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Abstract
Completeness of Larch/C4-+ specifications for black-box reuse

llya Umansky

The object-oriented paradigm introduced new capabilities for an effective software
development. One of the most promising benefits is the possibility to reuse software
components which were built and tested thoronghly. Software reuse is most effective
when it is conducted in a black-box fashion. That is, when the software can he
used without studying its sourc code or running tests to clarify its behavior. To
achieve a black-box code reusc the reusable software has to be complemented with its
specification. Informal description is not adequate for this purpose because it lacks
precision and does not have suflicient expressive power. As a result, rescarchers turn
their attention toward formal specifications.

In this thesis we study completeness of the specifications for ("++ classes intended
for a black-box reuse. We present a definition of an interface behavior of a C++4- class
and completeness criteria for specifications to be able to convey this behavior. To
provide practical means for the completeness verification we identifv the completeness
verification methodology and present the algorithm to apply this methodology.

The completeness verification algorithm developed in this thesis uses Larch Prover,
an automatic proof assistant. We provide guidelines for using Larch Theorem prover
when applying the completeness verification algorithm, and provide the means for in-
completeness detection and localization as well as incompleteness correction. Finally,
we generalize the completeness verification algorithm for C++ constructs having in-
heritance and virtual functions, and identify the cases when incompleteness can not

be removed.
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Chapter 1
Introduction

Many of the problems in software development have been recognized since the late
1960s. By this tiine software evolved from stand-alone computational programs into
compiex systems caring for a diversity of requirements. As those systems grew they
became too large for a single person to understand. Software engineering responded
with decomposition techniques that let each programmer(or programming team) work
in his own corner of the world. The system view became ever more elusive, the internal
interface of software systems becamc incireasingly complex, and software became more
diflicult to reshape and extend. This complexity precipitated a software crisis that

has been with us for 20 or 30 years.

1.1 Object-oriented concepts for software constructs

The object paradigm is a decomposition technique that was introduced in the late
1970s. It raised expectations for software quality and productivity among the software
engineering communities.

Objects emphasize independence. An object is an island of administration and
maintenance, it is an abstraction having features of a real world entity and as such
exhibiting a certain encapsulated behavior. Each object is a participant in loosely cou-
pled community of parts. These parts communicate by sending each other messages.

The messages result in the invocation of methods (member-functions in the C++



object-oriented Janguage terminology[Strous94])which perform the recessary actions.
The sender of the message does not need to know how the message is processed in-
ternally by the object, only that it responds to particular message in a well-defined
way. Thus, from the point of view of an object’s clients only the object’s interface
behavior is important.

Objects are grouped into classes when they share the same interface; that is, they
respond to the same message in the same ways. This allows many objects o be

described by only a few classes. Thus, classes are the object’s building blocks.

1.2 Black-box software reuse

The concept of software reuse was introduced in a seminal paper by Mcllroy [Mc68]
at the 1968 NATO Conference. Software developers realized that there is a lot in
common between different picces of software units: similar tasks to perform, similar
structures and architectures, similar algorithms and mechanisms. Instead of writing
a software component which provides a well-defined functionality froni scratch, it can
be reused since the component has been written and tested once.

The most effective approach in software reuse is reuse in a black-box fashion.
Black-box reuse involves the use of a component without knowledge about its -
plementation. Though the concept of software reuse has been identified a while ago,
it could not be employed without support of the entire software development cyele.
Indeed, the level of granularity of the reusable blocks must be identified; commonality
of the components must be encapsulated into the reusable units; specification of the
unit must be provided to convey to a reuser the knowledge of the unit's features in
order to reuse it without going into the unit’s code.

Object-oriented paradigm provides support for the first two items identified ahove.
A class, as an object building block, serves as a reusable component comprising of
objects instantiated from it and subclasses derived from it. Only a class interface
is needed to be known while implementation details can be hidden. This is enabled
by encapsulation of the class data and providing interface functions to exercise the

class behavior. Software developers succeeded in creating reusable class libraries



which provide building.blocks with generic features that can be used in a variety of

software.

1.3 Formal specifications and black-box reuse

As was mentioned above, a specification of a class behavior becomes extremely im-
portant to enable black-box reuse. Indeed, a reuser has to know precisely an interface
behavior of the class in order to reuse it. Most of the object-oriented languages and
methodologies provide little if any to support this aspect.

Usually a verbal description is supplied along with the interface functions. This
is supposed to deliver all the information which may be required in order to reuse
the class. A great deal of inadequacy exists between an informal description and
the complexity of a class behavior to convey this description. Consequently, the
programmets have to turn to the implementation of a class to fully vnderstand its
behavior. or make improper use of the class which will result in a defective program.
As a result, a black-box reuse has not yet succeeded in becoming a well accepted
practice {or software developers.

Formal specifications, which are based on mathematical abstiactions and have
precise semantics, are required for a precise description of the functionalities, prop-
ertics and interface of software components so that potential users can learn exactly
liow cach component is expected to behave in order to write correct programs using
the component. Thus, using formal specification is a potential solution to remedy
the problem identified for informal descriptions to promote object-oriented software
reuse.

One of the most important properties to be satisfied by a formal specification
in order to enable black-box reuse is completeness. Indeed, in order to correctly
reuse a software component, it is also required to know a complete description of the
externally observable behavior of the software component. The precision afforded by
formal specifications makes it possible to write succinct interface specifications which
are complete.

Theoretically, formal semantics of formal specifications makes it possible to verify-



completeness of formal specifications in a semantic manner. Indeed, since formal
specifications are based on logic it could be possible to prove their completeness
or disprove it. On the other hand, no feasible methodology exists to realize such
verification in practice.

This thesis addresses only one part of a larger and on-going rescarch on black box
reuse of object-oriented software: algorithmic verification of specifications written in
Larch/C++. The foundational work on completeness criteria for Larch/C++ speci-
fication was done by Piero Colagrosso [Col93) and this thesis provides an algorithmic
solution, demonstrates its effectiveness using Larch Prover(LP) and gives directions
on a high level design for building a tool based on the algorithm.

More specifically, based upon the thesis work of Piero Collagrosso{Col93], in this
thesis we d--velop a methodology for completeness verification of formal specifications,
written in. Larch/C++ interface specification language. The completeness criteria
introduced in [Col93] will be developed into the completeness verification methodology
and later, into the completeness verilication algorithm. As a result, we will provide
algorithmic steps to guide verification of the completeness of formal specifications,
enabling semi-automation of this process with the help of an automated theorem
prover.

This rescarch on black-box reuse is sponsored by BNR-NSERC under a Collabo-
rative Research and Development Grant to Dr. V.S. Alagar. There are a number of
students working on different aspects: for example, Alicja Celer, with whom I collab-
orated to develop Larch/C++ specificatics of Rogue Wave class libraries [rognet)is],
has just completed her thesis devoted to another part of the project (role of formal
specifications in black-box testing of object-oriented software); there are four other
students who are writing specifications of those classes from [rogue93] not included
in [ACCUA94]. They plan to extend the work of this thesis in several directions and
build tools based on the collective work of this group to make software reuse feasible
in the context of commercially used C++ class libraries. Thus, my thesis is just a
small contribution to the overall goals; yet, the results of this thesis are quite signifi-
cant: this is the first attemrt to create an algorithm for completeness verification of

Larch/C++ specifications. It is my hope and wish that my results wili be used and



tested by our research group who are still developing Larch/C++ specifications for
Rogue Wave Library.

In the second chapter we survey the concept of compleieness, looking for a formal
answer to this question and present a notion of completeness which makes specification
to be adequate for a black-box reuse as stated in [Col93]. In the third chapter we will
identify a general methodology to ensure that the completeness criteria is satisfied.
Fourth chapter presents an algorithm to reaiize this methodology. In the fifth chapter
we will introduce Larch Theorem Prover, an automatic proof assistant, and give an
example of completeness verification for a class from commercial C4+ library. We
will show how incompleteness is detected and suggest a way to remedy and correct
incompletencss. Finally, we will extend the approach to more general cases, where

virtual functions, inheritance and exception handling are presented.



Chapter 2

Completeness of Formal

Specifications

The reuse of a class in a black-box fashion can he promoted only if a reuser has sulli
ciently comiplete knowledge of the ciass behavior. Sinee our intention is to use formal
specification to support a class reuse, it has to be ensured that the specification pro
vides all the necessary information for this purpose. In other words, the specification
has to be complete with respect to some suitable completeness criteria .

In this chapter, we first survey diftcrent criteria of completeness of formal spec-
ifications. Next, the definition of a complete specificatinon for a class intended for a
black-box reuse will be presented. Since this thesis concerns with C++ classes spec-
ified using Larch/C++ specification language, the chapter includes a brief overview
of Larch/C++.

2.1 Survey of completeness criteria

Software development process may employ formalizations for a variety of tasks. The
most straightforward one is to formalize the informal requirements of the user. For-
malized document will serve as a document for further system development. During
system verification, the implementation obtained has to be matched against the spec-

ification.



Informally, completeness of a specification as a formalization of the user’s informal

requirements can be defined as follows[AK94]:
A specification is considered to be complete if and only if its consequence closure is
cquivalent lo that of the set of the client’s intended requirements. That is, the speci-
fication should contain the same behaviors (or properties) as the set of requirements,
no more, no less.

Since a formal specification is based on a logical system , completeness of specifi-
cations can be defined formally in the context of logic [AK94]:

Let T be a theory characterized by types ty,..,t,. Then, T is complete if and only if
it can detcrmine whether or not T F A, for any formula A in the language that is
characterized by types ta1, .., tan, where {tay,..tan} C {41, ..t,}

Another application of formal specification is to document already existing imple-
mentation. Specification has to convey all the observable behaviors of the software
module it specifies.

Consider the definition of a complete specilication as il is addressed in Cohen et
al {CH87]:

Let @ denote a formal system, defined as a pair (L.Cn), where L is the language
generated by some syntaz syn(L), and C'n is the consequence closure operator for the

system. The operator Cn enjoys the following properties:
1. VrC L e 2 C Cn(r), (each theory contained in ils own closure);
2.Vr,y CL e z Cy— Cn(r)C Cn(y), (monotonicity);
3. Vx C L o Cnu(x)=Cn(Cn(z)), (closure is marimal);

A specification S in formal system ® = (L, Cn) is a set of formulae in the language.
Therefore, S C L. A specification §' in @' implements a specification S in ® (written
S’ impl S), where L C L', iff Cn(S) C Cn(S’). A complete specification is one that
fully determines all its implementations. It means that the specification is so fully
defined that no implementation which has more or less behavior (as observed from the
formal system of specification) can be constructed. The same can be stated formally

as follows:



A specification S is complete iff ;

VS impl § — Cn'(S'/syn(S)) = Cn(S), where (§'/syn(S)) means S’ restricted to
the syntax of S.

Informally, the above formula states that a consequence closurc of any implementation
must be evaluated to that of the specification.

The completeness definitions presented above are ideal cases. Even first order
logic is only semi-decidable. For example, we can not decide, in general, if a conse
quence closure of one theory is a subset of a consequence closure of another theory.
Therefore, determining if the theory is complete, in general, is an undecidable task.
As a result. in practice only weaker dcfinitions of completeness are employed. They
address completeness of specification with respect to some suitable criterion. The
choice of criterion depends on the particular task for which formal specification is
used. Often a weaker completeness is also referred to as sufficient completeness.

Sufficient completeness criterion, as it is stated by Kaizhi Yue [Kai87] targets
matching ol system requirements, staled informally, o1 intuitive understanding of
system behavior with the formal specification. This kind of completeness is also called
an external completeness. 1'o show that a specification is sufficiently complete we
have to select a set of goals and show that these are consequcnces of the theory
specified. The goals are selected based on the specifier’s intuition about important
features from the application domain. For example, if we specify behavior of a file,
one of the goals would be the ability to read tromn a file the same information as was
written into it, if reading is performed over the location in the file where the last
writing was done.

Guttag and Horning{GH78] provide their definition of suflicient completeness for
algebraic specifications. An algebraic specification is used to specify an abstract data
type. This data type is called distinguished sort. The functions that return the values
of the specified distinguished sort are called generators; and the functions that return
other values are called behaviors. Apparently, the generators are used to generate new
values of the distinguished sort and the inspectors are used to inspect the properties of
the distinguished sort values. Specification is sufficiently complete if all the properties

of the distinguished sort can be derived from the specification. To achieve it, every



behavior function has to be defined over the entire function’s domain. This kind of
completeness is also called an internal completeness. A heuristic to ensure internal
completeness is a specification to contain axioms where every behavior is applied to

every generator.

2.2 The completeness criterion for a black-box

reuse class specification

The recent master’s thesis research by Piero Colagrosso [Col93] outlined the com-
pleteness criterion for a specification, intended for a black-box class reuse. This
criterion will be the subject for further development in this thesis, resulting into a
methodology for the completeness verification and the algorithm to carry out this
methodology semi-automatically. We will also address the aspects of incompleteness

in the specifications. providing means to identify the incompleteness and rectify it.

2.2.1 Definition of a class behavior

The completeness criterion presented here is based on the trace assertion specification
technique [BP86]. Consider a class C having a finite sei of member-functions, parti-
tioned as: a set of class constructors C' = {¢1,...,¢,} and a set F of other functions
F=1{h,fay--., fa}. The trace of function invocations for a class C is any sequence
of function calls in which the first item is a class constructor and the other items are
member-functions but not constructors. Formally, a trace T'r = ¢;,; S, where ¢, € C
and S = f,; 5, where f, € F and ; is a concatenation sign.

For the purpose of software reuse the principal type of incompleteness which is
important to avoid is partial specification of the class behavior [AK94]. The behavior
of the class is characterized by how the class responds to the invocation of its member
functions. In order to reuse a class, the reuser has to have this information. Reaction
of a class to invocation of its member-function alsc depends on the state of the
class at the time of the invocation. On the other hand, the state of a class can

be modified only by the class member-functions. In addition, we have to consider



that the member-function invoked will be executed only in cases when the function’s
precondition holds. If all member-functions called during the course of an arbitrary
trace T'r were executable then the trace Tr is Legal, otherwise the trace Tr is lllegal.

As follows from the above observation, a class specification has to be able to
answer the following questions:

o Is a trace Tr Legal or Illegal for any arbitrary trace Tr?

¢ Let a member function f be invoked in the course of some legal trace Tr. What

is the response of the class to this invocation?

2.2.2 Definition of the completeness criteria

To understand different responses of a class to invocation of its member-function, we

categorize the effect of this response as follows:
e V-action: A method which returns a value belongs to this category.

e S-action: A mecthod which produces an observable side effect in the object’s
external environment (e.g. display a window, modily color of a screen, transmit

packet on a network ) belongs to this category.

e O-action: A method which changes the abstract state of an object belongs to

this category.

An abstract state of an object can be observed only by values returned from
the calls to the member-functions of the class. Thus, result of an Q-action can be
perceived only by calls to the member-functions which belong to V-action or S-action.
As a result, we consider only V-action and S-action to be the ones concerned with a
class inierface behavior. With the above categorization of the effect of the member-
function invocation we present the completeness criteria as follows:

A class specification is complete iff the following conditions are satisfied :

1. For any given trace of a class, it is possible to determine whether or not the

trace is legal.

10



2. For every legal trace ending with a call to a V-method, the abstract value

returned can be derived from the specification.

3. For every legal trace ending with a call to an S-method, th- side effect which

will occur as a result of this last method execution can be derived from the

specification.

To make the completeness criteria more formal, we introduce the following defi-
nitions:
o LegalTr(C) is a set of all the legal traces which can be constructed from the

member-functions of a class C.

e Awvis a function which maps a legal trace Tr ending by a call tv a V-method

into the abstract value returned by this method.

o Asis a function which maps a legal trace Tr ending by a call to an S-method
into the state of the external environment, as the latter is observed from the

class C.

Finally. we state the completeness criteria for a specification Sc of a class C intended
for a black-box reuse as follows:

Specification Sc is completeif it can be used to derive the behavior triple (LegalTr(C'), As, Av)

of the class C.

2.3 Larch/C++ - Quick overview

Larch/C++ [leava] is a part of the Larch family of specification languages [GH78].
Larch languages are formal specification languages geared towards the specification
of the observable effects of program modules, particularly modules which implement

abstract data types; Larch provides a two-tiered approach to specification:

¢ In one tier, a Larch Interface Language (LIL) is used to describe the seman-
tics of a program module written in a particular programming language. LIL

specifications provide the information needed to understand and use a module

11



interface. LIL doesn’t refer to a single specification language but to a fam-
ily of specification languages. Each specification language in the LIL family is

designed for a specific programming language.

LIL specifications arc used to specily the abstract state transformations result -
ing from the invocation of the operations of a module. These specifications are

written in a predicative language using pre- and post-conditions.

e In the other tier, the Larch Shared Language (LSL) is used to specify state-
independent, mathematical abstractions which can be referred to in LIL spec-
ifications. These underlying abstractions. called trauts, are written in the style

of an equational algebraic specification.

LSL is a programming language independent from and shared hy all LlLs.

Larch/C++ is an interface specification language for specifying C++4 classes and
functions. The restriction to C++ allows Larch/C++ to have a syntax and semantics
that is tailored to C++; for example, the Larch/C++ specification of a ('+ 4+ function
specifies not only the behavior of the function, but exactly how that function is called
from C+4 eode. The details of how to call a C+ 4 function, the name, return type.
and argument types, are called the interfacc of the function.

Interface specifications rely on definitions from auxiliary specifications, written
in LSL, to provide a semantics for the primitive terms they use. Larch encourages a
separation of concerns, with basic constructsin the LSL tier and programming defails
in the interface ticr.

Functions are specified in Larch/C++ using Hoare-style pre- and post- conditions.
The header of a function specification is the same as that of C4+ function defini-
tions. The body describes the effect of function invocation using a pair of predicates
following the keywords requires and ensures. The predicate following requires is
a pre-condition that must be satisfied to invoke the specified function. The predicate
following ensures is a post-condition that the specified function establishes upon

b

termination. The notations A’ and 'V’ denote conjunction and logical disjunction

respectively. All the logic notations such as ¥ - universal quantifier, 3 - existential
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quantifier are also valid. The semantics of function specification is that the pre-
condition of the state transformation must logically imply the post-condition of the
state transformation. For functions that change the values of objects, the body of
the function specification must include a modifies clause. Only objects listed in the
modifies clause are allowed to change their values as the result of function invoca-
tion. In afunction that mutates an object or a variable, there are two different values
for the same object; the value in a pre-state and the one in the post-state. The value
of the object in the pre-state is denoted by a hat-ed (") identifier, while the post-state
value is represented by a primed (') identifier. If neither of (*) nor (') is used with the
objcct name then the object itself is considered as a memory location and not the
object value.

The syniax for data members and member functions in interface specifications are
almost the same asin a C++ program. The Larch/C++ reserved word this is used in
the member function specifications and means the same thing as the C++ reserved
word this, a pointer to thie object of the specified class. The Larch/C++4 reserved
word selfis a shorthand for x(this\any). The suffix anyis like (') or (*), and extracts

the valuc of this in some visible state. As in C++4, Larch/C++4 member functions

can be public. protected, and private.

Figure | shows a Larch/C++ class interface specification for the class Set. The
uses clause indicates that the Larch/C++ interface is expressed with the vocabulary
of the LSL trait SetTraat (see IMigure 2). The trait SetTrait defines the terms used
to denote abstract values of the set as well as the mathematical properties of the
set. All the terms in the pre- and post- conditions of the function specifications come
from this trait. The type-to-sort mapping, which is given between the parentheses
following the names of the used trait, says that the abstract values of the C++ Set
objects are specified to be those of the LSL sort C in SetTrait. (In LSL a sort is
the type of an LSL term; the word type is used only to refer to C++ types). The
type to sort mapping makes the connection between the C++ world and the LSL
(mathematical) world. The abstract values of Set objects are denoted by equivalence

classes of LSL terms of sort C from SetTrait.
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Figure 1 specifies a constructor, a destructor, and three public member func-
tions: tnsert, delete and isEmpty. The destructor uses the Larch/C++ reserved word
trashed to state that the object selfis no longer available. The terms insert, isEmpty
and delete which appear in the pre- and post-conditions refer to the LSL operators,
not to the member functions having the same name. All C++ declarations are legal
in Larch/C++ interface specifications; for example, member functions can be virtual,
static, friend, or inline; they all have their C++ meaning. The Larch/C++ keyword
result can only be used in post-conditions and it denotes the function return value.
The sort of result is the sort associaied with the return type specified for the func-
tion. For example. in thc interface specification for class Set the member function

isEmpty returns sort Bool.

class Set
{
uses SetTrait(IntSet foi C, int for E);
public:
IntSet()
{
modifies sclf;
ensures self' = empty;
}
~IntSet()
{

modifies self;

ensures trashed(sel f);

}

IntSet& insert (int i)

{

modifies self,

ensures self' = insert(sel f’,i) A result = self;

}

IntSet& delete (int i)
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modifies sel f;

ensures delete{self",1) = sel f' A result = self;

}
Bool isEmpty ()
{
ensures if isEmpty(self”) then
resull = TRUF else result = FALSF;
}

Figure 1: Set

SctTrait(FE.C): trait
% Essential finite-set operators
introduces
{)imC
insert s E.C— C
deletc : E,C - C
—€__:F,C — Bool
wskmpty : C — Bool
asserts
C generated hy {}, insert
C partitioned by €
Vs:C,e,eq,60: F
-(e € {})
€, € insert(ez,8) == €1 =e2Ve; €3
isEmpty({})
~isEmpty(insert(e,s))
e € s = ~isEmpty(s)
delete(e, {}) == {}

delete(ey, insert(ez,s)) == if e; = e; then s
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else insert(eq. delete(eq,s))

Figure 2: SetTrait
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Chapter 3

A Methodology to Evaluate
Completeness of Larch/C++

Specifications

This chapter presents a methodology to evaluate completeness of a C++ class in-
terface specification written in Larch/C++. This methodology is based on the com-
pleteness criteria introduced in the previous chapter for C++ classes intended for
black-box reuse. The inethodology provides the steps to guide completeness verifi-
cation. In later chapters these steps will be transformed into an algorithm and a

semi-automated technique for completeness verification will be introduced.

3.1 Sufficient conditions for completeness of Larch/C-
specification

Larch/C++ specification Sc for a class C is complete with respect to the black-box
reuse completeness criteria if the specification Sc can be used to construct the behavior
triple (LegalTr(C), Av, As). In order to show when such a triple can be constructed
we decompose the process into three steps, one for each component of the behavior

triple. We will examine the conditions which are :ufficient for the corresponding
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element of the behavior triple to be derived from Sc.

3.1.1 Legality of the trace

The first component of the behavior triple (LegalTr(C)) states that the specification
Sc can be used to construct all legal traces of class C. That is, for a given arbitrary
trace t, we can determine if t € LegalTr(C) or t ¢ LegalTr(C) using Sc.

Let Tr(n) denotes trace T'r of length n, n > 1. A trace Tr(n) is legal if its sub-
trace Tr(n — 1) is legal and the precondition of the n-th function invoked is TRUE.
On the other hand. the trace Tr(n) of length n is illegal if its sub-trace Tr(n - 1)
is illegal or the precondition of the n-th function invoked is FALSE. Based on this
definition we state the sufficient condition for specification to be able to determine

whether or not a trace is legal.

i 1 If the prccondition of every function composing an arbitrary trace t can be cvalu-
ated to TRUL or FALSE based on specificalion Sc then Sc can be uscd to delermine
if t € LegalTr or t ¢ LegalTr; otherwise Sc fails to determine the legality of tand,

hence, Sc is incomplcte.

It is not feasible to consider all the arbitrary traces of the class because their
number is infinite. As a result, we will address suflicient conditions in 1 2 to establish
il.

i 2 If the precondition Pr of every function from Sc can be cvaluated to TRUL or
FALSE in arbitrary state of class' C and with arbitrary value of variables referred in
Pr then Sc can be used to determine if t € LegalTr or t ¢ LegalTr; otherwise Sc fails

to determine the legality of t and, hence, Sc is incomplete.

Preconditions in Larch/C++ specifications are first order logic formulas. Such a
formula is composed of one or more terms. First order logic formula can be evaluated

if each of the terms composing the formula can be evaluated. Consequently, we restate
i2asi3d.

1Here after, the state of the class must be understood as the state of the object instantiated from
the class.
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i 8 If every term in the precondition Pr of every function from Sc can be evaluated
in any arbitrary state of class C and with any arbitrary value of variables referred in
the tesm then Sc can be used to determine if t € LegalTr or t ¢ LegalTr; otherwise

Sc fails to determine the legality of t and, hence, Sc is incomplete.

Any state of a class is identified by the abstract value of the class, encapsulated in
the class variable self. Hence, the state of the class affects the evaluation of a term
only if sel f variable is referenced in the term. With this in mind we restate i 3 as i
4.

i 4 If cvery term in the prccondition Pr of cvery function from Sc can be evaluated
with any arbitrary value of variables referred in the term then Sc can be used to
determine if 1 € Legallr or t ¢ LegalTr; otherwisc Sc fails to determine the legality

of t and, hence, Sc is incomplete.

Terms referenced in Laich /C++4 specification are defined in the underlying I.5L
trait(s). Since we do not assume any particular time of function invocation nor any
specific values of the parameters referenced in the function, t. satisfy i 4, terms
referenced in a function’s precondition have to be defined over the complete range of
its parametess. In other words, each term must be a total function. Although an LSL
trait can explicitly exempt definition of the term over some range of its parameters,
stating this fact in the exempting clause, this exemption is not acceptable when
cvaluating i 4 and must be treated as any other source of non-totality of the term.

Fven il the term is a total function, the values of the term parameters must be
known in order to evaluate the term. A term parameter is one of the following: a
variable supplied as the function argument; a class variable self; global variables
in the class. If the term parameter is a function argument then the value of the
argument will be supplied when the function is invoked. On the other hand, if the term
parameter is a global variable or state variable self, their values are not provided at
the time of the function invocation, but rather encapsulated and maintained internally
by the class.

Self and class global variables are also called internal variables. To guarantee

a known value of the internal variable(s), we have to ensure that it can be derived
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from the specification Sc. Instantiated by the class constructor, these variables are
affected by the member functions during the execution of the trace t, if the variables
are men‘ioned in modifies clause of the respected functions. The function modifies
the internal variable as specified by the function’s postcondition. Thus, in order to
keep track of the values of the internal variables, every postcondition modifying them
has to be evaluable. Since no assumption is made about the time of the function
invocation nor the values of the parameters referenced in it, every term composing
the postcondition of such a function must be a total function, except the range of
the term variables when the function is never executed. This is the range when the
precondition is FALSE or when the term is referenced in the LSL exempting clause.
Consider a formula in the function postcondition modifying an internal variable
of the class. It is possible that the formula does not provide a deterministic value of
the internal variable even if all the terms composing the formula are total functions.
lor example. the postcondition of the member-function in a Set specification can be
written like this:
self' = insert(self,e)V self = self
Obviously we do not know the valuc of sel f’ after exccution of such a function because
the postcondition does not provide us with a deterministic answer. Since known values
of the internal variables are required after execution of any aibitrary trace t, functions
which modify the internal variables must modify them deterministically. In the light

of the above observations we restate1 4 as 1 5
15 Sc can be used to determine whether t € LegalTr or t ¢ LegalTr if:
e Lvery term in the precondilion of every funclion from Sc is a total function;

e Every term in the postcondition of every function modifying internal variable
is a total function except the range of the terms parameter variables when the
function’s precondition is FALSE or the range when the term is exempled in

corresponding LSL trait;

¢ Posicondition of every function modifying an internal variable produces deter-

ministic values after such a modification;
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3.1.2 Function’s return values

il 1 Specification must be able to identify values returned by a V-method invoked after

ezecution of the arbitrary legal trace t.

The value returned by a V-method in Larch/C++4 is either:

e The value of the result variable referenced in the corresponding function
or

o The value of the function parameters, modified after function execution.

Because the postcondition of the function specifies the function returned values,
we must be able to evaluate the postcondition of a V-method after execution of an ar-
bitrary tracet. Since the postcondition is a first order logic formula, the postcondition
can be evaluated if the terms in the postcondition can be evaluated individually.

It is not fcasible to consider all the possible legal traces of the class. Instcad we
address the invocation of the V-method at any time during the existence of a class.
Such consideration is sufficient with respect to requirements stated in ii 1.

Since we consider invocations of the V-method at any time of the class’s exis-
tence, parameter variables can have any arbitrary values. As a result of the above

observations, we restate it 1 as:

ii 2 Terms of any V-mcthod occuring in the postconditions harve to be specified in

such a way thal il is possible to cvaluate them al any time during function execution.

It is worth noticing that a function is executed only if its precondition is evaluated
to TRUE and none of the terms composing the postcondition fall into exempting
LSL clause.

To enable evaluation of the term, values for the parameters referenced in the term
must be known. Term parameter is either a function parameter or an internal variable:
the global variables or the class variable self. As was shown in the previous section,
the values of the internal variables must be derivable from the class specification
in order to guarantee known values of variables referenced by the function. This is

satisfied when the following are true:
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e Every term in the pustcondition of every function modifying internal variable is
a total function except the range when the function’s precondition is FALSE

or the range when the term is exempted in corresponding LSL trait.

e The postcondition of every function modifying internal variables produces de-

terministic values resulting from such a modification.

The above observations transform ii 2 into:

ii 3 For Sc to be able to identify values returned by a V-method it is sufficient if the
following hold:

o Terms of any V-method, occurring in the postconditions arc total functions ¢.r-
cept when the corresponding precondition is FALSE and when one of the terms

falls into corresponding exempting clause.

o Every term in the postcondition of every function modifying an internal variable
is a total function excepl when the function’s precondition is FALSL or when

the term is exempted in corresponding LSL trail.

o The postcondition of every function, modifying internal varables, produces de-

terministic values resulting from such a modification.

Since all member functions of a class are totally partitioned by V-method~ and

methods that modify internal variables, we can summarize items of it 3 as follows:

i 4 o FEvery term in the postcondition of every function is a tolal funclion czcep!
when the function’s precondition ts FALSE or when the term is ezempted in

the corresponding LSL trait.

e The postcondition of every function, modifying internal variables, produces dt-

terministic values resulting from such a modification.
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3.1.3 Environment change

An S-method is a one that changes the state of the class environment. The last
element of the behavior triple states that specification must provide the information
to der.ve the effect of the S-method(s) executed in an arbitrary legal trace t. Some
examnples of S-method are: changing the position of the cursor in the screen, filling
a structure encapsulated in the class and sending a packet to the network. Only
changes in the environment that can be observed from our class are of our interest.
In the context of Larch/C++ this addresses modification of the global variables in
the class and the side effect of the function execution, resulting in the modification
of the variables passed as argum.ents to the function.

By conducting an analysis analogous to the one from the previous section we

concluded the following:

itt 1 For Sc to be able to identify the state of the class environment which results
aftcr crecution of the trait t containing S-mcthod(s), it is sufficient if the following
hold:

o Evcry term in the postcondition of cvery function modifying variables is a total
function ercept when the function’s precondition is FALSE or when the term

is exempled in the corresponding LSL trait.

o The postcondition of every functisn modifying variables produces deterministic

values resulting from such a modification.

3.1.4 Summary

We have identified the requirements for each component of the behavior triple which
Larch/C++ specification must satisfy in order for the component to be derivable
from the specification. Now, we summarize these requirements to state the sufficient
conditions of specification to be able to provide the behavior triple and, heuce, to be
complete.

Completness Requirements

Specification Sc is complete if :
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1. Each term in the precondition of every function from Sc is a total function

2. Each term in the postcondition of every function is a total function except
when the function’s precondition is FALSE or when the term is exempted in

the corresponding LSL trait.

3. The postcondition of every function modifying variables produces deterministic

vilues for the vaiiables after such a modification

3.2 Proving Sufficiency

Here we present a proof that Completeness Requirements are sufficient conditions
for a specification to be complete. We will prove that if Completeness Require-
ments are satisfied then each of the components of the behavior triple is satisfied and,
hence, the whole triple is satisfied, implying the completeness of the specification.
Lemma 1 (Legality of the trace) For every trace of a class, it is possible to
determine whether or not the trace is legal.

Proof by contradiction:

Assume Completeness Requirements are TRUE but Lemma 1 is FALSE.
If Lemma 1 is FALSE then there is a trace t where the pre-condition of the last
function in the trace cannot be evaluated.

Pre-condition is a first order logic formula. Evaluation of the first order logic
formula is evaluation of the terms comprising the formula in some sequence which
is identified by the form of the formula. In other words, one ‘erm is evaluated after
another. If the formula cannot be evaluated, then there is a step of evaluation when
the terin can not be evaluated. The reason for the inability to evaluate the first order
logic term is either there is a free variable in a term and the value of this variable
is not defined or the term is not defined over the complete range of its parameters.
The former contradicts both Completeness Requirements(2) and Complete-
ness Requirements(3), the latter contradicts Completeness Requirements(1).

Hence, Completeness Requirements are sufficient conditions for Lemma 1.
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Lemma 2 (V-method) For every legal trace ending with a call to a V-method,
the abstract value returned can be derived from the specification.

Proof by contradiction:

Assume Completeness Requirements are TRUE but Lemma 2 is FALSE. If
Lemma 2 is false then there is a legal trace t, ending by a V-method, for which either
the post-condition cannot be evaluated or there is an internal variable whose value is
not, known prior to the V-method invocation. T'his contradicts both Completeness
Requirements(2) and Completeness Requirements(3) . Consider case when
a post-condition cannot be evaluated. Post-condition is a first order logic formula.
Evaluation of the first order logic formula is evaluation of the terms comprising the
formula in some sequence which is identified by the form of the formula. In other
words, one term is evaluated after another. Hence, if formula cannot be evaluated,
then there is a step of evaluation when the term can not be evaluated. The reason for
inability to evaluate the term is either there is a free variable in a term and the value
of this variable is not defined or term is not defined over the complete range of its
parameters. Since from initial assumption the trace t is legal, the range of the term
where the term is not defined is different from both: the range satisfying expression
precondition = FALSE and the range identified by the term exempting clause.
The former contradicts both Completeness Requirements(2) and Completeness
Requirements(3), and the latter contradicts Completeness Requirements(2).
Hence, Completeness Requirements is a sufficient condition for Lemma 2.

Lemma 3 (S-method) For every legal trace ending with a call to an S-method,
the side effect which will occur as a result of this last method can be derived from the
specification.

Proof by contradiction:

Assume Completeness Requirements are TRUE but Lemma 3 is FALSE. If
Component 3 is FALSE then there is a legal trace t, ending by an S-method, whose
side effect can not be derived from the specification. Since side effect of the function
changes the function’s parameter variables, our assumption implies that the values
of the function’s parameters can not be evaluated after execution of some function

at the end of some legal trace t. The reason for the above fact could be one of the
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following:
1. the value variables were not known prior to the function invocation
2. it is not possible to evaluate function’s postcondition

3. function’s post-condition specifies more then one possible value for the vari-
able(s) it modifies

Consider (1). Since non-internal variables are supplied as function arguments and
these arguments are assumed to be known, then it is an internal variable whose value
was not known prior to the function invocation. This contradicts both Complete-
ness Requirements(2) and Completeness Requirements(3) .

Consider (2). Since invocation of the regarded function is legal, function’s pre-
condition is FALSE and neither of the terms in the function's post-condition falls
into the exempting clause. This contradicts Completeness Requirements(2).

Consider(3). It contradicts Completeness Requirements(3). hence, we con-
clude that Completeness Requirements is a sufficient condition for Lemma 3.

Thus, we have proved that Completeness Requirements is a sufficient condi-
tion for each of the components of the behavior triple and therefore, they form a set

of sufficient conditions for a specification to be complete.
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Chapter 4
Realization of the methodology

In the previous chapter we identified the properties of a Larch/C++ interface spec-
ification which are sufficient conditions for the specification to be complete. In this
chapter we will show how to develop an approach for the verification of these prop-
erties and provide algorithmic steps foi it. I'he chapter is concluded by an example,
where the methodology is applied to verify the completeness of a Larch/C++ speci-

fication.

4.1 Towards the Algorithm

Larch/C++ specification relies on first order logic theories to specify its terms and
sorts. At the same time, Larch/C++ specification can not be expressed only by means
of the first order logic theories because it uses state machine semantics. Fortunately,
the properties of Larch/C++ specifications addressed in the completeness verification
methodology are confined to the properties of the first order theories underlying the
interface specification. This fact simplifies the completeness verification task and
makes it possible to semi-automate it, using existing machinery in theorem provers.
A number of proof assistants have been developed to work with first order logic
theories. We will use Larch Prover (LP), the one that was built to work with Larch
specifications. The following sections provide the steps necessary to prepare assertions

and theorems to prove in order to realize the methodology presented in the previous
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chapter.

4.1.1 Totality of terms in precondition

We have to establish that all the terms referenced in preconditions are total functions.
In order to do so, we have to analyze the LSL trait, defining the term. The assertions
defining the term must provide enough information for the term to be defined over
the whole range of its parameter(s). As stated in the previous chapter the terms
in a precondition should not have any exempted range. Therefore, we disregard
statements in the exempting clause and address only statements from assert clause
from the corresponding LSL specification.

A term is a mathematical function. Thus, it provides a unique mapping from its
domain into range. Qur goal is to ensure that there is no region in the term domain
where the mapping is not specified.

Consider an arbitrary term T : pl..pn — r, wheve T' is the name of the term, pl. pn
is the list of parameters and r is the result produced. Let the term 77 : plipn — r
have the same behavior as term T. Behavior of the term is the way it maps the values
from the term domain into the values from the term range. Thus, saving that the
two terms have the same behavior means that they have the same domain, the same
range, and the same mapping from the domain values into the range values. Assume
that the behavior of T is defined over the complete range of its parameters pl..pn.

Then T and T" must produce the same value r when the parameters’ values are equal
(refer Fig. 3):

i1 Vpl..pn(T(pl..pn) = T'(pl..pn))

Let the behavior of term T be not defined over some domain Unde f. In this case
only a partial equality between T and T’ can be established, since nothing is known

of how the T maps its domain values into the range values when the first falls into
the Undef (refer Fig.4):
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Figure 3: Total function

i2 Vpl.pn((pl ¢ UndcfVvp2 ¢ Undef..vpn ¢ Undef) => T(pl..pn) = T'(pl..pn))

As a result, it is impossible Lo establish 1 1.

The above technique can be used to prove that the term is a total function. Let
T be defined in the Larch trait Tr.

The first step is to create a term T as having the behavior identical to T. In
arder to do so, we add a new signature to Tr which is the same as for T except that
the name of T is substituted by the name of 77 in the signature. We have to specify
behavior of 77 to be the same as that of T. In order to do so, for every assertion A
referring to T we add a new assertion A’ into T'r which is an exact copy of A except
that every occurrence of T' is substituted by T'. Now T'r contains specification of two
terms T and T' with identical behavior. In order to show that T is a total function
we have to prove Vpl..pn(T(pl..pn) = T'(pl..pn)).

We have to notice that proving the totality of the function makes sense only if
the function is not a basic constructor of a sort . Since by definition any sort value
can be expressed in terms of basic constructors and the formula containing only basic
constructors is not further reducible, a basic constructor is always a total functicn

and any attempt to argue about it leads to the circular reasoning.
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4.1.2 Totality of the terms in postcondition

We have to establish that all the terms referenced in postconditions are total func-
tions, except when the term falls into LSL exempting clause or when the function’s
precondition is FALSE. In the previous section we have already shown the technique
to verify totality of the term. With slight modifications this technique is applicable
to our current goal as well. When proving the totality of the term we have to incor-
porate the fact that there is a range where we do not want to verify whether or not
the term is defined.

Consider an arbitrary term 7' : pl..pn — r. To establish that T is a total fundtion,
we proceed as we did in the previous section: we define T : pl..pn — r having the
same signature as T and incorporate all the assertions referring to T, but stating
them about T”. As before we have to prove the theorem:

Vpl..pn(T(pl..pn) = T'(pl..pn))

In addition, we conjoin a new assertion:
=Pr => (T(pl..pn) = T'(pl..pn)), where Pr is the function’s precondition.

This assertion states that over the range when the precondition of the function is
FALSE we do not need to verify whether the term’s behavior is defined or not. Qur

proof obligation is exempted by this explicit assertion over the identified range.
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We also add the assertions for each appearance of the term in the exempting
clause:
T(EremptedRange) == T'(EzemptedRange)
As in the case with precondition, we explicitly state that 7' and T’ are equal over

the EzemptedRange and our proof obligation is exempted over this range.

4.1.3 Determinism of variable modification

For every variable modified after execution of the function we have to ensure that it
is madified deterministically.

First we have to determine which variables are the subject for modification. This
information is explicitly stated in the modifies clause of the respective function. To
ensure determinism of the variable modification the following must hold:

Determinism Theorem 1
e Let the function parameter Par be modified as a result of the function execution.

e Let the value of the variable 171 be equal to the valuc of the variable Vr prior

to the function execution.
e Let Vrand V'rl be passed as parameters Par at different times.

e The postcondition of the function ensures Vr and Vrl to be assigned the sanie

values provided that the values of other parameters remain the same.

Thus, if the function’s post-condition is a formula:

Post(Parl", Par2",..Parn’, Parl’, Par?2',..Parn')

where " identifies value of the parameter variable in the pre-state and ’ identifies value
of the parameter variable in the post-state, then in order to ensure deterministic effect
of this post-condition on Parl we have to prove that:

Determinism Theorem 2 (Post(Parl®, Par2’,..Parn", Parl’, Par2',..Parn’)A
Post(Parl’, Par2’,..Parn’, Parll’, Par?',..Parn')) => Parl’ = Parll’

For example, consider a post-condition:

self' = first(self”)
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To ensure that self is modified deterministically, we have to prove the theorem:

(self' = first(self) Aselfl' = first(self")) => sel f' = self1’

4.2 The Completeness Verification Algorithm

In the previous sections we have already shown how to approach completeness ver-
ification methodology. Now we will summarize it in the completenass verification
algorithm, which shows all the steps necessary to build assertions and theorems in

order to apply completeness verification methodology.

Completeness verification algorithm
Given : Larch/C++ specification Sc.
Goal : preparc LSL traits with theorems in order to establish completeness of Se.
Steps :
o for every member-function Fun from Sc.

1. create LSL trait CompSclun.lsl.
2. = include into CompScFun.lsl the traits identified in the uscs clause of
Sc.
— include into CompScFun.lsl the traits instantiated as a result of map-

ping of built-in and defined C++ types, used in Sc, into LSL sorts.

3. For every term T composing the requires clause which is not mentioned

in the LSL generated by clause.

(a) Add term T’ to the CompScFun.lsl such that the signature of T is
identical to the signature of T except the term name, which is changed
to the name of T".

(b) Find all assertions referring to T in the CompScFun.lsl included
traits{this applies to statements in partitioned by clause as well)

and for each assertion A.
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i. Form assertion A’ to be identical to A, except that for every oc-

currence of T the name of term T is substituted by one of T".

ii. Add assertion A’ to CompScFun.lsl.
4. Add the theorem T’ = T" to CompScFun.lsl.

5. For every term T composing the ensures clause, which is not mentioned

in the LSL generated by clause and does not occur the requires clause.
(a) complete 3(a), 3(b) and 4.
(b) Find all exemptions from exempting clause
referring to T in the CompScFun.lsl included traits and for each
exemption E.
i. Form assertion A’ as E=E’, where E’ is identical to E, except that
in every occurrence of T in E’ name of term T is substituted by
one of T".
ii. Add assertion A’ to CompScFun.lsl.
(c) Add assertion =Pre => T = T, where Pre is an expression in the

requires clause of the function.
6. For each variable Vn mentioned in the modifies clause.

(a) Form the theorem as
(Post(V1°,.Vn', .Vm", V1’ . Vn!, .Vm')A
Post(V1",.Vn',.Vm', VI, . Vnl', .Vm')) => Vn' = Vnl’, where
Post is an expression in the ensures clause of the respective function;
V1..Vm are variables referred by Post;
" and ' denotes values of the variable before and after execution of the

function respectively.

4.3 An example

To illustrate the completeness verification algorithm, developed in this chapter we
consider Larch/C++ specification for class IntStack. The interface specification is

shown in Fig.5 and the LSL specification for sort Stack is shown in Fig.6.
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First, consider LSL traits that we have to include into each ComplStack Fun.lsl.
According to the algorithm we have to include traits identified in the uses clause of
our interface specification. There is only one such trait:

StackTrait(IntStack forStack, intforE).

Second, we have to include traits mapping used in the interface specification built-in
and defined C++ types. Since there is no such type in the example, our include
clause consists only of information extracted from the interface specification uses
clause.

First function in Stack.lcc is the class constructor IntStack. Following Step 1 and
Step 2 of the algorithm we create trait ComplStacklStack.lsl and form its includes
clause as described in the previous paragraph. There is no requires clause in this
function, so we proceed with Step 5. Ensures clausc consists of only one terin
new, which is a basic constructor of Stack sort and therefore, it does not regnire any
processing. Consequently. we proceed with Step 6 of the algorithm and state the
theorem in the implies clanse of ComplStacklStack.lsl. The trait is shown i Figuie
7.

Second function is the Stack.lcc is a class destructor. Since it uses only built-in
LSL term trashed, we will not process this function, assuming that the built-in term
has a complete specification.

For the remaining four functions of the class Ipush, lisEmpty, Itop and Ipop we
built the traits according to the Completcness verification algorithmm and show them

in Figure 8, 9. 11 and 10 respectively.
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class IntStack

uses StackTrait(IntStack for Stack, int for E)

public:
IntStack()

modifies self;
ensures scl f' = new;

~ IntStack
{

modifies se{f:
ensures {rashed(sel f);

void Ipush(int i)

modifies sclf;
ensures sel f' = push(sclf’,i);

ensures resull = isEmpty(sclf7);

}
bool lisEmpty()
{
}

requires nol (is Empty(scdf’));
ensures result = top(self’);

void Ipop()
requires not(isEmpty(self’));

modifies self;
ensures sel f' = pop(self’);

Figure 5: Integer Stack interface specification Stack.lcc
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StackTrait( E, Stack) : trait
% Essentlal LIFO operators
includes Integer
introduces
new :

push : Stacli. E — Stack

top : Stack — E

pop : Stack — Stack

isEmpty : Stack — Bool

asserts

Stack generated by new, push

Stack partitioned by top,pop, isEmpty

Ve:FE, s:Stack
top(push(q e))
pop(push(s,e)) -
2sbmpty(new)

—~isEmpty(push(s,¢))

Figure 6: Stack.lsl

ComplStackIStack : trait

includes StackTrait(IntStack for Stack, Int for I)
implies
v
self', selft’ : IntStack

% determinism

(self’ = new A sclfl’ = new) = (scf' = selfl’)

Figure T: Constructor completeness verification

ComplStackIpush : trait
includes StackTrait(IntStack for Stack, Int for E)
implies
self’, selfl’, self : IntStack,i : Int
% determinism

(self’ = push(self ;i) A selfl’ = push(self ,1)) = self’ = self1’

Figure 8: Ipush completeness verification
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ComplStacklisEmpty : trait
includes StackTrait(IntStack for Stack, Int for E)

introduces

isEmpty’ : IntStack — Bool
asserts

Ve:lInt,s: IntStack

isEmply'(new)
-isEmpty'(push(s, €))
implies
VY e: Int,s: IntStack
isEmpty'(s) = isEmpty(s)

Figurce 9: lisEmpty member-function completness verification trait

ComplStackipop : trait
includes StackTrail (IntStack for Stack,Int for E)

introduces
iskmpty’ : IntStack — Bool

pop' : IniStack — IntStack

asserts
Ve:lInt,s: IntStack

isEmpty' (new)
~isL'mpty' (push(s.€))
pop'(push(s,e)) ==s

. isEmply(s) = (pop'(s) = pop(s))

implies

Y e: Int,s,self’,selft’, self . IntStack

isEmpty'(s) = isEmpty(s)
pop'(s) = pop(s)
% determinism

(self’ = pop(self) A self1’ = pop(self )} = (self’ = selfl’)

Figure 10: Ipop member-function completness verification trait
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ComplStackltop : trait
includes StackTrait(IntStack for Stack,Inl for I}
introduces
iskmpty’ . IntStack — Bool
top’ : IntStack — Int

asserts
Ye:Int.s: IntStack

isEmpty'(new)

-~isEmpty'(push(s, <))

top’(push(s,c)) == e

SEmpty(s) = (lop'(s) = lop(s))
implies

Ve:Int,s: IntStack
isEmply'(s) = isEmpty(s)
top’(s) = top(s)

Figure 11: Ttop member-function completness verification trait
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Chapter 5

Description of proofs and
completeness verification

methodology

5.1 Overview of Larch Theorem prover

We already stated in the previous chapters that completeness verification algorithm
can be carried out semi-automatically with the help of the machinery in the thcorem
provers. Since this thesis addresses Larch/C++ specifications, we will use the theorem
prover designed to work with Larch Shared Language specifications.

Larch Prover(LP) [GG93} is a theorem prover for a subset of multi-sorted first-
order logic. LP is intended as an interactive proof assistant rather than an automatic
theorem prover. LP is designed with the assumption that the initial attempts to state
the theorem correctly, and then to prove them usually fail. As a result, LP provides
useful information about why proofs fail, if and when they do. This feature of LP
is especially important when LP is used for the completeness verification. We need
not only to be able to prove if the specification is complete, but, also, to have enough
information to determine incompleteness, localize it and rectify. We will address this

issue in the next chapter.
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5.1.1. LP theories

A logical system is the basis for proofs in LP. This system consists of a set of de-
clared operators, the properties of which are axiomatized by equations, rewrite rules,
operator theories, induction rules, and deduction rules. The logical system in LP is a
subset of multi-sorted first-order logic. Each kind of P axiom has two semantics, a
definitional semantics in first-order logic and an operational st raantics that is sound
with respect to the definitional semantics but not necessarily complete.

LP sort, operator and variable declarations are semantically the same as ones in
LSL. LP has built-in sort Bool, as well as operators {ruce, false, if, not, =, &(and),
|(or). => (implies) , and <=> (if «nd only if). During a prool, LP can generate
local variables. constants, and operators.

A term in multi-sorted first-order logic consists of either a variable or of an op
erator and sequence of terms known as its arguments. The number and sorts of the

arguments in a term must agree with the declaration for the operator.

Equations

LP theory has equations in it. An equational theory is a theory (i.c., a set of facts)
axiomatized by a set of equations. The syntax of equational theory can be defined in
the following way. The set of terms constructed from a set of variables and operators
is called a free word algebra or term algebra. A set S of equations defines a congruence
relation on a term algebra. This relation is a smallest one that contains the equations
in S and that is closed under reflexivity, symmetry, transitivity, instantiation of fiee
variables, and substitution of equals for equals. An equation t1 == {2 is in the

equational theory of § , or is an equational consequence of S, if ¢1 is congruent to t2.

Rewrite rules

To enable some of the LP inference mechanisms, equations have to be oriented into
rewrite rules. Logical meaning of the rewrite rules is identical to that of equations.
However, the operational behavior is different. A rewrite rule is an ordered pair (I,

r) of terms, usually written as [ — 7, such that ] is not a variable and every variable
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that occurs in r also occurs in . A rewriting system is a set of rewrite rules. LP
orients equations into rewrite rules and uses these rules to reduce terms to normal
forms.

The reduction of terms to normal form can be described as follows. Define a
substilulion q to be a mapping from variables to terms such that ¢(v) is identical to v
for all but a finite number of variables. The domain of a substitution is extended to
terms: q(f(t1,...,tn)) is defined to be f(q(t1),...,q(tn)). A substitution ¢ matches a
term t1 to a term 12 if ¢(t1) is identical to t2. Each rewriting system R defines a binary
relation ~ g (rewrites or reduces directly to) on the set of all terms. Operationally,
{ ~y u if there is some rewrite rule [ — rin B and somce substitution ¢ that matches
[ to a subterm of t such that u is the result of replacing that subterm by ¢(r). The
relation ~p * is the reflexive transitive closure of ~» . Thus, t ~p *u iff there
are terms ti....,in such that ¢t =11 ~»p ... ~ g in = u. The relation ~ 5 + is the
transitive irreflexive closure of ~ . It is usually essential that R is terminating. Thus,
there is no infinite sequence £1 ~p (2 ~ap {3... Of reductions.

Though in general it is undecidable whether the set of rewriting rules is termi-
nating. L.P provides a number of mechanisms that orient many sets of the equations
into the terminating rewriting system. A term ¢ is said to be irreducible if there is
no term u such that ¢ ~vp u. If t ~p *u and u is irreducible, then u is a terminal or
normal form of t.

A term can have many different normal forms. Unless otherwise directed, LP
keeps all rewrite rules and equations in normal form. If a rewrite rule or equation
reduces to an identity, that is, to one in which the right and left hand sides have the
same normal form, it is discarded.

If a term has only one normal form, it is called the canonical form of the term.
A terminating rewriting system in which all terms have a canonical form is said to
be convergent.

If a rewriting system is convergent, its rewriting theory (that is, the equations that
can be proved by reducing them to identities) is identical to its equational theory.
Most rewriting systems are not convergent. In these systems, the rewriting theory is

a proper subset of the equational theory.
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Operator theories

Some equations can not be oriented into terminating rewrite rules. These are as-
sociativity and commutativity statements. For example, attempt to orient cominu-
tativity ¢ + b == b + a into rewrite rules will produce non-terminating system:
a+b - b+ta;bta — a+b. Toavoid it LP uses equational term-rewriting
to match and unify terms modulo associativity and commutativity. In equational
term-rewriting, a substitution q matches t1 and 2 modulo a set § of equations if
q(t1) = 12 is in the equational theory of S. For example, if + is ac (L.LP command
to state associativity and commutativity), the rewrite rule a * b — ¢ will reduce the

term a*c*xb to crc.

Inductive rules

Inductive rules increase the number of theories that can be axiomized using finite
sct of asscrtions. They have similar syntaxes and identical semantics to the induc
tive statements in LSL. An example is Sel generated by new, insert. An equa-
tion in the set theory: delctc(inscri(s,c).e) == s produces an infinite number of
equations: dcletc(insert(ncw, c).¢)== new); delcle(insert(insert(ncw, b), ¢),¢) ==
insert(ncw.b) ... Thus, generated by clause is cquivalent to the infimte set of first-
order formulas: (E[new] A (Vs : Set,b: element)(Efs|=> E(insert(s,b)))) => (Vs:
Set)E[s), for any well formed equation E.

Deduction rules

LP uses deduction rules to deduce new equations from existing equations and rewrite
rules. LP produces deduction rules from the LSL partitioned by clause . For
example, LSL statement Stack partitioned by isEmpty, top, pop is reflected in LP
theory as assert when top(sl) == top(s2),

pop(s1) == pop(s2),

isEmpty(sl) == is impty(s2)

yield sl == s2.
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5.1.2 Proof methods

LP provides mechanisms for proving theorems using both forward and backward
inference. Forward inferences produce consequences from a logical system. Backward
inferences produce a set of subgoals from a goal whose proof will suffice to establish

a conjecture.

Normalization

Whenever a new rewrite rule is added to its logical system, LP renormalizes all equa-
tions, rewrite rules, and deduction rules. If an equation or rewrite rule normalizes to
an identity, it is discarded. This is the way LD uses normalization in forward infer-
ence. Analogously, if a new conjecture is to be proved. LP tries to normalize it to an
identity. If this attempt was successful then the conjecture is proved by normalization.

The latter action of LP is a backward inference applying normalization.

Critical-pair equations

A common problem arises when a set of equations is oriented into a rewriting system,
which is not convergent and, hence, there is more tha . ne way to normalize the
logical system. As a result, reduction to normal form does not provide a decision
procedure for the equational theory. As a consequence, LP can fail, for example,
to reduce term v and term u to the same normal form, even if v ~g u. LP might
exhibit non-monotonic behavior; in other words, it may reduce u and v to the same
normal form , using the rewriting system R but not using the system RU {l — r}.
The critical-pair command provides a method of extending the rewriting theory to
more nearly approximate its equational theory. Each critical-pair equation captures
a way in which a pair of rewrite rules might be used to reduce a single term in two
different ways. For example, critical-pair equation between (z*y)*2 — z*(y*z) and
i{(w)*w — e produces exz == i(y)*(y*z), when the substitution {i(y) for z,y for w}

unifies i(w)*w with subterm of (z * y) * 2.

43



Instantiation

Explicit instantiation of variables in equations, rewrite rules, and deduction rules
might lead to establishing that the conjecture is an identity. For example, to establish
identity of the theorem z == z Uz in a logical system that contains the deduction
rule when (Ve)e € 2 == e € y yield ¢ == y and the rewrite rulee € (rUy) — ¢ €

zle € y, we instantiate y by U z in the deduction rule.

Proofs by cases

Conjecture can be often simplificd by dividing a proof into cases. When a conjecture
reduces to an identity in all cases, it is a thecorem. For example, the command prove
0 < f(c) by case ¢ = 0, will make LP to consider three cases: ¢ =0, ¢ < 0, and ¢ > 0.

If in all three cases the conjecture is true then it is a theorem.

Proofs by induction

Proofs by induction are based on the induction rules, which we addressed earlier. 1he
command prove e by induction on x using IR directs LI’ to prove the equation ¢
by induction on variable x using the induction rule named [R. LP generates subgoals
for the basic and inductive steps in a prool by induction as follows. The basic subgoals
involves the equations that result from substituting the basic generators of 11t for r
in ¢. (Basis generators are thosc with no variables of the sort of x.) Induction
subgoals generate one or more hypotheses by substituting one or more new constants
for x in e. Each induction subgoal involves proving an equation that results fiom
substituting a non-basic generator of I R (applied to these constants) for z in e (e.g.,
insert(e,zc)). For example, consider an induction proof over the sort Nal: prove
i <j=>i<(j+k) by induction on j

Conjecture lemma.l:Subgoals for proof by induction on ’j’

Basis subgoal:

lemma.l.l: (i< 0)=>(t < (0+k)) ==true

Induction constant : jc

Induction hypothesis: lemmalnductHyp.1: (i < ic)=> (i < (ic+ k)) == truc
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Induction subgoal: ]

lemmina.1.2: (i < s(jc)) => (1 < (s(jc) + k))) == true

Proofs by implications

The command prove tl => {2 by => diiects LP to prove the subgoal t’2 using the
hypothesis 'l == true (generally t’1=t1 and t’2 =t2, buu ir. some cases LP has to
generate new constants instead of variables in the t1 and t2 to form t’l and t’2 and
preserve soundness of proof). For example: Given the axioms a => b — true and
b => ¢ — truc, the command prove a => ¢ by => uscs the hypothesis ¢ — truc

to normalize the axiom and to reduce it to identity.

5.2 Proof methods and completeness verification

In gen ral. proving theorems is an art. Thus, there is no universal recipe for conduct-
ing it. All the proof methods implemented in LP can be employed in one or another
case. If an unrestricted variety of first order formulas is addressed, it is undecidable
to generalize which proof method to apply and when. On the other hand, if only a
certain kind of formula is considered, then one proof method is more likely to lead to
success than another. Therefore, we can analyze and suggest the strategy to guide
particular proof cases. Though this strategy helps to identify the proof methods.
human assistance is still required to conduct a proof. As a result, full automation of

a proof process cannot be achieved.

5.2.1 Strategy for proving totality of a term

Consider the two items from the Completeness verificaticn methodology: proving
totality of the terms from the requires and ensures clause. Since the goal is to
ensure the totality of the function over the domain of its variables values, the most
natural proof methoa to apply is proof by induction. Notice that the number of
inductive steps does not exceed the number of variables in the term. Consider as an

example an Integer Stack specification, presented in the chapter 3, Figure L. Here we
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show LP protocol of the proof obligations specified in ComplStackisEmpty.lsl trait,
Figure 9 in Chapter 3:

LPO.1.15: prove
isEmpty’(s) = isEmpty(s)

The current conjecture is ComplStacklisEmptyTheorem 1.

Conjectuie ComplStacklisEmptyTheorem.1: isEmpty’(s) == igEmpty(s)
Proof suspended.

LPi: resume by induction on s

Conjecture ComplStacklisEmptyTheorem.1 Subgoals for proof by induction on ‘s’

Basis subgoal:

ComplStacklisEmptyTheorem.1.1: isEmpty’(new) == igEmpty(new)
Inductaon constant sc
Induction hypothesis:

ComplStacklisEmptyTheoremInductiyp.1: isEmpty’(sc) == isEmpty(sc)
Induction subgoal

ComplStacklisEmptyTheuiem.1 2. isEmpty’(push(sc, @)} == 1sEmpty(push(sc, ¢))

The current conjecture 1s subgoal ComplStacklisEmptyTheorem 1 1.

Subgoal ComplStackIisEmptyTheorem 1.1: 1sEmpty’(new) == 1sEmpty(new)
[] Proved by normalization.

The current conjecture is subgoal ComplStacklisEmptyTheorem 1 2.
Added hypothesis ComplStackIasEmptyTheoremInductHyp 1 to the system
Subgoal ComplStacklisEmptyTherrem 1.2:

isEmpty'(push(sc, e)) == isEmpty(push(sc, e))
[] Proved by normalization.

The current conjecture is ComplStacklisEmptyTheoren.1.

Conjecture ComplStacklisEmptyTheorem.1: isEmpty’(s) == isEmpty(s)
[] Proved by induction on ‘s’.

As another example, consider a proof for RWFile class specification, Figure 12
in Chapter 6. Here we present the proof of totality of open LSL function as a part

of proof obligations for the class constructor, specified in CompFileConst.lsl trait,
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Figure 14 in Chapter 6. The detailed analysis of RWFile class specification is in the

next chapter.

LP0.1.15: prove
open(f, m) = open'(f, m)

The current conjecture is CompFileConstTheorem.1.

Conjecture CompFileConstTheorem.1: open(f, m) == open’(f, m)

Proof suspended.
LP1. resume by inductiononm
Conjecture CompFileConstTheorem.1: Subgoals for prcof by induction on ‘m’
Basis subgoals:
CompFileConstTheorem.1.1: open(f, READ) == open’(f, READ)
CompFileConatTheorem.1.2. open(f, WRITE) == open’(f, WRITE)
CompFi1leConstTheorem 1.3: open(f, READ_WRITE) == open’(f, READ_WRITE)
The induction step 1s vacuous

The current conjecture is subgoal CompFileConstTheorem 1 1.

Subgoal CompFileConstTheorem.{ 1. open(f, READ) == open’(t, READ)

[) Proved by normalization.
The current conjecture is subgoal CompFileConstTheorem.1.2.

Subgoal CompFileConstTheorem.1.2* open(f, WRITE) == open’(f, WRITE)

[) Proved by normalization. .
The current conjecture is subgoal CompFileConstTheorem.1.3.

Subgoal CompFileConstTheorem.1.3: open(f, READ_WRITE) == open’(f, READ_WRITE)
£3 Proved by normalization.

The current conjecture is CompFileConstTheorem.1.

Conjecture CompFileConstTheorem.1: open(f, m) == open’(f, m)
[] Proved by induction on ‘m’.

Sometimes the inductive steps need additional user guidance. Completeness ver-
ification methodology exempts a term from the totality proof over the range of its

variables values corresponding to the function precondition being FALSE. During
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the course of proof by induction one or another deduction rule can be instantiated
by the precondition expression so that LP can use instantiated formula to deduce
totality of the term over the exemptcd range of the variables values. As a result, LP
completes the inductive step over the entire range of the function domain.

To illustrate this point, consider Itop member-function from the Integer Stack ex

ample, Figure 5:

LP2: prove
Please enter a conjecture to prove, terminated with a ‘..’ line, or ‘7’ for
help:

pop’(8) = pop(s)

The current conjecture is ComplStackIpopTheorem.2

Conjecture ComplStackIpopTheorem.2' pop'(s) == pop(s)
Piouf suspended.

LP3: resume by induction on s

Conjecture ComplStacklpopTheorem.2: Subgoals for proof by anduction on ‘s’
Basis subgoal.
ComplStackIpopTheorem.2.1. pop’(new) == pop(new)
Induction constant: sc
Induction hypothesis:
ComplStacklporTheoremInductRyp 2 pop’(sc) == pop(sc)
Induction subgral:
ComplStackIpopTheorem.2.2. pop’(push(sc, e)) == pop(push(sc, e))

The current conjecture is subgoal ComplStackIpopTheorem.2.1.

Subgoal ComplStackIpopTheorem.2.1: pop’{new) == pop(new)
Proof suspended.

LP4: display ComplStacklpop
Reurite rules:

ComplStackIpop.3: pop’(push(s, e)) ~> s
ComplStackIpop.4: isEmpty(s) => (pop’(s) = pop(s)) -> true
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/We will instantiate “s" by "new" in ComplStacklpop.4
/to obtain the formula which is our current subgoal.
/de will use command ‘make immune" to direct LP not to
/reduce obtained assertion to identity.

LP6: make immune ComplStackIpop.4
LP6. instantiate ¢ by new in ComplStackIpop.4

Equation ComplStacklipop.4 has been instantiated to equation ComplStacklpop.4.1,

pop'(new) = pop(new) == true
Deduction rule 1p_equals_is_true has been applied to equation
ComplStackIpop 4.1 to yield equation ComplStackIpop 4 1.1,

pop’'(new) == pop(new), shich implies ComplStackIpop 4.1.

Subgoal ComplStackIpopTheorem.2.1: pop’(new) == pop(new)

[] Proved by normalization
The current conjecture 1s subgoal ComplStacklpopTheorem.2.2.
Added hypothesis ComplStackIpopTheoremInductHyp.2 to the system.

Subgoal ComplStacklIpopTheorem 2 2 pop’(push(sc, e)) == pop(push(sc, e))

{] Proved by normalization.
The current conjecture is ComplStackIpopTheorem 2.

Conjecture ComplStacklpopTheorem.2: pop'(s) == pop(s)
[] Proved by induction on ‘s’.

5.2.2 Strategy for proving the deterministic effect of vari-

able modification

Third item in the completness proof methodology addresses the deterministic effect
of the member-function on the modified variables. The equation built to prove this
fact contains implication. Proof strategy in this case employs proof method by im-
plication, possibly combined with some other methods. Usually, if the formula is not
complex, success is achieved without additional interactions with the user. Consider,
for example, the proof obligations for RWFile class trait CompFileRead]l.ls] shown
in Figure 22.
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LP21: prove
Please enter a conjecture to prove, terminated with a ‘..’ line, or ‘7' for
help:

(toByte(t’) = __sel5_reddata(read(self, len(toByte(t)),
--80110_fpointer(self))) & __sell10_fpointer(self’) =
(__se110_fpointer(self) + len(toByta(t))) & (toByte(t1’) =
--s015_reddata(read(self, len(toByte(t)), __sel10_fpointer(self))) &

--80110_fpointer(self’) = (__se110_fpointer(szelf) + len(toByte(t))})) =>
t' = t1’

The current conjecture is CoxpFileReadiTheorem 4.
The equations cannot be ordered usang the current ordering

Conjecture CompFileReadiTheorem.4
((__.sel5_reddata(read(self, len(toByte(t)), __sel10_fpointer(self)})
= toByte(t’'))
& (__selS_reddata(read(self, len(toByte(t))
= toByte(ti'))

& ((_.sel10_fpointer(self) + len(toByte(t))) = __sell0_fpointer(self’))
& ((__sel10_fpointer(self) + len(toByte(t))) = __sellO_fpointer(self’)))
=> (t' = t17)

= true

, -.8e¢110_fpointer(self)))

Current subgoal
((prefix(removePrefix(__seld_data(self), __sel10_fpointer(self)),
len(toByte(t)))
= toByte(t’))
&t (prefix(removePrefix(__seld_data(self), __sellO_fpointer(self)),
len{toByta(t)))
= toByte(t1’))
& ((__sel10_fpointer(self) + len(toByte(t))) = __sel10_fpointer(self’}))
= (¢! = ¢t1?)
=a true

Proof suspended.
LP22: resume by =>

Cenjecture CompFileReadiTheorem.4: Subgoal for proof of =>
New couastants: selfc, tc, t'c, ti'c, self’c
Hypothesis:
CompFileReadiTheoremimplieshyp.i:
(pretix(removePrefix(__sel4_data(selfc), __sel10_fpointer(selfc)),
len(toByte(tc)))
= toByte(t'c))
& (prefix(removePrefix(__seld_data(selfc), __seliQ_fpointer(selfc)),
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len(toByte(tc))) .
= toByte(tl’c))
& ((__sel10_fpointer(selfc) + len(toByte(tc)))
= __sell10_fpointer(self’c))
== true
Subgoal:
CompFileReadiTheorem.4.1: t'c = ti'c == true

The current conjecture is subgoal CompFileRead1Theorem.4.1.

Added hypothesis CompFileRead1TheoremImpliesiyp.1 to the system.

Deduction rule lp_and_is_true has been applied to equation

CompFileRead1Theoremlmplicsiyp.1 to yield the following equations, which amply

CompFileRead1TheoremImpliesHyp 1.
CompFileRcadiTheoremImpliesiyp 1.1.
prefix(removePrefix(__sel4_data(selfc), __sel10_fpointer(selfc)),
len(toByte(tc)))
= toByte(t’c)
== true
ComnFrirkeadl lheoremImpliesHyp 1.2.
prefix(removePrefix(__sel4_data(selfc), __sell0_fpointer(selfc)),
len(toByte(tc)))
= toByte(tl'c)
=x true
CompFileReadiTheoremImpliesiyp 1.3:
(__sel10_fpointer(selfc) + len(toByte(tc))) = __sel10_fpointer(self’'c)

=® true

Deduction rule lp_equals_is_true has been applied to equation
CompFileRead1TheoremImpliesHyp.1.1 to yield equation
CompFileReadiTheoremImplaesiyp.1.1.1,
prefix(removePrefix(__seld_data(selfc), _.sel10_fpointer(selfc)),
len(toByte(tc)))
== toByte(t’c),
which implies CompFileReadiTheoremImpliestyp.1.1.

Deduction rule lp_equals_is_true has been applied to equation
CompFileReadiTheoremInpliesyp.1.2 to yield equation
CompFileRead1TheoremImpliestyp.1.2.1,
prefix(removePrefix(__sel4_data(selfc), __s4110_fpointer(selfc)),
lsn(toByte(tc)))
== toByte(ti’c),
which implios CompFileRead1TheoremImpliesHyp.1.2.

Deduction rule lp_equals_is_true has been applied to equation
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CompFileReadiTheoremImpliestyp.1.3 to yield equation
CompFileReadiTheoremimpliesiyp.1.3.1,

--se110_fpointer(selfc) + len(toByte(tc)) == __sal10_fpointer(self’'c),
which implies CompFileReadiTheorumImpliesiyp.1.3.

Deduction rule Types.2 has been applied to equation
CompFileReadiTheoremInpliesiyp.1.2.1 to yield equation
CompFileReadiTheoremImpliesHyp.1.2.1 1, t'c 3= ti’c,
which implies CompFileReadiTheoremImpliesiyp.1.2.1.

Deduction rule CompFileReadi 1 has been applied to equation
CompFileRead1ThaoremImpliesHyp.1.2 1 to yield equation
CompFileRead1TheoremIimpliesiHyp.1.2.1.2, t’c == t1’c,

which implies CompFileRead1TheoremImpliesiyp.1.2 1.

Subgoal CompFileReadiTheorem 4.1: t'c = ti'c == true

[J Proved by normalization
The current conjecture is CompFileReadiTheorem 4

Conjecture CompFilaReadiTheorem.4:
((__sel5_reddata(read(self, len(toByte(t)), __s«¢l1O_fpointar(selit)))
= toByte(t’))
& (__sel5_reddata(read(self, len(toByte(t)), __sel10_fpointer(self)))
= toByte(ti'))

& ((_.sel10_fpointer(self) + len(toByte(t))) = __sel10_fpointer(self’))
& ((._sel10_fpointer(self) + len(toByte(t))) = __seliO_fpointer(self’)))
= (1 = t1?)
=3 true

[J Proved =>.

If a formula has an implication on its top level, but the left hand side is rather a
complex expression, it is worth trying to split the formula into a number of simpler
cases and then apply proof by implication to each one of them. Au additional reason
for simplifying the formula befor applying the proof by implication is as follows.
During the course of proof by implication, if the first attempt was not successful,
we loose control over the part of the formula which was in the left hand side of the
theorem. Consider a formula where prove by implication is applicable: 4 => B.
LP assumes the left hand side A of the formula to be true: A = TRUE. Based on
this hypothesis LP tries to derive B = TRUE, using the underlying axiom system.
As a result, left hand side is not a goal any more but rathe: an assertion and we do

not directly target it. Of course, it is possible to state subgoals manually and to try
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to derive them from the hypothesis formed from the left hand side of our formula, but

this is an additional loop in the course of the proof and it can be avoided. A natural
way to obtain a number of simpler cases is to use proof by cases. It is desirable to
identify trivial cases and conduct LP to consider them first. Consequently, these cases
will be discharged without additional interactions with the user. At the same time,
the cases which have not been discharged still have an implication in them and proof
by implication can be applied to this simplified formulas. As an example consider the

item from the proof obligations for bf RWFile class constructor shown in Figure 14:

LP34: prove
Please enter a conjecture to prove, terminated with a * .’ line, or ‘?’ for
help.

((1f(mode = 0.String, if(__sel7_nama(f) = filename & opf = open(f,
READ_WRITE), self' = opf, self’ = open(create(filename, READ_WRITE),
READ_WRITE)), self’ = open(create{filename, mode), mode))) & (af(mode =

| 0.8trang, if(__sel7_name(f) = filename & opf = open(f, READ_WRITE), self1’

= opf, self1l' = open(create(filename, READ_WRITE), READ_WRITE)), selfi'®' =
cpen(create (filename, mode), mode)))) => gelf’' = gelfi’

The current conjecture is StringTheorem.8.
The equations cannot be ordered using the current ordering.

Conjecture StringTheorem.8.
(if(0 = mode,
if(Copen(f, READ_WRITE) = opf) & (__sel7_name(f) = filename),
opf = self’,
open{create(filename, READ_WRITE), READ_WRITE) = self’),
opsn{create(filename, mode), mode) = self’)
& 11(0 = mode,
it((open(f, READ_WRITE) = opf) & (_.sel7_name(f) = filename),
opf = selfl’,
open(create(filename, READ_WRITE), READ_WRITE) = gelfi’),
open(create(filename, mode), mode) = selfl’))
=> (self’ = gelfl’)
== {rue
Current subgoal:
(i£(0 = mode,
if((__mixfix2(f, __sel5_data(f), READ_WRITE, 1) = opf)
& (__sel7_name(f) = filename),
opf = self’,
~-mixfix2(_ _mixfixi(filename, empty, READ_WRITE),
empty,
READ_WRITE,
1)
= gelf’),
open(__mixfixi(filename, empty, mode), mode) = self’)
& if(0 = mode,
if((_ mixtix2(f, __sel5_data(f), READ_WRITE, 1) = opf)
& (__sel7_name(f) = filename),
opf = selfl’,
~-mix?ix2(__mixfix1(filename, empty, READ_MRITE),
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ewpty,
READ_WRITE,
b9
= gelftl’),
open(__mixfixi(filename, empty, mode), mode) = gelf1’))
=> (self’ = gelfl?)
== true
Proof suspended.

LP35: resume by cases

Pleaso enter terms defining cases, terminated with a ‘..?! line, or ‘7’ for
help:

(0:String™mode)=false

Conjecture StringTheorem.8: Subgoals for pioof by cases
Fev constant: medec
Case hypotheses:
StringTheoremCaselyp.5.1: (0 = modec) = false == true
StringTheoremCasellyp.5.2: not((0 = modec) = talse) == true
Subgoal for cases:
StringTheorem.8.1:2:
(if(0 = modec,
if((__mixfix2(f, __.selS5_data(f), READ_NRITE, 1) = opf)
&t (__sel7_name(f) = filename),
opf = self’,
~mixfix2(__mixfixi(filename, empty, READ_WRITE),
empty,
READ_WRITE,
1)
= self’),
open{__mixfixl(filename, empty, modec), mndec) = self’)
& if(0 = modec,
if((L.mixfix2(f, __selS_data(f), READ_WRITE, 1) = opf)
& (__sel7_name(f) = filename),
opf = selfl’,
w-ixfix2(_.mixfixi(filename, empty, READ_WRITE),
empty,
READ_WRITE,
1)
= selfl’),
open(__mixfixi(filename, empty, modec), modec) = self1'))
=> (self’ = selfl’)
=z true

The current conjecture is subgoal StringTheorem.8.1.

Added hypothesis StringTheoremCasellyp.5.1 to the system.

Deduction rule lp_not_is_true has been applied to equation

StringTheoremCaseHyp.5.1 to yield equation StringTheoremCaseHyp.5.1.1,
0 = modec == false,

gshich implies StringTheoremCaseHyp.5.1.

The equations cannot be ordered using the current ordering.

Subgoal StringTheorem.8.1:

(i£(0 = modec,
if((__mixfix2(f, ._sel5_data(f), READ_WRITE, 1) = opf)

94



& (__sel7_name(f) = filename),
opf = sgelf’,
e mixfix2(__mixfixi(filename, empty, READ_WRITE),
empty,
READ_WRITE,
1)
= galf’),
open(__mixfixi(filename, empty, modec), modec) = self’)
& 1£(0 = modec,
i2((__mixfix2(f, __sel5_data(f), READ_WRIYE, 1) = opf)
& (__sel7_name(f) = filename),
opf = gelfl’,
~mixfix2(__mixfixi(filename, empty, READ_WRITE),
empty,
READ_MRITE,
1)
= selfi'),
open(__mixfixi(filename, empty, modec), modec) = selfl’))
=> (self' = gelfi’)
=e true
Current subgoal:
((open(__mixfixi(filename, empty, modec), moduoc) = self’)
& (open(__mixfix1(filename, empty, modec), modec) = self1’))
=> (self’ = gelfl’)
== true
Proof suspended.

LP36 resumc by =>

Subgoal StringTheorem.8.1: Subgoal for proof of =>
¥ew constants: filenamec, self’c, selfl’'c
Hypothesis-*
StrangTheoremImpliesiyp.2:
(open(__mixfixi(filenamec, empty, modec), modec) = self’c)
& (open(._mixfixi(filenamec, empty, modec), modec) = selfi’'c)
=x true
Subgoal:
StringTheorem.8.1.1: self’c = selfl’c == true

The current conjecture is subgoal StringTheorem.8.1.1.
Added hypothesis StringTheoremlmpliesHyp 2 to the system.

Deduction rule 1lp_and_is_true has been applied to equation
StringTheoremlmpliesHyp.2 to yaeld the following equations, which imply
StringTheoremImpliesiyp.2.
StringTheoremImpliesyp.2.1:
open(__mixfixt(filenamac, empty, modec), modec) = self’c == true
StringTheoremImpliesHyp.2.2:
open(__mixfixi(filenamec, empty, modec), modec) = selfi’c == true

Deduction rule lp_equals_is_true has been applied to equation

StringTheoremImpliesHyp.2.1 to yield equation StringTheoremlmpliesiyp.2.1.1,
open(._mixfixl(filenanec, empty, modec), modec) == gelf'c,

which implies StringTheoremImpliesHyp.2.1.

Deduction rule lp_equals_is_true has been applied to equation

StringTheoremImpliestyp.2.2 to yield equation StringTheoremImpliesHyp.2.2.1,
open(__mixfixi{(filenamec, empty, modec), modec) == gelfi’c,

which implies StringTheoremImpliesHyp.2.2.
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Subgoal StringTheorem.8.1.1: self’c = selfi’c == true
[] Proved by normalization.

The current conjecture is subgoal StringTheorem.8.1.

Subgoal StringTheorem.8.1:
(if(0 = modec,
if(( _mixfix2(f, __sel5_data(f), READ_WRITE, 1) = opf)
& (..sel7_name(f) = filename),
opf = self’,
--mixfix2(__mixfixt(filename, empty, READ_WRITE),
enmpty,
READ_NRITE,
1)
= gelf’),
open(__mixfixi(filename, empty, modec), modec) = self’)
& if(0 = modec,
1t ((__mixfix2(f, __sel5_data(f), READ_WRIIE, 1) = opf)
& (__sel7_namae(f) = filename),
opf = selfl’,
Lomixfix2(__mixfixi(filename, empty, READ_WRITE),
smpty,
READ_NRITE,
1)
= self1'),
open(._mixfixi{(filename, empty, modec), modec) = selfl’))
=> (sclf' = selfl’)
== true
{J Proved =>.

The current conjecture is subgoal StringTheorem.8.2.
Added hypothesis StringTheoremCaseHyp.5.2 to the system.

Deduction rule lp_equals_is_true has been applied to equation
StringTheoremCaselyp.5.2 to yield equation StringTheoremCaselyp.5.2.1,
== modec, which implies StringTheoremCaseHyp 5.2.

The equations cannot be ordered using the current ordering.

Subgoal StringTheorem.8.2:
(if (0 = modec,
if((__mixfix2(f, ._sel5_data(f), READ.WRITE, 1) = opf)
& (__sel7_name(f) = filename),
opf = self’,
--mixfix2(__mixfix1(filename, empty, READ_WRITE),
enpty,
READR_MRITE,
1)
= gelf?),
open(_ . mixfix1(filename, empty, modec), modec) = self’)
2 if(0 = modec,
if((_ _mixtix2(f, __sel5_data(f), READ_WRITE, 1) = opf)
& (__sel?_name(f) = filename),
opf = selfl’,
S mixfix2(__mixfixi(filename, empty, READ_WRITE),
empty,
READ_WRITE,
1)
= gelfi’),
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opan(__mixfixi(filename, empty, modec), modec) = selfi’))
=> (self’ = ge1f1’)
s true
Current subgoal:
(ir((__wixfix2(f, ._sel6_data(f), READ_WRITE, 1) = opf)
& (__sel7_ncme(f) = filenamse),
opf = self’,
--mixfix2(__mixfix1(filename, empty, READ.WRITE), empty, READ_WRITE, 1)
= gelf’)
& if((__mixfix2(f, __sel5_data(f), READ_WRITE, 1) = opf)
& (__sel7_name(f) = filename),
opf = selfl’,
_-mixfix2(__mixfixi(filename, empty, READ_WRITE),
empty,
READ_WRITE,
1)
= self1'))
=> (self’ = selfl?)
=z trye
Proof suspended,

LP37: resume by cases
Please enter terms defining cases, terminated with a ‘..’ line, or ‘?' for
help.
(..mixfix2(f, __selS5_data(f), READ_MRITE, 1) = opf)
& (_.sel7_name(f) = filename)

Subgoal StringTheorem 8.2: Subgoals for proof by cases
Bev constants. fc, opfc, filenamec
Case hypotheses:
StringTheoremCaselyp.6 1-
(L_.mixfix2{(fc, ._sel5_datalfc), READ_WRITE, 1) = opfc)
& (__sel7_name(fc) = filenamec)
== true
StringTheoremCaselyp.6.2:
not ((__mixfix2(fc, __sel5_data(fc), READ_WRITE, 1) = opfc)
& (..sel7_name(fc) = filenamec))
== true
Subgoal for cases:
StringTheorem 8 2.1°2:
(1 ( (. mixfix2(fc, ._selS_data(fc), READ_WRITE, 1) = opfc)
& (__sel7_name(fc) = filenamec),
opfc = self’,
~.mixfix2(__mixfixi(filenamec, empty, READ_WRITE),
empty,
READ_WRITE,
1)
= gelf’)
& it ((__mixfix2(fc, _.sel6_data(fc), READ_WRITE, 1) = opfc)
& (__»el7_name(fc) = filenamec),
opfc = gelfy’,
~mixfix2(__mixfixi(filenamec, empty, READ_WRITE),
empty,
READ_WRITE,
1)
= gelf1’))
2> (self’ = gelfil?)
== true
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The current conjecture is subgoal StringTheorem.8.2.1.
Added hypothesis StringTheoremCaselyp.6.1 to the systenm.

Deduction rule lp_and_is_true has been applied to equation
StringTheoremCasedyp.6.1 to yield the folloving equations, which imply
StringTheoremCaselyp.6.1.
StringTheoremCaseHyp.6.1.1:
~mixfix2(fc, __sel5_data(fc), READ_WRITE, 1) = opfc == true
StringTheoremCaseHyp.6.1 2: __sel7_name(fc) = filenamec == true

Deduction rule lp_equals_is_true has been applied to equation

StringTheoremCaselyp.6.1.1 to yield equation StringTheoremCaselyp.6.1.1.1,
-mixfix2(fc, __sel5_data(fc), READ_MRITE, 1) == opfc,

which implies StringTheoremCaselyp.6.1 1.

Deduction rule lp_equals_is_true has been applied to equation

StrangiheoremCaseHyp.6.1.2 to yield equation StringTheoremCaselyp 6.1.2.1,
_.5el7_name(fc) == filenamec,

vhich implies StringTheoremCaselyp.6.1.2.

The equations cannot be ordered using the current ordering

Subgoal StringTheorem.8.2.1:
Gf((__mixfix2(fc, __sel5_data(fc), READ_WRITE, 1) = opfc)
&t (_.Bel7_name(fc) = filenamec),
opfc = self’,
~-mixfix2(__mixfixi1(filenamec, empty, READ_WRITE), empty, READ_WRITE, 1)
= self’)
pif((__mixfix2(fc, __sel5_data(fc), READ_WRITE, 1) = opfc)
2 (__sel7_name(fc) = filenamec),
opfc = selfl’,
__mixfix2(__mixfixi(filenamec, empty, READ_WRITE),
empty,
READ_WRITE,
1)
= selfl’))
=> (self’ = galfi’)
=z true
Current subgoal:
((opfc = self’) & (opfc = self1')) => (self’ = selfi’) == true
Proof suspended.

LP38: resume by =>

Subgoal StringTheorem.8.2.1: Subgoal for proof of =>
Neu constants: self’c, selfl'c
Hypothesis:
StringTheoremImpliesHyp.3: (opfc = self’c) & (opfc = selfi’c) == true
Subgozl:
StringTheorem.8.2.1.1: self’c = selfl’c =* true

The current conjecture is subgoal StringTheorem.8.2.1.1.
Added hypothesis StringTheoremImpliasHyp.3 to the system.
Deduction rule lp_and_is_true has been applied to equation

StringTheoremImpliesHyp.3 to yield the following equations, which imply
StringTheoremImpliesHyp.3.
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StringTheoremImpliestyp.3.1: opfc = gself’c == true
StringTheorenlmpliaslyp.3.2: opfc = self! 'c == true

Deduction rule lp_equals_is_true hus been applied to eqaation

StringTheoremImpliesHyp.3.1 to yield equation StringTheoremimpliesHyp.3.1.1,
opfc == gelf’c,

which implies StringTheoremImpliesHyp.3.1.

Deduction rule lp_equals_is_true has been applied to squation

StringTheoremImpliesHyp.3 2 to yield equation StringTheoremImpliesHyp.3.2.1,
opfc == gelfl'c,

which implies StringTheoremImpliesHyp.3.2.

Subgoal StringTheorem 3 2.1.1: self'c = selfl’c == true
[] Proved by nor.alizataio: .

The current conjecture 1s subgoal StringTheorem.8.2.1.

Subgoal Stringlheorem.8 2.1:
Gif((__mixfix2(fc, ..sel5_data(fc), READ_WRITE, 1) = opfc)
& (__sel7_name(fc) = filenamec),
opfc = self’,
_-mixfi1x2(__mixfixi(filenamec, empty, READ_WRITE), empty, READ_WRITE, 1)
= nelf’)
& 2af ((__mixf.x2(fc, _.sel5_data(fc), READ_WRITE, 1) = opfc)
& (__sel7_name(fc) = filenamec),
cpfc = self1’,
—mixfix2(__mixfixl(filenamec, empty, READ_WPITE),
empty,
READ_WRITE,
1)
= self1’'))
=> (self’ = selfl")
== trye
[] Proved =>

The current conjecture is subgoal StringTheorem.8.2.2.
Added hypothesis StringTheoremCasellyp.6 2 to the system.

Deduction rule lp_not_is_true has been applied to equation
StringTheoremCaseHyp 6.2 to yield equation StrangTheoremCaseHyp 6 2 1,
(__omixfix2(fc, __sel5_data(fc), READ_WRITE, 1) = opfc)
& (._sel7_name(fc) = filenamec)
== false,
which implies StringTheoremCaselyp.6.2.

The equations cannot be ordered using the current ordering.

Subgoal StringTheorem.8.2.2:
Gf((__mixfix2(fc, _.sel5_data(fc), READ_WRITE, 1) = opfc)
& (__sel7_name(fc) = filenamec),
opfc = self’,
~-Rixfix2( _mixfixi(filenamec, empty, READ_WRITE), empty, READ_WRITE, 1)
= gelf’)
& if((__mixfix2(fc, __sel5_data(fc), READ_WRITE, 1) = opfc)
& (__sel7_name(f.) = filenamac),
opfc = selfl’,
~.mixfix2(__mixfixi(filenamec, empty, READ_WRITE),
empty,
READ_WRITE,
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1)
= gelfl’))
=> (self’ = golf1’)
=z true
Current subgoal:
((_.wixfix2(__mixfixi(filenamec, empty, READ_WRITE), empty, READ_WRITE, 1)
= gelf’)
2 (__mixfix2(__wixfixi(filenamec, empty, READ_MRITE),
emptv,
READ_WRITE,
1)
= velfl’))
=z> (self’ = selfi’)
== true
Proof suspended.
LP40: resume by =>

Subgoal StringTheorem.8.2.2: Subgoal for proof of =>
New constants: self’c, seltrl’c
Hypothesis:
StringTheoremlmpliesHyp 4:
(_.mixfix2(_._mixfix1(filenamec, empty, READ_WRITE), empty, READ_WRITE, 1)
= self’c)
& (__mixfix2(__mixfixi(filenamec, empty, RE.D_WRITE),
empty,
READ_WRITE,
1)
= selfi’c)
== true
Subgoal:
StringTheorem.8.2.2.1" self’c = selfi’c == true

The current conjecture is subgoal StringTheorem 8 2 2 1
Added hypothesis StringTheoremImpliesiyp 4 to the system.

Deduction rule lp._and_.s, true has been applied to equation
StringTheoremImpliesiyp.4 to yield tie following equations, which imply
StringTheoremImpliesiyp 4.
StringTheoremImpliesHyp.4.1:
S mixfix2(_.mixfix1(filenamec, empty, READ_WRITE), empty, READ_WRITE, 1)
= self’c
=3 true
StringTheoremImpliesHyp.4.2:
_mixfix2(__mixf.x1(filenamec, empty, READ_WRITE), empty, READ_VWRITE, 1)
= selfl’c
== true

Deduction rule lp_equals_is_true has been applied to equation
StringTheoremImpliesHyp.4.1 to yield equation StrirgTheoremImpliesiyp.4.1.1,
_mirfix2(__mixfixi'filenamec, empty, READ_WPITE), empty, READ_WRITE, 1)

== gelf’'c,
which implies StringTheoremImpliesHyp.4.1.

Deduction rule lp_equals_is_true has been applied to equation
StringTheoremImpliesHyp.4.2 to yield equation StringTheoremImpliesiiyp.4.2.1,
. mixfix2(__mixfixi(filenamec, empty, READ_VRITE), empty, READ_WRITE, 1}

== golfi'c,
which implies StringTheoremImpliesHyp.4.2.
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Subgoal StringTheorem.8.2.2.1: self’c = s0ifl’c == true
[} Proved by normaljzation.

The current conjecture is subgoal StringTheorem.8.2.2.

Subgoal StringTheorem.8.2.2:
(if((__mixfix2(fc, __sel5_data(fc), READ_WRITE, 1) = opfc)
& (__sel7_name(fc) = filenamec),
opfc = self’,
_.mixfix2(__mixfixi(filenamec, empty, READ_WRITE), empty, READ_WRITE, 1)
= gelf’)
& if((__mixfix2(fc, __sel5_data(fc), READ_WRITE, 1) = opfc)
& (__sel7_name(fc) = filenamec),
opfc = selfl’,
—_mixfix2(__mixfix1(filenamec, empty, READ_WRITE),
empty,
READ_WRITE,
1)
= gelt1’))
5> (self’ = selfl’)
== {rue
[] Proved =>.

The current conjecture is subgoal StringTheorem 8.2.

Subgoal StringTheorem.8.2.
(if(0 = modec,
if((__mixfix2(f, __selS_data(f), READ_NRITE, 1) = cpf)
& (__sel7_name(f) = filename),
opf = self’,
—-maxfix2(__mixfix1(filename, empty, READ_WRITE),
empty,
READ_WRITE,
1)
= self’),
open(__mixfixi(filename, empty, modec), modec) = self')}
& if(0 = modec,
af ((__mixfix2(f, __selS_data(f), READ_WRITE, 1) = opf)
& (__sel7_name{(f) = filename),
opf = selft’,
~-mixfix2(__mixfix1(filename, empty, READ_WRITE),
empty,
READ_WRITE,
1)
= gelfl’),
open(__mixfixi(filename, empty, modec), modec) = selfl’))
> (self’> = selft’)
== true
[1 Proved by cases
(__mixfix2(f, __selS5_data(f), READ_WRITE, 1) = opf)
& (__sel7_name(f) = filename).

The current conjecture is StringTheorem.8.

Conjecture StringTheorem.8:
(if(0 = mode,
if((open(f, READ_VRITE) = opf) & (__sel7_name(f) = filename),
opf = self’,
open{create(filename, READ_WRITE), READ_VRITE) = self’),
open(create(filename, node), mode) = self’)
& if{(0 = mode,
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if({open(f, READ_WRITE) = opf) & (__sel7_name(f) = filename),
opt = selfi’,
open(create(filename, READ_WRITE) , READ_WRITE) = gelfi’'),
open{create(filename, mode), mode) = self1’))
u> (self’' = selfl?)
== true
[] Proved by cases (0 = mode) = false.
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Chapter 6

Applying the completeness
verification methodology

In this chapter we address Larch/C++ specification for a class from Rogue Wave
Tools.h++ [rogue] class library.

Rogue Wave Tools.h++4 is a commercial product, used in Object Oriented
software development. Classes implemented in the library have sufficient generality
and a large set of methods which enables their software reuse. On the other hand,
most of the library classes do not employ inter-object communication, providing a high
level of functional and data encapsulation. The library is equipped with informal, but
detailed documentation. These qualities promoted Rogue Wave Tools.h++ as a
beneh mark for this thesis research.

In this chapter we present the analysis of the completeness verification of a class-
sample from the library. Consequently, we address aspect of incompletencss of specifi-
cations, incompleteness localization and rectification. We will generalize the types of

incompleteness and identify in which cases the incompleteness can not be removed.

6.1 Completeness verification of the RW€File class
specification

Class RWFile[rogue] encapsulates file operations, using standard C stream library.
The class interface offers general methods for a file manipulation. The interface

specification of RWFile is shown in Figure 12, LSL specification of sort File is shown

63



in Figure 13. .

The constructor has two arguments: filename and mode.

If mode is 0 then the constructor tries to find existing file with the name filename and
open it for READ_W RITE. If this attempt fails , the constructor creates a file named
filename and opens it for READ_ WRITE. If inode is different from € then the
constructor creates file filename and opens it with permission mode. The LSL trait
CompFileConstractor.lIsl contains constructor completeness proof obligations and is
shown in Figure 14. All the conjectures stated in CompFileConstractor.lsl were proved
successfully and, thereby, no incompleteness was detected zt this stage. The protocol
of the LP proofs is in Appendix, Figure 27.

The class destructor flushes contents of the file in memory into its image on disk,
making the two identical. After that. the destructor closes the file. ‘Fhe LSL trait
CompFileDestractor.lsl for the destructor completeness proof obligations is shown
in Figure 21. The first attempt to prove the conjectures for this method was not
successful. We failed to prove totality ol the flush() LSL terin. As a result, we
analyzed the specification of the term flush in the Filesl trait, Figure 13 and found
that we did not state the effect of the function on the OpernFule. We rectified the
incompleteness, changing the assertion as shown in File.ls] trait, Figure 13.

The proof obligation trait for method Error is shown in Figure 16. We failed
to prove the conjectures stated in the trait. Apparently, the term error() lacks the
asscrtions to enable the proof of the theorems stated. Morcover, there is no way
to rectify the incompleteness detected. Indeed, the crror() function is intended to
express the fact that some error has occured during the lifetime of the Openkile
(e.g., input-output operation error). Obviously, occurrence of such an error is due
to the circumstances which are external to the specified system . Therefore, an
attempt to incorporate possible sources of the error() into the specification can not
be successful. The assertions corresponding to error() are facts stating that some
exceptions happened and, therefore, must be addressed in the exception handling
part of the interface specification. These aspects will be considered in more detail in

the next section.
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No theorems for completeness proof obligation of the member-function CurOff-

set, Erase, GetName, isEmpty, SeekTo, SeekToBegin are needed to be proved.
The proof obligation traits for member-functions Eof, Exists, Flush, isValid are
shown in Figure 17, 18, 19, 20 respectively. The thcorems from these traits are
identical to those decumented in the Appendix.

Proof obligations for method Read(&char c) are shown in Figure 22. The corre-
sponding proof protocol is shown in Appendix, Figure 29.

Proof obligations for method Read(char* i, size_t count) are shown in Figure 23.
It is worth noticing that the modifies clause of the method refers to a pointer. In
this case the modificd variable is an array rathcr then a single valuc. In order for
proof obligations to consider all the modified memory locations we have to address
every memory location of the array. The first attempt to prove determinism of the
variables modification failed. We analyzed the cause of the failure and discovered
that the postcondition does not specify the effect of the function on the values of the
atray al indexes exceeding value counl The completed postcondition considers the
whole range of memory locations addressed by the pointer i.

The proof obligations for RWFile class are concluded by thcorems for member
functions Write(char i) and Write(char * i, size_t count). The corresponding traits
arc shown in Figures 24 and 25 respectively. Protocols of LP proofs are documented

in the Appendix, Figures 31 and 32 respectively.

65



class RWFile {
typedef unsigned size_t;
typedef char *String;

uses File(RWFile for OpenFile,String for Name, String for
MODE), Types(char);

public:
RWPFile(eonst char* filename, const char* mode=0)

{

modifies sel f;
ensures if mode = 0 then
f : File.of : Openlile (if (f.name = filename A
of =open(f. RLAD WRITLE)) then
self' = of)
else
self' = open(ercate( filcname , READ W RITLE),
READ WRITLEY)
else
sel f' = open(create( filename, mode), modr );

}
~ RWFile()

{
modifies sel f.File; )
ensures frashed(flush(self));

)
long CurOffset()
{

)
RWBoolean Eof()

{

}
RWBoolean Erase()

{

ensures result = sel f°. fpointer;

ensures result = (sel f*. fpointer = len(sel f*.data));

modifies self;
ensures sel f'.data = empty;

)
RWBoolean Error()

{

ensures result = error(self’);
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}
RWBoolean Exists()

{
ensures Jfile: File,name : Name,mode: MODE
(result = (sel f* = open( file,mode)A
file = create(name, READ W RITE)));

}

RWBoolean Flush()

{

modifies self.File;
ensures result = grror( flush(sel f7);

}

const char* GetName()

{ ensures result’ = sel f°. file.name;
%l\'\'l)uoloan ISEmpty()

{ ensures result = (self.data = empty )
i&\\’ljooloan isValid() const

ensures 3f : Filc,m : MODE(result = (sel f* = open( f, m)));

}
RW Boolean Read(chard ¢)

{
requires len(sel f".data) — sel f°.fpointer >= len(toByte(c’));
modifies sel f. fpointer, c;
ensures result = ~error(sel f')A
toByte(c') = read(sel f*,len(toByte(c™)), sel f. fpointer)A
self'. fpointer = sel f*. fpointer + len(toByte(c’));
}
RWBoolean Read(char* i, size_t count)
{
requires len(sel f".data) — sel f*. fpointer >=
count * len(loByte((*i)));
modifies sel f. fpointer, *i;
//Incomplete postcondition
/*
ensures result = ~error(sel f'}A
(Vind : Int((ind >= OA
ind <= count) => (toByte((*(i + ind))') =
read(sel f*,len(toByte({*i)")), self". fpointer4
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ind » len(toByte((*i)"))).reddata)A
sel f'.fpointer = sel f". fpointer + cvunt;
*
/
//Corrected postcondition
ensures result = ~error(sel f')A
(Vind : Int(ifind >= 0A
ind <= count then toByte((*(i + ind))') =
read(self",len(toByte((»i)")), self".fpointer+
ind * len(toByte((*t)"))).reddata
else *(i+ ind) == *(i + ind))A
sel f'.fpointer = sel f . fpointer + count;

}
RWBoolean SeckTo(long offset)
{
modifies sel f. fpointer;
ensures restlt = (sel f'.fpointer = of fset);
)
RWBoolean SeekToBegin()
{
modifics sel f. fpointer;
ensures result = (sel f'.fpointer = 1);
}
RWBoolean SeekTolind()
{
modifies sel f. fpointer;
ensures result = (sel f'.fpointer = len(sel [ .data));
}
RWBoolean Write(char i)
{

requiresdf : Filc (sel [ = open(f W RIT E)WV
sel = open(f,READ WRITE));
modifies sel f;
ensures result = —~error(sel f')A
sel f' = write(sel f",toByte(1), sel f". fpointer);
}
RWBoolean Write(char* i, size_t count)
{
requires maz Indez(i)+ 1 >= countA
3f : File (self* = open(f,WRITE)v
sel f~ = open(f, READ WRITE));
modifies sel f;
ensures result = ~error(sel f')A
Vind : Int(ind >= 0 A ind <= count
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AtoByte((#(i + ind))’) =
read(sel f',len(toByte((#i)")), sel f*.fpointer+
ind » len(tloByte((*1)")).reddata);

}

RWBoolean Exists(const char* filename )

{
ensures 3f : File result = (filename = f.nameA
file = create( filename, READ W RITEY));

Figure 12: File class interface specification RWFile.lcc

File : trait

includes Scquence( Bytc, Data)
File tuple of name : Name, data : Data, mode : MMODE
Openlile tuple of file : File, data : Data, mode : MODE, fpointer : Int
AMODL enumeration of 0, READ, WRITE, READ_WRITL
readeffect tuple of ofilc : OpenFile, reddata : Data
introduces

creale : Name MODFE — File

open : File, MODE — OpenFile

flush : OpenFile — OpenFale

error : OpenFile — Bool

read . OpenFile, Int, Int — readeffect

write : OpenkFile, Data, Int — OpenFile

asserts

V [ File.opf,opf, : Openkile,

mode, e : MODE', nm : Name,i,p: Int,dat : Dala
create(nm,m) == [nm, empty, m)
open(f,READ) == [f, f.data, READ, 1]
open(f,READ_WRITFE) == (f, f.data, READ_WRITE,1]
open(f, WRITE) == [f, f.data, READ_WRITE,len(f.data))
% (flush(opf).file.data=opf.data;
% after an incompleteness was detected
% the previous assertion was changed as follows
flush(opf) = [[opf.file.name, opf .data, opf . file.mode), opf .data,
opf .mode, opf . fpointer])
read(opf,i,p).reddata == prefizr(removePrefiz(opf .data,p), ?)
read(opf,i,p).ofile == [opf.file, opf.data, cpf.mode, p + i
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write(opf,dat, p) == [opf.file, prefir(opf .data,p) || dat ||
remove Prefiz( opf .data,
p + len(dat)), opf.mode, p + len(dat))
implies V opf, opf, : OpenFile, dat : Data,i,p: Int
rewd(wrile(opf , dat,p), len(dat), p).reddata == dat

converts create, open
exempting V nm : Name,
[ : File,dat : Data,p: Intwrite(open(f, READ), dat, p),
open{ create(nm, READ), WRITE), open{ create(nm, READ), READ_WRITE),
create(nm,0), open(f,0)

Figure 13: File.ls] trait

CompFileConst : trait
includes File( RWFile for Openlile, String for Namc, String for
MODE), Types(character),
Pointer( Obj_character, character, String)
introduces
create’ : String, String — File
open' : File, String — RW File
asserts
Y filename : String, mode : Siring, f : File,dat : Daia,p : Int
create’( filcname , mode ) == [filcname, cimpty, mode)
open’(f, READ) == [f. f.data, READ, 1]
open’(f, READ_WRITLE) == [f, f.data, READ WRITL, 1]
open’(f, WRITF) == (f, f.data, READ_WRITE, len( f.data))
write (open'(f, READ), dat,p) == wrile(open(f, READ), dat, p)
open’(ercate( filename, READ). WRITE) ==
open(creale(file name, READ), WRITE)
open(create’(filename, READ), WRITE) ==
open( create(filename, READ), WRITE)
open’(create(filename, READ), READ_WRITE) ==
open( create(filename, READ), READ_WRITE)
open(create'(filename, READ), READ_WRITE) ==
open(create(filename, READ), READ WRITE)
open’(£,0) == open(f,0)
implies
V filename : String, mode : String, f : File,
opf, opf,, self, self,, self’, self1’ : RWFile
open( f, mode) = open'( f, mode)

create( filename, mode) == create'(filename, modc)
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(( if (mode = 0) then

( if (f.name = filenameA

opf = open(f,READ_WRITE)) then self’ = opf
else

self' = open(create(filename, READ_WRITE), READ_WRITFE))
else

self’ = open{create(filename, mode), mode))A

( if (mode = 0) then

(if (f.name = filenameA

opf = open(f, READ_.WRITE)) then self!’ = opf
else

selfl' = open(create(filename, READ_WRITE), READ_WRITFE))

else
selfl' = open(create(filename, mode), mode))) = (self’ = seifl’)

Figure 14: Completeness proof obligation trait CompFileConst.ls]

CompFile Dcst : trait
includes File( RWFile for OpenFile, String for Namc. String for
MODE), Types(character),
Pointer(Obj_character, character, String)
introduces
flush’ : RWFile - RWFile
asseris
Y opf,opf,, self,self |, self’, self1’ : RWFile
flush’(opf ) = [[opf -file.name, opf .data, opf .file.mode], opf .data,
opf.modc, opf .fpointer]
implies
Y opf,opf,, self,sclfy, self’, self1":
RWFile

flush(self')y = flush’(self’)
(self’ = flush(self) A self1’ = flush(self)) = self’ = self1’

Figure 15: Completeness proof obligations trait CompFileDest.lsl

CompFileError : trait
includes File( RWFile for OpenFile, String for Name, String for
MODE), Types(character),
Pointer( Obj_character , character, String)
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introduces .
error’ : RWFile — Bool
implies
Y opf : RWFile
error'(opf) = error(opf)

Figure 16: Completeness proof obligations trait CompFileError.1sl

CompFile FEOF : trait
includes File(RWFile for OpenFile, String for Name, String for
MODE), Types(character),
Pointer(Obj.character, character, String)
introduces
len’ : Data — Int
asserts
VY p: Int,s,38,.d,dat : Data,
e : Byte,t,t; : character, opf : RWFile, f : Filc
open(f, WRITE) == [f, f.data, READ_WRITL,
len'(f.data)]
write(opf, dat, p) == [opf .file,
prefiz(opf .data. p) || dat || re move Prefiz{opf .data.
p + len'(dat)), opf.mode,p + len'(dut)]
tsPrefiz(s,, s7) == 81 = prefir( sz . len'(s)))
len'(empty) ==
len’(d b €) == len'(d) + 1
len’(toByte(1)) = len'(toByte(ty))

implies
VY q: Data
len'(¢) = len(q)

Figure 17: Completeness proof obligations trait CompFileEOF .lIs]

CompFileEzists : trait
includes File(RWFile for OpenFile, String for Name, String for
MODE), Types(character),
Pointer(Obj_character, character, String)
introduces
create’ : String, String — File
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open' : File, String — RWFile
asserts
V filename : String, mode : String, f : File,dat : Data,p : Int

create'(filename, mode) == [filename, empty, mode]
open'(fy, READ) == [f, f.data, READ, 1]
open!(f, READ_WRITE) == [f, f.data, READ_WRITE, 1]
open'(f, WRITE) == |f, [.data, READ_WRITE, len( f.data))
write(open'(f, READ), dat,p) ==
write(open(f, READ), dat, p)
open’(create( filename, READ), WRITE) ==
open(create( filename, READ), WRITE)
open(create'(filename, READ), WRITE) ==
open(create(filename, READ), WRITE)
open'(create(filrname, READ). RE*D_WRITE) ==
open(crente(filcname, READ), READ_WRITE)
open(create’(filename, READ), READ _WRITE) ==
open{crealte(filename, READ). READ_WRITE)

implies

V filename : String. moude : String. f : File.

opf.opf,,self, self |, self’, self1’ : RWFile
oper( f.mode ) = open'( f. mode )
crealc(filename. modc) == create'( filename, mode)

Figure 18: Completeness proof obligations trait CompFileExists.lsl

CompFilcFlush : trait
includes File( RWFile for OpenFile, String for Name. String for
MODE), Typcs(character),
Pointer(Oby_charac ier, character, String)
introduces
flush’ : RWhile — RWFilc
asserts
Y opf : RWFile
flush(opf) = [[opf.file.name, opf .data, opj . file.mode], opf .data,
opf.mode, opf .fpointer]
implies
V opf : RWFile
flush'(opf') == flush(opf)

Figure 19: Completeness proof obligations trait CompFileFlush.ls!

CompFileisValid : trait
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includes File(RWFile for OpenFile, String for Nume, String for
MODE), Types(character),
Point.:r( Obj _character, character, Siring)
introduces
open’ : File, String — RWTFile
asserts
V flename : String, mode : String, f : Filc,dat : Data,p : Int
open'(f,READ) == [f, f.data, REA D, 1]
open’(f,READ_WRITE) == [f, f.data, READ_WRITE, 1]
open'(f, WRITE) == [f, f.data, READ_WRITE, len( f.data))
write(open’(f, READ), dat, p) == write(open(f, READ), dat, p)
open’(creaie(filename, READ), WRITE) ==
open(create(filename, READ), WRITE)
open'(crealc(filename, READ), READ_WRITE) ==
open(create(filkname, READ), READ _WRITE)
implies
Y mode : String., f : File
open( f, mode) = open'( f. mode)

Figure 20: Completeness proof obligations trait ComplileisValid.lsl

ComplFile Dest : trait
includes File(RWFile for OpenFilc, String for Name, String for
MODE), Types(character),
Pointer(Oby_character, charactcr. String)
introduces
flush’ : RWFile - RWFilc
asserts
V opf, opf,, self, self . self’, self1’ : RWTde
fush'(opf) = [[opf filc.name, opf .dat, opf . filc.mode), opf .data,
opf.modc, opf .fpointer)
implies
Y opf, opf, self, self,, self’, self1’:
RWFile

flush{self’') = flush'(self’)
(self' = flush(self ) A selft’ = flush(self)) = self’ = self1’

Figure 21: Completeness proof obligations trait CompFileDest.lsl

CompFileRead, : trait
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assumes File( RWFile for OpenFile, String for Name, String for
MODE), Types(character),
Pointer(Obj_.character, character, String)
introduces
% requires
len’ : Data — Int
toidyte’ : character — Dala
% ensures
read’ : RWFile, Int, Int — readeffect
asserts
character partitioned by toByte’
v
81,82,d,q: Data,e, e, : Byte, 1,1, : character,dat : Data, self, opf :
RWFilc,p,i: Int, f: File
% requires
open(f, WRITE) == [f, f.data. READ_WRITF..
len/( f.data))
read’(opf .1, p).reddata ==
prefir(remove Prefir( opf .data. p), 1)
rcad’(opf , i, p).ofile —= [opf .filc.
opf .data, opf .mode,p + i)
writc (opf, dal. p) == [opf .file,
prefiz(opf.data, p) || dat || remove Prefiz(opf .data,
p + len'(dat)). opf.mode, p + len'(dat)]
isPrefir(s).sp) == s1 = prefir(sz,len’(s))
len'(empty) == 0
len'(d & e) == len'(d) + 1
toType(toBytc' (1)) ==t
toByte'(toType(dat)) == dat
len'(toByte'(t)) = len’(loByte'(1,))

((len(sclf .data) ~ self .fpointer) > len(toByte(t))) =
(read'(self, i, p) = read(self ,i,p))

implies
v
81,52,d,q: Data,-, e, : Byte,t,1,t',t1': character, dat : Data, self , self’, opf :
RWFile,p,1: Int
(read’(self, 1, p) = read(self i, p))
toByte'(t) = toByte(t)
len'(q) = len(q)
% determinism
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{

(toByte(t') = read(self, len(toByte(t)), self .fpointer).reddataA
self’.fpointer = self .fpointer + len{toByte(t))

)

A

(toByte(t1") = read(self , len(toByte(t)), self . fpointcr).reddutan
self'. fpointer = self .fpointer + len(toByte(t))

)

)=

(t'=11")

Figure 22: Completeness proof obligations trait CompFileReadl.lsl

CompFile Read,, : trait
assumes File(RW ile for OpenkFilc, String for Name, String for
MODL). Types(character),
Pointer(character. character, String)
introduces
% 1equires
len' : Data — Int
toByte' : character — Data
% ensures
read’ : RWFile, Int, Int — rcad ffiet
asserts
character partitioned by toBytc'
v
S1,82,d,q: Dala.e ey : Byle,t,ty : character,dat : Dala, self,opf :
RWFile,p, i, count : Int, f : File,
ptr : String
% requires
open(f, WRITE) == [f, f.data, READ_WRITE,
len'(f.data)) -
read’(opf, 1, p).reddata ==
prefiz(removePrefiz(opf.data,p), )
read’(opf, i, p).ofile == [opf file,
opf .data, opf.mode,p + i
write(opf, dat, p) == [opf .file,
prefiz(opf .data,p) || dat || remove Prefiz(opf .data,
p + len’(dat)), opf .mode, p + len’(dat)]
isPrefiz(s;, s2) == 81 = prefiz(sz, len’(s;))
len'(empty) == 0
len'(d F €) == len'(d) + 1
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toType(toByte'(t)) ==t
toByte'(loType(dat)) == dat
ler'’ toByte'(t)) = len'(toByte'(11))

((len(self .data) — self .fpointer) > (count * len(toByte(xptr)))) =
(read’(self ,i,p) = read(self,i,p))

implies

v

s1,82,d,q: Data,e, e, : Byte,t,t;,t',t1’ : character,dat : Data, self, self’, self |,
self1’, opf : RWFile,p, j, count,ind : Int,i,i,,i',il’, ptr,

pir, : String

(read’(self, j, p) = read(self, j, p))

toByteé'(t) = toBylc(t)

len'(q) = len(q)

% determinism

(

(( if ind > 0 A ind < count then toByte(*(i + ind)) =

read( self, len(toByte(*i)), sclf.fpointer + (ind * len(toByte(«1)))).reddata
else *(i + ind) = #(i + ind)) A self’.fpointer = self .fpointer + count)A

(( if ind > 0 A ind < count then toByte(*(i + ind)) =

rcad(sclf, len(toByte(*1)), self.fpointer + (ind * len(toByte(*7)))).reddatu
else (i + ind) = x(i + ind)) A selfl’ fpointer = self.fpointer + count)

) = self fpointer = selfl’.fpointer

(

(( if ind > 0 A ind < count then toByte(*(i + ind)) =

read( self, len(toByte(*1)), self .fpointer + (ind » len(toByte(*?)))).reddata
else *(i + ind) = (i + ind)) A sclf'.fpointer = sclf .fpointer + count)A

(( if ind 2 0 A ind < count then toByte(*(i; + ind)) =

read( self, len(toByte(*1)), self .fpointer + (ind * len(loByte(x1)))).reddata
else x(¢; + ind) = *(i + ind)) A self'.fpointer = self fpointer 4 count)

) = (*(i+ ind) = *(i; + ind))

Figure 23: Completeness proof obligations trait CompFileRead2.1s

77



CompFileWrite, : trait

assumes File(RWFile for OpenFile, String for Name, String for
MODE), Types(character),
Pointer(character, character, String)

introduces
% requires
open' : Filc, String — I..VFile
write’ : RWFile, Data, I .t - RWFile

% ensures

write' : RWFile, Int, Int - RWFile

toByte' : character — Data

asserts

YV i,7.n: Int, p: String,
S File self,opf, opf, : RWFile, modc,m : String, nm : String, dat : Data,
t.t : character,
¢: Data

% requircs
open'(f, READ) == [f, f.dala, READ, 1]
open'(fy READ_WRITE) == [f, f.data, READ_WRITE, 1]
opcn’(f, WRITE) == [f, f.data, READ_WRITE, len( f.data))
open’(create(nm, READ), WRITE) == open(creale(nm, READ), WRITL)
open’(create(nm, READ), READ_WRITE') == open(creatc(nm,
READ),READ _WRITE)
% ensures
~(self = open(f, WIITE) V self = open(f, READ_WRITLE)) =
write(self,c,i) = write(self, ¢, i)
—(self = open(f, WRITE) V self = open(f, READ_WRITE)) = toBytc'(1) =
loByte(t)
write’(opf,
dat, 1) == |opf.file, prefiz(opf .data, i) || dat || remove Prefiz(opf.data,
t + len(dat)), opf.mode, i + len(dat)]

toType(toByte'(t)) ==t
toByte'(toType(dat)) == dat
len(toByte'(t)) = len(toByte'(1,))

implies

V¥ p,i,i',j : String, f : File,m : String, c : Data, opf : RWFile,

t: character,
ind, count : Int, self, self’, selft’ : RWFile, result : Bool
% requires
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oper’(f,m) == open(f, m)

% ensures

write’(opf, ¢, count) = write(opf, ¢, count)
toByte(t) = toByte(t)

% determinism

((self’ = write(self, toByle(xi),
self .fpointer) A result)

A

(self1’ = write(self , toByte(*1),
self .fpointer) A result)) =
(self’ = selft’)

Figure 24: Completeness proof obligations trait CompFileWritel.lsl

Compl il Write, : trait
% assumes File, Types(0bj.S), Queue(E, C), Pointer(0bj_S,S,Ptr)
assumes File ( RWFile for OpenFile. String [or Naime, String for
MODE), Types(character),
Pointer(character. character, String)
introduces
% requires
mazinder' : String — Int
open' 2 File, String — RW File

% ensures

read’ : RWFilc, Ini, Int — readeffcet

len' @ Data — Int

toByte' : character — Data

asserts

Vi,j,n: Int,p: String,
f : File, self , opf, opf, : RWFile, mode, m : String,
nm : String, dat : Data,t,t, : character,
c,d: Dala,e : Byte

% requires

mazIndez!(p) == mazIndez(p.locs) — p.idz

legallndez(p,i) == (minindez(p) < i) A (i £ mazIndez’(p))
% ensures
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' (read'(sell,

toByte(t))

len(c))

~(self = open(f, WRITE) V self = open(f, READ_WRITFE)) =
i,j) = read(self i, j))

~(self = open(f, WRITE) V self = open(f, READ_WRITE)) = (toByte'(t) =

~(self = open(f, WRITE) V self = open(f, READ_WRITL)) => (len(e) =

open’(f, READ) == [f, f.data, READ, 1]
open’(f, READ_WRITE) == [f, f.data, READ_WRITE, 1)
open'(f, WRITE) == [f, f.data, READ_WRITE, len({.data)]
open’(create(nn, READ), WRITE) == open(create(nm, READ), WRII'L)
open’{create(nm,READ), READ_WRITE) == open(create(nm,
READ),READ_WRITE)
open’(f,0) == open(f,0)
read’(opf ,i,7).reddata == prefiz(remove Prefir(opf.data, 3),1)
read'(opf ,i,7).ofile == [opf.file,
opf.data, opf.mode, j + i
len'(empty) ==
len'(dF e) == len'(d) + 1
toType(toByte'(t)) ==
toByte'(toType(dat)) == dat
len'(toByte' (1)) = len'(toByte'(1)))

implies
Y p,i,1',j: String, f : File,m : String,c: Data,opf : RWFile,t : character,

ind, count : Int, self, self’, sclft’ : RWFile, result : Bool
% requires

mazIndez'(p) == mazindez(p)
open’(f, m) == open(f,m)
% ensures

read’(opf , ind, count) = read(opf, ind, count)

len'(c) = len(c)

toByte(t) = toByte(t)

% determinism

((ind > 0 A ind < countA

toByte(x(i + ind)) = read(self’, len(toByte(+i)),

self .fpointer + (ind * len(toByte(+i)))).reddata A result)
A
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(ind > 0 A ind < countA .

toByte(*(i + ind)) = read(self1’, len(toByte(*i)),

eelf .fpointer + (ind * len(toByte(i)))).reddata A result)) =>
(self' = selft’)

Figure 25: Completeness proof obligations trait CompFileWrite2.1sl

6.2 Semi-decidability of the first order logic the-
ories and incompleteness

First order logic is semi-decidable We can prove that the first order logic statement
is indeed a consequence of a given theory. In general, we can not prove that some
statement is not among the consequences of a given theory.

In the light of the completeness check methodology, addressed in this thesis, in-
completeness of specification can not be proved due to the semi-decidability of the
first order logic. Nevertheless, the methodology provides algorithmic steps to prove
the completeness of Larch/C++ interface specifications. Unsuccessful attempts to
prove completeness of a specification should resort to the analysis of the proof to

conclude the incompleteness, localize it and rectify the problen.

6.2.1 Incompleteness detection and localization strategy

The common strategies of proving theorems us.ng Larch Prover can be applied to
prove completeness [GG93]. On the other hand, there are only certain kinds of first
order logic formulas used in the completeness verification theorems. As discussed in
the previous chapter, we experience particular proof methods more often than others.
In addition, LP provides excessive information about the proof status. These allow
us to identify and localize the cause of a proof failure. Unsuccessful attempts to prove
a conjecture lead to the assumption that the conjecture is not a theorem.

If the conjecture was intended to prove totality of an LSL function, then we have

to analyze the corresponding assertions in the LSL theory. Such analysis usually
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identifies either a trace for proving the conjecture or incompleteness of the assertions
stated. In the latter case an incompleteness is localized to the particular LSL term
and we have to complete the set of equations stating the term behavior.

If we failed to prove a conjecture concerning determinism of a variable modifi-
cation by the class member-function, then the corresponding postcondition must be
examined. Thus, again, we know the location of a possible incompleteness. The anal-
ysis of the postcondition formula usually provides the trace to prove the conjecture
or identifies that therc are cases when the outcome of the formula is not defined. For
example, if a postcondition formula is:

A => B(v), where v is a variable modified by the function, then the correction would
be to complete the formula with the case when A is FALSE. Possible solution is to
modify the formula:

if A then B(var) else C.

6.2.2 Completeness evaluation of abstract base classes

Next, we consider pure abstract basc classes. An abstract base class is a class that
i:as only pure virtual functions and, therefore, can not be instantiated into C++ ob-
jects. By its nature, an abstract base class can have only paruially specified behavior.
Indeed, it consists of the virtual functions which are to be bound to the functions
in the subclasses, having completely defined behavior. As a result, abstract base
classes do not need to have a completely specified behavior. Virtual function must
have complete specificalion only in the classes where the actual function call is to be
resolved. If this is the case, the virtual function must undergo the same completeness
verification as any other non virtual function.

Private functions cannot be used outside the class wher~ they are defined. There-
fore, it does not make sense to include them into specification aimed to facilitate
black box reuse. Public, friends, and protected functions can be used by other classes,
though there are some limitations on such a use for protected and friends functions
(former can be called by subclasses of the class and the latter can be called by spe-
cially declared friend classes). Thus, specifications of these functions must satisfy the

completeness criteria outlined in this thesis.
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6.2.3 Incompleteness of exceptional conditions in specifica-
tion

Some classes have functions to determine whether an exception has occured since the
object was created. For example, if an object is of a container type, there could be an
exception condition when a function inscrting an element into the container is called
and system runs out of memnory. Exception is an event incurred by the environmental
circumstances rather than in agreement with the logic of a class behavior (that is
why it is an exception and not a class behavioral feature). Therefore, the nature of
exceptions implies incompleteness of their specification in a framework of the class

specified.

6.2.4 Completeness methodology and inheritance

(++ class can have an inheritance tree of its base classes. If this is the case, com-

pleteness of the class can be checked recursively :

e Functions redefined in the class interface specification must have complete spec-
ificrtion. That is, the completeness criteria must be satisfied for specifications
of the subsct of member-functions, consisting of virtual functions redefined in

the class.

e The functions that are newly defined in the class, must satisfy the completeness

verification unless the class is an abstract one.
e Nou abstract base classes must have complete specification.

Notice, that this approach does not demand pure virtual functions to have complete
specification.

If class B is a subtype of class A and B is complete then A is also complete.
No separate verification of completeness is necessary. If B is a general inherited
subclass of A (not subtype inheritance), then it is sufficient to apply the completeness
verification methodology to those functions of A that do not conform to subtype

property.
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Chapter 7

Completeness Verification Tool

In previous chapters we developed a methodology to verify the completeness of formal
specification intended for a black-box reuse and identified the algorithm to apply the
methodology semi-automatically with the help of Larch Theorem Prover. Analysis of
the possible incompleteness in specification based on the result of applying Complete
ness Verification Algorithm was addressed as well. 1u this chapter we consider features
and design issues of a tool which would provide convenient environment to work with

Larch/C++ specifications, facilitating their completeness verification process.

7.1 Feature analysis

The process of completeness verification can be viewed as three consecutive activitics:

I. A number of the first order logic theories with theorems are prepared based on

the Larch/C++ formal specification.

2. Each of the theories serves as an input for Larch Theorem Prover with the goal

to prove the theorems stated.

3. Anincompletenessidentified in the second .cep, if any, is analyzed and necessary

corrections to the specification are made to remove an incompleteness detected.

The first step takes as an input a Larch/C+4+ specification, processes it and

produces LSL traits with theorems. This activity can be automated completely based
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on the theory developed in.this thesis which then evolved into the Completeness
Verification Algorithm. The algorithm is computationally feasible. It is applied to
build LSL traits with theorems after LSL signatures are parsed from the expressions
in the member-functions of the interface specification. The LSL traits built by the
algorithm will be a source for the input into the Larch Theorem Prover in order to
prove conjectures stated in the traits.

Once LSL traits are obtained, they have to be converted to the LP format, and
user will guide LP through the theorem proving. Theorem proving itself can be only
semi-automated. Since there ere as many LP inputs as many functions are in the
analyzed specification, the task of the tool would be to sense when all the theorcms
of the current trait have been proven and to retrieve the next trait, clean-up LP
and restart it with the new input. In addition, completeness must be concluded
when all the LP inputs are successfully processed. Besides, the tool has to have
an interface to intcract with a user and display traits to be input into LP, zo that
user can analyze them and possibly process only a subset of all the traits or only a
subset of theorems. Such selectiveness is useful because generally. there are many
identical theorems generated from the different member-functions of a specification
and excluding repetitions would reduce the amount of work required to verify the
completeness. Unfortunately. automated analysis of the theorem repetitions can not
be achieved due to the fact that an identity of the theories where respective theorems
appear has to be established as well and the latter is a semi-decidable task, involving
the comparison of the consequence closures of two theories and logical analysis versa
algorithmic steps.

If a theorem proving attempt is not successful, the tool should classify the prob-
lem as discussed in 6.2.1. Thus, it will give a hint to the user with suggestions on
location(s) of a possible incompleteness. The tool will provide popped-up multiple
window editor loaded with the interface functions or traits which caused a possible
incompleteness. After the editor was used to make corrections, the tool restarts LP

with the corrected input.
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Larch/C++ LSL bpecificatiorn
specification THEOREM ‘Lraits LP to correct LARCH
| BUILDER MANAGER EDITOR
\ v g Y \
Specification Corrected
to correct spccification ‘

Figure 26: Completeness Verification Tool

7.2 Subsystem decomposition

We decompose the Completeness Verification Tool architecture into subsystems based
on the feature analysis presented in the previous section. The subsystems are shown
in Figure 20.

Theorem builder subsystem is responsible for constructing LSL traits containing
theorems from a given Larch/C++ specification. LSL traits and theorems ave built
as identified in the Completeness verification algorithin presented in 4.2. Larch/('+ 4
specification must undergo syntactic and type checking prior to being analyzed for
completeness. The former activities are incorporated in the Theorem Builder subsys
tem as well. This means that Theorem Builder subsystem uses Larch/C++ syntax
checker and type checker. X-Motif interface can be built to provide a graphical com-
munication with the user. Interactions with the user are required to inform that L.P
input traits are ready so that the user can direct the system to start LP to process
the traits. If errors are detecte:l during syntax or type checking in the specification
then the user is informed and may activate editing facilities of the system to correct
detected errors. Editing of Larch/C++ specifications is provided by the Larch Editor
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subsystem.

LP Manager subsystem manages LP processing of the theorems. This subsystem

respons, yilities include:

o Produce LP files from the LSL trait output by the Trait Builder subsysten.
This might be done using LP file generating facilities which are included into

the standard LP package.
e Start Larch Theorem Prover.

¢ Clean-up LP and load next LP input file when the current LP file processing,

has been completed.

¢ Interact with the user to inform him on the proof status. This includes user
notification when all the conjectures from the curtent file have been proven as
well as interrogating whether to continue with the next LP input file. User

directives are required when a proof altempt is not successful as well:

1. Abort processing of the current file.

2. Edit trait(s) and Larch/C++ member-functions, involved in the current
thcorem when user decides that analysis and possibly correction of the
specification is required. Larch Editor subsystem services will be used in

this case.

3. Notify user when all of the LP input files have been processed successfully
Y P F A

and, therefore, the specification is proven to be complete.

Larch Editor subsystem provides convenient editing environment for Larch/C++
specifications. This includes the ability to identify member function or/and LSL
trait(s) for a given LP input file and a theorem in it. This will provide convenience to
the user when LP manager subsystem outputs an LP file with a conjecture for which
proof attempt(s) were not successful. Incompleteness localization strategy identified
in 6.2.1 of this thesis is used to analyze the cause of a proof failure. This analysis

might lead to localization of the possible incompleteness to one of the following:
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e Formula(s) in the interface specification
e Term signature in the LSL trait

There must be some meta-data available to map a given LP file and conjecture in it
into the member function and LSL trait(s) involved into producing of the conjecture.
Larch Editor subsystem is used also when syntactic or type mismatch problems were
detected by the Trait Builder subsystem and the file needs to be edited to make the
necessary corrections. The subsystem’s user interface should provide communication
with the user to hint at possible location of incompleteness. to manage specification
files, to pass corrected specification to the Theorem Luilder subsystem when file

editing is completed.
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Chapter 8

Conclusion

8.1 Summary

Object-Oriented class reuse can be done in a black Lox fashion only if a reuser is given
precise information about the interface behavior of a class. In order to expres, the
behavior of a class the trace assertion approach was used. We identified that the ap-
propriate vehicle to deliver the knowledge of a class behavior is its formal specification.
As such, formal specification must be complete to provide the intended information
in a full, exhaustive manner. Since the prime concern of this thesis is software written
in C++ programmin language, we used Larch/C4+ formal specification language
to write specifications for C++ class interfaces.

Though Larch/C++ was used before as a rescarch level specification langnage, no
work has been done to specify commercial C++ libraries. We pioneered this work by
writing specification for classes from Rogue Wave C++ library. During the course of
this work experience of writing Larch/C++ specifications was gained. We identificd
many general solutions and methods for specifying C++ specific aspects. The spec-
ifications written by our research group are summarized in the report [ACCUA94]
submitted to Bell Northern Research.

In this thesis we focused on studying the completeness of formal specifications.
We identified that general definition of completeness can not be applied in practice
due to the semi-decidability of the first-order logic. Instead, we accepted an ad hoc

completeness criteria which suits most of the specifications of C++ classes intended

89



for a black-box reuse. The core of this thesis is devoted to finding a solution to verify
completeness of Larch/C++ specifications.

Because our aim was to develop a feasible algorithm for completeness verifica-
tion, we derived sufficient conditions for a specification to be complete, which are
bound to the properties of the first order logic theories. We proved sufficiency of the
stated conditions to ensure that the truth of the initial completeness criteria is im-
plied. These sufficient conditions formed the Completeness Verification Methodology.
Though the Completeness Verification Methodology identified what has to be done
to ensure completeness, it does not state how to achieve these goals.

Each of the items in the Completeness Verification Methodology was analyzed in
order to find practical solutions to achieve completeness verification for Larch/C++
specifications. These solutions were successfully found and summarized into the Com-
pleteness Verification Algorithm. Completeness Verification Algorithm provides steps
to form first order logic assertions and theorems. The latter must be proved to con-
clude completeness of the specification.

Larch Theorem Prover, an automatic proof assistant developed for Larch Shared
Language was identified as a suitable tool for proving theorems stated in Larch traits.
We provided detailed examples of forming completeness verification theories and prov-
ing theorems stated there using LP. We also identified guidelines to prove methods
that are to be applied to carry out the completeness verification. We identified how to
localize incompleteness detected as a result of an unsuccessful proof attempt, followed
hy the analysis of the cases of incompleteness and solutions for making specification
complete as well as the cases when completeness can not be achieved. Finally, this
thesis provides the algorithm for completeness verification of specification of C-++
classes, having an inheritance tree as well as classes containing virtual functions and

exceptions.

8.2 Future work

Larch/C++ specification language is not a finished software tool. Though its major

constructs are stable, designers of the language keep making changes to the syntax
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and semantics of Larch/C++, increasing its expressive power and making it to be
more suitabie for specifying sophisticated structure and behavior of C++4 objects.
Completeness verification algorithm may require some adjustments and maintenance
while new Larch/C++ features are introduced. For example, a present consideration
of the authors of Larch/C+4+ is to allow multiple requires-ensures clause within the
same member-function to facilitate sub-typing of inheritance checking. Should this
construct be accepted. a slight modification of the Completeness Verification Algo-
rithm is needed. That is, instead of considering every member-function specification,
every pair of requires-ensures clausec must be considered. Nevertheless, the theo-
retical value of the Completeness Verification Methodology and Algorithm will not
be decrzased because the core algorithm of the developed in this thesis is a general
solution for a family of model-oriented specifications rather than for any particular
language featurc or even a particular specification language.

The approach identifiecd in this thesis can be adapted for the development of a
completeness verification methodology for other module specification languages, for
instance. VDM and Z. The Completeness Verification Methodology is mostly to be
valid for these languages as stated for Larch/C++. The Completeness Verification
Algorithm will be very similar to that for Larch/C++ except that it is likely to be
simpler due to the use of the predefined types in VDM and Z. Another reason to
expect a more simple completeness verification is the fact that Z and VDM do not
have object-oriented features.

Theory provided by this thesis is a foundation for a tool which will provide con-
venient environment for Larch/C++ specification development and its completeness
verification. Since the area of application of formal specifications keeps growing, the
tool could incorporate more features than is outlined in this thesis. There could
be facilities for using formal specifications for module’s testing and using theorem
prover to establish some other behavioral properties of a specification, not just its
completeness.

It is important that the tool built from this methodology is subjected to an ex-
tensive testing. The plan is to use the Larch/C++ specifications currently being
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developed by the new members of our research group as a testbed for the complete-
ness verification tool. Moreover, the completeness verification tool and the black-box
testing tool [Cel95] will be combined and tried in an industrial reuse environment of
C++ class library[rogue93].

Another long term goal here is to investigate the applicability and effectiveness of

our work in the context of reuse of C++ frameworks.
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Appendices

Proofs for completeness verifications of RWFile C++ class from Rogue Wave class

library

Larch Proter (24 January 1994) logging on 20 November 1994 12:38:64 to
‘/mnt/kbs1/BBRS/uman/thesis/lp/file/CompFileConst 1plog’.

LP2: declare variables
Please enter variable declarations, terminated with a ‘..’ line, or ‘?’ for
help:

filenama' String

mode String

f: File

opf: RWFile

opfi RWFile

self: RWFile

selfi RWFile

self’: RWFile

self1'. R¥WFile

LPS: prove

Please enter a conjecture to prove, terminated wath a ‘..' line, or ‘?’ for
help.
open(f, mode) = open*(f, mode)

The current conjecture is StringTheorem 4.
The equatfions cannot be ordered using the current orderang.

Conjecturae StringTheorem 4 open(f, mode) == open’'(f, mode)
Proof susperded

LP7: display induction File
Induction rules:

File.1: File generated by __mixfix1

File.9: RWFile generated by ..mixfix2

File.19: String gencrated by 0:->String, READ:~>String, WRITE:->String,
READ_WRITE

File.29: readeffect generated by __mixfix3

LP8: resume by induction on mode using File.19

Conjecture StringTheorem.4: Subgoals for proof by induction on ‘mode’
Basis subgoals:
StringTheorem.4.1: open(f, O) == open’(f, 0)
StringTheoram.4.2: open(f, READ) == open’(f, READ)
StringThaorem.4.3: open(f, WRITE) == open’(f, WRITE)
StringTheorem.4.4: open(f, READ_WRITE) == open’(f, READ_WRITE)
The induction step is vacuous.

The current conjecture is subgoal StringTheorem.4.1.
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Subgoal StringTheorem.4.1: open(f, O) == open’(f, O) .
[] Proved by normalization.

The current conjecture is subgoal StringTheorem.4.2.

Subgoal StringTheorem.4.2: open(f, READ) == open’(f, READ)
[] Proved by normalization.

The current conjecture is subgoal StringTheorem.4.3.

Subgoal StringTheorem.4.3. open(f, WRITE) == open’(f, WRITE)
[] Proved by normalization.

The current conjecture is subgoal StringTheorem.4 4.

Subgoal StringTheorem.4 4: cpen(f, READ_WRITE) == open’'(f, READ_WRITE)
[] Provec by normalazation.

The current conjecture is StringTheorem 4.

Conjecture StringTheoren 4. open{(f, mode) == open’(f, mode)
[] Proved by indurtion on ‘mode’.

LP9- prove
Please enter a conjecture to prove, terminated with a ‘..’ line, or ‘? for
help

create(filename, mode) == create’(filename, mode)

The current con)ecture 1s StringTheorem.5

Conjecture StringTheorem 5. create(filename, mode) %= create’'(filename, mode)
[] Proved by normalazation.

LP34. prove
Please enter a conjectuvre to prove, terminated with a ‘..’ lane, or ‘?' for
help

((1f(mode = O String, if{._sel7_name(f) = filename & opf = open(f,
READ_WRITE), self’ = opf, self’ = open(create(filename, READ_WRITE),
READ_WRITE)), self’ = open(creats(filename, mode), mode))) & (if(mode =
0.Strang, 1f(__sel7 _name(f) = filename & opf = open(f, READ_WRITE), selfi’
= opf, selfl' = open(create(filename, READ_WRITE), READ_WRITE)), selfl’ =
open(create(filename, mode), mode)))) => self’ = selfl’

The current conjecture is StringTheorem.8.
The equations cannot be ordered using the current ordering.

Conjecture StringTheorem.8:
(i1(0 = mode,
it(Copen(f, READ_WRITE) = opf) & (__sel7_name(f) = filename),
opf = self’,
open(create(filenams, REAU_WRITE) , READ_WRITE) = self’),
open{create(filename, mode), mode) = gelf’)
& i1(0 = mode,
if((open(f, READ_WRITE) = opf) & (__sel7_name(f) = filename),
opf = selfl’,
open(crente(filenams, READ_WRITE), READ_WRITE) = selfi’),
open(create(filename, mode), mode) = self1’))
=> (self’ = selfl1’)
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== true
Current subgoal:
(if(0 = mode,
0 mixfix2(r, __selb_data(f), READ_WRITE, 1) = opt)
& (_.sel7_name(f) = filename),
opf = self’,
<mixfix2( _mixfixi(filename, empty, READ_WRITE),
empty,
READ_WRITE,
1)
= golf?),
open(__mixfixi(filename, empty, mode), mode) = self’)
& if(0O = mode,
1 ((__mixfix2(f, __sel5_data(f), READ_.NRITE, 1) = opf)
¢t (__sel7_name(f) = filename),
opf = selfi’,
_mixfix2(__mixfixi(filename, empty, READ_WRITE),
empty,
READ_WRITE,
1)
= selfi’),
open(__mixfix1(filename, empty, mode), mode) = selfl’))
=> (self’ = selfl’)
, == true
Proof suspended

LP35 resume by cases

Please center terms defining cases, terminated with a * ' line, or *?’ for
help

(0.Strang=mode)=false

Conjecture StringTheorem 8 Subgoals for proof by cases
Hew constant: modec
Case hypotheses:
StringTheoremCasellyp 5.1 (0 = modec) = false == true
StringTheoremCaseHyp 5.2. not((0 = modec) = falsa) == true
Subgoal for cases
StringTheorem.8.1:2-
(if(0 = modec,
if((__mixfix2(f, __sel5_data(€), READ_WRITE, 1) = opf)
& (__sel7_name(f) = filename),
opf = self’,
~mixfix2(__mixfixi(filename, empty, READ_WRITE),
empty,
READ_WRITE,
1)
= gelf’),
open(__mixfixl(filename, empty, modec), modec) = self’)
t if(0 = modec,
if((__mixfix2(f, __selS_datal(f), READ_VRITE, 1) = opf)
& (._3e17_name(f) = filename),
opf = selfl’,
_mixtix2(__mixfixi(filename, empty, READ_WRITE),
empty,
READ_MRITE,
1)
= gelfl’),
open(__mixfixi(filename, empty, modec), modec) = self1’'))
=> (self’ » selfi’)
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== true -

The current conjecture is subgoal StringTheorem.8.1.
Added hypothesis StringTheoremCaseHyp.5.1 to the system.

Deduction rule lp_not_is_true has been applied to wquation

StringTheoremCaselyp.5.1 to yield equation StringTheoremCaseHyp.5 1 1,
0 = modec == false,

which implies StringTheoremCaseHyp.5.1.

The equations cannot be ordered using the current ordering.

Subgoal StringTheorem.8.1:
(if(0 = modec,
if((__mixfix2(f, __sel5_data(f), READ_WRITE, 1) = opf)
& (__.sel7_name(f) = filename),
opf = self’,
_-mixfix2(__mixfixi(filename, empty, READ_WRITE),
empty,
READ_WRITE,
1)
= gelf?’),
open{__mixfixi(filename, empty, modec), modec) = self’)
2 if(0 = modec,
1f((__mixf1x2(f, __sel5_data(f), READ WRITE, 1) = opf)
2 (__sel7_name(f) = falename),
opf = selfl’,
~.mixfix2(__mixfixi(filename, empty, READ_WRITE),
empty,
READ_WRITE,
1)
= selfl1"),
open(__mixfixi{filename, empty, modec), modec) = self1’))
=> (self’ = selfl’)
=z true
Current subgoal:
((open(__mixfixi(filename, empty, modec), modec) = self’)
& (open(__mixfixt{(filename, empty, modec), modec) = self1’))
=> (3alf’ = selfl?)
=2 true
Proof suspended

LP36: resume by =>

Subgoal StringTheorem 8.1: Subgoal for proof of =>
New constants: filenamec, self’c, selfl’c
Hypothesis:
StringTheoremImpliesHyp.2:
(open{__mixfixl(filenamec, empty, modec), modec) = gelf’c)
& (open(_._mixfix1(filenamec, empty, modec), modec) = gelf1’c)
== true
Subgoal:
StringTheorem.8.1.4: self’c = selfl’c == true

The current conjecture is subgoal StringTheorem.8.1.1.

Added hypothesis StringTheoremImpliesHyp.2 to the system.
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Deduction rule lp_and_is_true has been applied to equation
StringTheoremImplissHyp.2 to yield tha following equatiens, which imply
StringTheoremimpliesHyp 2.
StringTheoremImpliesiyp.2.1:
open(__mixfixi(filenamec, empty, modec), modec) = self’c == true
StringTheoremImpliesHyp.2.2:
open(__mixfixi(filenamec, empty, modec), modec) = selfi’c == true

Deduction rule lp.equals_is_true has been applied to equation

StringTheoremImpliesHyp.2.1 to yileld equatior StringTheoremImpliesiyp 2.1.1,
open(__mixfixi(filenamec, empty, modec), modec) == self’'c,

which implies StringTheoremImpliesHyp 2.1.

Deduction rule lp_equals_is_true has been applied to equation

StrangTheoremImpliesyp.2.2 to yield equation StringTheoremImpliesHyp.2 2.1,
open(__mixfixi(filanamec, empty, modec), modec) == selfl’c,

which implies StringTheoremImpliesHyp 2.2

Subgoal StringTheorem.8.1.1: self’c = selfi’c == true
[] Pisved by normalization.

The current conjecture 18 subgoal StringTheorem 8 1.

Subgoal StringTheorem 8 1:
(if(0 = modec,
if((__mixfix2(f, ._selS_data(f), READ_WRITE, 1) = opf)
& (__sel7_name(f) = filenanme),
opf = self’,
wmixf122(_ _mixfixi(filename, empty, READ_NRITE),
empty,
READ_WRITE,
1)
= gelf’),
open(__mixfixl(filename, empty, modec), modec) = sel{’)
& 1£(0 = modec,
£ ((__mixfix2(f, __s¢15_data(f), READ_WRITE, 1) = opf)
& (__sel7_name(f) = filename),
opf = selfi’,
~mixfix2(._mixfixt(filename, empty, READ_MRITE),
empty,
READ_WRITE,
1)
= selfl’),
open(__mixfixi1(filename, empty, modec), modec) = selfi’))
=> (self’ = selfl?)
=x true
[] Proved =>,

The current conjecture is subgoal StringTheorem.8.2.

Added hypothesis StringTheoremCaseliyp.5 2 to the systam.

Deduction rule 1lp_equals_is_true has been applied to equation

StringTheoremCaseHyp.5.2 to yield equation StringTheoremCascHyp.5.2.1,
O == modec, which implies StringTheoremCaseHyp.5.2.

The eguations cannot be ordered using the current ordering.

Subgoal StringTheorem.8.2"

(if(0 = modec,
if((_.wixfix2(f, __selS_data(f), READ_WRITE, 1) = opf)

99



& (__2el7_name(f) = filename),,
opf = self’,
~-mixfix2(__mixfixi(filenams, empty, READ_WRITE),
empty,
READ_WRITE,
1)
= gelf’),
open(__mixfixl(filename, empty, modec), modec) = self’)
& if(0 = modec,
if((__mixfix2(1 __sel5_data(f), READ_WRITE, 1) = opf)
& (__sel7 nama(f) = filename),
opf = selfl’,
- mixfix2(__mixfixi1(filename, empty, READ_WRITE),
empty,
READ_WRITE,
1)
= gselfl’),
open(__mixfixi(filename, empty, modec), modec) = selfl’))
=> (self' = gelf]1’)
== true
Current subgoal.
GfC( _mixfix2(f, __sel5_data(f), READ_WRITE, 1) = opf)
& (__sel7_name(f) = filename),
opf = self’,
~mixfix2(__mixfixi(filenare, empty, READ_WRITE), empty, READ_WRITE, 1)
~ self’)
® af((__mixfix2(f, __sel5_data(f), READ.WRITE, 1) = opf)
& (__sel7_name(f) = filename),
opf = selfi’,
—-mixfix2(__mixfix1(filename, empty, READ_WRITE),
empty,
YEAD_MRITE,
1)
= selfl’))
=> (self’ = selfl’)
== true
Proof suspended.

LP37 resume by cases
Please enter terms defining cases, terminated vith a ..’ line, or **' for
help
(Comixfax2(f, __selb_data(f), READ_WRITE, 1) = opf)
& (__8e17_name(f) = filename)

Subgoal StringTheorem 8.2: Subgoals for proof by cases
New constants: fc, opfc, filenamec
Case hypotheses:
StringTheoremCaselyp.6.1:
(_.mixfix2(fc, __selS_data(fc), READ_WRITE, 1) = opfc)
& (__sel7_name(fc) = filenamec)
== true
StringTheoremCaseHyp.6.2:
not((__mixfix2(fc, __sel5_data(fc), READ_VRITE, 1) = opfc)
& (__sel7_name(fc) = filenamec))
== true
Subgoal for cases-
StringTheorem.8.2.1:2:
Gf (L mixfix2(fc, __sel5_data(fc), READ_VRITE, 1) = opfc)
& (__sel7_name(fc) = filenamec),
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opfc = self’,
~-mixfix2(__mixfixi(filenamec, empty, READ_WRITE),
empty,
READ_WRITE,
1)
= self’)
& if((__mixfix2(fc, __sel5_data(fc), READ_MRITE, 1) = opfc)
& (__8el7_nams(fc) = filenamec),
opfc = selfl’,
~-mixfix2(__mixfixi(filenamec, empty, READ_WRITE),
empty,
READ_WRITE,
1)
= selfl’))
=> (self’ = self1’)
== true

The current conjecture is subgoal StringTheorem 8 2 1.
Added hypothesis StringTheoremCasellyp 6 1 to the system

Deduction rule lp_and_is_true has been applied to equation
StringTheoremCaselyp 6.1 to yield the following equations, which imply
StringThecorenCaseHyp.6.1.
StringTheoremCaseidyp.6.1.1:
__mixfix2(fc, __sel5_data{fc), READ_¥RITE, 1) = opfc
StringTheoremCaselyp.6.1.2: __sel7_name(fc) = filenamec

true
true

Deduction rule lp_equals_is_true has been applied to equation

StringTheoremCaselyp.6.1.1 to yield equation StringTheoremCaseHyp 6 1 1.1,
_.mixfix2{(fc, __sel5_data(fc), READ_WRITE, 1) == opfc,

which implies StringTheoremCaseHyp 6.1.1.

Deduction rule lp_equals_is_true has been applied to equation

StrangTheoremCaseHyp.6.1.2 to yield equation StringTheoremCaselyp.6 1.2 1,
-_sel7_name(fc) == filenamec,

which implies StringTheocremCaseHyp 6.1.2.

The equations cannot be ordered using the current ordering

Subgoal StrangTheorem.8.2 1-
(af((__mixfax2(fc, __.sel5_data(fc), READ_WRITE, 1) = opfc)
& (__sel7_name(fc) = filenamec),
opfc = self’,
somixfix2(__mixfixi(filenamec, ampty, READ_WRITE), empty, READ_WRITE, 1)
= gelf?)
¢ if((__mixfix2(fc, __sel5_data(fc), READ_NRITE, 1) = opfc)
& (__sei7_name(fc) = filenamec),
opfc = aelfl’,
__mixfix2(__mixfix1(filename~, empty, READ_WRITE),
empty,
READ_MRITE,
1)
r gelfl’))
=> (self’ = selfl?)
== true
Current subgoal:
((opfc = self’) & (opfc = self1?)) => (self’ = selfl’) == true
Proof suspended.
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LP38: resume by => .

Subgoal StringTheorem.8.2.1: Subgoal tor proof of =>
Jeuw constants: self’c, selfi’c
Hypothesis:
StringTheo.emImpliesHyp.3: (opfc = self’c) & (opfc = selfi’c) »= true
Subgoal:
StringTheorem €.2 1.1: self’c = selfi’c == true

The current conjecture is subgoal StringTheorem.8.2.1.1.
Added hypothesis StringTheoremImpliesiyp.3 to the syctem.

Deduction rule lp_and_is_true has been applied to equation
StringTheoremImpliesHyp.3 to yield the following equations, which imply
StringTheoremImpliesHyp.3.
StringTheoremImpliesiyp.3.1: opfc = self’'c == true
StringTheoremImpliesHyp.3.2: opic = selfl'c == true

Deduction :ule lp_equals_is_true has been applied to equation

StraingTheoremImpliestyp 3.1 to yield equation StringTheoremImpliesHyp 3.1 1,
opfc == gelf’c,

vhich implies StringTheoremIapliesHyp.3.1.

Deduction rule lp_equals_is_true has been applied to equation

StringTheoremimpliesHyp.3.2 to yield equation StringTheoremImpliesHyp.3.2.1,
opfc == selfl’c,

which implies StringTheoremImpliesHyp 3 2

Subgoal StringTheorem.8.2.1.1: self’c = selfi’c == true
{] Proved by normalization

The current conjecture is subgoal StringTheorem.8 2.1

Subgoal StringTneorem.8.2.1:
Gaf((L_mixfix2(fc, __selS5 _data(fc), READ_WRITE, 1) = opfc)
2 (__sel7_name(fc) = filenamec),
opfc = self’,
cmixfix2(__mixfixi(filenamec, empty, READ_WRITE), empty, READ_WRiTE, 1)
= self?)
& if((__mixfix2(fc, __sel5_data(fc), READ_WRITE, 1) = opfc)
& (__sel7_name(fc) = filenamed.),
apfc = selfy’,
~mixfix2(_ _mixfaxi(filenamec, empty, READ_NRITE),
empty,
READ_WRITE,
1)
= gelf1’))
=> (self’ = aglfl’)
== true
[] Proved =>.

The current conjecture is subgoal StringTheorem.8.2.2.

Added hypothesis StringTheoremCaseHyp.6.2 to the system.

Deduction rule lp_not_is_true has been applied to eavation
StringTheorenCaseHyp.6.2 to yield equation StringTheoremCaseHyp.6.2.1,

(..mixtix2(fc, __sel5_data(fc), READ, WRITE, 1‘ = opfc)
& (__sel7_name(fc) = filenamec)
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== false,
which implies StringTheorenCaselyp 6.2.

The equations cannot be ordered using the current ordering.

Subgoal StringTheorem.8.2.2:
(if((__mixfix2(fc, __sel5_data(fc), READ_WRITE, 1) = opfc)
t (__sel7_name(fc) = filenamec),
opfc = self’,
_-mixfix2(__mixfixi(filenamec, empty, READ_WRITE), empty, READ_WRITE, 1)
= golf?’)
g if((L_mixfix2(fc, __sel6_data(fc), READ_WRITE, 1) = opfc)
&t (__sel7_name(fc) = filenamec),
opfc = selfl’,
_mixfix2( . mixfixi(filenamec, empty, READ_WRITE),
empty,
READ_WRITE,
1)
= gelfl’))
x> (self’ = selfl’)
== true
Current subgoal:
((__mixfix2(__mixfixi(filenamec, empty, READ_WRITE), empty, READ_WRITE, 1)
= gelf?’)
& (__mixfix2(__mixfixi(filanamec, empty, READ WRITE),
empty,
REAJ_MRITE,
1)
= self1’))
=> (self’ = selfl’)
== true
Proof suspended
LP40. resume by =>

Subgoal StringTheorem.8.2 2: Subgoal for proof of =>
Nev constants self’c, selfl’c
Hypothesis-
StringTheoremImpliesHyp.4:
(._mixfix2(__mixfix1(filenamec, empty, READ_WRITE), empty, READ_WRITE, 1)
= self’c)
& (__mixfix2(__mixfixi(filenamec, empty, READ_WRITE),
empty,
READ_MRITE,
1)
= gelfl’c)
== true
Subgoal:
StringTheorem.8.2.2.1: self’c = selfl’c == true

The current conjecture is subgoal StringTheorem.8.2.2.1.
Added hypotheais StringTheoremImpliesHyp.4 to the system.

Dsduction rule lp.and_is_true has been applied to equation
StringTheorenImpliestiyp.4 to yield the following equations, which imply
StringTheorenInplieslyp.4.
StringTheoremImpliesHyp.4.1:
__mixfix2(__mixtixi(filenamec, empty, READ_WRITE), empty, READ_WRITE, 1)
= self’c
== true
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StringTheoremimpliesiyp.4.2:
—mixfix2(__mixfix1(£ilenamec, smpty, READ_WRITE), empty, READ_WRITE, 1)
= galfl’c
=n true

Deduction rule 1p_equals_is_true has been applisd to equation
StringTheoremImpliesHyp.4.1 to yield equation StringTheoremImpliesHyp.4.1.1,
__mixfix2(_.mixfix1(filenamec, empty, READ_.WRITE), empty, READ_WRITE, 1)

== gelf'c,
which implies StringTheoremlmpliesHyp.4.1.

Deduction rule 1p_equals_is_true has been applied to equation
StringTheoremImpliesiyp.4.2 to yield equation StringTheoremImpliesHyp.4.2.1,
_.mixfix2(__mixfixi(filenamec, smpty, READ.MRITE), empty, READ_WRITE, 1)

== galfi’c,
which implies StringTheoremImpliesHyp.4.2.

Subgoal StringTheorem 8 2 2 1: self’c = selfl’c == true
[] Proved by normalization.

The current conjecture is subgoal StringTheorem.8.2 2.

Subgoal StringTheorem 8.2.2:
(if((__mixfix2(fc, __selS5_data(fc), READ_WRITE, 1) = opfc)
& (__sel7_name(fc) = filenamec),
opfc = self’,
_.mixfix2(__mixfixi1 (filenamec, empty, READ_WRITE), empty, READ_WRITE, 1)
= golf’)
& if((__mixfix2(fc, __selS_data(fc), READ_WRITE, 1) = opfc)
% (__sel7_name{fc) = filenamec),
opfc = selfl’,
_.mixfix2(__mixfixi(filenamec, empty, READ_WRITE),
empty,
READ_MWRITE,
1)
= gelf1’))
=> (selr' = selfl’)
== true
{1 Proved =>.

The current conjecture is subgoal StringTheorem.8.2.

Subgoal StringTheorem.8.2:
(1f<0 = modec,
if((__mixfix2(f, __sel5_data(f), READ_MRITE, 1) = opf)
2 (__.aedl7_name(f) = filename),
opf = self’,
. mixfix2(__mixfixi(filename, smpty, READ_WRITE),
.Hpty ’
READ_MRITE,
1)
= gelf?),
open{__mixfixi(filename, empty, modec), modec) = self’)
& 11(0 = modec,
11((__mixfix2(f, __sel5_deta(f), READ_WRITE, 1) = opf)
& (__sel7_name(f) = filenaxe),
opf = gelfl’,
_mixfix2(__mixfixl(filename, empty, READ_WRITE),
empty,
READ_WNRITE.
1)
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= gelfi’),
open(__mixfixi(filename, empty, modec), modec) = self1’))
=> (self’ = gelfi’)
== true
[] Proved by cases
(.-mixfix2(f, __sel5_data(f), READ_WRITE, 1) = opf)
& (_.sel7_name(f) = filename).

The current conjecture is StringTheoraem.8.

Conjecture StringTheorem.8:
(if(0 = mode,
if((open{f, READ_WRITE) = opf) & (__sel7_name(f) = filename),
opf = self’,
open{create(filename, READ_WRITE), READ_WRITE) = self’),
open(create(filename, mode), mode) = self’)
& if(0 = mode,
if((open(f, READ_WRITE) = opf) & (__sel7_name(f) = filename),
opf = selfl’,
open(create(filename, READ_WRITE), READ_WRITE) = selft’),
open{create{filename, mode), mode) = selfl'))
=> (self’ = selfl’)
== true
[] Proved by casvs (0 = mode) = false

Figure 27: LFP proofs for completeness of RW File.dee constructon

Larch Prover (24 January 1994) logging on 20 November 1994 16.23:54 to
‘/mnt/kbs1/BBRS/uman/thesis/1p/file/CompFileDest 1lpleg’.

LP2 prove
Please enter a conjecture to prove, terminated with a ‘..’ line, or *“?' for

help
flush(self’) = flush’(self’)

The current conjecture is StringTheorem.3

Conjecture StringTheorem 3: flush(self’) == flush’(self’)
[] Proved by normalization.

Deleted equation StringTheorem.3, which reduced to an identity.

The equations cannot be ordered using the current ordering.

LP3: prove

Pleaso enter a conjecture to prove, terminated with a ‘..’ line, or ‘7’ for

help:
(self' = flush(pelf) & selfi’ n flush(self)) => self’ = gelfy’

The current conjecture is StringTheorem.4.

The equations cannot be ordered using the current ordering.
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Conjecture StringTheorem.4:
((flush(self) = self’) & (flush(self) = pelfi’)) => (self’ = pelfl’) == true
Current subgoal:
((L_omixfix2(
~-mixfix1(__seld_name(__sel3_tfile(self)),
-.8016_data(sel?),
--8¢17_mode(__sel3_file(self))),
-.sel6_data(self),
~.8018_mode(self),
.-nel9_fpointer(self))
= gelf’)
& (__mixfix2(
~-mixfixi(__selq4_name(__sel3_file(self)),
..8el6_data(self),
-.8017 _mode(__s8el3_file(self))),
..sel6_data(self),
_.8e18_mode(self),
..8el19_fpointer(self))

= gelfl'))
=> (self’' = selfl’)
== true

Proof suspended.
LP4: resume by =>

Conjecture StringTheorem 4 Subgoal for proof of =>
New constants. selfc, self’c, selfl'c
Hypothesas-
StringTheoremImpliesHyp 1:
(__mixfix2(
~-mixfix1(__sel4_name(__sel3_file(selfc)),
..sel6_data(selfc),
_.8el7_mode(__selld_file(selfc))),
_-sel6_data(selfc),
-.selB_mode(selfc),
--sel9 _fpointer(selfc))
= gglf'c)
& (_.mixfix2(
-mixfix1(__sel4_name(__sel3_file(selfc)),
-.8616_data(selfc),
--8e17_mode(__sel3_file(selfc))),
_.80l16_data(sclfc),
.-8e18_mode(selfc),
.-8¢19_fpointer(melfc))
= gelf1’c)
== true
Subgoal:
StringTheoren.4.1: self’'c = selfl’c == true

The current conjecture is subgoal StringTheorem.4.1.
Added hypothesis StringTheoremImpliesHyp.1 to the system.

Deduction rule lp_and_is_true has been applied to equation
StringTheorenimpliesHyp.1 to yield the following equations, which imply
StringTheoremimpliesHyp.1.
StringTheoremImpliesHyp.1.1:
—-mixfix2(
—-mixfix1(__sel4_name(_._sel3_file(selfc)),
--8¢16_data(selfc),
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~.8¢17_mode(__sel3_file(selfc))),
..sel16_data(selfc),
--8018_mode(selfc),
--80¢19_fpointer(selfc))
= gelf’c
=2 true
StringTheoremImpliesiyp 1.2:
~mixfix2(
--mixfix1(__seld_name(__sel3_file(selfc)),
-.8e16_data(selfc),
~-8¢17_mode(._sel3_file(selfc))),
~.8616_data(selfc),
--8¢18_mode(selfc),
--sel9_fpointer(selfc))
= gelfl’c
=2 true

Deduction rule lp_equals_is_true has been applied to equation
StrangTheoremImpliesHyp 1.1 to yield equation StringTheoremImpliesiyp 1 1 1,
_-maxfix2(
~-mixfix1{__seld_name(__sel3 _file(selfc)),
--sel6_data(selifc),
..8€l7_mode(__sel3_file(selfc))),
~.5e16_data(selfc),
.-8€l8_mode(selfc),
-.-sel9_fpointer(selfc))
== gelf’c,
which implies StringTheoremImpliesHyp 1 1

Deduction rule lp_equals_is_true has been applied to equation
StrangTheoremImpliesHyp 1 2 to yield equation StringTheoremImpliesiyp 1.2 1,
—-mixfix2(
_-mixfix1(_ _seld_name(__sel3_file(selfc)),
--.sel6_data(selfc),
..8el7_mode(__sel3_file(selfc))),
--sel6_data(selfc),
-.5618_mode(selfc),
--sel9_fpointer(selfc))
== galfi'c,
vhich implies StringTheoremImpliesHyp.1.2.

Subgoal StringTheorem 4 1: self’'c = selfl’c == true
[] Proved by normalization.

The current conjecture is StringTheorem.4.
Conjecture StringTheorem.4:
((flush{self) = self’) & (flush(self) = self1’)) => (self’ = gelf1’) == true
[] Proved =>.
The equations cannot be ordered using the current ordering.

LP5:

LP6: q

Figure 28: LP proofs for completeness of RWF'ile.lcc destructor
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Larch Prover (24 January 1994) logging on 20 November 1994 12:26:44 to
‘/mnt/xba1/BBRS/uman/thesis/1p/file/CompFileReadi .1plog’.

LP2: prove

Please enter a conjecture to prove, terminated with a ‘..? 1line, or ‘7?7 for
help-

read’(self, i, j)=read(solf,i, j)

‘The current conjecture is CompFileReadiTheorem.1.
The equations cannot be ordered using the current ordering.

Conjecture CompFileReadiTheorem.1: read’(self, i, j) == read(self, i, j)
Proof suspended.

LP3: display deduction Deque
LP5: displa)y deduction File

Deduction rules:

File 2 when __sel1l_name(f1) == __selll_name(£f2),
__sel3_data(f1) == __sel3_data(f2),
..s8elB8_mode(fl) == __sel8_mode(f2)

yield f1 == £2

File 10 when __sel7_file(r1) == __sel7_file(r2),
__scl4_data(r1) == __seld_data(r2),
..8el19 _mode(rl) == __sel9_mode(r2),
..8¢110_fpointer(ri) == __sel10_fpointer(r2)

yield r1 ==z r2

File.30: when __sel6_ofile(r3) == __sel6_ofile(rqd),
_.sel5_reddata(r3d) == __sel5_reddata(r4)

yield 13 == r4

LP6: instantiate r3 by read(opf, i, j), rd by read’(opf, i, j) in File.30

Dedustion rule File .30 has been instantiated to deduction rule File.30.1,
when __sel6_ofazle(read(opf, i, j)) == __sel6.of1le(read’(opf, i, j)),
__8el5_reddata(read(opf, i, j)) == __selS_reddata(read’(opf, i, j))
yield read(opf, i, j) == read’(opf, 2, j)

Deduction rule File.30.1 was normalized to equation File.30.1.1,
read(opf, i, j) == read’(opf, i, j)

Conjecture CompFileReadi{Theorem.1: read’(self, i, j) == read(self, i, j)
[] Proved by normalazation.
LP7: prove
Please enter a conjecture to prove, terminated with a *..* line, or ‘7’ for
help:
toByte’(t) = toByte(t)

The current conjecture is CompFileReadiTheorem.2.
The equations cannot Le ordered using the current ordering.

Conjecture CompFileReadiTheorem.2: toByte’(t) == toByte(t)
Proof suspended.
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LP9: instantiate dl by toByte’(t), d2 by toByte(t) in Types.1

Deduction rule Typss.1 has besn instantiated to deduction rule Types.1.1,
when toType(toByte’(t)) == toType(toByte(t)) yield toByte’(t) mm toByte(t)

Deduction rule Types.1 .1 wvas normalized to equation Types.1.1.1,
toByte’(t) == toByte (t)

Conjecture CompFileReadiTheorem.2: toByte'(t) == toBytae(t)
L[] Proved by normalization.

LP10: prove
Please enter a conjecture to prove, terminated vith a ¢,.' line, or ‘?’ for
help:

len’(q) = len(q)

The current conjecture is CompFileReadiTheorem.3.
The equations cannot be ordered using the current ordering.

Conjecture CompFileRead1Theorem 3: len'(q) == len(q)
Proof suspended.

LP19: resume by induction on q using Deque 1

Conjecture CompFileReadiTheorem 3 - Subgoals for proof by induction on ‘q’
Basis subgoal:
CompFileReadiTheorem.3.1: len’ Cempty) == len(empty)
Induction constant: qc
Induction hypothesis:
CompFileReadiTheoremInducthyp.1: len’{gc) == len(qc)
Induction subgoal:
CompFileReadiTheorem.3.2: len’ (qc \postcat b) == len(qc \postcat b)

The current conjecture is subgoal CompFileReadiTheorem.3.1.

Subgoal CompFileRead1Theorem 3.1: len’(empty) == len(empty)
{1 Proved by normalization.

The current conjecture is subgoal CompFileReadiTheorem 3 2.
Added hypothesis CompFileReadiTheorenInductHyp.i to the system.

Subgoal CompFileRead1Theoren.3.2* len’(qc \postcat b) == len(qc \postcat b)
{] Proved by normalization.

The current conjecturs is CompFileReadiTheorenm.3.

Conjecture ConpFileRead1Theorem.3: len’(q) == len(q)
{1 Proved by induction on ‘g’.
LP21: prove
Please enter a conjecture to prove, terminated with a ‘..? line, or ‘7' for
help:
(toByte(t?, = __sel5_reddata(read(self, len(toByte(t)),
-.86110_fpointer (self))) & __mellO fpointer(self’) =
(_.88110_fpointer (self) + len(toByte(t))) & (toByte(ti') =
_.8e15_reddatal{read(sel?, len(toByte(t)), __sel10_fpointer(sels))) &
.-80110_fpointer(s2lf?) = (__sell0_fpointer(self) + len(toByte(t))))) =>
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t) = t1?

The current conjecture is CompFileReadiTheorewm.4.
The equations cannct be ordered using the current ordering.

Conjecture CompFileRead1Theorem.4.
((_.sel5_reddata(read(self, len(toByte(t)), __sel10_fpointer(sels)))
= toByte(t'))
& (_.sel5_reddataCread(self, len(toByte(t)), ._seli0_fpointer(self)))
= toByte(t1’))
& ((__.8e110_fpointer(self) + len(toByte(t))) = __sell0_fpointer(self’))
& ((._sel10_fpointer(self) + len(toByte(t))) = __sell0_fpoanter(self’)))
= (1’ = t1?)
== true
Current subgoal:
((prefix(removePrefix(__seld_data(self), __sel10_fpointer(self)),
len(toByte(t)))
= toByte(t'))
t (prefix(removePrefix( ._seld_data(self), __sel10_fpointer(self)),
len(toByte(t}))
= toByte(t1'))
& ((__sel10_fpoanter{(self) + len(toByte(t))) = __sell0_fpointer(self’)))}
> (t’ = t1’)
=z true
Proof suspended.

LP22. resume by =>

Conjecture CompFileRoad1Theorem.4: Subgoal for proof of =>
Baw constants selfc, tc, t'’c, ti’c, self’c
Hypothesis
ComptileReadiTheoremImpliesHyp.1 :
(prefix(removePrefax(__seld_data(saifc), __sellO_tpointer(selfc)),
len{toByte(tc)))
= toByte(t’c))
& (prefix(removePrefix(__seld_data(selfc), __seli0_fpointer(selfc)),
len(toByte(tc)))
= toRyte(tl’c))
& ((__sel10_fpointer(selfc) + len(toByte(tc)))
= __sell0_fpointer(self’c))
=5 true
Subgoal.
CompFileReadiTheorem.4.1: t'c = t1'c == true

The current conjscture is subgoal CompFileReadiTheorem.4.1.
Added hypothesis CompFilaReadiTheorsmlapliesHyp.i to the system.

Deduction rule lp_and_is_true has been applied to equation
CompFileReadiTheoremImpliesHyp.1 to yield the following equations, which imply
CompFileReadiTheoremImpliesHyp.1.
CompFileReadiTheoremImpliesidyp.1 .1:
prefix(removePrefix(__seld_data(selfc), __sel10_fpointer(selfc)),
len(toByte(tc)))
= toByte(t'c)
a= true
CompFileRead1TheoremImpliesiyp.1.2:
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prefix(removePrefix(__sel4_data(selfc), __sel10_fpointer(pelfc)),
len(toByte(tc)))
= toByte(ti’c)
== true
ConmpFileReadiTheoremImpliesiyp.1.3.
(..56110_fpointer (selfc) + len (toByte(tc))) = __seli10_fpointer(self’c)
=x true

Deduction rule lp_equals_is true has been applied to equation
CompFileRoad1TheoremImpliestyp.1.1 to yield equation
CompFileRead1TheoremImpliesiyp.1.1 .1,
prefix(removePrefix(__seld_dataCselfc), __sel10_fpoanter(selfc)),
len(toByte(tc)))
== toByte(t'c),
which implies CompFileReadiTheoremImpliesHyp.1.1.

Deduction rule 1lp_equals_is true has been applied to equation
CompFileRead1 TheoremImplaesHyp.1.2 to yield equation
CompFileRead1TheoremImplaesiyp.1.2 1,
prefix(removePrefix(_ _seld_data(selfc), __sel10_fpointer(selfc)),
len(toByte(tc)))
== toByte (ti'c),
which implies CompFileReadiTheoremImpliesHyp 1.2.

faduction rule lp_equals_is_ true has been applied to equation
.ompFileRead1TheoremImplaasiyp.1.3 to yield equation
ComplileRead1 TheoremImplaesiiyp 1.3 .1,

—-seli0_ fpointer(selfc) + len(toByte(tc)) == __sellO_fpointer(self’c),
vhach implies CompFileReadiTheoremImpliesHyp.1.3.

Deduction rule Types.2 has been applied to equation
CompFileRead1TheoremImpliesiyp.1.2 1 to yreld equation
CompFileRead1TheoremImplaesiyp 1 2.1.1, t’c == ti’c,
shich implies CompFileReadiTheoremImpliesHyp.1.2.1

Deduction rule CompFileReadl.1 has been applied to equatijon
CompFileRead1ThaoremImpliesiyp.1.2.1 to yield equation
CompFileRead1TheoremImpliestyp.1.2.1.2, t’c == ti'c,

vhich implies CompFileReadiTheoremImpliesHyp.1.2.1.

Subgoal CompFileReadiTheorem 4.1° t’c = t1’c == true
[} Proved by normalization.

The current conjecture is CompFileReadiTheorem.4.

Con jecture CompFileRead 1 Theorem.4:
((__sel5_reddata(read (salf, len(toByte(t) ), __ sel10_fpointer(sels)))
= toByte(t?))
& (_.8el5_reddata(read(self, len(toByta(t)), __sel10 . fpointer(self)))
= toByte(t1’))
& ((__se110_fpointar(self) + len(toByte(t))) = __seli0_fpointer(self’))
& ((._.sel10_fpointer(sel?) + san(toByte(t))) = __seliO fpointer(self?’)))
=> (¢’ = ¢t1°)
== true
[ Proved =>.

Figure 29: LP proofs for completeness of RWFile.lcc Read(&char) member-function
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Larch Provaer (24 January 1994) logging on 20 November 1994 17:54:31 to
‘/mnt/kbs1/BBRS/uman/thesis/1p/file/CompFileRead2.1plog’.

LP0.1.8: declare variables
t': character
t1*: character
self’. R¥File
selfl. R¥WFile
selfi’: RiFile

j. Int
ind: Int
i1: String
i’: String
i1’: String
si: Data
82 Data
d: Data

q Data

e¢: Byte
el. Byte

t: character
ti1. character
dat- Data
self. RWF1le
opf- RWFile

p Int

1. Straing
count: Int

LP5- prove
Please enter a conjecture to prove, terminated @ith a ‘' .’ line, or ‘?’ for

help-
read’(self, j, p:Int)=read(self, j, p:Int)
LP14- display File.30
Deduction rules
File 30' when __sel6_ofile(r3) == __sel6_ofile(rd),
__sel5_reddata{r3) == __sel5_reddatal(r4)
yield r3 == r4
LP16: instajtiate r3 by xead’(self, j, p:Int), rd4 by read(self, j, p:Int) in File.30
Deduction rule File.30 has been instantiated to deduction rule File.30.2,
when __sel6_ofile(read'(self, j, p)) == __sel6_ofile(read(selt, j, p)),
-_sel5_reddata(read’(self, j, p)) == __selb_reddata(read(self, j, p))
yield read’(self, j, p) == read(self, j, p)

Deduction rule File.30.2 wvas normalized to equation File.30.2.1,
read’(self, j, p) == read(self, j, p)

Conjecture CompFileRead2Theorem.1: read’(self, j, p) == read(self, j, p)
[] Proved by normalization.

Deleted equation CompFileRead2.3, which reduced to an identity.

Deleted equation CompFileRead2.4, which reduced to an identity.
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Deleted equation CompFileRead2.12, shick reduced to an identity.
The equations cannot be ordered using the current ordering.

LP17: prove
Please enter a conjecture to prove, terminated vith a ¢..' line, or ‘?’ for
help:

toByte’ (t) = toByte(t)

T.o current conjecture is lemma CompFileRead2Theorem.4.
The equations cannot be ordered using the current ordering.

Lemma CompFileRead2Theorem.4: toByte'(t) == toByte(t)
Proof suspended.

LP24: display Types.1
Types.1i: vhen toTypea(dl) == toType(d2) yield di == d2
LP25: instantiate d1 by toByte®'(t), d2 by toByte(t) in Types.1

Deduction rule Types 1 has been instantiated to deduction rule Types 1 1,
when toType(toByte’(t)) == toType(toByte(t)) yield toByte'(t) =z toByte(t)

Deduction rule Types.1.! vas normalized to equation Types.1 1 1,
toByte’ (t) == toByte(t)

Lemma CompFileRead2Theorem.4* toByte'(t) == toByte(t)
[] Proved by normalization

LP8: prove
Please enter a conjecture to prove, termanated wvith a ‘..? line, or ‘?’ for
help:

(((if(ind >= 0:Int & ind <= count, toByte(_.prefix2(ptr + ind)) =
_.8el5_recdata(read(self, len(toByte(__prefix2(ptr))),
..8e110_fpointer(self) + (ind »

len(toByte(__prefix2(ptr)))))), __prefix2(ptr
+ind) = __prefix2{(ptr+ i1nd)) & ._sel10 _fpointer(self’) =
(..8e110_fpointer(seif) + count))) & ((af(ind >= 0:1Int

& ind <= count,
toByte(__prefix2(ptr + ind}) = _ selS_reddata(read(self,
len(toBytae(..prefix2(ptr))), __sel10O_fpointer(self) + (ind e
len(toByte(__prefix2(ptr))}))), ..prefixz(ptr + ind) » __prefix2(ptr + ind)) &
.-80110_fpointer(self1’) = (__seli0O_fpointer(self) + count)))) =
-.86110_fpointer/self’) = __seli0_fpointer(selfi’)

The current conjecture is CompFileRead2Theorem.2.
The equations cannot bs ordered using the current ordering.

Conjecture CompFileRead2Theorem. 2:
(((..s0110_%pointer(self) + count) = __sel10_ fpointer(sel?’))
& ((__sel10_fpointer(sslf) + count) = __sel10_tpointer(selsy’))
t if((ind ¢= count) & (ind >= 0),
~-sel5_reddata(

113



read(aelf,
len(toByte(__prefix2(ptr))),
(len(toByte(__prefix2(ptr)s) ¢ ind) + __sel10_fpointer(self)))
= toByte(__prefix2(ptr + ind)),
~-prefix2(ptr + ind) = __prefix2(ptr + ind))
g i£((ind <= count) & (ind >= 0},
-.sel5_reddata(
read(self,
len(toByte(__prufix2(ptr))),
(len(toByte(__prefix2(ptr))) # ind) + __seliO.fpointer(self)))
= toByte(__prefix2(ptr + ind)),
~-prefix2(ptr + ind) = __nrefix2(ptr - ind)))
=> (__sel30_tpointer(self’) = __sel10_fpcinter(self1’))
== true
Current subgoal:
(((_._sel10_fpointer(self) + count) = __sell10_fpointer(self’))
& ((__seliO_fpoanter(self) + count) = __seliO_fpointer(self1’))
& (((CO0 < ind) | (0 = ind)) & ((ind < count) | (count = ind)))
=> (prefix(
removePrefix(__szeld_data(self),
(len(toByte(__mxfix6(__se)? locs(ptr), __sell_idx(ptr)))}
* ind)
+ _.sell0_fpointer(self)),
len(toByte(_ _mixfix6(__sel2_locs(ptr), __sell_idx(ptr)))))
= toByte(
~-mixfix6(
--sel2_ locs{set_idx(ptr, __sell_adx(ptr) 4 ind)),
--sell_idx(set_idx(ptr, __seli_adx{ptr) + ind)))))))
=> (__sel10_fpointer(self’) = __sel1iO_fpointer(self1’))
== trus
Proof suspended

LP10 resume by =>

Conjecture CompFileRead2Theorem 2 Subgoal for proof of =>
New constants selfc, countc, self’c, selfi’c, ind~, ptrc
Hypothesis
CompFileRead2TheoremImpliesHyp 1:
((._sel10_fpointer(selfc) + countc) = __sell0_fpointer(self’c))
& ((__sel10_fpointer(selfc) + countc) = __sellO_fpointer(selfl’'c))
& ((((0 < indc) | (9 = indc)) & ({indc < countc) | (countc = indc)))
=> (prefix(
removePrefix(__sel4_data(selfc),
(indc
¢ len(toByte(
~-mixfix6(__se12_locs(ptrc),
~8ell_idx(ptrc)))))

+ _.8el110_fpointer(selfc)),
len(toByte(__mixfix6(__sel2_locs(ptre), __seli_idx(ptrc)))))
= toByte(

—mixfix6(

~-8e12_locsa(set idx(ptrc, __sell_idx(ptrc) + indc)),
--sell_idx(set_idx(ptrc, __seli_idx(ptrc) + indc))))))
== true
Subgoal:
CompFileRead2Theorem 2.1:
~.-5¢110_fpointer(self’'c) = __sell0_fpointer(selfl’c) == true

The current conjecture is subgoal CompFileRead2Theorem.2.1.
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Added hypothesis CompFileRead2TheoremIppliesHyp.1 to the system.

Deduction rule lp_and_is_true has heen applied to equation
CompFileRead2TheoremImpliestyp.1 to yield the following equations, which imply
CompFileRead2TheoremImpliestyp.1.
CompFileRead2TheoremImpliesHyp.1.1:
(_.sel10_fpointer(selfc) + countc) = __sel10_fpointer(self’c) == true
CompFileRead2TheoremImpliesyp.1.2:
(..se110_fpointer(selfc) + countc) = __sel10_fpointer(selfi’c) == true
CompFileRead2TheoremImpliesHyp.1.3:
{((0 < indc) | (O = indc)) & ((indc < countc) | (countc = indc)))
=> (prefix(
removePrefix(__selq_data(selfc),
(indc
s len(toByte(
~-mixfix6(__sel2_locs(ptrc), _.sell_idx(ptrc)))))
+ __s8eli0_fpointer(selfc)),
len(toByte(__mixfix6(__sel2_locs(ptrc), ..sell_idx(ptrc)))))
= toByte(
_-mixfix6(__sel2_locs(set_idx{(ptrc, __sell_idx{(ptrc) + indc)),
.-sell_idx(set_idx{(ptrc, _.sell_idx{(ptrc) + indc)))))
== true

Deduction rule lp.equals_is_true has been applied to equation
CompFileRead2TheoremImpliesHyp.1.1 to yield equation
CompFileRead2TheoremImpliesHyp.1 1.1,

..seli0_fpointer(selfc) + countc == __sell0_fpointer(self’c),
which implies CompFileRead2TheoremImpliesHyp.1 1.

Deduction rule lp_equals_is_true has boen applied to equation
CompFileRead2TheoremImpliesHyp.1.2 to yield equation
CompFileRead2TheoremImpliesHyp.1.2.1,

__sel10_fpointer(selfc) + countc == __seliO_fpointer(selfi’c),
which implies CompFileRead2TheoremImpliesHyp 1.2.

Subgoal CompFileRead2Theorem 2.1.
..sel10_fpointer(self’c) = __sellO_fpointer(selfi’c) == true
[] Proved by normalization.

The current conjecture is CompFileRead2Theorem.2.

Conjecture CompFileRead2Theorem 2:
(((__sel10_fpointer(self) + count) = __seliO_fpointer(self’))
& ((__sel10_fpointer(self) + count) = __seliO_fpointer(selfl’))
& if((and <= count) & (ind >= 0),
--selb_reddata(
read(self,
len(toByte(__prefix2(ptr))),
(len{toByte(_.prefix2{ptr))) ¢ ind) + __sell0 fpointar(self}))
= toByte(__prefix2(ptr + iind)),
~-prefix2(ptr + ind) = __prefix2(ptr + ind))
& if((ind <= count) & (ind >= 0),
_.8el5_reddata(
read(self,
len(toByte(__prefix2(ptr))),
(len(toByte(__prefiz2(ptr))) ® ind) + __sellO_fpointer(self)))
= toByte(__prefix2{ptr + ind)),
--prefix2(ptr + ind) = __prefix2(ptr + ind)))
u> (__se110_fpointer(self’) = __sel10_fpointer(selfi?’))
=3 true
[1 Proved =>.
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LP14: d.clare variable

Please enter variable declarations, terminated vith a ‘..’ line, or ‘?’ for
help:

ptri:String

LP16: prove
Please enter a conjecture to prove, terminated with a ‘..’ line, or ‘?’ for
help:

(((if{ind >= 0:Int & ind <= count, toByte{(__prefix2(ptr + ind)) =
.-s8el5_reddata(read(self, len(toB,te(__prefix2(ptr))),
-.s€110_fpointer(self) + (ind ¢ len(toByte(__prefix2(ptr)))))), __preafix2(ptr
+ ind) = __prefix2(ptr + ind)) & __sell0_fpointer(self’) =
(._26110_fpointer(self) + count))) & ((if(ind >= O:Int & ind <= count,
toByte(__prefix2(ptri{ + ind)) = __sel5_reddata(read(self,
len(toByte(__prefix2(ptr))), __sel10_fpointer(self) + (ind »
len(toByte(__prefix2(ptr)))))), __prefax2(ptrl + ind) = __prefix2{ptr + ind)) &
.-8e110_fpointer(self’) = (__seliO_fpointer(self) + count)))) =>
..prefix2(ptr 4+ and) = __prefix2(ptrt + ind)

The current conjecture is CompFileRead2Theorem.3.
The equations cannot be ordered using the current ordering.

Conjecture CompFileRead2Theorem.3:
(((__sel10_fpointer(self) + count) = __sell0O_fpoanter(self’))
2 ((__sel)0_fpointer(self) + count) = __seliO_fpointer(self'))
& if((ind <= count) & (ind >= 0),
--2al5_reddata(
read(self,
len(toByte(__prefix2(ptr))),
(len(toByte(__prefix2(ptr))) ¢ ind) + __sel1O_fpointe-(self)))
= toByte(__prefix2(ptri + ind)),
~-prefaxzi{ptrl + ind) = __prefix2(ptr + ind))
2 1f((ind <= count) & (ind >= 0},
..selb_reddata(
read(self,
ien(toByte(__prefix2(ptr)}),
(Yen(toByte(__prefix2(ptr))) » ind) + __sel10_fpointer(solf)))
= toByta (__prefix2(ptr + ind)),
-.prefix2(ptr + ind) = __prefix2(ptr + ind)))
x> (__prefix2(ptri + ind) = __prefix2(ptr + ind))
== true
Current subgoal:
(((_.sel10_fpointer(self) + count) = __sellO_fpointer(self’))
& ((((0 < ind) | (0O = ind)) & ((ind < count) | (count = ind)))
=> (prefix(
TemovePrefix(__seld_data(self),
(Qen(toByte(__mixfix6(__sel2_locs(ptr), _.sali_idx(ptr))))
¢ ind)

+ __8el10_fpointer(self)),
len(toByte{__mixfix6(__s0l2_ locs(ptr), ._sell_idx(ptr)))))
= toByte(

_mixfix6(

--8el12_locs(set_idx(ptr, __sell_idx{ptr) + ind)),
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--8ell_idx(set_idz(ptr, __seli_idx(ptr) + ind))))))
& 17(((0 < ind) | (O = ind)) & ((ind < count) | (count = ind)),
prefix(
removePrcfix(__seld_data(sel?),
(len(toByte(__mixfix6(__sel12 _locs(psr), __seli_1dx(ptr))))
¢ ind)
+ __sel10_fpointer(self)),
len(toByte(__mixfix6(__sel2_locs(ptr), __sell_idx(ptr)))))
= toByte(
—-mixfiz6(__sel2 locs(set idx(ptrl, ..sell_idx(ptri) + ind)),
-.sell_idx(set_idx(ptri, __seli_idx(ptri) + ind)))),
-MixTix6(__sel12_locs(set_idx(ptri, ._sell_idx(ptri) + ind)),
--sell_idx(set_idx(ptri, __seli_idx(ptri) + ind)))
= __mixfix6{_.sel2_locs(set_idx(ptr, __sell_idx(ptr) + ind)),
—-sell_idx(set_idx(ptr, __sell_idx(ptr) + ind)))))
=> (__mixfix6(__sel2 locs(set_idx(ptrl, __sell_idx(ptrl) + ind)),
__sall_idx(set_idx(ptr1, __sell_idx(ptr1) + ind)))
= __mixfi1x6(__sel2_locs(set_idx{ptr, __msell_idx(ptr) + ind)),
~.8011_idx(set_idx(ptr, __seli_idx(ptr) + ind))))
== true
Proof suspended.

LP24: resume by cases

Please enter terms defining cases, terminated with a ‘..’ line, or ‘?’ for
help:

((0:Int < ind) | (0.Int = ind)) & ((ind < count) | (count = 1nd))

Conjecture CompFileRead2Theorem.3: Subgoals for proof by cases
New constants: indc, countc
Case hypotheses:
CompFileRead2TheoremCasehyp.2.1:
(0 < indc) | (O = inde)) & ((indc < countc) | (countc = indc)) == true
CompFileRead2TheoremCaseHyp 2.2:
not(((0 < indc) | (0 = indc)) & ((indc < countc) | (countc = indc)))
== true
Subgoal for cases:
CompFileRead2Theorem.3.1:2:
(((__sel10_fpoirter(self) + countc) = __sellO_fpointer(self’))
& ({(€0 < indc) | (0 = indc)) & ((indc < countc) | (countc = indc)))
=> {prefix(
removePrefix(__seld_data(self),
(andc
¢ len(toByte(
_mixfix6(_.sel2_loce(ptr), ..seli_idx(ptr)))))
+ __sel10_tpointer(self)),
len(toByte (. _mixfix6(__sel2_locs(ptr), __sell_idx(ptr)))))
= toByte(
~mixfix6(
..8e12_locs(set_idx(ptr, __sell_idx{ptr) + indc)),
_-sell_idx(set_idx(ptr, __seli_idx(ptr) + indc))))))
& i£(((0 < indc) | (0 = indc)) & ((indc < countc) | {(countc ® indc)),
prefix(
removePrefix{__seld_data(self),
(indc
» len(toByte(
_mixfix6(__sel2_locs(ptr), __sell_idx(ptr)))))
+ __se110_fpointer(sel?)),
len(toByte(__mixfix6(__sel2_ locs(ptr), __sell_idx(ptr)))))
= toByte(
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_mixfix6(
_.8012_locs{set_idx(ptr1, __sell_idx(ptr1) + indc)),
_sell_idx(set_idx(ptri, ._sell_idx(ptr1) + indc)))),
..mixfix6(__sel2_locs(set_idx(ptr1, _._sell_idx(ptr1l) + indc)),
_.pell_idx(ser idx(ptri, __seli_idx(ptrl) + indc)))
= __mixfix6(__uel2_locs(set_idx(ptr, __sel1_idx(ptr) + indc)),
_.sell_idx(set_idx(ptr, __sell_idx(ptr) + indc)))))
= (__mixfix6(__sel2_locs(set_idx(ptri, __seli_idx(ptri) + indc)),
_.sell_idx(set_idx(ptr1, __seli_idx(ptri1) + indc)))
= __mixfix6(__sel2_locs(set_idx(ptr, __sell_idx(ptr) + indc)),
..se6l1_idx(set_idx(ptr, _.seli_idx(ptr) + indc))))
== true

The current conjecture iz subgoal CompFileRead?Theorem.3.1.
Added hypothesis CompFileRead2TheoremCaseliyp.2.1 to the system.

Deduction rule lp_and_is_true has been applied to equation
CompFileRead2TheoremCaseHyp 2.1 to yield the following equations, which imply
CompFileRead2TheoremCaseliyp 2 1
CompFileRead2TheoremCaselyp.2.1 1 (0 < indc) | (0 = indc) == true
CompFileRead2TheoremCaseHyp.2 1.2: (indc < countc) | (countc = indc) == true

The equations cannat be ordered using the current ordering.

Subgoal ConmpFileRead2Theorem.3.1
(((__scl10_fpointer(self) + countc) = __seli0_fpointer(self’))
& ((((0 < indc) | (0 = indc)) & ((indc < countc) | (countc = indc)))
=> (prefix(
removePrefix(__sel4_data(self),
(indc
* len(toByte(
~mixfix6(__sel2_locs(rtr), ..sell_idx(ptr)))))
+ __sel10_fpointer(self)),
len(toByte (. _mixfix6(._sel2_locs(ptr), __sell_idx(ptr)))))
= toByte(
~mixfix6(
--s612_locs(set_idx(ptr, __seli_idx(ptr) + indc)),
-.sell_idx(set adx(ptr, __selt_idx(ptr) + indc))))))
2 i£((L0 < indc) | (O = indc)) & ((andc < countc) | (countc = indc)),
prefix(
removePrefix(__sel4_data(selfl),
(indc
¢ len(toByto(__mixfix6(__sel2_ locs(ptr), __seli_idx(ptr)))))
4+ __seli0_fpointer(self)),
len(toByte (. _mixfix6(__sel2_locs(ptr), _.sell_idx(ptr)))))
= toByte(
. mixfix6(__sel2. locs(set_idx(ptri, __sell_ida(ptri) + indc)),
_.sell_idx(set_idx(ptri, __.sell_idx(ptr1) + indc)))),
_.mixfix6(__sel2_locs(set idx(ptrl, __.sell_idx(ptri) + indc)),
_-seli_idx(set_idx(ptr1, __seli_idx(ptr1) + indc)))
= __mixfix6(__sel2_loce(set_idx(ptr, ._sell_idx(ptr) + indc)),
..sell_idx(set_idx(ptr, __seli_idx(ptr) + indc)))))
u> (__mixfix6(__sel2_locs(set_idx(ptrt, __seli_idx(ptri) + indc)),
~-8311_idx(set_idx(ptri, __sell idx(ptr1) + indc)))
= __mixfix6(__sel2_locs(set_idx(ptr, __sell_idx(ptr) + indc)),
__sell_idx(eet_idx(ptr, __sell_idx{(ptr) + indc))))
== true
Current subgoal:
((prefix(
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removePrefix(__seld _data(gelf),
(indc ¢ len(toByte(_ _mixfix6(__sel2_locs(ptr), __sell_idx(ptr)))))

+ __sel10_fpointer(self)),

len(toByte(__mixfix6(__sel2_ locs(ptr), __sell_idx(ptr)))))

= toByte(
—-mixfix6(__sel2_locs(set_idx(ptrt, __sell_idx(ptr1) + indc)),

--Seli_idx(set_idx(ptri, __seli_idx(ptrl) + indc)))))

¢t (prefix(

removePrefix(__sel4_data(self),
(indc
s len(toByte(__mixfix6(__sel2_ locs(ptr), __sell _idx(ptr)))))
+ _.88110_fpointer(sslf)),
len(toByte(_ _mixfix6(.. se12_ locs(ptr), __seli_idx(ptr)))))
= toByte(
~Mixfix6(__sel2_locs(set_idx(ptr, __seli_idx(ptr) + indc)),
_-sell_idx(set_idx(ptr, __sell_idx(ptr) + indc)))))
& ((._sell0_fpointer(self) + countc) = __sellO_fpointer(self')))
=> (__mixfix6(__sel2_ locs(set idx(ptrl, __seli_adx(ptr1) + indc)),

.-sell_idx(set_idx(ptri, __seli_idx(ptr1) + indc)))
= _mixfix6(__sel2_locs(set_idx(ptr, __sell_idx{ptr) + indc)),

-.sell_idx(set_idx(ptr, __sell_idx(ptr) + indc))))
== true

Proof suspended.

LP25: resume by =>

Subgoal CompFileRead2Theorem 3.1: Subgoal for proot of =>
New constants: selfc, ptrc, ptric, self'c
Hypothesis:
CompFileRead2TheoremImpliesHyp.2:
(prefix(
removePrefix(__seld_data(selfc),
(indc * len(toByte(_ _mixfix6(__sel2_locs(ptrc), __sell_idx(ptrc)))))
+ __sel10_fpointer(selfc)),
len(toByte( _mixfi1x6(_.sel2_ locs(ptrc), ._seli_idx(ptrc)))})
= toByte(
~-mixfix6(__sel2_locs{set_idx(ptric, __seli_idx{ptric) + indc)),
--sell_idx(set_idx(ptric, __sel1_idx(ptric) + indc)))))
& (prefix(
removePrefix(__seld_data(selifc),
(indc
* len(toByte( .mixfix6(__sel2_ locs(ptrc), __sell_a1dx(ptrc)))))
+ __sel10_fpointer(selfc)),
len(toByte(__mixfix6(__sel2_locs(ptrc), _.sell_idx(ptrc))}))
= toByte(
L-mixfix6(__sel2_ locs(set_idx(ptrc, _.sell_idx{ptrc) + indc)),
~-sell_idx(set_idx(ptrc, __seli_idx(ptrc) + indc)))))
& ((__se110_fpointer(selfc. + countc) = __sel10_fpointer(self’c))
== true
Subgoal:
CoxpFileRead2Theorem.3.1.1:
_mixfix6(__sel2_locs(set_idx(ptric, __seli_idx(ptric) + indc)),
..sell_idx(set_idx(ptric, ._selli_idx(ptric) + indc)))
= __mixfix6(__sel2_locs(set_idx(ptrc, _.seli_idx(ptre) = indc)),
-.sel1_idx(set_idx(ptrc, __.sell_idx{(ptrc) + 3ndc)))
== true

The current conjecture is subgoal ConpFileRead2Theorem.3.1.1.

Added hypothesis CompFileRead2TheoremImpliesHyp.2 to the system.
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Daduction rule lp_and_is_.true has been applied to equation
CompFileRead2ThecremimpliesHyp.2 to yield the following squations, shich imply
CompFileRead2Theoremimpliesiyp.2.
CompFileRoad2TheoremImpliesHyp.2.1:
prefix(
removePrefix(__ral4_data(selfc),
(indc » lon(toByte( _mixfix6(_.sel12_locs{ptrc), ._sell_idx(ptrc)))))
+ _._seli0_fpointer(selfc)),
len(toByte(._mixfix6(__sel2 locs(ptrc), ._sell_idx(ptrc)))))
= toByte(
~mixfix6(_ _sel2_locs(set_idx(ptric, ..seli_idx(ptric) + indc)),
-.sell_idx(set_idx(ptric, ..sell_idx(ptric) + indc))))
=3 true
CompFileRead2TheoremlapliesHyp.2.2:
prefix(
renovePrefix(__seld_data(selfc),
(indc » len(toByte(__mixfix6(__sel2_locs(ptrc), __sell_idx(ptrc)))))
+ __sell0_fpointer(selfc)),
len(toByte(_.mixfix6(__sel2_locs(ptrc), ._seli_idx(ptrc)))))
= toByte(
_.mixfix6(__sel2 locs(set_idx(ptrc, _.sell_idx(ptrc) + indc)),
~-sell_idx(set_idx(ptrc, _.sell_idx(ptrc}) + indc))))
ss true
CompFi1leRead2TheoremImpliesHyp.2.3:
(._sc110_fpointer(selfc) + countc) = __se¢l10_fpointer(self’c) == true

Deduction rule lp_equals_is_true has been applicd to equation
CompFileRead2TheoremImpliesHyp.2.1 to yield equation
CompFileRead2TheoremImpliesiyp.2.1.1,
prefix(
removePrefix(__sel4_data(selfc),
(indc » len(toByte(__mixfix6(__sel2_locs(ptrc), __sell_idx(ptrc)))))
+ __sel10_fpointer(selfc)),
len(toByte(__mixfix6(__sel2_locs(ptrc), __sell_idx{ptrc)))))
toByte(
_mixfix6(__sel2_locs(set_idx(ptric, ._seli_idx(ptric) + indc)),
..sell_idx(set_adx{(ptric, __seli_idx(ptric) + indc)))),
which implies CompFileRead2Theoremimpliesiyp.2.1.

Deduction rule 1lp_equals_is_true has been applied to equation
CompFileRead2TheoremImpliesHyp 2.2 to yield equation
CompFileRead2TheoremImpliesiHyp.2.2.1,
prefaix(
removePrefix(__sel4 _data(selfc),
(andc ¢ len(toByte(_ _mixfix6(__sel2_locs(ptrc), ..sell_idx(ptrc)))))
+ __seliO_fpointer(selfc)),
len{toByte{ __mixfix6(__sel12_locs(ptrc), __seli_idx(ptrc)))))
s
toByte(
__mixfix6(__sel2_locs(set_idx(ptrc, __sell_idx(ptrc) + indc)),
_.sell_idx(set_idx(ptrc, _.sell_idx(ptrc) + indc)))),
which implies CompFileRead2TheoremImpliesHyp.2.2.

Deduction rule 1p_equals_is_true has been applied to equation
CompFiloRead2TheoremImpliesiyp.2.3 to yield equation
CompFileRead2TheoremImpliesiHyp.2.3.1,

-.-58310_fpointer(selfc) + countc == __seii0_fpointer{self’c),
which implies CompFileRead2TheoremImpliesHyp.2.3.
Subgoal CompFileRead2Theorem.3.1.1:
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~-mixfix6(__sel2 loca(set_idx(ptric, ._sell_idx(ptric) + indc)),
~-seli_idx(set_idx(ptric, _.seli_idx(ptric) + indcd)))
= _.mixfix6(_.se12_locs(set_ idx(ptrc, __.sell_idx(ptrc) + indc)),
~.80l11_idx(set_idx(ptrc, __sell_idx(ptrc) + indc)))
== true

[} Proved by normalization

Subgoal CompFileRead2Theorem.3.1
(((__88110_fpointer(self) + countc) = __sel10_fpointer(solf’))
& ((((0 € indc) | (O = indc)) & ((indc ¢ countc) | (countc = indc)))
=> (prefix(
removePrefix(__seld_dat>(self),
(inde
» len(toByte(
~-mixfix6(__scl2_locs(ptr}, ._sell_idx(ptr)))))
+ __se110_fpointer(self)),
len(toByte(__wmixfix6(__sel2_ loca(ptr)
= toByte(

—-mixfix6(
--5el2_locs(set_idx(ptr, __sell_idx(ptr} + indc)),
.-sell_idx(set_idx(ptr, __seli_idx(ptr) + indc))))))

& if(((0 < indc) | (0 = indc)) & ((indc < countc) | (countc = indc)),
prefix(
removePrefix(__seld_data(self),
(indc
® len(toByte(__mixfix6(__sel2_locs(ptr), __seli_idx(ptr)))))
+ __sell0_fpointer(self)),
len(toByte(__mixfix6( _sel2_locs(ptr), _.seli_idx{(ptr)))))
= toByte(
-.mixfix6(__sel2_locs(set_idx{(ptry, __sell_idx(ptr1) + indc)),
_.sell_idx(set_idx(ptr1, __sell_idx(ptri) + indc)))),
_.mixfix6(__sel2_locs(set_idx(ptrl, __seli_idx(ptri) + indc)),
.-sell_idx(set_idx{ptri, __sell_idx(piri) + indc)))
= __mixfix6(__selZ locs(set_idx{(ptr, __sell_idx(ptr) + indc)),
_-sell_idx(set_idx(ptr, __sell_idx(ptr) + indc)))))
=> (_.mixfix6(__sel2_locs(set_idx(ptri, ..sell_idx(ptril) + indc)),
..sell_idx(set_idx(ptri, __sell_idx(ptri) + indc)))
= __mixfix6(__sel2_ locs(set_idx(ptr, __sell_idx(ptr) + indc)),
..sell_idx(set_idx(ptr, __sell_idx(ptr) + andc))))

sali_idx(ptr)))))

' -

== true

[J Proved =>.

Figure 30: LP proofs for completeness of RWFile.lcc Read(Char *, size.t) member-
function
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Larch Prover (24 January 1994) logging on 20 November 1994 12:17:42 to ,
¢/mnt/Xbs1/BBRS/uman/thesis/lp/file/CompFile¥iritel .1plog’.

LPO.1.15: prove
open'(f, m) == open(f, m)

The current conjecture is CompFileWriteiTheorem.1.
The equations cannot be ordered using the current ordering.

Conjscture CompFileMritelTheorem.1: open?(f, m) == open(f, m)
Proof suspended.

LP3: resume by induction on m

There is more than one applicable induction rule. You must pick one.

LP4: resume by induction on m using File.19

Conjecture CompFileWriteiTheorem 1. Subgoals for proof by induction on ‘m’

Basis subgoals:
CompF1leWriteiTheorem.1.3: open’(f, 0) == open(f, 0)
CompFileMriteiTheorem 1.2: open’(f, READ) == open(f, READ)
CompFileWritelTheorem.1.3' open’®(y, WRITE) == open(f, WRITE)

CompFileWriteiTheorem 1 4 open’(f, READ_WRITE) == open(f, READ_MRITE)
The induction step is vacuous.

The current conjecture is subgoal CompFileWritelTheorem 1.1.

Subgoal CompFileWriteiTheorem.i.1: opan'{f, 0) == open(f, 0)
[] Proved by normalization

The current conjecture is subgoal CompFileWritelTheorem.1.2

Subgoal CompFileWriteiTheorem.1.2: open’(f, READ) == open(f, READ)
[] Proved by normalization.

The current conjecture is subgoal CompFileWriteiTheorem 1.3,

Subgoal CompFileWriteiTheorem.1.3: open’(f, WRITE) == open(f, WRITE)
[] Proved by normaiization.

The current conjecture is subgoal CompFileWritelTheorem.1.4.

Subgoal CompFileWriteiTheorem.1.4: open’(f, READ_MRITE) == open{f, READ_WRITE)
[] Proved by normalization.

The currant conjecture is CompFiloWritelTheorenm.1.

Conjecture CompFileNriteiTheorex.1: open’(f, m) == open(f, m)
[] Proved by induction on ‘m’.

LP11: prove

Please enter a conjecture to prove, terminated vith a
help:

write'(opf, dt, count)=grite(opf, dt, count)

f..? line, or ‘7’ for



The current conjecture is CompFileNritelTheorem.3.

Conjecture CompFileNritelTheoremn.3:
vrite’(opf, dt, count) == urite(opf, dt, count)
{] Proved by normalization.

LP12: prove
Please enter a conjecture to prove, terminated with a ..’ line, or ‘7’ for
help:

toByte(t) = toByte(t)

The current conjecture is CompFileWriteiTheorem.4.

Conjecture CompFileWritelTheorem.4: toByte(t) == toByte(t)
[1 Proved by normalization.

LP23: declare variable pt:String

LP25: prove
Please enter a conjecture to prove, terminated vith a ‘..’ line, or '”' for
help:
(self’ = write(self, toByte(._prefix2(pt)), __sel8 _fpointer(self)) & result &
(self1’ = grite(self, toByte(._prefix2(pt)), __sel8_fpointer(self)) &
result)) s> self?’ = selfl’

The current conjecture is CompFileWriteiTheorem 5
The equations cannot be ordered using the current ordering.

Conjecture CompFileWriteliTheorem.5:
((write(self, toByta(__prefix2(pt)), ._sel8_fpointer(self)) = self')
& (srite(self, toByte(__prefix2(pt)), __sel8_fpointor(self)) = selfi’)
& result
& result)
=> (self’ = selfl’)
== true
Current subgoal:
((__mixfix2(__sel7_file(self),
(prefix(._sel6_data(self), __sel8_fpointer(self))
{1 toByte(_ _mixfix6(__sel2_locs(pt), __sell_idx(pt))))
|1 removePrefix(__sel6_data(self),
~-8018_fpointer(self)
+ len(toByte(__mixfix6(__sel2_locs(pt), __sell_idx(pt))))),
~oBel4_mode(selt),
--8018_fpointer(sel?)
+ len(toByte(__mixfix6(__sel2_locs(pt), __seli_idx(pt)))))
= gelf’)
& (L mixfix2(__sel7_file(self),
(prefix(__vel6_data(self), __sel8_fpointer(self))
{1 toByte{ mixfix6(__sel2_locs(pt), ,_sell_idx(pt))))
il removePrerix{._sel6_data(self),
_.sel8_fpointer(self)
+ len(toByte(
L mixfix6(__sel2 locs(pt), __seli_idx(pt))))),
..8014_mode(self),
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-.8¢18 fpointer(self)
+ len(toByte(__mixfix6(__sel2_locs(pt), __sell_idx(pt)))))
= gelfl’)
& result)
= (self’ = gelfi?)

=z true
Proof suspended
LP27: resume by =>

Conjecture CompFileliriteiTheorem.5: Subgoal for proof of =>
Neu constants. selfc, ptc, self’c, selfl’c, resultc
Hypothesis.
CompFiledritelTheoremImpliasHyp.1:
(_»ixfix2(__sel7_file(selfc),
(prefix(__sel€ _data(selfc), __sel8_7Zpointer(selfc))
Il toByte(_ . mixfix6(__sel2_locs(ptc), ..sell_idx(ptc))))
Il removePrefix(_.sel6_data(selfc),
.-8e18_fpointer(selfc)
+ len(toByte(__mixfix6(__sel2_locs(ptc), __sell_idx(ptc))))),
_.8e14_mode(selfc),
--se18_fpointer(selfc)
+ lan(toByte(__mixfix6{(__sel2_Jocs(ptc), ..sell_idx(ptc)))))
= gelf’'c)
& (__maxfix2(__sel?_file(grelfc),
(prefix(__sel6_data(selfc), __sel8_ fpointer(selfc))
Il toByte(__mixfix6(__sel2 locs(ptc), __sell_idx(ptc))))
Il removePrefix(__.sel6_data(selfc),
.-sel8_fpointer(selfc)
+ len(toByte(
--mixfix6(_ _sel2 locs(ptc), __sell_idx(ptc))))),
-.8eld_mode(selfc),
--selB_fpointer(selfc)
+ len(toByte(__mixfax6(_.sel2 locs(ptc), ._seli_idx(ptc)))))

= selfl’c)
& resultc
== true

Subgoal
CompFileNritelTheorem.5.1: self’'c = selfl’c == true

The current conjecture is subgoal CompFileWriteiTheorem.5.1.
Added hypothesis CompFileWritelTheoremImpliesHyp.1 to the system

Deduction rule 1p_and_is_true has been applied to equation
CompFileWriteiTheoremImpliestyp.1 to yield the following equations, which imply
CompFileWNriteiTheoremImpliesHyp.1.
CompFileWriteiTheoremImpliesHyp.1.4:
~Bixfix2(__sel7_tfile(selfc),
(prefix(_.sel6_data(selfc), __sel8_fpointer(selfc))
Il toByte(_ _mixfix6(__sel2_lous(ptc), _.sell1_idx(ptc))))
|1 removePrefix(__sel6_data(selfc),
-.8018_fpointer(selfc)
+ len(toByto(__mixfix6(__sel2 locs(ptc), __seli_idx(ptc))))),
~.5014_mode(selfc),
--8018_fpointer (selfc)
+ len(toByte(__mixfix6(__sel2_locs(ptc), _.sell_idx(ptc)))))
= gelf’c
== true
CompFileWriteiTheoremImpliesHyp.1.2:
-mixfix2(_ _sel7_file(selfc),
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. (prefix(__sel6_data(selfc), __sel8_fpointer(selfc))
Il toByte(__mixfix6(__sel2_locs{ptc), __seli_idx(ptc))))
|| removePrefix(__sel6_data(selfc),
-~8e18_fpointer(selfc)
+ len{toByte(__mixfix6(__sel2_locs(ptc), __seli_idx(ptc))))),

-.8014_mode(selfc),
..8el8_fpointer(selfc)

+ len(toByte{__mixfix6(_.sel2_ locs(ptc), __sell_idx(ptc)))))
= gelfi’c
2z true

CompFileNriteiTheoremImpliesiyp.21.3: resultc == true

Deduction rule 1lp_equals_is_true has been applied to equation
CompFileWriteliTheoremImplaesHyp.1.1 to yield equation
CompFileWriteiTheoremImpliesHyp.1.1.1,
~mixfix2(__sel7_file(selfc),
(prefix(__sel6_data(selfc), ..sel8_frointer(selfc))
|| toByte(__mixfix6(_ _sel2_locs(ptc), _.sell_idx(ptc))))
|| removePrefix(__sels_data(selfc),
-.8el8_fpointer(selfc)
+ len(toByte(__mixfix6(__sel2_ locs(ptc), ._sell_idx(ptc))))),
-.seld_mode(selfc),
--sel8 fpointer(selfc)
+ len(toByte(__mixfix6(__sel2 _locs(ptc), __sell_adx(ptc)))))
az pgelf’c,
which implies CompFileWriteiTheoremImpliesHyp 1.1.

Deduction rule 1p_equals_is_true has been applied to equation
CompF1leWritelTheoremImpliesHyp 1.2 to yieid equation
CompFileWriteiTheoremImpliesHyp.1.2.1,
o mixfix2(__sel7_file(selfc),
(prefix(__sel6_data{selfc), __sel8_fpointer(selfc))
|1 toByte(__mixfix€(__sel2_ locs(ptc), __sell_idx(ptc))))
|t removePrefix(__sel6_data(selfc),
..sel8_fpointer(selfc)
+ len(toByte(__mixfix6(__sel2_locs(ptc), ._aell _idx(ptc))))},
--2eld_mode (selfc),
-.8e18_fpointer(selfc)
+ len(toByte(_ _mixfix6(__sel2_locs(ptc), __sell_idx(ptc)))))
== selfl’c,
which implies CompFileWriteiTheoremImpliesHyp.1.2.

Subgoal CompFileWritelTheorem.5.1: self’c = selfi’'c == tyrue
[J Proved by normalization.

The current conjecture is CompFileWritelTheorem.5.

Conjecture CompFileWritelTheorem.5:
((urite(self, toByte(__prefix2(pt)), __sel8_fpointer(self)) = self’)

& (vrite(self, toByte(__prefix2(pt)), __sel8_fpointer(self)) = selfi’)
& result
& result)
=> (self’ = salfi’)
== true

[J Proved =>.

Figure 31: LP proofs for completeness of RWFile.lcc Write(char) member-function
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Larch Prover (24 January 1994) logging on 20 November 1994 11:56:59 to
¢/mnt/kbs1/BBRS/uman/thesis/1p/file/CompFileWrite2.1plog’.

LPA: prove

Please enter a conjecturs to prove, terminated with a ‘..’ line, or ‘?* for
help:

maxIndex'(ptr)=maxIndex(ptr)

The current conjecture is CompFileWrita2Theorem.1.

Conjecture CompFileVrite2Theorem.1: maxIndex’(ptr) == maxIndex(ptr)
[] Proved by normalization.

Deleted equation CompFileWrite2Theorem.1, which reduced to an identity.
The equations cannot be ordered using the current ordering.

LP5: prove

Please enter a conjectura to prove, terminated with a ‘..’ line, or ‘?’ for

help:
open’(f, m) == open(f, m)

The current conjecture is CompFileWNrite2Theorem 2.

Conjecture CompFileWrite2Theorem 2. open'(f, m) == open(f, m)

Proof suspended.

LP8: resume by induction on m using File.19

Conjecture CompFileWrite2Theorem.2. Subgoals for proof by inducticn on ‘m’

Basis subgoals.
CompFileWrite2Thevrem.2.1 apen’(f, 0) == open(f, 0)
CompFileWrite2Theorem.2.2: open’(f, READ) == open(f, READ)
CompFileWrite2Theorem.2.3: open’(f, WRITE) == open(f, WRITE)
CompFileNrite2Theorem.2.4: open’(f, READ_WRITE) == open(f, READ_WRITE)

The induction step 18 vacuous.

The current con)ecture is svbgoal CompFileWrite2Theorem.2.1.

The equations cannot be ordered using the current ordering

Subgoal CompFileWrite2Theorem.2.1: open’(i, 0) == open(f, 0)

Subgoal CompFileNrite2Theorem 2.1: open’(f, O) == open(f, 0)
[] Proved by normalization.

The current conjecture is subgoal CompFileWrite2Theorem.2.2.

Subgoal CompFileWrite2Theorem.2.2: open’(f, READ) == open(f, READ}
[] Proved by normalization.

The current conjecture is subgoal CompFileWrite2Theorem.2.3.

Subgoal CompFileWrite2Theorem.2.3: open’(f, WRITE) == open(f, WRITE)
{] Proved by normalization.

The current conjecture is subgoal CompFileWrite2Theorsn.2.4.
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Subgoal CompFileWrite2Theorem.2.4: open’(f, READ_WRITE) == open(f, READ_VRITE)
[} Proved by normalization.

The current conjecture is CompFileWrite2Theorem.2.

Cnnjecture CompFileWrite2Theorem.2: open’(f, m) == open(f, n)
t] Proved by induction on ‘m’.

LP17: prouvs
Please enter a conjecture to prove, terminated with a *. ’ line, or ‘?’ for
help:

read’(opf, ind, count) = read(opf, ind, count)

..

The current conjecture is CompFileWrite2Theorem.4.
The equations cannot be ordered using the current ordering

Conjecture CompFileWrite2Theorem.4:
read’(opf, ind, count) == read(opf, ind, count)
Proof suspended.

LP24. display deduction File
Deduction rules:

File.2: when __selil_name(f1) == __selll_name(f2),
_.sel5_data(fi) == __sel5_ data(f2),
-.sell_mode(f1) == __sell_mode(f2)

yield f1 == {2

File.10: ghen __sel8_file(r1l) == __sel8_f1le(r2),
..sel6_data(rl) == __sel6.data(r2),
..8¢12_mode(rl) == __sel2_mode(r2),
--sel9_fpointer(rl) == __sel9 fpointer(r2)

yield r1 == r2

F1le.30: shen __sel7_ofile(r3d) == __sesl7_ofile(rd),
_-8e110_reddata(r3) == __seliO_reddata(r4)

yield r3 == r4

LP25: instantiate r3 by read’(opf, ind, count), r4 by read(opf, ind, count) in File 30

Deduction rule File.30 has been instantiated to deduction rule File 30 1,
when
--8el7_ofile(read’(opf, ind, count)) == __sel7 ofile(read(opf, ind, count)),
--80110_raeddata(read’(opf, ind, count))
== __sel10_reddata(read(opf, ind, count))
yield read’(opf, ind, count) == read(opf, ind, count)

Conjecture CompFilalrite2Theorem.4:
read’(opf, ind, count) == read(opf, ind, count)
{] Proved by normalization

LP43: declare variable

Please enter variable declarations, terminated with a ‘..’ line, or ‘?’ for
help:

dt:Data
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LP44. prove len’(dt)=len(dt) .
The current conjecture is lemma CompFileWrite2Theorem.7.
The squations cannot be ordered using the current ordering.

Lenna CompFileWrita2Theorem.7: len’(dt) == len(dt)
Proof suspended.

LP46- vesume by induction on dt using Deque.t

Lemma CompFileWrite2Theorem.7: Subgoals for proof by induction on ‘dt’
Basia subgoeal:
CompFileWrite2Theorem 7.1: 12n’ (empty) == len(empty)
Induction constunt: dtc
Induction hypothes:s:
CompFileWrite2TheoremInductHyp.1: len’(dtc) == len(dtc)
Induction subgoal
CompFileWrite2Theorem 7.2. len’(dtc \postcat b) == len(dtc \postcat b)

The current conjecture is subgoal CompFileWrite2Theorem.7 1.

Subgoal CompFileNrite2Theorem 7.1: len’(empty) == len(empty)
[] Proved by normalization.

The current conjecture is subgoal CompFileWrite2Theorem 7.2.
Added hypothesis CompFileWrite2ThooremInductHyp.1 to the system.

Subgoal CompFileWrite2Theorem.7.2: len’(dtc \postcat b) == len(dtc \postcat b)
[] Proved by normalization.

The current conjecture is lemra CompF:leWrite2Theorem 7.

Lemma CompFileWrite2Theorem 7 len’(dt) == len(dt)
[) Proved by induction on ‘dt’.

LP47. prove
Piease enter a conjecture to prove, terminated with a ‘..’ line, or ‘7’ for
help

toByte(t) = toBytae(t)

The current corjecture is CompFileWrite2Theorem.8.

Conjecture CompFiloWrite2Theorem.8: toByte(t) == toByte(t)
[] Proved by normalization

LPE3: prove
Please enter a conjecture to prove, terminated with a ‘..’ line, or ‘7’ for
help:

(ind >= 0:Int & ind <= count & toByte(__prefix2(ptr + ind)) =
.-8¢110_reddata(read(self’, len(toByta(__prefix2(ptr))),
--3019_fpointer(self) + (ind e

len{toByte(__prefix2{(ptr)))))) & result &
(ind >= 0:Int & ind <= count & toByte(__prefix2(ptr + ind)) =
..50110_reddata(readiself1’, len{toByte(__prefix2(ptr))),
..selY_fpointer(selt) + (ina *

len(toByte(__prefix2(ptr)))))) & result)) =>
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. self’ = gelfl’

The current conjecture is CompFileWrite2Theorem.9.
The equations cannot be ordered using the current ordering.

Conjecture CompFileWNrite2Theorem.9:
((ind <= count)
& (ind <= count)
& (_.sel10_reddata(
read(self’,
len(toByte(__prefix2(ptr))),
(len(toByte(__prefix2(ptr))) s ind) + __sel9_fpointer(self)))
= toByte(__prefix2(ptr + ind)))
& (._sel10_reddata(
read(selfl’,
len(toByte(__prefix2(ptr))),
(len(toByte(__prefix2(ptr))) » ind) + __sel9_fpointer(self)))
= toByte(_.prefix2(ptr + ind)))

¢ (ind >= 0)
& (ind >= 0)
& result
& result)
=> (self’ = selfl’)
== true
Current subgoal:
((prefix(

removePrefix(__sel6_data(self’),
(len(toByte(__mixfix6(__sel3_locs(ptr), __seld_idx(ptr)))) * ind)
+ __sel9_fpointer(self)),
len(toByte(__mixfix6(__sel3_locs(ptr), __sel4_1dx(ptr)))))
= toBytel(
—-mixfix6(__sel3_locs(set idx(ptr, ..reld_idx(ptr) + ind)),
_.seld_idx(set_idx(ptr, __.seld_adx(ptr) + ind)))))
t (prefix(
removePrefix(__sel6_data(selfl’),
(len(toByte(_ _.mixfix6(__sel3_locs(ptr), __sald_idx(ptr)))}) ¢ ind)
+ _.sel9_fpointer(self)),
len(toByte(__mixfix6(__sel3_locs(ptr), __selq_idx(ptr)))))
= toByte(
--maxfix6(__sel3_loca(set_idx(ptr, __seld_idx(ptr) + ind)),
--seld_idx(set_idx(ptr, ._sel4_idx(ptr) + ind)))})
& ((0 < ind) | (0 = ind))
& ((ind < count) | (count = ind))
& result)
= (self’ = gelfi’)
== true
Proof suspended.

LP54: resume by =>

Conjecture CompFileWrite2Theorem.9: Subgoal for proof of =>

Bew constants: self’c, ptrc, indc, selfc, selfi’c, countc, resultc

Hypothesis:

CompFileWrite2TheoremImpliesiyp.1:
(prefix(
removePrefix(__sel6_data(self'c),
(indc # len(toByte(. _mixfix6(__sel3_locs(ptrc), __sel4_idx(ptrc)))))
+ __sel9 _fpointer(selfc)),
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len(toByte(__mixfix6(__sel3_locs(ptrc), ..seld_idx(ptrc))}))
= toByte(
-mixfix6(_ _rel3_locs(sat_idx(ptrc, _.sel4_idx(ptrc) + indc)),
--sel4_idx(set_idx(ptrc, __sel4_idx(ptrc) + indc)))))
& (prefix(
removePrefix(__sel6_data(selfi’c),
(indc
* len(toByte(__mixfix6(__sel3_ locs(ptrc), _.sel4_idx(ptrc)))))
+ __sol9_fpointer(selfc)),
len(toByte(__mixfix6(__sel3_locs(p.rc), __seld_idx(ptrc)))))
n toByta(
--mixfiv6(__sel13_ locs(set_idx(ptrc, __sel4_idx(ptrc) + indc)),
~-Sel4_idx(set_idx(ptrc, __sel4_idx(ptrc) + indc)))))
& resultc
& ((0 < indc) | (0 = indc))
& ((indc < countc) | (countc = indc))
== true
Subgoal .
CompFileVrite2Theorem.9 1: self'c = selfl’c == true

The current conjecture is subgoal CompFileWrite2Theorem.9.1.
Added hypothesis CompFileNrite2TheoremimpliesHyp.1 to the system.

Daduction rule 1p_and_is_true has been applied to equation
CompFileWrite2TheoremImpliesHyp.1 to yield the following equations, which imply
CompFileWrite2ThecremImpliesHyp.1.
CompFileWrite2TheoremImpliesHyp.1.1"
prefix(
removePrefix(__sel6_data(self’c),
(indc *» len(toByte(__mixfix6(__.sel3_locs(ptrc), ._seld_idx(ptrc)))))
+ __s8el9 _fpointer(sclfc)),
len(toByte(__mixfix6(__sel3_locs(ptrc), __seld_idx{(ptrc)))))
= toByte(
~mixfix6(__sel3_locs(set_idx(ptrc, _.seld_idx(ptrc) + indc)),
--selq_idx(set_idx(ptrc, ._seld_ida(ptrc) + sndc))))
== true
CompFileWrite2TheoremImpliesHyp.1.2.
prefix(
removePrefix(__sel6_data(selfl’c),
(indc » len(toByte(_ _mixfix6(__sel3_locs(ptrc), __seld_idx(ptrc)))))
+ _.sel9_fpointer(selfc)),
len(toByte(__mixfix6(__sel3_locs(ptrc), __seld_idx(ptrc)))))
= toByte(
--mixfix6(__sel3_locs(set_idx(ptrc, __sel4_idx(ptrc) + indc)),
--seld4_idx(set_idx(ptrc, ._.-el4_idx(ptrc) + indc))))
== true
CompFileWrite2TheoremImpliesHyp.1.3: resultc == true
CompFileVWrite2TheoremImpliesHyp.1.4: (0 < indc) | (0 = indc) == true
CompFileVWrite2TheoremImpliesHyp.1.5:
(indc < countc) | (countc = indc) == true

Deduction rule lp_equals_is_true has been applied to squation
CompFile¥rite2TheoremImpliesHyp.1.1 to yield equation
CompFileVWrite2TheoremImpliesHyp.1.1.1,
prefix(
removePrefix(__selS_data(self’c),
(indc * len(toByte(__mixfix6(__sel3_locs(ptrc), __.sel4_idx(ptrc)))))
+ __sel9_fpointer(selfc)),
lon(toByte(__mixfix6(__sel3_locs(ptrc), ._sel4_idx(ptrc)))))
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toByte(
~-mixfix6(__sel3_locs(set_idx{ptrc, __seld_idx(ptrc) + indc)),
--8014_idx(eet_idx(pirc, ..sel4_idx(ptrc) + indc)))),
shich implies CompFilelrite2TheoremImpliestiyp.1.1.

Deduction rule lp_equals_is_true has been applied to equation
CompFileWrite2TheoremimplicsHyp.1.2 to yield equation
CompFileVWrite2Theorenlmpliesiyp.1.2.1,
prefix(
romovePrefix(__sel6_data(selfl’c),
(indc ¢ len(toByte(__mixfix6(._sel3_locs(ptrc), ..seld_idx(ptrc)))))
+ _.s819_fpointer(selfc)),
len(toByte(__mixfix6(__sel3_locs(ptrc), ._seld_idx(ptrc)))))
=x
toByte(
~-mixfix6(__sel3_ locs(set_idx(ptrc, ._sel4_idx(ptrc) + indc)),
.-seld_idx(set_idx(ptrc, __seld_idx(ptrc) + indc)))),
which implaes CompFaleWrite2TheoremImpliesiiyp.1.2.

Subgoal CompFile¥Write2Theorem.9.1: salf’c = selfl’c == true
[1 Proved by =

Conjecture CompFileWrite2Theorem.9
((ind <= count)
& (ind <= count)
& (_.8el10_reddata(
read(self’,
len(toByte(__prefix2(ptr))),
(len(toByte(__prefix2{ptr))) * ind) + _.sel9_fpointer(self)))
= toByte(__prefix2(ptr + ind)))
k (__s¢110_reddataf(
read(selfl’,
len(toByte(__prefix2(ptr))),
(len(toByte(__prefix2(ptr))) » ind) + __sel9_fpointer(self)))
= toByte(__prefax2(ptr + ind)))

& (ind >= 0)

& (ind >= Q)

& result

& result)

=> (gelf' = solf1l’)
== true

[] Proved by =>.

Figure 32: LP proofs for completeness of RWFile.lcc Write(char *, size_t) member-
function
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