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ABSTRACT

Comprehensive Dynamic Analysis of a Bladed-Disk-
Turborotor-Bearing System

Ashok Kaushal, Ph.D
Concordia University, 1992

The dynamic behaviour of a bladed disk-turborotor-bearing
system is studied employing analytical, numerical and
experimental methods. The system consists of several
subsystems such as turbine disk, blades, bearings, support
pedestals etc. In order to completely understand the dynamic
behaviour of the turborotor system an appropriate model for
each individual component of the system is first developed.
The individual components are modelled to include various
design parameters and the effect of these parameters on the
vibrational behaviour is studied. The vibration studies on the
individual components are carried out using Rayleigh-Ritz
method beuandary characteristic orthogonal polynomials as
assumed shape functions. The individual components are then
assembled using the finite element technique. The turborotor
system is studied from a system point of view and the natural
frequencies and mode shapes are obtained for various
rotational speeds. The results show that the natural
frequencies of the system are different from those obtained by

analyzing individual components, suggesting that a system
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approach must be adopted for proper design of a turborotor
system. The amplitude of vibration and stresses due to
harmonic and centrifugal loading on the blades and the disk
are also obtained. The results indicate that for the
turborotor speed of operation, the centrifugal loading is the
major factor in determining the critical stresses in
comparison to the gas forces on the blade modelled as harmonic
loading. Experimental validation of the analytical model is

carried out and suggestions for future work are given.
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CHAPTER 1

INTRODUCTION, LITERATURE SURVEY AND OBJECTIVES

1.1 : General

Reliable operation of turbomachinery depends mainly on
the designer's ability to accurately determine the stresses
under actual operating conditions and keep them within safe
limits. This requires a good understanding of the dynamic
behaviour of the system. The recent trend in the design of
turbomachinery is towards higher speeds and lower weight which
seems more and more realizable in view of the improved methods
available for predicting dynamic response of the turborotor.
The turborotor system consists of several subsystems such as
turbine and compressor blades, disks, bearings, mechanical
couplings in shafts, etc. Centrifugal forces are set up in the
disks and blades due to their rotation, which deflect the
structure and at the same time cause in-plane strains
resulting in the stiffening of the structure. In addition, the
dynamic behaviour of the turborotor running in its bearings,
mounted on supports which themselves may be flexible, will be
quite complex. Since, the dynamics of the blades and disks as
well as the rotor shaft and bearings are coupled, it is quite
important that a comprehensive study of the dynamic behaviour
is carried out from a system point of view, to arrive at a

proper design.



Due to change in structural characteristics with the
speed of rotation, the natural frequencies and associated
modes of free vibration will be much different from those
under non-rotating conditions. Also, the vibrational behaviour
of individual components such as the blade, disk, shaft are
coupled and this must be taken into consideration to determine

the total behaviour of the turbo-rotor in operation.

1.2 : Scope of Literature Review

With the continually increasing use of tubomachinery at
higher performance levels, especially in aircraft industry,
the study of vibration problems arising in rotating structures
has become increasingly important. Rotor shaft designers in
the field of turbomachinery usually make the assumption that
any disks attached to the shaft are rigid and adopt a lumped
parameter representation. This assumption 1is generally
satisfactory, but can be very optimistic if the disk is made
thin in a weight minimizing effort, resulting in disk bending

frequencies which may fall close to rotor operating frequency.

In addition, when a lumped parameter representation of
the system is used, the number of obtainable critical speeds

is equal to the number of the mass points selected. The lumped



parameter mathematical model does not represent the true
physical model and consequently, does not accurately predict
the higher critical speeds. Moreover, discretization of a
continuous system lowers the natural frequencies from their
true value [1] and if the analysis follows an energy approach,
that will raise the natural frequencies above their true
values. As a consequence, the designers cannot be certain
about the reliability of the final result of an analysis which

uses both discretization and energy approach.

Techniques for predicting the vibrational behaviour of
a complete turbo-rotor system require a full understanding of
the basic vibration characteristics of all the components such
as blade, disk, rotor shaft mounted on bearings. It is usually
the blades which are most seriously affected by vibrations.
Probably as a result, much attention has been directed in the
past to study the vibration behaviour of an individual blade,
considered to be a cantilever beam and unaffected by the
flexibility of the disc to which it is attached. Since the
blades are idealized as beams when aspect ratios are high, and
plates when aspect ratios are low, the vibration of rotating
cantilever beams and plates have been studied in several

investigations.

The methods of solution of such rotating structures can



broadly be classified as belonging to either the continuum
model approach or the discrete model approach. In the
continuum model approach, the potential energy method, the
complementary energy principle or the Galerkin procedure have
been employed for the solution of such structures. The
resulting differential equations obtained using these methods
are solved using Runge-Kutta procedure. In the discrete model
approach, the Holzer-Myklestad, Stodola, polynomial frequency
equation transformation, solution functions, finite difference
and finite element methods are well developed. All these
discrete model approaches suffer from the drawback of
discretization of the distributed mass and elasticity, thus

yielding lower bound solutions.

In view of the complexity of the problem, the review of
the past literature on the subject is classified under the
following categories and discussed in order to put the present

study in proper perspective:

1) Vvibration of blades with large aspect ratio.
2) Vibration of blades with small aspect ratio.
3) Vibration of disks.

4) Vibration of bladed disk assembly.

5) Bladed-Disk Assembly / Rotor Analyses



1.3 : Vibration of Blades with Large Aspect Ratio

Various investigators considered one or a combination of
parameters such as rotational speed, pretwist, to determine
their effects on the natural frequencies. A general survey of

such studies is presented by Rao [2].

Energy expressions for a rotating beam undergoing
transverse vibrations were derived by Carnegie [3] and he
obtained the fundamental frequency using Rayleigh's method.
Schilhansl [4] derived the equation of motion for the bending
vibrations of a rotating cantilever beam with uniform cross-
section and solved it by successive approximations to
determine the effect of rotation on the fundamental frequency.
He showed that the fundamental frequency of the beam increased
with the inclusion of rotation. Pnuelli [5] investigated the
vibrations of a rotating cantilever beam and found that the
rotation of the beam tended to increase the natural
frequencies of flexural vibration compared to those for the
non-rotating beam. Subrahmanyam, Kulkarni and Rao [6] used
Reissner method to obtain the natural frequencies of rotating
blades having a symmetric aerofoil cross-section with
allowance for shear deflection and rotary inertia. The
Reissner method allows to determine accurately the stresses

and the displacements as also the natural frequencies and



mode shapes simultaneously. They showed that the method gives
results which are superior to those obtained by using the
potential energy expression in the Ritz method. Kumar [7] used
Myklestad method to obtain in-plane vibration frequencies of
rotating beams with tip mass. Isabson and Eishley [8] used the
extended Holzer-Mykl :stad procedure and Slypex [9] used the
Stodola method to determine the natural frequencies of
pretwisted cantilever blades. The method of Frobenius was used
to solve for the natural frequencies and mode shapes of
centrifugally stiffened beams by Wr jtht, Smith, Thresher and
Wang [10]). The effects of the hub radius and tip mass on the
bending natural frequencies of rotating beams were studied by
Handleman, Boyce and Cohen [11], Lo, Goldberg and Bogdanoff
[12], and Boyce and Handlemann [13]. In these studies it was
observed that the hub radius significantly influenced the
bending natural frequencies . The effect of setting angle on
the natural frequencies was studied by Wang et al [(14]. An
improved strain energy formulation in Rayleigh-Ritz method was
used by Kaushal and Bhat [15] to obtain the natural
frequencies of a rotating cantilever beam. In this formulation
shear force distribution obtained from an assumed deflection
shape, was integrated along the beam satisfying appropriate
boundary conditions to obtain the moment distribution and
using this information an improved expression for the strain

energy was obtained. Bhat (16} studied the transverse



vibrations of a rotating cantilever beam with tip mass using
beam-characteristic orthogonal polynomials in Rayleigh-Ritz

method.

Finite element method was used by Putter and Manor (17)
to solve for the natural frequencies in flexural vibrations of
a rotating beam with tip mass. Hoa [18] also utilized the
finite element technique to study the effect of setting angle
and hub radii on a rotating beam with tip mass. The effect of
root flexibility on the vibration characteristics of tapered
blades was studied by Singh and Rawtani [19], and the coupled-

bending vibrations were studied by Singh and Rawtani [20].

1.4 : Vibration of Blades with Small Aspect Ratio

A beam model will represent a turbine engine blade
reasonably well if the blade is relatively long with respect
to its width (i.e. large aspect ratio); and if the blade is
reasonably thick, and only the first few vibration frequencies
and mode shapes are neeced. Unfortunately, these requirements
are often not met. Blades in sections of turbomachinery have
a small aspect ratio. Efficiency demands thin blades and
dynamic response studies over a large frequency range require
results for many modes, which cannot be approximated as beam

modes.
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The flexural vibration of rectangular plates by using
beam vibration mode shapes as admissible functions in both the
Rayleigh and Rayleigh-Ritz methods of analysis has been
treated extensively by Young [21]}, Leissa [22], and Dickinson
[23]). The convergence and accuracy of the Rayleigh-Ritz method
has been discussed by various authors including Trefftz [24],

Courant [25], and Collatz [26].

While Rayleigh-Ritz method is well known, it has not been
used as much as might be expected for plate vibration
problems. This is probably due, at least in part, to the great
amount of computational labour which is required both to set
up and solve the necessary equations. The amount of
computation involved depends to a large extent upon the set of
functions that are used to represent the plate deflection. For
these functions, some investigators have used combinations of
the characteristic functions which define the normal modes of
vibration of a uniform beam. Gorman [27] obtained a general
analytical solution for the vibration of rectangular plates
supported on their 1lateral surface by symmetrically
distributed point supports. Bassily and Dickinson [28] used
degenerated beam functions to study flexure problems
concerning static deflection or free vibration of plates
involving free -edges. An alternate set of admissible

functions, derived frcm the mode shapes of vibration of plates
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having two parallel edges simply supported and boundary
conditions on the other two edges appropriate for the plate
under consideration, was suggested by Dickinson and Li (29].
Even though these functions, which were called " the simply
supported plate functions " provided superior results for
plates supported in some manner along all four edges, they did
not yield satisfactory results when some of the plate edges
were free. Laura [30] used " polynomial co-ordinate functions
" to approximate the fundamental natural frequencies of
systems. Goldfracht and Rosenhouse [31] used a bipolynomial
series to approximate the deflection shapes of plates and
obtained the natural frequencies and mode shapes of plates
with clamped boundaries with partial rotational flexibility of
the edges employing Garlekin's method. They provided explicit
algebraic expressions for the first nine modes. The deflection
shapes defined by the bipolynomial series are not orthogonal
to each other and hence the resulting expressions become quite
cumbersome. Bhat [32)] proposed a set of beam characteristic
orthogonal polynomials that can be used as plate deflection

functions to obtain the natural frequencies and mode shapes of
rectangular plates in Rayleigh-Ritz method. He showed that the
use of these orthogonal polynomials yields excellent results
for the natural frequencies of several example plates having
various boundary conditions. The excellence of the functions

was further established by Dickinson and DiBlasio [33] who
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conducted a convergence study of the method. They included the
effect of special orthotropy and in-plane loading in their
studies. These orthogonal polynomials for the beam are
constructed using Gram-Schmidt process, the first member of
the set satisfying both the geometrical and natural boundary
conditions of the beam and all the rest satisfying the
geometrical boundary conditions. Leissa, Lee and Wang [34]
used shallow shell theory to determine the frequencies of a
blade having camber and twist, rotating with non-zero angle of
attack. The effect of camber on the natural frequencies was

studied by Rawtani [35].

The s-resses, natural frequencies and mode shapes of an
existing thin blade have been studied using the finite element
method by Barten et al [36]. A similar analysis has been done
for thick blades by Ahmad et al [37] which was extended to
rotating blades by Bossak and Zienkiewicz [38]. Dokainish and
Rawtani [39)] determined the natural frequencies and mode
shapes of a cantilever plate mounted on the periphery of a
rotating disk. From the results of computations carried out
for various values of the aspect ratio, hub radii and setting
angles, they derived empirical formulae giving the effect of
these parameters on the natural frequencies. Henry and Lalanne

(40) derived the total potential energy of a thin rotating
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plate. They minimized the potential energy by using the finite
element method and obtained the natural frequencies and mode
shapes by simultaneous iterative technique. Macbain [41] used
four node quadrilateral plate bending element (Cquad2) of
Nastran to evaluate the natural frequencies of a fixed aspect
ratio plate for different pre-twist conditions. Gupta and Rao
[42]) studied the effects of taper and twist on the natural
frequencies of a blade. Jumaily and Faulkner [43] considered
the thin shell theory for long hollow blades and compared the
results with those obtained using beam theory and from
laboratory tests. They showed that for higher frequency modes
and thin, short blades it is inaccurate to model the blade as
a beam. Also, the dynamic response studies require results for
many modes, some of which cannot be approximated as beam
modes. Gupta and Rao [44)]) used the thin shell theory to
formulate energy expressions and derived differential equation

for torsional vibrations

1.5 : Vibration of Disks

The notable monograph by Leissa [45] contains a summary
of all known results for the free vibration of many types of
circular plates until 1965. For isotropic, circular plates of

uniform thickness and subject to the classical boundary
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conditions of clamped, free or simply supported, exact
solutions in terms of Bessel functions exist. Natural

frequency parameters and in some cases nodal patterns have
been determined by several investigators. Among the
investigators are Carrington [46], who studied clamped plates,
Itao and Crandall ([47], who tabulated natural frequency
parameters and mode shapes for free plates and Leissa and
Narita [48], who presented natural frequency parameters for
simply supported plates. Vogel and Skinner [49) obtained exact
solutions for the natural frequency parameters of isotropic
annular plates with various combinations of the classical
boundary conditions for a wide range of inside to outside
radius ratios. The effects of rotary inertia and shear
deflection on the natural frequencies of annular plates was

studied by Rao and Prasad [50].

A disk having thickness which varies with radius has been
treated by several researchers. Laura, Ficcadenti, Valerga and
Greco [51] used the Rayleigh-Ritz method to study the effect
of radially varying thickness on the fundamental frequency.
The axisymmetric vibration with linearly varying thickness has
been studied by Raju et al [52], who used the finite element
method, and Soni and Amba Rao [53], who used the Chebyshev

collocation method. The latter work is extended by Gupta and
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Lal ([54] to include the effect of in-plane force. The
axisymmetrical vibration of such plates was further considered
by Sankaranarayanan et al ([55]. The natural frequency
parameters for both axisymmetrical and non-axisymmetrical
modes for disks with linearly varying thickness was obtained
by Gorman, [56], using the finite element method. Exact

analysis using Bessel functions for disks having parabolic and
linear variations have been reported by Lenox, Conway, Becker

[57], and Conway and Dubl [58], respectively.

The first analysis of solid circular spinning disks was
by Lamb and Southwell (59]. They included results for a very
slow rotating disk (negligible membrane forces) and an
approximate solution for a case when both bending stiffness
and membrane forces are important. Further, Southwell [60]
generalized the results of [59) by obtaining solutions for a
disk which is clamped at its inner radius and free at its
outer edge. Simmonds [61] studied the spinning disk using
membrane theory. Evesman and Dodson [62] solved the problem of
a spinning disk which is clamped at its inner edge by using a
series solution. Barasch and Chen [63] numerically integrated
the system of differential equations in order to solve a
similar problem. Mote [64] used the Rayleigh-Ritz technique to

investigate the free vibration characteristics of centrally
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clamped, variable thickness, axisymmetric disks with
axisymmetric in-plane stress distributions. In plane stresses
due to rotation, temperature and prestressing were considered.
Sinha [65) determined the natural frequencies of a thick
spinning disk using a numerical Rayleigh-Ritz trial function.
Kirkhope and Wilson [66] and Kennedy and Gorman [67] used

efficient annular finite elements to examine the vibrations of
thin axisymmetric disks. The effects of variable thickness and
temperature distributions were also included in their
analyses. Mote [68] also considered the vibrations of non-
axisymmetric disks using the finite element technique. Other
studies such as those by Johnson [69], and Everson [70] deal

with the spinning disk using membrane theory.

The stability characteristics of rotating disks have been
studied by Iwan and Moeller {71]. They estimated the stability
of a solid disk subject to a concentrated transverse load.
Vibration and stability behaviour of rotating slicing blades
with free inner and clamped outer edges was studied by Chonan
and Sato (72]. They obtained the natural frequencies as a
function of speed and discussed the types of instability that
appear 1in the system. Benson and Boggy [73] studied the
spinning disk problem with the objective of determining the

transverse deflection due to spatially stationary loads.
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Tobias and Arnold [74] presented a detailed investigation of
the vibration of rotating disks with an emphasis on the
critical speed instability phenomenon. Mote [75], and Mote and
Neih [76] presented both theoretical and experimental

investigations of this phenomenon.

1.6 : Bladed - Disk Assemblies / Rotor Analvses

Most of the p.evious studies on the vibration
characteristics of turborotor system treat the wvarious
components of the system such as shaft, blades and disks as
separate items. Very few studies have been done with regard to
the effect of interaction of flexible disks and a rotor, and
disk and blade vibration. A set of blades mounted on a rotor
exhibit more complex vibration characteristics than do single

or packeted cantilever blades.

Armstrong et al [77] used a coupling procedure to combine
the constituent parts of the bladed-disk assembly to determine
the natural frequencies of the system. Ewins [78] studied the
basic vibration characteristics of bladed disk assemblies to
predict the natural frequencies. A finite element model has
been developed by Kirkhope and Wilson [79]) considering the

effects of rotation and temperature distribution, and by Dye
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and Henry [80].

The earliest extensive work on the problem of non-
synchronous whirl of a flexible rotor with a rigid disk
including gyroscopic forces was by Green (81]. Sann ([82]
studied a flexible-disk supported by a shaft which had angular
and axial flexibility, but no mass. Dopkin and Shoup ([83]
studied the effect of disk flexibility and gyroscopic forces
on the resonant frequencies of an axisymmetric rotating shaft
with multiple disks and bearings. They found that disk
flexibility can significantly reduce the rotor resonant
speeds, particularly at low speed. Dynamic unbalance response
of an axisymmetrically mounted rotor with the influence of
the flexible disk has been studied by Hagiwara and Yoneyama
[84). They found that due to the asymmetry of the rotor the
shaft motion is elliptical rather than circular and this has
remarkable influence on the response of the shaft and disk.
Eshleman and Eubanks [85] investigated the effect of
gyroscop.c moments on the critical speeds of a shaft-disk
system mounted in short end bearings. Hagiwara, Sakata,
Takayanagi, Kikuchi and Gyobu [86] studied the vibration of a
rotor shaft system coupled with flexible impellers based on
the transfe- matrix method. They found that impeller
flexibility can reduce the critical speed of a rotor.

Also, components whose effect on the vibration characteristics
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is very important are the various types of connections which
may be made between adjacent blades referred to as 'shrouding'’
(tip shrouds and lacing wires). The effect of these
connections has been studied by Bielawa, Srinivasan, Rimkunas,
and Craig ([87-90]. These studies concentrated on the various
types of damping mechanisms to account for any energy

dissipation due to the vibratory rubbing at shroud interfaces
which in turn influences the extent of mechanical coupling
between the blades. Finally, the subject of ‘'mistuned' blades
i.e. differences in tuning on the vibration properties of
bladed disk assemblies has been studied by Whitehead, Kaza,
and Bendiksen [91-93]. These studies concluded that
aerodynamic mistuning is generally very beneficial, resulting

in significantly decreased maximum amplitude blade response.

1.7 : Scope of the Present Investigation

The objectives of the present investigation are:
i) To develop suitable models for each individual component
of a turborotor system and study their dynamic behaviour.
ii) To develop a comprehensive model of the turborotor system
by assembling each individual component using the finite
element technique and study its dynamic behaviour. Also,
to study the effect of disk, support and blade

flexibility on the system dynamic behaviour.
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iii) To obtain the response due to harmonic and centrifugal
loading using the finite element model of the turborotor
system.

iv) To obtain the stresses due to steady harmonic and
centrifugal loading.

v) To conduct modal testing of a shaft disk system and
compare the natural frequencies with those obtained from

the analytical results.

In the present study, Chapter 2 deals with the dynamic
analysis of a turborotor blade using beam characteristic
orthogonal polynomials in the Rayleigh-Ritz method. Depending
on the aspect ratio, the blades are idealized either as beams
or plates. The setting angle of the blade with respect to the
plane of rotation and the radius of the hub on which the
structure is mounted are taken into account in the
formulation. The effects of shear deflection and rotary
inertia are also studied. The variation of the natural
frequencies and mode shapes with the speed of rotation are
obtained for several combinations of the setting angle, hub

radius and aspect ratio.

In Chapter 3, axisymmetrical and antisymmetrical
vibrations of a turbine disk with varying thickness is

studied. Characteristic orthogonal polynomials are employed as

TO B SRV



...19.-
deflection functions in the Rayleigh-Ritz method. The
variation of the natural frequencies with speed of rotation
are presented for several parameter combinations such as the

ratio of inner/outer radii, ratio of inner/outer thickness.

Chapter 4, presents a finite element model of the bladed-
disk assembly. Natural frequencies and mode shapes are

presented for various values of the setting angle.

In Chapter 5, & complete model of the turborotor system
is developed using the finite element technigue and the
natural frequencies and mode shapes are obtained for various

rotational speeds.

In Chapter 6, response analysis of a complete turborotor
system subjected to steady sinusoidal and centrifugal loading
is carried out. The stresses and amplitudes of vibration for

a typical turborotor system are obtained.

Chapter 7 presents an experimental validation of the
analytical model used to study the effect cf rotation on the

natural frequencies of a disk of a turborotor system.

Finally, conclusions, highlights, and recommendations for

future work are presented in Chapter 8.



CHAPTER 2

DYNAMIC ANALYSIS OF ROTATING BEAM AND PLATE TYPE STRUCTURES

2.1 : General

A turbomachine blade, depending on its aspect ratio,
can be treated either as a cantilever beam or a cantilever
plate mounted on the periphery of a rotating disk at a setting
angle. A beam model will represent a turbine blade reasonably
well if the blade is slender (i.e. large aspect ratio ), is
reasonably thick, and only the first few vibrational
frequencies and mode shapes are needed accurately.
Unfortunately, these conditions are often not met. Many blades
in sections of turbomachinery have a small aspect ratio,
efficiency demands thin blades and dynamic response studies
require results for many modes, some of which cannot be

approximated as beam modes.

Centrifugal forces are set up in the blade due to
rotation, which cause in-plane strains, resulting in the
stiffening of the blade. Coriolis effects are also present
which modify the dynamic behaviour. Due to change in
structural characteristics with the speed of rotation, the
natural frequencies of the structure will change and it is
imperative that the speed of operation be away from the

natural frequencies for satisfactory operation.
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In this chapter, the dynamics of a rotating blade is
studied using Rayleigh Ritz method. The blade is modelled as
a rotating beam initially and then as a rotating plate. The
setting angle of the blade with respect to plane of rotation
and radius of the hub on which the blade is mounted are
considered in the formulation. The effects of shear
deformation and rotary inertia are also included. The
variation of the natural frequencies and mode shapes with the
speed of rotation are obtained for several combinations of

setting angle and hub radius parameters.

2.2 : Rayleigh - Ritz method

The Rayleigh-Ritz method is widely used to obtain
approximate values for the natural frequencies and mode shapes
of structures. The method is based on the principle of
conservation of energy in undamped structures undergoing
vibration and provides upper bound values for the system
natural frequencies.

In this method, a deflection shape of the form,

Y=ECD¢H (2.1)

is assumed initially, where ¢, are admissible functions

satisfying at least the geometrical boundary conditions and
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C ¢,, .....C, are arbitrary constant coefficients. The

17 n

functions ¢, must form a complete set to represent all the
modes of vibrations. In limiting this set to a finite number
of functions, the analysis can be interpreted as approximating
a continuous system into a multidegree of freedom discrete
system. The coefficients are adjusted by minimizing the
frequency with respect to each of the coefficients. This
results in N algebraic equations in terms of the N unknown
coefficients, C , involving p?, the frequency of vibration.

The solution of these equations then gives the natural

frequencies and associated mode shapes of the system.

For a conservative system, the maximum kinetic energy in
the system undergoing vibration is equal to the maximum strain
energy. However since the assumed mode shapes are not exact,

Tpax Will not be equal to U_

max and hence,

X

U

max

F(C,,p) =T, (2.2)

ax
will be the error term. The coefficients C, must be chosen so

as to minimize the error and hence,

dF _ d _ _
an - an (Tmax Umax) =0 (2.3)
aTnTax 2 T ap’- _ aUmax =0 (2.4)

—_—D° +
ac "“tec, g,

n
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where T _ = p°T"_ . Since p? must be stationery with

respect to C, , dp?/dC= 0 and hence,

p? [A] + [B) =0
where [A]=E%’%@;[B]=ff%c_ﬂ) N=1,2,.......N

(2.5)

This is a standard eigen-value problem and the solution
yields the natural frequencies and the corresponding
coefficients C, can be used in equation (2.1) to obtain the

approximate mode shapes.

2.2.1 : Assumed Shape Functions in Rayleigh - Ritz Method

In order to apply the Rayleigh~Ritz method it is
necessary to use shape functions satisfying at 1least the
geometrical boundary conditions. These shape functions when
substituted in the kinetic and potential terms produce cross
terms in the mass and stiffness matrices. When more number of
these terms are considered the matrices become ill conditioned

and pose numerical problems in solving for eigenvalues.

To overcome this problem beam characteristic orthogonal
polynomials proposed by Bhat [16,32] can be employed as

admissible functions in the Rayleigh-Ritz method. Construction
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of such beam characteristic functions are discussed in the

following section.

2.3 ¢ Orthogonal Functions

2.3.1 ¢ Definition of Orthogonality

Two functions ¢ (x) and ¢ (x) are said to be mutually
‘orthogonal' in the interval a < x £ b with respect to the

weight function (or weighting function) W.(x) if

b
[#ebnx00, < 0 men (2.6)

=§ m=n

where, 6 = is called "Kronecker delta' and is defined as 0 if
m=*nand 1 if m = n and W,(X) is non-negative and integrable

in the interval a < x < b [94], such that,

b .
[, dx>o (2.7) :
a

When each member of a set of functions ¢, (x) is
orthogonal to every other member of the set, in the interval
(a,b) with respect to the weight function W,(x), the set of
functions is called 'an orthogonal set of functions'. For the
orthogonal set of functions equation (2.6) can be generalized

as,

ki
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b
[ W9, 00,(x) dx = cpdp mn=1,2,3.... (2.8)
a

where, ¢,  is a constant . When m=n, and ¢, (x) * 0 , the

integrand in equation (2.8) is positive and consequently C >

0 or,

b
fwf(x) ¢2dx # 0 (2.9)

The norm of the function ¢ 6 is vC,..

2.3.2 ¢ Generation of Orthogonal Polynomials

When a set of orthogonal functions is constructed only
with polynomials and the difference between the degrees (the
term of highest degree in each member) of any two consecutive
member polynomials is just 1, a number of relationships are
known to exist [94,95]). Among them, one of the most important

relationships is the recurrence relation,

¢, (x) = (A, x-B,)) ¢, (x) (2.10)

¢, = (A,x-B,) b, (%) -C b, (x) n=2,3.... (2.11)

where, A, B, and C are constants and ¢,(X) is unity.

Further, when A is 1 or the coefficient of the term
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containing the highest degree in the member is unity, the
polynomial is called a monic polynomial ([94]. For monic

polynomials the constants B, and C, are given as (94,95],

b b
Bn =fo(X)X¢p}: (x) dx / fo(X) (bzn(x) dx (2'12)

b
Cp = [ XH (X) & 1, dx / [ e $ha(x ax  (2.13)

The recurrence relation (2.8) is generalized by replacing

the first term in the right hand side with g(x) [96] as,

$,(x) = (A, x-B;) ¢, (x) (2.14)

b, =1g(x) -B ), (x) - Chd,,(x) n=2,3... (2.15)

Using this recurrence relation , a set of orthogonal
polynomials can be generated. In this set, the difference in
degree between successive polynomials depends on the form of
g(x) and the recurrence relation given by equation (2.11)

remains valid with the inclusion of g(x) [96].

2.4 : Beam Characteristic Orthogonal Polynomials

Numerous sets of orthogonal polynomials in a given
interval with respect to « weight function can be obtained

by using the recurrence relation (2.12) and taking different
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starting or the generating function. With the generating
function g(x)=x and starting function unity, a number of well

known polynomials are obtained. Some such polynomials are:

Legendre polynomials obtained with W,/ (x) = 1 on the
interval -1 < x < 1; Chebyshev polynomials of the first kind
with W,(x) = ( 1 - x%)"2 in -1 < x < 1; Laguerre polynomials

with W, (x)= e in 0 £ x £ ;

Bhat [32] proposed a set of beam characteristic
orthogonal polynomials for use in Rayleigh-Ritz method as the
admissible functions for dynamic and static problems of beams
or rectangular plates with classical boundary conditions. The
starting function ¢, is chosen as the simplest polynomial of
the least degree that satisfies at 1least the geometrical
boundary conditions of the beam, and the higher members of the
set are constructed using the generating function g(x)=x.
However, if the starting polynomial ¢,(x) is made to satisfy
both geometrical and natural boundary conditions, the results
will improve for a given number of terms. Even though ¢,(x) is
also made to satisfy natural boundary conditions , it is easy
to check that higher members will satisfy only gecometrical
boundary conditions when g(x)=x. Higher members also can be
constructed so as to satisfy natural boundary conditions in

some cases by choice of g(x) [96].
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2.5 : Beam Model

The cantilever beam considered is mounted on the
periphery of a rotating disc as shown in Fig. 2.1 . The xyz
coordinate frame is chosen such that x and y axes are in the
plane of beam cross-section and are the principal
centroidal axes of inertia in that plane. The z-axis is along
the beam. XYZ is another orthogonal cartesian frame where
Z axis is along the beam and XZ plane contains the plane of
disc rotation. Origin of both xyz and XYZ coordinate systems
are at the root of the beam where it is fixed to the disc. The
angle 6 between the Y and x axes is the setting or the stagger

angle.

2.6 : Strain energy

The strain energy U may be written as [97] ,

1 M? 1 d?y .
] = = = o ET < (i .

where the integration is carried out along the length of the

beam.

Let 2 = z/L be the non - dimensional axial 1length.
Substituting this in equation (2.16) and integrating along the

length of the beam, the expression for strain energy is,
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Figure 2.1 : Rotating Cantilever Beam
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I

=2 g2yy2 45 2.17
Upax = =75 {EIX( =57 az (2.17)

2.7 : Kinetic Enerqgy

The total kinetic energy of the system is the sum of the
kinetic energy due to flexural motion of the beam, T;, and
that due to rotation T .. Since the rotational motion induces
centrifugal loads and the consequent energy stored in the beam
can be treated as a strain energy, some prefer to treat the
kinetic energy due to rotation, T, as strain energy due to

rotation.

2.7.1 : Flexural) Kinetic Energy

The total kinetic energy of the blade in flexural
vibration can be considered to be made up of two parts. They
are the translaticnal kinetic energy, Tk‘ and that due to
rotation T,.(rotation about a transverse axis, rotary inertia

contribution)

For an element dz, the translational kinetic energy dT,

of the mass concentrated at the centroid is given by
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dT, = 5 my* dz (2.18)

where m = pA.

Hence the total kinetic energy T, is,

L
Tb=%mfy2dz (2.19)
o]

The rotational kinetic energy, dT,, due to rotation of the
element about its centroid is,

pI,dz(y:)?

(2.20)
2

dr, =

Therefore, the total instantaneous kinetic energy T, becomes

Tt=-% p I, (y)2dz (2.21)

O

The combined kinetic energy T,, is the sum of the
translational and rotational kinetic energy and can be written

from equations (2.19) and (2.21) as,

[ pAY2 + pI,(y*)?] dz (2.22)

O\h

1
T[=—2'
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2.7.2 : Kinetic enerqy due to rotation

Fig. 2.2 shows the blade mounted on the periphery of the
rotating disc. For a short element dz, each view shows both

the rest position A and the deflected position B,

displacements occurring in both 71,z plane (Fig. 2.2(a)) and §,z

plane (Fig. 2.2(b)).

When the blade deflects in the §,z plane, Fig. 2.2(b),
the 1line of action of the centrifugal force, dF, on the
element dz remains parallel to the z axis. Hence the force
component dF, in the £, is zero and the kinetic energy dT

stored by the element is also zero. Thus,
dT; = 0 (2.23)

With the element dz in the deflected position B, Fig.

2.2(a), the force dF can be resolved into two components an

and dF,,in the circumferential and radial directions M, and 2

respectively. The circumferential component an of the

centrifugal force dF is given by,

dF, = dF sin f, (2.24)
where,

dF = m w?(R+2)dz (2.25)

and
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Figure 2.2 : Beam - Hub Radii Assembly
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sin f, = 77£i5- (2.26)

In the above equations, R is the disc radius, v is the
angular velocity of rotation of disc and m is the mass of

blade per unit length.

Substitution of equations (2.25) and (2.26) into (2.24)

gives,

dF, = m w*® n,dz (2.27)

Since the 71, component of the centrifugal force, dF,,

increases linearly from zero at the position A, regarded as

datum, to a value given by equation (2.27) at B, the average

force during a displacement 7, is dF,/2. With tbe force and

motion in the same direction, the corresponding gain of the

kinetic energy d’I‘n is given by,

2
ar - GF 0 _ mw®n; dz (2.28)
n 2 2

and for the entire blade,

L 2 w2
mw‘n; dz
= T 2.29
T, { 5 ( )
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The centrifugal force dF acting on the element in the
undeflected position A is given by (2.25). In the deflected

position B the force component dF, in the z direction is,

dF, = dF cos B, (2.30)

For small displacements, cos B, approaches unity; the force
component in the =z direction can, thus, be regarded as
constant and is given by equation (2.25).

The z component of the kinetic energy dT, stored by the

element can be written as,

dT, = -dF,A = -dFA (2.31)
where A is the total displacement of the element dz in moving
from rest position A to deflected position B.

To determine A from Fig. 2.3,
dz? = dé° + (dz-dA)*

where,

=

n

db = [dE? +dn?) * (2.32)
represents the increase of total transverse displacement §.
From (2.32),

dz2=dd?+ (dz?+dA%-2dzdA) (2.33)

Since dA is small, neglecting higher order terms involving dj,

equation (2.33) can be written as,

1 dasd .
dA = = (——=—2)¢dz 2.34
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do

clz

O|771 d$1

Figure 2.3: Beam Element Before and htter Deflection Showing
the Relative Displacement dA of the Ends
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Combining equations (2.32) and (2.34),

1 aEl 2 a‘h 2 - I
dA = —2—<(—a—‘?“-) + (—é-;) )da (2.35)

and the total displacement A, of the element at z, is thus,

given by

2
1 iz, (e 2.36
A-El((az + a))dz (2.36)

Assuming small displacements, and making use of equations

(2.25) and (2.36), eguation (2.31) can be rewritten as,

P a
dr, = - 222 (R+z)dzf((a;: : (aa"‘) ) dz (2.37)
B rs &~

Thus, for the entire blade the kinetic energy T,, becomes

2 y 66 aﬂ
w? 2y [((S2tyz « (Z1)z)dz]ldz 2.38
,!; (R+Zz )[( 3 )=+ ( 3 ) )d‘.]d.. ( )

The total kinetic energy due to centrifugal effects is given
by,
Tp= Tp+Tp+T, (2.39)

which can be expressed as,

2

TR="'92_ aEl _all

—1 2 - 2 2.40
=) aZ) ) dz-mmildz ( )

(m(R+2)

O—

0

Let,
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d . A(9F A
_aE(F.A)_A(dZ)+F( dZ)

where A is given by equation (2.36) . Integrating this
equation with respect to z from 0 to L, the left hand side

becomes zero and hence,

L L
ar _ _ (pdl 2.41

fA o deZdz ( )

0 0

Using the relationship ,

J L

= = - 2.42

dzlf%z)dz F(z) ( )

and using equations (2.41) and (2.42), equation (2.40) can be

written as,

L

T, = msz((aEU2+(anl)2X?mNR+szz»m 21dz  (2.43)

L oz 3z ™
[} Jed

Now, using the relationships,

N, = ycos0-xsinf

ysin0+ xcosB (2.44)

£

equation (2.43), can be written as,

L
2 )
T, = 12%9_[j](x‘sinze—2xysin6cose+yﬂcoszﬁ)
Q

L
- 2 24 ﬂ 2 2.
((Oz) (<2) »dz[(R+z)dz] (2.45)
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The in plane deflections x and y are small as compared to the
bending deflection z. Hence neglecting coupling of x and y

deflections and ignoring higher order terms involving x and vy,
\ L
Tp = -Ei’iﬂ- [fy*C‘os?Gdz f ayP (RL+ L= > -Rz————)d (2.46)
< 0 Q

The total kinetic energy of the system in terms of the non -

. . N,
dimensional parameter z 1is,

Trorar = Te+ Ty

Trorar = dZ*-——fPI (y+)2dz

ST
G'Hb—-

1
2 . o . 2 . L2Z%, ,.
+_9_§2w_ [LnyCos—'Bd::— (y')"(RL+—%-—RLz- I 22 )dZz)
¢

S

S
L

(2.47)

where a dot represents differentiation with respect to time

and ( )' indicates differentiation with respect to 2.

Rayleigh-Ritz analysis can be applied at this stage to
obtain the natural frequencies and mode shapes. This can be
done by following the procedure outlined in section 2.2.1 or
alternatively, wusing the time averaged Lagrangian as

follows.The Lagrangian is given as,
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(2.48)

Assuming harmonic motion,

y = Yexp (jpt) (2.49)

the time averaged value of the Lagrangian is given by,

2n
P

L—l - ledt.' (2.50)
0

Incorporating the following dimensionless parameters,

IX

_ PALS
AL® '

ET

’

inZ=Ap? (2.51)

F=L, 2= o
L

X

the time averaged value of the Lagrangian can be written as,

1
— ET - . . N
L, = T ;f[nJY‘+n‘f‘(Y')2+a2Y2Cos‘6
2pL®
—aZY'Z(ﬁ(l-z”‘h%(1—22)}—(Y")2}] dz (2.52)

To apply the Rayleigh - Ritz method, the shape function

is assumed in the fornm,
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Y=Y 24,02 (2.53)

where ¢ (Z°) are the assumed admissible shape functions in
the form of beam characteristic orthogonal polyncmials in the
z direction, and A, are the arbitrary coefficients. To
determine the first member of the set satisfying the clamped -

free condition, consider the function,

¢, (2) = by+b,Z+b,2%+b, 2% +b, 2* (2.54)

The boundary conditions for such a beam are that at 2= 0 the
deflection and slope are zero and for’?= 1 the moment and

shear force are equal to zero,

I.e.$,(0) =¢;(0) =y (1) = ¢y (1) =0 (2.55)

( The prime denotes differentiation with respect to?)

Substituting the boundary conditions in (2.55),

$.(2) = b (62-427+21) (2.56)

The coefficient b, is chosen appropriately so as to normalize

?, ( 27) such that,

f¢§<z~>dz~=1 (2.57)
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Therefore, the starting function in the z direction is taken

as,

5
¢1(2) = Ebjzj..l (2-58)

Je=1

where the b; are given in Table 2.1.The other members of the
orthogonal set are generated using the procedure outlined in

sections 2.3 and 2.4.

However since the assumed mode shapes are not exact and
hence minimizing the time averaged Lagrangian with respect to
the arbitrary coefficients A , ([6], following homogenous

simultaneous equations are obtained,

—_— =0 1=1,2,3,..... N (2.59)
which can be cast in the form of a standard eigenvalue

problenm,

n2(Al1-[B] =0 (2.60)

Natural frequencies and mode shapes can be obtained by solving

this set of equations.

A computer algorithm is developed to solve (2.60) for
several parameter combinations of setting angle, hub radius

and rotational speeds.
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2.8 : Effect of Shear Deflection and Rotary Inertia

The beam model is refined further to include the effect
of shear deflection and rotary inertia. Denoting the dynamic
deflection and bending slope by y and ¢ respectively, the

potential and kinetic energy in sections 2.6 and 2.7 can be

rewritten as (6},

1
Umax=_zéf[EIx(w')z'*KAG(Y"‘w)Z] dz (2.61)
0
1
T, = éf(pAy%prxwz)dz (2.62)
Q0

1 1
2 2 252
T, = P_‘i;’—L [fyZCoszedZ—f(y')z (RL+-%——RLZ”— LZZ ) d2]
0 4]

(2.63)

In the above equations the shear deflection is taken into

account, where K is the shear coefficient and G is the shear
modulus of elasticity.

The total kinetic energy is,

T=T,+ Ty (2.64)
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and the Lagrangian is given by,

L,=T-U (2.65)

The time averaged value of the Lagrangian is obtained as,

(2.66)

L,= [ Ldt

°'*§.'u|§’

Introducing the following additional non dimensional

parameters,

= ;0= (2.67)

2
AL? K,

and following the procedure outlined in section 2.7.2 the

natural frequencies and mode shapes can be obtained.

2.9 : Plate Model

Rotating structures in many applications cannot be
strictly modelled as beams (i.e. when the aspect ratio is
small) and must be modelled as flat or curved plates. In this
section, the vibrational behaviour of a rotating plate is

studied using Payleigh-Ritz method. A class of beam
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characteristic orthogonal polynomials [32], constructed using
the Gram-Schmidt process are employed as deflection functions
for plates in the Rayleigh-Ritz method to obtain their natural
frequencies. The variation of the natural frequencies with the
speed of rotation are obtained for several parameter

combinations of setting angle and hub radius.

2.9.1 : Cantilever Plate

Rotating blade with low aspect ratio can be idealized as
a cantilever plate. A simplified model of a rotating blade is
shown in Fig. 2.4 . The blade is represented as a plate having
one edge rigidly clamped and the other three free. The
planform is rectangular having length lp, width w, and
thickness hp. As depicted, the blade rotates with angular
velocity w about an axis located at some distance R from the
blade root. The figure is drawn for setting angle,B8, equal to

90" , that is the Xy plane is perpendicular to the rotation

axis.

In general, the setting angle can vary between 0" and 90 .



-46-

Axis of Rotation

Figure 2.4 : Rotating Cantilever Plate
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Strain Enerqgy

2.9.2.1 : Bending Strain Enerqy

The bending strain energy of the plate is given by,

U= f[fav,= 2 [ 1 LHy2s gz‘;’) v Sl g’;“" 2(1-9) (2401 %) dxdy

(2.68)

2.9.2.2 : Strain Enerqgy Due to Rotation

Energy due to rotation is included as strain energy here.
It should be noted that this energy can also be considered as
kinetic energy. In either case, it does not contain the
vibration dependent frequency p?. If W is the deflection of an
arbitrary point on the middle surface of the plate, its
instantaneous co-ordinates during vibration can be taken as
(x,Y,W). The components of the centrifugal force per unit

volume of the plate along the xyz axes are given by,

F, = pw? (X+R) (2.69)
F,=pw?(yCos?8-wSinBCosB) (2.70)
F, = pw?(-ySinBCos6+WSin?0) (2.71)
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These distributed in-plane forces F, and FY produce in
plane stresses on the middle surface of the plate. The force
F, is independent of the displacement but the force F, has a
component proportional to the displacement W. If the
vibrations are assumed to be of small amplitude, the component
of the stresses dependent on W may be taken to be small as
compared to the stresses produced by the forces independent of
W. Thus, the stresses in the middle surface are those produced

by the distributed forces, [39)

F, = pw?(x+R) (2.72)

F, =~ pwyCos=0 (2.73)

The strain energy developed during vibrational
deformation due to the presence of initial stress resultants
NS, Nf, N”° (i.e. forces per unit length), which are caused

by the rotational body forces given in Equations (2.72 and

2.73 ), is given by,

W

v

1

f o[aW]z N [ ]2 2N° OW ow aw)dxd (2.74)
0

U

rl

1
2 XY°9x Oy

NLr'\, N

With a reasonable first approximation, using strength of
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as,

materials type assumption gives the initial stress resultants

(2.75)
h, w? *Cos*0
Ne =L [(Zey2oy2 (2.76)
: 2 2
N, =0 (2.77)
Using Equations ( 2.75, 2.76,
gives

and 2.77)

in Equation

(2.74)
hll
v,

%~

j [(Rtl;)2 (R+x)
0

aW N
](5;)

+Cos? 6((——) ~y4) ( Sg ‘] dxdy
force F, which

(2.78)
the case

given

The strain energy due to the displacement dependent
for
(neglecting the deflection in the y direction) becomes,

by Equation

(2.71)
U:Z

1 we
2 0h ,
29

1

Wp
IFRY
S$in?0 w?2dxd
2 f f Y
:EO

(2.79)
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Hence, the total strain energy is,

Uporar = Up* Uy 1+ Uy, (2.80)

2.9.3 : Kinetic Enerqgy

The kinetic energy of the plate is given by,

n 2z
r-52 [ ]
0]

p

zdxdy (2.81)

NL(". NL,':
g

The equations of motion can be derived directly from the

energy expressions by using the Lagrangian,

L,=T-U (2.82)

Assuming harmonic motion,
W(x,y,t) = W, Sinpt (2.83)

and incorporating the following dimensionless parameters,

. X e Y _ 1
Xz, y= ;e =—8;
l A W,

4
}f:.;i.;l:..ﬁbi f2=rw?;n%=Ap? (2.84)
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the Lagrangian can be written as,

1
L= f{<w§n'~’)-{[(wo)mm;(wo);fzvaf(wo>m(wo),,,,
0

N'u.\""l“

+2(1-v) @3 () el + 0 [(1-27+2R(1-R)) (W)}

+Cosze(€%—fz)(hQ)§]+wZSin26[(Wo)2]”d%d§

(2.85)

To apply the Rayleigh - Ritz method, the deflection for

a plate undergoing free flexural vibration is assumed as,

(x,v) = ZZAmd) (2.86)

Fig. 2.5 shows that the cantilever plate consists of beam
problems with clamped free and free-free boundary conditions.
The starting function in the £ direction is taken

as,

S
¢, (R) =) b,%7! (2.87)

Similarly, the starting function in the 9 direction is
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Free-Free Beam
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Clamped-Free
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Figure 2.5 :

Free-Free and Clamped~-Free Beams used to Model the
Cantilever Plate
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taken as,

5

¥, () =f\'_jcjyf-1 (2.88)
-]

where the b, and c; for different boundary condition are given

in Table 2.1.

The other members of orthogonal set are generated using

the procedure outlined in sections 2.3 an 2.4.
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2.10 ¢ Discussion of Results
2.10.1 : Beam Model

The first three of beam characteristic orthogonal
polynomials constructed using the Gram ~ Schmidt process are

shown in Fig. 2.6.

Natural frequencies and mode shapes are obtained for a
rotating beam at various rotational speeds for different

values of setting angle and hub radii.

A convergence test was made by varying the number of
terms considered in the shape function. The results are shown
in Table 2.2. The results converge quite fast, for example,
the first frequency converged up to 3 decimal with four terms.
The variation of fundamental and second natural frequency for
various values of hub radii and setting angle are presented in
Tables 2.3 through 2.8. The results are also plotted in Figs.

2.7 through 2.12.

Variation of the natural frequency,n, with rotational

speed , a, for the first mode for various values of setting
angle and hub radii is shown in Figs. 2.7 through 2.12. The
increase in natural frequency is larger for higher setting

angles and for any setting angle the increase is linear at
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higher rotational speeds.

The effect of hub radii, R, on the natural frequency is
plotted against the rotational speed for setting angles of
zero and 90. With higher value of, R, the natural frequencies
are higher and increase faster with the rotational speed. The

results are compared with those from Hoa [18)

Fig. 2.13 shows the mode shape of a standstill blade. The
variation of the fundamental mode shape with rotational speed
is shown in Fig. 2.14. The mode shapes are normalized to a
value of unity at the tip. It is observed that as the
rotational speed a, increases, the beam tries to straighten
itself more and more. The variation of the shape of second
mode with rotational speed is shown in Fig. 2.15. The beam has
the tendency to straighten itself as the rotational speed

increases as in the case of the fundamental mode.

The following numerical values are used to compare

the results with (6] :
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L=9.1948x102m; A=8.258x10"°m?;

G-=82.74Gpa; p=7.83x10°3Z;
m

E=206.85x10°Pa; I,=5.7729x107%;

©0=540.35229 . p-2 . 63652x10°1m;
secC

(2.89)

v, is Poisson's ratio and is taken to be 0.3 in the
calculations. Table 2.9 shows the theoretical classical
frequencies for Euler - Bernoulli beams [98] for the blade
parameters specified above. Two cases of setting angle are
considered, that 1is 6 = 00 and 0 = 90} the results are
presented and compared with [6] and [99]) in Table 2.10.

The present results are compared with Kaushal and Bhat [15] in
Table 2.11. From Table 2.11 it can be seen that the shear and
rotary inertia effects when taken into account, lower the
frequency values of the rotating blade, such reduction being

more predominant at higher modes.
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2.10.2 : Plate Model

Natural frequencies and mode shapes are obtained for the
rotating plate at various rotational speeds for different

values of the setting angle, hub radii and aspect ratic.

Natural frequencies of the rotating plate for various
combinations of the setting angle, hub radii and aspect ratio
are presented in Tables 2.12 through 2.15. From these tables
it can be seen that for a fixed rotational speed, increasing
6 yields increasing values for all the frequencies and
increasing hub radii increases the values for all the

frequencies.

The present results are compared with the results of a

finite element model ([39] in Table 2.16.

Variation of the natural frequency,n, with rotational

speed , a, for a fixed value of hub radii, aspect ratio and
various values of setting angle is shown in Figs. 2.16 through
2.18. The increase in natural frequency is larger for higher
setting angles . The effect of hub radii, R, on the natural
frequency is plotted against the rotational speed for setting
angles of 0 and 90" in Figs. 2.19 through 2.22. With higher

value of, R, the natural frequencies are higher and ncrease
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faster with the rotational speed.

The first six mode shapes of the cantilever plate are

presented in Fig. 2.23.

2.11 : Summary

The dynamics of a rotating blade modelled as a beam and
a plate is studied us.ng beam characteristic orthogonal
polynomials in the Rayleigh-Ritz method. Natural fregquencies
and mode shapes are obtained for different rotational speeds
and for different parametric combinations. The natural
frequencies increase with increase in setting angle. Also, for
a fixed value of the setting angle the natural frequencies

increase with increase in hub radii.

In the following chapter, dynamic analysis of a disk with
varying thickness, exhibiting axisymmetrical and

antisymmetrical vibrations is studied.
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Table 2.1 : coefficients of sStarting Functjons for

Cantilever Plates

Bouniary b, b, by b, by
Conditions
Clamped (inner) (0] o] 6 -4 1
Free (outer)

Free 1 0 0 0 o

Free
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Convergence of Natural Frequency with Number of
Terms (Neglecting Shear Deflection and Rotary Inertia )

Setting Angle 6 = 90°
Angular Velocity a=20
Hub Radius R=o0
Natural Frequency 1N = p Vv A
No. of Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

2 3.527 34.8069

3 3.5170 22.2333 | 118.1444 H
4 3J.5160 22.1578 | 63.3467 | 281.5692

5 3.5160 22.0351 | 63.2397 128.5194 | 562.7075
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Variation of Fundamental Frequency for R = 0.0 and

Various Values of Setting Angle

Angular Natural Frequency M = p v A
Velocity
o R .0
6 = 0° 6 = 30° B = 60° 8 = 90°
== ——————— —— —————
0 3.516 3.516 3.516 2.516 ]
1 3.543 3.578 3.647 3.681
2 3.621 3.757 4.014 4.137
3 3.744 4.033 4.557 4.797 "
4 3.898 4.381 5.214 5.585 ”
S 4,074 4.780 $.945 6.449
6 4.263 5.213 6.721 7.360
7 4.459 5.669 7.526 8.299
8 4.657 6.139 8.348 9,256
9 4.854 6.619 9.182 10.225
10 5.049 7.106 10.024 11.202
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Variation of Fundamental Frequency for E = 1.0 and

Various Values of Setting Angle

Angular Natural Frequency M = p v A
Velocity _— e
o R=1.0
m
6 = 0° 8 = 30° 6 = 60° 6 = 90°
[ )
0 3.516 3.516 3.516 3.516
1 3.731 3.764 3.829 3.862
2 4.370 4.483 4.699 4.805
3 5.253 5.462 5.859 6.046
4 6.266 6.577 7.158 7.430
5 7.349 7.762 8.526 8.8884
6 8.469 8.983 9.312 10.373
7 9.609 10.226 11.357 11.883
8 10.763 11.480 12.794 13.403
9 11.925 12.743 14.239 14.931
10 13.092 14.011 15.689 16.4658
-
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Variation of Fundamental Frequency for R = 10.0

and various Values of Setting Angle

Angular Natural Frequency 1| =

Velocity
Qa

6 = 0° 8 = 30° 8 = 60° 6 = 90°
w —

0 3.516 3.516 3.516 3.516
1 5.278 5.301 5.348 5.371
2 8.603 8.661 8.775 8.832
3 12.223 12.314 12.495 12.584
4 15.918 16.043 16.289 16.412
5 19.642 19.800 20.112 20.266
6 23.381 23.572 23.949 24.136
7 27.129 27.354 27.797 28.016
8 30.887 31.143 31.652 31.902
9 34.649 34.939 35.513 35.796
10 38.417 38.740 39,738 39.694
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Table 2.6 : Variation of Second Natural Frequency for R = 0.0

and Various Values of Setting Angle

Angular Natural Frequency N = p Vv A
Velocity L_______ e —
o R = 0.0
———————
6 = 0° 6 = 30° 8 = 60° & = 90°
. ! [
0 22.035 22.035 22.035 22.035
1 22.138 22.186 22.198 22.206
2 22.417 22.429 22.496 22.687
3 23.109 23.187 23.264 23.311
4 23.832 24.045 24.181 24.264
5 24.741 25,066 25.213 25.463
6 26.108 26,292 26.512 26.810
7 27.348 27.670 28.104 28.326
8 28.702 29.178 29.620 29.988
9 30.365 30.795 31.346 31.766
10 32.109 32.505 33.164 33.630
- —




-65~

Table 2.7 : Variation of Second Natural Frequency for R = 1.0

and vVarious Values of Betting Angle

Angular Natural Frequency T =p Vv A

Velocity
a

—_————

0 22.035 22.035 22.035 22.035
1 22.343 22.347 22.360 22.366
2 23.271 23.282 23.335 23.357
3 24 .737 24.744 24.873 24.918
4 26.651 26.715 26.872 26.974
5 28.918 29.015 29.237 29.380
6 31.456 31.587 31.868 32.025
7 34.206 34.320 34.739 34.914
8 37.113 37.436 37.753 37.964
9 40.140 40.381 40.864 410136
10 43.260 43.492 44.109 44.401
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Table 2.8 : Variation of Second Natural Frequency for R = 10.0

and Various Values of Setting Angle

Angular Natural Frequency 7 = p v A
Velocity
o R = 10.0
0 = o° 8 = 30° 6 = 60° 8 = 90°
0 22.035 22.035 22.035 22.035
1 24.014 24.011 24.022 24.026 "
2 29.149 29.136 29.201 29.218 "
3 36.034 36.062 36.128 36.159
4 43.795 43.831 43.832 43.968
5 52.008 52.004 52.167 52.247
6 60.476 €0.621 60.682 60.762
7 69.102 69.180 69.357 69.455
8 77.835 77.925 78.122 78.245
9 86.643 86.742 86.866 87.109 “
10 95.509 95.619 95.832 96.03:==J
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Table 2.9 : Theoretical Natural Frequencies of the Standstill

Blade (rad/sec)

Mode Number \ 1 2 3

W—
Uncorrected Classical 5654.07 35436.00 99231.82

I

Corrected for Shear 5608.84 33664.20 87323.28

Value PS

and Rotary Inertia

Effects [98]
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R

li

P2 = (P [ P )?

Comparison of Rotating Blade Frequencies

Theoretical Frequency of Rotating blade

Classical Uncorrected Frequency (Standstill blade)

540.35 rad/sec

R = 2.86743
Mode 0 Present (6] [(99]
Number Results ( Py )¢ Neglecting
( Py )? Shear and
Rotary Inertia
B e e e e e
1l 0.0 1.026794 1.036679 1.0523
2 0.0 0.910737 0.911519 1.0073
3 0.0 0.804313 0.816706 1.0027
e e e ——————— |
1 47 .7 1.031798 1.032815 1.0482
2 47 .7 0.910863 0.911519 1.0072
3 47 .7 0.804329 0.816706 1.0027
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Table 2.11 : Effect Of Shear Deflection and Rotary Inertia on

the Natural Frequency

Setting Angle 6 = 90°
Angular Velocity a=0
Hub Radius R= 0.0
r’ = 8.2686 x 10 *
o = 2.4329 x 10 3
Present Results = P.R.

(inclusion of Rotary Inertia and Shear deflection)

Natural Frequency

Mode 1 Mode 2 Mode 3 Mode 4
————— —— — — ———
P.R. | [15] P.R. [15) P.R. (15] P.R. [15]

3.48 3.48 20.96 22.02 55.28 61.63 100.67 120.42

Setting Angle 6 = 90°
Angular Velocity a = 10
Hub Radius R= 0.0

r’= 8.2686 x 107

2.4329 x 1073

Q
I

Present Results

P.R‘

N |
—_——— —  ——————————

P.R.

11.1 j11.2 32.53 33.63 68.58 | 74.60 115.74 134.36
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able 2.12 : Variation of Natural Frequency for R = 0 ; a,=1.0

and vVarious Values of Setting Angle

Angular Natural Frequency 1 = p Vv A
Velocity
N R=0.0; a = 1.0
6 = 0° 6 = 90°
[
0,0 0,1 0,2 0,0 0,1 0,2
0 3.49 1 8.55 ]121.47 | 3.49 8.55 21.47
1 3.5118.55 121.59 ] 3.66 8.67 21.62
2 3.6018.57 | 21.94 | 4.12 9,03 22.05
3 3.72 1 8.60 j22.5214.78 9.59 22.75
4 3.88 1 8.64 | 23.29 ] 5.57 10.33 23.69
S 4.06]18.69 | 24.23 ]| 6.44 11.21 24.86
6 4.2518.75 | 25.32 ]| 7.35 12.19 26.21
7 4.45 1 8.82 | 26.49 ] 8.29 13.26 27.71
8 4.65|8.89 |27.69 ] 9.25 14.39 29.35
9 4.85]18.97 | 28.78 | 10.22 15.57 31.09
10 5.05 1] 9.06 29.64 | 11.20 16.80 32.91
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Table 2.13 : Variation of Natural Frequency for R = 1.0 :

Q,= 4.0 and Various Values of Setting Angle

Angular Natural Frequency TN = p v A

Velocity
a

‘W——————————-———————

0 3.43 21.49 | 27.69 3.43 21.49 27.69
1 3.68 21.81 | 27.72 3.81 21.83 27.76
2 4.34 22.75 | 27.82 4.78 22.83 27.96
3 5.24 24.23 127.99 6.04 24.41 28.31
4 6.28 26.16 § 28.21 7.45 }126.46 28.78
5 7.39 28.46 | 28.50 8.92 28.89 29.37
6 8.53 28.85 | 31.03 | 10.43 | 30.07 31.60
7 6.70 29.26 | 33.82 ] 11.96 | 30.88 34.54
8 10.88 | 29.71 { 36.77 | 13.51 | 31.79 37.63
9 12.07 30.22 | 39.85} 15.06 |{32.79 40.86
10 13.27 30.77 {43.03 16.62 | 33.87 44 .18
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Table 2.14 : Vvariation of Natural Frequency for R = 5.0;
a,= 4.0 and Various Values of Setting Angle
Angular
Velocity
a

0 3.43 21.49 | 27.69 3.42 21.49 27 .69
1 4.45 22.56 | 27.85 4.56 22.60 27 .88
2 6.61 25.56 | 28.31 6.91 25.64 28.45
3 9.11 29.06 | 29.87 9.59 29.37 30.02
4 11.71 | 30.08 | 35.02 12.38 30.61 35.25
5 14.36 | 31.33 | 40.68 15.21 32.12 40.98
6 17.23 | 32.77 | 46.65 18.06 33.85 47.03
7 19.72 | 34.38 | 52.82 20.92 35.78 52.28
8 22.41 | 36.14 | 59,12 23.80 37.86 59.66
9 25.12 | 38.00 | 55.51 | 26.68 40.08 66.12
10 27.83 | 39.97 | 71.95 | 29.57 42.41 72 -64




-73-

Table 2.15 : Variation of Natural Frequency for R = 10.0;
@,= 4.0 and Various Values of Ssetting Angle
Angular Natural Frequency n = p v A
Velocity
a
'_m
0,0 0,1 0,2 0,0 0,1 0,2
0 3.43 21.49 27.69 3.43 21.49 | 27.69
1 5.26 23.50 27.99 5.35 23.52 | 28.04
2 8.63 28.69 28.91 8.86 28.76 | 29.G5
3 12.31 | 30.35 35.68 12.67 | 30.64 | 35.80
4 16.06 32.23 43.59 16.55 | 32.72 43.77
5 19.85 | 34.47 51.97 20.47 | 35.59 | 52.21
6 23.65 36.99 50.62 24.41 | 37.95 | 60.92
:
-
7 27.47 | 39.73 69.42 28.35 | 40.94 | 69.74
8 33.30 | 42.64 78.31 32.31 |1 44.11 | 78.72
9 35.14 | 45.68 87.25 36.28 | 47.42 | 87.71
10 38.98 48 .63 06.22 40.25 | 50.83 96.74
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Table 2.16 : Comparison of Rotating Plate Frequencies

Setting

Angular Velocity

Angle

Hub Radius

Aspect Ratio

Natural Frequency

Aspect Ratio

ll Mode Number Present

Mode Number Present (39] 3 x 3 mesh
Results

1 5.142 5.091

2 9.919 9.902 "

3 23.166 23.182
Setting Angle 0 = 45°
An_ujar Velocity a = 3.472
Hub Radius R= 1.0

3 ¥ 3 mesh

1 10.822
2 14.158 13.864
3 32.230 29.212 “
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Fig. 2.7 : Variation of First Natural Frequency with Speed for
Different Setting Angles ( R = 0.0 )
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Fig.2.12 : Variation of Second Natural Frequency with Speed
for Various Hub Radii {( 6 = 90° )
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CHAPTER 3

DYNAMIC ANALYSIS OF ROTATING DISKS

3.1 : General

The blades in a turbine or impeller are mounted on a disk
and hence the disk is a key component of turbo-machinery. A
successful design of the disk necessitates a good
understanding of its vibrational characteristics . The natural
frequency of free vibrations of a rotating disk will be
different from those under non-rotating conditions because of

the additional stiffening of the disk due to rotation.

In this chapter free vibrational behaviour of a rotating
disk with radially varying thickness exhibiting axisymmetrical
and nonaxisymmetrical vibrations is studied. Beam
Characteristic Orthogonal polynomials are employed as
deflection functions in the Rayleigh-Ritz method to obtain
their natural frequencies. The variation of natural
frequencies with speed of rotation is obtained for several
parameter combinations such as the ratio of inner/outer radii,

ratio of inner/outer thickness.

3.2 pAnalysis

The potential and the kinetic energy expressions for the

rotating disk can be obtained in polar coordinates by
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transforming the corresponding energy expressions for the
rotating rectangular plate, derived in Egs. (2.77) and (2.90)
in Chapter 2. By taking the coordinates shown in Fig.3.1 a
small increment dx along x direction can be expressed in the

radial and angular coordinates as,

dr = dxcos®9, do = __95%;39 (3.1)

Considering the deflection w as a function of r and 0, the
slope along the x direction can be expressed in r and 8

coordinates as,

dw _ w dr dw® _ dw .o Ow sind
ax oron Moan - aro® T T

Similarly, the slope along the y direction can be expressed in

r and 0 coordinates as,

dy or 0 r

I
/)]
H-
)
(o]
+

(3.3)

The second derivatives of w with resect to x and y are

obtained, respectively as,

w d d sind ow dw sinb
—_— = (== - —— _ - 3.4
EwE ( 37 Cosf % ) ( aI_Cose 5 ) { )




Fig. 3.1 : Transformation of Coordinates from
Cartesian to Cylindrical



. Pw s29-
arzcose 2696; r or r

3+ 3inBcosH +_6_tg sin%0

Ow sinBcosh . 2w sin20
+2-é€ 2 + 2 17 (3.5)

Fw _ Fw 2 #w sinfBcosB  dw cos?0
dy? ~ 9r? Sin%9+2 d8or r “ar Tz
_» 0w sinfcosf , &#w cos?0
2 36 =3 + Froi— (3.6)
Fw _ FPw_. *w cos20 _Jdw cos20
3y - 5:2 sinBcosH + T A BT

_ 0w sinBcosB _ &*w sinBcosH
or r 062 r?

(3.7)

Consequently, the following derivative expressions with
respect to x and y appearing in the energy expressions, can be

expressed in r and 6 coordinates as,
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yw+¥w= yw+

10w, 1
ax? dy? or: ror

Bw Fw_ | 3w o, Fw 1dw, 1 Fwy (3 (13w
dx? dy? Oxdy dr2 r dr r2 ge° or r do

(3.8)
Substituting in Eg. (2.68), the bending strain energy of the

disk is expressed in r and 0 coordinates as,

_ (D %w_ 103w 1 Fw,,
Gt R e ®)

(3.9)

3.3 Axisymmetrical Vibrations

3.3.1 Analysis

Consider the circular plate depicted in Fig. 3.2 . The
total (maximum) potential energy of the rotating circular
plate is given by,

U = (U) + (U,) (3.10)
where (U,) corresponds to the potential energy in bending of
a standstill disk and (U,) corresponds to the additional

bending energy due to the rotational effects.
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Fig. 3.2. Rotating Circular Plate with Varying Thickness



When the deflection of the plate is symmetrical about the

centre, W will be a function of r only and Eq.(3.9) beconmes,

Fw 10w 1 9w 3.11
SoE T ar) -2(1-y) =2 8r2 ar}.rdr ( )

The limits of integration a, b are the outer and inner
radii of the circular plate respectively, D = Eh® / 12 (1 - v?)
is the flexural rigidity of the circular plate and h(r) is

the plate thickness which varies along the radial direction.

In considering the vibration of a rotating disk, not only
the energy due to the deformation but also the energy
corresponding to work during deflection by the centrifugal
forces must be taken into consideration. To calculate the work
done by the centrifugal forces consider an element cut out
from the disk by two cylindrical surfaces of the radii r and

r + dr, as shown in Fig. 3.3.

The radial displacement of the element towards the centre

due to the deflection will be,

i

_l_a_z 3.12
,2£a dr (3.12)
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Fig. 3.3 : Rotating Disk Element
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The mass of the element is,

dm=2mrphdr (3.13)

where p is the material density. The energy which is the
negative work done during the deflection by the centrifugal

forces acting in this element is,

I
- 2042 1 _W 2 3.14
dli,=2nr?w?phdr 2{ T dr ( )

The energy U,, corresponding to the work of the centrifugal
forces can be obtained by summation of such elements and is

given by,

a I
U, = no*ph[r*([( 'IVZdr (3.15)
b b

The maximum kKinetic energy is given by,

a
T= nppthwzrdr (3.16)
b

where p is the frequency of harmonic vibration.



-102-

The following non-dimensional parameters are introduced:

2
_r.a_b.,.,_Hs . _Aa
f=gib=giki=gik=7
A A
Hya*
2= PDA in2=Ap2; a?=Aw? (3.17)

where,

3
o/ S (3.18)

12 (1-v?)

(=}

H; = Plate thickness at the inner periphery

H, = Plate thickness at the outer periphery

A class of thickness variations are considered in the

form,
h(f) = H,A () (3.19)

where A(£) describes the variation in thickness along the
radial direction. It may be noted that for a plate with

uniform thickness, h(?) becomes unity.

For plates having thickness varying in a quadratic
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fashion the thickness can be expressed as,

h(r) =Ar+Br+cC (3.20)
A(r) can be expressed as
A(F) = K,f2+C,F+C, (3.21)
where,
(1-K,)
_ - K 3.22
=4 =) K, (1+0)) ( )
e (1-K})
CO =1 ]\2 {W KZ(]+B)}
(3.23)

With appropriate K, and K, values the thickness variation

can be made linear or quadratic as shown in Fig. 3.4. For
example, a uniform plate will have the values K, = 1 and K,=0.
The deflection w can be expressed in the form
w = W, (F)sinpt (3.24)
where,
(3.25)

Wo(£) =Y Ab, (D)

and ¢,(r) are the assumed admissible functions which satisfy

H
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Fig. 3.4 : Parameters for Thickness Variation in the Disk




at least the geometrical boundary conditions of the circular

plate.

Substituting Egs. (3.21), (3.24), and (3.25) into the
energy expressions (3.11), (3.15), (3.16) and minimizing with
respect to the coefficients A, the equations of motion in
terms of non-dimeznsional parameters is obtained as,

21[“A(‘)Waw°d‘
ﬂ{r Ir o-—a:i: r

-lfA(f)’Hwo )%+%‘ o)_g_%
%IBZZ s (W) ng]d‘}
—azzw"”%[‘%*%*‘%'Kﬂwn%
'%'[%:%)“Kzﬂ-w%n



-106-

_ £3 fS (1-K1) _ £ _ 1f2f3
T+K2—§—+{—(—l-_ﬂ)— }(2(14»[3)}_4_ a
_ (1"1(1) - f3 _ 3 2
{_(_]_--—E)_ K2(1+a)}"—3 ]]&-0 ( . 6)

This is the standard eigen value problem in the form,

n2{A]-[B] =0 (3.27)

The solution of Eq.(3.27 ) yields the natural frequencies
of the vibration of the plate. The validity and accuracy of

the solution depends upon the choice of the functions ¢ (r).

Considering the boundary conditions at r = b, a (i.e at
£ = b/a , 1 ) the starting functions for the circular plate

can be written as,
5 ]
¢1=Eajf31 (3.28)
-1

where a, for different boundary conditions considered are

presented in Table (3.1).

For comparison purposes a circular annular plate with

free-free boundary is also studied.
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3.4 : Nonaxisymmetrical Vibrations

3.4.1 : Analysis

Fig.3.5 shows a turbine disk rotating with a constant
angular speed w. Two co-ordinate frames are introduced. One is
the frame (r, 0) rotating with the blade, and the other one is
the (r, A) frame fixed in space. 8 and A are related through

6 + A=

The maximum potential energy of the rotating disk is

given by,

U= U+U, (3.29)

where, as before U, corresponds to the potential energy

without considering rotational effects given by,

]‘D L10w, 1 Fwy,
ar- rdr r2 @0

- 2(1-v

Fw 10w, 1 PW, 502 (2 (10w
3 (Tar t a2V g (G (g A

(3.30)
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Fig. 3.5 Rotating Circular Plate
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and the potential energy U, , corresponds to the strain energy
due to bending in the presence of in-plane centrifugal forces

given by,

_ 1 Owyz, Moo ( Ow,y
u, = ZAfhm (N (G023 () 1A (3.31)

where the integral is taken over the area A, of the disk, and

Nrr and Nm are the stress resultants.

The kinetic energy of the blade is,

h Dw, -,
T b2 [ gt (3.32)
Ap

where,

Dw ow ow 00 (3.33)

3.4.2 : Stress Resultants: N and Ny,

The stress distribution in rotating circular disks is of
practical importance. If the thickness of the disk is small
compared to its radius, the variation of the radial and
tangential stresses over the thickness may, as a first

approximation, be neglected. This is equivalent to a plane
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stress assumption.

For a disk rotating at constant angular velocity e, the

radial and tangential stresses are given by

__E = (3+v) (2-v?3) 5 2 1wy X

b T 5E pwiré+ (1+v)A,-(1-v) r2]

Nop = E [- (1+43v) (1-v?) p(a)zl'z"’(l'*\’)A +(1‘V)—é£

%7 (1-v2) 8E ! r?
(3.34)

where p is the mass density, v is the Poissons ratio, E is the
Young's Modulus of Elasticity and A, and A, are constants of
integrations which can be evaluated on the basis of the

boundary conditions.

Applying the boundary conditions of the disk, (i.e. at
outer edge N = 0 at r = a, and displacement U = 0 at r = b)

the stress resultants can be rewritten as,



=111~

(1-v) (2)%4 (3+v)
1+V) [ a ]

8 (1-v) (&) (14w)
a

N‘rr = pw?az (

- b2 b,
oy (G BW) D) ey 2y
(1+v) vy (2) % (aev)  (E)F (A*v) o a
a a
(3.35)
(10v) (1-v) (2)% (3+v)
Nee=p(|)2a2 ;V [ a 3 ]
(1-v) (_g) +(14V)
3 by, b2
C(1oy) TG )5y ()3
AV vy (Byzeqaayy (£ V) 2
a a
(3.36)

The above stress resultants can be used in Eq. (3.31).

Incorporating the following non-dimensional parameters,
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(1-v) (B3) +(3+v)
(1-v) (B?) + (1+v)

@?=Aw?;n2=ApZ; K,=

S 1-v) po, g = (2+v) (B2) 2 (34v) (3.37)

7 T {14v) 57 T1-v) (B + (1+v)

The Lagrangian can be written as,

L, =T -U (3.38)
_ 2nDa? ow
e Efﬂ[wzn +(ae)2——— -—'na(-a—e-)]
r e Ly (Lo (Zhn 2 () (2

e 57 " Temis (32 Fan (0F (e

82w 2v Fw Fw
( )( )+ 41t2f2(8f2)(692)

2 Fw 2 2 _é_‘i’z_ 4 Fw _a_!_i_’
*Foant oral) T amiE ' @) amiE 78 )
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f*4m* Orob an?fi 9B amifd  9rb 69

l+v, > (K +KS) — (3+v) 72 ow, 2
+ ( ) a? [(Ky+ = ) ) ( )
el (- Kl (123 £ < ¥)idgaidd]  (3.39)
fam? 0 pE 1+v

A rotating circular disk has two natural frequencies for
each mode of vibration when it is observed from the reference
frame fixed in space [72]. They are the frequencies of the
flexural waves travelling on the rotating disk in the forward
and backward directions corresponding to the direction of
rotation and hence having different propagation speeds when
observed from outside. On the other hand if the disk is
observed in a rotating frame of reference it will exhibit only

one frequency [65].
For free vibration the displacement w is expressed as,

v(£,8,6) =Y Y [G,,(t) cos2nnb+S,,(t)Sin2nnb] ¢, ()

(3.40)

where,
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- A (2) o (3.41
Con(t) = Cpy’ cOSp, t+Cpy sSinp,t -41)
- ofll) (2) o2 (3.42)
Sp(t) = Spp cosp.t+Sp, sinp,t .

and ¢ (r) are the assumed admissible functions which satisfy

at least the geometrical boundary conditions of the plate.

For a conservative system, U, ( C, ., S,, ) and T  ( C

/!
S, ) must be equal which implies that,

Toax = Unax = O (3.43)

However since the assumed mode shapes are not exact, T, will

X

not be equal to U,k and hence,

F(Cppyo Spps M) = Tpax = U (3.44)

max

will be an error term. The coefficients C,, and S, must be

chosen so as to minimize the error and hence,
oF 0
_— =2 (T,  ~U,])=0
acm acmn( max max)

(3.45)
and



= F (Tmax-Umax) =0 (3.46)

Substituting equation, (3.40) in (3.29) and minimizing with
respect to the coefficients C  and S, according to equations
(3.45) and (3.46) leads to a complex eigenvalue problem in

2mn equations given by,

n?{a]l +n (Bl + [C] =0 (3.47)

The above equation can be separated into two sets of nn
equations and the solution of eqguation (3.47) results in the

complex eigenvalues of the disk.

3.5 : Discussion of Results

3.5.1 : Axisymmetrical Vibrations

Natural frequencies are obtained for a rotating disk with
varying thickness at various rotational speeds for different

ratios of inner/outer radii and inner/outer thickness.

The effect of inner/outer radii ratio, B, are presented
and compared with [57), [96]) in Table 3.2. From Table 3.2 it
can be seen that as the inner/outer radii ratio is increased
the natural frequency increases, such increase being more

predominant at higher modes.
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The variation of the natural frequencies for various
ratios of the inner/outer radii and inner/outer thickness are
presented in Tables 3.3 through 3.8. From these tabkles it can
be seen that the natural frequencies increase with the
increase in the inner/outer thickness ratio for a fixed value

of the inner/outer radii.

Natural frequencies of the rotating disk for different
rotational speeds and several parametrical combinations shown
in Tables 3.3 through 3.8 are presented in Figs. 3.6 through
3.9. Natural frequency increases with the increase in the
inner/outer radii value and decreases with the increase in the

thickness parameter K,.

Variation of the first natural frequency, 71, with

rotational speed, a, for a constant value of inner/outer radii
is shown in Fig 3.6 for linear and parabolic thickness

variations. The natural frequency increases with increase in
the inner/outer thickness parameter K, (Curve 1 and Curve 2)
and for a constant inner/outer radii ratio the natural
frequency decreases with the increase in the parameter K,.
Also, from Figs. 3.6 and 3.8 it can be seen that for a fixed

value of the thickness parameters K, and K, the natural



frequency increases with the increase in the inner/outer radii

ratio.

The variation of the second natural frequency with speed
for different parametrical combinations are shown in Figs 3.7
and 3.9. The natural frequency increases with an increase in
inner/outer radii ratio for a fixed value of the thickness
parameters K, and K, . Also, the natural frequency increases
with the increase in inner/outer thickness parameter K, and

decreases with the increase in the thickness parameter K,.

3.5.2 : Nonaxisymmetrical Vibrations

Natural frequencies of a rotating disk undergoing
nonaxisymmetrical vibrations are obtained for different
combinations of the inner/outer radii ratio, B, at various

rotational speeds.

The variation of the natural frequencies in the rotating
frame of reference (i.e. no pseudo damping term in Eq.3.47)
are presented in Tables 3.9 through 3.11. From these tables it
can be seen that as the rotational speed increases the natural
frequencies increase and for a given rotational speed,
increase in the inner/outer radii ratio increases the natural

frequencies.
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Variation of natural frequencies with the speed of
rotation for various values of inner/outer radii ratio are
shown in Figs 3.10 through 3.12. From these figures it can be
seen that the natural frequency increases with an increase in

the inner/outer radii ratio.

Variation of the natural frequencies in the fixed frame
of reference are shown in Fig 3.13 .The first two modes have
no critical speeds while for mode 3 its lower frequency curve
decreases and intersects the lateral axis. After the
intersection it again increases as the rotation speed
increases. The speed at the intersection point is the critical
speed. It must be noted that the physical interpretation of
this zero frequency critical point is dependent on the
reference frame. If the motion is viewed in an inertial frame
this critical speed appears as a spatially fixed deflection.
In an axis system rotating with the disk this is not a zero
frequency vibration, but rather one with a frequency same as
the rotational speed. This is a wave travelling backward at
the rotational speed, which then appears spatially fixed. The
upper frequency curve, on the other hand, increases with the

increase in rotational speed.



Free vibrational behaviour of a rotating disk with

varying thickness exhibiting axisymmetrical and

nonaxisymmetrical vikrations is studied using characteristic
orthogonal polynomials in the Rayleigh-Ritz method. The
variation of the natural frequencies with speed of rotation
are obtained for several parameter combinations of the ratio
of inner/outer radii and inner/outer thickness. The natural
frequencies increase with increase in the inner/outer
thickness ratio . Also, the natural frequencies increase with
increase in rotational speed and for a given rotational speed
increase in the inner/outer radii ratio increases the natural

frequency.

In Chapter 4, a finite element model of a bladed-disk

assembly is developed to study its dynamic behaviour.
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Table 3.1 : Coefficients of Starting Functions

for Circular Plates

Boundary a a, a

Conditions

Clamped B2(6-8B+3R2%) | ~4B(3-3B+R%) 6 -4
(inner)

Free (outer)

Free(inner) 1 0 0 0

Free (outer)




Table 3.2 :

Modes of Circular Plate

omparison of Natural Fregquency for Axis

Comp q Y ymmetrical

n=pvaA

P.R. =

Present Resuits

Mode 2

Mode 3

P.R. [96)

P.R. (96]

Clamped (inner)

; Free (outside)

H, = 1.0 ; K, = 1.0; K, =

3.75 | 3.752 ] 20.92 | 20.92 | 60.69 | 60.70 | 119.96 | 120.7
=0.1;H =1.0;K=1.0; K,=0.0; c=0.0 }
4.23 4.237{ 25.26 25.26 73.90 - 146.69 - I
Free (inner) ; Free (outside) l

B =0.1; K=.01;K =1.0; a=20.0

P.R [57) P.R (57] P.R [57)] P.R [57)

0.00 0.00 | 4.204 4.20 9.107 | 9.09 16.927 | 17.11 ’
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Table 3.3 : Variation of Natural Frequency with Rotational
Speed for Axisymmetrical Modes of Circular Plates

of Uniform Thickness

/__M= LO:Kzzo
T - !
Hob Ha
{ !
Angular Natural Frequency 1 =p v A
Velocity
N B =0.00 ; H, = 1.0 ; K, = 1.0; K, = 0.0 ;
Mode 1 Mode 2 Mode 3 Mode 4
0 3.75 20.92 60.69 119.96
1 3.89 21.14 60.97 120.29
2 4.29 21.81 61.81 121.29
3 4.87 22.86 63.16 122.92
4 5.59 24.25 64.99 125.14
5 6.38 25.92 67.23 127.90
6 7.23 27.80 69,83 131.14
7 8.11 29.85 72.73 134.82
8 9.02 32.04 75.88 138.86
9 9.95 34.32 79.24 143.22
10 10.89 36.69 82.76 147.85
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Table 3.4 : Variation of Natural Frequency with Rotational

Speed for Axis etrical Modes of Circular Plate

with Linear Thickness Variation

Angular Natural Frequency M) = p v A
Velocity
. B =0.00 ; H = 1.0 ; K, = 2.0; K, = 0.0 ;
Mode 1 Mode 2 Mode 3 Mode 4
0 7.25 34.48 92.05 178.17
1l 7.33 34.59 92.18 178.31 "
2 7.56 34.92 92.55 178.73
3 7.93 35.45 93.17 179.43
4 8.42 36.19 94.03 180.39
5 9.00 37.12 95.12 181.63
6 9.67 38.22 96.43 183.12 | ‘
7 10.39 39.48 97.95 184.86 || l
8 11.16 40.88 99.67 186.85
9 11.97 42.42 101.59 189.07
10 12.81 44.06 103.67 191.51




Table 3.5 :
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Variation of Natural Frequency with Rotational
Speed for Axisymmetrical Modes of Circular Plate

Tﬁ\\\\-\(//},=2o ,= +10

. T

| e

4 i

I
Angular Natural Frequency | = p v A
Velocity
. B =10.00 ; H = 1.0 ; K, = 2.0; 1.0 ;
Mode 1 Mode 2 Mode 3 Mode 4

0 6.38 30.19 80.75 156.56
1 6.47 30.32 80.90 156.72
2 6.75 30.70 81.33 157.20
3 7.17 31.33 82.04 157.99
4 7.73 32.18 83.03 159.09
5 8.38 33.25 84.28 160.50
6 9.11 34.51 85.77 162.20
7 9.89 35.94 87.51 164.17
8 10.71 37.53 89.46 166.41
9 11.57 39.24 91.61 168.91
10 12.44 41.07 93.94 171.65
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Table 3.6 Variation of Natural Frequency with Rotational
Speed for Axis etrical Modes of Circular Plate
y= 10K =0
,///—‘
5 .
l
Angular Natural Frequency mn = p v A
Velocity
o B =0.1 . = 1.0 1.0; 0.0 ;
Mode 1 Mode 2 Mode 3 Mode 4
0 4.24 25.26 73.90 146.69 |
1 4.38 25.46 74.13 146.95 "
2 4.79 25.05 74.82 147.73 "
3 5.39 27.01 75.95 149.00 |
4 6.14 28.29 77.49 150.76
5 6.98 29.85 79.42 152.98
6 7.88 31.63 81.69 155.63
7 8.83 33.61 84.27 158.68
8 9.79 35.74 87.12 162.09
9 10.79 37.99 90.21 165.85
10 11.79 40.34 93.49 169.91 “



Table 3.7 : Varia
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tion of Natural Frequency with Rotational

Speed for Axisymmetrical Modes of Circular Plate

- Ky= 20 5 K, = 00

|

‘s B

L i

,
Angular Natural Frequency M = p v A
Velocity
. B=0.1;H =1.0; K,= 2.0; K, = 0.0 ;
Mode 1 Mode 2 Mode 3 Mode 4

0 8.42 41.72 112.023 218.13
1 8.50 41.82 112.34 218.25
2 8.73 42.11 112.66 218.59
3 9.09 42.60 113.19 219.16
4 9.59 43.27 113.92 219.97
5 10.18 44,12 114087 220.97
6 10.86 45.13 116.00 222.21
7 11.60 46.30 117.34 223.66
8 12.41 47.61 118.85 225.33
9 13.25 49.05 120.53 227.18
10 14.13 50.62 122.39 229.25___
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Table 3.8 : Varjation of Natural Frequency with Rotational
Speed for Axis etrical Modes of Circular Plate
T—T\ \1///x1=20 P k,= +1.0
He —_
L
—
Angular Natural Frequency n = p Vv A
Velocity
o $=0.1 ; H =1.0 ; K,= 2.0; K, = 1.0 ;
Mode 1 Mode 2 Mode 3 Mode 4
0 7.72 37.54 101.07 196.77
1 7.81 37.80 101.69 196.90
2 8.07 38.14 101.92 197.28
3 8.46 38.53 102.15 197.92
4 9.00 39.29 102.98 198.81
5 9.64 40.24 104.03 199.95
6 10.37 41.37 105.31 201.33
7 11.17 42.67 106.79 202.95
8 12.01 44.12 108.48 204.80
9 12.90 45.71 110.3. 206.88
10 13.82 47.42 112.40 209.16.__




ate

-128-
Table 3.9 : Variation of Natural Frequency with Rotatiopnal
Speed for Nonaxis etrical Modes of Circula
,,.K,=‘0 ; =0

1 - |

Hp Hao

L L %

Angular Natural Frequency n = p v A
Velocity
a B = 0.25
Mode 1 Mode 2 Mode 3

0 5.63 5.84 7.14
1 5.75 5.94 7.30
2 6.10 6.20 7.76
3 6.62 6.64 8.47
4 7.16 7.33 9.38
5 7.79 8.13 10.43
6 8.50 9.01 11.59
7 9.27 9.95 12.82
8 10.07 10.93 14.11
9 10.91 11.95 15.44
10 11.77 12.98 16.8



Table 3.10

¢ Variation of Natural Frequency with Rotational
Speed for Nonaxisymmetrical Modes of Circular Plate
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Angular Natural Frequency ) = p v A

Velocity
N B = 0.5

Mode 1 Mode 2 Mode 3

0 13.02 13.29 14.71
1 13.11 13.38 14.80
2 13.36 13.64 15.08
3 13.77 14.07 15.54
4 14.32 14.64 16.17
5 15.00 15.36 16.93
6 15.78 16.18 17.82
7 16.68 17.11 18.82
8 17.65 18.11 19.91
9 18.68 19.18 21.08
10 19.77 20.32 22.31
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Table 3.11 : Variation of Natural Frequency with Rotational
Speed for Nenaxisymmetrical Modes of Circular Plate

Angular Natural Frequency ) =p v A

Velocity
o B = 0.75

Mode 1 Mode 2 Mode 3

0 53.62 54,23 56.13
1 53.67 54.28 56.18
2 53.83 54.43 56.33
3 54.08 54.69 56.58
4 54.44 55.04 56.93
5 54.89 55.49 57.38
6 55.44 56.04 57.92
7 56.09 56.68 58.56
8 56.82 57.41 59.28
9 57.64 58.23 60.09
10 58.54 59.13 60.98
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Fig.3.6 : Variation of First Natural Frequency with Speed (B8=0.0)

Curve 1 :K,=1.0 K,=0.0 Curve 2 K,=2.0 K,=0.0 Curve 3 :K,=2.0 K,=1.0
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CHAPTER 4

DYNAMIC ANALYSIS OF BLADED-DISK ASSEMBLY

4.1 : General

The determination of the natural frequencies of bladed
disks is important in the design of turbomachines in order to
prevent harmful resonances and ensure reliable operation of
the turbine engine. The vibration of the turbo-machines is a
coupled motion involving both the blades and the disk. The
interaction between the blades and the disk will significantly
effect the frequencies of the system depending upon the
relative stiffness of the disk and the blades. Hence, it is
essential to study the bladed disk system to understand the

free vibration characteristics of the system.

In this chapter free vibrational behaviour of a bladed -
disk assembly is studied using the finite element program,
ANSYS [100]. Pertinent description of the finite element
analysis program is provided in this chapter. The variation of
the natural frequencies and mode shapes with speed are

obtained for a typical bladed-disk system.
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4.2 : ANSYS Finite Element Analysis Program

The ANSYS finite element program {100] is a large scale
general purnose program which has the capabilities for linear
and non-linear static and dynamic analyses. It can handle
small and large displacements, as well as solve problems
involving elastic, plastic, creep and swelling effects. It
utilizes the matrix displacement method for the analysis and
the wavefront method for matrix reduction and solution. The
program contains many routines, which are all inter-related.
An extensive elemenrt library makes it feasible to analyze two

or three dimensional structures.

There are basically three phases involved in an ANSYS
solution. Figure 4.1 and Figure 4.2 show the flow chart of the
analysis methodology for any type of problem and the main

routines involved in them.

The pre-processing is generally carried out using the
Prep7 module either interactively or by inputting the model
data from a CAD finite element modelling pre-processor. User

interaction in this module is done by using a command language
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specific to this module. Each module performs a different

operation and contains a unique set of commands. The basic
Prep7 flow chart is shown in Figure 4.3. Each file mentioned
in the figure is intended to store the data whether it be for
the solution phase, for plotting the geometry, or for the
resumption of data. Any one of the different analyses shown in
Figure 4.2 can be specified in this module before the model is
sent for analysis. After the analysis stage, there are a
number of post-processors available within ANSYS for the
plotting and sorting of the data. Postl2 is a general database
processor for selecting, sorting, printing, and displaying

results .

Based on this brief description of the ANSYS finite
element package, in the next section the finite element model

¢ * the bladed - disk assembly is developed.
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PREPROCESSING SOLUTION POSTPROCESSING
PHASE PHASE PHASE
Mesh Generation Element Matrix Post Solution
Formulation Operations
Geometry Definition
Material Definition Overall Matrix Post Data

Triangularization | Printout

Constraint Definition

Load Definition Displacement, Post Data
Stress, Etc., Displays
Model Display Calculations

Fig. 4.1 : Typical Phases of an Analysis in ANSYS
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PREP 7

ANALYSIS TYPES POST 26-30 "

General Mesh 0 - Static Graph Displays
Generation and Model |1 - Buckling Solution
Definition 2 - Modal Combinations

3 - Harmonic Tabular Printout

4 - Non Linear

Dynamic
etc.
Fig. 4.2 Basic ANSYS Routines Associated with the

Three Phases
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¢ Basic Prep?7 Data Flow Diagram
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4.3 : Finite Element Model of the Bladed - Disk Assembly

The bladed-disk assembly is shown in Fig 4.4. The
assembly consists of a disk with 12 blades mounted on it,
having identical geometric, material and constraint
properties. The disk is assumed to be clamped at the center.
The system rotates with constant angular velocity , about

the z-axis.

Figures 4.5 and 4.6 show the finite element models of the
bladed-disk assembly as displayed using some of the commands
in the Prep7 module of ANSYS. Fig. 4.5 also shows the boundary
conditions at the inner periphery of the disk. Elastic
quadrilateral shell elements of different geometric properties
are used to model the assembly. The assembly is composed of
444 nodes and 360 elements. Standard steel material

properties were input into ANSYS for analysis purposes.

Table 4.1 shows the dimensions and material properties

that are used for the analysis of the bladed-disk assembly:
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Table 4.1 : Bladed-Disk Assembly Parameters

Modulus of Elasticity 206.85 x 10° N/m?

Density = 7.83 x 103 Kg/m®
Poisson's Ratio = 0.3
Disk Inner Radius (a) = 5.08 x 10% m

Disk Outer Radius (b) 18.03 x 102 m

Blade Tip Radius (c) 24.64 x 10% m

]

Disk Thickness 0.635 x 10 m

Blade Thickness 0.3175 x 10% m

Blade Width 3.1475 x 10% m

i
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Figure 4.5 : Finite Element Model of the Bladed-Disk Assembly
( Node Plot )
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Figure 4.6

: Finite Element Model of the Bladed-Disk Assembly

( Element Plot )



Modal Analysis is carried out in the solution phase of the

ANSYS program invoking KAN=2 subroutine to obtain the natural

frequencies and mode shapes.

The governing equation for free, undamped vibrations is,

MU+ RKu=0 (4.1)

where M and K are the mass and stiffness matrices,

respectively, and u is the displacement vector.

For a 1linear structure undergoing free vibration the

displacements are harmonic of the form,

u={l_cospt (4.2)

Substituting in (4.1) it implies,

(K-r.~M) U,=0 (4.3)
where p is the frequency of vibration.
This is a standard eigenvalue problem and the natural

frequencies and mode shapes are obtained by solving this

equation.

Since the number of degr=es of freedom in a 360 node
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bladed-disk assembly could be about 2160, it is not economical
to conduct a modal analysis with so many degrees of freedon.
Therefore, one of the features of the ANSYS program, namely,
the Guyan reduction, is utilized by specifying the master
degrees of freedom. The mass and stiffness matrices may be
full or they may be reduced by the Guyan reduction scheme to
contain only selected master degrees of freedom. The purpose
of specifying such a subset is to reduce the complexity of the
analysis by including those degrees of freedom which are
sufficient to characterize the behaviour of the structure. The
master degrees of freedom may be specified explicitly by the
user, selected automatically by ANSYS or chosen by a
combination of both. Commands are so chosen in the program
such that the bending direction of the blade disk assembly is
specified as a master degree of freedom and other master
degrees of freedom are selected automatically by the progran.
Guyan reduction is a static reduction scheme and the influence
of this reduction on the results of the dynamic analysis of
rotating structures is not studied in this thesis but it is a

potential area for future investigation.

Natural Freguencies and mode shapes of the bladed~-disk
assembly are obtained for various values of the setting angle
using the reduced modal analysis procedure. Figure 4.7 shows

the solution flow chart for the reduced modal analysis.
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Fig. 4.7. Reduced Modal (KAN=2) Analysis Solution Flow Chart
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4.4 : Discussion of results

Natural frequencies and mode shapes for a bladed disk
assembly are obtained at different rotational speeds and

setting angle.

The variation of the natural frequency with rotational
speed for the first fifteen modes is presented in Tables 4.2
and 4.3. From these tables it can be seen that as the
rotational speed 1is increased the natural frequencies

increase.

Variation of natural frequencies with speed for the first
three modes of vibration for a bladed disk and a disk are
presented in Figs. 4.8 through 4.10. It can be seen from these
figures that with the inclusion of the blades the natural
frequencies decrease. This 1is wunderstandable because the
increase in mass due to the blades does not increase the
stiffness of the bladed disk proportionately. This is
illustrated using a simple model consisting of two beams with
different geometrical properties as shown in Fig 4.11. From
this simple model it can be seen that the fundamental
frequency decreases with the inclusion of the smaller second

beam thus illustrating the reduction of natural frequencies in
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the bladed disk model.

The effect of the setting angle on the natural frequency
is shown in Fig. 4.12. It can be seen that for a constant
rotational speed the increase in the setting angle of the
blade has no significant effect on the natural frequency of

the bladed disk assembly.

The mode shapes of the bladed disk assembly are presented
in Figs. 4.13 through 4.22. The solid lines represent the
original shape and the dashed lines are the displaced shape.
From Figs. 4.13 and 4.14 it can be seen that there is a nodal
line in the radial direction and the bladed disk on one side
bends in an opposite direction relative to the other side.
Figs.4.15 through 4.22 show the same behaviour of the bladed
disk assembly with nodal 1lines in the radial and angular

directions.

4.5 : Summary

The dynamics of a bladed disk assembly is studied using
the finite element package ANSYS. Natural frequencies and mode
shapes are obtained for different rotational speeds and for

different setting angles. The results are compared to a single
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disk analysis.

In the following chapter, dynamic analysis of a complete
turborotor system with the inclusion of the support bearings

is studied using the finite element package ANSYS.
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Table 4.2:Variation of Natural Frequency with Rotationa) Speed

Mode Angular Velocity ( Hz )
Number 0.0 83.3 166.6 249.9 333.2
1l 229.2 250.9 301.4 364.9 436.9
2 229.2 251.2 305.9 379.5 462.6
3 236.0 254.7 306.2 380.2 463.8
4 269.5 296.1 363.1 453.5 556.3
5 ‘269.7 296.2 363.2 453.8 556.5
6 398.1 424.1 492.3 587.8 699.2
7 398.1 424.2 492.4 588.1 699.7
8 490.5 517.6 590.4 692.5 811.1
9 490.8 517.6 590.8 693.0 811.7 ]
10 525.1 553.4 630.5 738.6 863.6
11 525.9 554.3 631.3 739.3 864.5
12 534.4 563.2 1.4 751.3 878.7
13 664.0 703.7 790.3 918.8 1069.¢€
14 668.9 714.7 805.3 937.4 1095.9
15 670.1 715.1 805.6 939.3 1098.4
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Table 4.3:Variation of Natural Frequency with Rotational Speed

Mode angular Velocity ( Hz ) __1
Number 416.8 583.1 666.5 749.8 833.
1 513.8 676.3 759.4 843.3 927.9
2 551.1 737.3 832.5 928.6 1025.5
3 552.9 740.7 836.8 933.9 1031.7
4 665.8 895.8 1013.9 1133.3 1253.5
5 666.2 898.4 1017.1 1137.0 1257.9
6 820.0 1077.6 1210.6 1345.3 1481.3
7 820.7 1078.1 1211.2 1346.1 1482.2
8 939.0 1210.8 1351.1 1493.2 1636.8
9 939.9 1211.4 1351.7 1493.9 1637.6
10 998.2 1280.5 1425.3 1571.7 1719.3
11 998.9 1281.0 1425.8 1572.1 1719.7
12 1015.4 1301.5 1448.0 1595.8 1744.7
13 1235.4 1606.5 1794.7 1985.9 2179.4
14 1271.2 1650.8 1849.0 2050.8 2255.2
15 1274.2 1663.5 1864.1 2068.5 2275.5
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Fig 4.8 : Variation of First Natural Frequency with Speed
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Fig 4.10 : Variation of Third Natural Frequency vwith Bpeed

Curve 1 : Disk Frequency
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Beam Parameters:

a=18.03 x 107%m c=24.64 x 10"%m
I,=1.34318 x 10°m* 1,=8.3940 x 10 ''m*
A=19.9866 x 10°m’ A,=9.9933 x 10°m’

M,=1.5589548 kg/m  M,=7.794774 x 10" kg/m

Fundamental Frequency = 1.09 x 10° rad/sec
If only First Beam Present:

Fundamental Frequency = 1.836 x 103 rad/sec

Fig. 4.11 : Beam Analogy Using Rayleigh-Ritz Method
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Fig. 4.12 Variation of First Natural Frequency with speed for
Different Values of the Setting Angle
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=163~

/'(.‘\ \:'\ N
:\ -
‘ﬁ§i€‘a‘ ‘QN&‘ .: f £
o ORI R &9
SN0 NS
S ORNIRARS
““%’5&&%\\\\\ RSN SR
B AN S %O w
RS SIS e oy
SRS, R
=
e
\Q@QO RN
TR RS
6@,@@ AR @&g R
XA, ™
. \\“ N Q
‘Sssk \Q?\ia”
‘ N
{CSEFL

Fig.4.13 : Mode Shape of the Bladed-Disk Assembly

(at 229.21 Hz)
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Fig.4.14 : Mode Shape of the Bladed-Disk Assembly
(at 229.23 Hz)
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Fig.4.15 : Mode Shape of the Bladed-Disk Assembly
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Fig.4.16 : Mode Shape of the Bladed-Disk Assembly
(at 269.50 Hz)
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Fig.4.17 : Mode Shape of the Bladed-Disk Assembly
(at 269.79 Hz)
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Fig.4.18 :

Mode Shape of the Bladed-Disk Assembly
(at 398.13 HzZ)
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Fig.4.19 : Mode Shape of the Bladed-Disk Assembly
(at 398.16 Hz)
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Fig.4.20 : M>dc Shape of the Bladed-Disk Assembly
{at 490.54 Hz)
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CHAPTER S

DYNAMIC ANALYSIS OF A TURBOROTOR SYSTEM

5.1 ¢ General

Rotor shaft designers in the field of turbomachinery
usually make the assumption that any disks attached to the
shaft are rigid. This assumption is generally a satisfactory
approximation, but can be very optimistic if a disk is thin
enough to have a disk bending frequency comparable to the
rotor resonant frequency. In addition, the coupling between
the blade, disk as well as the rotor shaft and the bearings on
which the turborotor is supported further complicates the
dynamics of the total system. Hence, to ensure reliable
operation of the turborotor system, it is very important that
a dynamic analysis of the complete system, including the

coupling between its various components, be carried out.

In this chapter free undamped vibrations of a complete
turborotor system is studied using the finite element program
ANSYS. A real system would consist of some damping, which
would be added as modal damping when the harmonic responses
are evaluated in the next chapter. Pertinent descriptions of
the finite element analysis program are described in Chapter
4., The variation of the natural frequencies and mode shapes

with speed are obtained for a typical turborotor system.
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S.2 : Finite Element Model of the Turborotor Assembly

The turborotor assembly is shown in Fig 5.1. The assembly
consists of a rotating shaft mounted on bearings with linear
stiffness parameters and having a disk with 12 blades mounted
on it. The blades have identical geometric, material and
constraint properties. The disk is assumed to be at the center
point of the shaft and the system rotates with constant

angular velocity o, about the z-axis.

Figures 5.2 and 5.3 show the finite element models of the
assembly as displayed using some of the commands in the Prep?7
module of ANSYS. The bearings on which the turborotor
assembly is mounted are modelled using a spring element having
up to three degrees of freedom at each node. The rotating
shaft is modelled using three dimensional beam elements having
6 degrees of freedom at each node, which are the translations
in the nodal X, Y, Z directions and rotations about the nodal
X, Y, and Z axes. Elastic quadrilateral shell elements having
6 degrees of freedom at each node with different geometric
properties are used to discretize the bladed-disk assembly.
The bladed -disk assembly is mounted at the center of the
shaft and is coupled to the shaft through constraint

equations.
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The turborotor assembly is composed of 173 nodes and 109
elements. Standard steel material properties were input into

ANSYS for analysis purposes.

Table 5.1 shows the dimensions and material properties

that are used for the analysis of the turborotor assembly:
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Table S.1 : Turborotor Assembly Parameters

Modulus of Elasticity
Density

Poisson's Ratio

Disk Inner Radius (a)
Disk Outer Radius (b)
Blade Tip Radius (c)
Disk Thickness

Blade Thickness
Blade Width

Shaft Length

Bearing Stiffness

Il

206.85 x 10° N/m?
7.83 x 1073 Kg/m®
0.3

5.08 x 10°% m
18.03 x 1072 m
25.64 x 102 m
0.635 x 102 m
0.3175 x 102 m
3.1475 x 1072 m
2.0 m

1.75 x 107 N/m
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Figure 5.1 : Turborotor Assembly
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Figure 5.2 : Finite Element Model of the Turborotor Assembly
( Node Plot )
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Finite Element Model of the Turborotor Assembly

DU |

Figure 5.3

( Element Plot )
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As mentioned in Chapter 4 the natural frequencies and

mode shapes of the turborotor system are obtained by carrying

out the Modal Analysis in the solution phase of the ANSYS

program invoking KAN=2 subroutine.

The governing equation for free, undamped vibrations is,

MU+ Ku=0

For a linear structure undergoing free

displacements are harmonic of the form,

u=U_cospé

Substituting in (5.1),

(K-p*M) U,=0

where p is the frequency of vibration.

equation.

(5.1)

vibration the

(5.2)

(5.3)

This is a standard eigenvalue problem and . he natural

frequencies and mode shapes are obtained by solving this
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Since the number of degrees of freedom in a 173 node
turborotor assembly could be about 1038, it is not economical
to conduct a modal analysis with so many degrees of freedom.
As mentioned in Chapter 4, the Guyan reduction technique is
utilized by specifying the master degrees of freedom. Commands
are so chosen in the program such that the bending of the
blade, disk and the shaft account for 61 specified master
degrees of freedom. The program itself is allowed to select
another 89 master degrees of freedom to make sure that any
modes are not missed. This automatic selection of the
additional master degrees of freedom is done by the program

for points having a small K/M ratio.

Natural Frequencies and mode shapes of the turborotor
assembly are obtained for various values of the rotational
speed using the reduced modal analysis procedure outlined in

Chapter 4.



-182-

5.3 : Discussion of Results

Natural frequencies and mode shapes of a turborotor

assembly are obtained at various rotational speeds.

Natural frequencies of the turborotor for different
rotational speeds are presented in Tables 5.2 and 5.3. From
these tables it can be seen that as the rotational speed
increases some of the natural frequencies increase while the
others remain constant. The constant frequencies are the shaft
frequencies which are unaffected by rotation while the disk
and blade frequencies increase with increasing rotational

speed.

The variation of shaft natural frequencies with
rotational speed are presented in Figure 5.4. It has been
observed that the rotational speed has no significant effect
on these frequencies. This 1is understandable since the
influence of centrifugal effects due to shaft rotation on its

flexural motion is negligible.

Variation of the first natural frequency with rotational
speed for a disk, bladed-disk and the turborotor assembly is

shown in Figure 5.5. From this figure it can be seen that with
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the inclusion of the blades the natural frequency of the disk
decreases. Also, from a system point of view the first natural
frequency of the turborotor assembly corresponds to the shaft
bending frequency which is significantly lower than the bladed

disk assembly and is unaffected by the rotation.

The effect of the bearing flexibility on the natural
frequencies of the turborotor system are shown in Table 5.4.
As it can be seen from the table, that for a higher value of

the stiffness the natural frequency increases.

The first ten mode shapes of the turborotor assembly are
shown in Figs. 5.6 through 5.15. As before the solid 1lines
represent the original shape and the dashed lines are the
displaced shape. From these figures it can seen that the first
four modes correspond to the shaft bending. Modes 5, 6 and 7
are the bending of the bladed-disk assembly. Modes 8 and 9
correspond to shaft bending and mode 10 is again the bending

of the hladed-disk assembly.

5.5 ¢ Summary

The dynamics of a turborotor system is studied using the
finite element package ANSYS. The natural frequencies and mode

shapes are obtained at various rotational frequencies and the
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results compared to disk and bladed-disk analysis.

In Chapter 6, response analysis 1is carried out on a

typical turborotor assembly to obtain its amplitude of

displacement and stress levels.
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Table S.2:Variation of Natural Frequency with Rotatjiona] Speed
=
Mode Angular Velocity ( Hz )

Numher 0.0 83.3 166.6 249.9 333.2

1 46.7 46.8 46.8 46.8 46.8

2 46.7 46.8 46.8 46.8 46.8

3 167.1 167.1 167.3 167.3 167.4

4 167.1 167.1 167.3 167.3 167.4

5 236.9 259.5 261.6 261.6 261.6

6 236.7 259.7 261.6 261.6 261.6

7 246.7 261.6 314.9 379.5 435.9

8 261.6 261.6 316.4 391.3 435.9

9 261.6 266.3 316.7 391.9 452.2

10 269.1 297.3 368.2 436.9 476.9

11 270.3 298.5 369.4 436.9 477.9

12 407.9 436.5 436.6 461.8 566.9

13 407.9 436.5 436.6 463.5 569.3

14 436.4 437.7 514.0 616.7 706.4

15 436.4 437.7 514.1 616.9 706.4
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Table 5.3:Variation of Natural Frequency with Rotational Speed

——

Mode Angular Velocity ( Hz )_= ]

Number 416.8 583.1 7 666.5 749.8 833.0
1 46.7 46.8 46.8 46.8 46.8
2 46.7 46.8 46.8 46.8 46.8
3 167.4 167.5 167.5 167.6 167.6
4 167.4 167.5 167.5 167.6 167.6
5 261.6 261.6 261.6 261.6 261.6
6 261.6 261.6 261.6 261.6 261.6
7 436.3 436.5 436.6 436.7 436.7
8 436.3 436.5 436.6 436.7 436.7
9 529.3 689.1 706.4 706.4 706.4
10 566.2 706.4 706.4 706.4 706.4
11 567.7 706.4 769.6 849.9 84%8.9
12 678.3 753.6 849.7 946.7 946.7
13 681.7 756.5 853.3 951.1 951.2
14 706.4 910.8 1029.8 1149.9 1149.9
15 706.4 916.8 1037.3 1158.9 1158.9
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——

Table 5.4 : Eff-.ct of Bearing Flexibility on the

Natural Frequencies

Natural Frequency (Hz)

Il

Mode
Number Angular Velocity = 0.0
Bearing Stiffness | Bearing Stiffness
1.75 x 107 N/m 1.75 x 10" N/m
1 46.7 50.3
2 46.7 50.3
3 167.1 223.8
4 167.1 223.8
5 236.9 238.7
6 236.7 238.7
7 246.7 246.7
261.6 268.9
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Fig. 5.4 : Variation of Natural Frequency with Speed
Curve 1 : First Natural Frequency

Curve 3 : Third Natural Frequency
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Fig. 5.5 : Comparison of the First Natural Frequency

Curve 1 : Turborotor Assembly Natural Frequency
Curve 2 : Disk-Blade Natural Frequency
Curve 3 : Disk Natural Frequency
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Fig. 5.6 : Mode Shape of the Turborotor Assembly
(at 46.7 H2)
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Fig. 5.7 : Mode Shape of the Turborotor Assembly
{ at 46.7 Hz)
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Fig. 5.8 : Mode Shape of the Turborotor Assembly
( at 167.1 Hz )
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Fig. 5.9 : Mode Shape of the Turborotor Assembly
( at 167.1 Hz )
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$.10 : Mode Shape of the Turborotor Assembly

( at 236.9 Hz )
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Fig. 5.11 : Mode Shape of the Turborotor Assembly
({ at 236.7 Hz )
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Fig. 5.12 : Mode Shape of the Turborotor assembly

( at 246.7 Hz )
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at 261.6 Hz )

(

: Mode Shape of the Turborotor Assembly

5.13

Fig.
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Fig. S.14 : Mode Shape of the Turborotor Assembly
( at 261.6 Hz )
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Fig. 5.15 : Mode S8hape of the Turborotor Assembly

( at 269.1 HZ )



CHAPTER 6

RESPONSE ANALYSIS OF A TURBOROTOR SYSTEM

6.1 : General

The compoi.ants of a turborotor system are subjected to
the centrifugal forces during rotation, unbalance in a rotor,
as well as loads due to the pressurized gases or fluid flowing
through the blades. The components must be designed so as to
withstand both the constant and the dynamic stresses they

experience due to such loads.

An assembly of blades is prone to vibration in an
operating system. Periodically varying pressure fields, flow
distortion due to other upstream obstructions and unbalance of
the rotor system are some of the principal sources of
excitation that result in blade vibration response. Limiting
the vibratory stresses to acceptable levels in a given design
requires that the designer be able to calculate the dynamic

characteristics of the assembly.

In this chapter forced vibrational behaviour of a
complete turborotor system is studied using the finite element
program ANSYS. The amplitude of displacement and stress
contours are obtained for a turborotor system considering both

harmonic and centrifugal loading.
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6.2 : Finite Element Model of the Turborotor Assembly

The turborotor assembly is shown in Fig 6.1. The assembly
consists of a rotating shaft mounted on linear, undamped
bearings having a disk with 12 blades mounted on it. The
blades have identical geometric, material and constraint
properties. The disk is assumed to be at the center point of
the shaft and the setting angle of the blade with the plane of
rotation is 45 degrees. An actual turborotor might consist of
several rows of blades, the effect of which will be a spatial
distribution of the load on the rotor and also a gradual
pressure variation from the first row of blades to the last
row of blades. Even though a single row of blades is
considered in this analysis it can be extended to incorporate

several rows of blades.

The bladed disk assembly 1is subjected to steady
sinusoidal loads due to pressurized gas flow through the
blades and centrifugal loads due to rotation. The steady state
sinusoidal load is applied by distributing the average load on
the blade at selected node points as shown in Figures 6.2 and
6.3 . The average load on the blade due to the gas forces is
calculated by considering the gas flow under pressure through
the rotating blades. For illustration purposes only, the

frequency band of excitation, 40-400 Hz, is selected.
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As before, the bearings on which the turborotor assembly is
mounted are nodelled using a spring element having up to three
degrees of freedom at each node. The rotating shaft is
modelled using three dimensional beam elements having 6
degrees of freedom at each node : translations in the nodal X,
Y, Z directions and rotations about the nodal X, Y, and 2
axes. Elastic quadrilateral shell elements having 6 degrees of
freedom at each node with different geometric properties are
used to discretize the bladed-disk assembly. The bladed -
disk assembly is mounted at the center of the shaft and is
coupled to the shaft through rigid massless links. The effect
of this is to couple all the motions of the shaft and the

disk.

The turborotor assembly is composed of 173 nodes and 109
elements. The blade material and the disk material are taken

to be orthotropic MAR-M200 DS and WASPALOY respectively.

Table 6.1 shows the dimensions and material properties

that are used for the analysis of the turborotor assembly.
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Table 6.1 : Turborotor Assembly Parameters

‘ Blade Material Properties l
Modulus of Elasticity 1.283 x 10" N/m? —l

Density 8.603 x 10° Kg/m®

Poisson's Ratio = 0.3

Disk Material Properties

2.139 x 10" N/m?

Modulus of Elasticity

I

Density 8.243 x 10° Kg/m}

Poisson's Ratio = 0.3

|

Geometric and Bearing Properties

5.08 x 102 m

Disk Inner Radius (a)

Disk Outer Radius (b) 18.03 x 102 m

Blade Tip Radius (c) = 25.64 x 102 m
Disk Thickness = 0.635 x 102 m
Blade Thickness = 0.3175 x 102 m
Blade Width = 3.1475 x 107? m
Shaft Length =2.0m

Bearing Stiffness = 1.75 x 107 N/m

Damping Ratio = 1%
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Figure 6.1 : Turborotor Assembly with Force Loading
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Figure 6.2 :

Finite Element Model Showing the Node Numbers
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Figure 6.3

Finite Element Model Showing the Force Loading
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The governing equation for the harmonic analysis is,

MU+ Cu+Ku=F(¢t) (6.1)

where F(t) is a sinusoidal forcing function of known amplitude

F, and frequency p.

F(t) =F ellperYt) (6.2)

For a linear structure the displacements will also vary

sinusoidally at the same freguency, resulting in,

(-pMu+ ipC+K) (4,+14,) = Fj+1F, (6.3)

The symbol =

is used to denote reduced matrices. 4, and

F, represent the real part of the displacement and force

1

vectors respectively, while 4, and F, represent the imaginary

part. Since M, €, and K matrices are assumed to be constant,

(6.4)

(6.5)

where,
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K;q=(—p?ﬁ+ip5++f) (6.6)

is the " equivalent " stiffness matrix. For any given value

of p, the displacements ( 0, + iQ, ) can be calculated .

If ¢ = 0 and the specified forces or displacements are
not complex ( F, = 4, = 0 ) , then there will be no imaginary
terms in the displacement solution. i.e. The displacements are
in phase with the forcing function. Otherwise the solution is
complex, and can be presented in two forms, [100],

- Real and Imaginary parts, Q, and 4,

- Amplitude U, and phase angle, Y

where,

6, - 3T (6.7
-1 02
Y=tan (T) (6.8)

1

The displacements differ in phase ( by the angle Y ) from that

of the forcing function.
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In ANSYS the harmonic analysis requires two passes for a
complete solution, the displacement pass and the stress pass.
The displacement pass calculates the displacement solution at
the master degrees of freedom as a function of frequency,
while the stress pass is used to expand the solution to the
full degrees of freedom and calculate the stresses, which are
also a function of frequency. Figure 6.4 shows the solution

flow chart for the harmonic analysis.

Amplitude and stress contours are obtained for a typical
turborotor assembly subjected to sinusoidal and centrifugal
loadings. As mentioned before, the frequency band of
excitation is taken to be 40-400 Hz and the results are shown
for some predetermined nodes. Stress contours are obtained for
rotational speeds of 1309 rad/sec, 2618 rad/sec and 4189

rad/sec.
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6.3 : Discussion of Results

Harmonic response analysis of a turborotor system
subjected to a steady sinusoidal load is studied using the
finite element analyzer ANSYS. The amplitude of displacement
and stress contours are obtained for predetermined critical
frequencies and selected node points on the turborotor
assembly. The effect due to centrifugal loading is also

studied.

The amplitude of displacement is shown in Figs. 6.5
through 6.13. For presentation purposes certain node points on
the blade, disk and the shaft are chosen to calculate the
value of the amplitude for a frequency range of 40-400 Hz.
Figures 6.5 and 6.6 show the response of the blade. From these
figures it can be seen that the maximum response of the blade
is approximately .018 m and .0052 m in the UZ and UX

directions respectively.

Figures 6.9 through 6.11 show the amplitude of
displacement for certain predetermined nodes on the disk. From
these figures it can be seen that the maximum response of the
disk 1is .018 m. The amplitude of displacement of the node

points on the shaft is shown in Figs. 6.12 and 6.13. Again, it
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can be observed that the maximum response of the shaft is

.0027 m.

Phase angle plots of the turborotor assembly are

presented in Figures 6.14 and 6.15.

The stress contours for the critical frequencies of the
turborotor assembly subjected to the harmonic loading are
presented in Figures 6.16 through 6.21. From Figs. 6.16
through 6.18 it can be seen that for the critical frequencies
of 332 Hz, 42.8 Hz and 256 Hz the maximum stresses on the
blade are 1.6 x 10% N/m?, 9.17 x 10% N/m? and 2.92 x 10% N/m®
respectively. These maximum stresses occur at the root of the
blades and decrease in value towards the tip . The stresses on
the disk for the same critical frequencies are presented in
Figs. 6.19 through 6.21. The maximum stresses for the critical
frequencies of 332 Hz, 42.8 Hz and 256 Hz are 2.46 x 10° N/m?,
4.81 x 10" N/m?, and 3.87 x 10’ N/m’ respectively. The maximum
stresses occur at the inner periphery of the disk and decrease

towards the outer periphery.

The stress contours for the blade and the disk due to
centrifugal loading for different rotational speeds are shown

in Figs. 6.22 through 6.27. The stress values increase with
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increase in rotational speed. As it can be seen from these
figures, the centrifugal loading produces significant stresses
and is the major factor in determining the critical stresses
for the turborotor assembly in comparison to the gas forces on

the blade modelled as harmonic loading.

6.4 : Summary

The forced vibrational behaviour of a complete turborotor
system is studied using the finite element program ANSYS. The
amplitude of displacement and stress contours are obtained for

harmonic and rotational loadings.

In the next chapter, experimental investigation to study
the effect of rotation on the natural frequencies of a disk is

carried out.
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Figure 6.5 : Amplitude Plot for the Turborotor Assembly
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¢ Amplitude Plot for the Turborotor Assembly
( Node 14 on the Disk UZ direction)



=219~

.008

«.0073

.00€4

.0056

0048

.004

.0032

.0024

.0016¢

.800E -

VALU
|/ \\\\\NN
___,_w”// b 1 U1
razo
40 120 200 280 360 440
80 160 240 320 400

Fig. 6.10 : Amplitude Plot for the Turborotor Assembly
( Node 91 on the Disk UZ Direction)




-]

=220~

VALU

.008

<0073

.0064

.0056

.0048

. 004

.0032

.0024

0016

.800E-0

PREQ

40

80

120 200 280 360

Fig 6.11

Amplitude Plot for the Turborotor Assembly

( Node 66 on the Disk UZ Direction)




-221-

VALU

0.004

0.0036

0.0032

0.0028

0.0024

0.002

0.0016

0.0012

0.800K-0

0.400E-0

40 120
80

160

200

240

280

320

360 % 4

400

rRRQ

40

Fig. 6.12 : Amplitude Plot for the Turborotor Assembly
( Node 145 on the Shaft UX Direction )




-222~

0.0018

0.0016

0.0014

0.0012

0.0012

0.800E-

0.600E-

0.400K-

C.200E

VALU

/A

o h__———===7=====r———/ = - 3] PREQ
40 120 200 280 360 440
80 160 240 32¢ 400
Fig 6.13 : Amplitude Plot for the Turborotor Assembly

( Node 139 on the Shaft UX Direction )



-223-

VALUD

20

<40

-60

-80

=100

-120

140

160

NE.

-180 I
40 120 200 280 360
80 160 240 320 400

Fig. 6.14 : Phase Angle Plot for the Turborotor Assembly
( Node 5 U2 Direction )



=224~

VALY

200

160

120

80

40

N\ 45 UX

-40

- 80

~130

-160

PREBQ

»3200

40 120 200 280 360 440
80 160 240 320 400

Fig. 6.15 : Phase Angle Plot for the Turborotor Assembly
( Node 144 Ux Direction )




=225~

0%
2 ==
%

iy
i

¢

S
S
&

.....

AAAAAAAAAAA

000000000

r «0 1l8B-09

i

s,
%
2

Fig. 6.16 : Average

Stress Contours on the Blade
("requency = 332 Hz)




-226~

=0.,3381Ke08

OOOOOOOOOOO

OOOOOOOOOOO

Atk

00000000000

00000000000

% @%ﬁ Lo

it (il

tHHHH

Fig. 6.17 : Average Stress Contours on the Blade
(Frequency = 42.8 Hz)




y
HHHH]

Fig. 6.18 : Average Stress Contours On the Blade

(Frequency =

256 Hz)

;




-228~-

—_— 1]

-0.727E+Q9%
-0.943E+09
«0.116E+10
«0.3388+20

- -
- [} + .
- T

=0.159%B+10

- )

~
S

-0.3818-+10

«0.203E+10

X © W N O 0O o >

=0.3248+10

-

~0.246E+10

YT
t V-
- ' e
et 2N WS O Sons

>

|

Fig. 6.19 : Average Stress Contours on the Disk
(Frequency = 332 H2)




-229-

A «0.182R+08

B “0.220E+008

¢ «0.257E+08

D =0.294B+08

CETEI . «0.332R-08
/ r -0 369E08

G ~0.407E08

K ~0.444B00

I «0 481E-+09

Fig. 6.20 : Average Stress Contours on the Disk
(Frequency = 42.8 Hz)




=230~

=0.113E+08
=0,147K+08
“0.182E+08
«0.316R+08
0. 250E+08
=0.284EB+08

«0.,318E+08

E QO w N O 0 w >

«0.3038B+00

=0,387E+08

-

I
t
]
1
i
1
L4
L)

1

Fig. 6.21 : Average Stress Contours on the Disk
(Frequency = 256 Hz)



-231-

OOOOOOOOOO

0000000000

IIIIIIIIIII

—»
—y
v
o
g
o
=

......

Fig. €6.22 : Average sStress Contours on the Blade
(Rotational Speed = 1309 rad/sec)




-232~

e —— —— ]

=0.7462+08

L 4

=0.841E+08
“0.936B+098
*0.,103R+8)
*0.113R+09

“0.322E2+09

*0,131R+09

“0.3141E+09¢

¥ X 0 w N © 0

*0.1808+09

Fig. 6.23 : Average Stress Contours on the Disk
(Rotational Speed = 1309 rad/sec)




-233-

OOOOOOOOOOO

IIIIIIIIIII

llllllllll

HHHE T

&
§ = %

......

Fig. 6.24 : Average Stress Contours on the Blade
(Rotational Speed = 26184 rad/sec)



=234~

|

" X O % W U an =m >

Fig. 6.25

— ===============================================?

=0.390R+09
=0.3)6R+09
0.3742-+09
©0.4138+09
=0.4350R+09
=0,488R+09
=0.5262+09
»0.564E-0"

=0,003R+08

Average Stress Contours on the Disk

(Rotational Speed = 2618 rad/sec)




-235-

i

= : &
&
Uy B

Mttt il

N I
o Yy

s

Fig.6.26 : Average Stress Contours on the Blade
(Rotational Speed = 4189 rad/sec)




=236~

—— — ]

“0.784R+09
~0,861E409

=0.958E-09

~0,31385E+10

=0.1238E+210

A
»
<
1 4 *0.1068+20
4
a

=0.1385R+10

h =0.144E+10

z «0.1848¢20

o el e <~

R ITT T

Fig. 6.27 : Average 8tress Contours on the Disk
(Rotational 8peed = 4189 rad/sec)




CHAPTER 7

EXPERIMENTAL ANALYSIS OF A SHAFT DISK SYSTEM

7.1 : General

In the preceding chapters dynamic behaviour of a
turborotor system was investigated analytically and also
numerically using finite element techniques. In order to
verify some of the theoretical studies an experimental set up
with a rotating shaft disk system was used. The results of

this investigation are presented in this chapter.

7.2 : Experimental Setup

An experimental facility was established in order to
carry out a validation of some of the analytical results. The
shaft disk assembly schematic and the experimental setup are
shown in Figs. 7.1 through 7.5. The assembly consists of a
circular shaft mounted on rolling contact bearings in cast
iron pedestals. The disk is mounted at the center point of the
shaft. Even though inclusion of blades on the disk would make
the test structure more realistic, it would increase the
complexity of the assembly in terms of the blade fixture to
the disk. Since the objective of the test is to validate the
analytical results on the effect of rotation on the natural
frequencies , the test structure was limited to a shaft disk
assembly only. The shaft is driven by a variable speed motor

through gear so as to increase the speed of the shaft. The
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shaft speed is measured by a digital tachometer. An
accelerometer is mounted on the disk to measure the vibration
level. An impulse hammer and a hydrodynamic shaker, having a
force transducer to detect the magnitude of the force applied
are used to apply test force at predefined points on the shaft

disk system.
A slip ring arrangement was attached to one end of the
shaft to transmit the response signal from the accelerometer

mounted on the disk to the FFT analyczer.

Table 7.1 shows the dimensions and material properties

for the shaft disk systen.

7.3 : Modal Testing of the Shaft Disk System

A dynamical system can be described by either a
geometrical description or modal description. In the
geometrical aescription the system is described in terms of
the mass and stiffness matrices obtained using finite element
methods or lumped mass and stiffness properties. The system
can also be described using properties such as natural
frequencies, mode shapes, damping ratio, which is known as
modal description. Modal testing is a convenient technique to

obtain these system parameters.
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Figure 7.3 : Experimental Setup of the shaft Disk System
( 8lip Ring Arrangement )
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Figqure 7.4 : Experimental Setup of the Shaft Disk Systenm
( Accelerometer Mounting )
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Table 7.1 : Details of the Experimental Setup

Motor : GEC, S5Hp 1720 rpm (Variable Speed)
Disk Material : Stainless Steel

shaft Material : Stainless Steel

shaft Radius 2.54 x 10% m

Disk Radius 23.0 x 102 m

Disk Thickness =0.2 x10%m

Shaft Length = .91 m
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In this study the following are investigated :

1) Determining the natural frequencies.

2) Study the effect of rotational speed on the natural
frequencies and comparison with those from the theoretical

model.

There are basically two steps associated with modal
testing,
1) Measurement of the transfer function (Experimental stage).
2) Curve fitting of measured transfer functions and extraction
of modal parameters such as natural frequencies, mode

shapes, damping ratios (Numerical analysis stage).

7.4 : Frequency Response Functions

Frequency response function is described as the ratio of
the amplitude of the harmonic response to that of the harmonic
force input. Depending on the type of the response measured,
say displacement, velocity or acceleration, it 1is called
receptance, mobility or inertance, respectively, of the
system. The determination of the frequency response functions
is the first step in modal testing and is important because
the modal parameters are extracted from these functions using

a curve fitting procedure. Hence, the analytical evaluation of
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frequency response functions for different types of systems

are derived in the following.

Consider a general system with non-proportional damping.

The equations of motion are given by,

where,

(M) e (U} + 1K) 5 U = D (7.1)

-m 0

(KI=Lo &

(A=12), {U}=(_3}2m (7.2)

In Eq.(7.1) the first N equations express the identity,

(M] {d) - M) {u)=0 (7.3)
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Transforming the physical coordinates {U} into modal

coordinates {g} gives,

{Uh= [e] g (7.4)

where (@] is the modal matrix. Substituting Eg. (7.4) in
Egq.(7.1) and premultiplying throughout by (0)", Eq. (7.1) can

be rewritten as,

le] T2 [ellg)+ (2] T[K] [e)lg)= [e] IR} (7.5)

Let,

(Al =Tlel T[M] (o] (Bl =(e] T[K] [e] (7.86)

The complex eigen vectors [Q]) are orthogonal to each
other and hence the 2N number of uncoupled system equations

are obtained as follows,

2N
A, g, +B,q,=F,= Y lTF is1,2,....... 2N (7.7)
1

where A and B, denote diagonal elements of [A] and [B]

respectively.
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Consider the case of harmonic excitation at a point r,
{F}'" = {0, 0, 0,.....£,, O, 0) e I** where v is the frequency

of excitation. For steady state solution of the form,

=Q—ejuc (7.8)
Eq.7.7 becomes,
ij101+BJQi=erifr (7.9)
which gives,
5=——lols (7.10)

1 (JwA,+B,)

The response U, at point s is given by substituting Eq.(7.10)

in Eq. (7.4)

2N
.0 .f
U= S e + b SE (7.11)
s E (JwA1+BJ)

i=1

This can be written as,



-249-
2N
us=z_j'izfﬁ_f_ (7.12)
= A, 0w-C)
where
B
C,=-2 7.13
- (7.13)

Hence, the freguency response function H,, (jv) can be written

as,

hhl l

N
2: — 2% (7.14)
r 1 <JwC>

However, because the eigenvalues and eigenvectors occur in
complex conjugate pairs, Eg. (7.14) can be rewritten [101),

for a proportionally damped system as,

Hy=Y —io (el enln (7.15)
& a,c, 2Ue-P) 25(jw-P})

where,

2
Co=w , (1-(%) ¢ (7.16)
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The pole of the ith mode P, is defined as,

-

P=-( ;00 ;+jw ;(1-(2) % (7.17)

P* and ¢,* are complex conjugates of P, and ¢, respectively.
Eg. (7.15) represents the frequency response function for
a proportionally damped system. For a nonproportionally damped

system the frequency response function is given by,

' 22
— Us(]w) _Ev 3 9510” 9;13;1 ] (7.18)

T e & A (Jo-P) A (je-PI)

The analytical form of the frequency response function is
given by Eq. (7.15). Experimentally measured frequency
response functions are fitted with this form using curve

fitting procedures to extract the modal parameters.

7.5 : Obtaining the Frequency Response Function

Modal testing was carried out on the shaft disk system
described in section 7.2. The system is excited using an

impulse hammer when it is not rotating and an hydrodynamic
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shaker when it is rotating. An accelerometer is mounted on the
disk to measure the response signal. The response signal is
passed through a slip ring arrangement and then along with
excitation signal is fed through filters into the FFT
analyzer. The modal analysis software then computes the
frequency response function (FRF) from these two signals.
Fig.7.6 shows a N x N matrix of frequency response functions.
Measuring the response at a fixed 1location and exciting
different test points yields one row of the FRF, which
provides both the eigenvalues and eigenvectors of the system.
When using the impulse hammer the magnitude of the impact can
be predetermined by the mass of the hammer head and the
velocity with which it is moving when it hits the structure.
The magnitude of the force is adjusted by varying the mass of
the hammer head. The frequency range which is effectively
excited by the hammer depends on the stiffness of the

contacting surfaces and the mass of the impactor head.

A typical impact force pulse and spectrum is shown in Fig
7.7. The stiffer the contacting materials, the shorter will be
the duration of the pulse and the higher will be the frequency
range covered by the impact. Similarly, the 1lighter the

impactor mass, the higher the effective frequency range.
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Figure 7.6 : Matrix of Frequency Response Function
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Generally a soft tip is used in order to inject all the
input energy into the frequency range of interest, rather than
use a stiffer tip which inputs energy outside the range of

interest at the expense of those inside the range.

7.6 : Discussion of results

Natural frequencies of a rotating shaft disk system are

obtained using modal testing techniques.

The frequency response plots are obtained experimentally
as described in section 7.5. These plots provide the natural
frequencies of the system where a peak is observed in the
amplitude plot and a change in the respective phase plot.
Since the rotational speed has no significant effect on the
natural frequencies of the shaft and the operating speed is
about 2100 rpm, discussions are restricted to the first

natural frequency of the disk.

The frequency response plot for the non rotating shaft
disk system is shown in Fig.7.8 . The system is excited at

various points on the disk using a hammer and the response is



measured in the bending direction of the disk at a fixed
location. The system exhibits peaks at the natural frequencies
with the first natural frequency at about 35 Hz. The first
natural frequency compares quite well with the analytical
model as shown in Table 7.2. The same test 1is carried out
again but the output is measured using a microphone (rather
than an acceleroneter) placed close to the disk . The results

are shown in Fig.7.9.

Since it 1s not convenient to excite the shaft disk
system using a hammer while it is rotating , even though the
technique was used in earlier studies on rotating structures
(102}, a hydrodynamic shaker is used to provide the input.
The shaker is attached to one of the pedestals and a randomn
noise excitation is given as an input signal. The system is
excited using this input for various rotational speeds of the
motor and the output is shown in Figs.7.10 through 7.14. From
these figures it can be seen that as the rotational speed
increases the natural frequency of the disk increases hence

validating the analytical model.
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7.8 : Summary

Modal testing was carried out on a shaft disk system. The
frequency response functions were obtained and the natural
frequencies identified. The effect of rotation on the first
natural frequency of the disk was studied. This phenomenon was

observed in the analytical model (Chapter 3).

In the next chapter, conclusions of this investigation
are presented and recommendations for future work are

suggested.
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Table 7.2 : Comparison of the First Natural Frequency

Rotational Speed Analytical Results Experimental
(R.P.M) {(rad/sec) Results (rad/sec)
0.0 36.17 35.2
655 39.87 39.3
1055 51.31 52.7
1455 59.11 59.8
2055 67.62 65.6
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 : General

The dynamic behaviour of a bladed disk-turkorotor~bearing

system was studied in this thesis.

A suitable model for each individual component of the
turborotor system was developed and studied. These individual
components were then assembled using the finite element
technique to study the system dynamic behaviour. Natural
frequencies and mode shapes were obtained. The response and
stress due to harmonic and centrifugal loading was also
obtained. The analytical results were compared with those

obtained from experiments.

The dynaric analysis of the turborotor blade was first
studied using beam characteristic orthogonal polynomials in
the Rayleigh-Ritz method. The blade was idealized as a beam or
a plate depending on the aspect ratio. The variation of the
natural frequencies and mode shapes with speed of rotation was
obtained for several combinations of the setting angle, hub
radius and aspect ratio. The effects of shear deflection and

rotary inertia are also studied.
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Axisymmetrical and antisymmetrical vibrations of the
turbine disk with varying thickness was studied and the
variation of the natural freguencies with speed of rotation
were obtained for several parameter combinations of the ratio

of inner/outer radii and ratio of inner/outer thickness.

A complete model of the turborotor system was developed
using the finite element technique and the natural frequencies
and mode shapes were obtained for various rotational speeds.
Finally, the response analysis of the turborotor system with
the blades and the disk subjected to harmonic and centrifugal
loading 1is carried out. The stresses and amplitudes of

vibration for a typical turborotor system are obtained.

8.2 : Conclusions

The conclusions arrived on the basis of the results of

this investigation in the different chapters of the thesis are

summarised and given below :

8.2.1 : Beam Model

1) The natural frequencies of a rotating beam increase for

higher setting angles and for any setting angle the
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increase is linear at higher rotational speeds.
2) With larger values of hub radius, the natural frequencies
are higher and increase faster with the rotational speed.
3) The beam tries to straighten itself as the rotational

speed is increased.

4) Shear and Rotary inertia effects lower the natural
frequencies of the rotating beam, such reduction being

more predominant for higher modes.

8.2.2 : Plate Model

5) The natural frequencies of a rotating plate increase with
higher values of the setting angle.

6) The natural frequencies increase with increase in hub

radii.

8.2.3 : Disk Model

7) The natural frequencies of a rotating disk increase with
increase in the inner/outler radii ratio, such increase
being more predominant for higher modes.

8) The natural frequencies of a rotating disk increase with

the increase in the inner/outer thickness ratio for a
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10)

8.2.4

11)

12)

8.2.5

13)

14)

15)
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r1xed value of the inner/outer radii.

The natural frequencies of the rotating disk, having
parabolic thickness variation is lower, in comparison to
a disk having linear thickness variation.

In a fixed frame of reference, the first two modes have
no critical speeds while for mode 3 its lower frequency

curve decreases and intersects the lateral axis.

: Bladed Disk Model

The natural frequencies increase wit increase 1in
rotational speed.
The natural frequency decreases with the inclusion of the

blades.

: Turborotor System

The rotational speed has no significant effect on the
shaft frequencies.

The first natural frequency of the system corresponds to
the shaft bending frequency which is significantly lecwer
than that of the bladed disk assembly.

The natural frequencies increase with increase in the

bearing stiffness.
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17)

18)

8.2.6

1)

2)
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The maximum stress occurs at the root of the blade and
decreases in value towards the tip.

The maximum stresses occur at the inner periphery of the
disk and decrease towards the outer periphery.

The centrifugal 1loading 1is the major factor in
determining the critical stresses for the turborotor

system in comparison to the gas pressure loading.

¢ Experimental

Vibration testing is normally performed for stationary
structures in order to identify the modal parameters of
the structure. For a simple shaft-disk system, this
method provides the critical frequencies which are found
to be close to those obtained by analysis.

The disk natural frequency increases with increase in

rotational speed hence validating the analytical model.
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8.3 : Recommendations for Future Work

Some suggestions for possible future work are given
below:

. Pretwist and taper can be incorporated in the formulation
of the blade models.

. The effect ¢f chrouds and lacing wires on the natural
frequencies and mode shapes can be studied.

J The effect of aerodynamic detuning on blade response can
be investigated.

. Response analysis with inclusion of bearing damping and
mechanical damping resulting from any rubbing action can
be incorporated in the model.

, c Scale model studies on the system can be carried out to
see wether tests can be done on models rotating at lower

speeds for prototypes which run much faster.

° The effect of anisotropic bearings on the system can be
studied.
° The effect of increasing the number of bearing supports

can be investigated.
J Experimental validation with the inclusion of the blades

‘ can be carried out.
i . Modal testing can be carried out to determine the mode

shapes of stationery and rotating turborotor system.
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