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Comparison of Optimum Sequence and Optimum

v

Symbol-by-Symbol Detection In Convolutional Codes Decoding I N

{

Georglos Stamatelos .

An optimal algorithm, originally proposed for symbol-by-symbol detection of

¢
'

pulse amplltdde‘ modulated sequences, Is considered in thls work, for optimal

.

decodlng of com"olutlonal codes. This algorithm Is similar ;nd*dlrectby compar-

able- to the well known Viterbl decoding aléornhm, whose optlmallty criterlon 1s

focused on sequence detection. Due to the lack of an analytical error expr'esslon

2

for the optlmal symbol-by-symbol algorithm, computer slmulatilons were con-

-
[

ducted In order to observe thelr relative errox; performance.

In chapt_er 1 a general digital communlcations system employlng codling Is

g . - .
discussed, along with the channel models In use here. Convolutional codes were

»

assumed to be‘the codlng scheme employed In thls work, thus, are also reviewed

In thls chapter. An extenslve description: of the Viterbl algorithm follows In

Chapter 2, exposing the x:easons for its lmpleme:nt,atlon In an Increased diversity

of areas. The applicatlon of the symbol-by-symbol algorithm in convolutional

codes decoding s then presented, as a consequence of the shared property of con-

r
.
) °
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stituting, In thelr general form, a solutjon to a varlety of digital eéilmatloﬁ prob-

lems. Concludlng this chapter, Viterbl decoding of convolutional codes transmit-

’ ¢
ted over channels with Intersymbol Interference 1s also discussed. -

In Chapter 3 the structure of the slmulation that performs the comparlson

béiween the Viterbl and the symbol-by-symbol algorithm In convolutiongl codes

. decoding Is presented, along with some well-known statlstical technlques, alming

.

.at supplylng with re'llablltty and effectlveness the conducted slmulatlons.

.~

Filnally, simulation results and a.first theoretical approach to Lhe; error per-

formance of the symbol-by-symbol algorithm conclude this work. v £

[~]
v
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a

tloned processes are.reverse”,

4

’1.1 . Introduction . ) ° e

The basic elements of a digital communications system are llhfstrabed by fig.

1.1. iThe information source generates messages which are to be transmitted to

4

the recetver. Depending®on the type of Information source, these signals can be '

~

analpg’ or digita). Ana]og slgnals are first converted to digital rorr;l, ggually mto\\a
seque'nce of blnaw d\élgs ( 'sgurce encoder’ process ). This digital seq;xence s to
be transmitted through a channel to the Intended rece;ver. Ax‘cl;ann;zl encoder’
introduces redundancy In the Informatlon sequence for the "pgrposes of combating
the detrimental effects of nolse ;md Interference In the channel. Folldwlng this
devlge ;aL e'\dlg:n,al moéuqlator' ‘converts tpe digital Information seq&gnce into

waveforms that are compatible with the characteristics of the channel. In order

to recover the jnformation Bequence at the recelving end, the previously men-

ey

A\l

The channe! I1s the medla that allows commun\catlovn 1o be'establlshed

between the t}ansmltt\ng/recelv\ng parts. In general 1t is not ldeal, lnétqu,

- \

introduces nolse and other mt“erfer\ence*tliat corrupt the signal's transmission.

‘ éeveral models describe the characteristics of diferent types of channels and thelr

statistical behavior. Those presented In the following sections constitute general

ap__proxlmatlons in \Nlde use, that exhibit the memoryless ‘propert{y as thelr com-

. - . [
mon characteristic. T

-

Y
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‘1.1.} Additive White Gaussian Nojse Channel .

s
o

A composite discrete-time channel, consisted of the modulator, the demodu-

’

lator and the waveform channel, 1s c‘haracterLzed by an lnput alphabet, an output

. * - 4 )
alphabet and.a set of condltional probabllitles relating the possible Inputs to.the

possible outputs. The additlve white Gausslan nolse channel (AWGN) Is a

discrete-time memoryless channe],’that can be rhodeled as havln_g a finite Input

alphabet X = {z, z,, -, z;,}, an output Y that can assume, any value of the

real ine, l.e., Y = {-o00, 00} and a set of condltlonal probabllity denslty functlons

5\

o

Py | X =z) k=01 "",¢-1

-

that can be defined from Its output formulation as :

Y=X+G ,’ ‘ he

where G s a zero me?m_ Gausslan' random’ varlable with varlance ¢ and

»

"X =2z, k=0,1, ---,¢~-1. For a glven X, it follows that 'Y is Gausslan with

mean z, and varlance ¢° . That Is,

v

*
\ b

1y -
' P(y | X=1’h)=7m'¢ T (1.1)
¢ - * . 'q

Y ' 2
For any given input sequence X; ,6" =o0,1, '+, n , there Is a corresponding out-

»

put Sequence ) »

)

\ -~ . s ‘ fa




and the jolnt conditional probabllity

. . n !
Py, ya "t | X=u, X=uy, -+, X =u, )=TJIP(Y =v | X =1y)
. . k=)

RN

1.1.2 Discrete Memoryless Channels.

°
%

Quantlzation of the output of the channel to one of Q levels, slmply

< transfc;.rms the AWGN channel to a finlte-lnput, finite-output alphabet channel.

As a consequence of 1ts derlvation from the AWGN channel, for which individual’

observables are Independent, Is called discrete memoryless channel ( DMC ). It is

. characterized by an Input alphabet X = {a4 a,, -'-,a.'__,}, an output alphabet
Y = {bo. b,, -, by}, and a set of qQ condltional probabllities
PY=y | X =2;)=P(% | 2) h
(/ where ¢ =0,1, ---, @ -1and j=o0,1, ---,¢-1. In fig. 1.2, a blnary Input -

elght level output DMC Is shown.

If the Input to a DMC Is a séquence of n symbols u,, u,, - -, u,, selected from
- W

]

the alphabet X and the corresponding output Is the sequence v,, vy * -, p,, Of

symbols from the alphabet Y, the jolnt conditlonal probability

-

PY=v,,Y =0, Y= |[X=u,X =y, " X'=u)=T[P(Y =4 | X =y)
. . ° ' kw1 -

The last g{preéslon restates the mermoryless property of the channel.
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1.1.3 Binary Symmétric Channel.

A A [

-

&£

T}ie simplest DMC has binary Input and output symbols and may be derlved

~

from a ’blnary-lnput AWGN channel by utllizing a two level quantizer. The

quantizer, whose output s b, for nonnegatlve Inputs and b, otherwise, 1s gen-

a

erally called a hard quantizer ( or limiter ) In contrast with a multllevel quantizer °

5]

which 1s usually called a soft quantiz‘cr. The resulting ha;d-qtgxa:ntlzed output’ Is
the blnary-symmetric channel (BSC). It has the coc;dltional distributlon dlagram
of fig. 1.;'3, with p = P(Y =b, | X =4a,) =P(Y =b, |X.= a;), generally called
the crossover’ probabllity, belng the same as the symboi err?‘r probabllity for an

uncoded diglital communication system.

3 ‘ :
1.1.;1 Intersymbol Interference channels. o .

s -
»
1

Signal transmission over a band-limited non-ideal channe'l at high symbol rates Is

- o
-

limited by intersymbol interference [fSI). A symbol rate equal to or exceeding W

( the channel's finite bandwldt‘h constralnt ) results in Intersymbol lnt,errerencé

- » [}

among &.number of adjacent symbols, l.e., the transmitted pulses tend to be

Y
4

- spread and overlap each other. Compensatlon for the ISI 1s.done by designing

A Y

the band-.liymlt,'ed signals for no Intersymbol Interférence for transmission rates léss

than 2W, or by~ using a class of phyélcally reallsable pulses that are called
Y > . - %
partial-response signals, for transmisslon rates of 2W that allow dprr,elamon at the

‘sampllng Instances but in a deterministic or controlled ' manner, which can be
- : . ’ .

)

-



Fig. 1.2
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Discrete memoryless channel.
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*

taken Into account at the recelver. . .

s - "

Demodulatlon of signals corrupted by IST 1s dor/e

v

14

1. by means of equalization i,echnlques - a whole class of devices, usually In

2

the form of a transversal fliter with Its fap coefliclents adjusted to minimize

Y

elther the worst-case intersymbol Interference at the equalizer's output, or tﬁe

N

mean square error value of the estimatlion.

11. by performing mazimum-likelthood sequence estimation (MLSE), Imple-

{

mented by means of the Viterb! algorithm. : \ -

¢

,Equallzation technlques constitute a cléarly suboptimum solutlon to the

problem of' maximum llkellhood demodulation- of élgnals under ISI condltions.

»

Thelr advantage lles In ease of lmplementation whereas, optlmal declslons ’
R .o o

guaranteed by the application of the Viterbl algorithm, imply also the conslder-

able decoding effort the latter technlque requires.

B :

Fed

@
’!
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1.2/ Signaling with coded waveforms. .

Arbltrary small probabllity of error In dfgltal slgnél!ng »can be achleved by

Increasing “the number of orthogonal slgnaling w_a.vero‘rms and consequently

expandlﬁg the . required c}:annel " bandividth. Bandwldth efficlent signaling

S ¢
2

wav,e'rorms that attaln y)comparab]e erréor performance can be generated from
. ®

binary sequences.‘whlch In turn are obtalned by encoding the blnary Informétlon

- °

sequence. , Flg. 1.4 lllustrates the baslc elements of a dligltal communlcations sys-

tem employlng coded waveforms [11]. |

L

M

The Process of encoding constltutes a one-to-one mapplng from a set of es-
sage vectors {or sequences) Into a set of code vectors, an act that latroduces

redundancy. There are two types of encoding t[le Informatlon.

In block encoding blocks of & lnrormatlog bits are encoded into correspond-

—— .

¢

-

Ing Tocks of n blts (n > k), Each block of n bits from L‘I}Ae encoder constitutes a

~ codeiword contalned In a set of M =2* possible code words. The code rate’ls

—

defined as the ratlo £ /n and Is denoted by R, e
& a "
4 { \
LR, ' \ ) \
Binary , - I
P Lncodur - A10F ]  AWGN -
Information Coded Modulator channc] -
= sequcnee sequence
Raote = R bits/s Rale s h/ﬂ, Bite/s . . - /
M . - M * /'
- - /‘
‘ et Decoder  peg Demodulator fuge ! //
. /.

/

Fig. 1.4 Model of digital communications system with channel ;ncoding/ 4nd decoding.
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In convolutional ¢ncoding, the encoder may be viewed 7&3 a 'sliding window’ pro-
S e (

cess that Int

uces correlation Into the informatlon sequence, or equivalently as \

Y
. N - ' Q
b .t

a llnear fin e-state sfhlrt-reg)ster with an outpt seduence consisting of a selected

k=S

¢

-

set of ljfiear ‘combinations of the Input sequence. The number of output bits

from/the shift-reglster for eacli Input bit Is a measure of the redundancy In the

code and the reciprocal of this quantity 1s agaln defined as the code rate R.. In
. ) . . . ) .

the sequel’ we focus our attention on the coded output of the latter process, the

convolutional codes and their analytical description.

- » .
N
, -
P 1
- 4
" ~
L]
' -
\
/ -
«
-
s
/
//
’
/ -
/ -
, .
’ .
I's
, -
S - o
6 -
K
~
/ :
—/ N
4 @
/ . o
// .
/ .
,
A 1 1
— L
‘
-
°
-
. -
f -
M .
~ ’
»
A \J



1.2 Convolutional Codes.

~

) > .
* Convolutional codes constitute a class of codes, whose output symbol sequence

’ can be expressed as the convolution ..of Input sequence wlth -the generator
- Vi
sequences. This convolution is-performed by passing the Informatlon sequence

through a llnear finlte-state shift register. \

In general the shift .reglster process consists of L (k-bit ) stages ( L s the

\
o o

.. constralnt length«o{',t,he code ) and n algebralc function generators, as shown in

1]

flg. 1.5 . )’I‘hg Input data to the encoder whlc% assumed to be binary, is shifted

Into and along the shift register ¥ bits at a tlme. If n generally {s the number of
» . \ T )

. output bits for each k blts shift, the code Is defined as an R, = %—rate_code, con-

-

. : ' \
slstently with the deflnitlon of the code rate for a block code.

L)

Both block and convolutional codes can be described by a generator ‘matrix‘

Y - 0 N . . ’
g -the encoder’s operation In a matrix form. A generator matrix of a convolutional
[ ]
- code 1s seml-]nﬁhlte, since encoding operatlon 1s contlnuocusly performed over the .
M . ) - . ) )' ) ‘ - -
Input.sequence, which 1s generally assumed to be sem!i-infinlte In lfength. A func-

4

-

N

tionattyequlvalent representation can be accomplished by specifylng a set of =
i . /

* P -~

vectors, one vector for each of the n modulo-2 adders. A 1 In the i* position of
/ -~

the .\/ector Indicates that the corresponding stage,in the shift register 1s connected

o

to’ the modulo .2 adder, whereas a O indicates that such a ‘connection does not

exist. ' ‘ .




I ' .’ . D‘ d 1y
- - . |
. . -1 - - .
le ‘ |
L& stages
I i ”
: r " !
v 3 . R B .
mformation ! ‘ . ! 2 t == ! 2‘ A
bits -
. ~ P-4
4
N -
/ sequence
: . to moduistor ! .
Fig. 1.5 Rate-k/n convolutional encoder. \
~ o A
- (
. .
L4
9
; .
Input
. L ——>
L 3 ‘ ) ’ "
.Fig.16 L =23 k=1, n=23 convolutional encoder.
. ] . ’
T
» 1
. 3
L]
| .
.ot - »
= 3
T S‘ ~



. .

/ - ‘ ot :
§ ! *
t .

-12 -
The ro!,lo‘llng L =3, k = 1,n = 3, convolutional encoder, shown in fig. 1.6 ,

« ,% Rk 4

I ’ - - :
serves both as a g‘eWﬁmple and an encodlng process model for the purposes

of a compara_tl;ve errof performance simulation with two different decoding tech-

o

nlques. Its function generators are :

*

¢
9'1=[1061 -~
92=[-101] P
. gs=1[111] 4 .

7
‘ . e

.
)

‘ Alterhatlvg methods that are often used to describe a convolutional code are, the

state dla%/ram, the tree dlagram,.and the trellls dlagram. By adopting the .con-

/
vention of denotlng the slaie of a rate -fT convolutional encoder by the latest

k(L — 1) blnary symbols,’ the state diagram can be use@t,o represent the lnput-

{ . ! .
output relatlon of the llnear finlte-state shift reglster model of ﬁg. 1.5. It is sim-

ply a graph of the possible states of the encoder and the posslble translitions from

y
-
.

one state to anéther.' For example the state dlagram for the encoder shown In

fig. 1.6, Is lllustrated In fig.-1.7 , where the letters a, b, ¢, d, represent the four

»
o

posslble states of tha.t' encoder l.e., the four posslble‘an;ents of the shift reglster.,

.o

-

@ / i
A tree dlagram for the same binary encoder Is lliustrated in fig. 1.8. Depend-

namely 00, 01, 10, 11.

-

. ) !
bit Is a O or~1 , two new branches are added to last

~

‘Ing on whether ard incoming

existing edges of thls tree- llke constru_ctlon,-aléng with the Indlcatlon of the

El

.

coded output of such a shift.
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From this dlagram It becomes clear that after the third s‘t\age, the structure
becomes repetitive, due to the fact the cohstralnt length of the speclfic code Is
three ( L = 3 ). By observing that all branches emanating from nodes having the

. ’ same state are Identlical, In the sense that they generate ldegtlcal output

~

sequences, the merging of all these nodes produces a more compact dlagram,

N
ur

called a trellia. The trellls dﬁgram for the 1/3 -rate, L = 3, code of fig. 1.8 Is

Illustrated In ﬂg.« 1.9. =

One subclass of convolutlonal codes 1s that of the systematic convolutional ‘5\

A}

codes. As with systematlc block co”des, systematic convolutlonal codes have the
property that the data symbols aré transferred unchanged among the coded sym- \Y ‘

bols. For a systematlc convolutional code, In each branch the first ¥ symbols are
. L]

I~

’da}bksymbols followed by n-k parity or coded symbols. In this subclass of codes

" belongs the L = 3, R, = ;—rate:,)gonvolutlonal code, lllustrated In-fig. 1.6,

~

F(;rney has shown (5] that systematic feed-forward convolutional codes do

not. perform® as well as nonsystematic convolutlonail codes. Viterbl In (18] shows

~

that for asymptotlcally large L,. the performance of a systematic code of con-

stralnt length L 1s approximately the same as that of a nonsystematic c®de of

@ 0y

B : ’ constraint length L (1 - R,) where R} Is the rate of the code. 4

e, The Transfer Functlgn of a Convolutional Code -

.
3 . ’
b [ad

The distance properties and the error rate performance of a convolutional code

o o

can be obtalned from lIts state dlagram.

s ) }'\l"
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Fig. 1.9

1 Steady stute

Trellis diagram forthe L =3,k = 1,n = 3 convolutional code.
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Assumlng,thai the all-zero sequence 1s encoded and denoting by d the Hamming

distance ( Hémmlng distance 1s the number of corresponding elements In which

two sequences d}ﬁer ) of an output branch-sequence, the solution of a set of state

equations derlved Trom the 'stat,e dlagram, leads to .the formulation of the

1

transfer function 4S:

o

&0
TD)= % aD!
’ ‘=‘/vu

where e, represents the number of paths of HammIing distance 'd from the all-

zero path that merge with the all:zero path at a glven node, and d,,, : the
v ° ’ %

k]

minimum distance of the code. The 1/3 -rate,"L == 3, code of fig. 1.6, can slml-

larly be described by :
£

4 DU , 00 i
- T D o —— D
\}\f (D) YT E}ea‘
) ‘ .

. where a;/ =2¢-%2 ford cven, & a; =0 ford ‘odd. gits minlmum free distance

Is therefore 6 .

The. transfer function can be easlly madified to supply additlonal information for
&

the number of branches and, the number of l'nroruiatlon bits 1 Incorporated In
. e .

ariy given path. It s also directly used-in the establishment.of bounds concerning
. L] B

the error probabllity or\a Viterbl decoder (Chapter 2) operating on a ébnvolu-
. { . g‘

tional code transmitted over a binary-lnput, memoryless channel [18].



o . " k4
v .

\ _— . 1.2.2 Trellis Codes

“

Just as llnear block codes are a subclass of block codes, convoluilonal codes are a

ra—

subclass of a broader class of codes whlch,are called trellis codes. Rate -i:- trellls

o

v

“ - encoders also emlt n channel symbofs each time k source bits enter the register.
Treﬂls_ codes are generallzed convolutional codes generated by the same shift

register egcoder as convolutional codes, byt with arbitrary delayless nonlinear

A4

operatlons replacing the linear comblnatorlal loglc of the latter [18]. Whether
e
fixed 6r tlme-varylngg they can convenlently described and analyzed by means of

a trellis dlagram. Flg. 1.10a shows a Lr\ellls source encoder and fig. 1.10b shows

y ~

the corresponding trellls dlagram for this binary treills code with L 1 delay ele-

> 7
ments and a delayless transformation.

. - R \' ’ “
1.2.3 Optimal decoding of convolutional codes with hard and soft deci-

T

sions

In practlcal communlcation systems, when transmission oceurs over channels that

<

can be modeled as AWGN, we rarely process the actually recelved analog vol-

e tages, due to the computational burden that such a pr(m-d:m' imples. The com-
. ' \s
mon practice 1s quantization of the recelved voltages In order to facliitate digital
processing by the receiver. :
VY |
\‘ = (Y
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signal-to-nolse ratlo, compared‘wfth infinitely fine quantlzation.

‘()
S - 10 -
. .

» ° - ’ ’ .. .
Ifsbinary quantizatlon Is used, we say that a hard deciston has been made on the
. N * / \‘ » -

. -
[ i ,

correlator out,plit,q’as to°§v~h!,ch level was actually sent, and _‘éonsequemly we -

approxlma'té phe' nolsy conditlons of thé channel by those of the BSC with cross-

»

- ¢ ..

over p{'&bablllty p .Consequenily Hamming distance Is the apprbprlate ‘measureof

~

likelihood. R
, ‘ o i N : ~

When cogiﬁg Is used, It Is deslirable to.Keep_an Indication of how rellable the

a

) ~

< " -

i -

decislon was, . by cofnputlng a distance ( or metric )-'whlch spectflies how far from

- 3

thé declslon t,flreshol_d the -demodulator output 1s. By allowing (his quantity ‘to
’ - p ~ .

»

kS

o

i

-

2 . PR . T
take more than two possible values, say n, soft-decoding 1s performed: and the |

- .o > 4 .
E ' -

model -of the chanpel Is that of the DMC with an output alphabet of size n.
oy AR .
. . ‘

P ~ Tt . - -

Hard quantizatlon of the recelved data 'usuaLlIv entalls a loss of about 2dB In

-

~ . .

Al ‘.
e .8 e

Opt',lmum decodlné ‘of convolutional-codes Is done by means of the Viterb)

<

o

: «

algorithm (Chap. 2 ), le..glven that the rocclved" §equvncc’ 1s Y, this algorithm
, ,

A

“

finds the most likely transmitted sequence X! that maximizes the a poslciwx:’
llkelthood P(Y/ XY)) computed for each possible J. When_hard declslons are

5 -

A4

- employed, under the BSC assumpiion the maximum likelthood deco&cr roduc‘cs.u}

2

I . . ' N . o .
a minimum distance decoder which computes the Hamming distance from the

\ N

error-corrupted recelved vector Y = {y,.y,-_.¥,. } toeach phssibly transmit-
w : ) .

N <
. .

ted ccde vector X, = {r,.7,. ..z, " } and decldes In favor of the closest code

vector. °In this case the crossover probabliity of the BS@; Is (-xprcméd LU

\

K

o

~

1
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. soft-decoding s employed { AWGN channel ), the demodulator output Is 8tatistl-

‘be established by noting the memoryless propertles of the AWGN channel In dn

i}
— . FEES

-920'-

» =QWBEE /Ny "

where @ (.) Is the Gausslan lnte‘gyal function

A -
-~

. ;:oo —2%/a dz " .
Q(h) ch T

T 4 '

- N .

NSw, let's é}ssume that the coded sequence r 1s consisted of N vectors, each of

them having n elements ( » the number of output bits at each encoder's shift )
denoted by z{) (i =1, -+, N j=1,--,n), and that binary coherent PSK

modulatlbn Is employed for t,helir transmission. The demodulator output is:

’

*

b4
Yim = 20E (22, 1) + Vjn

~

where a .represents the attenuation factor, E the transmitted slgnal eriergy ‘for

.

)

- each code blt and v;»n the Gausslan nolse voltage added by the channel. When

. » ( -

cally descrlbed by ( see eq. 1.1 )

L~ ' «

1 loym —2E@s Sl -2 a0 B

20 ‘ -,

P (i’jm {zjg)) =

[

where o* = 2EN, Is the variance of the additive Gaussian nolse.
Then a measure of the llkelthood of the possibly transmitted vector X¢) can

N A

.8

. L)



\ accumulatlve form as : : - )

¢4 : R L]

S
‘ N =
) . U(')= E Eyjm(2zjg)" l)
. "—lm—l
] —
F
‘ Once the likellhood metrics were prev deflned. for both the decoding modes )

-(-"hard and Iinfinitely soft ) the Viterbl algorithm can be further applied as a -

dynamlc programming technlque which enables the selectton of thelr maximum,
. avolding the unnecessary exhaustlve computation of them all. -
. &
[
Q
; N “ 1
. . ,
A ‘ ;
& - . N
( H
1] . .
. . an s
‘ > . g
. [ ]
~ ] - ) '
® . L4 » -
b
A @ ‘ .



S ' CHAPTER 2

3
»
’

The Viterbl Alggrith'm and Related Algorithms

L}
- -
~
. - [
. -
.
.
\
4 !
.
) ' )
\
a Vs
LY
»
.
4 Q
9 .
- .
} ¥ .
»
°
¢
Y
.
‘ N
»
2
./>
4 N
.
3
- i '
.
\
-
- L
;
N
¥
s
]
.
‘V
L
1
L]
A
. N
-]



X ! ,
2.1 Tke Viterbi Algorithm. » T

a

The Viterbl Algorithm (VA) was proposed In 1967 [19] as a method of decoding

: w—

convolutionals codes but since then: has been applled on a varlety of digital estl-™

-

mation problems, as a recurslve dynamlc programming technique which Is used to

[
» .

% ) ' ) . .
decode digital data sequences with correlatlon between symbol intervals. This
a \ / »

4

correlation may be Introduced (In our fleld of Interest ) by a convolutlonal

encoder or the presence of 1ntersyrnb'61 Interference irf theé channel.

1]
i

The VA can be shown to be optimum ln' the sense of minimizing probability

A
-

of error In detecting a sequence of syhbols (MLSE) .‘Moreover, Its complexity

!
i v . .
ngly with the length of the sequence-to be detected. ‘ o

‘ The following sections describe the analysis and the performance of the algo-

rithm, exposing Its general modeling and Implementation In real sltuation pro‘b- .

lems. . . ) . <
* \ N\

/ h . ‘ -~ . '
2.1.1 The shift-register model, formal statement of the problem .

PN
;o ® -

In Its most general form, the VA may be viewed as a solutlon_to the prob-
. . lem.of maximum a poesterior probability ( MAP ) estimation of the state sequence

: . ) .
of a finlte-state discrete-time Markov process observed In memoryless nolse (3] . -

Q@

S The underlining, Markov process 1s characlerized as follows. Time 1s

13

discrete. The state o, at ‘tlme k 1s one of a finlte numbger M of siates

m 1 <m <M le., the state space T Is*simply (1,2, - -~ ‘. M}. Intlally we shall -

»
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° &, .

assume that the process runs only from time O to time Nand that the Initial and
final states o, and ¢y are known ; tfle state sequence Is then rebresented by a’

finlte vector o = (0,, * - - ,on). Extenslon to Infinfte sequences Is trivial,

>

v - . . " “

. i ! I &
The, process Is Markov, In the sense that the probabllity P(oy, I?o»ﬂx» o)

of belng In state o, at time k+1, given all states up to time k, depends only on
. ¢ ¢ o

‘ the state oy at time k :

N

. Ploy I”p-"u W O) =P(og 4y |op).

a2

The transitions probabilities P(0y4, | 0x) may be tlme.varylng.

Let's deflne thg transitlon §; at tlme k as the palr of states (64, 0;):

3

& = ©441, 04 ). ; - \

We fhe’t E be the set of transitlons & = (04,,, 0;) for which P(o,,,|c:) 0, and -

{

-

| 4

’fsl thelr number. Clearly |8] < M2 There Is evidently .2 one-to-one

\

correspoﬁdénce ‘between ‘state sequences ¢ and _-transitlon sequences

- £=& o €y (wewrlte o &7 ¢ ),

&

The process Is assumed to be observed In memoryless nolse: that 1s, there Is
’ ‘ 0
a sequence z of observations z In which z, depends prdbablllstlcally only on the
° L}

C- transitlon & at tlme k.

!

' N-1 . (N
. Plzlo)=P(z |O=TIP(al&) ’.
' . k=0 .
. - 7
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THe sequence s can be described as the output of some memoryless channel

whose Input sequence Is £ ( see fig. 2.1 ). Agaln, the channel may be time varylng

. : In the sense that P(z | &) may be a functlon of k. Thls'rormulat,lon also Implles

& «

the case.ln which 2, depends probablllstlcall'y oxf an output y, of the prE)cess at
L Y

time k, where g, -1s In turn a deterministic functlon of the transitlon &, or the

state o,. ( we write y, - f (o) ). This case Is of practical Interest slrice it is fre-

quently encountered in digital transmission systems and suggests-the following

¢
)

common model rc_)r thelr study. i — et

Assuming an Input sequence « ==(&o,u.. -++ ), where each u, s generated

independently according to some protiablllty distribution P(v,) and can take on

Y

one of a flnite number of values, say: m. There s a nolse-free signal sequence y,
AN '

' .
. not observable In which each y, Is some deterministic functlon of the present and

< ~

the v previous Inputs : - } .

[y ‘y&=](‘|‘}."‘,u‘_,)

~

The observed sequence z Is the nolse corrupted oytput of a memoryless channel
. . whose Input is y. Such a procedure 1s called a shift-register process, since 1t can
\ ’ . te modeled by a-shlrt, register of length v with Inputs v, , shown In flg. 2,2, "To

\ . s -t ' p
complete the correspondence to our general Markovian model discussed prevl-

’

ously,-we define

——
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1) the state '

o = (o ", %)
2) the transltion
’ g ‘L
l.‘f .
’ & =(oppon )=(t, ', wm,)
The number of states Is thus | £ | =m?, and of transitions, | 8 [ =m**. If
4 "= )

the Input sequence 'starts ' at time O and stops’ at time N -*v, l.e.

then thils shift-reglster procesyect,lvely starts at time O and ends at time N

~ T
.
- .
x\ ~—

] -
Reception of a4 certal% sequence ( signal + polse ) Imposes the problem of

with oy =0y = (0,0, - - ,0).

-3

finding the most likely Information sequence that was shifted into the finite-state’
, ‘ .

shift-register. The VA constitutes an efficlent answer to thls problem which can

be"more formally stated as follows. Glven a sequence 2 of observatlons of a

\ S s ”

discrete-time finlte-state Markov process In memoryless nolse, find the state

o &1 £ ). In the shift-register model thfs Is also the same as ﬂndlni; the

probéble.lnput sequence s, since w ='"o . It 1s well known.that this MAP r/l}l;;

H

\z " L. ,/,I( —
minimizes the error probabllity In detecting the whole sequence ( the block-,

4
-

- \ ‘

¢
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message-, or word—errbf probablllty*), and thus ls; optimum in thls sense. -+
Thé shift-reglster process and the MAP estimatlon of the r.host, probable Input
sequence «’, model a number of sltuatlons.encountered In digltal tra‘ismlsslon,
Including the decoding of convolutional codes and ‘c_iemodulatlon of signals

‘transmitted over channels with lntersym‘bol interference. \The Viterbl algorithm,

\

being an efflclent solutlon to the MAP estimatlon problem, applies to these, cases

above as a na{ﬁral consequence. Thelr modeling Is explained In the followlng sec-
) a
tlons.

2.1.2 Decoding of Convolutional and Trellis Codes.

L.

A rate-1/n Blnary convolutlonal encoder can be modeled as a shift reglster pro-
' ' . \ -

£

cess clrcult exactly llke that of fig. 2.2 , where the lﬁputs u.~ are Information bits
and the outputs y, are blocks of n bits, e = (P, ", pu) €ach of which Is a
parity check on ( modulo 2 sum of ) some subset of the v+1 Information bits

‘(w, - , %) When the encoded sequence (codeword) y I!s sent through a

memoryless channel, we have precisely the model of ﬁg_.'2.2 . Flg. 1.5 shows a
particular rate --;:- code with v = L -1 = 2. The general case of the -:; -rate con-

volutlonal code has also, been modeled as shift reglster processes [2] .

&

Other codes of great Interest can. also fall Into this general setup., Trellls

"

codes were previously Introduced as generallzéd convolutional codes generated by
the same shift-register encoder but wdth arbltrary delayless nonlinear operations

replacing the lnear comblri)atorlal,loglc of t,h\e latter. Ungerboeck's codes belohg

v

e *
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4

to this class of codes. In 1982, he Introduced a coded modulation technique sult:
, t *
able for band-llmited channels, that can be vlewed as binary copvolutlonal codes

with "mapping by set partitioning’ [20]. The later 'p'rlnclplg Involves the partition

of finite signal constellatlons Into subsets, where the minlmum distance between

' ~
elements of the subsets Is greater than that within the full signal constellation.

>
In order to transmit nblts/symbol'by means of a two dimenslonal modula-

tlon scheme ( QAM ), a constellation of 2"*' points ( different slgnals ) Is used,

partitioned Into 4 or 8 subsets . 1 or 2 Incomling bits/symbol enter a rate-1/2 or

-2/3 blnary convolutional encoder, and the resulting 2 or 3 coded blts/symbol
3 (

specify which subset Is to be used. The remalnlng Incoming bits specify which

point from the selected subset Is to be used. Decoding of these codes Is assumed

to be performed by the Viterb

The,modél Is agaln that of the shift-reglster process In flg. 2.2 . The deter-

\' .
rnlnl.st,lc function f plays a different role than the respective one in the convolu-
tional codes’ model, encompassing subset selectlon and slgnal specification func-

tions.

Forney et al. [21] regarded the two dimensienal constellatlons of Ungerboeck

-

codes, ' as finlte sets chosen from an Inflnite rectangular gr.ld, with the subset _

Y

sequence belmg determined by a convolutional encoder '. He also proposed that,

construction of * block codes * ( belng viewed as finlte multldimenslonal constel-

lations drawn from Infinite multldimensional lattices ), can be accamplished in

- < -

v

the same way and be represém.ed by trellls djagrams.

»

.




shift register model, 1s used to modulate somé contlnuous waveform which 1s 1

equal the corresponding- v, but In fact are perturbed both by nolse and by nelgh-_

coge=f (U, " 5 uu_,) and n, 1; a white Gausslan nolse seqaence. Such a model

\ -30-

5

. J ’ )
Finally, Forney In [22], presents a unifylng study on a large class of.lattices.

t

and trellls codes under the name of ’coset codes’, and propos€s a squaring tech-

[y

nlque for thelr constructlon. The structure of this codes Is such that they can be
represented by ‘trellls dlagrams * ( see Sec. 1.2.2 ), which naturally lead to max-

Imum ltkellhood decoding aigorlthms (VA)'. ‘

2.1.3 Demodulation of Sig;lals with Intersymﬁol Interference

. .. ‘ . .
The concept of th‘ev Intersymbol Interference was previously discussed In

Chapter 1, as a sltuation encduntered In digital transmlssion through _analog

channels . The Input sequence u, discrete-tlme and dlscrete-valued as In the
. 4 .

- \

. . 4

] - i
transmiltted through a channel and then sampled. Ideally,\ samples 2z would

. . b4
boring Inputs u,.. The later eflect Is called |ntersymbol interference.
(]

In such cases the output can be modeled as #

.

2 =% t

where v I1s a determlnistic mnciloh or'a finlte number of Inputs, say,

Is agaln ldentical to that of fig 2.2.

<

In Pulse Amplltude‘ Modulation ( PAM) the slgnal sequence y may be taken

as the convolutlon'or the Input sequence « wmi some discrete-time channel
oo C'

- -~
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o

- lmpulse-resppgsé sequence (k,, A,, ... )t

\ * - -31- ‘

- B ' $

«

% = Y hwu_
7

>

It h; = 0 for i >v ( finite Impulse response ) then we obtaln our shift reglster'
model. An lllustration of such a model In which ISI spans three time units (v = ) \

2) appears In fig. 2.3.

]

2.1.4 The Algorithm ‘ .

- \ o : L]
] . "

We now show that the MAP sequence estimatlon problem previously st.atod 1s

1 .
rorm?llli}ldent,lcal to thé problem of’finding the shortest route through a certain

graph. The VA, then arlses as a natural recurslve solution [2). &

* s

There exist a state dlagram, llke that of ig 2.4a , assoclated with a discrete-
time finite state Markov process ( the similaritles with the corresponding one

describing a ¢onvolutlonal code, previously discussed In Sec. 1.2.1 , are obvious )e

-~

A more redundant description of the same process, called a trellia , represents

the same process 'by'correspondlng rodea Lo distinct states at a given time and
. L]

X

-

‘branches to transitions to dome new state at the next Instant of time. ( Ng.2.4b ).

4 Ay
—

The trellis begins and ends at the knowp staées o, and oy. Its most important

»

, . ,
property Is that to every possible state sequence o there corresponds s unique f\
1 hd *

[<d

path through the trellis, and vice versa, ' . :

~,

“ -
We show now, that glven a sequence of observatlons s every path may be

assigned a metric ( whose physlcal representation is length ) proportional w



Yy Up.t
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' - Fig. 2.4a State diagram of a four state shift-register process.

S

Fig. 2.4b  Trellis diagram of a four state shift-register process.

’ . a '
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1

o . . Y B .
-InP (o, ) where ¢ Is the state sequence assoclated with this path. This allows the
. .
solution of the problem of finding the state sequence for which P(c, ) IS max-

o)

Imum, or equivalently for which P(o, z)= P(o/ 2)P(2) Is I%ﬁxlmum. by finding

the path whose metric ~inP (a‘, z) Is minlmum, since inP (0, z) Is 8 monotonic func-
. \ .

tlon of P(o, z) and there 1s a one-to-one correspondence between p'aths and

rd

sequences. We simply observe that due to the Markov. z{ng memoryless propertles,

P (o, z) factors asfollows :
8 )

N N-i
P(o,z)=P(o]| {)P(Z)F‘HP(UHI Lo ) TIP (2 | oasy o4)

k0 kom0 o

o - v

. "

Hence If we assign edch branch ( transition ) the metric

>

ME) = -InP(oy,, | os)-InP (2 | &)

4

" then the total ‘length’ of.the path corresponding to some o Is‘ L

&

. N .
~nP (o, z) = Y3 M&)

kw0 . . ,.
' Having defined 2 measure for the likelthood of each'path, an inefficient way for

&

finding’ the most lkely of them could be the exhaustive computation of thelr

metrics, cémparlsons :ind selection of thelr mintimum. The virtue of the VA 18

that 1t performs the same task much more e‘mclcntly by noting the accumulative

o

*  formulation of the last expression and applying the dynamlc programming princl-

" ple of optimrality, which simply states that from a set of converging paths only

——

the shortest of ‘ihem could potentially become part of the shortest path ¢onnect- "

. Ing the Initial and~the final point. , - ’ .

Q



2.1.5 Dynamic programming principle of optima.lit}; and the VA .

subsequences ( k > v ) as ‘'branches’, the prevlously discussed

»

o o
The dynamlic programming characteristics of the WA enable the selectlon 61’ '
the mlnlmum dlstance path ( from an exponentlal_ly In¢reasing set of pat,hé )by a

Ilnearly lncreaslng amount of computatlons. Omura [15] was the first to show .

A

that the VA was equlvalent, ;b\/dynamlc programmlng solutlon to the shortest

route problem. . -

" The concept of the dynamle programming Involves computatlonal procedu;es

v

and techniques for finding an optimum path or a trajectory between two polints

o

In a grapi. This sense of optimality can assume different qualitles ( length, cost

,etc ) In order to respond to questions lmposed by real sltuatlon problems.

*

Hayes In [3] dlscusses a pedestrlan example ( a shortest route problemdn an”

L]

academlc setting ) for demonstrating a baslc princlple of dynamilc programming,

the principle of optimality-*. The hero of this étory Instead of calculating the

lengths of all the possible paths and selecting the shortest that lead to his dest)- -

.

natlon, deflnes a sequence of finlte sets of critical polnts, naturally formulated by

" the pr‘écess of his Journey. By kéeplng a record of only the shortest paths that

3

lead to the next cluster of piassages, he approaches his destination malntalning ‘

the certalnty that the filnal comparison of the alternative routes at the converging

polnt would reveal the sho;'test.

-

Uslng agaln the trellis .description of a shl;’t-reglster process and lnterpr;etfng

a poss}lgly transmlitted sequ&lce as a 'path ' and any one of.1ts k segments—lengt:h

.

’

principle of

optimality’ Imposed on the VA, states that If there Is a set of branches {5} such

-

{
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LY

‘that for any legitimate path contalning one of the branches, any other bx;alnch In

the- set mz;,y be substltuted wlt,h_ the result belng another legitimate path, then a

[ .

decislon can be made on the best element out of that set glven the corresponding

T portion of the recelved 'sequence, Independent of the rest of the recelved sequence.

]

" The best such branch Is called _aurm:vor , ahd 1ts distance from the corresponding
portion of the recelved path, possibly normallized, Is called Its metric. For further

‘steps of‘decodlng, the survivor may be takeh as a proxy for the whole set.
0 B .

*

'2.1.8 Formal statement of the VA, its implementation . -

©
~

4

k

"'Denotlng by ¢° a segment (o, o, ..., 0, ) that conslats of the states up 1o

time k. Iq the tr.gllls P corresponds to a path segment starting at the node o,

and terminatlng at o, . o '

. Its metric has the form :
y ) £

kg '
No*) = TNE) .

=0

.
- ﬁ\ .

’
— g

For any tlme k S o, there are M sux:vlvors In all, one for each o*,represented as

0(;7,, ). According tb the preiwﬁllously eqused principle, the shortqst co}nplete pau'x
' ;hould begin with one of these survivors. If 1t qlci .not, but c,oniained anot,he}
path seginent, say & (o,,h), then we could replace & (0, ) by the survivor o(&,,) 1o get '
’ ' " ' -
an even shorter path - contradlction, since we gs;sumed that we deal wlt,t; thé

« shortest complete path.s Thus at any time k¥ we need to remember only the M

survivors and thelr metrics A(o, ) = Ao6(o,)). All that 1s needed to get from time &

»
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to time k+1, Is the extenslon of all time-& survlvo,rs by one tuhe unit, computa-

~

tlon of the metrics ( A(o;) ) of the extended path segments and selection of the

s)imrtest extended paths terminating at each specific node o,,,. Recurslon

-

' proceeds Indefinitely without the number of survivors ever exceeding M.

v

. The algorithm 1Is lllustrated for, & simple four-state trellls coverlng 5 time

units In fig. 2.5 . Flg. 2.5(a) shows the complete irellls with each branch labeled

2 e .

with a length. Flg. 2.5(b) shows the flve recurslve syeps hif which the algorithm

determines the shortest path from the inltial to the final node. At each stage .

only the 4 (or fewer) survivors are shown, along with their metries.

- Q

A formal description of the VA 1’ollowsi("g &
Sterage:
I 20 (ﬁ'me indezr )
ooy) 1 <o, <M,  (survivor terminating in o}) )
Aoy 1<0, SM, - (aurm'u\or length )
_Im}t{alization : . ’ . s

. / k =0;

6(0,) = 0, &(m) grbitrary, m $a,
X(og) = 0, A(m) =00, m sfo, N
Recursion :
* A4, Ok)== Alod) + ME) ® for all & = (0441, 0% ).
Fl’ﬂd : ’ Y . . .
A0k 41) = ming, A(0) 41, o) for each 0y 4;;

) [N
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Fig. 2.5 (b) Recursive determination of the shortest path via the V.A.
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Store A(o;.,) and the correquridlng survivors &(a, ,,).

. ‘ ’.9 .

2

Set & to k+1 and repeat untll ¥ =,N.

bl

o )
In practical applications, when the length N can become very large, B

decoder based on the algorithm desecribed above, never actually dectdes upon the

most lkely path. It alwayg retalns a set of M paths after each decoding step.

One way of selecting a sjngle most llkely path Is to perlodlcélly force the shift-

reglister process lnt,a a prearranged state by Inputing v known symbols. Then the

Viterb! decoder can select the survivor terminating at the known state.

Another alternative Is the truncation of survivors to some length 6. That 1s..

the algorithm must come to a definlte declslon Jon hodes ;up to time & - § at time
k. The event that is clearly explolted In thls case 1s the merge phenomenon, a ran-

dom situation In which all the survivors of a certalh state, exhibit the same his-

- 7

tory at a certaln«depth 6, passing through the same node(s). .Flg.‘z.o Hllustrates

-

this event. i ¢

©

In ge‘neral; it the truncatlon defnh § 1s chosen large enough, there s a h\gh

0

probablility that all the time-k survivors will go throughythe same nodes up to

tlmue k -5, so that the Inltlal segment of the maximum-likellhood path Is known

up to time k - é and can be put out as the algorithm's declslon ; In this case trun-
catlon costs nothing. In the rare case when survivors disagree, any reasonable

strategy for ‘determining the algorithm's time-k - 6 declsion will work [6] : chooee

’
» t

¢
an artitrary time-k - § node, or the node assoclated with the shortest survivor, ot

a node chosen by majority vote, etc. -
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If 5 1s large enough, the effect on performance Is negligible. Also If & becomes

large, it 1s necessary to renormallze the metrics A(m) from time to time by sub-

tractlng a constant from all of them.
. N J '.

Foc'ng our attentlon again at the fleld of convolutional codes’ decoding by

means of the VA, random codlng analysis done by Forney [5], has shown that a

‘

truncation length 6 > sL (L 1s the constraint length of the code‘) is sufficlent to

ensure that the additlonal error probabllity due to truncation is negligible, . _

More spéclﬂcally. under a BSC assumption with crossover probabllity p, the

final result of the blt-error expresslon 1s :

1 d ree di00e /2 y
Py(E) = ?[B"mgl p*! + A,(6,2‘mp‘”’/9]_

d

where the first term represents the bit errors made by a standard decoder,

a

whereas- the second represents the gecodmg errors d-ue to truncation .

: L4 f
Also d(6) Is the smallest functlon power of D In the generating function

. QK_] ° 1 N ’
» T4X, Y. 2), A"m 1s the number of terms of length § and welght d(§), and

§ -]

Bysvee 1s the number of nonzero information bits on'all welght . d,,,, paths. From

the previous error expression 1t is-clear that If d(6 > d,n:.“the second term 1s
negligible compared* with the first term, and the additional error probabllity due
to truncation s small compared to the error .Rrobabmty of & standard decoder.

The pi'ei[lous expression can be used to ‘define minimum truncatlons lengths for

-
-

varlous codes. It can also be generalized to other DMCs and the unquantized

. AWGN channel in a simllar way.

e
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_Finally a practical rule In the form 32 5v, where v In thls case represents

- -~
*

the channel's memory, should hold for the value of the truncation length 6 in

maximum llkelthood sequence detection upger ISI conditions and PAM transmis-

3

slon. The number of the undet;ec;ed errors due to truneation Is expressed as : (

Forney [4] ) . /
[1-(1/v+1))}

2.1.7 Complexity

&

The complexity of the algor!thrﬁ Is. easlly estlmar,ed, In terms 6f memory require-

t

-ments and amount of computations. {

AN

oo

1). Memory :
the algorithm requires M storage locatlons, one for each state, where each loca-
. tlon must be capable of storing a metric-value A(m) and a truncated survivor list-

Ing o(m) of § symbols. ' o ' y

. . : ¢ K}
11). = Computation :

In each unlt of time thé algorithm must take | 8| additlons, ope for eath trans!-
'~ tlon, and M> comparisons among the _| & | results. Thus the amount of storage Is
proportional to the number- of states, and the amount of computations to the

number of transitlons. With a shift-register model, M =m" and |B]| =m"*, s0

that the complexity Increases exponentlally with the length v of tfie shift-register.

. 5



N : - 43-.

2.1.8 Analysis of Performance.
A

In many cases, tight upper and lower bounds for error probabllity can be derlved." A\ X
o > 2 )
Even when_the Q’A 1s not actually implemented, calculation of its performance

shows how far the performance of less complex schemes 1s from 1deéal, and often

suggests slmple suboptlmum'schemes that attaln nearly optimal performance. [2].

L

o . The Kkey concept In performance analyslé Is that of an error event. Let o be
2 ‘ the actual state sequence, and & the state sequence actually chosen by the VA.
. f
. *
' Over a long time ¢ and & will typlcally diverge and remerge a number of times as

llustrated In fig. 2.7 . Each distinct separation s called an error event., Error )

-

events may lp general be of unbounded length If ols Jnﬂnlte. but the probabliity

-~

' of an Infinlte error event.will usually be zero {2].

4

RThe Importance of error events Is that t‘hey are probabllistically Independent

of one another and they allow us td’ calculate error probabillt,y per unit lee;

=3

which 1s necessary since usually the probabllity of any error in MAP estimatlon

<

of a block of-length N goes to 1 as N goes to Infinity. Instead we calculate the

probqblllty of an error event starting at some glvzn time, glven that the starting .

~

- state Is correct, l.e., that an error event 1s not already In progress at that time. A

. Glven at,he correct path o, the set E, of all possible error evenls starting at
. * ’ . s

some time k Is a treellke trellls which starts at o, and each™of whose branches

ends on the correct. path, as illustrated In fig. 2.8, for the trellls of fig. 2.4b. In’

- -

coding theory this Is called the Incorrect subset ( at time & ).

-



k=0 : k=K
Fig. 2.7 Typical correct path x ( heavy line ) and estimated path 2 ( lighter line )'in
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* .
The probabllity of any particular error event Is easlly calculated; 1t 1s simply

the probabllity that the observations will be such that over the time span dun{g ;
which & 1s different from o, & 1S more l!ke'ly than ¢. If the error event has length

7, this Is simply a two-hypothesis decision problem between two sequences of

. - .
——— ]

length r, and typlcally has a standard soclution.

The probabllity P(E,) that any error event In E, occurs can then upper- .

bounded by a unlon bound, l.e., by the sum of the probabllities of all error events

-

In E,. While this sum’may well be Infinlte, 1t Is typlcally domlnated by one or a
few largé'aeadlng terms representing particularly likely error events, whose sum

| ' :
then forms a good approximation to P(E;). {

On the other hand, a lowér bound to error-event probabllity, agaln fre-

v Sbm

‘quently tight, cyn be obtadned by a genle argument. [2]. Take the particular
o . - I3

£

error event that has the greatest probabllity of all those In E,, ( denoted by.

max P ( error event ) ) . Suppose that a friendly genle tells you that the true state

sequence Is one of two possibllitles : the actual correct path, or the Incorrect path

]

corresponding to that error event. Even wlth thls slde of Information,. y_g'u will ©
still make an €rror if the Incorrect'pat,h Is more likely given 'z, so your probablility

of error Is stlll no better than the probabllity of this particular erro? event. In

14

-,  the absence of, the genle, the error probabllity must be worse still, Since one of

rd

the strategles we have, given the genie's Information, Is to 1gnore It. In summary,

the px‘obablllt.x of any particular error event is a lower bound to P (g, ).'

In conclusion, the probabillity of any errar event startlng at tlme ¥ may be

a

upper-bounded and lower-bounded as follows : , . .

”

P
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. max P ( error event') < P(E,) < max P{( error event ) + other terma.

4

i). Convolutional Codes Error Performance . ' ' B

’

-
L)

The upper and tower bounds of the previeus éxpression are close to each other In

the case of convolutlonal codes.

a. For binary convolutlonal codes on symmetric memoryless channels the

principal result {7} Is that P(E,) s approximately glven by

P(E,)~ N, 2%

L]

where d Is the free distance, l.e., the minimum Hamming distance of any path In

the Incorrect subset E, from the Sorrect path; N, Is the number of these paths;

and D Is the Bhatiacharyya distance

o
- ? .
»

D =log, Pz |0)!/? P(z ' 1)'?
’ Z

B

where the sum 15 over all outputs : in the channel output space Z.

°
a

b. Onv Gausslan channels

Y | '

¢ P(Ey)= Nyexp( - dRE;/ N, ) -

.

S, . . .
where E,/ N, Is the signal-to-nolse ratlo per Information bit. The tightness of

«

this bound Is confirmed by simulations [8]. ' . |

L4
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Iy
’ if). Intersymbol Interference Channels.

’

The principal résuit, for PAM in white Gausslari nolse, Is that P(E;) can be

s L4
»

'tlghtly bounded as follows :
K @(dmin/ 20) < P(E;) < Ky Q (d pyw/ 20)

w )

where K, ahd K, are small constants, Q(x) Is the Gausslan error probability

= ,function defined earlier, ¢* Is the nolse varlance, and d my 1s the Eucllidean distance
) | .
. . between any two distinct signals [4]. This result Implles that on most channels
Intersymbol Interference need not lead to any signlficant degradation in perfor- L}
.l ! ) ‘
_mance t, which comes as rather a surprlsef- \ .
e .o . . ) \ ) ] B -
- . For example, with the most common partlal response systems, the VA recov-

ers the 3-dB loss sustained by conventlonal décoders relatlve to full-response. sys-

' ’

- tems [4], [8]. Simple suboptimum processors [4],€an do nearly as well.

It seems most llkely that the gredtest effect of the VA on dl_gltél modulation

ss;stéms will be to reveal those instances in ;wh\ch conventional detection tech-

£

3

"t nl;mes fall signlficantly short of optimum, and to suggest effective suboptimum
methods of closing the gap. PAM channels that cannot be lthearly equalized

~ without excesslve nolse enhancement due to nulls or near nulls In the transmls-
s ..

slon band are the likellest candldates for nonlinear ‘technlques of this kind.

el

9 ' -

L4 o

$ It 1s shown in (4] that in the absence of ISI the error probability P (E, ) can be writ-
ten .P(E;) = K, Q(8,/20) with K, = 2(m —1)/ m and ‘m the levels of PAM.
Then the probability of error of ‘the same system under ISI conditions differs at most by
the ratlo K/ K, from that of an m-level system without [SI. In decibels such a
difference is small and goes to zero as SNR goes to infinity. .




= 2.2  Related algorithins

L -
A few other decodlng technlques are presented here that have been applied on

the toplcs of ¢onvolutional coding and transmission under ISI condlilons, supply-

Ing alternative views and comparatlve results to the eMclent signdling problem In

—

these areas and the performance of the VA.

2.2.1 Historical Background of Convolutional Codes Decoding [10]

The fIrst practical decoding algorithm for long randomly c‘hqsen convolu-
- 44 A} . "
tional codes, called sequfnual decoding, was proposed by Wozencraft and Relffen

and subsequently reflned by Fano. Other types-of sequentlal decoding followcd.

© »

In 1963, Massey proposed a less efliclent but simpler-to-implement decoding tech-

nlque called ‘threshold decoding’. Another type of séquéntlal decoding algorithm

.

called * stack algorithm * was published In 1066'by Ziganglrov and rediscovered
[ ) b .
by Jélinek. -

o

Viterbt In 1967, introduced a new algorithm particularly eflective In decoding
convolutlonal codes.of short constraint length. Fipally Hel'lcr'proposvd another ‘

sequential decoding algorithm under the name *' feedback d’ecodln'g'.
’ v -

o L]

2.2.2 Sequential and Feedback Decoding [11] . : .

- e e -

. .. s ‘ g . ) ..
Decoding a —:- L, convolutional code hy meuns of the VA, requires the computa-

-

tlon of 2 metrics at each node of the trellls and the storage of 2** - 1) metrics

©

and 2 - 1) survlvlnx sequences, each of which miy be about skl bits long. This

.
) - ‘
. > /
- 1 L -
¢ *
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Y

. - o )
amount of computations s performed Independently of the nolsy conditions of -

" the channel, resulting to a computational burden that reduce the VA lmprzict,lcal
for decoding of convolutional codes with a large constraint length . Thé maln

characteristic of the sequentlal techniques llstgd below, Is a decoding effort adap-

tatlon to th2 aolse level. - ' ,

The Fano seguentlal decoding.algorithm éearches for the most probable path

through the tree or trellls by examining one path at a time. The Increment

added to the metric along each branch Is proportional to the probabiilty of the

A

recelved signal for that branch, just as*lﬁ Viterbl decoding, with the exceptfon
]

that an addltlonal negative constant Is added to each branch metrlc. TRhe value

of this constant Is selected such that the metric of the correct path wlll Increase

on the average while the metric-of any Incorrect path will decrease on the g}\]'er-

age. By comparing the metric of a candldate path with a moving ( Increasing )

threshold, -Fano:s algorithm detects and discards lncorrec’t, paths. .

The decoder Is usually forced to start on the correct path by the transmls-
slon of a few known bits of data. Then it proceeds forward from node to node,
‘ Py ‘ '

taklng the most probable branch at each node ‘and Increasing the threshold is

o

never more than some preselected value, say r, below the metric. Now suppose

v

that the additive nolse ( for soft-deciston decodlng ) or demodulation errors When

the decoder devlates, due to the nolse level, Into roll\owlng an error path that

appears more probable than the correct one for a certaln length, the observation -

of the metric's decrement forces a back up situation In which alternative path's'

through thgft}ee are examined, In amr itt.empt to find another path that exceeds

e

-7\ . z.‘

-~
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the threshold 7. If it Is successful in finding an alternatlve path It contlnues -

- along this path, always selec'tlng the most probable branch at each node.( fig. 2.9

b S
) On the other hand, If no path exists that exceeds the threshold r, the threshold

~

1s reduced by an amount r and the‘orlglnal path Is retraced. If the original path

does not stay above the new threshold the decoder resumes 1ts backward search

* for other paths. This procedure is repeated, with the threshold reduced by r for

each repetitlon untll the decoder Ands a path that rémalns above the adjusted

o ? oo
L}

threshold.

3

.In comparison with the VA , the Fano sequential decoding exh!bits compar-

able error performénce. a significantly larger decoding delay but also reduced

> starage requirements.

<

, The stack algorlt,hm. Is another type of s_equent,lal decoding, In which f; list s
malntalned pf the shortest partlal paths found bo date,'the pat,h‘ on the top of the
lst 1s extended and Its successors reordered 1n the list untll some path s rcgun_d
that reachds the terminal node, or else decreases without Ilmit (fig. 2.10). That
some path will eventual{y do so 1Is f:nsured in }odlng-appllcaf\ons by the subtrac‘-ﬂ ’

tlon of a blas term such that the length of the correct path tends to decrease

L]

while that of all Incorrect paths tends to Increase, ’ ' '

)
‘.

. 4 In a comparison of the stack algorithm with the VA, the stack algorithm

requires fewer metric computations, but this computational savings Is offsct to a
. ‘\‘ ' .
_large extent by the computations Involved in reordering the stack after each

' LY

fteration. °thn compared with the Fano algorithm, the stack 'alzornhm s com- ' ,

»y -

putat’fona]ly simpler since there 1s no rchacl"ng over the same path as Is done In

. l .
!
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the Fano algorithm. On the other hand, the stack algorithm requires more

o

storage than the Fano algorithm.

- ' Feedback decoding 1s another technique in which the decoder makes a hard s '

-

decls;lon on the Information bit at stage y based on tﬁetrlcs computed from stage
jtoj+m , where 'm s a preselected positive Integer. Thus the decislon on’the )
information bit Is elther O or 1 depending on whether the minimum Hamming
distance path which beg{ns at stage 5§ and ends at stage 5§ + m contains a: Qortl
in the branch emanating .rrom stage 5. Once a .declslon Is made on'fhe informa-
N tlon bit at stage ;j only that part of the tree whlcgl stems from the ‘blt‘selected at

stage j Is kept and the remalning part 1s discarded. The next step Is to extend

o

the part of the tree that has survived to stage j + 1+ m and consider the paths

)
’

from stage j +1 to j,+ 1+ m in declding on-the bit at Stage j + 1. This pro- °

:
P Y

cedure 15 repeated at every stage. The parameter m 1s slmply the numﬂbgr of
[ .

stages In the tree that the decoder looks ahead before ma’kmg a hard declsion,

which Is usually selected In the range L <m < 2L significantly smaller than the

- ~
]
-

VA decoding delay ( 5L ).

’

¢ Instead of computing metrics as described above, a feedback decoder for the

BSC may be efficlently implemented by computing the syndrome from the
recelved sequence and uélng a t.anbl'e lookup mett\od for correcting errors. This
method s similar to the syndrome decoding technlique applled to decoding block

codes. For some convolutional codes, the feedback decoder simplifies to a form

called a ‘majority loglé decoder ', or a threshold decoder. /\
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2.4.3 Comparison of Sequential and Viterbi Decoding

The maln advantage .of sequentlal decoders Is that thelr complexity 1s relatively
independent of constraint length, which can typlcally be made qdlt;e large to pro-
vide a very small probabllity of undetected errors. On the contrary the computa-

tlonal burden of the VA grows exponentially with any llnear Increment of t.he

-

constraint length, imiting its use to codes with relattvely small values of L.

(3
o

Long decoding delays, poor performance In error-bursty conditions of the
channel, data buffer overflow and nécessary storage of .several thousands of
recelved, data in soft-decoding (. a sltuation that almosté prohlibits this alternative
), are the' maln dlsadvantages_oLstMal. decoding techniques ln- comparison-
with the respectlve actual performance of the Viterbl algorithm [8] .

°

2.4.4 Related Algorithms in the Area of Intersymbol Interference .

hY

In the Intersymbol Interference-literdture, many of the alternatlves to VA

4
attempt to find optimum nonlinear algorithms using bit-error probabllity as the
optimallty criterlon [12]-[14] .

The genéral principle of several of these algorithms is as follows.
Denoglng by z the observatlon, we first calculate the joint probability -P (e, , z) for

every state o, In’ the trellls, or_alternately P(§, 2) foi‘ every transition &_- This 1s-
Y

done by observing that ' N

. Py, z)=P(os, 2P| 04, 287 ) = P(ow ;287 )P (| ou)
]

[ »
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since, glvsn o, -the outputs, 2N from tirnie k¥ to N are Independent of the outputs

z* from time o to k-1. Simllarly

P(fkv')=P(Uk.‘U.+|. ‘) . : e}

k- k- k
=P(oy, 237 )P (Ossrv & | on, 28P (38 | Ousr 00l 3E)

=P(‘7k', “S-l P(ossy 2 | UI:)P(IAKH | o4 41)- ” A
s

Now we note the recursive formula

P0r. 28 )= P04, Ohkur, 287 ) = 3 Plosoy. 222 WP (04 2oy, | Ons))
LIS L8}
- i °©

which allows us to calculate ‘the M quantjtles P(o,, 2! ") n:om the M quanbitles

[

Ploy 4 2872 }-with |B| multiplications-and-additjons using-the-exponential lengths

\

c-l(ﬁ-l’ = P(o, [ o )P (2, l §e)

a

&Slmllarly we have the backv;ra’rd recursion

' ’
el

‘P(nki o)=Y Pz oryy| @)=Y Pla.oxy, | o)P(X, | 04s))”
%%+ %449

.
.

~~ - -

which has similar complexity, Completlon of these forward and backwardSrécur-

slons for all nodes allows P(o,, 2) to be calculated for all nedes.

Now, to be specific, let ‘us consl&?ar a shift-register process and let S(w,) be

°

the set of all states o,,, whose first componént 1Svw, . Then

s,
.y =
a

3

Plw,z)= S‘. P(ox4y 2)
oot Siy)

°

Since P(w;, 1) = P(y, ‘| £)P(z), MAP est.‘lmauon of -', reduces to finding the msax- )

Wt
-~
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o ,
\ -

Imum of this quantity. Similarly, If we wish to ind the MAP estimate of an out-

[

— put y,, say, then let S(y;) be the set of all é,, that lead to g, angl’ compute

d

Ply.z)= Y P(&.,2) T
& ¢ S(y)

< i s /7
A ¢ A}

Successlve computation of the last expression for all ¥, 1 < ¥ < N, leads to MAP

°

estimatlon of the transmitted sequence «.
. . ) . '
The symbol-by-symbol algqrithm proposed by Hayes et. al. [1], belongs t
- . !

the previously discussed class of algorithms whlch use bit error probabllity as the

optimality criterlon. In the sequel, this algorithm which was originally proposea

2

In decodlng pulse amplitude modulated signals under ISI conditions Is rurthér

[ °

éxtended in convolutional co‘des decodlng.
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2.3 "The Optimal Symbol-by-Symbol Algorithm.

2 ~

The folﬁ)wlng decoding algorithm-' proposed by Hayes et al. In 1982, performs

optimal symbol—by-symbol detection of a pulse amplitude modulat?ed ( PAM )

2 ©

sequence, It exhiblts a structure similar to that of the VA, sharing a loﬁ of its
- advantages such as-effectlve use of dynamlc programming prlnclpleg, parallel

structure, stralghtforwardness of implementation and ' merging ' propertles that
. . e
allow declslons to be made prior to reception of the complete sequence. Thelr

Q

critical difference Is the optimalfty criterlon; the symbol by -symbol algorithm is

R °

c

- ‘ " focused on minimizatlon of symbol error- probabllity rather than minfmization of

-

the probabllity of error in whole sequence détectlon.
I3 a0

~

The symbol-by-symbol algorithm 1s here. ¢onsidered for optimal decoding of

A
convolutional codes. Followlng the analysls originally pr_oposeQ In (1], both the

9

algorithms are presented along with" thelr common derivation. ‘The notatlon of

c

R

§ome critical terms Involved 1n .the description of the VA In‘ Sec. 2,3.1, Is

)

o t

. \
different from that previously used, primerly for reasons of a unifylng treatment

G

of the two decoding algorithms, ;vhlch impliéd an explicitly defined common ter-

" * 1 e

minology for both the technlques. )
° ~ N \ ¢

2.3.1 Hard-decoding of Convolutional Codes: ,/

-

.
? ~ - aI ' v -

We consider the case of decoding convolutlonally encoded sequences u;ansmltt.ed ,

. over a Blnary Symmetr'lc Channel (BSC) .- the probabllity of a bit error in this
. , o . . ’ .
- - .oA
channel Is p for elther O'sor 1's«.  »
L N ‘- ¢
b Pl

e
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.

The transmitted sequence of length N symbois - each of them assﬁrxflng one
- ;
© v . N & . o
~of M possible values - Is denoted by a = (8,,8,,...ay), Whereas some possible real-

[N ' .
1zatlon of ‘thls sequence, say wm, 13 denoted hy a(™), or equlvalently by

e (8,.d, ..., dv). Slmllarly we define the vector y("‘) as the coded output of the
\nformatlon vector a{™) and z the nolsy recelved vector of length aN. o .
- . a ' '

Since each lnrorrqatjon symbol a; Is encoded Into n coded blts, each element

. .y; of y represents a subvector of length n, l.e. ¥ = (¥ Y2 ° ' Yin). Slml-
ot .
larly, 2z = (2,4, Ziz. " ", 2in), SlDCE z; = y;; @ n;;, where the symbol @

) L . .
e represents modulo 2 additlon and thé polse component n;; Is a random variable

b‘

binomlally dlstrlbuted)vlth p.

. ' . g
A key term that arlses In the MAP declsion rule of both the decoding algo-
p . ?

9

rithms 1s the probabllity densfty function g ‘ L

¢ pG/e™) =Gy S\ ey
° . s N ‘ . ) 9

N . 4 ' y .
since there Is a one to-one correspondence between a'™ and y("‘7 . Under the. >~ .

/

BSC assumption the probabllity density function of a particular signal belng '

“recetved_ glven that a particular sequence of nN code bits y(™) was transmitted 1s "

N (2 3 -
4 . Y
D) .

\ .
' ) S * & R

. : )
. 3 “ . "

.o nN - -
. p(z/y"™) = TIp(a /™) = p¢"(1-p V47" (2:2)

1=1

o

3 K ’ ?

0- - 4 -
where d(™is the Hamming distance betwden the two vectors z and v™  (Le.,
, . N

B niN ‘.
. dim) — IR TALRE )

i=1 ° P . 1)
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4

Since the process £gvolves In n-blt steps, the previous expression can be writ-
- ' ‘ L .

<«

; . tenas: : - ‘ :
:, . / N ? , o ,
s : E . . ' *
nod (m ¢
; wMM=nmehnp w)“—Hthqu&m
=1 § =1 ' PN §=1
, -

. where N Is the number of branches of the m** path,-and z,y;™) represent subse- .

N . -

" quences of length n bits, having Hammlng distance d;,(™) ( 4,(") = E z; @ y,J ).‘
\ , . , j=1

© ' . ° ! h 3

A .
Dernoting by o the ratlo -——lp , the prevlious expression can be written as :
5 =D . .

. ®
3 B .
1 ? Y

) . ;V E-tu @y”m) .
WMM—HP—)(HP=HW‘;(MV
1=1 1 =1 g

- 1

Notlng also that (1-p)" Is just a welghting factor Independent of y{™) we can -

. °

write : X | L © \
o ‘: '
N Ezu@"u~ . 223‘1611. 3 '
p(z/y™) = ¢ I’ =c o=V . (2.4)
» - =1 ' .
f . - , 2 o 4
"A set of state vectors o} s d):ﬂne(_i as .
o | : .
e v o ={ 8_1 4, ,a,:_L;;.‘,‘, ceey B} k__—; L2 ,.,N (2.8)
. ’ . L ! )
where L Is the constraint length of the code. Also a sequence of state vectors up
d ’ . -

"< to and Including the state k Is denoted by S* . Thus .

H

S* = {6,,00,...,00 ) =4{8,.0,,...,84 3} k<N °



g

o

eq. (2.4), we define 3 e

L .

Simillarly, we deflne the sequence of nolsy symbols -

z‘5=={zl,_z,,,,..k.,,z,,} k < N.

.

&

—

where the elements z; = {z,, ‘- ', 2, }. The same notation Is ‘agaln used for the

4 >
\]

notation of the sequeflées at aind ak, Then, with reference to the exbonent in

A ¢

* - b ook Foo
- U(z*.8%)= 3 3 ; @y ) , (2.6a)
* : fe=1f=1
n, Ye . o :
V(zg,op 1,00 ) = 325 Oy (2.6D)
1 / j=1
and consequently . e | : .
U(zt, §%) = U@L PN + Vg, 04 04 ) (2.7)
Then eq. (2.4) becomes : '
¢ N = ()
- L Ys ou" ' .
pz/y™)=c o™=t T =g ap(':’ sh (2.8)

4.

or equWalently, since there Is a one-to-one correspondence between’ Information

o

/ : ' }
and encoded sequences : . .
<o -~ .
' p(z' | ay=4a, a,=248, ' .oy = an] )
N gNy. UMY, SNY 4 V(ay, on @
— cal0 .S)=cal,(l 3 (#n. Ny N)l’ ((/2.9)
where ¢ Is a eonstant. ' (

fred
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where ¢ Is a constant. i A

The previous analysls concerned the transmission over a BSC. Simllar 1s the

derlvatlon of the respectlve expressions concerning the transmlsslon\over an Addl-

v

tlve White Gausslan Nolse (AWGN) channel. Substituting eq.(2) by :

-~

y Py A

nN . )
i1 s, - 20E(2y,™) - 1) / 202
P(z/!l(m)) — H e {3 a f' e/
f=1 270 o ¢
- 4+

with o the variance of the white ,_nolsé and E the slgnal energy, the rest of the

-

-previous analysls remalns the same.

1

’ » oL

2.3.2 Optimum Sequence Detection.

L3

When optimum sequence detectlon s attempted wé want to find the most prob-

able transmitted sequence that resulted In a particular recelved one. That Is,
glven the recelved. sequence z we attempt td find the Informatlon sequence

d = (a, a, ---,ay )that maximizes the conditlonal probability

S S p(a” =&V /z2) ‘ C (2.10)

.

Since the transmiltted signals are Independent and ldentlcally distributed we hdye

G

.
. .

>

max p(aN = aV¥ jz)y=c¢ ni%xaiu(‘N"sN” 2.11)
8 ‘ ) 8

’ ‘ . ~ {

and takling the 1ogg;lt.hm of the previous expression we get :,

: Al .‘

4
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m%xlnp(aN-:a'N /z)=m%x{[U(z,N,SN)]lna+ln,c} N
a oL ] J -

- i . *

Noting agaln that Ina, Inc are common terms ,to' all possibly transmlitted
* ]

sequences, tt§e problem of optimum sequence detection comes,down to maximlz-

[N
L)

<
¢

(eq. (2.‘7))". leads to the following expresslon : : ' o

<

Py

max U@V,SN)= max [U@EN2 SN + Viey, onp on )] .
sV Ty " 7. ON ~ ’ 3
s Py /
, ‘ . ] ’ . 7 .
= max ° max TU@ENY, SNY 4 Vg, onpnon )]
¥ ey v Lonal on c
where °‘the notation o,, ' ,0n_;| oy 'Mmeans that oy 15 held fixed while

-

oy L ,'aN_l Is varled. Continulng, we have

} ’ :

N),= . maxd { U(EN'I, SN"? + Vi, onpnon )= S
v Tt ON . . . . . A
d Ay
. ,N-1 gN-1 v
max max ) [ U(Z 1 S ¢ ) + (ZN' aN—l' UN )]
"N-1|",Nl op . Ongl| ONa. ON .

’ - -

Two key observations allow us to proceed :

.

1) If oy, and oy are fixed, V(zy, oy, 0y) IS Independent of

oy " ,05n_and - s .

\

m). U (z¥°1, §%) 1s conditionally Independent of ay, glven oy, . We have

L 4

then

-4

' Floy) = mex [V(zy, on_y oNT + max  U(zN71, SN
© oy |oN N Y| TN

“Ing U2V, V) over all transmitted sequences.” The recurrent form of this term



N\

.

' = maXNlV(ZN.UN-xf.UN)+F(0N-1)]- o . s (2.12)

onale

+

W

Noting the recurrent form of the previous expresslon we can write

)

Flo) = mac (Via op_por) + Flor)] (2:13)

Ot1i 9t

a

By repeated application of eq.(13), the optlmum sequence can be found . At each
step of the caiculatlon, the path leading to a particular value of a state ‘ls

preserved. Note also that since the state o, Was ﬁrevlously deflned by the values

.

of L -1 symbols (eq. (2.5)) and each of them’' may assume one of M posslble

values, we generally have M”“, possible reallzatloné of o ( thls number s

reduced durlig the L -1 Inltlal and final states of the process ). Finally, when the’

transmisslon of the whole sequence 1s completed, M survivors are compared at
. \ . ‘
the last stage and Jthe .one exposing the mafclmum value of U( PR va } Is

'<

selected as the optimum sequence.

2.3.3 Optimum Symbol-by-Symbbl Detection . . ‘ v

<

In optimal symbol-by-symbol detectlon, the whole recelved sequence s used in

the detection of each symbol separate‘ly. The actually transmitted sequence a

¥ v

consists of N symbols; aly one of them Is denoted by a, where 1 <w < N.

Maximum a posleriors estimatlon of this symbol consists of finding the most

& '
llkely’ value of a,, denoted by &,, glven the recelved sequence z. The likelthood
, .
of each possible value of a, Is expressed by the condltlonal probabllity :

p (a,=2a,]| = ). The specific value 4, that maximizes the previous expression

»

., -63- | v g

.
P



| ‘Combining eq.(9) and (11) we have

constitutes the optlma’l.d'eclsllon on the é,ctuaily transmitted value of a,,.

L, = a. Thus 0y

" “ous probabillty s reduced to : ' : , , .

' ' _.’ T -84 .
.' “ 1 - - .
In order to proceed Wwith the derivatlon of a tractable expression for this

v

likellhood, .we define a subset 'of the set of states (see eq. (2.5)). Let
5,5 =12 - N;l=12 --- M, denote the same set- of states as
defined prevlously except that '&,., Is set equal to oxie of 1ts M possible values, l.e.,

ag=0j for pF<w " and J 2w+ L-1. For
, ¢ ' , ' A T
w< j <w+L-1,7; has M possible values depending on the M possible values

4

of d,.

- »

We also define, simllarly to eq. (2.5a),

- I O
Then
Pr(a,=1a,] z)="
Pr(a,=a,, ..., a,=6,.ay=dg)p(z | a;=a,, ..., a,=4,. ,ay=0y)
SIN : ‘ P( ?’ ) ‘

Notlng that p( a,=4d,, ..., a;,=a,,.,,aN=&N y=M7N (sln'c‘e all the sequences are

equlprobable) and p (z ) s Independent of a,, the sufficlent statistic for the prevl-

> p(z| ay=d,, ..., aw=.alkn'"'aN=aN )
( 182 ..., 00,8y ) .
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max p(a,=a,| z)=c max 3 PG (2.14)
- , 8y 0y, e, om

In order. to calculate the summatlon In the last expression, we use a similar

* * recurrence to-that used previously (eq.(o)) I ' \
¢ ’ N N
2 QU(I ! sl ) =
LS TTRRR /Y
N v N-1 N-ll v 3 .
0 X ( max VeSS )+ Vi, N-le"m)l))
T TN [N Ty TN | TN O ’
where . t
: by
: ’ Ty |ON

- -
d -

1

denotes summatlon over all realizatlons of the state oy_;; holding state 7y fixed.
Simllarly,
o . E

toy. TN | ONo TN
. :

denotes summatlon over oy, - - -, %y holdlng oy, .oy fixed. By the same

line of reasoning which led to eq.(12) we have n

b

Y VNS ’
2 Ty, LT
. . A L NA
(D av('hl'bN-l.l'”M )( . D aU(z" LsT ». ,..(2-15)
L BN B Ty, g | ONa TN X
Defining the expression . )
' : ‘
‘Gay.d,) = > P L A N

Ty, Ty | u

; "



- 86 -

we can write

) e,

4

G(.;H ,dw) = E aV(‘k'?l-l,"bkl )‘G(b.k‘-l.l’ dw) k _—_—"1, PRI ,N .
Thgy | By

.

2.3.4 Formal description of the algorithm.
o . 3

The steps required to find the optimum value of a, Ean be summarlzed as

follows. ‘ .

1) Compute for each T the quantity G oy, 8,).

/, 1) Using the iteratlve relationship In eq.(18), compute In successlon the

qﬁam.ltles G(oy, 8,), G(oa, 8,), ’.. Gm, a,)-
M) Sum G oy, 8,) over all states oy

Iv) Repeat the previous computations for each of the M possible values of

\
a, and choose &, which produces a maximum., : .

L ]

Optimal symbql—byfsymbol decoding of the whole sequence Is performed by

repeating the previous steps forallw, 1 <w < N. ‘,

As In optimum sequence detection, the finlte memory of the channel allows us to
deflne a sultable set of states thereby évoldlng complexity that grows exponen-
tlally with the length of the transmitted sequence. However, the foregoing calcu-

lations must be repeated for each of the N transmitted symbols, implying an N 2
o .

growth In complexity. ' ,

There 1s a degree of commonality In the cal.culatrlons for each of the symbols,

~
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which may reduce complexity to some extent.
Consider, for example, the -detectlon of symbols ¢, and g, Where

1<w <w, < N. For j <w, the state 7 Is Independent of é,, and a, and

we have G(v;.4,) = G (@;.4,). ,Thus, In order to detect the symbols By
Gu41 " '» Gy, L™ values of G(aj;,awl) need to be computed for the states

5,-J =1,2, - ,w-1 . When at the wl"' step, a distlnctlon must be made

among the posslble values of a,.,l. Until a decislon Is made on a;,l, the quantitles

G(oj;.4,) must be computed for all possible values of d,,. This distinctlon Is

\

depicted in flg. 2.11 , for the rate-1/3 L = 3 systematic convolutional code of fig.
1.6 . In carrylng out the computations for the successlve states, we carry along

G(oi,d4n) which Is used In the calculatlons of G (v;,d,); j,‘k < N. This com-

“

monallty reduces the complexity of computation by one-half.

9

i
B



b Fig. 2.11 Optimal symbol-by-symbol décoc}ing of the w symbol (here w* = 4) (a)
e a,=1(b)a,=0 ) i ,
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,In bbth the ciecodlng techniques we need to compute the llkelihoods. <;1’ each
i possibly transmlitted sequence, l‘g"order to declde which sequence or wl.uch sym-
bols were Q.%tually transmitted. ( see e;l. (2.11) for optlmal sequence detection
and eq. (2.14) for optimal symbol-by-symbol detectlon ). Since an Information
sequence can assume a great n}lmber of symbols, a ‘brute force’ approach to these

computations soon becomes Impossible. The key observation that mlnlmlzeg the

decoding complexlﬁy Is the fact t'ﬁattany coded sequence, belng the product of a
finlte-state shift-register machlne, can assume, zIt any tlme Kk, one of a finite
nuimber of outputs (depending ‘on the cer’taln state of the machine), aird merges
with ot4her sequences (or ‘paths’) by exhibiting L -1 consecutive 1dentlcal Informa-

tlon symbols at the preencoding level. The previous property combined with the

memoryless characterlstics of the phannel, allows at any tlme k,

Li<]

1). the selection of the folfilmum distance path from a set of merging com-

petliors at any reallzatlon of the state o}, yvhen Viterbl decoding s performed,

.

11)- the summation of the likellthoods of the merging paths at any reallzation

of the state o;, when symbol-by symbol deéodlng Is. performed, ' L

In both cases Independently of the rest of the recelved sequence. -

’

-
.

2.3.5 Merges and Complexity R‘equirements

"Merges™ describe a randomly occurring phenomenon in optimum sequence detec-
tion, In which all of the ML survivors at state k exhlbit the same history, 11(

terms of states successlon, at a certaln depth é. Since from eq. (2.13) Is assured

+

that the optimum sequence contalns one of the survivors at state k , the common

L]
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history can be-put out as the algorlthm'’s declslonoat time k. When the depth é

X , RN
Is chosen large enough the probabiity of survivors' disagreement at tlme k-4 Is

1 5 -

very small and declslons at time k concerning the Initlal k-6 symbols are nearly

optimum.

o

o

An analogous, phgnémenon Is encpuntered Im optimal symbol by symbol
decodl’ng.b Let {a,,a,,..., 6y} denote % he ~Vvalues that a symbol
"d,:;1 <w< N . may assume. As Indicated ln eq.(18), 1t 1s declded thaf &, = g

It

3 .
EG(UNInaw) | 8,=ap, Z EGCUNIvdw) ' 8, 40 ° (2'16)
oM

TN . -

’

Now suppose that for a particular j such that j > L-1 + w

=,
. G(b’ﬂ ,&w) I 8~ Z G (.'UJ'[ ,dw) I 874 for cve”yb'ﬂ j2.17)
' . < ) . —
From eq.(15) 1t follows that for every k > j ‘
° ~ . 6 n X . ‘}
‘ ! .
GOHB) gme 2 COuAD | sy, 107, cveryTy (2.18)

Consequentl& €q.(17) holds. ‘ )

s

Thus, If the relatlonshlp In eq.(17) holds, then 1t Is not necessaryyto compute

v

Gloy.,a,); k > J. The°declslon'd,;= a;’can be madg at time J. In analogy-

v

ox °

with -the Viterbi algorlt,ﬁm, a truncation depth of 6L was adopted/here as the_

decoding delay for a symbol's’ est,lmamol_n.

I3

The  maln two expressions concerning the complexity of the two decoders

under consideration are reported in {1]. Their. Interpretation in the present case'

E v
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&
~ ' o, . ‘ .
Is stralghtforward. The system’'s memory 1s L-1, a symbol can assume. M
different val(gg\s and. Ay Tepresents the number of additions necessary to compute
N C . \

¥ (2,04_y4, oy ) for a single palr of states. Then t,.h,e amount of edz;val*eht addi-

tlons requlred for the detec?lon of a single symbol by a Viterbi decoder s :

~ »
AN

S, =M'""(MAy +2M -1)% "~ 7(2.19)

and the storage requirement is

B, = MY R, + D ,log,M )bits.

?

where R, I1s the number of bits necessafy to storé F(o,) and D, represents the

decoding delay. ) . o
» I'd .

&y

“When symbol-by-symbol decoding 1s assumed, the amount of additlons required
. ) " .
- )

I T o ’\\7 -
for g symbol's deteqtlon Is ‘ . .
. Sy="M'YMAy +PM + EM + M -1)(1+D M) (2.20)

fhere P represents the ‘number of addltlons equilvalent to multiplication, E s

© -

" the number .of addltlons equlvalent to e)gﬁonentlatlon and D; 1s the decodlng

v

delay In blits.

- o

Also, assuming,that R, bits are required to store the quantity G(vj,d;) with

sufficlent accuracy, the overall storage requirements for this decoder !s :

~

CB,=LTR{1+ML ]

»
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2.4 On the problem of ML éequeni:e debection ‘of convolutional codes

- transmitted over a channel with ISI. : )

_encoded ( ﬁg'. 2.12 ), the ”recelv,ed,,slgxial has the following form 1] e .
- - o ' ’ . ‘_ :
.c . N .ﬂ, ' .
i y(t)= De;h(t -jT)+n(t) 0Lt <r, NT <7< (2.21) .
: P . .. N SN
; okl
" and v

v - ¥

d

* - -
SchMAM )- . ,

-2.4.1." Nonencoded Transmission .

\ - EANIN

v xu B ’ ) \ \\

\\

e

’

In the general case, In which the Information se(iuenqe of length N 1s transmitted
‘ ; : ' ° 4., ) \ . e
In a band-fimilted channel via PAM ( Pulse Amplitude Modulation ) and s not

3 - L .r -, .
\\J ¢ Priy(yvosam < T | 6, =28, a,=28, - .oy =08\]=

- 'y ¢

s e
- L N TR U A N
- ) .Kefp (G {[y(t)ji}id,-.hg -;T{] dt 1 , (2;22)
- 5 . '/ N

o ! ‘ ¥4 .
Maximlzatlon of thls quantity, I:educes to minlmlzatlon of : -

®
b3
.- . .
- - o

! . . ' N \‘ ‘ ° 2 " N
o Ty Y- Skt -iT) dt . (2.23)
‘ ' , 0 i1 e C .
& ' ’ & . - o .
—— v .
» . i N . . Vs o i . ’\ o " . -
2.4.2 Encoded Transrx;issipn . T

. \
-
. . [

L] © ¢
.
.

In our case (fig. -the equlvalent of the nolseless ,sequence {a;} 111-1°eq. (2.21),

° Q

denoted 'by {8;}, conslsts of N/n successlve n-tuplé\suDSeqﬁenpes: the discrete
° ~ v . . 1

outputs of the ,'convolutl'onal encoder modulated by 2 pulse amplitude modulation
' ! ,/ \ \

- 8 [
©

o

-



PAl

MLSE

. PAM ; ISI CHANNEL DECODER
. noise :
_ -
4
s, A v
Fig. 2'.12 General transmission/reception scheme of PAM signals
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Fig. 2.13 General transmissfon /reception scheme of PAM and convolutionally-encoded

slgn:_na.
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o tlon symbols allowing certain patterns of ¢; symbols to exlst. AUslng this notation

"
.

i =74~ ° . ©
The formulation of eq. (2.21) as: = s !
- . )
N/s » . ‘ . R N/n
1(‘)? NN eG-na+ih(t - D +)TP+ n(t) = 3 bk +n(t]2.24)
5 =1y =) J=1

3

by means of the vectors, b; = {8 _ya 41,8 -1m+a » .-, 6 ] 20d

. . }
b Bt =((7 -1)n + 1)T)
by = '

b

h(t - mT)

shows the sequence's separation Into distinet codewords of length n.

»

Denoting by s -the Information sequence and assuming a convolutional code

with rate % (¢ bits input,’ n bits output), the encoding procedure can be .
‘ . .

described by f (v ( 1 () represents the codlng transform of the Information ) and

¢

subsequenﬁly, the vector #; Is the PAM transform of f (u;!’): s . : -

o
v

bj = PAM{f (“;‘k)]'= [ Qi - +12 8¢ 1) +3 21+ 2 Bjn ] ‘\(2'25))

Clearly the sequence {a;} does not have the property or\mdependence as In

[1] where 1t represents the information sequence, pulse amplitude modulated,

(Y L]

since the encoding procedure Introduces correlation between successlve informa-

L

eq.'(§.22 ) becdqle's P : . \ :
Priy(t),0 <t <T | by=F,by=8, ~ - ,by=>byl= (2.26)
. & , ! \

.

1 T N/‘. 2
K exp [('ETV') fly)- 26,-1.,-1 de ].
] J =1
-
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Denoting the ratlo N/n by N', and rollowlng the same procedure descrlbed'

. In (1] , maximization of this,quantity reduces to minimlzation of :

- .

i

f(y’(t) 225,y(!)h + 2 z)n 61.. ydt = . (2.27a)
; J =1 ’1'-l

fyz(t)dt -2 EEZ(J-l)n-ﬁnd(J-l)l +¢ t
Jom)im]
4 t

N N »
+ Y YY Eﬂ(,-;).uh(t -G -n + f )T)d(l-l)n+lh(t ~((i - Vn + I {Z.27D)

=1 |—ll ] -l

- v

where : ¢ - / -

T t

z; = [ y(t)h; dt (2.28)
0
and ! , ¢
2ognei = [yt - (5 -Dn +§)T) dt
;;apresents the s'." element of 'tpe vector z;: Defining also :
.!/‘ |
6 - n -H'l G -Dm et = T -:;): +-1=
) ’ ]'hll/t—((J-l)n + [)T)h(t = (i = Dn + 1)T) dt

0

-
~a

!
where ri; _jjw4yg -1, =0 for /|(u’ ~fm +f -1l}|] > m and m : the channel's
: /IA " *

' memory, we get :

|

! . .
L 3

| N N & . :
fl"(‘)‘“ -2 EE"(:-:)HJ(::U-L + Y EY S-S -om T -m s -t)

I U Jmel fm1f wm] ]

t r ’ /

-~

>

1‘v
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I ,
competitor- sequence {4;} , and the sufficlent statistlc can be reduced to the com- -

-

putation of the following expresslon.

4

N » N N .»
2N Nz ailomii - B DD E‘u-x)-u Bionm +1T 6 -jm+g-1] (2:29)
J-)l—f Jml Vmmlf ) =)

/
or equ()valently as In eq. (2.272)

i 2 Et,y(t)l. + 2 25 h; 8 k; | (2.290a)
,=1 Jm=1 {w=]

4

Adopting at thls polnt the prevlouély discussed " whitening filter’'s ”

. « ’
approach ( which shortens the Intersymbol Interference from two-slded and future
to one-slded Involving only the past ) for reasons of simplicity, slnce na loss of

optimallty Is Introduced by such an assumptlon, the output of such a filter z; -can

K4 .
o

be written as : .

m -1

. , L ZGom+d = M 8Goygneiotni b BG4
=0 . 0 ’

The process of detection.

.
L

Now , In order to avold unnecessary complexlity, we continue regarding a
subsequence of n symbols as the vector b; -and define an auxlllary channel's
block-memory m’' . This guantity expresses the contribution of the last m' vec-

tors. b;;, for i € m’', to the recelved value of the vector b, .In rgspeét with the

deflnition of the'channel m\emory as . T .
|

o = {h(t~iT)h(t-—jT)dt




-

-77-
and r_; =0 for 1-3| > m, we define It as

) . /
- R .

r'.j = [h( —inT)h(t - jnT)dt - . (2.30a)
i = . _

¢ D

and r;’; =0, for h-3]>m'.

In terms of the channel mexflory m and the len'gt,h, of a codeword =, .1t can®

e
f

v

also' be deflned as :

m' =[] . (2.30Db)

4 .

where [ | denote the minlmum integer with value greater or equal to the ratlo

«

m’/n: The nec'esslt& of the above definitlons Is‘ob¥lous, since we deal with blocks
of $ymbols ( codewords ) Instead of Independent symbols, as In the case of the

uncoded transmission.
’

Followlng the same procedure with that In {1] , we define a set of state vec-

tars ( see eq.(5), 1] ) as: . ‘ o . | ’

’

~ O ={6k—m"+l'sffﬂ' +3 1°* 6‘ } k =m"m’ +1 ,...,N'. (2‘31)

and S* (the sequence of staté’ vectors up to and Including the state at time kT,

» ' A
+

6} kSN

Sk = {c'l ,0"1

+1 7 -:Ub}={‘;.ﬁ,,".:. |
Simllarly
. i L 3 |
= {z2,2,.,..., 1} k<N- .
where the elements of z* were previously defined In eq. (2.28) .

:'/:-' .
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. :
Uz, Sty = o . ,
' k = [} E » [y
2y NG -m+ib-umei— N NN DG+ 8 nn TG - g 2T
Fomidmy Fm=y it —lj-l '

i

and representing

Vzg,op 10y ) = '

., ¢ - » m \ . . -
2 S Zgonym il o ~ 2 N ko B ogm i T = 8%k —ym +iTo
(] fm=1 - =] §=1

‘
/ 0

follows that

Uz*, §%) = U@, S + Vg, 04004 ) . (2.32)

1)

v

The quantity V(z, ox,, 0 ) represents the part of the metrlc of a sequence due to

transitlon between two successive stetes . It cafi be farther apalyzed as

Vizg, 00 104 ) =

3 .

m .
22 _ynt 18k -gn+1 — 280k -yn 1 DBk 42-F T~ aa(k—x)u +170 '
y=1 .
m

a .
+220 428G -m 2 — 280k _1)e 42 Y2k -un+3-5T — &% ya+aTo
. . § =1 '

¢ B

¢ 4

* .Mm .
228 - 28 Dby j 1 - 8% 1o R
i=1 ,



-

or
n . r

3
Vig,op oy ) = B V(z,00 -y, 04 ) (2.33)
J=1 :

-t

Noting that U(z¥ , §¥') equals the sufficlent statistic .defined 1n eq. (2.29) ,

and also the ICfIa'rkovlan nature of the process, the closest path can recursively be

¢

found from the following éxpression . -
' o \ . ]
F(opy= max | V(zht'r)_.,o',,) + Flop.) ). (2.34)
041/ 0} :

~

According to this, ali that iIs needeci for the ML sequence estimation, 1s the

computation of V(z,0, _,, 04 )for k=m',m' +1 ,., N'. -

a

. 2.4.3 Implementation of the Decoder. Q

I Overall Memory of the System.

7

It can be clearly seen from’eq. (2.33) or its equivalent e'xpression '

&,

Vig,op-1,04 ) =
' / - ‘ 2 \
22wk g1 — 286 o 1ya 4 Ea(k-x)u+1-;’ ri — 8%k _1)a +1T0
. . j-l , '

+ 22 - +200 -1)-/+n = 280yt DGy 4s-5 T — 8% cm 43T
. - J'-l N .

- A »
) - <y
IN . . .

m
v 2 g Oy — 2 8y Ed;"_j TJ'P~— d’hro
i1

that the values of m symbols of the previous m' vectors b; are needed for the

, AN
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computation of the transitlon metric V(z, o) -y, 0; ) . A decoding technlque based
on a trellis-description of the formation of each possible path, should require an
overall memory of L -1+ m' » Where L represents the constralnt length of the
code and m' the channel's leemow, previously defined In eq. (2.30.). Note
that the overall system's m{niorfr is ,not L -1+ m, because of the fact that the ‘

process evolves with steps of length n, thus the normalized value of m s the

appropriate measure of correlation.
° 4

Example : Suppose the use of a convolutional code with rate 1/3 and constraint
length L = 3. A trellls-based decoding technique for thls code Is shown In fig.

2.14a . In the absence of ISI,a declslon between the branches ( 000 ) and'( 100)

can be taken at polnt (X) regardless of the rest of the recelved sequence.

This Is not generally tlie case when ISI 1s ln'volve.d. Let's assume agaln the
-same code transmitted over a channel with memory , m = 2. In this case, In order
to find oui{, .whlch of the two paths has the minimum metric, one step Is further

_ requlred‘than that at polnt (X), that is, the comparlson of the paths ( 0000) a'nd

. _( 1000 ) should be performed, instead of that between (000) and (100) .

The previous observatlon can also be verlﬁed by noting the dependence of
“the expression of ‘V(z,, g5, 0, ) on the previous codeword ( (Obo) and (011) In this
example, fig. 2.14a ). In order to malntaln the convenlent principle of a trellis-

. ! .
based fmplementation of the VA, that from a set ol‘; branches merglng at one

trellis knot the selection of the survlivor at thls golnt should deflne the closest
branch to the recelved one, an expanslon -of the trellls Is necessary , as lllustrated

In fig. 2.14b. - : !
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Fig. 2.14 . ( a ) Decision between the paths 000 and 100 of the, rate-1/3 I = 3, con-

vg(liutional/code (b) Expanded trellis descrlption of the nte-l/a L =3, convolutlonal
‘code, :
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‘.

-\ '
s By the Incrément of the trellls’ states, we guarantee that the last m bits of any

two competing branches will be the same, and a decislon at the merging polnt,

concerning the survlvor, Is therefore allowable ( polnt A In fig. 2.14b ).

In the general case of decoding a convolutional code with rate -::- and con-

t

-

. - ¥
stralnt length L ,transmltte;{ over an ISI channel with memory m, an expan#ied

trellls can be used, with number of states :

ML-iem' (2.35)
] ’ !

where M = 2* and m' Is the block memory of the channel.

There 1s an exception to the previous concluslon which 1s of interest. Sup--

) 1
pose that we use a systematlc convolutional code with rate i whose the last &
i ' n

_bits of each codeword, conslst of lnrqrmatlon bl£s and thus remaln uncoded. If
the channel memory m Is less or equal to k, then no trellls’ expanston Is required
and the system’'s memory equals that of Fhe encoder, (L ~-1). Note_that by
definitlon, when two paths merge,“ they should exhibit k(L - 1) altke ‘1n‘rormatlpn
:b!ts. If at l'east, .the last m of them a;'e transmltted uncoded, then the last m

bits of the codewords of all the competitors are the same, and a declslon at the

merging point Is therefore allowable.

- . II.  The decoding procedure .

i The first act of the decoder Is the separation of the réslved sequenge into

segments' of lerigth n , SO that the consecutlve vectors z; for ¢ =12 - N

§
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can be formed. Then starting from the zero state of the trellls, an information

symbol 4, ( 0 In the previous example ) should produce a codeword of leilgth n,

which Is translated into PAM values and formulates the vector b,. These values
of b, and z,, accompanled by the channel characteristics r; for j =0,1, - m

are all the necessary components for the computation of the metric 1;(:,, 0o, Oy )-

» ¢ ~

Once the metrlc computation and the overall memory were deflned, the VA
applles agaln as a recurslve computational’ technique that performs MLSE. h
Parallel processing can also be used for the computatlon of the gquantity

V(z,, 04, 0% ), due to Its accumulative.form ( eq. 2.33 ).

i

III.  Complexity .

Suppose a convolutional code L] with constralnt length L. The necessary
. ’ n

amount of coxﬁputatlons for any transitlon between states can be expressed as

ME-YA +8 ' (2.36)

A

here § depends on hard or soft-decision decoding mode and encompasses the com-

putations for the transition-metric.

In the case where ISI Is also present and the convolutlonal code is not sys-

tematic, the necessary computations are

M™ ME-YA +n f(m)) ‘ (2.37)

where f{m) .represents the amount of computations needed for edch
. ] .

L 4
noo

A ’ ’ . v ' ' \\ -
g . . K . .

. ! - \
.
N . - N - N o . - o N
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i . <
V(zgi, 04 .y, 04 ) Of eq. (2.33) ,as" a functlon of the channel memory m.

» .

When a rate-k /n systematic convolutional code is applied, the complexity

reduces to :

ME-YA 4+ f(m)) .. (2.38)

o

Y

IV. Conclusion. .

Transmission of nonsystematlc convolutional codes over ISI channels lmplles an '
_overall memoryof L -1+ m'. Tl_ze exponentlal contrlbution of the memory of a -
c9de to t;he complexity of a Viterbl décoder s the prohibiting factor In the usage

of this algorithm in decoding hlgligy emcleﬁt convolutional codes wlth great
. : j

values of L. Thus, any linear increment of the overall memory, due to ISI, has

signlficant effects on the decoding complexity.

On the other hand, it was previously shown that rate-k /n systematic convo-

! e v o o . e 5 o
—- T o

lutional codes requlire M m’ less decoding effort than thelr nonsystematic competi-

tors, when the- condltlon & > m Is satlsfled. It Is also known that they do not

perform as well as nonsystematlc codes with the same constralnt length (Sec.
1.2.1). Selection of k = m seems to optimize thelr capabllity and suggests thelr
application In band-limlted channels as a practical compxbml';se between error per-

formance and decoding complexity.
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- gr?ber technlque known as the ! Teichroew/ s method’ ( Sec: 3.1.1 ) In order to

} modulation were used here.

f \ '
. 8 Simulations and Results [18].
\

The roilowl\ng sectlons describe the simulation effort in this. project, in .order to !

-

.\ _

- \ . ) ;
observe the relatlve error-performance of the two ‘decodipg technlques.. As an
Introduction, the structure or) the slmulation Is bri‘eﬂy discussed ( see also fig.

- »

L 4
X : B ‘
3.1), followed by extenslve descriptions of,ﬂée techn&ques which have been used

> '

“here. | ' -

The simulatién program had the followlng components :

e

a. Generation of the information sequence . , -

*

A uniformly ‘dlst_f'lbuted random sequence With values In the range ( 0-1) (pro-

duced by a standard random number generator on a VAX-11/780 system )
, L] v I3

. 3
-

formed by.the Interventlon of a threshold , the binary information sequence.

b. Encoding and Modulation. -

’

A rate-1/3, L =3 convolutional code and Binary,K Phase Shift Keying (BPSK)

*

c. Qkannel Model . . : ’ ) \

L

e .
Memolrytess channel was assumed with two varlations.

In an unquantlzed AWGN channel the recelved signal Is the sum of the

4

transmitted slgnal and nolse with a Gausslan distributlon . The lmpl;éinent,atlon

-

“ ‘ ' ,
of the Gausslan nolse source was based on the\’ composition methodf modified by

/ : > .
.

A

4
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. ~ Improve the ‘accuracy of the approximation. L .

. \ - » . . . ‘ - ;
Undér Blnary Symmetric Channem'ssumptlon , a hard quantization of the

recelved signal reduces "the infilnlte output alphabet Into a blnary one. . An alter-

native { and quite efficlent ) method adopted here Is the modulo 2 summatlion on

the encoded stream of a random blnary valued one , binomlally distributed with

p the crossover,probablilty of the BSC .

d. Decoding. -

The soft-ware Implementation of both the decodlng algorithms, were based on
. " ‘-‘ - - * '
the trellls descriptlon, of the codes. The one-to-one representation of each Indivl- -

dua{ path enabled accurate testlng procedures.

a

The ' independent replication’  technique ( Sec. 3.2.1 ) was used for the com-

putgt'lon of the probabllity of error and the definitlon of confidence Intervals.

at

The ' antithetic variate' ( Sec. 3.3.1 ) method produced palrs of random sequences

with the same mean and negatlve correlation, alming at the compression of the

i - -
~

[ ;observeld samples varlance. N such independent palrs of different information and

nolse sequences ( produced by N different ‘seeds’ ) used to define confidence Inter-

vals by means of a student’s ¢t distribution with N-1 degrees of freedom.

i

Simulatlons conducted over a rahge of 2-7dB, due to comptter time liml-

tatlons,and the high precision requirements imposed ¥y the closeness at the per-

-

formance of the two decoding algorlthms.
.ot -

’

Q L)
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3.1 Simulation of the Noisy Conditions of the Channel :
\

The random error stream assumed two different forms, depending on the channel

model under constderation.’ ‘

¢

A. Blnary Symmetric Clfanrel model.

~
' - . In the case In which hard-decisions was employed, a binomlally dlstributed error

o : sequence was ( modulo 2 ) added on the Information-coded sequence. This error

sequence was produced by the comparison of a uniformly distributed (0-1) ran-

.

- dom sequence with a threshold value p. When tlfﬁa/ i* symbol of the latter
]

sequence found to be less or equal to p, the i* bit of the error sequénce was

deflned as 1 ax'ld (4] otﬁerwlée . Modulo -2 addition of the coded and the error

sequence, simulated the transmisslon of the convolutional code over a binary

synimet.rlc channel, wlt,h' crossover probabllity ».

[

l \

B.} AWGN channel model |
+ , , . !

. Y
{ R [}

: ".f} When transmission of convolutionally encoded slgnallng waveforms by blnary

coherent Phase Shift Keying on the AWGN channel 1s assumed , the recelved Elg—

¥
¢ ! nal can be written as :

i Yim = 2aE (2¢m - 1) + vj
1 oo .
! . ‘ where « represents-the attenuatlon factor, E 1s the transmitted slgnal energy for

EYN . 4
i 1




R

'Y

‘each code blt ¢, ~. The quantity v;m dénotes the addltive Gausslan nolse. whose -

- [ . . - .
- / '
f
i

- -89 ) :

. k ) '
values durlng the conduction of these simulations were produced by the Gaussian '

random number generator that 1s described below.

-

3.1.1 The GaussiamRandom Number Generator .

composition method ", which uses the pro-

.

Its Implementatlon Is based on the

e

perty of the aaympto'tic normality of the central limit theorem.

-

Deflning a random v-arlable S by -

o
-

) "f’u . -
S=Y1+Y2+ "'+Yu

where Y, ,Y,, --- \Y, are independent samples of the unlform varlates between \

==

o and 1. Then for large n, the varlable § le approximately normally d!strlbutedv,
'b ki N

" with mean n /2 and varlance n/12. The varlable X defined by

! 1

(8-

‘ 2
N - \

approximates the ‘normal varlable with mean p and varlance o® .A” convenlent

. c¢holce IS n = 12 slnce eliminates the -square root term from the last expression.

]

This value of n truncates the distribution at +60 1mits and s unable to generate

]
values beyond 3¢. ~



€ . o The Teichroew’s method . ‘ o ' - /

\ N . ” . - /l
. . _ . . : /
. In order to lmprove the accuracy of S,he previous approximation, the following "

«procedure has been prbposed and 1s known by the name of Telchroéw‘s method

[17). o ,

'Chooslng' n =12, p =0 and o= 1/4 and- demoting the\resulting varlable by

° 3

R, we-get fram the prevlous expression :

»

-

/ ,
o . & . . |
- R =N+ Vet o + Yy, -8
. Setting
. . .
1 X = [(((a,R?+ a;)R* + aR? + “s)R"ﬂ‘ax]R
. ' K » vor <
“ © O% g ~a -
where ” .
\ » "
[ &
dy=3.040846138° " .
: a; = 0.252408784
, a5 = 0.076542012
- . ' ' . . 67 == 0.008355968 o -
. @y = 0.020899776
N . /’ o . - . . {
b Then X Is a falrly good approximation to & varlate with the standard nor- '
mal_ distribution and 1ts transform Ct '
L - Lo . P . Z.=X‘&+ﬂ .. ) - '
. o . 1s normally distributed with mean u and varlance o®*. =~ . ) .
Lr;j‘ - ' - * ( - e ’ .
£ | - ' “ |
’t‘" %
. ¢
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.~ 3.2 On the st@tistical analysis of the simulation® results.

.
.

-

A ]

*, level " denoted by (1-2),1Is the degree of

[}

-
i |

The following sectlons descrlbe the conductlon of simulation, deallng with hues—
o N :

tions as sample slze determlnatlon,  rellabllity and methods for improving the

eflficiency of statistical simulatlons.

-

3.2.1 Choice of sample size, the ’ independent replication ' method .

LTS v -

In order to perform a rellable simulation and establish 'coﬁﬂdence mter‘:7 ' for
e

-our observations, we need to know the varlance ¢, of the varlable that want

1

to predict (B}t error rate in this case). The exact value_of o 1s generally unk-

\ | (

nown, thus an estimatlon of this quantity must also be perfdrmed.

[
/

- The method followed for tis -purpose Is the ' Independent-replication

Y . i
o 4

method ' [16] - the replication of the simulatlon experlment usifg different ( and .

*

Denoting bir pé the mean value of ‘the.probabilify of error P,wé assume that
. . 3
i

with normal distribution with the unknown megn u. By definition a confldence

i
silraéce -that a particular statement

Is correct, under specified _con&ltlons.

Independence of these rand'ch streams In thls syat‘ical experiment Is assumed




s : . =027
* '

\ 7

Such a confildence Interval for the sample mean

h
tom]
e
e

1

.can— bé obtalned by means of nbrmallz’é.tlon of the random 'varlable P by the

transformation e ‘ . ’
s . ‘ :
l ’
/
/ v
)4 (P_ﬂ)\/ﬁ ‘ (3 1)
L U )
. — a
N in the form :
Plotip< ""/_ LR <ap) = 1m0
¢
“ or equlvalently : ) B
' " C
* ‘ A " . ’ Lt " P a7 ¢ -
P P- -&’f—_< <?+-\7—-1=1— ‘ . . (B.2)y

2 :
| Yoty

where z, ), denote the upber a /é X 100 percentlle of the st,andai'd normal distribu- .

tion ( the p.d.f of the previously defined Z varlable ), and o 1S the standard devla-
'.; * - &~ .

tioh of the Probability of error. The frequency interpretation of .the probabllity

,siatement (2)1s as follows, If the procedure of taking random and Independent

N

observations and constructing the assoclated random interval , Pxz,,0/VN JIs
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~
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repeated many’ times , approxlmateiw (1-a) x'rloo 'perceﬁt of/ thege random later-

v o~

vals zvlll contalin u.

Deflning the values of the desired confldence coefliclent ( ap‘% 2z, ,,' subse-
quently ) and that of the preclsion reqﬁlremenb‘h' = P-p and knowlng the value

of ¢ , the necessary number of observations N can be calculated from .

»
< .o

N=(2% g

Py (
r . .

The exact value of the varlance ¢% Is not known ln ourcase , so an estimation s

- .

derived by means of a trial test should Be used inStead,.ln the form
[}

- N (P;-BY .

°P2=.‘-1n—1 . . (34)

4 [ ’
5 \ . .

where n lsathe sarmple size of this test ( for practlcal purposes greater than -30 or

[

\ e

sp to assuré the valld use of the central im1t théorem )i

4

-

Following the previous ‘analysls in°the software lmptlemen,satlon of the BSC

and’ the Viterbl decoder , the probablllty of erpor ror p = 0,07, found to have

|

.the value, F =~ 0.008 ,by, ¢onducting 30 dlf[erent runs pl"oduced by 30 different
| .
1

seeds of ‘the VAX-11/780, random number generator. Because of the great
. : ‘ i ' 1 .
number of trials the observed sp can be used Instead of the true value of 0. The

sample standard deviation sp found to be 4.5%P =~ 0.000313 thus, for preclsion
r [ A

@

[
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e

.+ according to eq. 3.3 )

' o . .
5 ' ' ! ! . ’
v .. '94“' ~ '

h:P-y~18%F ~o0002
. .

'

and confidence level 98%, the mimber of necessary. observations found to be (’

o~ o0

°

.

\. N — ( 2:236X0.000313
0.0002

v \ -

2 =13

]

crossover-probabilities p , another samplg size should be determined , that of the

.

length of the lnformation sequence, one of the most- fmportant factors of the stan-

. ° : ] ~
dard devlatlon of P . ( Clearly ,thls length should be longer for relatlvely small

-« ’ , »

.

crossover-probabilities than the respectlve one for blgger values of p ) |

) Tl;e procedu\re -adopted here is based on the ’explolﬁtatlon of qualitatlive

’

knowledge avallable for this sltuation. y

61: general shape of the P's curve with respect to p ( or equivalently to

", SNR ), 1s known. Proceegilng In the cdlculaplon of the probabllity of error for

.
A1

different values of p by steps equal to Ap , we.malntaln a degree of ceréa!nlt,y for

the order of the prdbablllty' of error and consequently for the necessary sample

length. X "/ " . ) ' ]

-

i

*° ! Also, although the exact distribution of the prqbablllty of error P 1s not

kno_wxll‘, should exhibit greater values of o for p > o, than those for P <<1

\ . L ' ‘ /.
( for example 3 blt errors Imposed on an encoded sequence of 10 symbols of a

L} - o

- g no ~

Note here that In order to compute the mean value of P for various:
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~

. I -1_05r- - ; v
* ' - ‘ : | '
code -with 4., = 6, as the one.lhvestigated here, would cause at most 1 symbol-
- X ‘ ’ ,

error, whereas a :gre‘at,er number- of ‘channel errors should definitely Increase the-

possible symbol-error patterns ) \ .
a . S .

Such observations do not sﬁpply the simulation with the necessary pfeclslon.

In order to.malntaln the same accuracy and the same cgnﬁdence in the ca.lculz;-
. - . !

14

-

tlon of each probabllity of error P for varlous SNR values, we recalculate th‘e_
required nﬁmber of observatlons for-each value of p, using the following éxpres- .

slon : : ~>.

te _ - .
Y N = (2N (3.5)
2 - P—'l ' .

3

S

-~

re t;onNo denote the uf)per a /2 X 100 percentlle 'of the student's ¢ distribution

* with IN-1 degrees of freedom, and sp the observed standard devlatlén.

AN \ |

- ’ d , C s

3.3.2 The single run method .  C AN - )
4 , : : .

-
-

3 ° -
- . ] °
Another method to calculate the probability of error Is to make the-runs
. 4 SR

consecutively , using theg Same random sequence. This long simulation s then’

L )
dlvided Into N contiguous “s’egments and the F;’s mean values aré treated as
A : o .
* . - . ~

. . .
A - -7
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the (k+1)th regeneratlon polnts 1s called the k¥ cycle. Thus, for a regenerative
' . 4 :

{

Vo, - - -9'6- . ) , ' c ' =4

lzidlvldual'observb.tlons. The advantage of the ‘singleerun ’ metﬁod,‘ in comparison

]
.

with the"indcpe;rdc;:t replication’ one, 1s tHe reduction of the transitlon perlod to

. i -

the Initial one ( for the first segment ). Its disadvantage Is that the set of sample
\ N .

o

means P; +=1,2,..N 1Is nbt, strictly spedking statistlcally Independent.

‘ . N
In our case stablilizatlon perlod Is not an Important Issue primafry because of

" the determinlstic structkre of both the decoding élgquthms. Glven that the

. Y
length of the Informatlon sequence is long enough for a few hundreds of errors to

a .
R .

be counted at the recelver, each of these N contiguous segments can be substl-

tuted by.an lhdependently produced one, with the same length. )

3.2.3 The regenerative method
. ° \

Another method ‘that can be used In the estimation of the probability of error for

varlous SNR levels, Is the regenerative method [16].

- This method Is used in regencrative systems, l.e. systems exhiblting a particu-

[
o

lar state called regenerative state, such that whenever thls state Is reached, the his-
t

tory of past states of the system has no Influence on the future of the system.

A sequence ofgepochs’at which the system returns to such a'rcgcneraﬁuc atate

- -~

are called ° regeneration ' ( or renewal ) polnts and the time between the kth and

.

process {X(t);t =0 },~ the contlnuation of the process beyond a regeneratlve @
. » ' !
point, say t,, Is a probabllistlc replica of the whole process commencing at epoch

—
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0, Independent of {X(t )t 20}. The deﬁnltlon Is also appllcable to x‘ege‘neratlve )

processes In discrete time. . . . ' 2

A
«

If the time between two successlve regeneration polnts ‘Is finite, then obser-

vatlons n_1ade In this cycle are statistically Independent of the observations made
In other cycles. In addltion ,the proper collectlon of mea,sure'ments made during

such c¥ycles are 1dentically distributed.

In our case a regeneratlve state can be deflned as‘the state of the decoder,
where a merge phenomenon occurs, l.e., the situation In which all the ' survivors’

of the (k+1)th pass ( or emerge.) from a certaln ' substate ' of the kth state.

e
p
Such a situatlon lmplles that the relatlve metrics of the substates are of no

importance, cpractlcallybthe decodlng process restarts from the certaln subst;ate

and its future evolutlon 1s 1ndepegdent Ofr 1ts past fig. 3.2.

.

:
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. .

" Finally, correct- assessment of the error conditjons that lead to a merge

phenomenon, could save compiutation time ‘ln the conduction of the expeya{hent In
- ° > C o - -

M

high SNR levels.

An obvious way to make the.encoding/decoding prpcess regenerative and
- . N . . . 4 f’ 3
compress the tlme consuming simulations for high SNR values Is the following,
. . ) .
technlque that effectlvely uses the ‘error correcting capabllity of convolutional

codes. - . A

The altern_atlve way of detoding convolutional codes 1s the one of selecplng

the single most likely path by perlodically forcing the encoder 1nto a particular
) N

. State. This Is done by Inputing k(L -3) blt fixed lnrormat!on(/s%ence ( usually !

the all zero,one ) to the encoder after each set of N information bits. - Consecu-
~ . B i 1 o ~ .
tive Independent declislons concerning N ‘bits at each time, lead to the decoding

a

of the complete Information séquence.

©

Now let's assume 3, rate-i convolutional code with constralnt length L and
n .

minimum distance d,,, tranSmitted over a BSC channel with crossover probabll- (
3 ’ ‘ - ) ’

1ty p. Since we truncate the convolutional code 1n blocks of N’ symbols, we pracs '
. ' .

tlcally déal with a block code whose error correcting capabllity 1s [18] :

Q . (/]
[ L
- . | 4o 1 o '
R 1 2 dmn : cven, ‘ . -
' Ce = * dmln -1 dmln : odd ' ? (3.6)
\ —a ‘ - ’ ’
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In order to !mplement the previously discussed technique of decoding the Infor-

matiop sequence °ln parts of length N +k(L -1) ‘bits ( or equlvalently

L4 s

-~

e ' o “ .
%[N + k(L -1)] code bits, since the ‘code rate Is k/n ), we also have to add
. . 1]

o

-k a

modulo 2 to the latter sequence a blnary error s€équence of the same length, bino-

mially distributed with ;; , the crossover probablilty of the channel. .

,
Decoding of the nolsy sequence Is first assumed to be done by means of the

z

Viterbl algorithm. The computer tlme compression is attalned by counting the

number of 1s contalned In the blnary error sequence -- the number of ¢hannel

v

G\
errors. WheéTever this number Is. less or equal to the error correctlng capabllity

C. of the code-no symbol errors will occur, consequently this part of lnforn\:atlon
* -
. . \ .
Is assumed correctly decoded and the decoder refrains from further processing .

The previous procedure s agaln repeated for the next silbseque‘nce, until the

.

whole sequence’ls decoded. . _ ' )

o

. A simllar situation can be shown - by means of a worst case argument -to
hold In .ti\e case of optimal symbol-by-symbol decoding, with some Iimitations

concerning the length. N + k(L - 1) of each swbsequence ( see APPENDIX A ).

7 N
\

The computer time compression Is qulte signlﬁéahp when p <<1 (high SNR

en—

values). Tﬁ'e probabllity 00r skipping a\c\ycle\ of length N + k(L -1) bits, Is

1)

. ' c, ' -,
F~( number. of channel errors in N’ .code bits < C,)= [Nt ’lpi a-p)N -

. Tim=0
< , P .

W .
P

¢

"whefe N' - represents the length of - t,é’é? encoded . Information
“ . s 5 .

”
w . .,
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. -8 3 i .
(N = -%IN +(L -1k )) and p Is the crossover probabllity of the blnary sym-

metric channel. \

= Y
3.3 Monte Carlo techniques.

°

"It was prevlousl‘§~ discussed that the estimatlon of the probabllity of error In

the performance of a Viterb! or Symbol-by-Symbol deeoder for a certaln SNR

» < ’
level, requlres the repetition of the statistlcal experiment N tlmes, where N Is

defined by the values of the observed _varlance 7, the level of confidence and the (

\

deslred preclslon requirements. Reductlon of the sample varlance ls always deslr-
able since it mlnlnmlzes the necessary number N of Independent runs. An obvious

way to attaln such a sltuatlon, Is the Increment of the lengt;h of each run. '
13

More sophisticated methods for Improving the efficlency of statlstical simula-

tlons- are known as Monte Carlo techniques [18}. The baslc 1dea Is the use ‘of

any avallable knowledge of the slmulation. Proper exploltation of such ‘lnrorma-

H
44

tlon , In the form of definltlon and use of an auxlllary random varlable , can sub-

A

- , @

- stantlally reduce the variance of the sample observations. The reader should 'bg

~ £}

reminded at this polnt that the randomness In our experiment s due té the slmu-

°

lation of the nolsy conditions of éhe channel in the form of an error sequence

4

Imposed on the encoded Information. ‘The following two Monte Carlo pechnlqyes

explolt tﬁe Informatlon carrled by the formulation of these error sequences.

f ’
» v
. -
i 0 ‘
.
'
.
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. 8.3.1. The antithetic-Variate method .- , '

N vd

3

Let's 3uppos_e that by conducting a-simulation we want to estlmate the mean

F3

value of a random varlahle ¥ = Y (R ) where the vector R reprgsents«a'streani of

random numbers, uniformly distributed between.O and 1.
[+

If another random varlable X = X(R) Is made avallable to us and:that X

o .

has the same ( unknown ) expectatlg,n as' Y and possesses a high degree of nega-

. - . , o
tlve correlatlon with Y , then the varlable

aY(R) + (1-a)X (R) ¢

has the same unknown mean as Y, but ifs varlance can be made significantly

smaller than Var[Y] by sultable cholee of a.

-

The key In épplylng this method to an% simulatlon 1s to find an auxiMary

varlable X. A ver)" simple sys;tem;lndependent method for obtalning X Is to let
f

i ' , X(R)=Y(R")

h=

wl;'ere the vector R* = 1- R, that Is R’'=1-R; fori = 1.2,..

Since R Is uniform "( 0, 1), R’ has the same distribution as R, consequently, the

same mean value, 0.5.. The optimum- value of « In thls case is 1/2. A slmulation

|

Is performed by using a random-number sequence R t(g compute values of Y, and

onty tben are the values of the auxlﬁary variable X calculated by re-running the
o R * e ; ‘ p

slmi;latlo'n, using -its- antighetic partner R‘.‘I‘he:{e two steps are completely

.. 1ndependent excep‘t that In performing the random sampllné in calculating Y,

R \ . ¢ ’
- - N \ ~ »

01~ - ’ o

o

~-

v
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‘provlslons must be made for obtaining data that will be needed later In ‘calculat-

&,lzng X's. If the above procedire creates negatlve correlatlon between the two

1 ©
N 4

responses X and Y, then thelr mean (X‘a-i- Y )/2 will have a smaller varlance than
that of Y ( or X ). ' .

i

3.3.2 Implementation of the 'antithetic-variate’ method.

(¥

The use of the previously .discussed technique In the slmulation of the \nolse

process In the present work, took the following form. .

'Y U
= “ ) .
An equlprobably valued sequence {? of length n produced by the random

<

number generator of the system, ro\rmulated a compleméﬁtary one

' R* ;R*=1-R. Simple modifications of the maln process depending on the
¢

decoding mode ( soft or hard ) deflned the following respective procedures.
) ! o

A. Simulation of nolse under BSC assumption .

= The comparlso‘n of the values of the two sequences with the value of tfie

)

[
.

cross-over probabllity p, produces two dlifferent- error streams binomlally distri--

buted with mean np, negatively correlated. Then this palr of sequences Imposed
4 ' N . / " v

on the‘enéoded Information one, feeds ’tw\b identical decoders and Invokes two

réponses P,-' and uP,-’e * denoting thersample means of the randqm\ processes P(R), '

\ . » -

P/ +P;* ‘ .

<! “P(R"). .A thlrci value P; = -—’——2—.—1—-,.deﬂned as the representatlvg value of the

v
A

. ; .‘ -

_ s experlment, 1s used for the computétloh of the sal\nple varlance. The previous '
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procedure Is repeatele %lmes where N Is the necessary number of independent

N

sample observations for the estimation Bf the mean value of P.;

-y
-

The usage Of the antithetic —variate methiod In these simulations did not only
reduce the sample variance, but also the necessary computations, as a conse-
quence of the geéneration of some inltlal processes only ‘once. These processes,

namely, the Information sequence’'s formulation, the encoding proceﬁure and the

random nﬁmber generator calls, are common for both the random sequences,
resulting In a computer time compression of 15% ( calculated In a hard declslon

decoding case by means of the Symbol-by-Symbol decoder ).

”~

n e " . " “
The reduction of the sample varlance observed here was 10% of the meas-

[}
I d

ured 6ne In an ‘Independent replicatlon method’ test of the same length. .

. )
B. Simulation of nolse.under AWGN assumptlon .

“ h -
.

4

When soft-declslon decoding 1s attempted , a complementary stream s pro-

. «
duced In a simllar fashion to the previously reported one . In the AWGN channel_

f ‘ : ;lmulatlon the error sequence 1s composed of varlates normally di'strlbuted. Two

>
. - b

.,
-

successive calls of the Gausslan generator with compiementary Inputs formulate,

S )
.

. - . . ‘
the pairs of the partlally antithetle error symbols.

’ ’ ..

o e , This procedure can be further simplified by taking a-clewer look at ‘t,he
' ‘generator's structure. Its implementatidn Is based”on the central limit theorem,

' subsequenbly modified by Telchroew’s method (see sec.,3:1.1) with

.“
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variates, .

v
A}

X
Bp = (IY1+ Yo+ o + Vg -6]

/ - -+ -104-

\

where Y;, i =1, -+ - 12 are uniform variates Between 0 and 1, a;nd

-

-
o L3
.

X = [((a,R1* + a7)R1°+ a)R1® + a)R 1+ a,)R1

4

q [}

Where ¢; Is a set of constants. Then X jIs a good ap'proxlmaﬂon to a \farlate .

with the standard normal distribution.

It was earller mentloned that the set of Y; , represents Independent unlform

o ~

varlates between 0 and 1. By the definitlon of the antithetlc sequence’s varlates

v
.

" Y;"=1-Y;, the varlable R1: becomes : - » -

-~ .

R1’ =(—i-)[17)",+'1-Y,+ o+ 4+1-Y,, -6]=-R1.

I
' . . -

and consequently (see the definltion of X In terms of'R, ) - / .

‘

L] . . . . ) /\
} * X! =-X

¢ -

This means that In order to form the antithetlc random sequence X ¢ Ironi

1ts original counter-part X, Jt Is sufiiclent to invert- the sign o{ the variates of X.

°®  The benefitg of the use of the previous method In soft-decision’ decoding can

be.shmmarlzedlas follows : A Gausslan error: pattern which randomly maximlizes /,’

’ - L

-

. ’ : o/
the number of decoding errors, and Increases the sample varlance, ciaﬁ posslbly b/g/; >

neutralized by the parallel use of another error pattern composed- by the op;}'oé/lte
B /

~



3.3.3 The Contr

4]

-Variate method .

Redﬁctlon of tHe varlance of sample obse_r\{atlons can be also acéox_npllshed by the

/

control-varjate method [ 1 ]. Conslder a random varlable Z defined by
"/

¢ - Z(Rif)=Y(R)-BX(R)-EX(R)) (3.5)

1

"yere X (R) called the auxlllary varlable, Is a ran'dom variable whose expectatlon

/ E[X(R)) is known ( R agaln represents 2 stream of random numbers statlstlcally

Independent and uniformly dlstrlbgted between O and 1 ). Clearly, 2T an

/

unblased estimate of E (Y] fér,'am{ ‘8 and 1ts variance 1s glven by

2 Var [Z) =-a /Vai-[Y] + BVar [X] - 28Cov [X.Y).

1}

-

The coefliclent 8 1s selecped to minimize the varlance Var[Z], which leads to
. ‘ «l[ - ..

,// Bo = Cov (X ,Y]/Var [X] \
> /" .-

on

"and the minlmized varlance Is therefore glven by’

/

' / ’ . Var (2] = Ver (Y]t - ply ¥< Var [Y]

wher;’/pxy Is the correlation coefficlent between X and Y. In practise , the

covarlance between X and Y wlll not be known ; hence 1t mt_lst,',be estimated

)

from data. For a glven N Independent observations ( or repleations ) X) and

Y& (1 <j<N), an estimated optimum 4, will be of The form -

(N . . _
! -
b
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"E(y(n ?)(X"’-X)
R :ao- = o ¢
- o ! 5 (e X) ' ~

] )-l

\

The' above theory Is used 1n-a stochastic slmulatfon as' follows. We wish to

estimate the expected value of the response‘ Y, where Y Is related to the random"

.

vector R In unknown functional form Y (R). Fb; a chosen control variable X(R)

we then observe simulated outputs Y and X' for random number stream R.

\ X p .

We approximate E{Z] by Z : > ' . 9

’
L]

¥

7 N _. - R 3
= Jﬁg (YY) - g XYY + E[X].

’ »

The,expectation of the predlct.ive varlable X Is known. The control- varlate

variance-reduction method minimizes the varlation of the response varlabl‘e Y by

.-, ' , & .
taking advantage of the Informatlon furnished by the auxillary varlable X .

.
S ) LR »

One possible predictive variable that can be used.ln this simulation 1s the

error sequence ER (R ), the sequence which Is -added to the-transmitted sequence

and simulates the nolse process. 'Under the BSC assumption, this variable Is .

e .
binomially distributed with mean value equal to np ,v\;hereas in the unquantized
médel' Is Gausslan distributed with zero mean.

v . Q
The 1dea behind the use of the control-variste method In this statistical

+

R

experlment 1s the fact that a randomly produced error sequence of a certaln

A

length n, usually exhibits a sample mean different from 1ts expécted one. A

L4
"

?

+

.
3
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/
A Viterbl or Symbol-by-Symbol" decoder can be forced In error-decisions by two -

-

. factors : certaln error patterns and the additive nolse level (\or equivalently, the
' g

number of channel errors Infa BSC ). The deffnition of the error sequence as a -

a ~ . {

- ~

tredictor varlable, could possibly reduce the variance of the sample observatlons,

by'welghtlng the measured P; by a facbor. proportional to the sample mean of the
L} -

error sequence involved In the experiment.

2 L)

N . 3 »
.

.
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3.4 ﬁesults of the Simulation

} / ~
‘The rat,e-l(a ,» L=3 systematic convolutional encoder of fig. 1.6 ; was

. | . o
assumed as an -ntroduclng correlation .process In a randomly produced blnary

Informatlon sequence. Aftep addltlon of channel errors to the coded sequence, the

. decoding process was Independently performed-by means of the Viterb! and the

.

.

aptimal symbol-by-symbol algorithms ( thelr function was previously analyzed In

~ T

Chap. 2 ) employing a decodlng delay.of 18 symbol§ (8L).

v b

The correctiess of the simulation requ.},gJ‘as t:/ested t;y :

. ’
4 s

1 . . ..
1) che/cklng thie correct function of the Individual parts of the program (

-~

'

encoder, e{roi‘ source, decoder ) using sequénces of short length.
W

{

11)/,removlng ‘the source of channel errors and decoding long sequences

T o : o

e wlt.hdut//error.oceurrence.

111) Indirectly comparing the observed bit error rate of the VA decoder with,

"existing simulation results [8). Flig. 3.3,.dlsplays the soft-decoding ( 8 level ) blt

[

error rates of varlous 1/3-rate convolutional codes of maxlmum d;,,. , With con-

"stralnt length L va}ylng from 4 to 8. Flg. 3.4 shows the blt error rate of the

v

1/2-rate family of codes of maxlmum free distance, for hard decislons and L )

varylng from 3 to 8. Due to the lack of slmtifét’lon'resﬁlts for the specific 1/3-

”

rate L =3 systematic convol’utlongi «cdde that wgs used here, Its error perfor-

mance was indirectly compared with the respectlve ones of the 1/3-rate , L=4,

code ( Inferlor to this code ) and the 1/2-rate, L =3 code (superlor-to this eode). .
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‘Fig. 3.4  Bit error rate versus E, / N, for 1/2 Viterbi decoding and hard-quantlzed

recgived data with 32-bit paths, K-—» 3 through 8.
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Flg. 3.5 shows the bit error rate performance of the J1/3-rate, \L=;3'systematlc

cade for both hard and Infinitely soft decisions of a Viterbi dec&der which .

- employs a decoding delay of 18 bits.

4

The results concerning the comparative error perforriance of the VA and the

o
[

optimal symbol-by-symbol algorithm, when hard-decisions were employed, are

Y
-

presented In ‘fig,, 3.6. The symbol-by-symbol algorithm performs slightly better -
.. ° .

than the Viterb! algorithm ( less than 0.1 dB ). <The simulatlon study was done

for varlous SNR values In the- range 2-7 dB{ In table 3.1, the previous results

[}

are%lsplayed with better accuracy.

o
‘q:‘,.n}w.u-u‘mu:. R eI
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Fig. 3.5 Viterbi decoding for.the rate-1/3, L=3 convolutional code, hard and soft dec!: '
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Table'8.1 "Comparative Bit Error Rate ( hard decoding )

SNR [dB] P, Viterbi dec. P, Sym-by-Sym dec.
3.057 0.029651711 0.027111612
3.368 0.020273507 0.018867580
3.698 . . 0.0;«2'737179 0.012000114
4.405 0.0044007’12. 0.004259995
4.725‘ 0.002566239 0.0012‘5,3\9865
5.033 0.601494017 0.001478820
5.331 0.000829772”/ 0.000817043
5.619 0.006474225 0.(;0(?465595
5.8908 0.090260838 0.000266081

i 6.168 . 0.000151024 0.000143508
6.429 0.000084345 : 0.00Q081130
7.052 0.000018177 0.000017053
7.3é8 0.00000959-‘1 0.0000088390

1

‘
@

The closeness In the error performance of the two decoders was agalp observed
when soft-decoding was ém'ployed. Fig. 3.7 shows the combvlned results for hard
and so'naieclslons of both the ciecodcrs under conslcier:_itlon. Tt'u- performance
géln due to soft-decoding 1s approximately 2 dB and the slight superlority qr the ,b‘
‘sy.nbol_-by-symbol decoc%er relatlve to the Vltgrbl decod’er 1s agaln displayed”
throug{xout the examined SNR r;mgc ( table 3.2 ).

\ ' - T
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Table 8.2 C’omparative‘ Bit Error Rate (soft decoding) , )
B
SNR.[dB] | P, Viterbidec. | P, Sym-by-Sym dec.
2.77331 0.005089316 © 0.0048865781 : .
3.50766 0.001246581 0.0012004428
4.4889%"_ ) '_01.000221 867 . 0.0002143607 ' *
;1.87020 0.000002849 0.0000896741 ﬂ
5.28112 0.000033658 0.0000330839 h

Although both the technlques are Bptlmal in a different sense and the optlmal

symbol-by-symbol decoder constantly performs better than the Vliterbi deéoder,

thelr closeness In error perforinance ( fn the range of 2 - 7 dB that was examlned

]

here ) Is In favor of the Viterbl algorlthm ; due to the comparably less decoding

effort that this technique requires ( see eq. 2.19 and 2.20 ). .

N .
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CoPclusions‘ :
) N . : i
f e, ‘ i ’

- - B

The optimal algorithm In (1], orlginally proposed for symbol-by-symbol

Y . . t J t ,
detectlon of pulse amplitude modulated sequences was further consldered In this

t . .
13

work, as ‘an optimal decoding technique of convolutional codes. This algorithm 1s
- " . ‘ - ~-

simijar to thé Viterb! algorithin Whose optimality criterlon, Is gocused on sequence

¢ .

4 -

[ 4

detection. = ~ - T

[
»
: -~

’

Due to reasons of-complexity (explélned 1n Appendix B) an analytical ‘expres-

-
LIS . ’

ston for the symbol-by-symbol algorithm l's~ still not avallable, thus a comparison

’

~ - . ~ B ’ . .
between the latter and the Viterbi algoritlrm was subject to computer simulatlons

.. o ) \9 [} » . ‘ ) )
for theln relatlve error performance to be observed.

-

The results concerning the use of a rate-1/3,-L = 3 systémaCf:r convolutional

; : code and decoding perrdt'mgd by means' of both the algor‘phms under constdera-

tlon with soft and hard .declslons, show a slight superlority In the performance of

* . . A \ e - N ’

- the \symbol-by-symbol technique under _both the - decoding modes. The
. ~ N " - @

+slgnlficance of the observed, advantage of Lhé symbol-by-symbol alzomhm. Is bal-

J
o

‘ ) anced by the relatively lncre'z'aséd complexity In computations that thly technique .

1mplles. . ‘ ot '
q

“

Lo supply

A number of statistical technlques were also applied In

. {
ducted - simulations. Chapter 3 serves alsb as a general survey of the most popu-

-

ch . -

lar technlques hlmlng at the previous purposes.
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Finally, a r'alf:ﬁer_ stralght-forward analysls concerning the optimal sequence

Py ’
-

detection of convolutlonally encoded slgnals transmitted over an ISI channel was
also presented. The topic- although not strictly relp,ted to the maln purposes of

this work, offers an interesting suggestlc;n ‘for a possible "appllcatlog of systematic
. .
‘ - N : - i 1

convolutional codes In band-limited channels, as a practlcal compromise between

error performance and complexity requirements.

’ B

t

*

- in
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APPENDIX A
! !

Error c¢orrecting capablllty of a convolutional code undgr symbol by-symbol

- g

decodlng. J e F o g

“~r

¢ - - \

,
r"l [

The transfer runctlon of the systematic:code of ﬂg 1.6, with dm,,, = 6 and
correctlng capablllty C, =2,1s[11]: -

Y

T(D)= D®+2D® 4+ 4D 4+ 8D 4

or _ o
T(D,N)= ND°+ 2N2D® { 4N®D' 4 gN*D¥" 4 ... (A-1)

where’ N is the number of Informatlion 1s In each path. "

Symbol-by-symbol detection of the w* symbol, for w =1, ..., K, jmplles that we’
have to add all the metrics of the possible sequences with a 0 at the w position,
and compare this sum, denoted as G (a,==0), with the respective one that
_represents the likellhood of the value 1 ( G(a, == 1)). 1r G(a,=0)> G(a,=1),
" we-declde thiat ¢, = 0.

8 -

Without loss of generallty we can assume that the all zero sequence of length
K symbols was transmitted, thus :

-

Distribution of "paths with a, =0 | Distribula'oy; of pq,th.; with a, =1
. h ‘\
- (Ko_l) paths with 0 ones . (K(;l ) paﬂ!a with '1 ones .
. ) 3 N [ ]
(Kl_l) pathsr with 1 ones . (K;l) paths with 2 ones

a

. .~

(;({:: ) palhéﬁwﬂh “K—l ones

A L]

. o, (,’E:i ) paths with K ones
In order t,o find the distances of - these paths, we use the transfer function of the
code'in eq. (A-1). ~ =~ 7 - A ’ .
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(‘K’(}.l )" ‘paths of distance D° '(Ko‘l) palths‘ of distance D°
b} . .
. . (Kfl) paths of distance D°® (,K'l"l) paths of distance D*

’L

3

(K—1 ) paths of distance D*t**-V) ~. (K_1 ) paths of distance DOHHE-D
K-1 K-

-

' . .
- .
P

Assuming 2 channel errors to occur, the worst case should be the One .1a which all
y the distances of the paths In the correct subset are lncreased by 2 and those of
the incorrect subset are decreased by 2. Thus, ,

9 o
(Ko—l) paths of distance D? . (Ko—l) paths of distance D} .
¥ (KI-I ) paths of distance D® . (Kl‘l) ‘paths of distance D®
L | AL . S .
‘ . ‘ -

| (K_1 ) paths of distance D*** . ., (K"l ) paths of distance D2+t
- K—'l s - K"lr ) B

Now 1n order to decide that a,= 0 ( the correct declslon In this case, slnce tpe
all zero Informaflon sequence was transmitted ), we should have :
G(a, ="0) > G(a,=1). The metric value assigned to,each possibly transmltted
sequence ln Hamming distance d' from the recelved one Is (see Sec. 1.2.1),

with o : T; where p denotes the crossover probability of the BSC The quantl-

x4 tles G (a, = 0) and G (a, = 1), are the sums of these metrics that correspond to
‘ sequences with a, = O and 1 respectlvely. Using the last distrlbutlon of the
‘paths we get : ! “

rw J | . - ’ ) G(ayw='0),>G'(aw=l) < —

@

¢ . ' C\' + 2( 6+21 > ot + E( ),a4+2i —

l—'l l=,1 .

", ~h -
TR
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- .
-

a + E( ai+3| >a + 2( )ai-fﬂi —
i . fmm]
' 4
1—a+2( Yot (a®-1)>0 -

"o, ==l
\

‘K-~
(1-a)(i- 2'(" -1

)024»21 ) >0 .
fx=]

The first term of this product 1s positive for p > 0.5, the second one depe'nds on

K and a. Chooslng a sultable value for the length K, the last expression guaran-
tees that under symbol-by-symbol decodling, no detectlon errors will occur when

the number of channel errors are less or equal to the error correcting capablllty of
the code.

L 9N
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. APPENDIX B - ' -
. "’ .

A first approach to the errd}" performance of the symbol-by-symbol algordthm.

@ )

‘ B s . .o °
H .

‘! »n

In reference (1], the optlmal symbol-by-symbol algorithm was presented as a tech-

nique that uses symbol error pro_bablllty as the optlmallp"y criterion 1n demodulat-
‘ing PAM signals corrupted by Intersymbol Interference. Although thls algorithm

Is similar to the Viterbl algorithm, an analytical derlvation of Its error perfor-

mance cannot be simllar to the one proposed by Forney In [4], for reasons that

.

are golng to be explalned here. -

~e

We use the same notatlon with that in [1], representing by L the number of

LY

’/__Wues an Information symbol g; can assume, N the length of the information
¢ ' . ‘ 3 ' l
sequence, and m the channel's memory. The matched fllter's output is )

. ‘ _ v
\ : ’ m ®
' Z; ='Ea,-+j ry + n;
-m

wlth.r,-_,- =0 for |[i-j | >m a',nd n; representing the additive 'Gausslan noise.

-

We also denote the system’s state by

-

g

O ={&b_m+,,&k_m+2 )y dk } T k=m,m+1 ,...,N.

and a set of states or matched filter’s outputs ub to time KT as :

! . ’

.

S5 = (o Omur s 0t ) = {8085, &} kSN

- . - 2

wfe
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».. and 2 = {z,.2,,...,n } for k < N, respectively.

o 8

The metric assigned to a possibly transmitted sequence of length N 1s:

' .

exp [U(zV, SNy | = expaq[{U(zN", SNY &+ Vi(ey,on-yon )] (B-1)

by

~ where
{ . v O -
7 L o k Bk
U(Z .Sk)= 22(7,'2,‘ - E 2 d‘-djr,-_,- (B—2) ‘
! i=1 i=1j=1 .
\“ N 4
and
- . k-1 2 ’
Vi, 0p _por ) = 22,8, - 28 ¥ & r,; - &ry - (B3)
r - y=k-m

Maximizatlon of the M.A.P criterion for the estimatlon of the w™* symbol lead§ to

~

the following expression : . -

>

max Pr [a,=d,]| z(:), O<t<7|=¢ max Y exp | U(zV,SN)|. (B-4)
2, ' 8y oy, .oy . .

.
. - . .

"This summatlon over all possible o, means that In order.to compute the

o
v -

likelthoo® of the event a, = [, (I Is one of a,’s L possible valies) we assign a T
x metric to every posélble seqilence of length N with an | aﬁ the w' poslt,ion and \

add all these metrics. The same procedure I followed In order to compute the

sum of vhe metrics of the paths having at the w* position & different value of a,

K Finally we compare these sums corréesponding to the different symbol values

- . . " L . 3
and .choose thelr maximum as the optimal declsion of our demodulator.
e ) X
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Alternately we could describe the previous procedure by means of set partition-
4)*

ing: : possible path represented by Its metrle 1s an element of the set. We*

yaa B ,
partition’ the set Inspecting the w** position of every possible path and according

-

to this value we form L ‘subsets each of them correépondlng to one of the L pos-

»

sible values of the symbol a, and having magnitude LN, Flﬁally we sum the-

- k]

elements -metrics of each subset, chose thelr maximum, say I, anci declde that
a,= 1. The same procedure Is repeated for every symbol of the sequence (

w:1, ..., N)untll the estimation of the symbol ap. v

The metric of a sequence of N symbols v;'as previously deflned as :_
- ' 3

exp [U(z¥, S¥)] = exp (U(zV%, S¥Y) + V(zy,on0. 08 )] (B-5)

» symbol's contribution to thls metrlc we

Seeking a clarlficatlon of the P

+

- 1

represent by - -

t(ld = { a_w—m RN ﬂw—l nl 'aw+l RG] aw+m } ’ (B'G)

and

tw={&-w-m r-'-:au-al'aw+l:"'taw+m } (B'7)

Then \eq.(B~é) becomes :

0 exp U@V, 5%)) = p
\ : o, ’
‘ N Ne" N ¢ y o, wim . i
exp [ 2 2 d,« 2 - E 2 ﬁ'- aj r,l'-j + 2 Zwa - 2 ﬂw 2 dw i — awf'o ].
fo=x1 . fi=1 je=1 i3 w-m :
igw ifw jHfw i i w
. . .

or, using eq. (B-6) - . S

\
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cexp (UGN, SN = exp (U (N, SN + V' (s th) 1.

where . "

, [ w+m 2
- Vi(zu ty) = 2‘2“,&“ 24, ¥ 8,ruy a4,
= Ww-m
i w

Now, In order to compute the likelthood of the symbol value aw' = | 1n eq.

(B-4Twe follow the next procedure : -

.

(1) we set nitlal values to the sequence of length 2m + 1 around the w™

-~ ~ d

symbol (we previously defined It as t{, )- For example If binary PQK I1s the case

and m = 2, these values can be

-1 -1 l -1 -1 , where | = +1 or -1.

(1) we compute the metrics of the paths which Include thls already set

. sequence ¢t., represented by S,N E t! and sum them up. Thelr sum Is:

3

E4

NE lexp [U' (zN, S;N) + V" (2., tf,) ].
SNEt),

s -

-N%t.lng that having set the values of tﬁ,. V' (2, tf,,) Is a common factor to

-
IN
.

all realizations of S and the last qexpress}lon can be written as :

¢

exp [V’ (ozu-'li,il 7 exp (U (2N, $M).
- sMel, 0 T

w
I
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, (M) set other values to the sequence t), and repeat the same procedure

until we reach the final reanzét/[on of the sequence ¢},. ‘ ' .
& \ . ) (
(lv) The summatlon of the suts computed In steps (1) and (1), Is the
= ' metric we asslgn to the symbol value 4, =1{. Thatls: )
¢ . N %
! M(a, = 1) = V' (2, ¢! U'(z¥,5M]
M@, =1l= Rexp [V (z,t,)] X . eplU ", 5]
. Cocalty . /ol SNl
- ,‘ ¢ ' - . ° >
(v) we set another symbol value to w* position, say 4, = u, and the previ-
ous steps are.repeated for eéch pEl. ’ -
) . &
Defining “ A '
ot ’ N A ’ o Q
' . S;= 3 exb[U (N, M. . (B-8a)
SNE t), ' o
and , - . i
i Vi=exp V' (2 t4) ] ' (BSB)
e the Iikelthood of @, = [, expressed by M (a, = l), takes the following form :
g : "\h ’ ‘ ' * ’
2 . L?m—l ,
S M@,=l)=y SV (B-9a) ‘,.«_‘
\— . 1=1 _ 3:*;
A » ‘- s ’ . "
. ) Simllarly for every p 5.0 - ~
v ) <
J L3 :
M@, =p = 35V (B-9b)
- § =1 *
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slnce S; I8, Independent of °a, We declde’ that a,=1[ Iff
M@, =1)>M(@,=un) for all p 1.
S 4 . ' ~
Now'suppose that ! was actually sent, but we take a wrong'declsion and
choose p as the correct. value of a,. Then the probablility of a single error to
. - ) ! p
occur is : i
Pr ( a singlé” symbol error / a,= )= Pr{M(ad,=p) > M4, = 1)}
Usling eq. (B-8) the last expression becomes . ", ?
- Lﬂm-—l I Lﬂm-l
Pr{i . » SiVv'> © S5 V)
i=1 i=1
A3 . ¢ s
or )
Lﬂn-l_*__
S v : .
Pr{ 5 > 1} . (B-10)
5 > P 4
gom )
In order to proceed we use the i‘ollowlng Inequallty whose proof I1s given in appen-
) dix C. . Co
,_\“_,a, X,’ X - ' * ‘ . .
—_— < L ' for a,, X,. Y'/> 0.~ (B-11
‘{:-‘ N Sa‘ )r' — E'( Y‘ ) ] ) 1] 1 (] — (\ )
) . [ o
‘ the probabiljty In eq. (B-10) is upper-bounded by ° -
” - ¢ - ‘ 4'
* p . Ll--l
by Si 1 ‘ L™=yl o :
. Pr{%,————:>l}5Pr{:Ey—‘-/—‘;>l} (B-12) ..
- i E si Vs' \ - r=t ‘ B
. fami

. . ) 2 .
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For a certaln |, say Kk, ~
. 2z, -2 Y 81, - I3, L.
- Vkl = ¢ s bW ¢

2z, - 23 z 8 ryy - “2'0
Vk“=6 el .

« .

The values 4; are deflned byI the sequence ¢, thus are the same In both these

expressions. Then, each ratlo In eq.(B-12) has the following form : ?

2(l-pa, - 2(1 - p) }’_‘;—‘ 8, ruy - (2 -9y

. € v (B-13)

Uslng €q. (B-12) and (B-13)

/ <
2l -z, - 200 -0) 33 8, ro"= (R- 4?)rg .
Pr{y.e ok > 1} . .
i ‘w N
> _ : —_ ‘ Q
:Pr{cz(l—“)z“’ _ (,e_ua)ro‘,z,e 2( I‘).gwﬂ LT - l}
i ’ ’ ‘“ .
, taking the logarithms of both sldes :
. - -2l -p) B9y,
= Pr{2(l - p)z, - (I’—p’)ro#i— In (e VA ) > 0}
. - . [
‘or equivalently :
' [
N .“2("“)2‘1 Lgyen . -
g =Pr{2(l -z, > - pYro-Im(xe . ‘7 )} (B-14)
. . . t - X

W,

. . Y , .
Denoting: by k the second part of eq. (B-13), this expression becomes the probA

3
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_blllty of a Gausslan random varlable to be greater than & \‘vhere 'k' fls a constant
deflned ‘by the dlﬂeren‘cg ({ -p)and a co:ni;lnatlon tl}e quantitles a;, r;. |
Substituting the value of z,, , ' SRS
L C = !

}
zy= Y ari_,+tlIrg+n,

f ¥w
Into eq. (B-14) we have :
- . N . °
. -2l =) A v,
Priz( -ml & ar_o+lro+n,] > (1% p?ry-n( Se e )
; JH#w t, \
- Deflning ' )
-3(t-m) Yo ., . .
ln ( ZC i ol ) = Cl
- t, N ’

the last expressior becomes :

“

Prie( —pn,+20 -'p) Y oiri _y+ 2lrg-2ulio ~1%rg +u’rg > -C,}

Jjkw

=Prie(l -pn,+2( -p) ¥ ari o+ -piry> -C,)
: ey -

=Pr{z(l-pmn,>-(20-p) ¥ ari o+ -p)’rq+C, ]} (B15)

- jrw
Represéntlng by C, the quantity :-
- N ’. . . . " .
Ca=-l2(l-p) ¥ “i'i-u*(“ﬂ)?'o+cll
. ¥ w e

and noting that 2(/ - g)n, I1s a Gausslan random variable with zero mesn and
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varlance o?, eq.- 1(B-15 ) becomes :

\

N ' ‘ 0 ! . R
Priz( -pn,> Cp} = -;- erfc (75:) (B-16)

N
- Toe

\\(c(x)-— \/_fe“zdt | )

f' i
The previous bound can be further generalized to the case where the error vector

where =

has more than one non-zero coefficlentss The ﬁlaln Hmltatlon of the previous
analysls‘ Is the tightness of the established upper Boufxd. ’Slmulaltlon_ resuits have

shown that the value computed In eq.(B-16) Is close to one. Since It constitutes

¢

N )

the ‘most lmbqt,anc factor In bounding the'probéblllty of a symbol error ln\the
performance analysls presented 1n [4] 1, a different approach that could lead to a

tighter upper bound should be further considered.



APPENDIX C
} 'A , ’
- Proof of Equation (B-11).

M r

We prove here by Induction that :, o
; -4
San
. < (=) for a.z,¥% >0
.Y‘__,ai!l.'r"ziz!l.' e
1
1)/ For k = 2 .
| »
'oazy+ bzy: < bz, . zyat Zgy,
“3?1'*"’!/? ey, by, V1¥Y2
clearing fractions : T
“0z§y,¥s + b25y,¥, S 6T Y,Ys + a2yl + bz + bzay,ys
\ 1!’: . oW ’
or,

- o .
0 < azpy) + bz

which Is valld slnce @, b, z;, 3 >0 - fori = 1,2,

» . . .
11). Assuming that the Inequality holds for k, we have :

N H *

.

L3 .
. - ¢ s .
az; + bzy + ... +kzy oz,  bzy - kz,
' , az, + bz, + . +kyg T ey, ' l,’ﬂa kys

- ‘ . .
- ) 7
. /
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. 11). We prove that It also holds for k =k + 1, l.e,,

oz, + bzg + ... +kzp + 234y < az, + oz, + '. - kz; + %k 41
' s - W + by + .tk +izeyy T ey, by, ‘ ky,; Ik +1

-

' gJf'-l‘he left part of the prevlous expression can be wrl‘wen s :

»
.t

@ . . .
az, + bz, + .... +‘lcz + jz az ' bz kz 1z
[i 1 2 3 J.l:+1 < 1, 2z, b+.1.k+1
. [ay, + by, R +hye ] + e ay, by, kY Wen

because of the combination of the steps (1). and (11).




