o (313).

oo dn Eq (3 13), {8} is the. vector of independent coefficients which are to be

calculated and [P] is @ matrix contalnlng X and y terms. The strains are now-

-expressed in terms of stresses:

+

GE ['cjlj[o} | | : (314)

where [C) is the compliance matrix.  The compleme'niarg' strain energy

| densifg is given by:

W=zl g o em

\am the complementaru straln energg Is obtalnecl by. Integratlng over tﬁ?e

volume.

u=1/2.J!{0}T.{e}d¥ P @l

14

, - After substituting Eq. (3.13) and (3.14) in'Eq. (316) and noting that {8} is

. constant for a given element, Ubecomes: .

/

- "
: . . . - i \
@ 21 | |
’ . ‘ - .
. ' ‘ \ ‘A
« . . . .
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Fd?' 3 ‘v)/ell formulated elemnt the symmetric [} m';t}ix is"posmve |
- der Inite Next a displacement field along the element edges Is assumed.
- This assumed displacement function along each edge is expressed in terms" .
-~ of nodal degrees of freedom onthat edge (Eq. (3.18)): |

| iu)éltl.(a} : | | G
wﬁere (v} 'i“‘.é displacement fleld‘alor\fg all edgeé.l {a) 'ls the 've,c'to; of

element degrees'of freedom and. [L] contains the interpolation functions. |

By, choosing a suitable set of interponation functions for [L), the

compatiblutg along the element boundaries can be readilu achievecL The
stresses along the edges, (S}, are expressed in terms of {8} as rollows |

BT - B

where [R] is a function of coordinates along }ﬁe boundaries. The

”

1] R .



~ complementary potential. energg de to these stresses, W, can now e

' calculated tp be:>

i / . . ; ' - " . i - . -:"I ?
w=-§ (S}T.{u} s -“; o (3.20.)" .

<

TP ETIesia L Gwd

glm@ - e o G203

where: S

The total complementary potential energj, No is.givenby: ‘,: A

 m=PnriTLe (3204

o TMsusW T sy

(3212).

= 1/2(8) TIHLB) - ()T ITLI0)
- which ﬁhquld 69 stationary. 'Thei'éfor;z:

31T /3(8} = 0

Mg} -tTMat=0 - - .
 Teerefore:

- 23 - -
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4

(8 =TI

(3.23)
-~The element $tiffness matrix cannow be obtained noting that:
w=-oT@ . . . . (329)

-where (Q) is the nodal loads vector. From Eq. (3.20.3) and (3.24) it canbe

*concludedthat: : |
B T | N ,
{@=mg o (3.25.0)

. , . - . . p Ty *
which after substituting from Eq. (3.23) .becomes: . E
@:=mumuTae . T (3252)
From comparisonof Eq. (325.2) and (3.13),_ it is evident that: =
om=mtm | o B28)
¢

~ Oncethe element stiffness matrices and equivalent. nodal loads are-known,

. thethoq. itis gvldeni that the choice of the displacement fleld is extremely

" the global displacements can be found in a similar fashion to that of

 displacement method. Once the displacements' are known,. stresses can be

calculated from Eq. (3.13) and (3.23).-

3.4 cmm:mqmmammm_mmnm_nm

From the derivation of the stiffress matrix in the .displacement

. important. Certain restrictions apply to the choice of displacement field

b
‘

.‘.24 -

J—,
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. for an element. In order to assure convergence.ﬁi} must be selected such

4

: that [10}:
. : | L. States ‘ﬁof corxsfant strains and rigid body modes are preégnted.
o 2. Displacements and strains Lare cor;timous within the element, - ,
7 From EQILI) it is noted that the total potentia energy obtained

> Using displgcement elements Js larger than the actual. For this reason the

[

displacerment method generally results in overstiff models. Higher order

' “ S : °
N~ - elements are usually more flexible and therefore yield more accurate

»

results. However, thére “are ,disadvantaggs‘ associated with choosing

-

‘complex displacement functions. First, from Eq.(3.1) ft is'sggn that the

number of unknown coefficients in the displacgtﬁent function must be at

? ~

« - least equal to the total rumber of element degﬁe’es of freedom. A higher

-

)

. order element -requires more coefficients and therefore more degrees of

——

4

freedom thereby increasing the computation time required for analyss.
- ,
The second disadvantage is that a compléx function may impose uridesired
continities of high order derivativeg acrc;ss the element bounﬁaries. For_-
'. examplg in some plate bending elements, gurvatprés remain continugu‘s

. across inter,réement boundaries. Although this does not jeopardize the

convergence properties .of the element, it has the disadvantage of

N



A

A
4
] \

_mfsrepre’sentiré\ the stresses at points where flexural stiffness of the

adfacent elements are not the same .Or where there are d!scontinuities in
. .

" the bending moment diagram eg. points of application of concentrated

moments. ' Furthermore, for all displacement elements, stresses are

\ Ealg’:glatgd from strains which are calculated by taking the derivatives of

t

the jdispiacements (Eq. (3.2) and (3.3)). Therefore, in general, the stresses
a;*e epprogimated less acéura;elu than the displacements.

" Ih the derivation of_,the stiffness matrix‘for assumed stress hytrid
eiéments. the qnly requirement for the stress functions is fhat the

T T ’ o roL
equilibrium (Eq. (2.1)) be satisfied. within the element. ~ The complexity of

o’

. these functions depend on the numﬁ'er of §'s chosen which is less sevgrely ‘

' {
dependent onthe total number Gf degrees of freedom in the element,

The disblacement field along the edges ‘sh‘ould be chosen such that
requirement. | [s satisfled. It Is noted (tna\t in the case of assumed stress
hybrid elements, the domain for the assumed ‘displacement f ie,ld is limited
io the element edgeé. Consequently, it is easier ~t'o find @ suitable -
dlsplacement Tunction which meets the above requirement (ie. constant

stralns and nigid body modes). Also fewer.degrees of rreedom are needed

" for this shape runcuoa compared to' a displacement element having |

~ ’ ¢

. - 26 -
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CHAPTER IV,

' o~ K
-\'0' ° -

DISPLACEMENT ELEMENTS

N

L \tnls chapter, the characteristics of several displacement elements

”‘:‘ro'r sandwich plates will be dlsscdse‘d. |

€ Y . n

¢

.. 40 ‘Monfortonand Schmidt

Thls element [201\g c\mable of repg:teng three lager sandwnch

' plates Wlth lamlnated faces and orthotropi

»

can’ have different material propertles and as a result piecewise

homoger&epus orthotrppic material can be modelled The expresslon for
‘the strain energg includes terms related to the bending of the faces about*
; tnetr ‘own akes, in-plane dlsplacements of the faces and thé transverse
~ shear def ormatlons ol the core. The, in-plane strength of the core is
assur‘ned to bereghglble Since flexural rigldltles of the. faces about thelrk
own _axes are taken Into account, sandwich plates with thick faces can be

analyzed uslng tms \element 6

ShEw ) - .

( The element is rectangular and has 8 nodes, located at the 4 corners

¥

t . : - o

- 8- .

. Laminates in each face

4



.Y

. of each face as shown in Fig. (4.1): At each node, there are 8 degrees of -
freedom éorrespondlng to the in~plane dlsp_lacen'y\zms' as folqus: -
! T- e . * - ) :
' -~ {dm} - ( U. V. Ux. UU. Vx. vu. uxu. vxu } . (4") '
where u .and v are the in-plane displacements .in x and y directions
» % .
respectively and the subscripts refer to partial derivatives. Also. for each

pair of rodes-on the 'same vertical . line, there are 4 degrees of freedom .

representing’the lateral’ deflection:.
id{,}T = (w, w,, wpwg) “ (42
- That is.» these two nodes are coupled by the above degrees of freedom in
‘conipliance with assu;ﬁptjon 2.\ 'Theferore. the eleﬁent has a toial ef BOV
' “aeérees of freedom. o
, The shape functions used, allow for cubic varlatleh of u, v and w.
. The transyerse (shear deformation and the associated strain energy in the

coreare eapressed in terms of the membrane degrees of freedom (£q.(4.3))

) noting the continuitg of the inplane dlsplacements at the Interlayer

. o
boundarles.
¥, = (u-u2)/c - (di*d)w ,‘/c;- Wy ] ' (4.3.1)
By = (Vrvo/c- (dpgdw/c-wy | R (43.2)
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In the above equations; c is the core thickness, subscripts t and 2 refer to

top and bottom surraces re§peétlvelu“and dy and d; are the distances of the

top_ and bottom neutral planes f6r the faces from the interlayer boundaries.

For the case of a plate with homogeneous or symmetrically laminated faces

di and d; are equal to t)/2 and tp/2 respectively.

This lement was tested on a square sandwich plate loaded uniformiy

-in. tension along two opposite edges with the other two opposite edges

free. The exéct results [31)- were obtained because the assumed inplane
displacement f ield. is of the same order és the elxact solution. In a second
test, a simply supported square sandwich p‘late was subjected t6 a
uni\forrﬁ‘lg distributed load. The results for maximum deflection were
ide"ﬁticél to the analytical sqlutioﬁ [1. " The errors for transverse shear

strains at the rr{id—sides wereless than 5.5% using 4 elements and less than

. 0.5% when using 16 elements.

The accuracyof the results obtained in the abovetests are very godd.

-

: . -
However, as disadvantages of this element, one may'-mention the large

' ‘number of degrees of freedom and the excessive continuity of the

transverse shear strains in the core over inter-element boundaries at

g

points of application of concentrated loads. Finally, the existedde of

»

- 3 -




non-geometric degrees of freedom makes the element unsuit‘able for the -
. analysis of systems such as folded plates and panelized buildings where the
| ) elements areiined at an angle. Also, for the same reason, such an element

would unlikely be included in the elemeht- library of general structural

analysis programs.

© 42 Abmad.Irons and Zienlewicz
- These authors introduced a group of elements [1] suitable for the
analysis of thin'a".s well .as thick plates or curved shells. For thick plates

| nd shells, the effects of t}ansverse sﬁear deformation are included in the.
derivation of the elgment 4stif fness matrix. Even thouéh thése elements |

. we’(é only “intended for the analysis of homoge'neods plates, they-can be
' ' ¢

- ‘ édopted for sandwich plate analysis by suitable modif icatioﬁ of the terms

">~ _ -reflecting the bending .and shear stiffnesses. These elements serve aé,a

. - 4 .
N Qasis for some later sandwich plate elements. Basically, these elements

7/ ! . . N -
/ are a reduced form of a parametric three dimensional solid element.

. _~ However, transvert;e normal stresses and the corrgsponding strain energy
are not taken Into account in accordance with the plate bending theory.

- Also, in order to maintain - the ‘straightness"of the ‘normals after

g
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'defc";rmation. the variation of the imlarie’; displacements through the
btnick.ness Is assumed to be linear. .

fhese elements are hexahedral in shape and their number of nodes

depends on the order of ~gisplacement functions required (Fig(4.2)).

However, énlg two nodes arj%ed thu;ough the thicléness to ensure linear

' Qariation of inplane displagements. The degrees of freedom at each nodé

areu, vand w.” The 'two fodes lying on the same vcrtiéal line, sh;are' the

sarﬁe. lateral deflection, w, in accordance with assumption 2. The enerdy

due to transvese shear deformations is expressed in terms of ¥, and ¥,

(Eq(4.4)).

' Co . , ,
 By=owdzedw/ex (44D
g =ovidzedw/dy (a4

N

. The éapabilitg of the“se elements to incorporate ‘thé effect of the
transverse shear def ormiation in the behavior of a structure was tested ona
‘.\;Vater Eetalnm tank with 'tnlr'r.wan‘s and a thick base. No a'rial(,!tlcal

‘solutions exist for this p(oblém and the result§ from another finite
. eieri;ent analysis [2] were used as 3 benqhmark 'ror compérlsqq Equal -
number :of elehehts\ were chosenfor the rjno'del.i The resul,té using 15 éw!c

< ,
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elements are in closeagreement with the reference values. In another test,

" a thick clambed cicular plate subjected to uniformiy distributed load was

analyzed using cubic glements. The results for transverse displacements,

radial and tangen'tia‘l stresses deviate little from analytical results-(31].

This group of elements has a wide range of applicability as

'meniiomd above. Furthermore, they can also be applied to-the analysis of

sandwich plates -or shells if the elasticity matrix includes the equivalent

material properties of :the sandwich section as exblained in Chapter Il. In

~ such a case, the stress resultants _would,bg valid, and from which the

"stresses in each layer can be calculated. Finally, it is noted that the

degrees of f reedom for these elements are geometrical, ‘making their
implementation into existing finite element systems Irelativelg‘ easy.
However, because of the large number of nodes and the three dimensional

nature of these elements, their use for modelling panelized structures

would pose serious problems. - -

43 Pryor and Barker

This element [30] Is capable of Including the effect of transverse

~ shear deformations in an arbitrary laminated plate. Each layer can have -

W
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- orthotropic material properties. The expression for the strain energy

includes the energy-due to the transverse shear deformation of each layer

as Well as the flexural rigidity of each laminate about its own axis. Thus
for each .Ia';;er. all stresse$ are assumed to be.non-zero except for thew
transverse normal stress which is ignored according to agsumptiqn 2.‘

This element Is rectangular with 4 corner nodes (Fig. (4.3)). Ateach

4

node there are 7 degrees of freedom: \, )

(@7 = (v, v, w, 8, 0, By, ¥} o (45)

where 6, and 6y are the rotations of the normal about the ¥ .and y akis

respectively. Also, ¥, and z’u are the average values for the entire sczctior?3 -

" - and are used in the strain energy expression  Since the average values for

2

thé, transverse shear strains are used, it is assumed that the total rotations
< -

of the normal at a given point are the same through the thickness. This is .

evident noting that: \

0, =W, + %8, @6

-

Oy=wyt3y | (4.6.2)

Assuming an average value for all layers could lead to misrepresentation of

“ <36 - ~ 'a
. _— \
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the actual shear strains and stresses especially where constituent layers

" possess significantly difrerent materiat properties. This point has been

écknowledged by the authors and as a ret;ledg the transverse shear stresses

Bt o ! Y

are calculated from the elasticity equilibrium equations’ rather than from

‘T‘his element was used to model a simply supported; square,

- symmetric crossply (0/90/90/0) laminate subjected to sinusoidal loading

of the form qp.Sin (7rx/a).Sin(1y/a).  The non-dimensional results for the

-maximum deflection show good agreement with the analytical results [33].

§

]

*Also, an infinitely—long, simply supported. symmetric crossply (0/90/0)

| . strip subjected to sinusoidal loadirfb of the form gg.Sin(1T8/a) was analyzed

(23]. The rotation of the ‘normal and in-plane non-longitudinal stresses

were boprlu approximatéd.‘ The lack of accuracy canbe explained by noting
that in the actual def ormgd shape of the three’nger laminate the rotation
of ‘the middie layer is significantly different from that of the top and
bottom layers, ’whereas 'in the f ormujatioﬁ of the element, the same
fotétiqn tnroug_h the thickness has been assﬁsmed. '

This element allows for anisotropic. material properties in

arbitrarily laminated plateg and it has Arelétivelu' few degrees of freedom. -

- 38-
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,Hé)wevér‘ nitireéults' seem to be more accurate when there are no severe |
'élisc“ountirf:itles in the rotations of ihe normals in each laher This limits
the apphcabmtg of this eloﬁént to cases where all layers have'similar
,properttes To rectlf y tms shortcomlng the above authors have suggested |
the use of seperqte normal rotat:ons for each layer. This suggestion was
‘!ater lmﬁiemented, de}ails'or which aré given in the following sections. :
4.4 Khatua and Cheung ’ .

This element (13] can represent muitilayer flat sandwich plates -
where thin lagers of hign stlrr‘r\e'ss materials (faces) are separated. by
relatively thick lagers of lower stiffness and densitg (cores). Orthotropic
matenals forf aces ‘and coresare included in the ’formulation This element
takes into account the sirain energy due to bending and stfetching of each
face as well as tgansverse shear deformation of each core. Therefore, -
sandwich plates with thick faces canbe properly modelled.

‘;ne eleme}wt is triangular with 3 corner nodes and 3 mid-side nodes
on each face (Fig(4.4)). There are o r;d‘d”e‘s attached to the cores. The

$ :
corner nodes, eachhave 5 degrees of freedom as follows:

(@7 ={u v.w e, o) , (47)
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‘.\ | {d}T {u, v} . -(48)

.wher’e the last three degrees of freedom are commonio the nodes lying on

the same vertical line accordlngto assumptlon 2 The mid-side nodes, have

2 degrees of freedom each:

Therefore the total number of degrees of freedom for a multllager /fate

with n layers (ie. (n+l)/2 races and (n-l)/2 cores)is G"n*ls

o

The variation of w is cublc wl’ille that of u and v is quadratic The

i

-transverse shear strain in edch core is assumed to be constant accotdingto

! “~

agsumptlon ci. - These . strains are. expressed in terms of inplane

d|sblaéements_or the two mignborir\g faces as given in Eq.{4.9) } .
By = [iay /) o Bw/k /e (4.9)
e | . . " ' ,
By [ i), Bwidylajre; o (492)

where d Is the distance between the middle of the ‘two adjacent faces,

B

- \ c ‘ * ' . . .
- These equatio‘ns canbe easily derived noting the continuity of uand v at the

)

interiayer boundarles

Asimilar element ll4l has also been developed which. is rectangular



This element has only 4 ‘cornernodes oneach face (F ig.(;i.S)). The degfe.es
of freedom at e‘a%p node are given by Eq.X4.7). Therefore, an element with
n iagers ﬁas 4"n+16 ;legrees éf freedom. The variation 61’ w follows a 12
term polynomial wlheréas that of u and v is bilinear in ang y.- The range of
application of this element is identical to that 5( the trianéular Elgment.‘

- The accuraéu of inese ,e‘lements was investigated in numerical
| examples involving a three layer, sjmplg supported, square sandwich i)lat?
 subjected to uniformiy distribt;{é& load. Two cases of isotropic [17] and

A

orthotropic {4] faces were cdnéidened.‘ The results for the central
] ‘ ' r

deflection and bending moments’ were compared with the analgytical

&

" solutions. The analytical result for bending moment for the orthotropic
N . 9 . , u

case was not provided by the reference. The remaining test resuits show

~goodagreemeRtwith the analytical solutions. e T

S L

Aslmllar example was considered with a rive lager sandwich pla;e

[417).  Once more, the accuracy of the elements are acceptable. The

rectangular element was also used to model a three layer, clamped square

<
_ sandwich plate subjected to uniform pressure [29]. A close match between

v

¢

- anmalytical and test regulté is. observed. For the_&ommon examples, the

rectanguiar element required a larger number of Qléments than triangular

»
"

..42.-" /
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,( | | eleients to achieve the same order of aecuracg. This Is not surbrising
slhce' the recfa@lar elem‘entm has fewer degrees of freedom than ‘.t'ne C
tr(angular element.

These elements can be applied to a wnde range of orthotroplc
multilager sandwich plates wlth thick faces Their advantage lies in the
% o L fact that in the derivation or‘the_ stiffness matrlx. specific deformed shape
- o of sandwich p.lateéa (fe. constant transverse shear In; the cores) has been .
.ut'iltze'd in 6rder. to ;educe the number _of element degrees of freedom. iln .
of act, these elemer;ts have fewer de;;rees of freedom than the cérgggonding
"comp9$lte laminate element. Also, these elements have inplane- degrees of |
a | .free_dom. Therefore. they can, after 'some modifications, be used as flat’

'.éhel_l elehents. Finally, - it should be noted that althp;ngh all’ degr&g of
‘ o

freedom. are ge'ome_trical.‘ the 3-D nature of this element prevents its

¢

application topanelized bulldings. - . -+

- L 45 Mawenya and Davies

- . This element (19] is capabie of \rebresentlng an arbitrary: lamlnated
) '».\ “’ . ‘ -

flat or cuﬁved plate. The formulation is parametric, thus. making the

N modelllng of curved boundaries possible. Each layer canhave homogeneous,




\arthotrbpic properties. In the rormulanon. it is assumed that ang layer
. may undergo transverse shear deformation and that eacn layer contrtbutes
to the_flexural rrgrdltg of rhe Iamlnate. Therefore, the element can cqvera
'Qiee range of material and geometric properties. | |
This element is based on Ahmad’s parametric elernent. Irs shape is
fhexa,hedral with '4 corner nQdes and 4 'mid-si.de nodes on each layer
(Fig.(4.6‘))f 'A~ plane in the first lager is specified as the reference plane.
. “The nodes on the first lager are located on the reference plane and have 5

| degrees of freedom each (Eq. (4.7)). The nodes on anu other Iauer have 2

degrees Of freedom each:
@7= (0,9} N (410)

Theref ore,a plate"cohsisting of n layers has a total of 16%n+24 degrees of

o

~ Treedom.
- The variation of u, vand w is an in’complete 'c;ibic’. For each layer,
\ ‘ ‘ .

o g .
€, is assumed to be zero according to assumption 2. The energy

. ‘ o, N . -
corresponding to the inplane displacerﬁents is expressed in terms ofuandv .

for a reference layer as well as 8, and ,°0f layers 1 through (I<1). The -

. ' N ' 7/ . .
appropriate expressions are derived noting -the continuity of Inplane
s ’ ~, L

12

- ; "P45 .



, dlsplacements at the lnlerlager boundaries The transverse shear stralns'

are also expressed in terms of nodal degrees of rreeddm

”xj = Oyj - Wy | . R CRI0))

¥y = Oy - “’u'l (4.1.2)
Numerical ,examples identical to that of Khatua's [13,14] have been
* carried out on this element. The results v’aer‘e compared with the’ same
rer erences (4, l7l The accuracuof the results, for a reasonal)le mesh size
ls quite good\ The element was also tested ona 3 Iauer' clamped circular
sandwlch plate [29] in order to demonstrate its abilltu to handle curved
| botlndarles. Other tests include a3 layer, symmetric, simply supported
reétangular sandwich plate and 2 ‘gmilar S lager square ‘plate'subjected to
slnd'soldel loading [22.’241 ‘D'lrrerent width to tr_llckness ratios l_b{ere,
considered. For tneyabove test problems_. tne results show, once more.f '
good agreement wlth the ar\alutloal solutions.’ |

This element Is suitable for modelling of orthotroplc multllager )

{-
' ,composlte Iamlnates The parametrlc rormulatlon slmpllfles the modelling

of curved edges. - Also, the perl ormance of the—element based on the glven

“/-’

\oal tests, seem to be quite rellable However thls element has a
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| (la,rge number of nodes and degrees of freedom. The excessive number of y

~ degrees -of freedom' make this element dndesirable for appllcatlo'n&to .

sandWich plates because many of degrees of freedom become, not '

. surprisingly, _'redundant. Furtnermdre. due to its 3-D nature, this element

f ' ' . \‘
camo‘t'be used f or the analysis of panelized 'strt_lctures. .

4.6 'Panda and Natarajan -

~ This efement [21] is capable of representing an arbitrary layered

plate. -Material for each layer ¢an be homogeneous ort'hotropic_:. The strain

energy asso‘clated Wlth transver se énear str alns, and inplane displacements,

of each Iauer are taken into account,

The element is quadrilateral and has 4 corner and 4 mid-—side nodes

(Flg (4. 7)) At eacn node there are S degrees of freedom as given. bu

Eq. (4 7. Eacn lager Is consldered tobeina $peclrlc three dlmenslonal

A7

stress state wltn €., assumed negllglble accordlng to assumptlon 2. The

stralns in each lager are expressed in terms of the above degrees of
 freedom n Is noted that the .same rotat| therefore the same
transverse shear slralns have been assumed througn the thlekness of the | N

~ laminate.  The different material properties of gach layer is taken into



H

" account by piecewise integration over the thickness in ~ this

superparametric element.

The' performance of this element was eyaluated on féur rumerical
. &’ . I *

' examples.” The f ifst example Was a threg\lauer (0/9070) simply supported

~ square plate [24]. In the secondexample, the square plate was replacedbjyj a’

rectangle with aspect ratio of 3 [22]. For the above tests, a transverse

sinusoidal load of intensity do.Sin('rrx/a).Sin('rry/b) was applied on the

structure.” The other two examples, were identical to those considered by -

\ -

Pryor and Bérker (30]. The test results were compared to analytical

solutions [23,33] In all cases and also to resulfs obtained by Mawenya's

element [19] for the first and secondexamples. ’

: .
In the first and second examples, the tesults agree fairly well with

the e‘xact“analg'tical solutions. In these cases, thg’displacement results are
' ' (

stiffer. than those of Mawenya's element and are generally more accurate. . - -

Thg accur‘a¢u of results for displacements and stresses are better for

larger width to thickness ratios. This is expected because transverse shear

strains, which are assumed to be constant for all layers in a section are

more significant for lower width to thickness ratios. Results for examples

3 and 4, also approximate the exact analytical solutions closely. '

- 49 - .
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composite laminates. It has the capébllltu of representing curved

-~

. boundaries. lts pefformance, based on the results from the numerical

v 4§
2l

tesfs. is éuite good. This element has thg advantage" of having only 40
' dggrees of freedom regardiess of the number of layers in the: I‘aminate. The
fewer d‘egrees of freedom is achieved by assuming c_onstani tréns(rerse
shcar deformation through the thickness. : Theref' ote, some of the

shortcomings of Pryor’s element {30], as mentioned in section 43, are

retained. - - N <

47 Summary |
From the discussion of the preceeding sections, it canbe concluded

. ‘tha‘t Khatua's elements [13,14] are more suitable for the analysis of

sandwich plates than the other elerﬁents. These elements have been based

on the assdmptibns listed in Chaptcr Il and their degreeé of rreedom'has

| beeen accordingly chosen. Furthermore, these elements, which are capable .

of represennng multilayer orthotropic sandwlch plates with thick faces,
. have proventb be accurate in a number of numerical examples [13,14).

'Panda’s element [21] is more suitable than the other elements for the

" This element is suitable for modelling multilayer orthotropic—




L
T
,

DS T

E]

o

| " analysis of orthotroplc composlte laminates. This element has fewer.

: degrees of freedom compared to element’s with S|m|lar capabilrtles and it

-4
thickness has been assumed. Therefore, the application of this element. as

intended, is limited to cases where thisa assumption ié valid. In otnetj'

cases, the'use, of Mawenya's element should be considered. This element

4 N
- can-also be used to model multilayer orthotropic composite laminates. ,

»

" However, separate normal rotations have been assumed for each layer

. The advantage of the latter two elements over the Honrortons [20]
and Pryor’s [30] elements is the etl icient use of degrees of rreedon).‘
Hahrortgn‘skel_ement has '80» degrees of freedom including{'t irst and second !
derivatives of inplane displacements. Pryor’s element. has only 28 degrees |
of freedom but these .lnclude'w. ¥ as well as 6 at each node. These degrees

of freedom are not independent as tndtgated by Eq.(4.6).

%

F tnallg, it should be emphastzed that none of the elements discussed
are suitable for mo&elling. of sandwich panelized aulldirlgs because of the
exl;tence of non-geometrical degrees .of freedom, or ttte 3-D nature of the
element itself, or the exclustot\ of the effects of significant transverse

shear deformations in the co?e.




CHAPTER V

~

HYBRID ELEMENTS

-]
0

Eeg

5.1 Introduction -

v

Hybrid elements wére lr;troqucéd by Pian in 1964 [25]. - The most

common type of these elements are assumed stress hybrid elements. For

trés group of elements, oné assumes a set of self -éguillbrating stresses
4 N

within the element and simultaneously, ihdependent boundary diisplacements

so that inter-element compatibility is maintained. . In this study, the focus

- witi-be on those elements which are capable of representing sjyrﬁmetrlc.

three layer, flat sandwich plates subjected }3 transiverse loading.
" In deriving the stiffness matrix for these elements, assumptions 1

through 4 of Chapter. Nare adop’ted.‘ Assumption 1, regarding the I'lnear

behavior of the element; Is incorgorated in the choiceef constant [C]inEq. _

-

(3.14). As'sumpt\pn 2 which imposes gero noraml transverse. strain, is
o . - .

- >

- energy. Assumption 3 yh’iu\ ‘dis'allows relative sllwaﬁc of acijacent layers,

» is implicitly made-in Eq.(3.16) where it i5"assumed that nd strain energy Is

A

- 83~ .

: ‘ R . -
maintained by excluding €, from {e}, thus neglecting the assoclau)dstraln



T
(]
A

~l<tst ihrough this type of deformation. Assumption 4, ‘regarding the

. hon-normality of the planes after deformation, is reflected in the choiceof

w. 6, and @, as the degrees freedom. It is notéq that accordingto q. (4.6).

e

R . ¢
e, and eg include rotation of the normal due t shear. Associated with

*I & e 1‘
4

transverse shear deformations are shear resuitants, Q, and Qy- which are
-3ls0 assumed within the element. v The strain energy due to transverse

shear deformations is then expressed in terms of Q. Q. ¥, and Ug.

Since stress resultants rather than stresses are aésuméd, the

~

*

assc:jptions S and 6 can be easily inco?porated t‘hrough proper chdice of B

- and S. Similarly, sections including ‘layers with orthotropic material -

t

~ properties can be modelled by using the approprjgte expréssions for B and

S. This is an added advanfaée of sandwich plate bending hgbrid\gl}ﬂhents

.

'ovgr displacement elements for which a corresponding extension of |

ah

capabilities 'usuauu would require major revisions of the elemgnt '

formulation. Furthermere, for these elements, only w, 6, and ', are needed

®

-6 degrees of freedom at each node. This s due to the fact that for

assumed stress'hgbrld%late bending, elements, only compatibilty of

- M- $ o ix

R



o

transverse displacements and rotations is required between neighboring®

Y

elements and for these elements, displaceménts,ar‘e,prescrlbed only along

! : the edges. Another advantage of using hybrid elements is that, due to thgif

(Y

Z-b nature and their geometrical degrees of freedom, a flat shell element
canbe easily developed fror aplate bending element. This ‘canbe échieve.d
by simply augmenting ine stiffness matrix of ghe'plate p,eﬁdiné élemér,\t,bu ,
the stiffhass m'atrig of an assumed stress ‘hgb;id membrane .elemcnt of the °

. same-geometry. - The resulting” flat shell element céh be.used to analgzé

three dimensional panelized structures [11,15). c

"From Section 33, it is apparent that a number cg“hgbrld elements can
. } ’ Y

be foﬁnulated using various combinations of stress functions and boundary
‘ dis_placements. However, it has been reportgd [27,28] that a necessary

condition for an element to perform satisfactorily is: .

m2n-r ' . * 10(5.1)

’
’ .
”

, s}}het’é m is the number: of ,indepéndent Qtress parameter‘s, nis the‘numbcr of
element degrees of free&orp and r §s the number of rigid bodg modes. If '
Eq.(5.1) is not satisfied, then it ‘is' possible to find {d), other than the:figid
‘body modes, in Eq.(3.23) éucn that (8) becomes zero. Such solutloné
correspond to deformed shapes for the element which have zero strain

- 55 ‘..
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enery. In otner words the element becomes klnetlcang 'unstable. 1€ should *

 emphasized that EqQ. (gt) is not a ynciem condmon for acceptable N

_ ‘performance of an element for reasons which will be investlgated later. -

The next section includes descriptions- of several hybrid elements.

' For each eiemeknt. the assumed stress functions and prescribed edge

displacements are presented. _ .

. . *
.. ¢ ‘ e
' i}
" .
. .

. 5.2 ’Ejln' . 1& " l‘ S
R L. X . -

Pian has developed a mmb’er of plate bending elerhents base& on

i

. assumed stress ngbrid formuiation (25, 26 271. nost of these elements are |

: ~ .
suitable only for thin homogeneous plates and are not readily apphcable to

’ sandwich plateé. ln the formulati/on of these elements, the' f irst

derivatives of displacerﬁents were tak\en as degrees of freedom contrarg to-

assumption 4. Modifications to some of these elements nave been carried

'. “out by Krishnan [15] andwill be discussed in SectionS7;

- Pian has,-briefiu considered a rectangular element with 4‘corr'\er
nodes (27].. At each node, three degrees of freedoin are .as'signed as
follows:’

_{a)T={w.ex.'eu}., . L (5.2)



v

&5

The assumed 'stresses are of the form:

. Mgy = 81*32**33;9*31“0*”‘511*9’31292 - (B3
ad - .

= 54*Bs""359*513*2’514*9‘3t592. - (632

N,;u = 87’38’"899’3:5”2'317_*9*&89? S (53.3)

N

The expression for shear resultants -are obtained by substituting Eq. (5.3) in -

Eq. (21). In doinglso it is noted that only 17 of the 18 8‘5 are independent.

Tne variation of dlsplacements along the_edges Is taken to be llnear afdls

— ‘.
gwcn bu £
we-Dw sbw (54
\‘_:[ ’ i N
0 (-Doy +BOy . . 642
8y =(H:)6 p'l:euj : 3 : . (543)

‘where subscrlpts i and j rerer to the values at nodes-|-and-) and ¢ andt Is the

- normalized coordinate along ij (Eq.(5. 5))

£=S[Lij . | .. | - (55)

-
“»

where s is the actual distance of a given point onside Ij fromnode | and l.“

is the length of side ij. Similar elements have‘been considered by Ha (1]

~
+*

\
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and Barnard [15] as descirlbed in sections 5.5 and 5.6 respectively. .

S3 Bartelds and Ottens .

This element [6] is triangular and has 6 nodes, three at the vertices
and three at the mid-sides. At eachnode there are 3 degrees of frge’ciom as -

‘ : ) i
given by Eq. (5.2). The moment distribution for this element is givenby

' Eq’ (5.3). Therefore, this element has also 17 independent stress

parametdys. The variation of -displacements and rotations along eacﬁ side
* . .

Is pardfolicas givien in€q. (56). B
W = (222-3ew | *(-4&2+§&)wm +.‘,(2£2-£:’:)w j oo (56.0), |
o 8= (223008 +'(-4z2+4r.).e (22eDay P
oy §(-4a2+4a)e,,m+cza2-a>eu, . (5.5.5)

where subscript -m refers to the value at the mid-side node and all other

~

varlables are the same as in section 5.2.

54 Cook -
Cook has Introduced ¥ famllu of triangular elements with 3-corner

nodes (7, 81 At each node there are 3 degrees of freedom as given in Eq

)



(5.2). These elements have S, 7 and 9 iﬁdependentlstréss_ parameters. The

" moment distribution for these elements are given in Eq.(S.?). (5.8) and (5.9)

respectivelg.
(”xx = BitBax
Nug = 32’859

"XU =.33

AN

"xx = 85*34“*86“
R

' Nuu = 82‘85”879 |

My =Bs

- Mgy = BBax+Bay
My = B2*Bsk+Bey

My = B3+ Ber*ay

(.

Eq. (5.4.2) and (5.43). The variation of w Is quadratic and depends on e

- 59 -

B

(5.7.2)

(673) .

(5.8.)

(582)

"~ (5.8.3)

(e
(5.9.2)
(593)

The variation of-rotations along the edges is linear and'ls glven by

¢ .



one [l

%

»

;tangential rotations along the edge. -"The expression for the edge shape:

functionused fs: -

we (l-a)w, - w) + Ly LHEXG e;)/z S0

,where oI thy fangential rotation along the edge and the remaining "

variables are as defined: In-section (5.2). |

S5 Ha

Ha .haé dQVt;I;ped two assumed stress hybrid elements [i1). The f ir'sé
Is 2 rcctangular element’ with 4 corner no&es and the second is a right |
angied triangular element with 3 corner nodes. The nodal degrees of -
f reedom rpr these elcments are given by Eq. (5.2). The assumed stress field

for thesé elements Is given bg Eq. (5.3). Théyarlatidn of 'd'isblaceme_nts‘ and

rotations along the-edges is given by Eq. (5.4). In the numerical tésts of

Chapter VI, only the rectangular element has been considered as this -

element’s, performance is reported to be superior to that of the triangular



©.6 . Barnard
"Barnard has introduced , a qanrilatéral' and a 'tr((angula‘r element
having 4 and 3-corner nodes respectively [S). The degrees of f reedom at

eachnode are given by Eq. (5.2). The stress distribution for this element is

given Bg, Eq. (5.3). The Qisplacemehf field along the edges is given by Eq.
(5.4). o { . |
. The quadrilateral element in its rectangular form is different from
Ha's element ’in ing the c;ho'ice of expression for S. For this elemen@. S is‘
giveﬁ by “Efi.(.Z.B.Z)‘ ‘whereas Eq(2.13.1) is u:sed in Ha's elern'e;'\t. For ‘the
nbmerlcél examples: considered in Chapter VI, very thln face‘s,a're aésumed
and this diff ereﬁcg is ‘of fo conseqﬁepce.' Therefore, only t,{a‘s: rectangular

®

element [11] has been considered in the numerical tests. .

5.7 msnnan

N Krishnan has cor\sidercd:a g(oub of reciangular eln‘zments- with 4
corner nodes [15). | The de;fee'.f, of freedom ‘at éach node are gi;e by 'Eq.
(5,2). Theréfére, each lelement‘ has lé degrees pf f;eedom Foyr different

stress 'f|el%s~mvé been considered. Three of these with §, 7 20d 9

independent stress parameters are given bu‘ €q. (5.7), (5.8) and (5.9)

- 61 -
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. rcspccil;rélg; 'The' fourth distribution has 11 -independent barameters and i's

glvendy
Nxx -'-,31*848‘8'&!’310@ o | S : (50
"UU:: ’;2‘55”;3;Ufbll;‘g ; o ‘f' '(5.11‘25 °I

Tﬁe 'displ'ac,ement and rotations vary line;irlu "along the :vboundéur-"ies 'l

. according t<; Ed. (5.4). |
. i

| ‘5".3 ZnLo.Emmu_ﬂn.dzs

For éasé of reference, the hybrid elements io'hq discussed will be :

™

referred to as Rm or Tm. The Iettér "R".or "T" refer to rectangular or. -
. triangular elements respcc}&e&and the letter "m* designétes the rumber
"of stress parameters. For ;zlemgpgé'Wlth' mid-side nodes, "m" is followed
by *-* and the rumber of mid-side nodes in the element. Forfexé&uplg.“ﬁll
;'ref,ers to recfar\gulal’" element w?tn U Bs and TI7-3 .rerers' to “a‘
, o :
" trianguiar clement with 17 §'s and 3 mid-side nodes.
Anunrestrained clem:mt stiffness matrix is in gém}al singular and"
has a number of zero cigerwalues. The echétms corresponding to zero_

e



eigenvalues represent modes for which poient,i\al, energy of edge forces is

zero. For a well formulated elgiment; these eibenvectorsﬁpresent only the

rigid body modes. For these elements, the stiffness matrix can'be made

‘non-singular if constraints are imposed to prevent rigid body modes.

‘For hybrid elements, it has been shown that it is possible to have a .
singular stiffness matrix evenif the rigid body modes have been suppreséed, -
) {9,27]. In such cases, the number of zero eigenvalues of the element

stiffness matrix is more than the number of rigid body degr'ees of fréedom.

The "eigenvectors corresponding to these additional ‘zero elgenvalues
. \ ;

represent deforrmed shapes for which the potential energy of edge forcesis

zero. These deformed shapes are known as zero energy modes and are

presented by the additionail eigenvectors.

For hyprid elemenis under consideration, the potential energy of the

edge forcesis givenby Eq. (5.12). - -

e
+ i
”
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o
4 - .
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WIJ {”xx Oyxr xxxeu*"ggg *Nuue Yanay +

. j I LT MO~ Mye Oy~ Mywy o laway <

&

II {Qx Qxxw QW y ngw}dxdu Y

«‘ where x and Yy refer to partial derwatwes of a function If the

mathematlcal expressnon for zero energy modes along with the appropriate

: (&oresslons for the str_ess dlstrlbutlon are substituted in the rignt hand

side of Eq. (5.12), both integrals will vanish. However, it is not al’wag5'
possible to obtain the exact mathematical expression for the zero energg

modes It ls noted that'Win E¢ (5" 2) vanishes f or any stress dlstrlbutlon

if oonstant w, 6, or 6, are subst{tuted in the right hand slde.| This Is‘ |

expeoted since these eupresglor\o correspondto the rigid body modes‘for an
element. |

The 'e;clstenoe of zero energu modes codld"adveréelu affect the

accuracy of an’ element if :5 5 given mesh; .adjacent elements cao

simlféﬁeouslu assume Zero energy deforme& shapes: " Therefore, It is

T

» .t
- A -



" necessary to suppress these modes. However, f ér some zeroenergy modes,
due to geométric ‘c‘ompatibilitul requirements, tnlz problem does not exist.
Thiz accuracgof an element ;s not afl rec,ted by these modes. All zeroenergy
.modes can be suppressed if a sufficient Qumber of indepéndent stress
parameters are chosen. The required complexity of the stress field, in
order< to suppress zero energy modes, depends on the mathematical
expressions for these modes. These méthematical expressions are in
general difficult, if nét imposs'ible, to obtain. " Therefore, it is often not
possit;le to predetérmine ihe necessary terms in the stress“f ields for"
eliminating "au zZeroenergy modes. |

Among the.elements considered eaflier, elements R23, RI7 and Rl
have no zero energy modes. Elements TS, T7 and T9Fmve one zero energy

mode each. The zero energy mode for these elements is shown in Fig. (S.1).

By inspection of Eq. (5.12), the expression for this mode Is found to be:

w=0 2 S (5.13.)
6 =Cx 68D
0y=Cy. R | (5.13.3)

where C is a constgn't. It is-noted that once Eq. (5.13) alongwith the stress

' \
. o
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funcuons for 15, 77 or T8, represented by Egs.: (5 7) (S 8) and (S g9)

_ respectivelg are substituted in Eq(5 12) zero w i5° obtained, This mode LT

does not occur in a mesh because adjac,eng lements cannot assumedthe

* deformed shape of Fig(5.) simultaneously’ It can also be poted that, in

this case, If »y term is addéd to expressions for M,, and My, in'Eq. (5.7)

(5.8) and (5.9), this zerobnergy mode vanishes. “ , .

Elements R7 and RS have two zero energy modes'each. The { irst

4

" mode is shown in Fig. (5.2a) and is similaf to the mode for TS, T7 and T9,

Once more, this modé can be suppressed by addition of xy term to' the:

4 2

expressions fer My, and My, The secondmode is shown InFig. (5.2b):-

Element RS has f our zero energy modes, two of which are identical

. to those of R7 and R9 (F ig (5 2). The third and fourtn modes are glv‘?ﬂlg

'Eq (5.14) and (5. 15) respectwelg L | . ’
. 3 . - . S
w=0 . ' (5.14.1)
o zCry T (514
' 00 . (514.3)
.@ L4
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w=0", | o S 4,5.15.\):
0, = L . (5152)
0 u:Cxu .. ' ' (5.15.3)

nére Cisa consiant. Zero W Is obtalned If Eq.(5‘.|“'4) or (5.15) along with.
‘tutéd in Eq(5.12). These two modes canbe suppresséd if y
and X terms are added to lexpres’fsiong (for‘nxx and "uu in Eq:(5.7) ‘

respectively. The outcome would be identical to element R7 which has only

. 4 * . ,
two zero energy modes. Element T17-3 has only one zero energy mode as
¢ N My i )

shown in Fig(5.3). -This mode may occur in a mesh 'and\the,rerore, could

- ’ .
- *.distort the results. |
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L, CHAPTERVI = :
DESCRIPTION OF NUMERICAL TESTS

6.1 Test Desgription . .

The availability of analytical solutions is a major constraint ln the

" choice of test problems. ©On this basls. the performance of th;z ‘hybrid

elements under consideration was evaluated from the analysis of two
rectangular sandmch plates the first being slmplg supported and the
second clamped Botn plates are subjected to a unlt unlrormlu dlstrlbuted

load: The plates are assumed to 1ie in the xy plane (Fig.(6.1)) with the side

,parallel to X-axis (a) always being smaller than or equal o the side

parallel to Y-axis "(b).

For each case, lhe element convergence characteristics ‘and the

“effect of varying the shear parameters and element aspect ratios or
L critlcal displacements and stress resultants were studied, * Tne shear

parameters ror simplu supported and clamped plates‘ﬁ‘”der ined bu Eo, (6 N

;\\d (6 2) respectively:

5P = 5.22/D Q S T () I

I T



5P = S:2%/(m12D) - - 62
where S and D are defined by Eq(253), (25.4), (2.9), (210) aﬁa (213). The
§§§ect ratio is defined by Eq. (6.3): ‘

AR=b/a3 | | Lo (6.3) .

Because of symmetry about 'both“ce:'\ter i’ines, only a quarter of the
plate was analyzed (Flg.(s.l)).' Typical meshes for three types of elements

are shown in Fig. (6.2). The boundary conditions for the model of the

. simply supported plate are given by Eq. (6.4). A

) wL 0 . alongboth edges | \ (6.4.)
o i . ‘ X
. 6,=0 along edge parallel to Y-axis and
along &nter line parallel to X-axis | (6.4.2)

L G

0  alongedge parallel to X-axis and - b

<>
=
"

_along center line parallel to Y-axis .  ~ | (6.4.3)

For the clamped plate, the boundary conditions are given by Eq. (6.5).

w=0 along both edges | . (65)
- ' ‘ -\ ' -
- =0 . alongbotti edges and |
‘ N “along center: line parallel to X-axis (65.2)
- “»

.



FIGURE 6.k OR!ENTAT’ION ‘OF THE QUARTER PLATE |
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eu =0 along both edges and

along center line pafallel to Y.-axis' | (65.3)
The 'siructure ldad vector was formed based on 'thé tributary area rather
; xthaﬁ by the equivalent work principle. Even though the latter procedureis
theoréticallg‘ more consistent, both metﬁods tend to yield the same fesults
2 the mash fs refined. -
The cWergémeprowrties 6f the elements were tésted ona sl‘mplg‘

. supported plate with the geometric and material specifications given by Eq.

9 _ . . Y
(6.6) and (6.7) respectivety. .
. a=3048m. . . .. BN (YY)
7 'b=60%m - .~ N 466.2)
63801074 m e L 6e3) . L
c=507 x102m ... (664)
7 i Gebie6 MPa . o " 674) -
. E=6894B000 MBR .- v .- (672 -
o Thus, this plate has a shear parameter ,of-hp‘aﬂd an-aspect ratio of2 itis
2’ _ o i T



. analytical solutions Tor deflection at the center and normal moment at the -

. ' s
v +
h | 00 } '
»

noted that the ratio of d/t.meets the requirement of Eq(21) and E is

Ay

. assumed to be zero. -This ié 'consistent with assumptions 5 and 6 of

Chapter |. The analytical solutions [29] for the maximum values of WMy °

[l q‘\‘ i ’ ) 1
and "UU are given in ‘fable(ﬁ.l). | |

_ The convergencetest for the clamped plate was performed using the

followinﬁ dat;: B

23048 m I | L (68
b=3048 m | ] (6.8.2)

t=6350 %1074 m . | . C (683)

c=5017 x1072.m - | L (684) |

) ’

.G=5130 W2 L ey

| E'=68948.000 MPa R - (692)

) {

" This plate ‘has a shear parameter of 4 and an aspect raiip of .. The

mid-sides are given in the Tast two columns of Table (6.2). The values at
thcse" locations are maximum for the structure.
The'shear parameter test was carried out with amesh of %
/¢ ) ' ' B ‘ ..

-
-
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o W Fiew - Myy- -
‘ al - (m) (Nm/m) | (Nm/m
0 | 0206 | s | 2972
- éq 0152 | 6514 2972l *
' 4 | 0.124 6514 |- 2072
g0 | om | 654 | 2072

TABLE 6.1; ‘YTlCAL sownous‘[zél‘ FOR CONVERGENCE ANC

A4
.

- SHEAR-PARAMETER TEST ON THE SIMPLY SUPPORTED PLATE -

) 7

N

-



\
wh w MxR
l (m) (m) | (Nm/m)
1 00 o w 2223
1.0 0078 . -
2.0 0.045. - -
4.0 0.029 0.031 2626
— 80 0.021 - -
160 | oo | - -
_® 0.012 "%5.012 3286

“\

TABLE 6.2 ANALYTICAL SOLUTIONS (29] FOR CONVERGENCE ANC

SHEAR PARAMETER TEST ON THE\CLAMPED PLATE

u
»

L —




rectangular or 32 tri'an‘gular: elements. The perform_ance of the élemcnts

for di.r r eréni shear paramete_i"s Qas tested ona simplu supported p‘late with

the properties gi\)c}\ by Eq. (6.6) and (6.7'.2).' For thié'tcgt, the value of 6

Qas varied accordingto Eq. (6.1) fc) obtain dif re;ent shear parameters. The

'I."‘ . ahglgtical solution for. deflections and moments for the range of shear

parameters considered are given in Table (6.1). These solutions correspor
to maximum values which occurat the center of the plate. \
| Thé_ sﬁér parametxer test for the clamped_platé was‘performe‘d ona
" plate specified by Eq. (6.8) and (69.2). G'was <‘:hanged 'accordlr'\g to Eq.
(6.2) In order to Qield dif ferent shear parameters— The analytical solutions
for the maximum  def lections, at the center of the plate, are ‘gl'vendln the-
first column(w*) of Table (6.2). In this case, the analytical g&lptlpns for
stress relultants are not a\‘railable. |
. The aspect ratio test was carrled‘ éutj:slngl identical meshes to those ° |
of the shear parameter test. T;ué accurdcy of the clm;\ts_ for diff cr;nt
aspect ratios was éxaniru;d- on a slmplg. édpb'orth .pléte specified by
Eq(66.1), ‘(6.6.3\), '1(6..6.4) and (6.7). The value for b was vﬁrled in order to h
o - obtain dlrrergnt aspect ratios. The anallutlclal ‘solutions for m_'axlm:u'n#

e

deflections and moments, at the ‘center of-the plate, for different aspéct

\ N " . . ’
. K 4 +
, .
. - -
N - - B -



r
-

o - - . A o

ratios are given in Table (6.3).

A similar test for clamped plate was carried out using Eq.(6.8.l). )
| Ea.s). (6.8.4) and (6.9) as specif léqtio’hs. As before, b was changed in
?7 . orderto obtain dit;ferent aspect ratios. In this cése. analytical solutions
| were limited to maximum deflections which occurs at the center of the

plate. These solutions are given in. Table (6.4).

-,
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w

(m)

Max
(N.m/m)

Myy
(Nm/m)

10

12

“}p
18
20
30

5.0

14

 0.075

0.091

0.105

0.16

0124 -

0.147

0.154

0.057

L0453 ]

3066
4010
4823
5521
6072
6514
7616

791

4g8! -

*’”3068

3209
3241 .

3158

- 3068

v

2972
2568™

2460 :

.J’_ @

2402

[l
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(2. 5) Fig. (7.1) and (7. 2) show the results for the m3

. '+ _CHAPTER VI .

&

{

DISCUSSION OF THE RESULTS . L

o 4 5,

The results for the convergenée. shear parameter and aspect ratio

tests wlll be considered in the followlng sections. Table (7.1) shows the

| llst of sgmbols that are used for plotting the results for various hgbrld

elements. The figures for the results also include element T9-2 which was

s
-

not described in ,Chapter V. The dlscussmn or the performance of this
element is excluded from the followlng sections. Details on thls element

are glven in Chapter VIIL.

7.1 ConvergenceCharacteristics
~ : . . . fL‘ﬁ

The results for the convergence tests are presented in Flg(7 l) to

um dlsplacement

: at the center of slmplg supported and clamped plates. It i noted that all '

2 »

, .elements with the exceptlon of Ti7-3 converge to the anal tlcal value as
the mesh ls refined. . T17-3 seems to, converge to a v_alue less than the

R ) L * . . .
" . analytical solution Results for TS, T7 and T9 approachthe analytical value

LA

s B .
.
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LIST OF S BOLS FOR HYBRID ELEMENTS

EEEQEEI REFERENCE §I§§9‘:
RS [15) 'A
R? 1153 .
R (15 A
wéff \ [151 U“
‘ ri7 - o 9 |
s - el ! '}-;93 o
17 el o
TS " 'tel v
Ti7-3 - 63 v
“ye5a 0-
Table 71 Listof Syrﬁbols \.
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;rom bel'ov;:ﬁ Element T9 is stiffer than 7 ;mic‘h in turn stiffer than TS.'.:
Results for elements RS, R7, RY; Ril “and RI7<approzachthe analytical

so!utfo}\ from above. That is these elements tend to be too flexible. For

all me’s”!{ size‘s, the deflection results from the elements RS, R7, RS and Rl

show that {hese e.lements exhibit a lesser degree of flexibility in the same

sequence. In other words, fo.r gll mesh sizes, Rll is stiffer' than RS wﬁlch

is Stiffer than R7 and soon. The results for RIl and RI7 are the same f&'\

the simplg supported plate. For the clamped plate, R17 is stiffer than RI.

From the hierarchy of the above results , .it can be concluded that for the ,

family of rectangular and triangular™ elements under consideration (T17-3

excluded), addition of extra stress parameters makes an element stiffer.

at the center of the simply supported
(

plate are shown in Fig. (7.3) and (7.4) .respectively. The results for all

o = Jhe results forl My, and Mgg

" elements converge towards the analytical solution as the mesh is refined.

Results for TS, T7 and T9 are less than the analytical value whereas R7, R9,
Rl and R17 yield resyits that are larger (Table (6.1)). The results within
each of the above groups Is less than 1% apart for a mesh of about 100

degrees of freedom.
N

1

-
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For the element RS, ”xx ;pproaches the 'anaigtical soloutiOn from

-

: A C ‘
above whereas nyy approaches it from bek\v,, This can be. explained by

-
o

noting that for RS, the assumed functions for My, and My, are %t
symmetrical - in" x and y (Eq(5.7)). Therefore, it is expe,ctecf that‘ the |
acciuracg obtained s depehd_@r;t onthe axes orientation TS has the same
stressy distribution as RS However, the test results for TS, for.mome}its
at the center, are the average values from the two elements which share
thc'\ center node (F ig.(6.'20)). The averaging process has yielded rcsultg \th.at

seem consistent.‘ Nevertheléss. elements RS and TS should be used with

caution because they both lack invariance towards the choice of the axis

-system. Finally, it Is noted that results for TI7-3 converge towards the

analytical solutions from abovebut not as rapidly as tht; other elements.
The results for:the normal moment at the mid-side of the clamped
plate is shown in Fig. (7.5). Theresults for all elements seem to converge

to 2 valug larger than the analytical solution (Table (6.2)). This can be

cicplalned noting that the boundary conditions used in the analytical

‘solution are those given by Eq(2.8.3) in addition to the third condition:

My =0 (for y=constant) L@

-9 -
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R ,
t

t
o

'Anal'ytical solution for the more p}acticai boundary condition:

%= 0 (for yconstant) . - (72)

is not available. These boundary conditions differ from those used in the
finite element model as given by Eq. (6.5). Furthermore, the discrepancy
between boundary conditions affects the results rost adversely near the

boundaries. Tms |s evident notnr;g/that the results for momcnt at the

~ center of the smply supported plate are in general more accurate than

1

Ay

thosg at the rmd-s:de of the clamped plate even though a similar

-discrepancy between the boundary conditions (Eq.(2.8.2) and (6.4)) existed

for the former case as well.

-
—

fro:ﬁ the résu)ts for the corwergencﬁest. it canbe concluded that
the elements T5, T7, 'TQ;.' RS, R, AR9., RII and RI7 converge toward; the.
apélqtlbal solutions for the r;(mplg supported case and for defiection at the -
ce'nter’of the clamped platé. These elefmznt_s tend to bécome sti; fer as the
number of independent stress parameters is incrgésed. Element Ti7-3 does
not perform as well as t'WEhér 'elemq;nts especially for the 'simplg‘
supported plate. | | | | |

It is importart to note that . the accur’acg'or the results for the

simply supported plate is generally of the same order for displacements
. y . v - -- R L

-2 - -




. L
- - ¢ . . oy

- and 'stressgs. This is because the, stresses for hybrid elements, unlike

displacement elements, are. not. calculated from derivatives “of
B ) s N " ¥
. displacements. Finally, the stress results near the boundaries must -be

-

interpreted cautiously. Deviations from the analgticél solutions are iikelg
., - 1 ' ' ) ‘,

to be accentuated at. these locations when bounadry conditions in the

. \ ,
~ analytical solution differ from those in the finite elerr‘pnt model.

F
)

.. 7.2 Influence of Shear Parameter on Accuracy

a v

-

" Results for the shear parameter test are presented in Fig. (7.6) to

. (7.9). It should be repeated that shear parameters for sinjpig supported and

clamped plates are defined differently asi\nmqéted by €q.6.1) ‘and’f'(6.2).
Ideally, the accm;acg of an element should not be affected by the variations

“in the shear parmeter. In the above figures, where the ratio to the
¢ '

analytical (exact) is plotted on the vertical axis, this~ideal behavior would

-

. correspond to a horizontal line.
The analytical solutions .for displacements decrease with an
increasing shear parameter as shown in Tables (6.1) andp(ﬁ.z),\ Also, the
‘ monients_for the simply supported 'plate are. Indr?peﬁdent ‘of\‘tne shear

" parameter. The analytical solution for the moment at the mid-side bf the

- . _-93 -
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clamped plate is not availabie for the range of shear parameters

, considered. However, for a plate with no transverse Shea_r’deformatton.

¢ .
Ty .

this moment is »g'ivcr'\ in Table (6.2). It is known that ;he transverse shear
deformations have a relieving' effect onthe magnitude of this moment.

The resul'ts for dlsplacement at the center of the simplg supported
plate is shown in Fig. (7.6). ln this case, all elements wltn the exception

of T17-3 perform satlsfaqtorilg. Element Tl7-3 seems to .perform more

aécuratelg for higher shear parameters where the contribution of

transverse- shear deformations is less significant. It is noted that the

! )

" relationship between the displacement resuits and the number of B's, which .

Al .

was observedin the last section, is maintained here. That is, for the shear

parametérs égrls_l:der;ed, displacement results fo;* a famil'y of elements seem
to bécome stlf fer v;ith mcreasing number of §'s. This. is evident from the |
results for TS, T7 and T9 grow s well as RS, R7. R9 and Rl grow.
Element R|7 dcvuates slightlg from this pattem The largest. deviation

occurs when the shear parameter is 80. At this point ratio to exact for

RI7 is 0.6% larger than Ril Tnstead of being smé’llgr. This could be due to

the fact that the tests for RI7 were carried out using a separate set of

programs. - The differences in coding of these ﬁrogréms might have caused .

+




N

some numerical ' discrepancies in the résult"s. o
_ Resuits for the qisp]acement at the center of tﬁd Clamped plate are .

shown in F ig.(?.?). Once more, the ’relationship hbet'wceﬁ displ'aceméni

’(‘esults and the number of B's is donf irqu'for two groups Qf TS;!_T? and T9

'as wéll as RS, R7, RS, Rl | and RI17. The above elements see;'q to be more

accu}ate for larger shear parémet;rs. ~tnis can be expnlainéd noting that the

| "énalgt.k_:a,l solutjon (Table. (6.2)) uﬁderéétim_ates tﬁe :displacc[mznts for

lower values of the shgar parameter [29). This is due to thé’ parficular‘

choiceof displacement fumtio;ﬁ,in the analytical solutibn_ Consequently, l‘

.tné ratios to exact for the lower shear pafameters are overstated in .

L} o

Fig.(7.7). Element Ti7-3 behaves dif ferentlﬁ {rom other elements. The

_ r_na»:'imum variation of the'ratio to exact for this element is only 2% which
is 'mu’ch iess .tha'n the: corresponding val‘ue for the other elements. |

The results for moments (Fig.(7.8) and (7.95) at the center of simply .
supported plate ;show a maximum 'va‘riation of 2% for the rat;os'to exact
over thé range of shear parameters considered. This Is bexpected because
~ the moments for thg simply support;zd plate are ind'epend'ent’ of thg shéar

parameter. as shown In Table (6.1).

.Due to the_unavailability of analytical solutions, the results for the -

-

‘/A.. o _99_ -




¢ C. . . \
moment at the mid-=side of the’ clamped plafe are not plotted. However, the

raw test results indicate that all elements yletd ,larger moments for

 increasing shear parameters as espected by theory,

7.3 Influence of Asbect Ratio on Accuracy

The"résults rof the aspect ratio [test‘s are shown In Fig. (710) to
, ‘(?.13). Fig. (7.10) shows the displécement at the center of the simply
supporied plate. It canbe seen that the accuracy of qlements TS, .T7 and f9
as cc)mparéd to analgt‘ical solutions of Table (6.3) is not'signiﬂcantly '
affected bu the changes in aspect ratio. Accuracuor elements RS, R7, RS,
R1 and RI7 is shghtlg influenced by’ the variations in aspect ratio. For..
| .these elements, the resqlts are gene“rallg more accurate for higher aspect
: r;tios. "It is noted that the sensitivity of these elemehts to aspect r;:tib
hecreéses Wit"c 1increasing mmber_of $s. Tﬁat l;.; elemeﬁt RNl is less
;semsitive to changes in a;péct ratio than RQ\ and .so on AISO; once more,
for two groups of TS, T7, T9 and RS, A7, RO, AN displacement results at
any aspect r.atio.- tend’ to be stiffer for tﬁe element with thg larger number

of B's. Element Ri7 does not fit in this pattern for the reasons mentioned -

earlier.

- '00 .-
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. # ‘
Elemen( T17-3 performs satisfactorily for aspect ratios of less than

2 and af ter that the accuracg for the displacement results deteriorates
rapidly. This is due to thc exlstence of a zero encrgg mode (Flg (5.3)) in
this element.. The results for elements HS R7 and R9 are not aff ected by
their zero energg modes (F ig. (5.2)) because zero energy‘ modes are
- trlggered under specif lc Ioading conditions. For example the zero energg'
mode of Fig (S. 2b) causes antlclastlc bcndmg in an elcment which does n?t |
* exist in a snmplg supported plate subjected to a umformlg dlstrlbuted load.
Héwes;er. it has been shown [28] that for problems with anticlastic bending,
this zeroenergy mbdg could distort ~tma- results. . | R " | / a
Fig. (7.11) shows the di[splaqenﬁént results .at thé. center of tt.m‘.h ,
clamped p.late. In this figure, édiscontim{ty in slope of all curvés exist at
an aspect ratio of 17. This can b explained noting that in the analgtical
-solutions (Table (6.4)), a different displacement ’functién hag been ised for
| aspect ratios larger than 14 (291 R
As previously described, for a giveﬁ aspect ratié, the displacement
’ results in each of tﬁe two groups of T5, T7, T9 and RS, R7, R9, !;Il and R17

show that the elements tend to become stiffer with lnc?easlng number -of

$'s. Also, results for these elements seem to be equally sensitive to

-

v

t _los-

- : , . P -7
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? . .
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changes in aspect rgtio. These patterns are distorted for aspect ljatiios -

J | greater than 2. Element T17-3 uleids results ‘that are in Ilﬁe with the other

-

. elements for aspect ratios less than 2. For large; aspect ratidé, the

f

a'ccuracg of the'results deteriorates rapidly.

L et A ek

'fw,?f‘ . » IR ' ) . K
Fig. (%)2) shows the results for M, at the center of the simply’

D

¥
&

supported plate. The analytical solution for My Increases with -aspect .

 ratio as shownn Table (6.3). Elements T5, T7, 9, RS; R7, R9, Ril and RI7

perform quite 'Qvell forthe range of aspect ratios consideréd. The maximum

vaﬂriation in accuracyis about 3.5% and ‘belongs toR7. For th{s clemént. the
accuracy r'emains étable for aspec} (a‘tﬁo; of l;e.ssttna'n -qund'afterwards’. .
the accuracy imProves. ' The adcuracg of f{resultsi\‘;rgr‘ T17-3 bécome | .
unac%:gptable for large aspect ratios. For 'in_stancé.ﬂ at an aspect rafio of 4,
. ; o RN
o ﬁﬁe error ié"aboxit V21X, )

‘Fig. (7.13) represents the results _for”.‘n'gu at the center of the simply

- supported plate. The analytical solution for ﬁw decreases with increasing

b4

aspect ratios as,shown in Table (6.3). - Elements T7 and T9 perform

satisf éct,orily whereas the accura”cg.of T5 seems to diminish for aspect

-

‘c".

- ratios larger than 16. The supeﬂoritu of T7 and T9 in this set of results fs .

-\r’

S
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die to Iqi'ger rumber of §’s in their stress fields. The accuracyof R7, R9

and RN .improvés for higher aspect ratios. Elements RS and RI7

(

overestimate "UU for low aspect ratios and underestimate it for higher |

ratios, that is the curve for these elements crossés the exact line.
Element T17-3 ylelds uhacceptablé results for aspect ratids Higher than

14. For instance, at an aspect ratio of 3, this element gi‘clds an error of "

+40% In Myy:

The results for normal moments-at the mid-side of the clamped plate

are not plotted due to the unavailability of analytical solutions.

74 Sunmdby of Results .

I o ’

Frof the above results, it can be concluded that resulis obtained

©from assumed stress hybrid elements may approach the analgticél value
. from above or below. Therefore, tl}e‘ir»‘résdlt‘s are not bounded. It is
evident_ from the results that for a family of .elements, increasing the

number of independent stress parameters makes the elements stiffer. .

4 T .
From a comparison of the accuracy for moments between the two

types of piates in the cézvergencetgst. it can be concludedthat the results

o i L
C-07- -
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are very §'ensitive to the choice of boundary conditions. Therefore, the

.

*

-

analytical results, specially near the boundaries, are rot a“very good -

measure of evaluating the performance of an element unless identical

-

boundary conditions are ised in both the analytical solution and the finite

element model. Nevertheless, the -analgtiéal sdlutions remain the best

benchmark In humerical tests.

All the above hybrid elements perform quite well for a wide range of .-

bl

shear parameters. In the aspect ratio test, for 'the element with larger

number of independent stress parameters in a given family, the accuracyof

-

displacement results was generé!lg less sensitive-to variations in aspect

-

" ratio.
" O’yerall‘, element1 T17-3 performs: poorlQ for aépect ratios greater -.°
than I4 T'hiis ‘is due to the éxisténce of !ts unsupb}essed iero energy mode -
(Fiig. (5\.3)).‘ Tngi'eror;z. it is recommended tn;'at no element having zérp

8

rgy modes, capabie of occuring in a mesh, be used for Tinite element

‘;modelling. These modes may cause severe inaccuracies in the results under :

¥

”certaln 'lbadi'ng éonditions. I ' : ' ;

- Element T8 performs consistently well In all tests. It has one zero

v

- energy mode that does not occur in a mesh. Its ads)antég&over TS{s that

Y

$ ) -
- 108 - o 4 *
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,triangular‘ elements. Among the elements in this:group, eleménts RS, R7

its performance is less sensitive to changes in aspect ratio. Also, its

stress functions are Invariant with respect to the choiceof the coq_rdinéte *

" system. Element T7 also performs quité well but it has the shoftéoming of

. § -

having a constant ng distribution Theref“or'e.'the use of T9 is

recommended where trianguar elements are required eg. for modelling of
plates with complex geometry.

- Rectanguiar elements are compufationallg simpler to formulate. than

L

m",‘
- )

' and Rg each have at least one potentiallg troublesome Zzero enefgg mode

"N

T by
(Fig (5 2b)) and theref‘ore their use should be avoided. Elements Rl and

Rl? perrorm consistenfly well. The results for-these two elements isin .

PR

close agreefnent in 'an’ cases. Therefore, the use of RIl s gecommended

because it requires less computation time than R_l'7. ~

- 109. -
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“Another alternat,we,would have been a general quaqril_ateral element. -

quadrilaterals do not 'exlst and 'numerlcal integration ‘could conslderablu -

. increase the computatlon time Involved

" would surface, S e

CHAPTERVII o -

L~

‘AN EXPERIMENTAL ELEMENT
fae

8..- Element Descripfion - R
In'the prévious chapter, it was conclidedthat elements T9 and‘RIl
perform‘satisfactorilg for all the numerical testsconsidered.‘ in.this -

chapter, an'alternativ'e element is- considered and its performance is

evaluaxted. h _ ' _ % A

The. snape of tnis element is cnosen to be trlangular ‘because
. 7

triangles provide more versatlhtg in mOdelllng a blate of arbltrarg shape

I W

However, closed form solutions for. surface - integrals for general

H - '/b .
\

i

The stress dlstrlbutlon for this element is given by Eq: (5 9) Thls)\’\ ‘

W

choice was made because it proved satlsf actorilg for T9. Also with lesser

number of stress parameters, the’ shortcomings assoclaled wltn TS and T7

3

-

-110-




\ In choosing boundary displacements, the order of & cannot be less

than the order of the first defivative of w (Eq(46)).” For Rll, wande@are

liar (Equ5.4)).. Therefere, ¥.must be linear. For 79, w. is* given by

Eq(5.10). 'Therefore lhe first ~derivatiwe of w, is linear. Since 6 is also

¥

linear (Eq (54 2) and (543)) then Z could be llnear or constant The

‘ displacement f leld for Rl ls the simplest posslble for an assumed stress

‘hgbrid plate»bending felement. HoWever. this distrlbution has_ shown to be :

unsultable for trlangular plate bendlng elements [911] Therefore, as an

alternatlve quadratlc W was chosen along the: edges (Eq (561)) whule e

. was kept linear (Eq (34 2) and (5.4. 3)) In order. to accomodale quadratlc 4

| v_arl‘atli'o_n of w, niid-side nodes were introduced with only def l,ect‘ion as 3

degree of freedom. - Thus the element has 6 nodes and 12 ‘degrees of
\ v, .\{ . @ - ' i ]

‘e

freedom. = R - - 7

R

Theresults of prellmlnaru tests for this element showed tnat it was

" toof lexlble This is due to the exlstence of tnree zeroenergg modes. For

‘ thln plale hubrld elements, it has been shown [27] that the elements stiffen

as the order of the edde dlsplacement shape functlons is reduced On this
basls\the dlsplacement function along only one of the edges was reduced to

. Tirst order and the correspondlng mid-side node was removed. The result . |

EE

b



»

.. 8.2 TJest Besults

. arises from a inequal number of nodes along the edges, The results for

~ the moments of the simplg"‘suppbrted and clamped plates are in line with

was element’ T9-2 with S nbdes,and 1 d'egrees'of free‘,dom.‘ This element . (‘
hés 5}50 three zero energy modes as shown in Fig(S.1) " and (8.1). This

element was subjected to the same set .of numerical tests as the other ~

| e.lements. A t'gpical‘ fnesh arrangemenf for this element is shown in

Fig. (8.2. Th Z test results for T9- Zare shown in Fig. (7 l) to (7 13). . The:

¢

mscussion of these results is bursued in tne next section.. '

~

. e——

in the‘convergencetest the displacement results for 'T9-2 oscillate

¢

aDout the analgtlcal solution (Fig (7. l) .and (7. 2)) The re§ults are more

' . accurate for finer meshes The sttf fer dlsplacement resuits correspondto

meshes with an odd number of elements. The oscillatiqn of the results is

K

due to the sensitivity of .t'heieiement to mesh arrangement. This s'ensltivltg

~—-

¢

other elements (Fig. (7.3) to (7.5)). ‘

-

~The accuracy of resylts for the djsplace‘rﬁent and moment for the

-sirnplu', sdpported plate is insensitive to changés in the shear parameter .

‘(Fig‘.(7..6)'. (7.8) and(7.9)). Theresults for the dispfacement at the center

-

< 'Y
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- of clamped plate (Fig(7.7)) are similar to those obtained by Ti7-3 and

show little sensitivity ?o variations in the shear parameter. However, as .

mentionéd in’ Cha'pter VIL* the analytical ‘sélutions for lower shear
parameters have béen underestimated. .Fhe test résults for mbments at fhe
‘ mid-side of the clamped platé, in the sﬁear parameter test, are comparable
to those of oltne'r elements. o

The results for T9-2, in the aspect ratio test, {all somewhere

between the results for T17-3 and the other elements (Fig. (7.10) to’

\ .

(7.13)). "For displacement .at the center of the simply supported pl,a'te_.

('FAtg.(7.IO)).‘ the accuracylis not sensitive to changes in the aspect ratios of -

-less than 2. For larger aspect ratios, the accuracy deteriorates rapidly.

This is due to the existence of zero energy modes of Fig. (8.1). For the

displacement at the center of the clamped plate (Fig. (7.11)), the resuits |

vary similarly to other elagents for aspect ratios of less than 2 and after.

that the accuracyseems to improve. This behavior has not been observed in

other eler}lents.

The accuracy of results for M,, anq.nm=l at the center of the simblg |

supported plate (Fig(7.12) and (7.13)) remains stable for aspect ratios less
. : _ . -

do




-

than 2. For larger aspect ratios, the "accuracy ffor»l‘lx* improves whereas
that of an diminishes.  The results ‘tor fmo.mer'\ts' at the mjd*éme_ or:

' ”3 c!amped pla:te for ‘d'if ferent aspect ratios are comparable to those obt'zylm,d

using other elements. - SN -

" In summary, this element seems to perform better than T17-3 but -

&

Aot as weli as the other elements and in p'articula'r‘ With 'r(spec;t to T9 and

Rll. The major'sho'rtconiir(:g of this 'element. as with T17-3 , is its lack of
stabllity for aspect ratios jar'g'er than 2. This lack of accuracyls caused by
- the existence of zero energy modes of Fig.(8.1) ‘and‘(a'.z.)' in this element.

-

»




" CHAPTERIX

L . CONCLUSIONS

L3

~ In this study, displaceme‘nt and assumed stress hybrid finite elements .

 capabie of modelling three. layer Tat sanavich plates were considered. *

N,

In the formulation ‘of the stiffness matrix for some of the

o

,di'splacement” e‘lements, a common rotation for the: normal's‘thr.ough the
‘thickness is assumed. -These elements are not recommended for the

analysis of ‘sandwich plates where severe dlseontinuit'les in the 'rotations

-
L3

| br ,the‘normels may exist.
;For other displacentent elements, different rotations of the norrnéts- .
,throdgh the thickness'are'assumed. | Th'is is ach'ieve& by additivonal nodes,
, and ‘degrees of freedom through the thlckness or the element As aresult, -
these elements are cap@ble of modelltng laminates with arbitrary material
a propertles and thicknesses thus can-account for ~transverse shear
deformatlons in each Iager - Also, these elements are generallg quite
“\_a,c\:curate .The accuracy and the wide range of appllcabllttu of . these '

Yo
elements‘ are at the expense of comp_lex formulation and large number of _-

- ‘ . -"7_: ,‘ . ‘ . e



degrees of freedom. Furthermoré, duesto the existence of nodes through

the thickness. and non-geometric degrees of r.re.edom. these elements are

neither suitable for the ‘analysis of three dimensional structures nor can

[

they be integrated . into general purpose structural analysis packages. .

Nevertheless, these elements are highly recommended for specialized »
. } . g P /

Y

problems iQ\}olvipg fla} plate configurations.

Améng the displace‘mentl elements gurvqged, Kﬁatua- and Cheung's
elemerits (13,14] are mc;st\,sui:table fof the analgsi‘s of sandwich plaies‘.‘
These e,lement':s are based onthe as;sumption's of Chapter ll\ and.c'an‘ be used
to model d}thot'ropic ssandwich plates with thick faces.

-

" have provento be accurate in several numerical tests 113,14].

(,These: elements.
~ Formqiatiori of thg stiffness matrix fér assumed 'stre‘ss'hgbridy -
eleménts is éimplgr tl;an for displatement elements. Aif.io. p'iate bending(
X‘ - hybrid elements, in addition to betﬁg two dimensional irf nature,h require‘
v .~ only geometric degreég of freedom, thus can- be e'asil‘g im"plemcpt@ in ‘\
finite elehent packages. Furthermore,.thé range of cépabllitieé of tﬁese v Z
- elements canbe easily mbdifsied by \appropriatelg 'éhangiqg expressions for
_'flexural:a'no shear rigidities. | | -

The disadvan'tages‘of hybrid elements 'aré that their solutions are not

£
4

&' ' -1e - Lo . "




4

bounded and that the stiffness matrix for some elements may have zero

- energy modes. . , cnL

‘The performance of several assumed stress hybrid élemer)ts }:abable ?

.of representing symmetric, three layer, flat sandwich plates with thin

' faces and,isotropic materials were examined. In a set of numerical tests,- -
i ~ .

4

‘the convergerice characteristics of these elements were evaluated. Other
v M 4 * “ ) '

numerical tests were performed in order to determine the influence -of
shear bérameter and aspect ratio on the acc&acy of these elements.

-~ The adverse effect of hnsuppressed | zero e'nergg modes on the

accuracy of these elements Is gvident from the performance of T17-3, (S

and T9-Z elements. It was found that elements Rit [1S] and T9(7] perform . -

well in all tests. Element T9 has one zeroenergy mode that does not occur

ina mesh and element Rl has no zero energy modes.- Therefore, the use of

these elements is recommended for the above class of probiems.
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