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et ' ABSTRACT L .
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, Computer Aided Synthesis of Optimal Multi-Speed
T . . Gear .Drive Designs o ¢’

Using Problem Reduction Strategy

1

T

| .
|

|

H

Gerald S.)Bush. Ph.D. .
Concordia University, 1987 °

A method for the synthlesis of optimal multi-speed gear drive
. » a, o

A 1
designs 1s presented incorporating kinematic requirements, component ﬁf{ i

strength requirements and location of eigenvalues. The synthesis is
¢ s

. ) r
accomplished through a problem reduction optimization strategy which

. ) . . ' ' ~
efficiently determines the optimum valups for-diaometers aond faces widths .

. of all gears. ?Convedtionol. single composite and double composite

A

A
orrangements can be analysed forédll layout diagrams. .

General kinematic equations to define the diameters of all géors

W " ; “ .
in a parallel axis multi-speed gear drive are developed.” These

'

v

equations apply tp single composites and double composites as well as
-? ‘

the cqnven%&“;al arrangement. Equations for- the diometers of gears for

-

o particular kinematic arrongement are readily obtained from the general
L v

equations, given the layout diagrams and the types of orrpngeménts of

interest (i.e. conventional, single composite or double composite).

3

$Since the equations are based on the layout diugrcms.'WhAch are

- .

mathematically formuloted they are edsily computerized. ' 'Q\‘

A mesh optimization strategy to rate components is presented for _

%

standard spur gears which determines the optimum module of a mesh as a

function of gear ratio and pinion.@éspeed for any specified set of
-

operoting conditions. This analysis is used to generate a minimum

0

diometer matrix which is used during the arrangement optimiiation to

’

- 111 -
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LY

ensure that required c;pponent strengths are achieved along with ‘

kinematic requirements’. Thej%ptimum_diumetpr matrix can be colc:ﬁoted

1

for both spur and helical gearing with standard or ﬁon-standord.téoth Rt

s

o

geometry. ‘ .ow )

An eigenvafﬁi anglysis is performed on optimal arrangements to

1
.

ensure, that torsional natural .frequencies do not occur near operating

speeds., In the event that eigenvalues need to be modified, eigenvalue

-

derivatives with respect to shaft stiffhessmelements are calculated and
uSed to adjust the design.

N .
A Problem Reduction optimizotion strategy is used to eliminate

s

dependent variables and simplify coqgtroints. This results in a very

efficient formulation of the problem which allows optimization of as .

i
i)

many arrangements-as desirgd.

o

- A four speed drive verification problem is used through-out the

. \ \ -
thésis to'illustrate concepts and verify techniques. Case studies are
. /
Y "} )
presented and compared with other works for theé 9 speed and 18 speed

-
o

gear drives. Results of the case studies are shown to correlate with

actual ﬁulti-sﬁgad machine tool gear drives.

*
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- | u‘/)

" - INTRODUCTION

1.1 Objective

Multi-speed gear drives are critical components in all metal

L4
-

cutting machine tools as well u7’Being important sub-assemblies in many

»

other mechonical systems. The design of o multi-speed gear drive is an

‘involved process drowing on expertise from a number of engineering

. i

; fields including kinematics, machine design, and dynamics. A kinemdtic
analysis 1s required.to ensure that the correct output speeds are

4

/ ‘
obtained using an efficient gear arrangement. Principles of machine

design are used to ensure that components, such as ihe gears, are

2

capable of corﬁyingxthe operating power for the 1ife of drive. Dynomic
aonalysis of the system 18 required t6 verify that operating speeds do
not lie neor‘system natural frequencies. = .

. The onalysis for each of thege oct‘@ities is substantial. In

v

generol, a kinematic analysis is performed first, followed by component

design and dynumfc analysis. By dealing with each analysis sebardtely.

.
»

the complexity of the problem is somewhat reduced. This approagh is

generally used in designing gear drives (1] and was recently used by Roo

4

!i and Eslampour to synthesize designs for an objective function of minimum

. volume [2]. This series approach has -been used because it allows for

k \ ] } "

acceptable solutions to the problem in reaosonable time froméée

PR
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A complete anolysié for all possible combinations of design
vorlcbles. whicﬁ would determine the optimum, is not practical..
Instead, for problems such as these, }t‘is necessary to find strategieés
which search the design space efficiently. * Systematic search strategies
for complex préglems [2-8] are under investigation® ‘Substantial -
1mprov§ments have been achieved,. when strategies are used which reduce
the design space based on anulysislof constraints.

This worg studies the optimal design of parallel axis multi-speed
gear drives. The focus is on providing a mathematical model and

optimizotidn strategy which integrate the significaont aspects of key

fields into one unified analysis. The goal is to synthesize optimal

designs which correlate with drives in use. v

) e
1.2 Background on Kinematic Analysis and Relevent Literature
o The output speedé of a multi-speed machine tool gear drive

normally form a geometric progression which simplifies design and
improves ﬁochine,tooT éffi@}bncy [9,10]. The ratio between speeds,

¥ .
known as the step rotlo. is selected from one of a number of standard

volues depending on the speed range which must be covered and the number
e ‘ -
of speeds alliowed. Shaw [11] critically exomined the use of the

™~ 4
\

geometric progrgssion in machine tool applications. He found that
manufacturing costs aore minimized and that tool 1ife ond surface finish
requirements are adequately met when o geometric progressidh of output

speeds 1s uspd, as long as all speeds are equally likely to be

I3 )
'

required.
| ” -~ 0
Based on the. number of speeds a layout diobrom [9] can be
prepared. For the conventional geor drive, figure 1.1, the layout
- » ' b
Foy ¢ ’ .
¢ - e I
o
T . '
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l:‘ ' . ) .’t ) (
diagrom as shown 1in figure 1.2, identifies the number of shafts and the

numper of gear pairs (1i.e. rotio;) between each shaft. MFoﬁ a particulor
L Y . . .
number of speeds, there may be many layout diagrams.” The quontity .

»>

N

depends on the number of speeds [9]. A

The number of gears used to satisfy a particular layout diagram v

v

depends on ‘the oFrongement selected. Agbonventionul arrangement is

defined as one which uses two geurs for each gear mesh’. In some cases,
- 0 N

~

)\ ] 1tnis possible to use a driven geor from one mesh df o group os the

driving éear in another mesh of the next group as shown in figure 1.3,

- v

. This reduces the total number. of gears in the gearbox compared to

conventional arrangemegts. . T

. ]

Arrangements which utilize a gear on an intermediate shaft as

! o 0y . N
both an input gear and on output gear are know os‘"COmgositeﬂ ) ’
crrqngemen.ts. If only one gear onu the inter:mediate shaft hos this
property, £he-layéut is te;med a "s%ngle cémpésite". If two ge&rs on
the'somb intermediate shof£ have this property, tﬁ;.$oy0ut is termed o

. 3 s

s "double composite”. Similarly, an arrangement having '3 gears on the ,

same intermediate shaft 1i$ termed o "triple composite". - -
' 1 S

Coﬁposite gear arrangements have a reduced number of degrees of -

’

Iy '

~

2y

freedom and oblige the &esignqr to develop mathemotical models to find
the gear diameters. ' Because these arrangements reduce the number of

geors required to produce a given number of speeds they have received

'

the attention of gear train designers. ' \

Hall [12,13] was one of the fiist to use o mathematical procedure

- N fa -
to determine the gear diameters of a multi-speed gear train arrangement

.

. “\ with output sp.eeds #h a geometric progression. Hi\)s work was dilrected at

‘

determining the number of teeth for each geor in composite gear drive

s bl
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arrangements. He examined three arrangements (figures 1.4 - 1.6) each
with three shafts: The 8 spoeg 10 gear ond the 9 speed 10 gear double
comp%sitoé'und the 9 speed 9 gear triple -composite. Hall onalysed the

above arrangem&nts using an orderly procedure to obtain the number of
. s

teeth required on each gear. The cnalysis was based .on the assumption

. .

that output speeds formed a geometric progression and that center
distance between gears in a group was constant.
white [14] deVelop;d a rigorous mathematical method of onolysis

(see gppendig.A) in ordér to write anclytic equations for the’ gear

diameters of minimum gbar kcomposite)‘arrangements. He applied this
- : _ .

method to o number of 9 speed arrangements to-obtain analytic equations

(4 o .

for the diaometers of the gears. Triple composite arrangements were .

shown to be %nccpoble of providing output speeds in a geometric
progression thus the 9 speed - 9~gear/arrangément was rejected. !
Attention was next focused on the 9 speed - 10 geoE double composite
urfongementléhoﬁn in figure 1.5. White dev;loped algebraic equations’

for the diameter of each gear of the train in terms of the lowest
Y . .
output/input ratio, a reference gear, and the step rotio. 'As with Holl,

the output speeds formed a geometric progression ond the distance

between the shafts was constant. This analysis applied to one of 38

kinematic possibilities, as shown in table 1.1, for the 9 speed 10 gear
~

. . ™
3 shaft arrangement. e :

With analytic eqqg}ions for the diameters of the geors, a naturol

step/ﬂ6§ to devslop 6 diometer based obJeétive function to minimize gear

didmeters. White and Sanger [15] presented results for the & speed

.

double composite arrangement using the technique introduced by White.

“ f
They also dewveloped:'an aonalytic equation to find the optimum value of

[

vt
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TABLE f.1’

Possible Kinematic Arrangements as a Function .of Output Speeds

l

’

SPEEDS | FACTORS | RANGE # OF COMPOSITES BY TYPE TOTAL
EXP.
: ﬁBNE SINGLE DOUBLE
N 2-2 1-2 1 4o 1 6
2-1 b 6
g ) ' 12
9 3-3 1-3 1 9 .9 19
3-1 1 9 9 . 19
. . P———
. 38
.18 3.3-2 6-2-1- 1 15 12 28
' 2-6~1 1 15 12 28 .
6-1-3 1 15 12 28
1-6-3 1 15 12 28
] 3-1-9 1 15 12 28
: 1-3-9 1 15 12 + 28
3-2-3 6-3-1 1 12 6 27
- 3-9-1 - 12 6 27.
. 6-1-2 1 12 6 ° 17
9-9-3 A 2 "6 17
2-1-6 1 12 6 17
1-3-6 1 12 6 17
2-3-3 9-3-1 ~ 1 .15 12 28
"l o3-6-1 C1 15 12 28
1-6-2 1 15 - 12 28
9-1-3 1 15 12 28
3-1-6 1 ‘15 12 28
1-2-6 1 ¢ 18 12 28
. ~ ——
. 438
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the -ratio of lowost,outpu£ 8peed/input speéd -as a function Qf the step

- J

ratio ‘based on an objective of equating the diometers of the largest

£

gears. White and Sanger‘{16.17] ond Prasad, Dukkipati, ond Osmon [18)

pursued various objective functions, such as equal diometers of the:

N

largest gears’, minimum overall radial dimensions, and fiﬁding the number -

of gear t@eth which resulted in the minimum resulting error . in output .

speeds.

’

4 » s Y

white and Sanger [19] studied all possible double composite
’

¢

arrangements for the 9 speed 3 shaft geor train, a task requiring
considerable time and excellent algebraic skills, to determine which

one was Rest. ‘ They considered 24 sets of equq&iéns for 9 speed 10 geor .-

double composite arrangements which‘could produce a geometric

progression of outp&; speeds. A measure of the overall radial

dimensions for each orﬁangement was obtained by summing the diameters of

3
<+

the gears in a line. Since analytic equutioﬁs were avoilobie,‘us a*

2

function of thé?lowest output/input ratio and the step ratio for each of -
ot -
the gear diometers, a single analytic objective function was devéloped.

The effect of the lowest output/input ratio on overall rudiolidimensions
(’ .

was studied and found to have an optimum value for a particular step

ratio.

—

( The method ;* white and. Sanger had two serious limitations: (1)

the analysis was extremely tedious and (2) the resulting equations ,

v -

applied to only o single specific orrongémenti Sanger and Whité {20,21]

-

developed a general theory for double composite gedr trains in an effort

-

to eliminate the need to onalyze from scratch any change in the

/

arrangement or layout diagram. This theory used a six gear double

composite arrangement as the .core and odded extra gear p04r§ os required

\

AY 4
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to obtoin additional speeds. This method was mathematically complex

requiring ' tables of index numbers and algebraicoliy ¢omplicated
A 3

v

expressions. It was further limited to double tomposite—arrangenents
’“ -

.

using 3 shafts. .

’
‘\

- Osman, Sankar and Dukkipati [22] used a multi—pérometer

optimization technique to obtain r'esults~1dent1cal to those obtained by

White and Sanger [19] with much less analytic effort. The equations for

the geor diometers were written with 3 variobles, assuming 3'degrees of
freedom instead of 1, thus reducing the algebraic manipulations
'raquirod. It was then_possiifle to write 2 adclitional' constraints so

A v

‘ [V ! .
that. the resulting problem was similarly constrafned (;ee appendix A).°’

- 1

This converted the complex algebroiq analysis problem to one of moderate
- ' .
algebraic analysis and a multi-parameter optimizotion subject ’to 2

equality constraintd. The work required to obtain solutions to

r

5 ‘ - '
different objective functions was much reduced. Unfortunately the

’

—method still required significamt amounts of mothem‘cticol development ke, )

obtain gea‘r diameter equ_ot'ions voiid‘oniy for a selected cOmposit?;s>._

1 k4

' . J

arrangement and occomp.anvin% layout dicgrém..
: 3 ' ) -
. Although most previous work has been devoted .to studying double

composite arrangements,, Murthy [23] used a mathematical procedure to

«

minimize radial dimensions of a single éomposite gear drive. Hi{s

< ‘1
-

.o technique did not develop equations for the diameters of each of the

“* -

gears, howeve;'-. his ‘objective €0 minimize radicl dimensions wos similor
to that of white and Sanger. He found that in particular cases, the
single composite arrangement was radially as small as the conventionql

° gear arrangement. His technique did not easily extend to double

composite arrangements. .

f.x&i-f . _ R . . . SNl
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Thoﬂutility of previous methods to define gear diometers in. a

drive was limited by the algebraic development required to generate the

———

system of equations specific for eochrloyout and arrangement. AS shown

:

in table 1.1, there are 12 possible kinematic arrangements for .o drive

with &4 spaeds: 38 for one with 9 speeds and 438 for one'with 18 speeds.

{
A~

A designer must be able, in a practical foshion?'yo evaluate as many of

. S

those arrangements as. deemed necessary~1n order to dete?miqe the optimal
one. Since there are many possible arrangements for a particular number
of speeds, the designér must perform the mathematical analysis many

times. Methods presented in the literature have not been practical for

.

the 1investigation of the general problem. '

1.3 . Bockgrouﬁd'on Gear Mesh Design and Optimization -

o,

. The diameter wand width of gears in o gear drive largely determine

" overall performance. These components must be optimized.

-

‘

0 . . !

The power rating of a gear mesh is difficult to determine pecodse

of .the large number odeesign variables, the wide rdnée of oberuting

~

conditions, and the inexplicit relationships Bétween variables.

Basic information on the geometry of gearing and basic equations have

been presented by Dudley [24] and Buckingham [25]. Detailed design
information 1s contained in design standdards [26-30]. The American Geor

. Morufocturers Association (AGMA) design standords

v

[26,29,30]) form the

- basis 'of most North’Ameripon designs. These stondards ore based on

s

- fundomentcl.théories which are combined with design foctors. Design

1

factors are determined through. a combinotion of theory and proctice and

are updated at intervols to 1ncorpora£b improvements.

.

r
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1.3.1 Rating the Power Capacity of a Gear Mesh .
Gears used to tronsmit power must be sized to resist, for their

design life, failure because of tooth breakage or surface fatigue
-~

-«

pittihg or scoring. Tooth breakage is a result of a single load which

exceeds the yield strength or repeated loads which exceed the fatigue

bending strength of the gear tooth material. Pitting of the gear tooth

surface is a result of Hertzian contact stresses on the face of the gear
» .

’

.tooth which exceed the matericl fatigue strength. Scoring of the gear

tooth surface is caused by o breakdown of the lubricant film resulting

in metal to metal contact. ¢

Design methods for the avoidance of gear tooth breakage are based

on the bending endurance 1limit of the gear material. The goal is to

- 2 -

. -
have sufficient strength to avoid a bending fatigue failure due to

craocking at the tooth root fillet. Usually in these methods the gear

tooth 1is 6nulyzed as a caniilever beam with the addition of semi-

4

empirical servic? and geometry factors. The bending strength is
meqsured.in terms of the t;nsile bend1n§ stress in a cantilevér plate
modified to include the' effects of: (1) compressive stress at the tooth
roots, (2) non-uniform mo;ent distripution, (3) stress conc;ntrations at
theitbpth root:fillets. and (4) load sharing p;tween adiocent'teethvin

L 3

contact. . -

Design methods to resist surfoce fatigue are based on 'the concept

N 5
.of a surface fatigue endurance limit. The Hertzian contact stress,

{

which 18 proportional to the square root of the oppliéd load, is

estimated and then modified with-service condition and geometry factors

to become the stress number. The stress nuhmber is cohpared ggainst the

surface fatigue endurance limig.-to ensure an adeduate fatigue life.
. {/ A ’

W

s

R
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v

Scoring is a wear phenomena which occurs'qs a result of o

Preokdgwn of th; lubricant oil film, allowing metal to metal contact.

The resulting welding and teoring apart of the Fobth suchces couses a
rapid deterioration:'of the tootqnprofilé. §cor1ng is moif common with
high speed gearing undér heavy 100?5 but 1is also evident with heuvily,

loaded gears operated at inmxg}tch line velocities. 1In most cases "it

> [

day be controlled by selecting proper lubricont and/or by moﬁifyiﬁg'the

gear tooth profiles. The prime voriogles.in determining oil film !
s ) .
thiqyness,ore pitch line velocity, oil temperature and type of oil,

¥

although surface finish and moteriols hay‘olsoﬂbe significont.
P .

N -

- " The equations to determine the _power rating as suggested by ‘°

« -

design standard AGMA 218 [26] are cumbersome to evaluate. \Mgst factors

have been obtained ag o combinotion of theoretical and empirical results

-

» -

accurate for specific operating conditibns.

The dyﬁam1c factor is based on extensive studies over a period of

' .

time and 1is ‘not yet determihed for all conditions. Shimamura and
Noguchi_[31] used dynamic ph3Yoelastic 'tests to determine an analytical

expression for dynumic.foctor. Houser and Seireg [32,33] performed
extensive testing in a further effort_to obtain analytic expressions for
. A . 4

dynamic factors valid over a range of operating conditions. Tucker [34]
I " . :
sdggested that theﬁdynbmic factor is additive rather than multiplicative
‘. \ 3

PR

and should be treated as such. Conrey and Seireg [35] presented a

-

. prdﬁrumming technique for the fstoblishment of load distribution end

-

optimal modification of a spurior helical gear mesh.

The complexity of the co\culotion to determine power rating for a

“specific gear poir using design standards resulted in a search for

13 N \ s
simplified rating. expressions usually applicable to specific cases [36-
h B N - v g ’

e ¢

- -
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40]. The‘goul of such works was to arrive at ané%?kic expressions for
e ) ‘ .
the powgr rating of a gear mesh. These provided approximate power
L4

[

to correctly'rote)o gear mesh for a range of applications.

k4 . ,
Power ratings-for special cases, where one of the failure modes’
> “ ©

o

was clearly dominant, have also'been published [41-47]. For specific

applications, useful gnalytic qpthods are possible and have been

demonstrated. However, the scope of application is distinctly,%imited

s

and does not well ,serve the‘generoi problem. Invariably, the trend is

towardé the use of AGMA 218, and the more recent focus has beep on the

\

,devélopment of software to perform the necessary calculations in a #

) . v
practical .fashion.

-

-

!

<

with calculations based on the procedure outlined in BS436 (49]. They
nofe that when a design 1is required for a specific power rating-an

iterative procedure is yeguired. The obility to computeHize the
) .

. cdlculattion 9f power rating was noted to be extremely useful.

"With AGMA 218 the 6reo of greatest difficulty was in the
{

v

\rotings useful for the investigation of variable sensitivity but unable

¢

“"\

h
i)
!

t

Cockerham and Woite [48] developed o computer aided procedure to

'designvsiandorqckoo preéjpre.angle spur or ﬁelicg£,georing for strength

a

<

o

A

. calculation of the geometry factor J. Ndrmally, and still the basis of
\ . R

the design stondard: the geometry factor J 1is determined. using graphical
. ~ .

methods. The standard presents tables of J values based on graphical

methods for a’limited number of standard tooth forms.

Analytic procedures for the determination of root géometry were

p}esanted by Mitchiner ond Mabie [S0] and Lopez and Wheway [51] bosed on

o

o A
the root profile of the/tqoth. These method$ were applicable to both

.
rd

standard .and non-standard tooth geometry. Earlier works by Kharolla

a{T : ) N Y

‘a
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" the geometry factor which is developed from these'eorlier methods.
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f52] and Gitchell [53] presented techniques'to evaluate root geometry.

Enrrichello [54] presented computer codiﬁg copublq of calculating

a

geometry factors. AGMA 218 provides a numerical tebhnique to calculate

The ability to calculate the Lewis form factor using an

analytical mqthdd suitable to the computsr was veryesibnificoﬁt because

>

it meaont that it was no longer‘necessory to determine geomefry factors TV

by layout procedures. This made it pruciical to evaluate gear strengths

\

for bending strength and pitting re%iétance using computer software.

‘

The use of AGMA design stondards are recommended, in the absence

>

of more specific analytical ond experimental results, to determine fhe

design for a particulor application. :

1)

<
l

1.3.2 Optimum Design of a "Gear Mesh

.

Mqthods to optimize gear mesh performance have been ﬁqo#n‘fof

many years. _The goal, in general, 1is to balance the §tren§th between

N
\

the‘géar and the pihion. A secondary goal is to balance Qhe ﬁending nna
pitting resistance strengths with-in ehc? gear. Fig;re 1.7 shows
typical behavior of the four failure modes; (1) aniop bending strength,
(2) pinioﬁ pitting resistance, (3) gegr bending strength, oﬁd.(as ééér
pitting resistance as a function of .tooth size.

Brass [555 and Bookmiller '[S6] provided design 1nfprmot196 to

take advantoge of non-standard gears. Brass suggested the use of
»

modified pressure angles to simplify the design of gears for specific

i - ~
operating conditions. Bookmiller presented charts to design long/short

.

addendup gears to avoid undercutting in the pinloq or to balance

strength. 0Oda and Shimatomi [57] presanted results on the effect of

’

A -

1
A
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addendum modifications for spur gears manufactured from both normalized
. < \ -

steel geors and case hardened gears.: They found that it was posé%ble to .

roise the bending strength of case hardened gears by as much as 25% over

standard gearing using addendum modifications. Oda, Tsubokura, and
ST . )

v “
Namba [58] .extended the study to gears wrth higher pressure angles. Li

LY

et al [59] studied the effect of'lurge pressure angles bn gear. strength.

They found that gears with high pressure angles (25°) provided greater

!

strength and high anti-scoring capability for pfecisLon 9907:79.
Cornell and Westervelt [BOT reported on the use of h gh contact ratio

gear teeth. Normal contact ratios for spur gears ar between 1.2 and

-1.6. This study examined dynamic tooth loads and st esses for gear
pairs with contact rut103 as high as 2.5. Further stiudies were

recommended to détermine design guidelines for high cbntact ratio gear

teeth. : ) . \

Estrin [61] looked closely at gear mesh paraometers with the goal

!

pf,optimiging tooth proportions. His analysis found outside radii and
'prdssure angles to minimize strgss or mcxiﬂ%ze contact ratio or maximize

tooth tip thickness. Six constroints were developed to ensure that—a—

-

quality mesh was obtained. Contact ratio, difference between base and

. —

1imit diometers, compressive stress, méﬁimum distance across outside

.

diameters, tooth tih thickness and hob tip thickness were all

\

constrained. Savage, Coy and Townsend [62] developed a design technique
to déterminq the optimal tooth numbers of compact standard spur gear
/sets. They dgveloped opproximote»expre!éibns for the ltmi;idgAp;tting.

L d . .
resistance stress, bending stress, scoring condition, cngﬂlnvolute'

H

interference. These were plotted to provide a design'spéce. with an

objective function to mirimize center distonce, o number of equally

LEERY

@
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suitable designs were apparent. Module was shown to hove a significant

effect on strength. Colbourne [63] estimated geomctry factors based on .

| - ’
data for standard tooth forms, These estimated.geometry factors were

-
-

used to provide a method of predicting the change 1n strength associated

with addendum modification8. Hefeng et al [64] describe a FORTRAN

L' s

computer program which can be used to investigate the root geometry -of

-
»

rack generated spur gears. The computer model was able to generate

graphic data which allowed the visualization of the design.

+

sélection of_the optimum kinematic arrﬁngement for a mulér—speed
géar drive raquifes thgt an efficiénp methqd is available to calculate
gear diameters-- one which con be us;d as the basis of o gear %eshn
optimization. ) , /

1.4 )Background on Dynamic Anglysis

——

Torsional vibrations can couse serious problems in gear trains as

.a result of dynamic loads occurring in the componénts when naturol

.frequencies 11e near operating speeds. The low level of natural damping

< 4

in torsional modes tends to-aggravate this situotidn [65]. This

{

requiﬁes that the notural frequencies be calculated during the design

ﬁrocess to check their locations. In the event of o problem, it.is

' necessary to modify the desigm in such a manner that the natural

frequency in question is relocated.

~

1.4.1 Eigenvalues and Eigenvectors

The natural frequencies of mechanical.systems have been found

_ most commonly using the Raleigh Ritz method, mgt#ix eigenvalue methods

&

L}
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and tronsfer matrix méthods [66]. Each of these methwds of analysis is

Y

useful for specific cpplic&tions;

"The Raleigh Ritz method uses an estimation of the first mode

i3

‘

v

“Whape to converge rapidly to the lowest or fundamental natural
"~ frequency. The approach equates the maximum kinetic energy to the

maximum potential energy. Higher modes are found using brﬁhogonoiitvf

i

g relationships to elimincte-lower modes once they have been determined.

This approoch is sensitive to tpe accuracy of the matrix operations and

cannot be relied upon to find higher frequenciels correctly. McLoy and
Burr;ughs [67]’éevelope; a technique for sparse matrices based on the
~Raleigh Quotient. Since most engineering problems result in a sparse
dynamic matrix, thié method "1s useful for problems where the lowest

frequency is required.

The transfer motrix method [68-75] breaks down a lor?e system

into subsystems with simple properties. The problem is formulated using

the state vector, the point motrix and the field matrix [69]. The state
vector 1is a column vector of the displacements and internal forces. The
point mogrix contains the dynamic properties of the subsystem while the

field matrix contains elastic properties. Holzer developed a well known

.

. — /
tabulation method usedd to find the eigenvalues of a mechanical system
- 2

based on this approach. Improvements [71-75] waere made to the basic

'

appr~nch by Holzer to handle closely located frequencies as well os

-

brancnaed systems.

Matrix eigenvalue methods find the roots of the dynamic matrix.
The dynamic matrix is inverted or transformed using matrix olgebra [76].

" The dynamic matrix is of the order of n2 and may become extremely large

for complex systems. Efficient numerical transformations have been

]
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developed to take advantage of the symmetric sparse stiffness matrix
common to gear drives {77.78]. These methods used o}thogonol

transformations to zero off-diagonal elements of the dynamic Mmatrix.
]

The  objective is to zero those elements without creating new\non-zero
alements ‘gt other off-diagonal locations. ° 'S
The three methods have freguently been used éo find toksional
rnatural frequencies in gear systems. Those using the Ruleiéh Ritz
appfooch are effective for finding the _first natural fréqqucy and/or

improving or accelerating the convergence of another method to the

desired frequency. The transfer matrix .approach is useful for finding a

few frequencies within a given speed ronge. Matrix eigenvolue methods

are most effective when all frequencfes of the system are required. The

.

transfer function and state-space-method are useful when the actual

response to an input is required.
-

The non-linear behavior of gear drives is well recognized.

Methods of analysis are based on opproximating the stiffness of the
|

Fou
elements more accurately as well as accounting for bapklosh at the geor

-

teeth and bearing clearances. The objective of these.types of anolyses

-

is to better predict dyngmic tooth loads, to determine stability of the
overall system, and to more accurately determine natural freque;cies.
All methods [79-88] are computationally expensive.

General purpose programs for the dynamic analysis of mechanical
systems are available. NASTRAN [89] is widely used for structural
analysis und‘is quite capable’'of handling complex linear and non-linear
systems using any or all of the solution methods previouslV p?esented.

Wang [69] ond Laschet ond Troeder [90] have developed computer codes to

analyse the generol multi-speed gear drive problem. These codes are
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tailored towards the geor drive problem and have bu}lt-in models for the
I -
stiffness of each of 'the components reducing the time required for

mode}lling. ‘

.

Dynamic Analysis of complex mechanical systems is normally

’

carried out at two or three specific stages of the design,procesé.

s

rather ‘than at every design iteration. The reasons for this'ar:éthot
(1) most design iterations consist of small changes .to the design
variaobles which have a limited effect on overall system behavior and (2)

the cost of dynamic analysis 1is genq&glly large in éompurison to the

+

cost of the analysis of the objective function with respect to design

variables.

4
]
g:thz Eigenvolue Sensitivity Apalysis '

When-eigenvalues are found to be near operating speeds of the

gear drive it is necessary to change the design of at least sonfe of the
‘components in the system. Derivatives of thaAeigenvolues with respect

to mass or stiffness elements can be used to identify which elements are

u

most profitable to re-design.

Lund [91] found the scnsitivity to critical speeds of a rotor to

changes in the design. Methods to find the derivatives of eigenvalues

and; eigenvectors have been presented by Fox and Kapoor [92] and Rogers

]
[93] for symmetric matrices. These works were extended by Go?g [94].

and Rudisill [95]. Nelson {96] developed a method to find the
eigenvector derivatives using eigenvalues and their associated right and
left eigenvectors. This method was attractive for large systems where

one of the methods to yield the first few eigenvalues and eigenvectors

had been used. Doughty.[97] applied these methods to simple torsional

¢

—
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systems. Later, Doughty [98] presented an analysis which included the

<

effect of domping. o :
. .

Young and Shoup [99] used eigenvalue and éigeﬁvector‘perivatives
to improve ghe dyno&ic performance of a cam mechdﬁism., This was an
impo;tant stJ: in utilizing the &ethods of  dynamic analysis developed'

'6ver tge bast two decades for the purpogg of design. By kﬁowing the
influence of desigs variables on the natural frequencies of.the system,

a much more scientific opproach to the re-design of the system was

taken.

1.5 The Optimization Process
|:4

The computer qidéd design and optimizufion of geor -drives has
received wide attention. Articles focus on both design aspects and
_‘ : optimization strategy. Both parts of the problem are important.
Designers were interested in exploiting the ability of a -
comph;er—oided approach to more fhll; investigate problems and in
general to acceleruvte the design process. In exomining'mdre designs,
they were in fact ‘using a basic optimization technique. Dolé'[100] used
computer graphics to boost the speed ot which multi-speed gear drives
could be designed. The computer performed routihéfcclculctions and
presented graphic results  relying on thekdesigner to make decisions.  He-
found that it was ﬁpssible to design gear boxes four times faster at '

7/
approximately S0%¥ of design cost. Dil Pare [101], Selfridge and Riddle

1 4 3

[102] and Orthwein [103] developed computer techniques to determine

tooth numbers of compound gear trains which best achiege an overall

. . -
ratio. Selfridge [104] investigated compound gear drives to determine

I

gear ratios with minimum component inertia.
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Golinski [107]., has been repeoxedly'stbdied. . The attraction of the

- 26 -

Optimization speciolisté have focused on tﬁe method and

mathematics of the optimization process, sélecting more compiex problems
’

o

as the methods and computational power of computers .dmproved. Kowalski
[105] studied a double’'reduction helical gear unit using Rosenbrock’'s
algorithm for the optimizutionf Seireg ‘and Conry [106] studied a

double reduction unit with the goal of optimizing the gear.units ?orl

surface durability. The objective was to maximize the "power to weight"

ratio. The optimum solution was determined by the ratio of the first

speed reduction to the total reduction in ::y case where the.}imiting

consgqgint was allowable Hertzian stress ({.e. pﬁ&ting resistbnce).

o

‘The weight optimization of a speed reducer, first formuloted‘by

problem is its complexity as an optimization problem (7 variables
bounded by 27 cénstrcints) and its comparative simplicity when

formulated as o realistic design problem.  Golinski -[108] used both

grodientgﬁype methods and random methods to solve this problem. With

the Monte Carlo method he found that of 825,000 random searchings only
' \Q v ) ‘
67 of them were contained in the permissible area. Lee [109]

Al

-

re-formulated the problem and improved on earlier results using

b ]

7 -t
heuristic combinatorial optimization tochniques. Datseris [110] solved

¢

the problem using heuristic and decomposition techniques further

improving the results and agoin reducing execution time.

Rao [111] ond Rao ond 'Das [112] studied multi-speed gear troins

by idealizing the geor train aos a weakest-link kinematic chain, and

considered all parometers affecting the design as random V%riobles.
. /

Dhande and Gupta [1f3] perforﬁed a computer-aided interactive design of
. ~

: >
a multi-speed gearbox which made use of design stundards for the .

.

n
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components. Kamenetskaya [114] and Osyczka [115] haove started to

develop mothcd§ for the optimal design of multi-speed machine tool gear

" drives which combine mothemaiicol optimization methods with proper

design practice: Honggi et al [116] and Rao and Eslampour [2] have

presented §eor drive designs which present a strategy to generaote multi-
A .
o .
. speed gear drives which satisfy component design and kinematic g

- *
s

requirements. 4

\ L]

A : fhpre are many optimization techniques available for digital

L . N
computers today. These methods include non-linear methods for

constrained or unconstrained problems, with or without the use of

~

gradient information [117-120]. These‘techniqueé address the needs of

problems where.the objective function and mathématigal model have v

'

specific behavior. . . . '

The computer aided optimal synthesis of complex designs presents ™

many problems. In a ponel.éession entitled "Future Trends 1in
Optimization® [121] a number of guthors discussed problems ond

f} 8 1
techniques for the optimization of mechanical systems. Wilde emphcéxzed

Fhe poténtiol benefit of global. non-itecrative, analytical optimization '
techniques td provide insight into the design space and give confidence
that solutions were glo;al optimo;q Haoug emphasized the value of design
desivotives for interactive, computer gid;d de;ign optimization of
dynomic systems. Siddall emphasized the need tJ incorporate
optimization into the design pr&cessh Ragsdell also emphasized tnhe need
fo; a "morrigge of optimizdtion and,design" where "optimizgtion bring§‘
discipline to E;o design activity". He alsoshighlighted current problem
areas such as discrete variables, multiple objectives, large probfg%s.

\

’

) and identification of global sokytions. Freudenstein noted the nee"for

) . b ' ]
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»

.o, e o a multi-disciplinary approach to thé;optimum design of mechanical
sgstemsi . T - . )

/

The ‘rse of understanding methods are generally accepted for
large optimization problems which have discrete varidbles, mhltiple

objectives, mony design variables and are tightly constrained. O

» ‘ 5 . ) '
Johnson's MOD [122] and Papalambros and Wilde's monotonicity analysis

s

B

{123] both odvocate this-type of an approach.

f

-Heuristic combinqtoriol methods, developed by Lin [124], have
'Y ) L

;, . been used successfully to solve complex problems in mechanical

_ engineering by Lee [109], Datseris [110], and lep'qnd'Freudeqstein

: - B i I .
3 {125[126]. "The basic approach is to force the design variables to take

. . 4 .
on discrdte volues so that a finite number of possibilites are allowed.

>

1’} L ’
A heuristic algorithm is then.developed to make variable assignments in

’oe ) " such .o manner that the value of the objective function is reduced and
the design variables assume their optimum value.

' Mathods'@h;ch analyse an optimization problem with, the goal to

2
-

a

eiiminote cqns;éaints énd reduce paromete?s appear to have g;eét
potential for complex optimization problems [3-8, 127-130].‘ The;e
methods substantially 1mpro§e optimization eff{ciency because ﬁpey
ident}fy the feasible design space. Tﬁis gliminctes uséless function

evaluations. ) ) ‘
d » < ,
‘ﬁécouse design constraints have a significont-impact on the

., ' selection of the kinematic arrangement, there is a definite need to

«

) . combine these two analyses into a single comprehensive analysis usdng an

-

integrated optimization strategy.

.

—

;rvr
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L / past, made cnalysis of more than a few orrangements\1mprocticol. A more , o

as’ required, in su#ficient detail to bbtuip ‘g practicaol optiﬁuﬁ solu'gion~

.-‘29- :

1.6  Overview T . _ 5
ot . ~ |
The large number of design vorigbles and significant number of

s ) ) N

N . i N
detailed calculations necessary for each design 1t4rotion hove, 1in the .

effective method is required to generate the system of equations - .

‘defiﬁing the geor diameters in multi-speed geor drives., . The method must = _
- . L . ’|" ’
addressé both conventionsl and single composité arrangements in addition
- . 4 l\ '

to double composites. Further, there must ‘be verification of componeht

»

3 .

strength requirements and eigenvalue plocpmenf for the arrangement

-
ki

selected. - L - , . . B ) '
1] . \ v

This work:preseqts-menhdds to evaluate as many gear arrangements s

. 1]

14

to a givan,proﬁlem.‘ The approach makes use of a methot of kinematic
- * , &’ . v -,‘ )
analysis to provide the correct géar ratios > a method of qéor des#gn to

~ ’

_ ensure design 1life, and a dynamic analysis to ensure acceptable dynomic ) R

-
[}

5

performance. ‘A problem reduction optimization strétegy is used that e

-

efficiently incorporate kinematic and componeni'deﬁign constraints.

?

. W [,
In chapter -2, equations to define the kinematic relationships in .
a general multi-speed gear train ore‘develoggg;?oﬁfconventionolp single

composite and double comqosfte orﬁangements. A degree of freedom

—

analysis -1s performed to:identify kinemotic design: variaobles and

|
{

constroints for o 2 shaft orrangement. 'Results for the 2 shaft "

y
I T

arradgemgnt are generalized and expanded to handle multi-shaft

) “~ ‘o .
arrangements. It is shown how the genbral equations are applied to
- ot - . v

spoéif;c'lo:;gE¢QLQg§ums‘to éenerote equations for a particular
kinematic c’rongemant. The effect of o fixed lowast output speed/inpuﬁ

speed ratio is considered and aoppropriate equoqfons for the general case .

ve

4 -
- . ~,
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are developed. Results are presented’for the 4 spoed“drive for

-

-donventional, single composite, and double composite arrangements based

n

on.an objeqegve function of minimum radial dimensions.

!

‘

. ) i .
In chapter 3, equations to rate the power capacity of a geor mesh

. FARY

" are présented and discussed. :Thevyarioblea ore identified which

influence the design of a general gear mesh. These variobles ore

) ) ; X
‘grouped to facilitate undersjanding of their behavior ond infllences.

v

Different strotegies for the optimization of a gear mesh are studied to ™~

understand relative benefit/cost. .An approach to determ}ne the optimum
diameter of a gear mesh 1is developed for standard tooth geometry 4nd
> .

»
results aore presented for sample operating ‘conditions. A matrix of

" b - 0 \

op}imum Hiomete}s. called the -minimum diametef’motrix. is 1Atﬂbduced to
couple coﬁponent strength requirements with thg kinematioc anolysis; The
4 seeed gear drive pnésentedAin chapter 2 1sure—opi1mizedguith fhe'

additional constraint that ge;r didmeters‘be sufficlently lo}gb to meet
qésign‘fife requigements. The effect ofﬁ4nclud1ng design congtfoints>in

the optimization strategy 18 observed by comparing results of chapters 2

_and 3. ‘ ~ ’

r

. é ! “ )
In chapter 4, an analytical method to calculate and modify the

_ eigenvalues of a multi-speed gear driv; is presented. The form of the

mass ond stiffness matrices for the general multi-speed geor drive are

developed using the four speed gear drive. The Jacobi matrix method of
N . . R i

solution 1s shown to adequately extfaqt eigenvalues and eigenvectors .

from the characteristic equation. A method to obtoin dertvotives'of the
eigenvalues with respect to stiffness and mass elements 1s applied to

the case of multi-speed drives. Results are calculated and presented

a -

for the optimal four speed drive obtained in chopter 3. -

4

-
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_;n chapter 5, a proplea reduction -optimization étrotegy is

0

. > s
introduced. The key concept uséd is that of équating the number of -
parameters in the optimization process to the ‘humber of degrees of

" . ) . ‘
freedom .through reduction of constraints. Objective functions to define
' |8

drive volume are developed for conventional, single composite and double
‘ . \

composite arrangements. For the four speed gedr drive subject to an

- 4 ‘ '
objective function of minimum volume, there are 12 variobles and 2

degrees of freedom. The reduction process is demonstrated in detail for

4 ;

this problem. Optimization techniques’' used in the analysis are

described. Results for the 4 speed gebr drrive, optimized with the

<
objective of minimum volume, are preserted and compared with the results

5 '

bf chapters 2 through 4.

]

-— -

In chapter 6, case studies are made of two larger systems to.

demonstrate the theories presented in chapters 2 thr0ugh‘5. All 38

arrangements of the 9 speed 10 gear drive are optimized for ari objective

. . g ' . I 4
function of minimum volume. These are compared with results. published

in the literature. Results for the six best conventional orrongements'

for the 18 speed gear drive are presented. General trends in the

analyic results are comboréd with production drives to corroborate the -
L. ‘ 8 :
mathematical model and dbjective function.

In chapter 7 general conclusions about the study are presented

along with an outlook for future work. -
/ - ' L

=
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CHAPTER 2
‘N b
DEVELOPMENT OF GOVERNING EQUATIONS FOR THE
KINEMATIC ANALYSIS OF GEAR DRIVES
2.1 ‘Introduction

There are many possible arrangements which will produée a

speclfic'number of speeds and-selecting the best is not obvious.
- .

Figurei/zf1 through 2.4 show that a four speed gear train, with output
‘speeds forming a geomsfric progression, can be obtained using 2 shafts

and 8 gears, 3 shafts and 8 gears, 3 shafts and 7 gears, or 5 shafts and

!

ﬂ6 gears. Each arrangement has advantages and disadvantogés. A

practical method must be availoble to analyse all arrangéments if the /f
‘\; [ . : v )
best is to be selected for Q paﬁticulur application. This chapter

.

- develops a new approach for the kinematic analysts of multi-speed gear’

drives.

Past efforts [12-22] hdyg concentrated on developing diqmete}
.equations for the single and double composite gear train arrangements
‘be;ause.tge greatest savings in number of ggors }s possibl&. Equations
are required for minihum gear arrangements because the degreés of
freedom of the system are redﬁced and the diometers of gears in

different groups become interdependent. When these eduationl are

1]

expanded to apply to other types of arrangements thby become

unnecessarily complicated. Equations for the conventional orrangement .

V4
v

are most meortbnt since single and double composite arrangements are
)
- ’ "‘ .
- 32 -
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special cases of the conventional arrangement. The initial focus will

: .
'#!

therefore be on developing equations for the coi;fntioncl arrangement .

[y

' 2.2 Analysis of a Two Shaft Gear: Train

Vi

An‘?nulysis of a simple gear train will identify important basic
prope}tias of a group which can be used as the foundation of a general
approucﬁ to equations for multi-speed gear drives. I

. The simplest case of a multi—égged gear troin consists of 2
shafts with 2 or more gear pairs and is known as o group. One possible

gear drive is shown in figure 2.5. The lgyout diagram is shown in

!

figure 2.6,
The center distance between shafts is constaont for all geors.s
o
Therefore the following-equations must #e satisfied.
dl + ds - d2 + ds ﬁ. ~ ' (é'1)
. d1 + d5 - d3 + d7 __””fgiz)
d1 + ds - d‘. + da ' ) , (2-.3)

'] ¢ 4 1
1

In addition, thq output speeds tre required to form a geometric

1

progression with step ratio #. The variaoble "S" defines the. lowest
\ output/input speed ratio. o ) 9
. p . )
\\ S - d1/d5 (2.“)
\\\ r - v
' S8 = dp/dg : (2.5)
\ ' . . . - : s . }'
Se° = ds/d7 N (2'6)}
I ) 8.3 L] d“lda . . (2.7)
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S Layout Diagram for Simple 2 Shaft Geaﬁ Drive

L Each two shaft arrangement can be shown to have two degrees of

freedom. This arrangement has 9 unknowns (d, through dg and S)g To

¥

solve for these 9 unknowns there are 7 equations (2.1) through (277).
Therefore—each 2 shaft arrangement has 2 degrees of freedom}
Selecting the diameters of the first gear on eachshaft to be the

\ k
independent gariobles for a group, 1t 1is a simple matter to solve for

.the diameters of the remaining gears. Designating d, (the first gear on

the input shaft) as Y1 and ds (the first gear on the output shaft) as Yo

¢

equations (2.1) through (2.7) can be re-written:

\ Y1 + Y2 = dz + ds s i - (2.8) )
Y1 + Yz - d3 + d7 . . (2.9)
S = Yq/¥Y2 ! o ‘ T (2.11)

R %
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. * )
Se = dy/dg ' - . (2.12)
2, ) : : : -,
\ $8€ = d3/dy 3 , | . (2.13)
- I ' )
s8> - d,/dg ' ‘ - (2.14)
B The diameters of the remdining geors can he found as fp:;ctions ‘of .
Yy, Yo, ond ¢ by re-a/rpnging- equations (2.8) through (2.114).\
» N 4 , ‘
. ' Vi9(Yq + Y5) : .
\ N dz = N ‘ s (2.15)
@ (Y1¢ + Y2) . " ’
. ‘ . v
) ) ’ ~
v192(Yq '+ ¥3) -
ds = 2 = ) ) (2.16) )
" ~ (Ve v ¥2) .
4 * 3 . “ . . .
_Y1¢ (Y1/ + Yz) ' © .
‘ ‘ dg =} _— : (2.17) ‘
l (Y‘iﬂ '.""YZ) ‘ ’ .
. - ' A
X g YalYq '+ ¥p) C . \ |
T dg = ———————— - o (2.18)
- - (Y + v5) Py :
/ - . , . -
Vz(’Y1 + Vz) T . v . -
L. © Oy = —— . ' (2.19)
‘ (Y482 +]Yy) X ¥ .
| o YalYy +¥a) T .
. . . dg = ————r— ] o (2.20)°
v o : ( ‘ , < o o
' T '_ Comparing equations 'fér the diameters af the gears on the input
shaft (1.e. dy to dQ) the general form for the diometer of the input
P I, ) -
X 7 gear 1is observed, where n is the number of meshes in the group. " .
" ‘ . ’
V1¢J-1(‘1 + Yz)- ' ’ N ) " :
g dy = : 3 =1.2,...n o (2.21)
(Vi83°7 4 v5) - : o -
LA h ’
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- ' Comparing equations for the:diameters of the gears on the output
shaft (1.e. dg - dg), the general form for the diameter of the output
gear 18 observed. )
Yz(—v1 + Vz)

d - -3 =1,2,...n ' .=(2.22)'
J4n (vi83=7 4+ vy) X y

A second group attached to the output shaft of the first group as

shown in figure 2.7 results in a.,conventional 3 shaft arrangement and

— e —— - -

provides two additional degrees of freedom. Each group thot is added

]

ond used in o conventional ménner adds 2 degrees of freedom to the
problem. : ’ :
The’total degrees of freedom for a conventional arrangement can

be calculated when the number of shafts ng are known.

4 [

dof = 2(ng - 1) _ (2.23)

2.3 Extension to tﬁb Multi-Shaft Arrnn;ement

The equotdgns devplopeé for a 2 shaft orréngement can be applied
to the general multi-épéed gear trofn 1f“the r;quired'orrongement is .
constructed using a combination éf grboups (figure 2.7). The multi-shaft
ufnangement can be isolated-into Sma%ler parts for the purpose of

writing gehr diometef equations. Equoiions (2.21) and (2.22) can be

. applied to each group tokihg into .consideration the different step rotio

) between groups. The vafiubles Y1 and Y, are replaced by the more

general values of Y,-(variable bssociated with the first, input gear of a

group) and Y, (variable assogiated with the first output ‘gear of a

’

group). .



S

.- 42 -

-

o

r._.;-——..'-—,--.a.----.-,-_.'

|
L
<«
I
wn

[N

‘

1
- -
i
) .
1 .
§
i |
( \
! %
(. .
| )
! { )
H -
“ -
0
! A
1
- -
| PP SN DIGUNp N p—— - e e ol i
|
G U SEN S, 1
1
_ |
1 1
1
1
[
1
A | o
12
L - o
. " [+
r ) ©
i
]
1
|
LI ——————d
1111 N :
Y £ 3
) L ]

—

| UL,

FIGURE 2.7

cd

* Combining 2 Groups to make a 3 Shaft

Conventional Arrangement

4



- 43 - )

.

In the two shaft arrangement used to develop the general form of

the equations, the speeds 1nc§euso on the outbut‘shaft by a constant

factor of #. With multi-shaft arfangements. intermediate shafts must
B ’

‘

have speed increases of sP where p is an integer factor known as the

range exponent. The range exponent can easily’ be obtained from the

\

" layout diagromfbé graphical or analyticdl methods. The range exponent

is illustrated in figure 2.8 for the four speed drive.

0o i

‘ - The rangexexponent p is used to modify the equations to account

for the.output speeds of the intermediate shafts which have speed
increases in multiplegbof #. To include p and ¢ in the previous !
equations must be replaced by oP giving the final form of the gear

\ <)
diameter equations for a group as:

ﬂ~v1¢P(J")(v1‘ Yo) -

: dJ - = ”
s oo S (Y-igp(J“‘) yo)
, ‘., —
’ d | YolVs *6¥o) J=1,2 ” (2.25)
i Ll I LI - . '
T vy ep (37 4 vy <

+ ’ ' ohe

Fl

Note that the values of Vif Yo+ P and n change for each group and

for different layout diagrams. N :
r v

Given the layout diagram one con directly write the equations for

the diameters of the gears relating to the cohventional arrangement by
¢

repeatedly using equations (5.2#) and (2.25) for each group.

3

> »
2.4_. Loyout Diogroms : . : N
- " * Layout diagroms are.used to graphically define the different

gombingtidhs of gear ratios which ¢an be used to obtain o given number

- . - 4

- .
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of speeds. The speeds are plotted horizontolly on o logarithmic scale

‘and the shurts are shown as horizontal parallel lines’ ot equoal distances

from each o%her. The speed values, appearing on the logarithmic scale

v ~
are equally spaced since the output speeds form a geometric progression.

The transmission ratios at each mesh -are indicated by lines between the

horizontal lines representing the shafts.

.

If the distance betwe;9 the.

. A
horizontal 1lines for the shafts is constant, then the slope ©f the mesh

lines are an indication of the relative gear rotios.

A

-

Mesh lines with a

negative slope are speed increasing, those with a positive slope are
Y

speed reduclng.

Layout diagrams ore re-named speed diagrams once”the dactual

/

operating speeds and geor traonsmission ratios have been determined and

applied to a particular layout diagram. To effectively study different

arrangements for multi-speed gear trains it is desirable to be able to
N L’y ~ &

generate the .various layout diagrams automatically based on specific

mathematical rules. The foliowing rules ;serve this purpose. '

(a) The number of speeds produced must match the number of
3 M L4

speeds required. .The number of speeds proddced is equdl‘tb ihe product

&

TN ™y

Z =

(b) The
for all groups.

- ' speed, with the

. gear pair meshes per group.

of the number of meshes in each group. Typically,- there

W

ng-1

i, 'y
ﬂ T ,

1=1

are from 1 to 3

3
-

X2.26)

“

ratios of the range exponents must be integer undéﬁnique

Identical range-exponents produce two pa%hs to the same -

result that the overall range has gaps.

Hn
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Py ¥ Py _ 1=1,2,...nf and §=1,2,...n¢ (2.27),

(c) The overall speed range must be correct. For a given

number of speeds and a given speed ratio, a specific speed range must be

4

covered.
}

Z (v4-1)py = z-1°  1=1,2,...n¢ (2.28)

(d) The range exponents must be selected in such a.manner that

>

' no speéd is obtained by more than one set of gear ratios. The product

"

of the number of speedi in o.gr&up multiplied by the range exponent.must —

be divisible by a common factor for all groups.

' 1
¥ N ' oA
«

2.5 ° Composite Arrangements

The system of mothemuticot:equotioné defining the conventional

-

orrbngemeng'con be adopted for use with composite arrangements.

Equality constraints are developed which forée the diameter of an output

gear in one group to be the same as an input gecr in the next group.

{

'
b4

2:5:1 Double Composite Arrangements
| For a double composite arrangement, the diameters of two input
gears in a grbup are mpade equal to the dicmeters af 2 output gears in on
odjccena,gro%ﬁ respe;tively. For g 3 shaff orrongemént with two groups
the variables associated with the 4 degreeslpf freedom would be Yq. V,.

Y3, and Y,. Since two equality constréints are required to define a

double composite, the variobles associoted with group 2 (%5 and Yu) 6re

dependent and can be solved for explicitly usind’the following method.



’

- 7 D1€a(1-Cq) = DaCq(1-Cy)
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. Two output gears in group 1 are used in the composite. The
¢ diameters of these gears, D4 and Dy, can be calculated using variables
" ¥4 and Y, which are known. These diameters con be equated with the

- rd

eqpations for the composite input gears of the following group.

. e
2

Y301(Y3 + Y“) : ’ A .
'Dq = - ' (2.29)

(VSC1 + YQY

&
and . )
L 3

Y302(V3 + Ya) - .

02 - \ (2.30)

(YxCo + Y4)

For a specific layout: and composite, the terms with o are known

\
-

- and are constant. They have been represented by the constants Cq and

C,. Both equations (2.29) and (2.30) con be re-arranged to solve for

&
Y- |

Y3Cq(Y¥3 - Dy) : .
Y“ - R (2\31)

Y5Co(Ys - D) |
v, - , (2.32)
\ (Dz - Y3C3)

/

The variable Y3 cari be found by qdbting’}he right side of

equatfbﬁ§'(2.31) and (2.32) and re-grranging to obtain:

. D102(02 - C1) -
y3 - {(2.33)

)
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Equation (2.33) is solved first to find voriuﬂle.Ys which can

then- be used in pither equation (2.31) or (2.32) to find variable A\

’

+ If there are more than 2 groups, the composite may reside in any

two adjacent groups. The variables which are removed from the parameter

list are always from the group ksest to the butpu/t of the drive.
1

This method 1s extremely effective for use in an optimization

problem because it can be handled by simply removing 2 variables from’
\

I3
;e

the parameter list. This hos the direct beneficiol effect of reducing
the number of parameters to be optimized, as well as the indirect value

of not having to solve o multi-parameter optimization problem'subjeét to

equality constraints.

“

2.5.2 Single Composite Arrangements

.

In the event of a single composite arrangement, only one equality
constraint must be developed. In this case Y3 is used as a . parameter

and equation (2.31) or (2,32} is'used directly to solve for Y,.

-

' ’
/

/
2.6 Four Speed Gear Drive - Verification Problem .

The kheory ;f chapter 2 provides equations to duplicaote the
kinematic optimizatiéns for minimum radial dimensions pJLformed by White
and Sangar [14] ond,Osman..:onkar and Dukkipati [22], but for many
kinematic arrangements.

The four spegd gfur drive using 3 shafts shown in figure 2.9 will
?e“onalysed in oqprogressiQP fashion io demonstrate the validity of the
theory in chapters 2 through's and p?ovide ; practical illustration.

The kinemotic requirements of the drive, in future referred to as the

verification problem, \are given in table 2.1. The objective function

a

A Y
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and optimizotioﬁ strategy are presented briefly. A more detailed

explanation, with justification of approach, is made in Ehopteﬁ 5.

' -

¢
.

v 2.6.1 Objective Function - Radial Dimensions
In this chapter the values of variables Y4, Y,, Yy and Y, which
minimize the overall radial dimensions are required for all 3 shaft &4
4

speed arrangements. This is a common objective [14,15,22,23] and

adequately demonstrates the kinematic equations.

"TABLE 2.1

' Operating Réquirements for the Four Speed

Verification Problem- .

NUMBER OF SPEEDS s
STEP RATIO 1.590 :
LOWEST OUTPUT SPEED (RPM) 30
INPUT SHAFT SPEED (RPM) - 100

The radiol dimension was calculated as thé‘éum of the, center
distances between shafts plus one holf the diaometer of the largest gear
. on the first 1n8ut shuft.ond last output sheft. For the 4 speed -»
verification problem (chapter 2) the objective function can ‘be wri%tten
in terms of the gear diometers as follows. Prior to evoluotion of the
objective function the diameters are calculoted using variables Y,

"through Y, and equations (2.35) through (2.42).

. da + d5 , ) R .
minimize dp + —— + dy | . (2.34)
f{¥1.¥0,Y5.Y,Y 2
d1 = Y1 (2.35)

o



viePl(vy "+ vp) S : ’ L
dy = ‘ (2.38)
(Y40P1 + ¥5) -

ds = Yj : ' (2.37)

d“-- . - : (2¢38)

dg.= V3 ‘ . (2.39)

. dg = ' . (2.40)

' dy =Y, . ‘ . ‘ . (2.41)

B d8 - > N ' - e : (2-“2)
(Ys‘p + Y“)

¥ N \
p1 = range exponent for~g}oup,1

. b
) pg\: runde exponent -for group 2 .
' During the optimization p}ocess the diameters of the gears were \
normalized to ensure that th; smallest gear had a diameter value of one.
o This was accomplished with - the use of a mutr;x‘of mémimum allowable ~
input gear diameters called the minimuq‘qiumeter matrix. ‘
) 2.6.2- Minimum Diometer Matrik - A -
A table of miﬁimum diameters is used to provide the optimizotion
routine with the ﬁinimup ollowoble diometer of the 1npué gear of each
T ¢ mésh. The minihum dioéeter is taken to be a function of the speed

°

oV
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Treduction ratio, the input gear Shaft speed, and composite type. This

assumption will be shown to be valid in chapter 3.

With the requirement on diometgr/ﬁging ‘to ensure that the
t v ¢
smallest gear 1s greater thgn 1, the‘diometer @ctrix is simple to

. ' \ -
obtain. For speed reduction ratios, the entry in the diameter matrix is

»

1 since the outpuk gear will always have a digmeter greater than 1. For .

speed increasing ratios, the entry 1h‘the‘diometer matrix i's equal to

the ‘'inverse of the gear ratio since the’ output geor 1is required to have

a minimum volue of 1. For a kinematic optimization which neglects

component strength, input shaft speed and composite gears have no effect

on the minimum diameter. The complete matrix is presented in table

2.2. T

TABLE 2.2

~

Diameter Matrix for Kinematic Optimization.
Conventional or Composite Input Gear

INPUT SPEED REDUCTION RATIOS
SPEED
0.10 | 0.20 | 0.50 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00
25 10.00 | 5.00 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
50 10.00 | 5.00 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
100 10.00 | 5.00 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
200 10.00 | 5.00 | 2.00 | 1.00.| 1.00 | 1.00 | 1.00 | 1.00
300 10.00 | 5.00 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
500 | 10.00 | 5.00 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
750 10.00 | 5.00 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 )
1000 10.00 | 5.00 | 2.00 1.00 1.00 | 1.00 1.00 1.00 |-
2000 10.00 | 5.00 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
4000 10.00 | 5.00 | 2.00 | 1.00 | 1.00-| 1.00 | 1.00 | 1.00
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3

2.3.3 Optimizotion Strategy .o

The voriables (Y, through Yu) need to be determined to evaluate

the objective function. Variables Y, and Y3 are sélected from the

- -

¢ minimum diometer matrix. Variables Y, ﬁ“d Y, are calculated from the
aptimtzction parameters X, ond'x2 which represent the lowest reduction
ratio of each group. In the event that the diameter of one of the gears
in a group 1s less than 1, then the appropriate vo;ia% es for the group,
(Y3.Y2) for group 1 or (Yj3,Y,) for group 2, are multiﬁéféd’by the
inverse of the smallest gear in the group. ifhe ratios, X4 and X5, are ’
used as optimizotion parameters, rather than Yo and ;;.‘becouse they
are dimensionless and cover o predictible range.__The variable

assignments associated with the-optimization drocess are shown in figure

2.10 and explained in further detail be%gw. :

v (a) Conventional Arrangement

Parameters X, and X5, which represent the speeq reduction rotgos
of group 1 aend group 2 respectively, are passed to the routine
evaluating the objective function. Given that the lowest input speed is
N_. then the speed of shaft 1 (the input shaft to group 1) can be
calculated as:

NL

¢ Ny = ——— (2.43)
X1 + Xz '

4
-
L]

speed of 1ist 1npui shaft

~——

N, = speed of 2nd input shaft o oer
- N_ = speed of output shaft

Similarly the speed of the second shaft can be calculated as:

-
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: " SELECT STARTING L o . :
e . 2 VALUES x‘.xz ) . R . .
CALCULATE SHAFT ' ' -
SPEEDS NN, '

o
’ ¥
] ’ - A} ' v
' I

SELECT Yy AND Y3 FROM OPTIMUM . - . .
DIAMETER MATRIX USING X;.N, s . -
FOR Y, AND X3,Ng FOR Yy ' o

] L

CALCULATE Yz AND Y 4 USING
xg-Y' FOR Yz AND X;.Y;
FOR'Y

CALCULATE DIAMETERS ' N\
- d, THROUGH dg

’ . ) x >
. DIAMETERS )
dy.dzde.dg ARE
EQUAL TO OR GREATER .
THAN THE VALUE
SPECIFIED IN THE } .
MINIMUM DIAMETER
’ MATRIX CALCULATE SMALLEST RATIO
OF ACTUAL DIAMETER
TO REQUIRED DIAMETER -
4 MULTIPLY GROUP
. ? ot VARIABLES /DIAMETERS .
BY RATIO INVERSE
EVALUATE . —
OBJECTIVE FUNCTION ]
‘ ' ' -
) B ) To - . . ‘-
.. - . OPTIMIZATION \
C ROUTINE 3 \ . /
- ' ', S ( FIGURE 2.10 ~
. * Vartoble Assignment for Radicl Objective Function
. . )
- t*ﬁ
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N -
Ny » — . ' (2.44)
X2 ’ '

Given Ny and X,, the minimum diameter Y, for group 1 can be obtained by

.
1 -

’

interpolation from the minimum diameter matrix. Next Y3 can be be

obtained using Ny and X5. Variables Y, and Y, can then be calculated.

unq

Ed

s - Tt

Yy = VX - . o S (2.48)

Variables Y, through Y, completely define the kinematic
arrangement ond allow the calculation of all d;orqeters in thg drive.

A final check is made to ensure that the diaméter of the input
gear in each mesh 1s equal to or larger than the.31ometer in the
diameter matrix. If a diameter 1sntoo small, the Vvariables ossgcioted
with the group in question aré ratioed up to the value required to meet

the minimum diameter requirements. . -

(b) Single Composite

The procedure fo} the single composite is similar to that for the
conventional arrangement except that variable Yz is calculated directly
using a modified form of equation (2.31). Diameter D, represents the

diameter of -the %omposite gear and can be calculated using variables Y4

and Y, as shown in section 2.S. ~ i
X2 = — i ) (2.47)

Ys
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) ‘Substituting equation (2.47) into (2.31): ' o ‘ .
1
D1(C1 + XZ) -
YS - . b (2.48) )
! . 'C1(1+' XZ,‘ B o ¢
Th;s diometer is then compared with the diaometer specified in the
minimum diameter matrix. The larger of the two diameters is used,
[ - RPN
. ) . ‘ .
. (c) Double Composite
For a double composite arrangement both Y3 aﬁd‘Y“ are calculoted
diréctly using the diameters D, and D, calculated from voriobleé Yy ond
‘ Y, as presented in section 2.5,

2.6.4 Discugsion of Results (e

The definition of the different kinematic arrangements are shown

———— -

in table 2.3! Re;ults for the 4 speed gear drive are presented in table “
’ 2.4 for a step ratioc of R.SQ. Optimum gear diameters are presented for

1 conventional arrangement, 4 single composite arrangements and 1 double

composite arrangement for each of 2 layouts. The gears are labeled in

accordance with the conventional o?rungement for the 4 speed gear drive

shown in figure 2.5.

A number of simple checks can be made to verify.the correctness

of the equations. ~_

- (a) The cénter distance for each group must be a constant.

(b) The output speeds must form o geometric progression with
lowest output/inpuE speed ratio equal to S.

{c) the diamet;rs of gears identified as composites in table

2.3 must be equal =+
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.1 TABLE 2.3

P
L.

Kinematic Requirements for each Optimizatioh' ..,

.for’ 4 Speed Arrangements ’

1
3

S oPT FACTORS RANGE EXPONENT | COMPOSITE ARRANGEMENTS
- ’ Lo ‘g \
U (/' ~'1,rf #2 # . #2 . -
¥ 1 2 2 1 2 - - ’
2 2| 2 1 2 dy = dg -
- 5 2 . 2 1. 2 d3 = ds - ,'
- [ 2 2 1 2 dy = dg -
5 2 2 1 2 dy, = dg -
, . r
7 2 2 2 1 -, -
8 2 2 2- 1 M dg «dg -
9 2 2 2 - 1 dx = dg -
. 10 2 2 2 1 dy, = dg - -
11 2 2 2 1 dy = dg -
12 2 2 2 1 d3 - ds dq_ = d5

the optimization process.

(a)

“{e)

=]

‘

A number of simple checks can also be made to verify the correctness of

i

The value of the objective function for the conventionoi

arrangement must be equal to the minimum becguse the

o
1,

diameters assumed can always be equivalent to a s{gglé or
double.com qiite arrangement (the number of gears does not
affect the objective fJntion).

A diameter equivalent inverted arrangement should(be.found
for each of the optimizotioﬁs since the”lcydugs are
reciprocal. - ' ’ "

Since diameters 4 and 5 of conventional arrangement—t Tre

equal, optimization 4 which is ‘a composite arrangement |




TABLE 2.4 - -~ 7 )

N . : . .
Optimizotion -Results for the Verificaiton Problem ) . .
P . Four Spead Gear Drive : -
~ 1 f' 1
OPTIMIZATION NUMBER . CoL
' « .2 3 4 5 6 L
i : e .
D 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.00 4.723 '
I 2 | 1.261 | 1.261 | 1.295 [ 1.261 | 1.32 5.613
A 3 {1261 | 1.261| 1.8s80 | 1.261 | 1.912 | 3.520 .
M 4 | 1.000°| 1.000 | 1.295 [ 1.000 [ 1.590 | 2.631
E 5 | 1.000 | 1.261 | 1.000 | 1.000 | 1.000 | 2.631 .
T 6 | v.590 | 1.921 | 1.590 | 1.s90 | 1.5%0 | 3.520 .
E 7 | 1.590 | 1.660 | 1.590 [ 1.590 | 1.500 | t.889° ’
R 8 | 1.000 { 1.000 | 1.000 | 1.000 | 1.000 | 1.000
R s | 0.499 | o0.603 | 0.395-| 0.499 [ 0.329 | 1.868
1 | 0.793 [* 0.793 | ©0.629 | 0.793 | 0.523 | 1.342 )
2| 1.267 | 1.261 ] 1.000°| 1.261 | 0.831 | 2.133
3 | 0.629 | 0.760 | 0.629 | 0.629 | 0.629 | 1.393
4 | 1.590 | "1.921 | 1.590 | 1590 | 1.590 | 3.520
3.851 | 4.051 | 4.033 | 3.851 |.4.207 | 10.133
- OPTIMIZATION NUMBER | .
7 8 9 10 1 12 .
D 1 7] 1.000 | 1.000{ 12.000 | 1.000 | 1.000 | 1.000 ° ©
I 2 | 1.590 | 1.590 | _1.590 | 1.580 | 1.660 | 1.889
A 3 | 1.590 | '1.590 | 1.590 1.590 | 1.921 | 3.520 :
M 4 | 1.000 | 1.000 | 1.000°| 1.000 | 1.261 | 2.6% o
E 5 | 1.000 | 1.590 | 1.295.| 1.000 | 1.000 [ 2.631
T 6 | 1.267 | 1.912 | 1.590,| 1.261 | 1.261 | 3.520
E 7 | 1.261 | 1.322 | 1.295 | 1.261 | 1.261 | 5.613
R 8 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | u.724
R s | 0499 | 0.756 | 0.629 | 0.499 | 0.413 | 0.133
\ ' - .
T 1- ] 0.629 | 0.629 | 0.629 | 0.629 | o0.521 | o0.284 ,
I 2 | 15590 | 1.590 | 1.590 { 1.590 | ' 1.316 | 0.718
0, 3 [o0.793| 1.203| 1.000 | 0.793 | 0.793 [, 0.469
s ' & 1.261 1.912 1.590 1.2B1 1.2614] " 0.745 .
o . «
Foo 3.851 | 4.207 | 4.033 | 3.851 | 4.051 | 10:133,
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/ using these gears should find the equivalent design
J pgint. ,
3 . , \
. I ases’ these checks are seen to be true to 3 decimal place:
LR . | , '
accuracy. , / . ‘
Optimizations 1, 4, 7 and 10 all provide solutions with
equivgient values of the lbjective fuhction. Optimizations 1 and & have
0
. ) - a close ratio 4n the first groub as compared to optimizations 7\::B\QQ
which have the wide ratio in the first group. Optimization & and 10 are
~ both single compositeé./’ ’ >
Based on this analysis, arrangements 4 and 10 would be selected

- r '
over, conventional arrangements 1 and 7 becguse of the fewer number of

i \

2 gears and the potentially smaller width. Analytically, arrangements 4
.and 10 are equivalent. The gear drive of optimization 4 is illustrated X
" in figure 2.11.

" It is interesting to note that both double composite arrangements
are 2.6 t&mﬁsjlarger than the optimumtsolution. ) . A
. o @ . > . - - ’
L o .

. T A . : '

¢ 2.7  Constraints on tie Lowest Output/Input Ratio ' .

/ .

Frequiﬁtly} the input shaft speed and the output shaft spéeds are

‘fixed within' narrow

b

//;’conitioq ré§q1ts in a funther equality corstraint of the form:
\ _ .

limits because of operagting requirements.” This

¢
E

iS -”1-1 Y25-1/ 2j = constant -

» (2.49) -

-

a 2

cbnstraing on the lowest output/input ratio reduces the degrees

we

'
‘ > . i
. . o i.k. y
EY & n \ . f ) , l , .
z \ g ' ., . . .
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e . If the number of groups is two, then a double composite

s ' - 61 =
. . - ‘ ,
single and double composite arrangements in order to avoid less
efficient optimization techniques. . .

-

: Ve
2.7.1 Case of Two Groups and a Double Composite
-

r
arrangement requires Y, and Y, to be known in order to calculate

" diameters d; and d and Yz and Y, are solved for using equations (2.31)

\ : 2
and (2.33). Since Y, is used as a reference gear, only Y, remains

available for use in. satisfying this constraint. Although a single

unique solution 1is mathematicolly possible, 1t most frequently results
1 ’ .

in one of the diometers taking on a negative value. Problems with 2
groups, c'double composite arrangement, aond o required value of S are

considered over constrained and are not analysed.

.

2.7.2 Case of More than Two Groups and a Double Composite

¢

If the number of groups is greater than two and the composite 1s'

-fiot part of the lost°§roup. then vaoriaoble Y is solved for directly
2ng

using the following equation after the variables associated with the

composite have been calculated.

g

2J-1 "2ng-1
Y2ng * ﬂ - . (2.50)
YZJ‘ S @

o ’ \- |

Analysis for the remaining portions of the drive are carried out us

n

presented in sections 2.5 and 2.6. \
N .

If the composite urrange;ent is part of the last group, then Yo

is solved for using the equation: e



-62 - .

n
9 )
; Ya3-1 V1 -

Yo = T*T — . (2.51)

Y . /
23 . ) ¢
I=1 ‘T\§%
A

2.7.3 Case of Two Groups and a Single Composite
T

(7]

With two grougf and requirements for o single composite
arrangement special equations are used to find Yy and Y,. The equation

for the lowest output/input rotio is given as:

YqY3 ‘ h -
S & —— . (2.52)
. Vzvu :
I’y
\This équotion is re-arranged to solve for Yx which is then used N

to replace that variable in equation (2.31). The result is the
following two equations which can be used to solve for Yj3 and Yy -

. SC1Y2(SY2 + Y1) \ '

St

.and . : 5

SY,Y,

Ys bt (2-5{0)
Y1’ o ’ o '

/
The resulting sy3tem of equaotions ensure one sirigle composite
y ! .

(any of those possible| for a specific arrangement) and one quolity
- "E‘

constraint on the Xowe t input/output/ratio.

i

- 4

F
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2.7.4 Four Speed Drive Results for Constrdined Output/Input Ratio

Results aore presented for the four speed drive in table 2.5.
Operating conditions are identical to those for the results presented in

table 2.4 however the lowest output/input speed ratio is constrained to

a value of 0.3 (i.e. the requirement specified in table 2.1 for an input
. ‘ N *

speed of 100 RPM is satisfied).

The optimization strategy is altered sli§htl¥\from,thut presented
in section 2.6 since the number of parameters is reduced. Because of
the equality constraint, there are no degr;}s of freedom oqf hence no

]
solutions for the double composite arrangeients. - «

~
-

The best arrangement was optimization 1 with an objective
function value of 4.306.: The requirement for this particular lowest
step ratio resulted in an increase in radial dimensions of 11.8% when

compared with the global optimum. If the value of S selected {0.3) had

'
~

been further away from the optimum value of S (.499) the increase could
have been larger. The gear drive is shown in figure 2.12. The speed

diagram is shown in figure 2.13. L

-

2.8 Summary '

v

In this chobéer. basic metﬁods to generate equations for the
diameter of each gear in a mglti-speed ge;r drive are presented: The
meihod can deal with convenfionul. gingle.composfte. double cémposite
and restricted output/input rotio arrangements in o straight forward oﬁd
efficient manner. These equations result in gear diameters which
fatisfy all kinematic requirements. The concept of optimum diameter
matrix for use in relating the kinematic requirements‘to'physicol size

o

of components 18 introduced. This process will be further developed in
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chapter 3 to provide a link betﬁeen the kinematic analysis and gear

power capacity. Results are presented for the 4 speed gear drive which

verify t?e mathematical correctness and utility of the equations

. -
* developed. - ’ .
1
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Optimization Results for the Verificotion Problem
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TABLE 2.5

Four Speed Drive (S = 0.30)

.o ‘ o OPTIMIZATION NUMBER
. 1 2 3 4 5 6
' D 1 | 1.000 1.000 | 1,000 | 1.000 | 1.000 -
I 2 | 1.335 | 1.261 1.303 | 1.261 | 1.325 N -
A 3 | 2.096 | 1.261 1.673 | 1.261 | 1.942 0
R 4 | 1.761 | 1.000 | 1.371 | 1.000 | 1.618
£ 5 | 1.000 | 1.26%7 | 1.000 { 1.000 | “1.000 s
T 6 | 1.590 | -2.246 | 1.673 | "1.781 | 1.618 0
y E 7 | 1.s00 | 3.333 | 1.992 | 2.644 | 1.716 L -
R 8 | 1.000 | 2.349 | 1.319 | 1.863.| 1.098 u
T
w
R s | 0.300 | o0.300 | 0.300 | 0.300 | 0.300 I
A , 0
. T | 1 | 0477 | o0.793| 0.598 | 0.793 | 0.575" N
I 2 | o.7s8 | 1.261 | o0.950 | 1.261-| 0.819
| © 0 3 | 0.620 | 0.378 | 0.502 | 0.378 | 0.583
s 4 | 1.590 | 0.956 | 1.260 | o0.956 | 1.473
' ~
§§ F 4.306 | 5.725 | %.480 | 4.905 | 4.350
. - . . - “OPTIMIZATION NUMBER
‘ i
‘ 7 8 9 10 11 12
—_—
0 1 1.000 { 1.000 | 1.000 | 1.000 | 1.000
x S 2 | 1.744 | 1.590 | 1.590 | 1.590 | 1.670 N
A 5 | 2.398 ) 1.50 | 1.590 | 1.590 | 1.974 0
M & | 1.654 | 1.000 | 1.000 { 1.000 | 1.304
E 5 | 1.000 | 1.500 { 1.190 | 1.000 | 1.000 | - s
6 | 1.275 | 2.123 | 1.s90 | 1.335 [ 1.304 0
. . E- 7 | 1.390 | 3.333. | ,2.496 | 2.096 | 1.889 L
. R 8 .]1.115 | 2.800 | 2.097 | 1.761 | 1.385 v
4 T
e\\. R s | 0.300| o0.300 | 0.300( o0.300 | 0.300 I
A S 0
. T 1 | 0.617 | 0.029 | 0.629 | 0.629 | ' 0.507 N’
- I 2 | 1.054 | 1.s580..] 1.0 | 1.590 | 1.281%
0 3 |0.719 | 0.477 | 0.477 | o0.477 | 0.592 ¢
- B 4 1.144 | 0.758 0.758 0.758 0.941
7 -, F "1 4,461 6.219 | 5.181 | 4.687 | 4.511
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FIGURE 2.12

Gear Dr‘ive Based on Optimization 1 from Table 2.5
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CHAPTER 3

GEAR MESH DESIGN AND OPTIMIZATION

3.1 . Introduction ' :

K

In choptgr 2, optimum arrangements for the four speed drive were
determined based on an objective function éf minimum radial dimensions
without regard for component power capacities. In practice, these
solutions éould not be implemented efficiently. The size of gears on

. shafts running at slow spaeds have the same size as gears on shafts
running at high speeds (i.e. dy = dg = 1.000 from table 2.3) déspite the
fact that they are carrying significantly different torques. In a reol
driﬁe, if face Qidths are to be reosonoblp, the 1npu:\gear diaoameters

1 v .
must change because they are a function of gear ratio and input gear

speed.

Required/is a method to incorporate the diameter constraints
imposed by component design on the arrangement optimization. The

. arrangement optimizob+eﬂ’determ;nes diameters of specific gears through

the use of the minimum diometer matrix. Therefore it is possible to
-incorporote component design reéuirements through this matrix.

In the following sections, the'optimization of a gear mesh
‘consisting of a pinign and gear 1s presented. The goal is to determine /
the values bf the design ;oriobles which minimize center distance for

given operating conditions and power requirements. A matrix of -these

¢ , /\

- 68 -
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optimum values is then generated as o function of gear ratio and input

gear speed for use in the orrangemen£ optimizatiaon.
: i1

o

L7

3.2 Spur_and Helical Gear Power Rdtigg

The power capacity of eoch gear in a drive 'can bé calculated for
\
bending strength and pitting resistance. The power capacity ‘is

°

calculated in accordance with AGMA 218, the North American standard for

yrating the bitting resistance and bending strength of spur ond helical

involute gear teéth.‘

3.2.1 Bending Strength/Tooth Breakage

From AGMA 218 the bending strength power capacity (i.e. the power

which can be transmitted for the design life of the gear drive without

causing root fillet cracking or failure) can be calculated using the, .

4

following equation:

ngdKy Fm J sy ' ~
Pat * - (3.1)
1.91x10 KSF KBKITI KT -

©

Pyt - Bending strength power capacity
d - Pitch diameter '
) np - Pinion speed Co
- K, - Dynomic foctof
” F - Face width c '
\ J - Geometry fﬁctor
Sgt - Material bending strength{ ' ‘ ° ;

Kgr - Service factor

m - Module . . . T

.
3
B ,
u :
.

(=2

4

-« oy
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Kg - Size factor
Km - Lead modification factor
Ky - Temperature factor _ e ‘

A check must also be made to ensure that the yield strenéth will
not be exceeded when the number of fatigue cycles is low. The
{ N
calculation for bending strenith must be carriéd out for both the input
" , .
gear and the output gear 1in a)nesh. The allowable power copacity 1is
equal to the lower of the volJps cbtained.
|
{
l

3.2.2 Pitting Resistance

-~

r

From AGMA 218 the surface flatigue power capacity for the

. avoidance of surface faotigue (i.e. the power that can be transmitted for

!

the design l1ife of the gear drive without destructive pitting of the

v m :

gear teeth occurring) can be calculated using the following'equction.
&

pr. -y npF IC, dSqeCh ] 2 . (5.2)
- 1:91x107 CgpCeCule © €y Cr .
Pac — Pitiing resistance power capacity / *
o - Pinion speed .
F - fﬁce width .
I - Geometry factor ;
C, - Dynamic factor . K "
d - Pitch diameter ] L . t
Sac - Material fatigue strength . T
‘CHq - "~ Hordness factor )
CSF ~ Serwvice factor
c; - Size factor

.
e
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Cn - Lead modification foctor

Cf - Finish factor

o)

Cp - Elastic coefficient

Cr ' - Temperature factor
Equation (3.2)-must be applied to both the input gear and the output
¢ !

gear in a mesh. The allowable power capacity is equal to the lower of

the values obtained.

'

The analysis of load and stress modifying factors is similar to
that for bending strength and, as a result, many of those factors have

.

identical values. .

3.2.3 Scoring .

Gearing operates in three regimes of lubrication [131]. 1In

~

r

regime I, ‘011 film breakdown is caused by high pressure squeezing the’

film out from between the gear teeth resulting in asperity cbntoct.

Ve
Pitch line velocity is low, providing a boundary lubrication environment

where there is constantl»fsome asperity contact. In regime II, good

lubrication normally occhrs since pitch line velocities are sufficient
to develop a proper 1lub cazf;}ilm without excessive heat being
geneécted. In regfma III, oil.film breakdown is.a result of high gear,
blank temﬂﬁrotura or overload. Since the pitch iine velocity is highf,”'
even short contact of tﬁp tooth profile éon produce significant heat
which causes a rJduction in the oil film ond rapid foilure.

For the range of analysis under ;onsiaeration. scoringlis not
expected to be the active constroint. As a precaoution, the probability
of scoring can'be assessed by coiéuloting the’scoring number as

.

suggested by Dudley [24]. \ ™
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¢ wt 3/‘0 np 1/2
-SCN = - e . (3.3)
F.opg Y/

g N :
A scoring number of less than 10,000 indicotes that the Gbsign is
y . .
adequate, provided gear blank temperature does not exceed 150°C and

3
1

o

pitch line velocity is greater than 1.0 m/sec (197 ft/min), Higher geor

blank tempérotdras or lower-’pitch line velpcities require special

consideration for lubrication to ensure adéquate bgrformonce. When the

.
-

desién is mokginal, extreme pressure lubricants mcy)bé used. These
‘lubricants react chemicolly at locations of high pressure and

temperature, forming a protective coating with low sheor strength

[1321.

N D i g
3.3 Variables Which Affect the Power Rating of a Gear Mésh

-~

Tables 3.1 Lhough's.a provide‘lists of variables which affect the
. s N

i ' “ . )
power capacity of ‘o gear mesh. The lists are long and the relationships
o ° ' o

* ! . 0
between variables are complex. A number of the design variobles are

o
strongly dependent and care must be taken to ensure a consistent set

»

when making changes. o
The 1list of variables are groubed as follows; (1) variables rhich
, define operating conditions, (2) variables which relate to materﬁgﬁg

properties, (3) variables which define tooth geometry, and (&)

) 7

variables which determine tooth size and gear digmeters.- '

Operating-condition variables are determined by the application
to which the gear mesh is to be used. They are normally based on user
requirements and are thus constont for a particular. design. They are

not ollowed to be chanbed during the optimization process.)
- / !

. \ »
» g ‘

\

—r

v

C e
"

ty,
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TABLE 3.1 N
‘\‘ﬂ;‘
. Gear Pair Desfn vVoriables -
Operating Conditiong/Requirements

VARIABLES | .DESCRIPTION 'OF VARIABLE o
NY Life in Years 24 hr Service
. NF Failures/1000 Parts
h ] Characteristic of Source ’ .
go Characteristic of Load ~_
Qv Quality of Gearing .
tm Lead Modification \
\) FP Tooth Surface Finish =
LSHAR Load Sharing .
ST Critical Service ° r
CN Mesh Centerline to Bearings-
co Type of Composite . ot
NP Input Speed
MG Gear Ratio !
POW . quuired.Power Capacity

- W , ! )
i s

!
Material properties are defined by the materials selected for the
pinlon and gear and the precision of the drive. As the quolity ond cost

of the gear materials increase, the center distance of the mesh is

reduced. In addition to reducing mesh size, selection of materiols can

¢

be used to minimize costs. Pinioﬁs or gears in a mesh which have
% )

. reserve copacity can have less expensive materials substituted with no

1mpdct on the remainder of the drive.

&

Tooth geometry is a function of the cutter used to generate the

tooth. Figuré 3.1-defines the different vartgples ossociated with the

cutter. The rpinion and gear moy be cut qsing'different cutters, hence

.

' these variables are defined for both. Changes in the cutter geometr

"
n,

are normolly effected to balance power copaéffy or to reduce

3

undercutting or to increase contact ratio. Changes which result in non-

standard tooth §eometry must be done corefully becayse of the potential

~ * ,

, - !

«
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- . TABLE 3.2
' A\
. ‘\ 1 Gear Pair Design Variables -
Lo . Tooth Shape
\\‘ . R A ' \' - “
\ .
VA&IABLES DESQRIPTION OF VARIABLEw
. ) WPHIC Cutter Normal Tooth Thickness
CHIS Helix Angle
. ." ¢ CTYPEP { Pinion Cutter Type
. CTYPEG | Gear Cutter Type
K , . bCP Pinion Cutter Diameter
) DCG L’=Ge<:r- Cutter Diameter
. . AP Pinion Addendum °
s AG Gear Addendum
B " '8P’ | Pinion Dedendum ‘
- 8G Gear Dedendum
' TNP Pinton Normal Tooth Thickness
. . TNG Gear Normal Tooth Thickness
B o ' RTP Pinion Cutter Tip Radius
£ RTG Gear Cutter Tip Radius
DELTAP | Pinion Cutter Protuberance
. DELTAG | Gear Cutter Protuberance !
HAOP Pinion. Cutter Addendum
, HAOG Gear Cutter Dedendum ’
TCP Pinion Cutter Tooth Tniéﬂness
' TCG Gear Cutter Tooth Thickness

¢

&

\

%

for significontly different performaonce characteristics and increased

monufdbturing costs.

¢

{
N

N

3.4 Mesh Optimization” Straoteqy

Figure 1.7 shows a typical curve of power copccitJ versus module .

’

for each of &4 foilyre modsgs.

-

gear bending strength, pinion pitting resistance strength and g

) -

ear
v

" Those modes are pinion bending~strength,

,pitting resistance strength. Generally the point of moximum strpngth

Art—

occurs when the pirion bendthg strength and pinion fatigue resistance —
0 . @

match. This, however, is not true for all operating conditions aond it

. is necessary to evaluate oll 4 ratings to ensure the minimum is found.

P ' '

«

-

.



TABLE 3.3

’ Gear'Poir Design Goriables
., . * Material Properties

\ Ay

~ ) * ©  VARIABLES

DESCRIPTION OF VARIABLE

L4

MATP
MATG
TNP
NG
ABpP
' HBG_
, SATLP
. SATHP
‘ SATLG
v . SATHP
. SACLP
. «  SACHP
SACLG
. SACHP
. , . SAYP
SAYG
\ —J up
UG .
: EP
" EG

\¢
?
»

Pinion Material Name .
Gear Material Name

Type of Heat Treatment of Pinion
.Type of Heat Treatment of Gear

Brinnell Hordness of Pinion
Bripnell Hardness.of Gear

- Low Volue
- High Value

Pinion Fatigue Strength
Pinion Fatigue Strength
Gear Fatigu® Strength -
Gear Fatigue Strength -
Pinion Pitting Strength

" Pinion Pitting Strength

Gear Pitting Strength -
Gear Pitting StrengthA-
Pinion Yield Strength
Gear Yisld Strength
Pinion Poisson's Ratio
Gear Poisson's Ratio
Youngs* Modulus - Pinion
Youngs Modulus - Gear

Low Value

.
-

High Value
- Low Value
- High Value

Low Value \
High Value .

3

m

——

TABLE 3.4

Gear Size

Gecor Polr Design Variables

VARIABLES

DESCRIPTION OF VARIABLE.

“

- . NTP
- ) ’ _NTG
PND

/  LAMA

Number of Pinion Teeth
Number of Gear Jeeth

Module (Normal ‘Diometral Pitch)

Fgce Width to Diameter -Ratio

"\
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For the gear ratios and speeds under considerot&on. séoriég is not
normally a problem, and although this failure mode is checked, the
optimization 15 direcied towords bending strength and pitting

resistance. ’ -

In an optimum design, the difference between the strength of° the
pinion dnd the gear can be reduced tq zero. Techniques\suEh os addendum
and dedendum modificqtion and the use of exotic materials aréd tommon}y iﬂ
used. These modifications add co;t odg have 'limited impact on the - .
overall design. As the gear diometer Qs reduced for a constant set of

"

operating conditions, cost to manufacture and assemble rise
exponentially. A tradeoff is .thus requi%ed for each application to
determine the extent t; which optimizatidn 1s Justified. Table 3.5
prnovides a list of actiéns which caon be thken to reduce gear. diameters

¥

with associatdd cddontogps/disodvéntoges. ‘ '

.- - | ~

3.4.17 Guidelines for Generating the Minimum Diametgn Matrix "

-

A strategy for mesh optimization will now be developed using the

variables for*mesh design identified in tables 3.1 through 3:& and the

possible optimizotion strotegies given in table 3.5. . 1 “§8
Variables from toblelS.1 represent given bperating cofiditions

which should not be altered by the mesh optimization. If the results of

the arrangement optimization are unacceptable, it may be necessory to

’
[

reconsider the defined operating conditions.

Materials with increased ultimate gtrength and/or increosed shear

-
strength produce stronger teeth and ollow smaller diameter gears

resulting in a smoller drive. In general, the best materials which con |,

14 Kk
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N ABLE'3.5 ’ ‘e
’ T,BLE 3/,‘ ’ .
' - Design Strotegies to Minimize Mesh Center Distance
g \ .
. # | ACTION . EFFECT;) ‘ADVANTAGE DISADVANTAGE
1 Opflmize Improves . Low cost Cannot
* ) module balance when provide a -
between standard, totally
bending values of balanced
strength module are design
and pitting used ‘ between all
B ) - ’ resistance failure -
N - modes “
" 2 | Helical , Results in Smaller Does not :
- g gearing 1in greater more improve
) place of contact compaat balance
P | spur gears ratio and gearing between
, ) . larger ~a foilure -
b . apparent § Smoother modes
. ! face width— | operation—
oo ‘ improving 3 Signifi-
. performance cantly higher .~ ° 7
B L and reducing cost
size T !
¢ 3 Addendum/ Increases Smaller Signifi-
dedendum pinion more compact | cantly higher .
. : modificotion | strength at gearing cost :
’ of the expense of . )
tooth form gear Avoids
“ , strength undercutting
’ of pinion ; .
. 4 | Select & Increases Helps - w | s1ignt . .
. \ special bending balance increase in '
- materials trength strength analysis
] ljiﬁnd/or between costs .
. ) - Bﬁtting pinion and + |° ’8\
o - resistance gear ,
. strength .
«. - | of pinion or ®
* ' gear - ! ,
v s i A A%
. - o §
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L4

be justified in terms of cost for a specific application, should be

v
!

selected for the eneration q? the minimum d eter matrix.

s kd
A

The tooth form variables, table 3.3, affect the relationship

between the different failure modes. Standard tooth forms represent a

-conscious compromise between the different failure modes and will

»

normally provide o reasonably Q%%unced design ovsr d wide range of
' operating conditions. For top performonce, it is necessary to optimize

tooth form to an opplication. This analysis, however, substdntially

'
!

increases the computational cost of the minimum diameter mgtrix.

The size of a gear mesh is determined by the number of teeth on

3

‘the pinion and geor. the module (dicmetral pitch), 'ond thge foce width.

.

‘The module also defines the size of theypear teeth. iypicolly.'banding
/

.

!
/

.

sfrengﬁgkﬁ?‘a~béﬁr increase with tooth size while pitting resistance

w . 4
strength decreases. The point where these two'curves cross represggis (o}

-

balanced design when scoring is not the critical design criteria. These
.. ‘ )

variables will be determined by mesh optimizgtibq.
, .

-

3.4.2 cCalculation of the.Minimum Diomdter Matrix

The determination of the designﬁvoyiobles‘Which specify a gear

meéh for optimal performance are computgtionally expensive.\\The\pqrpose

of the minimum diometer matrix is to yield solutions to this problem for

a discrete number of operating coigifions. These discrete points cen  be
A4 .

interpolated to provide a réosonople approximation over a range of

[}

speeds‘ond speed reduction ratios for use in the arrangement

—— ’ ~
optimizotion.
4
The diameter matrix ;é calculated using an optimization process

which determinds the optimum numbar of teeth on_tﬁe input gear and the

-~ 4 . ’

o~

an
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. s .
optimum module for specific speed reduction ratios and input gear .

1

-
speeds.” The power capacity is calculated based on a starting diaometer

and module. The_dlameter of the input gear in the mesh is re-culculatéd

{
assuming that the power varies ds the cube of the dicmeter. When the

.
.

change is-sufficiently small, normally requiring 3 or 4 steps for 3
decimal place accuracy, the module 1s 6pt1mized. The optimization

- .
process limit?{the_module ta giscrete staps. The process is repeated

until no reduction in size is possible and error in desired powef

v 3

cadocity is sufficiently small. A flow-chart of the process is shown 1in
figure- 3.2.

\ : .y

3.9 _ Input Values of Design Variables for Verification Problem.

- ]

This section selects values for the design' variables for the

calculation of the verification problem and explains the rational behind .

the selections. ) . « .

T ' T -
N

3.5.1 bpérotingﬁConditfbns

Many of the variables associated. with operating conditions are

arhitrary with respect to the optimization process. Random selection of
. o \ 8

these variables would allow the calculations to be performed, but 'the

’ 3
solution would be of little interest. Therefore, the operating
) ! ~

conditions of table 3.6 are specified. fhese are appropriote to those

required for a prevision multi—épeed drive used in o ﬁilling machine.

.
! N

3.5.2 Materiol Propertieé
' -

Steel A5 is. selected for both the pinion ond gear for all gear:

pairs. ’fhis is an high quality steel resulting 'in reospnably'compoct~

1
’

- :

-
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v o TABLE 3.6 .
. . Value of the Mesh Input vgrioblgs
.o Selected for the Verification Problem
[ ’ - ! A
INPUT INPUT | INPUT | AFFECTS | COMMENTS ’
DESCRIPTION NAME . VALUE VARIABLES
&l ) ., <
1) Title ) "~ Informative
2) Cotegory " CA 3 ‘Qv, LM, FP Precision Enclosed ’
) : - | LSHAR,SACP | Gearing. Ses oF
‘| SATP, SACG Table 3.7. )
SATG
3) VYear of NY 10 NY Continuous
Operation Service
. &) Failures NF 10 NF Continuoys
in 10000 Service ’
$) Character SO 1 SO - | Uniform Load .
of Source.
6) Character Lo ] \LO Moderate Shock
of Load . ‘. -
7) Gear CN 2 | cN Off Centerline
* Mounting ] N
8) Type of ~"§'ltf~f;" 1 ST p Commercial
. Op/e/rat—tq’r\/ Application™
N \\ N b
9) Composite co 1 co Conventional Mesh
. 2 ‘Composite Input
" 3. Composite Output
¢ - - -
10) Pressure PHIC 20, PHIC Standard -
Angle
11) .Helix CHIS 0 CHIS "Spur Gears
Angle
¢ 3
12) Tooth 2 CTYPEP, Standord Tooth
) Geoms try CTYPEG, Farm
' ' . " DCP, DCG, -~
- y AP, AG,BP, '
* BG, TNP, TNG °
- RTP,RTG, -
. DELTAP, TCP, o
, DELTAG,TCG,
) HAOP, HAOG ‘a

Ty
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. TABLE 3.6 (Continued)

- . b N ( ——
13) Face Width/| LAMDA 1 Optimized Minimize Diameter
Diometer ’ . 0
v 14) Input Gear | MATP "5 variable - Steel, AS
) Material ‘ . i
g 3
‘e 15) Output MATG 5 Variable Steel AS
‘ Gear
Material .
- ¢ )
16) Input NP Input Input
Speed '
. 17) Pinion \ NTP . | optimized
- . - Speed '
18) Gear Teeth ' NTG Colculated From Input Gear Ratio C
. )
19) Module PND Qptimized '
.» 20) Required . B Constant Operating Conditions
Power .
) T . Capacity : v ' . '
0 : ’
- TABLE 3.7 °
“ Quality Categories Used for Analysis
. 1 2 3 4
- r } .
. Qv 6 8 10 12 A
. LM ' 1 2 2 2 ! ¢
P, 64 S -1 32 16 .,J '
' LSHAR 0 1 1 2 T
. ” SACP . LOW LOW AVERAGE* HIGH*
. SATP™ - LOW . Low AVERAGE HIGH
SACG LOW LOW AVERAGE HIGH
SATG, LOW i LOwW AVERAGE HIGH
/
“* AGMA publishes a range of values for material
, properties. It is assumed that applications in
.category 3 or 4 veriQy the material properties
L . to ensure the safe use of average or high values
LBy T ' ’ )
- ’// ‘
4 - j.
4

5y
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designs. To attain greater strength special heat treatments are

required. The effect of higher strength material will be demonstrated
. : i

in chopter 6. -

&

3.5.3 Tooth Geometry

3 For multi-speed gear drives, spur or hblicai gearing is qumonly
used.’ -Spur gears are uéed for commercial applications with low power .
and low pitch line velocities. Helical gears are used for péecision
applications with high power requirements and/or high pitch line

L]

velocities. Spur gears are used for the verification problem presented.
This 1s consistent with the desigfyof most’ current machine tool drives.
'Standord tooth geometry "is assumed thréughout. Standard geometry
produces reasonably balanced designs over the normal rcngés_of pinion
speeds and gebr reduction ratios. Standard tootg proporfions also
result in significantly I;wer prodgction cost{gincg stoédord tooling can

be used. Non-standard tooth geometry is only oppéopridte when designing

for specific, well defined, ppplications where a clear problem exists,

d
«

3.5.4 _Gear Mesh Size Variables

“

The face width is a parameter avoilable for optimizotioﬁ. however

the face width/diameter ratio is limited to the range of 0.1 to 1.0. A~

—

face width/dicmeter ratio of 1.0 is used for optimizotion where the

— "

radial objective function is used, as the greater the face width to

dicmet?r ratio, the smaller the diameter required to carry a given

[

power. Values greater than 1.0 are possible but require special care

B
v

during assembly.
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" The pinion speeds and the speed reduction ratios used for the
minimum diameter matrix are selected based on the expected range of

values encountered during the arrangement optimization. The speed

reduction ratios were selected to be .1, .2, .5, 1, 2, 3, 4, 5. The

.

- input gear speeds wore selected to be 25, 50, 100, 200, 300, 500, 750,

—

1000, 2000, 4000 RPM. These values are somewhat crbitrory“cnd are

i

selected to provide a reasonable distribution over the desigﬁkspoce.

5

3.6 Minimum Diameter Matrix by Mesh Optimization

»

Results of the optimization for minimum diameter based on

standard operating conditions defined in section 3.5 are presented in
N [
tables C.1 through C.15. Data was calculated for a conventionol mesh

and a composite input gear mesh. Table C.10 contains optimum diometers
for a face width/diameter ratio of 1.0. Talfles C.13nd € 15 contain

number of teeth and modu%e for a face with/diameter ratio of 1.0
@

respectively. The case of a composite on the output gear is not

*®
required, during the arrangement optimization because o composite output -
N - - K s

gear in one group is equivalent to a composite input gear in the next-

<

group and 1s thus correctly sized.
! .
The composite pinion has a marked effect on the diameters for

speed reduction ratios of ‘1.0 or more. For speed increasing ratios, the
. e . B

output gear 1is smollest and tends to drive the diameter of the mesh.

This can be easily observed in the rQSu}is. \

The minimum diameter matrix 1is used to determine the diameter of

' .
the input gear, given the speed reduction ratio and irput gear speed.

Interpolation is used to obtain the input gear diorweter for conditions

other than those 1q the table. For speed reduction ratios the cbrrect "
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y N ~

diameter is obtained-using a lineat .interpolation of the mesh center

-

distance. —Jhe cenfer distances are calculated from the minimum diometer

matrix as required. X plot of center distance8 vs speed reduction ratio

.

is shown in figures 3.3 for o range of ‘speeds using convefitional mesh

- &\ -

data from table C.10. The graph is sufficiently linear fo justify the
[} + <& .
proposéd approach. . -
, . _ ’ L //

' 4
The speed is assumed to be proportional to the cube of the
¢ ’

~ ~

» diameter 'when calculating gear diameters for a gear mesh with input

- . »

speeds other than those tabulated: The new diameter i§ calculated using

> ‘
A B

the 2 speeds cloéest to the regquired speed. An bvercge of the~

calculated values is used. Table 3.8 demonstrates that the oésumption
- 'S 5
of the gubic relationship between input gear diameters and speed is
-« —

valid.

v ) ¢ v : .
. ;

--~3.7 _ Four Spebdd Drive - Verification Problem

¢

’

In chapter 2, the four ‘speed drive was optimi- »d for minimum

radial dimensions %g?;gct to k{neqotic requirement; and the constraint |
that the smallest digmeter havé a value ;qucl %o 1.0. As,Aoﬁed, the
drive couldl n;t bq implement;a as preseéted because of.;;or strength
considerations. /

The ,problem is re-onalysed with the requirement thquQII gears

v -~
- L '

have sufficient §trength to meet the operating reduirements of table

.

3.5. This 1is accomplished by using the diometer matrix of table C.10 as
’ ) ‘ ) u e i .
input data. The objective function, to minimize radial dimensions, as

3

well as the oftifization logic-are the same as In choapter 2. The

Q i
optimization of radiol dimensions, table 3.9, using the minimum diomgzer

v ¢

matrices of chapter 3 yields a sipgie optimum’ arrangement. Optimization

~

) L - . 3 ’ S

v

4
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i . ¢ TABLE 3.8

Samplo Interpolotion Usdng Avernged Cubic Relationship Between
‘ Optimum Gear Diameter (mm) and Power Capacity .

SPEED SRR = 0.1 ° SRR = 1.0 SRR = 5.0
acT.| est.| %ErrorR | AcT.| EsT.| %ERROR | AcT.| EsT.| %ERROR
25« | 640 | 648'| 1.3 | 162 | 163 0.6 | 138 | 139 0.7
50 | 514 | 514 0.0 | 129 | 129 0.0 | 110 | 110 0.0
100 | 413 | 814 0.2 | 105 | 104 1.0 88 { 88 0.0
200 | 333 | 332 0.3 83 | 83 0.0 71| 70 1.4
300 | 294 | 294 0.0 73 | 73 0.0 62 | &1 1.6
500 | 251 | 281 0.0, | 62| 62 0.0 '| 55| =54 1.9
750 | 222 | 221 0.5 55 | 58 0.0. 46 | 47 2.2
- 1000 | 203 | 205 1.0 | so | so 0.0 b2 | 43 2.4
2000 |165 | 165'| . 0.0 40 | 40 0.0 3 | 34 0.0
5000* | 134 | 131 2.2 30 | 32 3.0 28 | 27 5.6
AVE. 0.6 0.5 - 1.4

» Interpolation from 1 direction only -

N -

~

1, with a vqlue of 463 mm, provides the minimum value of the obJeckfve
function. This gear drive and speed diagram are shown in figures 3.4
and 3.§ respectively.

The difference between the results of the optimizations Qf:
chapter 2 and 3 can be seen by comparing relative diometers as sthﬁ in_
tagble 3.10. The results for chopter‘2 ghow the minimum diométer in

1
group 1 ond group 2 tb have a varué of 1.000. For thd result from

chaopter 3, the minimgw diameter fer group 1 is f.OOO. however the
minimum giometer for éroup 2 is great;r. The dicmete; of the first
input geor }n group‘2 is approximately 22% larger than group 1. The
relationship between optimhm diameters ond.power is approximately cubic.
Since power 1s propdrtional to speed, the Felotionship between diameters

of the smaollest input gear from group 1 to group 2 should be

approximatély equal’ to the cube root of the shaft 1 to shaft.?2 speed

.

. L4 .
/f . . .
. P
.
. - " . -
- . .
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rato. The speed ratio-is 1.743 and the cube rpoot_1s equal to 1.204.°

Hence the diometer in group 2 is expected to be 6pprox1mqtely’20$ \

larger, provided the face width/diameter raotio remains constant. This

is in close ogreement with the actual result. o < .
Comparing speed diagroms, the inclusion of gear strength

requirements hos»moved‘thg input speed to higher volues: This qpéu:s
because the size Jof the gears becomes smaller as the speed'increoses.

A trade-of f taokes ploce between ihe,reduction in diometer associated °
with increasing spee& and the 1ncr;ose in diameter associated Qitﬁ the

S : - A
. chonge 1in gear ratio required to implement this. The gears on the °

‘outpht shaft are largest ond have the most effect on the objective
function, therefore, these are optimized to hove reciprocal gear ratios

which minimize radial dimensions. . . ‘

)
-

> -

3.8 Summar . . i .
‘ J

This chapter has examined the design variables of a gear mesh in -

- ordgr to determine a method to minimize center distance. Tﬁe design is
Al ¢ - N & .

based on AGMA _21B which ensures that'bending strength ard pittihg
resistance are correctly evaluated. It was shown that an optimum module

and input gear diameter for o mesh can be calculated as a function of

- \
N

input gear‘speed and speed reduction ratio. This analysis wos used to

. build. o minimum diameter mat™ix for use in the synthesis of optimal gear

- - 0
drive designs. The re-onalysis of the 4 speed drive to include gear

: design requirements fesultqd in a new designvwhen optimized using the

[

identical rédiol objective function. This reflects the influence of
components strength on the selection of the kinemotic arrangement.

-~
. Wl . ——

J
7

o



Optimization Summary for the 4 Speed Drive Verification Problem

- 90 -

TABLE 3.9

for the Radial Objective Function using

4

Stondard Operating Copditions

[ 4

L

°

, OPTIMIZATION' NUMBER
! o 2 3 4 5 3 6
) " 104.0 122.3 89.2 ‘98.9 77.8 388.7
1 2 136.1 156.2 119.'3 129.9 107.2 487.6
A 3 181.3 162.9 190.2 178.4 216.3 468.8
M 4 149.2 130.0 160.0. 7.4 187-0 369.9
E 5 127.0 162.9 115.7 07,4 112.0 369.9
T. 6 198.8 * 248.8  190.2 236.2 187.0 468.8
€ 7 188.4 217N 212.9 242.7 221.0 198.4
R 8 116.6 131.2 138.4 153.9 146.0 .99.5
R S| '0.387  0.563 0.256  0.337  0.183  1.545
‘A : Al ,
T 1 0.574 0,750 0.469 0.554 0:360 0.829
I 2 0.912, 1.193 0.745°  0.881 '0.573 1.318
o 3 0.674 . 0.750 0.543  0.607 0.507, 1.865
S 4 | . 1.704 1.897 1.374 1.535 1.281 4.714
F (mm) 462.7 518.7 470.0 520.0 477.7 1055.9
“ﬁ_ OPTIMIZATION NUMBER
7 8 9’ 10 "1 12
{
N 1
D 1 106.3 122.3 111.3 92.1 85.0 66.5,
I 2 169.2 186.7 173.0 163.1 151.5 121.3
A 3 169.9 162.9 ~160.2 237.3 225.4 196.9
M 4 -106.9 98.4 98.5 166.3 158. 9 142.1
E 5 123.7 162.9 123.8 166.3 122.5 142.1
T 6 159.9 206.7 ..160.2 210.0 158.9 196.9
E 7 194.2 217.1 196.1 212.2 ,197.4 426.2
R 8 157.9 173.3 . 159.7 -168.6 161.0 371.4
R s 0.399 0.563 0.438 0.304 0.234 0.113
- A - -
T 1 0.626 0.750 0.695 0.388 0.377 0.338
I 2 1.583 1.897 1.756 0.981 0.953 0.853
o 3 0.637 0.750 0.631. 0.783 0.621. 0,333
3 IA 1.013 1.193, 1.003 1.246 0.987 ' 0.530
F (mm) ' 478.7 534.5 480.3 541.6. 489.5 . 689.6
Dicmeters (mm) 7

~
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FIGURE 3.5

Speed Diagram Based on Optimization 1 Table 3.9 -
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) ./ " TABLE 3.10 '
- _. A Comparison of the Optimum Solutions
Y, Presented in Chapters 2 ond ¥ °
// DIAMETER | CHAPTER 2 | CHAPTER 3 | CHAPTER 3
. - - (mm) RELATIVE
) . -
/oo IR 1.000 104.0 % 1.000 -
' : 2 1.261 136.1 1.309
/ 3. 1.261 181.3 1.743.
, . ™~ "4 1.000 149.2 | 1.435
/ . 5 1.000 -127.0 1.221
. '6 1.590 198.0 1.912
/ .. , : .7 1.590. 188.4 1.812
, . . -8 1.000 116.6 1.121
. s 0.%99 0.387 0.387
! Lo
. F 3.851 462.7 4.469
, N . .
4 -
. o ) . :
d , - ‘ ’
- SRS . .
- ' . L . o 7 )
\ ’ - '
J HE
1 ‘ .
] ' S .
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. ' CHAPTER &
) : J . DYNAMIC ANALYSIS ot
4.1 Introduction . . . .

In a multi-speed gear drive, each speed represents a different

D
o
¢ -

dynamic system and the naturol freguenctes of each mu3¥ bB ve}ified as 3

acceptable. To obtain a change in output speed, at least one gedr,mesh
Vid

in the power path must be altered. These changes are normelly

accomplished with the use of a sliding block on % splined shaft. , In all
cases, the dynamic maotrix is altered with the result that a new set of
° ' . : '

e eigenvalues and eigenvectors exists which must be considered.

,
4

{
The most gccurate method of mechanical analysis is ‘through the

use of finite elements. Components of the system are broken into small °

’ -

. elements which hawve defined mass and stiffness properties. The

' stiffness of 1nd1v1duo%~9lements u;e combineg into on‘overoll systeT
stiffness matrix using qugifiéd boundary ;onditions for each element.
These occurbte-elements gllow the calculation of detailed stress

L4 >
information, eigenvalues, and eigenvectors. Unfortunately, these modals:

]

ty

are time consuming to develop and expenst;':é\run. NASTRAN [52] fs one .
\

~

of- a nhmber of lo;ge commercially available finite element analyzers.
It 1is rare that this type of analyser is used 'to determine system °

elgenvectors and eigenvalues in a repétﬁtive monner beqgouse of the '

\
)

‘extensive coﬁputer times required,

1
v
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~ X
~ce§ponents and assemblies can be

~

/inertia systems for the purpose ‘of mechonicof

Alternatively, mechan

. modelled as lumped’

aqqlvsis. Equatigns of motion are formulated for each mass/inertia '

node, with up to degrees of freedom per node. The mass/inertia
nodes can bea coupled by stiffness and damping elements. The reSulting
set of eqputﬁons can be solved to provide system eigenvalues and

eigenvectors. L

"When modeied in this fashion, it 1s assumed that the elastic

V]
components have no mass and that mass/inertia elements are absolutely

rfbid. The results of experiments have shown that many mechanical

systems, including torsional gear drives!‘coh be analysed with

reasonable accuracy using these assumptions [52].

o
'

Tor§10n01 modes tend to be most critjcal for geared systems.’ )
Although both lateral and oxial vibrations have been dempnstrated [76],
shéfting in mccﬁiqp ;oo},gecr drives tend;.to be very stiff in order to
limit deflections. As a result, lateral and gxial vibrations 6ccgr at
higher freguencies. For speed reduciné drives, these modes can be
neglectéd and .emphasis placed on determining the torsioncl eigenvalues
and eigenvectors of the system.

4.2 Equations of”Motion for Multi-Speed Gear Drives

Equations of motion for the multi-speed deor drive are dqveloped

based on the group shown in figure 4.1, For the general case each mesh

rd

was separoted by an elastic coupling. An elastic coupling Qgs‘olso
I
shown between each of the gears in a meihl The equations of 'motion, for

the speed shown, can be written as:



~
i
4
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FIGURE 4.1
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Dynomic Parometers for the & Speed Drive Verification ;roblem .
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Dynamic Model .for &4 Speed Drive Verification Problem ,
' /0. h , ’) - )
}101 + k1x1 + k2(x1 - X2) + ks'()q - Xs) = 99 . (4.1) )
kz(x-‘ - Xz) = 1202 + ku()(z'— Xl") . - (10.2)
s ) 7 ’
' ks(XA‘ - Xs) - 1303 + ks()(s = Xa) (‘&3)
. ¥
ky(xg = %)+ kglxzg = %4) = I o, + kglx, - xg) (6.4)
ka()(u - )(5) - 1505 + k7(X5 - XB) + ke(?(s - )(‘7) (“.5)
, ky(%s ~ xg) = Igag + kg(xg ~ Xg) / (4.6) ,
kB("S - X7) = [-i07 + k1°(x7 - Xe) * Yo (4.7) J—
’ . \ % . % .
'kg(Xs - XB) + k1o(x7 - XB) - 1808 + k11X8 . (4.8) .
+ \ .
. e . "_ e
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The Fqﬂ;;alent‘ﬁoss and stiffhgss matkicos for tggSe qudtions éée:
C ] . W:‘ :
_ I4 o o o 0 o o ° )
0" I, o o 0 0 0 -0 /}
0 o' I3, 0 0 (] l ] 0
’ ’ (4.9) .
. 0 0 0o I, 0 6o 0 _ o
6.0 o0 ©0 Ig 0 o0 o0
o o0 o o 0 Ig ‘0 O .
. o o o o o o0 I, )
0 0 0o o ‘ 0 0 0 Ig J
o} '
, The stiffﬁoss matrix in its genedral f&rm is os follows:
/
Pk_1+k2'+k3 -kp  -kg 0 0 o o o0 - -
o | ka2 katkq 0" -k, 0 o o o\
-k; 0 u3+k5 kg -0 o . 0 .. 0
) ’ ’ .0 -kg kg Ky tkgtkg ;ks 0 ] 0 ,
. . p ) s (4.10)
' ) o 0 kg  kgtkytkg -k, -k§ . O
o o o 0 -ky  kytkg O kg
: )
o o o 0 kg 0 kgtk1o K10 S
’ (o] 0 0 0 0 -kg .-k.‘o kgtkqg+kqq|
. “ )

Couplings Ksx, R“. kg and Kg represent the stiffness of the gear

keys, webs, and teeth. When a mesh 1is disengaged, the associated

¢

o !
S stiffness value is°zero. Stiffness elements of zero do not introduce

-

singularities in the calculations, becouse each inertio element remains

connected by o least one stiffness. , —

.
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Element stiffness between 2 and 3 orders of magnitude lorgér than
the shaft stiffnesses can be treated as infinitely Qtiff. When this
hapﬁéns, the row and column associated with thht'Bntry are added into “an
. adjacent row and column fespectively. This gffectively combines tgo
inertias into oune and reduces thé number ofhmodes by one. The mode ~
removed is a h1§h frequency mode and the effect on the other modes is
negligible. This reduction is useful to reduce matrix size and to ovuid
computatjonal 1rreguloriéies.

The equations of motion of the lumped parameter systém can be

represented by the following matrix equations:

Bed

Ma + Kx = 0 - (4.11)
Capital letters are used to desigdote matrices. Bold lower case <

J .
letters are used to designate  vectors. The mass matrix M i{s a diogonal
. ’

matrix, the stiffness matrix K %s o‘sporsb symmetric square matrix, a is

a column vector of ongula%?&cceleégtions and x is g column vector of

[
-

angular displacements. Assuming harmonic motion, equation (4.711) can be

rewritten as follows where n is the circulor frequency.

]

b} .

-02Mx + Kx = 0 . (4.12) -,

Using equation (47T2) the following determinate is written which )

is Known‘os the characteristic equation and whose roots are’ the ’ )

eigenvalues of the problem.
. ' ¢ N

K-n2m| =0 . - (6.13) -

‘ . s * . ?
) . 2 . ]
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2

- . 4‘
root of the eigenvalues. A The mode shapé xy corresponding to the

! §

) . .
eiggﬁvalue is-called the 1M eigenvector.

.

4 L

N o ¢

. 4.3 Calculations of Physical Parameters

« 2

. The calculation of the eigenvalues and

[}

-

7 . o v .
(i The natural frequencies of the system are equal to the square

ith

N s

eigenvectors of the system

requires the design of shoftS'whiqh'affect system stiffness and the

k)

s calculation of component moss/inertial

4'3.1. Shaft Design -

\

’ F

1 . .
.with AGMA 360 [21]. and consider both torsional and bepding strength.
~NA L . ¢

v

L 4

Minimum diometers for the shqf‘F are calculated in accordance

N

g AGMA 360 notes that it may be sgpessory to exceed shaft sizes obtained

based on stress considerations in order to limit shoft deflgctions.

The diameter required to withstand bending stress and shear

e

’

&

stress can be colculotéd.hsinq‘the following two equations . y .
" respectively. . . ‘
¥y .
¥ W . ,-
> : - —/3 . v ’
32M - N o
/ dy = | — 1] (4.14)

16T

! ©
!
o

~ ‘ -
“Shigley [133]:

”

assuming o simply supported shaft with a load at its center. From

(4.15)

Y

. An approximotion for the deflection of ‘the shaft can be made by

-



4

max 2
j — W4BEIg S -

* -’
0 ~
.

where for a circulor shofg. v

- -
il

Re-arranging equation (4.17) gives: : ‘ -

) L , N
‘ " a3 o '
"dg = ————— ‘ . (%.18)
. . 4BmMEyqy g ~ ’ . ;

The allowable deflection, ypq, depends on the value Of the

qQuality factor. For machine togls the quality factor is normqglly

;

between 8 and 10 and -would require maximum deflections to be® on the

)

order of 0,025 mm (0.001").

+ - .

>

»

4.3%3.2 Inertia of Cylindrical Bodies

e

The inertia of geurs'con be approximated usind the €@qQuqtion for o

cylinder spinning about it's central axis. ' _ T

.
.
%
.

4 .
und Fo \'
ne=1.2 ..., ng : (4.19)

I, -
. - 32

' . wie Density

d, = Diameter : ' I . e

Fo = Width N :

-

3

-
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" 4.3.3. Torsional Stiffness of o Shaft : . .
- -~
' The shaft stiffness of a shaft of 'circular cross section is given -
e by . . . R . ' . °
-\ N \ M N
nd"c . : Y
" k = \ (4.20) '
32L . )
W . . y T i
. ’ d = Shaft diameter . . . ° s
“\ ' N i I3 - @ -
’ L = Shaft length
: ' G = Shear modulus T . o 4 .

.
* . , .

. ' 4.3.4 Stiffness of Other Components ' : oo

For close opproiimations to the system eigenvalues it 70s been .
N ~ R €

shown to be necessary to include the stiffness of components such as’

keyways, ge&r ribs, gea? wvebs, geor teeth, and clutches. .
- . In this anolysis, the purpose of corbbloting natural frequencies

. . - -
and mode shapes is to ensure that the optimum design does Mot have R
< . . ‘ < . .

1 - serious vibration problems. An approximation of the eigenvalues 1is

) therefore satisfactory. The stiffness of components such as keys, geanr '

”*

., teeth, geor‘webs.lclutches.'etc. has therefore been neglected. -

P . ) <
c . ] .

. 4.3.5 Equivalent Stiffness and Inertia . L . ‘ B

-

The component stiffnesses ond inertias must ,all be referred to a !

common speed befqre use in the mass and stiffnpss matrices. An ‘
e . equivalent system, one which retains thé@.ume kinetic and potential -
6n§hgy. can be obtained .bYy nfultiplying all stiffnesses onT inertias by, By

" the ratio n2, where n is thegratio of the speed of the component under

.

, consideration as compared to a reference shaft [521. The reference
PN L4 ’ , . * o
. \ ,\\ R r -

N
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<

shaft is .taken to da the input shaft for this study since is openuies at
. hd !

the same RPM for all output speedsf

A

. - ?
4.4 ‘Me§hod of Calculating Natural Frequencies

v

- . /'

The requirement of this analysis is to ensure that the natural
, frequencies do not occur at any of the operoting\speeds. To do this it
is necessary to calculate all eigenvalues which lie in or near ‘the speed

range of the drive or one of its components.

i . -

This rqleé out the use of techniques bosed on the Roieigh

" quotient which approximdte the systems first natural frequency.

Transfer matrices, which are similar to finite element methods, are also

ruled out because the 1ncreo§ed modelling effort and analygsis time
. A ]

. . N

¢
o cannot be warranted. -
\ This leaves matrix methods ¢f analysis. These methods convert
. 13
- L P . .

the mass ond stiffness matrices into eigenvalue and eigenvector matrices
Al l) .
N : H
using matrix transformations. The Jacobi method is' a matrix eigenvalue
s , , : T ey .o
A ,(”. s

method which yleYds all of the natural frequencies simultaneously. The
> /

\\\method 1s-¢escribéd in more detail in the fbllowing’sectioﬁ.

The Jacobi Method Y = 1

i

\ The Jacobi method was selected for use 1; findiag the eigenvalues
and eigenvectors of the system. This method is based on simple
orthogonol ;ronsformutions which convert the dynomic matrix into tive
eigehvolués and, if identical operations are perform én an identity
motgix.uon identity matrix into the system éigenvectors.

Altﬂough not the most efficient .technique available to obtain the A

| 4
s

eigenvalues, -it 1is extremely stab¥e and generates eigenVectors with ‘
/

N\ f : N
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* > : '
'1ittle additional work. It is suitable for number of inertias < 40
* where computer time is not paramount. Details for the Jacobi method .can
Ve L ¢ ‘.
- be found in referenceé [77].
o ' R s
. In order to use the the Jacobi method it is necessary to convert
the eigenvalue problem from the form: - C
= Ax = aBx . (4.21)
i 4 .
to the form:
. r : T
HX, = OX o . (4.22)
P . . . . .
° It is desirable to perform the transformation from equation
(4.21) to (4.22) in such a monner that H remains symmetric. This
transformaotion ‘can be done using a Choleski decomposition [77] on
. . b . :
" .
matrices A J& B. The requirement for a successful decomposition is that
the motrix be positive definite. If the inertia matrix B is used, this
¢ requirement is always satisfied. -~ ;//
L - ¢ /
% ‘:‘ M ’ B //
N ., ' /‘/l
4.5 Eigenvalues and Eigenvectors - Four Speed Drive Végificotion
N ] . .

Problem

a

The arrangement obtained in chapter 3 con be used to demonstrate
hN

N -~
the calculation of eigenvalues and e&génvactors and eigenvalue ’

derivatives. To calculate physiiEI properties of the components, widths
- .as well as/éigmegers.ore required for the genrs. .
) |

4.5.1 Calculation of Gear Width" -

In chapter 3, the diometers of th#® gears in the four speed drive

were calculated for an objective of minimum radial dimensions. The
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diometers selected have sufficient power capacity to carry the load with

@ .
o maximum face width to diomepqgé;aﬁgo of one. Some of the gear

dicmeters are determined because of kinematic requirements and as a
result have excessiv9 capacity. This capacity, can be reduced by

reducing the face width/diameter ratio in proportion to the excess power

< < » +

.rating. This optimization is performed prior to the calculation of/
eigenvalues to provide gear width informdgtion which is optimal w;éh

reé%ect,to the, solution provided by chapter 3.

The optimization strategy 1is straight forward. The power

" capacity of each gear pair iscalculated for the operating conditions

I3
3

. determined by the kKinemotic analysis. The new width 1is calculated as

¢ & ~

followsy
\
-
{ Y
Pc . P .‘,. -_ <
Fn = FO LA . (4.25) ~
P . .
I
F, = @ gear width . .

Fg = old gear width

Pc ‘= calculated power capacity

P = required power copacity .

(N -~

Eqﬁotion (4.23) is calculated repeatedly un%fl the difference between P_
and P becomes acceptably small. Thisln?rmolly occurs in 3 ogf;
iteruti%gs.‘ This'optimizotion for width guarcnteeg that each mesh is
optimum at the component level.

. The oétimum widths, as cglculated using this approoqh for ghg

| \
results of chopter 3, ore shown in toble 4.1. Initial shaft diameters

are also shown. These diameters are selected to satisfy strength and
™~
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TABLE 4.1

Optimum Arrangement with Initial
—Shaft Dicweters

GEAR N SHAFT
. # DIAM LAMDA WIDTH # DIAM y
. (mm) |__. (mm) * (mm)
' 1 104.1 { 0.995 | 105 1 | 40.0
, 2. | 136:2 0.545 74.2 60.0 '
3 181.3 103.5 3 80.0°° .
4 149.2 74.2 ¢ . !
. 5 127.0 0.992 126.0 .
) 6 198.8 0.700. | 139.1
- ' 7 | 188.4 126.0
\ - 8 116.6 139.1

deflection criteria and are increased, if necessary, to modify

.

~

K. eigenvalues.

#.5.2 Inertia oﬂa Stiffness Matricds

o

Using the gear diameters and widths, the .inertias of each mesh

component can be calculated. The axial arrangement of the drive can

]

/ ¢ also be deduced based on gear yidth information. fToble 4.2 presents

-~

. tabulated results showing the| RPM of each shaft for each operating

spead. This information allows for the colculation of equivalent

N
.

inertias and stiffnesses of all éompoﬁents in the drive. The input .

' ~

shaft speed is selected to be the reference.

Table u.SZprovidqs basic and equivalent inertias for each of the .

gears 1n‘th8tﬁr1ve. Tables 4.4 through 4.7 show basic and equivalent ‘

stiffnesses for each of the shafts at respective operating speeds.

g?"l .
A .
xS -

gl

)
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are associoted with inertiao 6. ] -
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. . R T;BL; uf?‘ | ' ”

Rotio of Shaft sgeed to Input Shaft Speed

. ’ Y
SHAFT SPEED
Hi 1 - 2 3 4 N ’
. 1 1,000 | 1.000 | 1.000 | 1.000 -
2 0.574 0.913 0.574 0.913 C C
3, 0.387 0.615 0.978 1.5%5 ’
~ ‘ - ’ -
4.5.3 Presentation and Discussioﬁ of Results. .
- .
Eigenvalues for the 4 speed drive of chapter 3 are preserited in o

- ¢

table 4.8. The lowest natural frequency is 150 Hz and occurs for output
speed 3. This is equivalent to an operating épﬁed of 9000 RPM and hence
is satisfactory. The mode shapes for the lowest frequpncy at each speed

ore shown -in figure 4.3. It is clear that the modes for speeds 1 and 2

. . - . -t
L

TABLE 4.3

4 .

Basic and Equivalent Inertiec of Gears.Referenced
; - To Input Shaft Speed (kgmz)

" SPEED
oy GEAR . # |- BASIC # #2 #3 | M
1 0.0093 | 0.0093 | 0.0093 | 0.0093 | 0.0093
2 0.0196 | 0.0196 | 0.0196 | 0.0196 | 0.0196
"3 0.0859 | 0.0283 | 0.0716 | 0.0283 | 0.0716 .
4 0.0283 [ 0.0093 | 0.0235 | 0.0093 | 0.0235 :
5 0.0252 | 0.0083 | 0.0210 | 0.0083 | 0.0210
6 0.1669 | 0.0550 | 0.1390 | 0.0550 | 0.1390
7 0.1220 .} 0.0183 | 0.0462 | 0.1168 | 0.2952 -
8 0.0198 1 0.0030 | 0.0075 | 0.0188 | 0.0479

1
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. TABLE 4.4 <.
s ] 4// . . ,
- P e .
) Stiffness (MNm/rad) of Basfc and Equivalent .
- Couplings - Speed #1 ,
e '
4 END 1 END 2 LENGTH BASIC EQU‘IV
1 ‘0 1 60.0 | 0.387 | 0.347
2 1 2° 4.0 | s5.199 | s.199
5 3’ 4 186.6 0.564 0.186
6 - 4 5 6.0 17.545 5.781
7 5 8 278.3 0.378 0.125
‘ 10 7 8 8.0 | 41.588 ' 6.227
1M 8 9 398‘.3 0.835 0.125
TABLE 4.5
. Stiffness (MNm/rad) of Basic and Equivalent
- - Couplings - Speed #2
., ¢ [ -
# END 1 END 2 LENGTH BASIC EQUIV
a o’ 1 246.6 0.084 0.084
2 R 2 4.0 | 5.199 5.199
5 g 4 186.6 0.564 0.470
: 6 4 5 6.0 [ 17.545 | 14.613
7 5 6 | 278.3 | 0.378 | 0.315
. 10 7 8 8.0 | 41.588 | 15.742
1 8 9 | 398.3| o0.835 0.316
F
- "TABLE 4.6 -
, .
Stiffness (MNm/rad) of Basic and Equivalent
y \ Couplings - Speed #3

# | eno 1| Enp 2| CeneTH BASIC EQUIV
1 ‘ 0 1 60.0 0.347 0547
2 1 2 4.0 5. 199 5.199
’ ] 3 i 186.6 ~0.564 0.186
. 8 4 S 6.0 | A7.545 5.781
- 7 5 6| 278.3| o0.378 | 0.125
10 7 ‘.8 8.0 | 41.588 | 39.797
, M 8 & 9 120.0 2.773 2.653
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TABLE 4.7 )
B §
Stiffness (MNm/rad) of Basic and Equivalent
" Couplings - Speed #4 )
" . . \
# [""END 1 | END 2 | LENGTH | BASIC | EGUIV _
11 ) !( 1 246.6 0.084 0.084
2 1 2 4.0 5-199 5.19
5 3 4 186.6 0.564 0.47 . -
6 h I 5 6.0 | 17.545 | 14,613 )
7 5 6 278.3 | 0-.378 0.315 | ;
10 7 8 8.0 ) 41.588 [100.609 .
1 |- 8 9 120.0 2.773 6.707
“« «'/
TABLE §.8 D .
N '
*Initiok Eigenvolues (Hz)
EIGENVALUE # SPEED _ oo
. ¢ 1 2 3° 4 i C
1 13874 4459 ‘| 13873 5302
2 3118 | 11569 3119 | 11459
3 412 310 389 231
4 p ) 4424 2886 . 730 653
5 . 15450 | 10168 5815 3747
6 184 150 3838 2999 ,
7 ‘ . 606 581 590 584 -
8 7785 7668 | 11847 9577 _

“4
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e Derivatives of Eiécnvalues

[y . "

The modification of eigenvalues by trial and error can be a long T
proocess. The calculation of eigenvalue derivatives with respect to
, .
different mass and stiffness elements provides insight into the: dynamic

behavior of the system and quantitative information on the effect of
v design modifications: ’ ) - . T
. N }‘.
Derivatives of eigenvalues and elgenvectors can be calculated

using the Raleigh quotient, which is designed as the equation of motion | ° :

of a particulor mode multiplied byvthe transpose of the eigenvector of

T LY
-

the same mode. The Rcleigﬁ quotient can be written as: .0

-
., A

ST 2 .- . ‘
xi (K‘ - 01 M) xi"-\ 0 ) L (4.2’#’

i

. . Y
.. ‘Following the method of Rogers [93] the Raleigh quotient is

differentiated with respect to the'Jth design parameter.. . N i
3 . T2 ' .
! — (xi (K - ni M)xi = 0 . - . (4-25) i .
L apJ . . \\.” B
‘ - . ‘ a
/ T - . - a
: A%y '+ 7oK T Ay
\ , K Xy, + Xy — X4 + %4 K , " (4.268) 7~
3PJ . 3DJ - ap; B s
- ' ' T 4 . B
i rdxg 2 1 3y .
- . . - — ﬂi M xi - 2 )(1 ﬂi —_— M ‘Ki - . ) !
- 3Py, ?DJ .
. . )
, w. 1 . . -
' T 20M T-2, 3%y .
N - . . - xi 01 —— xi - xi 01 M —
3py 3Py :
Ry ’ - . . ' - . »
' ‘COmbiﬁtng similar terms: ) ’ R
. "'
. . ‘ A
N ) , ’
. : . s . .
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e 2 3 .
N 9%y . 2 AP ; X4 '
L — (K - a4 M) xy + x4 (K- 04 M) — (%.27)
< \ apJ i « apJ I
—._ — M ~ -
X .
T 3K T 8m
+ xi — xi - 2 )(1 ni —_— M xi -
‘ 3py 3y
[ b '
.} T 2 3M A
- *1 ﬂi — xi ) .
’ . o 3PJ .
The first two tarms of equation &4.27 are zero since the term in brackets
is set to zero to find the eigenvalues. Re-arranging fhg remaining
terms to solve fqr ghi‘lapj provides the foIlow/ing aquation.’
v . .‘ - a .
oL ’ T oK T 2 oM
. ’ X'1 _— x'i - xi'ﬂi — xi . . . ..
any * aPJ 393 . ‘
- A (4.28)
y a._\ -
. Py T . -
¢ - - . 2 ni xi M Xi ’ ‘e ’ R -
I - ' ‘ ’
2 - ' ) % }
The ‘eigenvectors are mass orthogonal and can be normalized so, that the '
" term x4 M x; is 1 regardless of the eigenvector seleéted.
When the Jth parameter is a mass element., the term BK/amJ is zero ,
] ' . " since the q&ri\ldtive of an\‘/ component stiffness with respect to a,
' N component mass 1s zero. The term aMISmJ 1s a matrix of zeros.at all
r
elements except for the matrix element M(J,j) which becomes 1. For a '
. ' mass’ par-ameter, éqqoti‘on (4.28) .can be reduced to the following simple
expression. - ,
) ’ ’ : 2 - - ' .
Ny . Ny "‘J)i t .
‘ K —_—- v ) , \ o (4.29) -
" ) . @ ’ am, . 2 . L, ‘ ‘ ’
K y -

e 8
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when the JtP' pargmeter is a stiffness element, the term am/dk is
] 3

zero since the derivative of any component mass with respect to a

. * .

component stiffness 1s zero. The term QKﬁakJ.is zero at all locations
except\Ehose that have a contribution oérstiffness from the j.,

parameter. Designating the inertias which’ are connected by the j¢p

*:« . [y b . -
R stiffness as 11 and’12, then the non-zero stiffness elements are;

- . ,

- K(11,11) = 1, K(12,12) = 1, K(11,12) = -1,.and K(1i2,11) = =1. When

thes? values are substituted into equation au\B the result 1is:

¥

. ) 2 .
Any  (x(i1)y - x(12);) Lo

X = — - - (4.30)
Ik . 2 a : ) v

. Equations (4.29) and (4.30) allow for the calculation of

3 .

derivatives of the eigenvalues in a simple and efficient fashion with

‘respect to both mass and stiffness- elements.

[ y o
n .
A -y

- ' 4.7 _ Eigenvolue Derivatives for the Four Speéd Drive SQhéle Problem

LI

" 7] Although tne lowest,freQuency of 150 hz calculated, for the a . °
. spéed drive in section 4.5 is 'not critical (sirce the. ogproting speed at

~ this frequency is only 98 RPM) the adJustmeht of eigenvulues ‘can be

o ) -

Y

demonstrated. L \ T

PR
5

.Assume‘th;t the gocf'is to modify this frequency from 150 Hz to -
175sz.; Ta; frequency 150’Hz occurs as the sixth eigenvolﬁe of speeg 2.’ T
The eigenvectors associated with frequency-6, speed 2, are shown 1in
. ;1gure 4.3. ‘Derivotives with respect to mass/inertia elements are -given

\ -

¢ . :
in appendix, C. It is undesircble to olter inertic elements becquse the

e ¢
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’ chunge would alter gear diameters or widths which would offect the powgg\

raoting of the géur mesh or the kinematic design of the drive.

Derivatives with respect to the different stiffness elements are also

¥ .
\ given in appendix C. It fs clear that inertia node 6 is the resonart v
) . - . . o, .
« B ‘ p——r Y ]
element. . The derivatives of frequency 6 with respect to different °

parameters have been extracted from appendix C upd“con be studied in

PR o 2

table 4.9. For speed 2, this inertiu’is coupled to the system by

stiffness element (5-6) only. " On firsi reaction, one might expect this®

v

However, stiffness element

’ R

stiffriass element to have maximum impact.

¥ ¢ >

{(0-1) 1is nearly twice as effective in modifying this frequency. . 8
» . i
¢ . . I}
) 2 °
< - ‘ "' TABLE 4.9
" >~ ‘i . I/x
. . - . Stiffness Derivatives Assbciotev .
. . ‘with Eigenvolue 6 Speed 2 ;
4 . ~» — »
i , ) Element . dn/ Ak - S~
. ' R o [(rad/s)/(MNm/rad)] '
. 0-1" Y 1,366 $
7 f’ . - 1-2 0.000 , :
. - ) “3-4 . 0.035 : ~ \
4-5 Q.000 ) ’
' 5-6 0.590 - . s
7-8 : 0.001 , -
- : - 8-9 1.334 ' .
oy > )
rd ° - 5
- . s : . : * H . .
" Because a numbér of stiffness elements affect eigenvalue 6 -
speed 2, a number of 1;eration§'ore,req21red to achieve the objective of
t a .
. . 175 hz. The first iteration will modify stiffness element (0-1) which
LY o ' °
has the gregtest impact. The change in frequency reﬁdlred is: «
‘ ! - ) -

2

A

-1
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‘ The new diameter of shaft 1 can be‘culculcteg,gs"follows:

]
N

[

. QAa = 21 (175-

- 115 -

-

150) = 157 rad/s

From table 4.9 - stiffness (0-1):

»

- -

— = 1366 (rad/s)/{MNm/rad)

9
—» Ky
Ak,
Ak.= —An
T 3e

»
-
) )

. dnew = 9014 (

.

d

. - 49.6 mm

With this change in diometer implemented, the

“a
-
.

knew ;,0ldy176 .

.

i

-

Ak = (1/1366) 157 = 0.115 MNm/rad -

new = 40 ((0.084 + 0.115)/0.084)1/%

+

3

'
. '. M
.
) B -~

frequency under

consideration moved from 150 Hz to 165 Hz. Checking.eigenvalue

derivatives it was found that 30/3k1'hcd changed to 914 ° ;

- 1

(rad/s)/(MNm/rad). \A second iteration resulted im a new diometer of

53.8-mm for shoft 1. This adjustment modified the frequency to 171 hz.

Ajfihol adjustment was ‘made to the system, however the change wasg to

1 4
shaft 2 instgad . of shaft 1, because of the decreasing value of 39/,

Shaft 2 wos medified in diameter from 60 mm to 61.3 mm with c—ﬁesulting_

move in the notural frequency to 174 hz. This was considered

sufficiently close to the design objective.

~

W
;Ak
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This sample caléulaiion has demonstrated the utility of

.

‘ 4 .
eigonvolup’derivutlves in modifying natural frequencies. The frequency

. 2 -
‘selected wos complex to move because the frequency was the result of a

.

long_stiffnoss path (figure 4.4), Although stiffn93s (0 -1) was

\

C‘*&nitially most sensitive, this harrged by the sec iteration.

Eigenvalue derivatives made this change in sensitivity clear and

'
’

®

~ modifications were incorporated into the design and the resulting

-

simplified the process of making design modifications. The

modified e;genvaiues are presented in table 4.11.

L 1@@;5 4.10
c

L Modified Shaft Diameters (mm) -
SHAET NUMBER oLD " NEW
, a1 ‘ 40.0 53.8 .
. 2 60.0 |'. 61.3
- 80.0 8o,
P * . ¢ e
, TABLE &.11 .

Modified Eigenvalues (Hz) RS

" .

EIGENVALUE # .+ . ' SPEED

— 1| 2 3 4

2 1 14966 | 3162 | 14966 709 ;
= 2 5233 | 12127 | 5232 | 12066
3 . 787 332 840 | 275
_ 4 , 4598 | 7142 639 | 7487

N 5 . 15492 | 10321 6069 | 4761 )
; 6 198 174 | 3839 | 2999
: 7. 535 622 561 5 .

g 8 7796 | 7780 | 11847 | 9577
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>

This ability to modify eigeﬁvolues using stiffnaess elemen%s i's

very appropriate to the énolysis at hand. The method of modifying

eigenvalues provides a feasible design approach which ensures that the

optihum arrangemeht é%lected will not have to be discarded or

-

invalidated because of dynomic problems. )

-

¢

This chapter has presented, a mathematic 1 model of multi-speed

T

., gear drives which can be used to dﬁaluote the torsional natural

>

a

frequencies for each operating speed. A strategy for- modificotion of

' s . . ]
eigenvalues, based on adjustment of shaft diamﬂters was presented. To

assist .in the selection of theJ

shaft to be modified, a method to

evaluate eigenvalue derivatives with respect t& stiffness elements was

also presented. Eigenvalues for the & speed erificotion%pﬁﬁbTGﬁ'we?e‘m

presented. ) : . -

. .-

Ayl R
O -
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~ (a) Total Drive

" Keg ke Ky |

' M—{it INPUT

k, |14613 5199 o0:084

S s ) ko ki - ;

B ' : *—\\\—e—\—¢ OUTPUT
- 15.742-"_0.316 B

" ’
»
-, . '
[}
. !
v :
— 4 g
.

'S

(b) Rearranged with respect to node 6.

’ &\
. S FIGURE 4.4
. .. ' Dynamic_Model for Verification Problem with . A
. . r Mass Node 6 Isolated for Clarity. ‘ ‘
¢ i
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v ) OPTIMIZATION STRATEGY L .

5.1 . Introduction-

The need for an optimization strategy for complex mechanical
systpmé relates directly to the number of design variables and their

interaction. The ability of all methods of non-linear optimizagtion to

.

move variables toward optimum values decreases rapidly with increased

\
number of design variables and constraints. It is clear thot for large

. . "
problems, CPU limitations continue to exist.
! b
The optimizution'5f an engineering problem can be reduced to

three primary t&sks; (1) define an objective function and constraints’

i

which ensure that the operating requirements will be satisfied at the

optimum point, (2) develop a mathematicol model of the system with all.
’ 4
significant physical variables represented and constrained as required,

~and (3) select or develop the optimization techniques which reliably —
¢«

.

find the minimum value of the objective function. 7

5.2 Problem Reduction Optimization Strategy

!

There 1s much wiitten in the literature about the difficulties of
realistic engineering problems which have discretq\voribbles. multiple
objectives, complex constraints, etc. [2.4.6:8.105-110.121;125]. %he
difficulties encountered(in the optimolxsyn;hesis of designs for multi-

'speed gear drives are not unique. The following process, called problem

~

- 119 - .
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reduction strategy, incorporates elements of Johnson’'s MOD [122],

Papalambros and Wilde's monotonicity analysis [123] ond Wilde's maoximal

v

activity principle [4]. The three main constituents of the solut{ion

&

method ore: (a) determining how thé different dnalyses 1interact, (b)

.

formulating the problem such that optimization parameters cannot ke on

values which violate constraints, and (c) ensuring that the number of

v

optimization parameters is equal to the degrees of freedom of_the

problem. The detailed process for these activites is as follows:
4

1.

&’

Re&iew the conventionol_opp;ooch to producing designs for
the problem at hand. '

Note the strengths ond weaknesses of the standard
opprooqh. Understand which activities are in parallel and
which activities are in series and whyb In -particular,

observe how the different analyses interact.

A

LIdehtify all operotiﬁg requirements and.select an

: &
appropriote objective function.

Deveiob a mathematical model such that all parameters
which affect the objective function within the desired
accuracy bundwidgh are included. ’
Assess whether tpe mathematical model can be soi&ed
directly, analytically, or using an available linear or

1)

ngn-llneor optimization technique.
Simplify the mathematical model. ODetermine the number of
actual degrees of freedom in the overall design process as
compared to the number éf parameters in the objective

function. Reduce the number of paraometers to the number

of degrees of freedom.

b ¥ ) /

"
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’

7. Toke advantage of known objective function behavior by

*

customizing optimization routines. ’

Fiéure 5.1 presents problem reduction strategy in the form of a

flow chart:. i ‘

o : s
5.3 Definition of Optimization Problem

For engineering problems it is oftéen difficult to define an

objective function which is "best" for all applications. Volume,

weight, radial size, axial size, etc are all. valid objectives and have
[ “

been studied in the literafture. Of these, volume is most appropriate
because it taokes advantage of both éeor diameter and face width
information. Ffurther it includes elements related to both size and
weight, Therefore, - volume of the drive envelope, on a per group baosis,

¢

shall be the objective flnction.

a
13 »

5.3.1 Volume Objective Function
The volume function is’ calculated as the sum of the volume of
each group with a volume correction made for composite arrangements.

The basic volume calculated for a conventional arrangement is shown in

-« N .

figure 5.2. The correction (1le. savings in volume) associgted with a
composite arrangement is illustrated in figure 5.3.

The diameters and Qidths of the gears are variables-of the
objective function. The foilowiag equations are used in the calculation

.

of volume for the 1t group.

’

vi.R1~A1~01 s ' (5.1)

Py |
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!

REVIEW CONVENTIONAL APPROACH
TO DESIGN PROBLEM

9

RECORD STRENGTHS & WEAKNESSES
OF CONVENTIONAL APPROACH

!

o : IDENTIFY OPERATING
REQUIBEMENTS

!

DEFINE OBJECTIVE
FUNCTION

. /’
~ -

DEVELOP MATHEMATICAL MODEL TO °
INCLUDE ALL SIGNIFIGANT VARIABLES AND CONSTRAINTS

REDUCE PROBLEM COMPLEXITY

. ‘ ‘

PARAMETERS TO NUMBER OF
DEGREES OF FREEDOM

MODEL NUMBER OF OPTIMIZATION NO

OPTIMIZE
USING NON LINEAR
OPTIMIZATION

..

o 1

CUSTOMIZE OPTIMIZATION
ROUTINES TO TAKE
ADVANTAGE OF KNOWN
PROBLEM BEHAVIOUR

/

3

_FIGURE 5.1

v ’ Problem Reduction Strategy

L]
* ]
. . .

1

[

-
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.

Definition of Volume’ Objective Function
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-

Correction to Volume Objective Function
for Composlite Arrongements.

¢

VOLUME

CORRECTION
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—

Ry = Sum of the center distonces between shafts plus_half the
diometer of the furgast'goor'bn the. input shaft and the
¢ .outpyt shaft . »

Ay = Twice the sum of the width of the gears on the input shaft.

. Dy = Diometer of the largest gear in the group under ,~:
- conpidérotion; ‘ . )

’ -

For the overall dEive. the volume for the conventional arrongement is

-

- .equal to.the sum of the volumes of each group as calculated by equation

(5.1). .

**
v

.
-
~

N v L1l A S (s.2)

Y
a

’ ’ 1] 3 ) ¢
'The correction in volume associated with each composite in o

'drivelis calculated as: : V} .

VRy = RRy * ARy ® DRy ’ | ‘ ‘ (5.3)

¥ - . - 7

‘RR4 = Half tpé diomath‘of the largest gear on theﬁg;
input side composite shaft plus half the
diameter of the largest gear on the outp;t
‘side of the composite shaft. ¢

ARi‘-’Twice the width of the composite gear-under'

/dgﬁsideraiion . )
Péi = The smaller one of the lgrgest diometer~in

*F ) the two groups osshqibted with the’ ‘

composite - . . TJh
Tgis gives’the total volume as calculated for the objective
function as: '
Vg = V —Zvni > 1 -"1,2.;....'nc - o (5.4)

v -

~a
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This volume colculation provides a representative estimate of the

o L . '
overall size of the drive. s

- l‘\ ‘

5.3.2 QgprotiﬂgﬁRequireménts )

’ “ !." l
o  In addition to the ogJective function, ther4 are a number of

¢ ) Bperoti;g requirements which must be satisfied. ~Th\‘pse a?é:
1. Outpu; speeds/must for@ ; specified geometric progression
s . s?orting from a given lowest spesed. . ’ ' \ '
’ . ’ 2. Gear components musf be rated equal tp or éreoter"thon the
- .' drive désign ruting,’ @t‘least'one component must be équol
" .to the design rating. - ' - _’9 !
3. Foce‘wi@th to'diometer‘rotio of‘tﬁe'gearingjmust b? between
0.1 and 1.0. » ) 5 ’ N i . .
' ~ ',
' s Y, Natural frequeacies of the system mu§t not lie within 10 Hi
of an operating sbeeg.‘ ‘ |
5. Thehigbut speed may be specified. - R
. !
‘& fhese opercting raquirement; further define  the probiem and have
) . P ' N
v,bgen mutheméticoliy formg}nted in chopters.z to 4. °
5.4 Background and D;velopﬁeﬁt.of'the Mathematical Model
. :' The ‘objective function developed in section 5.3 requires the
’ ' v ,
diaometers ond‘foce widths of eqch,geor for 1£s evaluation. “For the &
- ;;eod conventional arrangement, this turné‘&yt to be 12 voricbles: AS
y will bp-;hown, for the ;;se when the 1npu¥ épged is fixed, the kinematic
‘ , o arrangement ;ptimiégzzzg_;zs 1 degﬁgg of freedom. The remaining )
N .
. 'voriab1;§ are bonstrained by equolity‘constraints." THe probability of
h finding a feosible solution for v;rioples contained in the range of 1 to
“ ’ . ‘ ) ’Q,
?_*,_ - :Sx\ . .

’

1

N
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-traditional design methods particuluriv'when they have been in use over

'requiremenys.

.£10]. Most of these arrangements will satisfy the kinematic

@. +1 .
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10 would be on the order of f]((10“)11). oésuming the constraints ore

satisfied to'opp&fﬁimutely 3 decimal plaoces. This kind of hardship was

demonstrated during the solution of the speed reducer [105-109] .

. FEES * -
1 :
.
1}

- - .
- °
LA

5.4.1 Standard Approach to the Designkof Gear Drives

)

Insight into - -the proprm éun be obtained by examining the '

-~

¥

an extended period of time. The design procedure for a geor drive-

LY

follows a stundéhd path where specific types of des{gn and oﬁolysis are .

© v

done at distinct sibges. The fcllowingAEtep by sstep procedu?e.
represéntatiy% of the normal design activities, is_based on a paper by
. . i . . .
Tucker [1]. _ '
: . .

Step 1 - Identify Drive requirements. This step identifies the

[-Y . LN

Pl

©

applicofion of the drive and its hssocigted design requirements. -
. . * 3

Typically gh;s would fHnclude number and value of output speeds, dower
capacity. life, precision and environment. The results of the analysis

are entirely dependent on the data brovided in step 1. Ig a real design

problem, sipp 1 }s often re-visited if cost becomes excessive to meet

-

. : \ < .
_ Step 2 - Select Gaar Train Arrangement. There are many drive

nrrangmbnts possible for a multiispeed gear drive. Most commonly,:

N~ 4

parallel okisﬂarroqghents are useéijjTh1§ limitation still leaves o wide

range of possibilifies as demonstrated by Koenigsburger {9Y and Ackerkan .

.
.

H] .

requirements. Because it is expensive andefime consumtng~to exomine

more: than one arrangements, o selection is normally made after which

J
Fl

N ' » - s
- -

-y -

-~

-
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,-this step 'is taken to be independent of the others;“ The best one is

difficult to identify since it depeddéion many design variables.

" Step 3 ' - Select Tooth Type. Sgur or helicql gearing 1is most

commonly used for parallel axis drive systems. Spur gears are the
’ °Q ) \
simplest to design and manufacture and are used whenever practical.

oHelical gears can operote at higher pitch line velocities and With -

Lo

&

[

highér power to weight ratios than spur gears. The overlapping tooth

[

\J B
action results in 'a smooth, more quiet operation. The tooth form is§
determined as the result of a trade~off between operotihg requirements

\
and cost.” Speciocl tooth forms may be required for drives with complex

arrangements. Given that the arrangement’ is of the parallel axis type.,

3
-

then the tooth type depends primarily on operating conditions.

Step 4 - Select Gear Materials - Gear materials affect the size

and performance characteristics of the drive. Selection is a tradeoff

Rl

N 2+
between cost and performance. Given the tooth form, materiaols depend

primarily on operating conditions.

Step 5 - Estimate Minimum Geor Diome%ers. An initial estimate of E

the gear diameters is made based ‘on power capacity. It is normally
assumed that the pittiné resistance is the criticol desfgn cons{#aint:

This step introduces some of the more apparent difficulties associated

with the design of gear drives. The diameters of the gears are a

function of the drive kinematics. The resultinq;d;ometérs may not be

sotisﬁqctqry and the designer is forced to réturn to step 1. A number

< 1

of iterations are commonly expected.

Step 6 - Select Tooth Size and Proportions. This step is o . ‘ -

A - e ) s -~
refinement of the gear design. It results in small variatiops 1in gear J/Av
. . S

diometers. The intent, however, is that the diocmeters ore set after
M - “ /

<

q

-
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step 5 and aré not changed because of these small variations. Tucker
ndtes that the tooth size 1s a function of the allowable tooth bending' .

stress, scoring resistance,- tooth deflection, diametral pitch and

Y

) 4bddendum proportion. Standard tobth proportions result in a reasonably
- o, '
balanced deéign for most gearing. Special tooth‘proportions are used to  .—
/ Y 3
minimize the size und balance the strength of piniopns. Addendum !

modificotions’are also-used to avoid undercut. \
o
Step 7 - Specify Allowable Toleraonces. Tolerances are determined P
Qoéed on pitch line velocity;'occgracy requirements o& the opplication, ; '
. manuéocturing.limitations and cost con;}derations. Toleron&i%g of the ’, '

+
L]

components has little impagct on the size-~of the diameters, provided the
] ‘ 1

assumptions for quality are consistent with step 1. Changes in

dimensions associated with tolerancing are samll and do not affect

< L]

earlier steps.

'y ] / t
Step 8 ~~ Calculate Shaft Diameters. Shafts must support th;EB

.

gears between beoringfcenters with a minimum of bending. Their major

imboct is on the system dynamic properties, both torsional and lateral,

which ?ﬁe very dependent on shaft. 4tiffness. Since shaft lateral

o

deflections are limited, machine tool drives are normally stiff with

\regurd to lateral and axial vibration. { ) \

Step 9 - Perform Preliminary Dynamic Analysis. With principle

dimensions of-all major components available, a dynamic analysis is

. normally made to verify natural freqencies and loods in the drive. This

- e

. stage may result in re-design which must be implemented as early as step

1. The step, however, is considered to be independent in the"

v

onticipotionﬁ%npﬁ design modifications will be small and confined to

3

indfzidual components. -
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” [N

Step 10 - Determine Gear Mounting. Steps 1 though 9 determine
. -~ * 1 Al : \

the size of each of the components. Kinemotic performdace. load

' capability and dynamic performance have been verified, This step

includes design of the casing, beoringsfcnd packaging. This step is

s ;orgély independent of earlier stages and is treated as such.

- , .

Siéb 11 - tubrication Regquirements. Cooling and heat dissipation
are norm&lly handled by the lubricant. With ;pur and helical ;eors.
which have efficiencies of 98-99%, thé losseé are low and do not require

oo -s;eciai tre&tment until poweriond pifch line vel&cities become much

QR

higher'than those reached in machine tools. It is important that the

correct lubricant be selected to ensure that scoring is not a problem. .

*

This step is cénsidered'independent of earlier steps.

t* - . 7 ) . ' !

5.4.2 Highlights of the Conventional Design Approoch g ¢ )

. The following comments highlight the advantages and disodvontoges
) N v '[:} 4

of the standé;d procedure. A The advantages were:

_—— ——

(1) the problem;wos part%ﬁioned-olpng natural boundaries in

order to'ochieve a solution. . ¢

$
'

(2) 1later ﬁ}ages were more nearly 1ndependeﬁt'onq are trected as
such.

\ ', :The disadvontages are:

3
¢

(1) 'degigner'experience was extremely important in selecting an

. arrangement since it was not practical to evaluate more than
. . ) .
Por 2,
‘ . (2) the design process was iterative, pcrqgﬁularly/fon steps 1

~

througﬁ 5, since component size 1is:a function of operating

speeds and gear raotios (1i.e kfﬁemot;cvurrcngement)i
—_
,/ -

b

f
'
. //
L 4
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(3) The inter-relationships in steps 1.through 5 were handled
\ ! .
~ N . oy <
" mostly by designer experience.

In Jhe conventiqnol approach the designer has partitioned the

problem at sensible stagés to minimize the impact of variable coupling

between. the different analyses required for'the design. The main
oY ' '
weakness of the conventional method was that few arraongements could be
o .

3

examined through the most importont “beginning staoges®™ of the design.

a

5.4.3 Key Elements of the Optimlzatién Process
. .

The initial steps of the design, up to thé sizing of the §eors.

YS\xify important and represents the crea which was previously most

difficult. The resilt using prbblem reduction strategy on this problem

.15 a mothphotical process which allows for the efficient synthesis of

designé which satisty all key requirements for this critical initial

!
T
Consider the 4 speed conventional arrangement. The variables

o+

associated with the objective function are dy, dp, dy. d4. dg. dg. dy,

dg. Fq. Fa. Fx, and F“. i
4

The kinematic qnolysis. presented in chapter 2, determines the

" relative diometers of all gears in the drive. It was shown that.there

are two degrees of freedom per group. These were—tuken to be the fitrst

1npuy gear and the first output gear in edach group. Thus, the diomeéers

dy. dg,, dg and dg aré defined 6y kin;ﬁctic requlrements. -
"The sizes and foce‘widths of th; f1r§t input geor 1in each group

should be as compact as possible ond thus are defined using the minimum

L

" diameter matrix to ensure adequate power cobability. Thus voriables d{;

. F1"d5' and Fx are defined directly from the minimum diameter matrix.

1

“

P
i
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.

The diameters of gears d, and dg are normally laorger than the
P -~

minimum spocifiod in the minimum dliometer motrix.‘querefore. if the

v

face width to diameter ratio 1is not reduced, these meshes will have

excess power capacity. The widths of these two geors aore therefore -

»
s

reduced, down to a minimum face width to diameter ratio of .1, until tﬁe

required power roting is achieved. This step defines'gear widths Fy dnd

Fayo ' \ .
This leave two parameters to‘optimize for best arrangement which

are d, and d,. Since these diomg;é;s can have a wide range of values,
the speed reduction ratios X4 and X;, which are dimensionless and have a

normal range of .5 to 4, are used by the optimization routine.

. ! v

. ¢+ If the 1nput speed is fixed, then 1 further degree of freedom 1;
reméyed. Parameter X, 1s eliminated from the optimization process and
is culculate& based 6n the relationships between ;1h the 1np;£ shaft
speed, and the lowesﬁ‘qutput speed.

14

Single composite arrangements do not reduce the degrées of

freedom but constrain the diameter of the input gear in the second
grodp, dg to a specific value greut;r than or equal to the value
. ,
specified in.the minimum.dihmeter matrix.
Double compo;Lte orrongedents reduce the gdegrees of freedom by

v o
one. Variable X, is dropped from the optimizotion parameter list and

determined analytically The 2 group, doubYe composite arrangement with
a fixed input speed 1is a\special case which res\ylts in no degrees of

freedom.

]

R 7 \' .
The dynamic behavior of the gear drive is fected by two types

of'poraﬁoters. These are inertias and stiffnesses. Changes to the .

inertias must be 1mp1ementeq?by changes to the diometer or width of

», R

- ) , .

<7
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gears. Changes to stiffness olgments 966 belimplemented by changing the
length or diameter of shafts. Chunbing gear diameters, gear widths or
shaft lengthsxis undesirable because it modifies the arrangement
optimization. This leaves shaft diameter which is well suited. to this

tusr because it has no impact on the objective function.
1 .
- ' Thp diameter matrix provides o link between the kinemoEic

optimiZzation and the component design without introducing the many

variables associated with the later. The interface is ideal because it

&ecoqbles two time consuming anclyses. The effect of different diometer

matrices {(i.e. extent to which diometer is éptimized) can be ®amined
witpout necessarily doing the dnalysis required to generate an accurate
%atrix. 6or;metr1c studies, such as the benefit to overall volume
associated with o 25% reduction in input gear diameter, could be eogily
studied. h}f the benefit is sufficient, then an effort could be made to

determine what modifications in mesh design are required to achieve the

[

required diameter reduction. ' '

5.4.4 Operating Requirements Addressed by the Mathematicgl Model

In addition to the objective function of minimum volumar there
are required operating conditions and 1npﬁts which must be satisfied in

order. to resolve the problem. These operating requirements have been

t

built into the mathematical model or are checked. during evaluation of

the objective function.

(1) Output Speeds Form o Geometric Progression. Standard values.

of geometric progresion are normally used. ,This is a basic requirement °

of the kinematic analysis. The step ratio was selected to be 1.59 for/

the.analysis and is une of the recommended values.



 produce an exact result.

'rodugad to optimize power capacity. ®
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(2) Diaometer Relationships for Composite Arrarfgéments. A

composite arrangement requires a gear on an 1ntermeJ§ote shaft to have
the same diameter as a pinion oh the same shaft. Th}s relationship
between diameters is maintained by thdﬁpquations.which relate gear

diameter and kinematic requirements.

(3) Fixed Lowest Output/Input Ratio. Frequently the output

spesds are fixed due to operating requirements and the input speeds are
' rd
limited 1f syncronous motors are used. This results in an equality

——— - -

constraint on the lowest output/input ratio. The number of design

variables is reduced by one and an equality constraint is solved to

.
a

(4) Component strengths must be sufficlent to satisfy operating

requirements for the design life. An optimum face width/diameter ratio
3 - ‘.

is, selected for generation of the minimum diameter matrix. Some gears

are forced to hove diometers larger than the minimum i{p order to satisfy

kinematic constraints. In those instances, the foce wilth/diaometer is

-

’
»

b
(5) Face width to diometer must be limited to ensure that the

analysis for power capability 1s done in a valid range. Norqclfvalues

range from .1 to 1.

.(6) COntACt ratio is a meosufe[of the average number of teeth‘in
éontoct at any time. It must cleorly'pe gre;ter than 1 ;nd AGMA 360
[203.recommends this v?lue to be greater than 1.4 for spur geors.‘ A

. LN
value between 1.2 and 1.4 is considered to be the minimum aqéeptoble
value. The greater the value of the contact ratio the smoother the

mesh, the lower the dynamic loads, and the quieter the operation. The

assumption of standard tooth form ensures this. requirement.

. ‘.\

£
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(7) Standard module are normally used even for non-standard
gearing. This makes 1t more likely that special tooling will not be

required to maonufacture the gear. The onalysis ensures the use of

. ¢ . -
standard module (whole numbers for diametral pitch).. - :
] ~ ' ’
(8) Tooth tip thickness must be sufficient to avoid pointed

teeth. The tooth thickness is recommended to be larger than 0.300 ot a

pitch of 1. For power géaring it is also recommended that the tooth

~ .

thickness of the gear be less than twice the tooth thickness of the

pinion. Standard Tooth form ensures this requirement.

1

(9) Standard pressure angles to be selected. Standard pressdre

angles are normally spécified for all gecring.' The most eommon values

are 20°, 22.5° and 25°. A pressure angle of 20° was selected for the

analysis. ) ' <\
. f .
(10) Standard helix angles to be selected. The normal values are

usually 15°, 23° and 30°. Values‘;:er 30° usuoally require the G;e of

dquble helicals. A helix agngle of 0° was selected for the analysis. -

(11) Number of Design Variables greater than one. ' It is p?ssib17/

; L3
with three shafts, a constroint on the lowest outputf{input r@tio and o

double composite E?nqngement to have no degrees of freedom remaining and

hence no optimization parameters. 1In this case the constraint on the
, o

" Lowest output/input rot16 has priority and double composite’crrongements

are disallowed. l 1 ' ™

"(12) Diometer of the first pinion in each group'minimized. The

diometer of the first pinion in each. group must have sufficient diameter

and width to carry the power of the motor at its lowest operating speed.
&

This diameter is critical for the correct opqratibn of the gear train,

e
A table of values is generated prior to the arrangement optimization,

-
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which gives the minimum diameter of the first pinion in each group for

the expected operating range. These diameters are calculated in a

separate optimization process. They are calculated based on the ‘defined

operating conditions and reéognized gear design’ criteria.

n

5.5 gggimizotgén Techniques

The problem is partitioned such that a number of independe
optimizations are performed. Better efficiency”is achieved by the used

o
CWO( different ,optimization techniques for each anolysis.

5.5.1 ' Discrete Random Process

k‘discrete random process was investigated for the generation of
‘the minimum diameter motrices. The diameters of t§fe geors are ®
reaéonobly continuous functions and although there may be rigid

constraints, if a move in 'a particular direction improves the objective

function it can be expected that further moves in’ the some directdpn

- will also be beneficial. A directed discrete algorthm WQS‘aeveloped and

\
tested for generating the minimum diometer matrix. Computation time was

approximately 10 times larger than for a more direct optimization which

ignores the discréte behaviour of the variables. Difference between the:

4

) matrices generated was not significont with regards to tﬂglurrongement
optimizatioﬁl | . .
5.5.2 Pottérned SQO}ch ) ‘
5 patterned search techn{gue was used for the arrangement
optimizations. The objective function wﬁs evaluagted for small' deltas
“ , for each of th; variobles. B8ased on the improvement in each directidﬁ.
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an o6verall vector was generated in the most favorable direction. It was

found to be efficient and relicble in locating global optimums to high
I 1

- .

. accuracy. . °

5:5.3 Random_Search ‘ ) r‘)
& > A random search method"was 9sed to investigate the design spc‘xce
\ . particularly for the arrangment optimization. The~rondomh optimization
J penrformed o number of useful functions. \ )
) > (1) An inexpensive investigation of the design space was
possible to observe obJect‘live function behavior. ,
S (2) Singlé evaluations of a specific point were possible to '
assist in debugging and problem verification. ©
(3) Search!; of sgecific areas could be made to determine if the ‘ a
patterned move approach converged to the globgl minimim. , .
§.5.4 Univariote Technique . .
, g
e The univariate technique was used for the kinematic analysis for
. . radial dimension optimizt:;tion. This technique was .found to be effectiv%
v

p;'lior to the' volume objective function which was found to have more

complex bghuvior._ S -

4

5.5.5 Direct Methods » : .y

Knowledge of the behaviour of the variables with ‘respect to power
capacity was used to optimize face width and diameter during particular
stages of the design process, Diometer was %/OUf‘Id ‘to vary exponetiolly

from 2.9 to 3.1 with respect to po;ver. Face width was found to vovj'y
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approximately lineorly with power. Direct methods when used are most

efficient and converge to high accuracies. '

¢
t

5.6 Four Speed Results - Volume Objective Function

3

To determine the affect of face/width to diameter ratio on ythe
arrangement optimization; conventional arrangements were optimized for a
number of values, Minimum diometer matrices are given in tables C.1

e/width to diameter ratios of 0.1 lt.hr-ough 1.0. The

!

- th'rough C.10 for fac
c.onve_n,tional' arrangements were optimized for o variety Of face widths,
The ro;ulta of this calculation are given 1in tal;le 5.1 and plotted in
figure 5.4, 1The’opt1mum face width/diameter ratio of was found to be
0.5. .
' This optimum face width/diameter rut\lio was used for the

‘optimization of all four speed arrangements. Tables C.12 and C.14
present too‘th numbers or;d mddule for the optimum diomet‘er matrix wirtr:‘h a
6.5 face width/dioheter ratio. -,

) Table 5.2 presents optimum results for the &4 speed drive for all
?2 hrrongemen;.s for a face width/diameter rot{o of 0.5. The best
arrangement is optimizaotion 1 whjl.ch 1s conventional and has an objective
function value of 0.0409 m>. Ot:her arrangements, however were found to ‘
be nearly as small. Optimization 3 has a function value of 0.0429 m>
and optimization 7 has a function volu_e of 0.0430 m3. These are both
within 6% of the optimum solutoion. Adc'ution constraints on axiael or
ra&idl dimension may mke'these slightly larger arrangements attractive.
Figure 5.g pre'sents the gaor'troin for optimization 1 table 5.2. Figure

4 - .
5.6 pressents the speed diagrom -for optimization 1 table 5.2.

i
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}

The general behavior of the drive presented in chaptariﬁ is goad.

The face width/diameter ratio i1s equal to 0.5 for the first input gear

- ~%

in each group. The diameters are_seen to increase as the input speed to
the group decreases. The face widths qg the lurgerginput gear's in a
group have face width/diometer ratios of less than 0.5 in order to

. compensate for extra power cepacity. ‘The face width/diameter ratio of
»

v

. ‘ -
all gears in the drive are between 0.1 'and, in this case 0.5. )

Tables 5.3 through 5.9 present the basis of the dynamic analysis
including component inertias and stiffnesses. Table 5.10 presents

eigenvalues for the 4 speeds of the optimum arrangment. The.lowest e

) | © ok
frequency is 191 hz. This 1is equivalent to an_operating speed of 11500

L}
RPM hence this frequency is satisfactory. The very high frequency 1is
related to the verification problem rather than gear drives 1n general.
The drive under consideration is operating ot very low speeds and is

- ‘ . . > :
very compact. This results in a very stiff design and accounts for the

’

lorge difference between the highest opeérating speed and the first

natural frequency. .

The results of chapter 5 are compared to the results of chapters

’

»

2 and 3 in table 5.11. The optimization for volume results in another )
optimum design point.. The input speeds move higher 1in pnﬂér,to reduce
torque on the initial mesh. Also, ‘the diameters of the gears for the

volume optimization are larger in order to compensate for the smaller

face widths.

4

-

5.7 Summary

This chapter has brought together the mathematical model of the

gear drive devlloped in chapters 2 tﬁrough 4 so thaot an overoll
9
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optimization could be performed. 7The optimum orruhgemént determined . .

moitc the kinematic requirements séec1?ied. all gear components are .

o e . . . . , Y ‘
~ +
" Pated for the required power, and the dynamic performance has been . g
. ' "
’ . ‘ [3 ] ’
.
verified as satisfactory. \ v
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. : . TABLE 5.1 -
Summary of Optimum Conventional Arrangements *
- ) Face Width/Diameter Ratio = 0.1 - 1.0 )
FACE WIDTH TO DIAMETER RATIO )
. # 0-.10 0.30 0.40 0.50 0.60 | —0.70 1.00
D 1 206 2 129 | 108 102, 106 | 92 s
I 2 260 180 163 140 132 134 118
A 3 261 180, 163 173 162 |  139: 128
M. u 207 | , 143 130 141 132 11 103
g . E{C 5| 201 138 |_ 126 118 110 | , 105 94 .
T 6 365 252 229 214 201 191 171 _
E 7 578 403 369 340 324 311 281 -
R 8 415 290 266 244 | .233 |, 225 + 203
. N 1 " 21 42 S81.4 54 |, 62 7 94
I 2 18 38 46 40 46 64 79
) D 3 20 42 51 59 |. 67 74 95
— T 4 11 22 . 27 32 34 39 47
H . . ‘ ? . .
R s |0.275 | 0.271 | 0.269 | 0.217 | 0.214 | 0.257 | 0.241
A : — - '
) T 1] 0.790 | 0.790 | 0.790 | . 0.628 | 0.627 | 0.762 | 0.722 '*
LIk 2| 1.256 | 1,256 | 1.256 | 0.998 | 0.998 |"1.211 | 1.148
- 3 10.348 | 0.343 [ 0.360°| 0.347 | 0.340 | 0.337,| 0.333
s 4 [ 0.879 | 0.868.| 0.861 | 0.876 | 0.861:| 0.852 | 0.843 "
. 3y9_1.g. . 041 | 0.081 | 0,042 | o
F@§254717.?1 Q41,1 0.041 | 0.041 | 0.04 04 052 0.043
. Diameter '(mm), w1'd'th (mm) T, — K
@ r
R . - :
- s .
o : _ ; . " ’ P
) t LY - “QA
? . 7 . - € 4




i
7

IR A

Relative Objective Function

, 162 -

1.064 - . 3

- 1.048 -

‘

1.032

- FIGURE 5.4
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DL Effect _:of\Foc: Width/Diométer on VOlume‘OBjecti\'/é
e 0 - for Conventional Arrangements
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_TABLE 5.2

)
Optimizotion Summcry for the 4 Speed Drive Verification Problem . .
P . Yolume Objective Function C

‘ ! OPTIMIZATION NOUMBER

- 1 3 4 ) - 6
A
D |, 108.5 | 129.0 97.8 | 127.6 | 107.6.| 472.4
D | 2 | 1640.5 | 167.2 | 131.7 165.0 138.4 | .595.1
A 3¢ 172.9 | 205.7 | 220.8 199.9 257.2 | 590.5
. ‘ M. 4 | wo.8 | 167.6, 187.0 162.6 | -220.4 | 467.8
E |5 | 7.7 | 205.7 | 126.0| '162.6 |- 125.4 | 467.8
o T 6| 213.6 | 330.1 | 220.8(| 275.9 220.4 | 590.5
. -7 E - 7 | 339.6 | 340.6 | 309.1 [ 344.7 | 3110 || 2u45.0
R '8 | 243.7 | 216.2 | 214.3 | 231.4 216.1 122.3
\ +
‘W 1 53.5 68.7 53.9 52.7 39.1 +97.6
I 2 40.3 46.0° 35.7 80.7 53.5 84.9
— A D 3 59.4 68.7 62.9. 80.7 62.6 85.1
; T 4 | '31.6 31.4 53.9 36.5 53.5 97.6
Qo ; H ]
N R* o s | 0.217 | 0.379 0.180 0.301 .| 0.159 | .1.528
A :
T 1 0.626 | 0.627 | 0.443° 0.638 0.395 | 0.800
* I ~| 2| 0.998 | 0.998 | 0.704 1.015 0.628 | 1.272
., O 3| 0.347 | 0.604 [ 0.408 [ 0.472 0.403 1.909
R 0.876,| 1.526 | 1.031 1.192 | .1.020 | 4.827.
) S F (m3) 0.0409 | 0.0506 | 0.0429 | 0.0564 | 0.0464 | 0.2840
;f ‘¢

ek
~

S
“wa

b
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‘ TABLE 5.2 (Continued)
. 2
. OPTIMIZATION NUMBER
7 8. 9 0] 11 12
b D 1 110.1 127.9 116.3, | 100.0 90.0 82.3
I” 2] 175.1 204.5 184.9'| 173.3 160.1 150.2
_ A 3 175.5 | 207.8 184.9 | 232.9 | 236.3 243.7
M 4 110.4 131.3 116.3 KF159.6 166.2 175.9
- o E 5 120.0 | 207.8 136.8 |¥ 159.6 121.3 175.9
T 6 164.9 370.4 184.9 214.4 166.2 243.7
-~ E 7| 330.8. 344.2 321.1 353.2 | 325.9 528.3
R 8| 285.9 | 281.6 273.0 | 298.4 | 280.9 {- 460.5
W 1], 55.0 67.3 70.2 50.0 44,2, 41.3
I 2 38.5 41.8 42.5 79.4 69:.4 | %u6.0
D 3 60.3 67.3 55.9 79.4 60.9 46.0
T 4 43:7 34.3 70.2 40.6 |  69.4 41.3
H -
] R s| 0.227 | o.372 0.268 | 0.194 | o0.142 0.112
A - -
w0 T 1 0.627 | 0.615 | 0.629 | 0.429 | 0.381 0.338-
I 2 1.586 | -1.556 1.580 | 1.086 [ 0.963 0.854
< 0 3| 0.363 | o0.604 0.426 | 0.452 | 0.372 | 0.333
s 4 | 0.577 | o0.960 0.677 | 0.719 | 0.592 | 0.529
L
F (md) 0.0430 | 0.0510 | 0.0482 0.0%98 0.0526 | 0.0731

. “ . Dicmeter (mm), Width (mm}
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Speed Diagrom Based on Optimization 1 Table 5.2, ‘ ' '
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TABLE 5.3 L
: .. ‘. Optimum Arrangement With Shaft Diameters for
' Four Speed Verification Problem
- ‘ ’ Volume Optimization
' A GEAR . SHAFT .
N # DIAM | LAMDA | WIDTH | =~ # DIAM ,
N (mm) (mm) (mm) Y
: 1| 1085 | o0.495 | 53,5 1 | ®0.0 ’
: -, 2| 0.5 .| 0.287 40.3 2 60.0
’ . 3 172.9 ‘ 53.5 3 80.0
: .4 | 140.8 40.3 - .
s | 117.7 | o0.504 59.4
6 | 213.6 0.148 31.7 .
7| 339.6 59.4 _
8| 243.7 317 . : ,3
- \\ -
\
\\
| TABLE 5.4 - .
Ratio of Shaft Speed to Input Shaft Speed ;
. \ - / [
N . > \ <
SHAFR | SPEED . s .
' 1 ' 2 -~ 3 4
-M ‘ - -
L
1 1.000 | 1.000 1.000 1.000
2 0.627 | o0.998-| 0.627 | o0.998
L, 3 |.0.218| 0.346.| 0.550 | 0.874 -. e
-



TABLE 5.5

N

Bosic and Equivolent Inertic (kgm?) of Gears
’ Referenced to Input Shaft Speed

*  Couplings Speed #1

GEAR SPEED
# BASIC ” #2 #3 #y
1 0.0057 | 0.0057 | 0.0057 | 0.0057 | 0.0057
2 0.01271 | 0.0121 | 0.0121 | 0.0121 | 0.0121
3 | 0.0367 | 0.0144 | 0.0365 | 0.0744 | 0.0365
4 0.0122 | 0.0048 | 0.0121 | 0.0048 | 0.0121
5 0.0088 | 0.0035 | 0.0087 | 0.0035 | 0.0087
6 0.0506 | 0.0199 | 0.0504 | 0.0199 | 0.0504
7. | 0.6070 | 0.0287 | 0.0726 [-0.1835 | 0.4640
.8 0.0859 | 0.0047 | 0.0103 | 0.0260 | 0.0656
- NG
TABLE 5.6
Stiffness (MNm/rad) of Basic and Equivalent

# END T END 2 | LENGTH BASIC EQUIV
. r

1 0 1 60.0 0.347 0.347"% .
2 1 2 4.0 5.199 5.199

5 3 .4 98.5 1.068 0.421 ,

6 4 5 6.0 | 17.545 6.907 — .-
7 - 5 6 95.6 1.101 0.434 Co.

10 78 8 8.0 s1.s88 | 1.967
11 8 9 215.6 1.543 0.073.
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TABLE 5.7

Stiffness (MNm/rad) of-Basic and Equivalent

Couplings Speed #2

H

A}

) # END 1 END 2 | LENGTH BASIC EQUIV
' 1 0 1 158:5 0.131 0.131
2. 1 2 4.0 5.199 5.199
5 3 4 98.5 1.068 1.063
) 6 4 5 6.0 | 17.545 | 17.462
, 7 5 6 95.6 1.101 1.096
10 7 8 8.0 | 41,588 4.974
1| - 8 9 215.6 1.543 0.185
TABLE 5.8
Stiffness (MNm/rad) of Basic and Equivalent
Couplings Speed #3
. , # END 1 END 2 | LENGTH BASIC EQUIV
1 o 1 60.0 | 0.347 | 0.347
2 1 2 " 4.0 5.199 | .5.199
5 3 4 98.5 1.068 0.421
6 4 5 6.0 | 17.545 6.907
7 5 6 95.6 1.101 0.434
* 10 7 8 8.0 | 41.588 | 12.575
1 8 9 | -120.0 2.773 0.8:8

~

o
i
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TABLE 5.9

}:

Stiffness (MNm/rad) of Basic and Equivalent
Couplings Speed #4 '

#| END 1 | EnD 2 | LENGTH | BASIC | EQUIV .
1 0 1 158.5 | 0.131 | 0.131
- 2 R S 2 4.0 | 5.199.] '5.199
5 3 4 98.5 | 1.068 1.063
6 4, 5 6.0 | 17.545 | 17.462 ¢ .
7 5 6 95.6 | 1.101 1.096
10 A / 8 8.0 | 41.588 | 31.790
1 8 9| 120.0| 2.773| 2.119
TABLE 5.10
Eigenvﬁlues (Hz)
EIGENVALUE # SPEED
A ‘
1 2 3 4
1 18137 |. 5845 | 18137 5076 .
2 4105 | 3332 | 4108 1375 °
3 1012 | 1048 641 571
A 6208 | 16087 | 1656 | 15534
5 21403 | 13926 | o444 | 8260
6 752 783 | 10899 2853
- 7 293 191 312 292
8 3723 | 3963 | 2975 7181
L

-t
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, ' ' TABLE 5.11

> .
. A Comparision of Optimum’ Solutions , ‘
DIAMETER | CHAPTER 2 | CHAPTER-3 CHAPTER &
1 1.000 1,000 1.000,
e 2 ©1.261 | "~ 1.309 —— - 17295 =
.3 1.261 1.7643 . 1.594 .
4 | 1.000 1.435 1.298 Tt
. . ) 5 1.000 1.221 1.085 o
6 1.590 1.912 1.969
. 7, 1.590 1.812 {3,330
8 1.000 +1.121 2.206
WIDTH
] 1 0.500" ' 0.995"" 0.493
— -2 < 0.500 0.713 0.371
. 3 0.500 1.212 0.547
4 0.500 1.338 0.291
- : . ' : » Arbitrary i o
) #»  Cglculated to achieve required power
rating.
[ : ) -
N .
K .
; "

&zpu
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— -+

— et CASE_STUDIES FOR A 9 SPEED‘AND AN 18 SPEED
) ¢ GEAR DRIVE
- 6.1 ,Introduction
= This chapter will draw on the theory of chapters 2 through 5 to

~

design and obtimize 2 gear drives. Results for the 9 speed drive will

<

. o )
be presented for all 38 possible arrangements’ Results for the 18 speed

.~ gear drive will be presented for selected conventiondl ‘arrangements.

L4
N .
o . 9
. * .

6.2 Resulfts and Discussion for the 9 Speed Gear Drive ' . .

. @ . '

. The 9 speed conventional orrangementois shown 1in figure 6.1 The

2 layout diagrams for 9 speeds are shown in‘figure 6.2. 'There are 38

5 possible kinematic arrangements for this gear drive. These are
identified in table 6.1. The minimum diameter matrices used for the
“orrongement optimization aré for'a face width/dium;ter ratio of 0.5 and
are given in appendix C. This value of face width to diﬁmetsr was found
to mipimige gear drive,voiume. Résults for 28 of the 38<;o;sible

arrangements are presented in table 6.2. No practical solutions were

v

found for the remaining 10 arrangements. ‘

t

. 'The smallest design was found to be optimization 20 of table 6.2

-

’ ' . ( -’
with a function value of 0.0650 mo. Design values for each gear in this

b4

5 — 3

arrangement are shown in table 6.3. All meshes but 1 are rated at

LY

desired power capacity. Mesh 3 has a 16.2% over-capacity. 'This mesh is
.

- 152 - ' . ' i
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non-optimum because the face qidth/diameter‘ratio is equal to 0.1 oﬁd
cangat'be reduced further, Figqre 6.3 1llustrates th;.geur d?iv; for
optimization 20 togle 6;2. Figure 6.4 give; the speed diagram for the

)

same arrangement.

» o

The smallest single composite arrangementgﬂwere‘optimizations 23
and 24 bofﬁ with objective func£16n values of 0.0711 m>. This is 9.4%
larger than the conventional .arrangement. The’smullest double coméosite
arrangement was opﬁimizatioﬁ 16 with an objective functiop yolue'of
0.0963 m>. This is 48% lqrger than the conventional arrongemen;.‘ #

The 1m616mentation of actual numbers of teeth from theorectical
diameters, results in some .error.. Table 6.4 prisents tablulated results
for % error comparing uc£u01 speed ratios with theorectical rotiqs. The

* e

largest error in an output speed is 1.62%. The average error is 0.70%. -

These errors are acceptable for machine tool applications, where other

factors relating to the tool/workpiece interface have significantly more

impact.
The results of the eigenvalue onalysis are presented in brief in
. 1y
table 6.5. Infgrmction for the generation of the inertio and stiffness
mo;rices is given in appendix C. The 1039s€ frequency was found to be
28 Hz ot speed 3. Since the highest shaft speed for this speed is 317
RPM or §:3 Hz, this frequency is saotisfactory. All other fr?quencies

are locaoted further away at aon adequate distance.

By examining the conventional orrangement solutions, it 1is

_possible to determine which single composites are most likely to be
competitive. Examining the optimum arrangement for the 9 speed gea?

'drive, the best matches for diometer of gears on the intermediate shaft

occur for d, = dg, dg = d;. and dg = dg. Optimization 23 to 25 of table
N
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6.2 confirm this expectation. Compared to the optimum arrangement,

W

optimizations 23 and 24 orplaiui larger and optimization 25 is 20.3%

\ 1

J/ larger. All other single composites using this layout diagram are
/ v .
P farther away from tht/ggtimum. It is thus possible to determine which

composites gre most 11koly to be beneficial. 3

) F2l «

The analysis of 9 speed drives can be compared with those

published in the literature. Relative gear diameters are compared for 2

.

cases. ’

- '

Case 1 compares the doubla_composige arrangement published by
White and Sanger [19] chd<:;man. Sankor.'o;d Dukkipati [22] for a step B
ratio of 1.26 with results o% this work. The input data are for the
some double composite arrangement and layout diagram. The arrangements
are di}ferent. but considering that different objective functions were
used the trends are similar in both. This represents a case th&t works
well for dngle'composite arrangements. The objective function value,

however, is 29.4% larger than for the conventional arrangement. This

clearly demonstrates the disadvontage of double composites for most

v

”

applications.
* Case 2 compares the conventional arnrangement presented by Rao
[112] with this work. Face widths between the 2 methods shown somewhat
similar behaviour, althought the basic face width/piometer ratios are
differsnt. The main difference lies in group 2 where the ;St input gear
- - diameter 1is seen to be constant by Réo's solution'yet increases in

relation to speed for the resulté presented.

The 9 speed drive, as presented, has 2 problems. The largest

speed increasing ratio is large with a value of 5.9 and the input shaft

- speed to the drive, with a value of 286 RPM, is very low. The princiﬁie

-
sedan g .
S TR AT ) = .- PR
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cause of the problem is the\iarge speed range required. With ¢ =°1.59 ‘
7 g ‘ .

and 9 speeds the speed range is 40.8. To cover this ranée in two®
L . .
reductions, a gear ratio of 6.39 would be required. In practice this

AN -
problem i§ resolved by using a greater number of shafts. The eighteen
A . . 2 ‘
speed geaor drive, presented next, has overcome these defficiencies.

+

i

< \

- a

. ) ,
6.3 Results and Discussion for the 18 '‘Speed Gear Drive

The 18 speed gear drive has ie conventional arronéements. of
these, the six ;1th bést results are'présented in table 6.7. A face - Vi
width/diometer ratio of 0.8 was used for the minimum diameter matrix os
given in table c.s. The objective function vdlues ranged from 0.0586 m> ,

\

1¥o q.0599 m> which is a very hcr#éQ bcndwidgh. Arrangement § was i
selféted as optimum. Although’:; has a slightly h{gher value of
objective %un?tion. at 0.0588 ms. £he gears rdtios are within desirable
limits. The lbrgeﬁf reduction rqﬁio'fs 3.79 and the 1or§est speed
increasing ratio is 2.405. Figure 6.5 presents the arrangement using
data from.optimization 6, table 6.7:(_Figure 6.6 presents. the layout
diagram for the same onrongement. Details of each’of the gears 1in the ‘ ﬁs@
drive are presented in table 6.8. ‘ - :"

Thefeffect of high strength material ;;s investaged for the 18
speed gear drive. ﬂk minimum diometer matLix. table C.11 was generated
for case hardened steel. The d%ometers in the motrix are smoller than
that for steel A5 as can be seen by compgring tables C.8 ond C.11. Tnhis
re§glts‘1n more compaci drives. ' The arrangement, uging case hardened
steel was 59% of the volume of the drive presented in table 6.]? ‘This

demonstrates the effect of higher strength georing. This analysis also

iKY
- Y
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demonstrates the dbility of the optimization routine to do tradeoff
stydies. ) , L ‘

S

A o

‘ The 18 speed gear drive shows all of the expected behawior in

¢

terms oflcpmponent'size that was present with the 9 speed drive. The

. & ' -
" two moin advantages are that the speed ratios are acceptable and that

. 0 -
tiie’ Input speed was satisfactory with' a valué of. 1440 RPM. .
- o ? . ~ - . ' . . . // * w
A) . . : . - i . Yf,”
K o . : ‘ L.
6.4 Summary Sl L . . Ny -

1

{ N N »'}
Figures 6.7 and 6.8 show actual drive trbinf. figufe 6.7 shows a

- Y

geciioﬁ of a head from an NC miliing machine. Figure 6.8 shows an‘18
N ’ , " - . ¢ . . ’

“ speed drive, for precision ‘milling machine. Both drives show some .

important common Y(eatures. , -
e ' . M
' 7. The gbars on the inpit shoft are smaller than the gears on
- .y o A “
.. the output shafts. N
, . ’ g oo R
* 2.»""{?ﬂé face width of the gears vary to balance power capacity
' & ¢ . o .
- P e thﬁoughfout the drive. @ '
3 - The modulq chuﬁges to increase the tooth size in relation

'to increasing torque. .
. * . , - l
~ The resulgé of the 9 speed and .18 speed gear_drive optimization

s . . ¥ w . L)
highlighted &4 significant improvements over previous studies. #
T - ' . e
« 1. * The didmeters of the gears increased in relation to the
) - ~ decrease 'in operating speed. This wos expected since
3 - f

. .-.torque increases.as speed decreases and the face

width/diameter ratio 1s haintained cbbrdximutelyJeéuol for

the°smnl}est tnput gear 1in -each group.
P / v / 4
2. In tuble 6.3 and in table 6.8, the module is seen to
. \.~ - R 'v~°

increasghas the input shaft speed decreases. This is

. . - *
e -

-
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obtaihed were sat!sfoctory : - ‘

»
N@@e of the items obove have previously been 1ncorporcted 1nto a- . !

~

- higher tangentiul load at lower 1npu£.geor speeds. -
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recsbnoble since larger teeth are required to cor%*;the ’

)

&5

The selected face width to ‘ditmeter ratios, 0.5 in the ' Coo

' case of the 9! speed and 0.8 in the case of the 18 speed, v

were satisfied within'2% for the firstainbut gear in each

» -

group. . ' :

A constraint on the minimum face Qidth/dicmeter ratio’

. .
1 ’

,ensured a value ‘greater than .1 for any pimion or géar in

~ the drive,

For'thei18 speed gear drive, the input’ speed and the gear ratios

multi—speed gear drive optimization. All are fundomental to the

P

synthesis of- practical- designs. ~
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Kifematic Arrangements for the 8 Speed Gear Drive
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TABLE 6.1

»
Y
13

COMPOSITE ARRANGEMENTS

P

-5 .

OPT FACTORS RANGE EXPONENT
#1 #2 #1 #2~
) L3
1. 3 3 1 3 =
2 3 3 1 3 d, = dy” -
3 3 3 1 3 d, = dg
4 3 3 1 3 d, = dg
"5 3 3 1 3 dg = dy 0 o
8 3 3 1 3 dg = dg
7 3 3 1 3 dg = dg
8 3 3 1 3 dg = dy
9 3 3 1 3 dg = dg
10 3 3 1 3  dg = dg
11 3 3 1 3 du - d8 d5 d7
12 3 3 1 3 d, = dg  dg = dy
15 3 3 1 3 d, = dg  dg = dy
20 3 3 b-] 1 -
'21 3 3 ‘ 3 ' 1 dq = d7 N
22 3 3 3 1 d, = dg
23 . 3 3 3 1 d, = dg
24 3 3 3 1 dg = d y
25 3 -3 3 1 dg = dg
.26 3 3 3 1 dg = dg
28 3 3 3 1 dg = dg
36 3 3 3 1 dg = dg  dg = dy
HHHEHEEE R
s = dg 6 = ds
' *

A N
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™ TABLE 6.2

Optimizot:l-on Summary for the 9 Speed Gear
Drive - Case Stidy

-

OPTIMIZATION NUMBER

# 1 2 3 o 5 6
1| 106.0 | 127.8 83.6 60.1 | 113.6 88.7
2] 137.3 | 161.3 | 166 88.7 | 147.8 | 124.3
[} 3 168.6 | 193.0 154.9 126.4 '] 182.2 166.4
I 4 168.9 | 161.9 266.6 395.3 187.3 .302.0
A 5 137.6 128.4 233.7 366.8 153.2 266.3
u 6 | 123.3 | 96.7 | 195.3 | 329.0 | .118.8 | 224.2
E 7 114.5 161.9 118.4 113.0 153.2 117.9
T 8 264.7 342.3 266.6 264.0 327.7 266.3
E 9 393.0 473.7 387.1 395.3 457.3 387.8
R 10 353.7 380.8 336.8 360.3 373.1 338.9
— 11 .203.4 | . 200.3 188.6 209.3 198.6 190.5
12 75.1 69.0 | 681" 78.0 69.0 69.0

W 1 52.3 “71.7 38.7 39.5 57.9 3T,

I 2 38.7 50.8 25.8 36.7 76.4 38,

D 3 36.0 49.0 22.2 32.977 40.1 22.

T 4 58.2 71.7 59.7 57.5 76.4 59.

H 5 26.7 34.2 | - 38.7 26.4 32.8 38.

6 39.3 47.4 38.7 39.5 - 45.7 38.
s{ 0.203 0.336 | - 0.110 0.048 0.249 0.102

R =
A 1 0.627 0.790 0:314 0.152 0.607 0.29%
T 2 0.998 1.256 0.499 |\ 0.242 0.965 0.467
I 3 1.586 1.996 0.793 0.384 1.534 0.742
o) 4 0.324 0.425 0.352 0.314 0.410.| 0.348
s 5 1.301 1.709 1.413 1.261 1.650 1.398
6 5.§29 6.868 5.682 5.069 6.632 5.620
F (m3) 0.0724 | 0.1140 | 0.0737 | 0.0898 | 0.1088 | 0.0785
+
* A ¢
- -

- -

’
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TABLE 6.2 - (Continued)
' OPTIMIZATION NUMBER
# 7 8 9 10 12 14
S 1 '§7.7 97.8 67.4 55.7 583.8 1 464.8
2 85.6 131.8 97.5 83.3 716.7 602.0
D 3 123.2 168.8 |- 135.6 120.9 | 836.6 739.1
I 4 423.3 224.2 333.2,| 460.5 583.8 | 739.0
A 5 395.4 190.1 303.1 433.0 450.8 | 601.9
; M 8 357.8 153.1 265.0 395.3 330.9 | 464.8°
E 7 113.0 183.1 |- 115.2 113.0 | - 330.9 344,8
~ T 8| 264.0 327.7 265.0 264.0 583.8 | 601.9
E 9 395.4 457.4 391.8 | 395.3 720.8 739.0
R 10 360.3 373.2 350.4 | 360.3 450.6 454 .6
1 209.3 198.7 200.6 209.3°| 450.6 197.4
12 78.0 69.0 73.8 78.0 60.7 60.3
W 1 42.3 48.7 3.1  46.1 60.9 73.9
I 2 39.5 35,3 30.3 43.3 71.7 60.¢
D 3 35.8 | _76.4 | ' 36.3 39.5 83.7 73.9
T 4 | ,57.5 | 6.4 58.5 57.5 |, 83.7 45.5
H-|. s 26.4 32.8 | .36.3 26.4 83.7 60.2
6 39.5 45.7 39.2 | " 39.8 72.1 73.9
s | o.o043 0.179 0.067 | 0.038 | 0.73¢ | 0.477
R \
. A 9 0.136 0.436 0.202 0.121 1.000 | .0.629
) T 2| 0.217 | 0.693 | 0.322 | o0.192 1.590 | ‘1000
1 3 0.344 1.102 | 0.512 0.306 | 2.528 | 1.580
) 4 0.314 0.410 0.329 0.314 0.734 | -0.759
;- s 5 1.261 1.649 1.321 1.261 2.952 3.049
. -8 5.069 6.630 5.310 5.069 | 11.867 | 12.255
"‘ ‘ ) }
. F (m3) 0.0984 | 0.1102 | 0.0838 | 0.1118 | 0.6305 | 0.5303
> * "
S e '
3 ‘ ’ . ‘.
;;, AAVEES N -
7
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FIGURE 6.2 '~ (Continued)

OPTIMIZATION NUMBER

# 16 19 20 . 21 22 23
1 191.0 | 440.9 80.7 | 102.4 101.4 8y.2
2| 2s4.7 | s76.8 182.0 | 230.6 228.3 |. 189.8°
D 3| 322.4 | 715.0 264.7 | 334.9 331.4 | 275.9
1 4 | 395.4 | 764.7 | 230.8 | 291.6 | 288.4 240.6
A 5 331.6 629.0 129.% 163.4 161.5 135.0
M 6 | 264.0 | 490.5 46.8 56.8 58.3. 48.8
E 7 113.0 | 260.3 111. 1 201.7 | 221.8 132.1
T 8| 264.0 490.5 155.5 | 377.8 | 288.4 182.7
3 9 395. 4 629.0 207.6 | 464.0 355.7 | 240.6
R 10 360.4 433.5 369.7 | 464.8 367.1 388.1
1 209.4 | 203.3 325.4 | 378.7 | 300.4 337.5
12 | .78.0 64.8 273.3 | 292.5 233.0 279.6
. .
" "1 | 39.5 76.5 40.7 50.9 50. 1 42.1
T 2 33.2 |  62.9 20.7 27.% 26.5 22.3
D, 3 34.9 71.5 26.5 33.5 33.1°|  27.8
T 4 57.5 43.4 |  56.7 50.9 42.3 45.6
H 5 34.9 71.5 33.3 37.9 50.1 36.5
6 39.5 62.9 28.3 46.4 356 42.1
s| o0.151 0.346 0.105 | 0.220 0.212 0.119
R : :
Al 0.483 0.577 0.350 | 0.351°| 0.352 0.350.
T 2| o0.768 | 0.917 1.406 1.411 1.413 | 1.406
3 1.221 1.458 5.651 | 5.670 5.682 5.651
0 4 | 0.314 0.600 0.300 | 0.627 | 0.604 0.340
s 57| 1.261 2.613°| o0.478 | 0.998 | 0.960 0.541
6 | .5.067 | 9.701 0.760 | 1.586 | 1.526 0.861
F o (m3) 0.0963 | 0.5115 | 0.0650 | 0.1311 | 0.0877 | 0.0711

o S

3
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TABLE 6.2 - (Continued)
OPTIMIZATION NUMBER

! r 24 25 26 27 28 ' 29

1 85.0 75.1 62.3 { . 61.1 52.8 46.9

2 195.8 180.4 165.7 177.0 157.6 147.8 .

D 3 289.7 | 277.1 282.2 335.5 310.9 318.6

I 4 | 259.3 261.7 | 305.4 | 415.9 405.8 469. 1

N A 5 148.6 156.4 | 202.0 300.0 301.0 368.2

‘ M 6 54.7 59.8 85.5 141.5 147.8 197. 4

f E 7 148.6 11.8 | 104.3 141.5 103.8 99.9

T 8 |' 203.2 156.4 148.3 195.6 147.8 143. 4

E 9 |' 264.3 208.9 | 202.0 257.6°| 201.4 | 197.4

R 10 390.5 372.0 | 417.2 | 415.5 420.6 | -446.4

1 335.8 327.4 | 373.2 361.4 |, 376.6°| 402.9

12| 274.7 274.9 319.6 | 299.4 322.9 348.9

" ~

; LW 1 42.5 ,? 37.2 31.0 41.6 40.6 46.9
1 2 74.0 57.5 46.9 30.0 30.1 36.27

D 3 29.0 27.7 28.2 71.5 57.1 43, 6%

T 4 74.0 55.9 51.4 71.5 51.2 49.6
. H 8 36.2 57.5 +37.3 36.1 57.4m{ 40.3 .

. 6 27.% 28.1 46.9 29.9 32.3 | - 43.0
s 0.125 0.086 0.051 0.050 0.032 0.022-

- .

A 1 0.328-| 0.287 | 0.206 | o0.147 0.130 | .0.100

T 2 1.318 | 1.154 | 0.821 0.590 0.523 0.402

1 3| s.208 | 4.837 3.299 2.372 | 2.104 1.614

-0 4 0.381 0.300 0.250 0.340 0.247 0.224

‘ 5| 0.605 0.478 | 0.398 | 0.541 0.392 |- 0.356

6 0.962 0.760 | 0.632 0.861 0.624 0.566

CF O (md) 0.0711°}'0.0906 | 0.0882 | 0.1234 | 0.1147 | 0.1353

s Taw

A

£
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TABLE 6.2 - (Continued)

T

\

|
OPTIMIZATION NUMBER

P -~
# 30 32 33 37
1 64.2 88.2 56.4 48.4
2 194.4 | 220.7 172.9 | 143.8
D 3 392.8 | 352.3 | 3855.9 282.2
1 4 520.3 | 350.8 | 491.3 365.7
A 5 3g9.0 | 218.3 | 374.8 270.3
M 6 200.6 86.7 191.8 131.9
E 7 399.0 | 218.3 | 272.1 131.9
T 8| 520.3 | 284.2 | 374.8 192. 4
E 9 666.0 | 350.8 | 491.3 270.3
R 10 785.8 | 363.5 | 766.7 729.9
11 655.6 | 297.6 | 664.0 669. 4
12 518.8 | 231.0 | 547.5 591.5
W 1 65.6 45.1 54.7 36.6
I 2 78.6 63.0 66.4 59.2 ~
D 3 39.3 35.2 35.6 73.0
T 4 78.6 63.0 76.7 73.0 .
H 5 65.6 32.3 66.4 66.9
6 ‘66.6 45.1 54.7 9.2
7 s 0.615 0.151 0.041 0.100
.R =
A 1 0.121 0.252 | 0.115 0.132
T 2 0.487 | 1.011 0.462 0.532
I 3 1.959 4.063 1.855 2.139 ) ’
) 4 | '0.508 | 0.601 0.355 0.181
5 0.807 | 0.955 | o0.564 0.287 -
6 1.284 | 1.518 | 0.897 0.457
F (md) 0.4926 | 0.0970 | 0.3972 | 0.3053 .
Diometer ‘(mm), Width (mm) \ ) ’a/',
A\
[ .
A"
T S - {*’1” N -
T | A
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. . TABLE 6.3 -

Design of éea?ing for Optimum 9 Speed Drive

* . .

# d4n | Yout | Tin Tout F M MG N Pe
. (mm) | ~(mm) ' mm) | (mm) (RPM) | (kW)
1 80.7 | 238.8 52 150 | 40.7 | 1.54 | 2.859 285 5.99
2 | 182.0 | 129.5 158 112 | 20.7 | 1.16 | 1.405 401 5.99
3| 264.7 46.8 302 53 | 26.5 | 0.88 | 5.651 | 1611 6.96
4 1 111.1 ] 369.7 44 146 | 56.7 | 2.54 | 3.328 100 5.99
5 | 155.4 | 325.4 64 135 | 33.2 | 2.42 | 2.093 100 5.99
6 | 207.6 | 273.3 102 134 | 28.3 | 2.03 | 1.316 100 5.99

TABLE 6.4 R )

Error in Output Speeds for Optimum 9 Speed Arrangement

SPEED | RATIO 1 | RATIO 2 | CALCULATED | THEORETICAL | % ERROR

1 2.885 3.318 . 0.1045 0.1051 0.57

2 2.885 2.109 0.1644 0.1671 1.62

. 3 2.885 1.314 0.2638 0.2657 0.72

0 - b (1.410) | 3.318 04251 0.4225 0.62
5 (1.410) | 2.109 0.6688 0.6717 0.43

6 (1.410) 1.314 1.0734 1.0680 0.51

7 (5.698) | '3.318 1.7173 | 1.8982 1.12

. 8 (s.698) | 2.109 | 2.7018 2.7001 0.06
9 (5.698) | 1.314 | ° 4.3364 4.2931 0.69

. ' AVERAGE 0.70

NOTE: Values in brackets indicate speed increasing ratios )
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TABLE 6.5

Eigenvalue Summary for the 9 Speed Gear Drive

'y

Output Speed

Shqu Speed

Natural Frequency °’

1 2 3 Hz 'RPM

~ 9 286 1100 30 223 13380

2 286 100 48 , 68 4080

3 286 100 76 28 1680

4 286 \409 121 385 13160,

5 286 409 192 141 8460

6 286 1409 305 40 2400

7 286 }612 405 400 24000

A 8 286 612 771 270 16200

9 286 | 1612 §225 62 3720

TABLE 6.6
Comparison of Results for the 9 Speed Drive
With those in }1teroture
\\\
GEAR # WHITE ET AL" Pnszﬁnreo RAO [112] PRESENTED

osMAN ET al™* ETHOD METHOD
@#=1.26 @=1.26 @=1.55 ®=1.55
1 1.000 1.000 1.080 1.000
2 1.589 1.538 1.440 1.349
3 2.248 2.104 1.840 1.740
4 2.847, 2.328 2.600 2.684
5 2.260 1.790 2.240 2.336
6 1.600 1.224 1.840 1.944
7 2.260 1.790 1.000 " 1/340
8 2.554 2.055 2.360 .063
9 2.847 2.328 3.720 ,678
10 2.848 2.976 3.720 4.460
11 2.554 2.711° 2.360 2.738
12 2.260 2.438 1.000 1.123
1 - 0.492 0,191 0.502
2 . 0.683 0.103 0.386
3 - 0.293 0.138 0.295
4 - 0.683 0.538 0.684
5 - 0.378 0.144 0.309
6 - 0.492 0.198 0.468

" » REF [19], *» REF. [22)

1
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Optimization Summary for the 18 Speed Gear Drive
for Selected Ar‘rg_ngements '

TABLE 6.7

A D N =S NGO O U WO WN

OPTIMIZATION NUMBER
# 1 2 3 4 5 6
1 41.2 41.4 41.1 41.4 41.1 41.
2 101.8 58.2 102.8 303.3 68.5 49,
- ‘D 3 160.9 78.4 164.6 | 5B8.2 102.8 58.
,- 1 4 158.4 149.0 164.8 149.0 164.8 155 .
A 5 97.8 132.2 103.1 141 .1 137.4 147.
M 6 38.6 112.0 41.3 132.2 103.1 138.
E 7 62.9 61.3 64.0 61.3 64.0 62.
T 8 88.9 15373 76.3 153.3 76.3 103,
. E 9 120.1 245.3 90.1 245.3 90.1 % 154.
R 10 235.9 245.3 230.0 245.3 230.0 238,
11 209.9 163.3 217.7 | - 153.3 217.7 197.
12 178.7 61.3 203.9 61.3 203.9 |% 146,
13 96.1 96. 1 96.1 |; 96.1 96.1 96 .
14 114.2 114.2 156, 1 1561 293.7 293,
~« 15 319.8 319.8 319.8 319.8 319.8 319.
16 301.7 301.7 259.8 259.8 122.1 122.
" 1 32.9 33.1 32.9 33.1 32.9 32.9
I 2 17.0 23.4 15.0 | 28.0 19.7 26.4
D 3 16.1 19.7 16.5 23.4 15.0 23.3
T 4 50.1 49.3 51.2 49.3 51.2 49.9
H 5 34.3 21.2 42.6 21.2 42.6 33.2
6 28.8 24.5 35.3 24.5 35.3 | 24.8
‘\\\\\ 7 78.6 78.6 © 78.6 78.6 78.6 78.6
’ 8 55.9 55.9 44,2 44 .2 29.7 29.7
P
oS .S 0.021 0.021 0.027 0.021 0.021 0.021
R
) A 1 0.260 | 0.278 | 0.249 [ 0.278 | 0.249 | 0.264
B | 2 1.040 0.441 0.997 0.350 0.498 0.333
I 3| 4.163 0.699 3.990 0.441 0.997 0.420
. o] 4 0.267 0.250 0.278 | .0.250 0.278 0.262
s 5 0.523 1.000 0.351 1.000 0.351 0.525
) .6, | 0.672 4.001 0.442 4.001 0.442 1.050
7 0.300 0.300 0.300 0.300 0.300 0.300
8 0.376 0.379 0.601 0.601 2.405 2.405
v F (m3) 0.0596 | 0.0599 | 0.0589 | 0.0586 | 0.0592 | 0.0588
: S - |
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<o " TABLE g8 - a
Designof Gedring ,f‘or‘Optimum ‘18 Speéd Drive
f ° N . - - 0
N \y [\ y A
# dyn dout | Tin Tout /) F | ™ Me | .N P
(mm) (mm) (mm) | (mm) . ,‘(RPM) (kW)
. 11 41.2 | 155.9 57 215 | 32.9°| 0.73 | 3.788 | 1440 5.59 ’
2 49.3 | 147.9, 68 204 | 26.4 | 0.73 | 3.003 | 1440 5.59
3 58.3 | 138.9 86 205 | 23.3 | 0.68 | 2.381 | 1440, | 5.59
4 62.5 | 238.3 54 206 |\49.9 | 1.16 | 3.819 380 5.59
5 103.5 |- 197.3 1107 210 {'33.2 | 0.94 | 1.905 380 5.99
6 | 154.0 | 146.7 185 176 | 24.8 | 0.83 | 1.050 400 5.99
7 [* 96.1 | 319.8 |- 44 145 | 78.6 | 2.21 | 3.333 100 5.99
- - 8| 203.7 | 122.1 | > 208 87 | 29.7 | 1.41 | 2.40% 241 5.99
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. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK S '
. / '! % '
< . N ) ,
i - /
. The synthesis of optimal designs for multi-speed gear drive# has
N ’ o

L] ) N N " /
been presented using new olgorithms to incorporate both kinematic and

7

design requirements into the optimization process. The method of:-

anolysis inc¢ludes verification of acceptable locatiori .of torsgénol

. /
eigenvalues and .provides for design modification without affecting the K
‘. . "% /’

/

ohjective function value. A problem reduction strotegy'wos/demonstroted

wnicn_shhgﬁssﬁullyflinkenALheArnquirements.of the kinematic analysis

. - ' o
- : with the requirements of component design without burdeﬁing either
A , .

’

fwy . . - !
analysis. The reduction strategy forced the number of optimization

, &

v

.. / .
paraometers to equal the degrees of freedom of the system ensuring '

-/ )
efficient accurate solutions. This efficiency made/ 1t practical to ’

analyse ,the number of arrangements deemed necessary. . \ v .

L ’

General equotiohs were Heveloped %P define the kinematic ' K

/
retationships in a multi-speed gebq drive for convéntionckr\giggli\
. / f
: /

composite and double composite arrapgements. With' these equations 1t

/

was shown that all arrangements for. a given number of speeds could be

A [}
r /' N -,
examined in detail. . / ’ v

/-
[

. v 3 o
.The effact of a constraint to/bontrol the lowest output/input -

; -

’

speed rgt16~on the kinematic equations was included in the analygis. ¥ -

/

Specific analytic equations were/ﬁeveloped to remove one degree of

-
J/ 7

' Y ‘, /’ . 1“ , \
. ¢ ) a/ - ' T
‘ i / - 176 - _ \\
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.freedom from the analysis for all types of arrangements to gfficiently
. . ﬁ N »
address this condition. -

Variocbles which-did not directly offect the objective function

o , 2
were segregrated from the main problem and handled separately. This was

-
- .

demonstrated in the generation of the minimum diaometer matrices which
were cdlculated 1ndepehdent1y of the arrangemerit optimizations. The use

-

of the minimum diometer matrix effectively decoupled the cumbersome

¥ e
anolysis Qf'QBQ} strength from the arrangement optimizution by providing
. ™~ LY} ’ ' T .
data in a simplified form. ¢ ~\ ' «

1 ‘ s
-

Computer code was devefoped to rate external spur and helical

gear pairs for'bending strength and pitting resistance méeting all
- [ . . \

>

requirements of AGMA 218. This code was applicable to spur and helical .

gearing with standard or non-standard tooth geometry.
The diameter of the first pinion in each group was shown to be a
function of shaft speed and gear ratio, hence important to the selection

of the kinematic arrangement. This.cbup11n§ between kinematic
requirements and design constraints was demonstrated by comparison with
! & N

previously published results.

+ An optimization strategy wos‘presented to determine the module

which minimized the.size of o gear mesh for a given set of operating
N ~

conditions. This analysis was used to generate matrices of minimum
diambter, optimum‘module. and optimum number of teeth for different

operating conditions. o .,

Equations to.define the dynamic characteristics of o multi-speed

~

_ gear drive were devéloped. These equat13;§ werewused to find.

approximations of the eigenvalues and eigenvecters for the optimal

L ’ R )

s
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A > / ‘

urrongemeq; to verify that critical speeds werg located away from

o . L
operating speeds. - : y/

)
gl

The use of eigenvolue derivatives to modify dangerous eigenvalues,

‘was presented. The stategy to modify shaft diometer was shown to be

consistent wlth the arrangement cptihizction ensuring that the dynaomic
g o A
analysis would not modifynsthe optimum design point.

The use of a combifnation of optimizugio
) /

techniques (discrete,

rondom, patterned move, and univariate) were demonstrated to be most

-~

: . . A
practicol when ottempting to solve problems with have a number .of
. . : H

forms.

Direct methods were also showngro be efficient.
. ™

;o

Phoblem reduction stroéegvaos presented for use in oﬁioinfng
optimal solutions to d1fficult pr;blenis. The method provides for the &
slmpli%}cction of theJopfimizotion problem, dramatically improving
efficiency, without the loss of important links between: the differént
ﬁequired analyses. 'Tpe technique of p;oblem redugtién strotegy was
illustroted practicolly for gear drives.
,1 The 4 speea gear dr;ﬁggwos used in cﬁapteré 2 through S to
1;1ustrote the developement of the mothemoticolymodel.‘ Kéy elements of
the model defined kinematic performance, geéar components ;trenbth
requireme;ts dndllocation of torsional eigenvalues. &hese key elements

N .

ware shown to generate results which correlate well with current design

practice.
~ Results for the nine speed gear drive were presented and compared
with previous ﬁublishbdoresults. The sample problem demonstrated the -

ability of the mathematical model and optimization process to generate ™
. _‘//

solutions meeting operatimg requirements. The kinematic quuirements

%3
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ﬂrere pétisfied. dll gears were correctly rated for optimum power, and .

the dynamic performance of the drive wos shown to be satisfactory

Results were presented for the 18‘spaed gear drive. This drive
¢

was shown to meet all operdting requirements as with the 9 speed drive.

General characteristics of this drive were compared to existing designs.

*

’

The similarities were clear, with regards to the relative component -

size.

] -

The ability of this analysis to be used for trade-off studies was

demonstrated by the andlysis’ of the 18 speed gear drive for different
: r
gear materials. It was shaqwn that case hardened gears resulted in a

i

reduction in drive size.

©

The characteristics of the drive weré¢ compared with actual drives

and the similarities observed. The results of the volume optimizations -

correlated well with design prdctice in all coses.
Some of the results of this thesis have been published and
presented at conferences [134-136].

/ ]

2
-

\“ T // ~
7.1 Recommendations ﬁof(%uturo work “
A .

-

—

e . . )
This work-fiakes use of standard cutter geometries and does not T

Qattempt to optimize addendum/dedendum ratios to minimize radial

dimensions further. A study on the effect this type of modification has
~

-y

on the minimum diameter matrix would be of value. " The analysis would
require ‘additional development of the mathematical model for a mesh to

ensure that designs could be implemented.
: . -—— - ~
It is not obvious that the face/width to diameter ratio should be
v

——

the same for each group. Prov}dlng a number of_minimum diameter

L4

©

matrices, which cover ‘a range of face/width to diometer ratios, would

0 . ’
, - - » 0

e}
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N Am

pllow the optimization process to consider. these additional parameters.

- N “+
0

It is probnbi? that a ;:EEEQQtiaI effort woiig:gpve to be spent on the*

optimization routine to meet this objective reliably. The increcased

number of variables will make it more difficult to find global

optima. ‘ ‘ v - ﬁ

Results of the optimizations for conventional arrangements for

3 _—

each layout diegram were shown to provide information to identify which

L]
single and double composite arrangements have potentional. An analytic

routine, which compares diameters of conposite gears in the conventional

orrangement, could automatically recommend specific composites for —

analysis rather than analysing cll possible arrangements. This would be'

more efficient than the current practice of analysing all arrongéments.

A Y
Expert system which “empfoy human knowledge to solve proplems !

that ordinarily require human 1ntelligenée“ [137] will make 1mportan£
contributions to engineering in the neer-fﬁture. For engineering
problems, & large ﬁortion of the knowledge base will be analysis

software such as presented in tHis work. Users will access the analysis

program through an expert interface. . The development of this interface,

-
', v

difected toward engineering opblicctioﬁs. has much potential.

s

-
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- '~ A_COMPARISON OF MATHEMATICAL TECHNIQUES FOR THE KINEMATIC
' ANALYSIS OF MULTI-SPEED GEAR TRAINS
' |

9

u

The method of kinematic analysis presented in c‘hoptar 2'1s ~ ’
*compared to the tec;miques by White \[14] and bsmqn," Sankar, 'and ‘.
Du‘kkipati [22]. Equé:}:ions for the diameters of the, géars are derived
for a porticu‘lar double composite urréngen;ent of the nine sdeed. three

/\ shaft gear box. ) ) ' : )

, The layout didigram for the sample problem is shown in, figure A.1.

~
'

the' conventional arrangement for the nine sbeed gécr train is shown in
figure A.2. The double composite arrangsment which will be studied is
the one which occrs when diaometers dy = dg ond dg = dy. From figure ’ -

A.1 the step ratio is seen to be o.

A.1 Techniq;xe 1: Per White

-

o White [14] was the first author td present’aon analytic technique

- -

for the analysis of multi-speed gear trains. His method can be b
e,

]
r

summarized as follows:

>

- s Q. Select a loyout diagrom, A
. . b. Selgct a double composite arrangement,
ic. , wWrite equations to satisfy speed and mesh requirements as o0 ° .

.

funétioﬁ of the lowest output/input ratto, the step ratio,

< . and a reference gear, °

. * "192-
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d. Re-arrange the_equations to obtain analytic expressions for

the diameters of each gear in the drive. g

e, Evaluate diameters as a function of S and 8. Diameter dq is
0 /‘ ’ M v
(ﬁ\ \
- taken to be o reference gear und is assigned a value of 1.
. — ,

The épeed ratio, defined as the ratio of tﬁe output speed to the

-

input speed,’'can be written as functions of the. gear diameters.

d1d7 d1d5 .
S = - ) (A.1)

dydio  d4dqg ‘ | .

'I

The following speed relationships must be sagfsfied based on

" equation (A.1) and the requirement that the output speeds form a

geometric progression.

*s

Sg = - : ' (A-2)
d4dqq '
Y, didg . dqd, d4 .
Sec = = = t B (A[3)
dydiz  ddiz dig | .
5 . dody dydg do AR , | ,
SQ = ™ - e . .(A.‘G)’
d ded d Coe .
_ 5d10 5910 10 2 ;
J
“ d2d8 1] . v .
. Sgt = — - . (A.5)
' dgdqq pe . ‘ ,
) g dadg dad,, - : L
. s’ iz = Lo . . (A.s)
. ' dgdyp dgdqp 7 o
4 ) }\' f s ..5
e dxd- dzdg - . r .
- Se¥ == - ' o ' (A7)
dgdio dgd0 - L : L

o
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o ' im»dsde ) .
= L % , . - Se -
[} + Y ,‘ '
‘ 4911 ' .
0‘ . Yo P ‘ -
© i dzdg  dxd,
s¢ - v [
©, 9ed912 dgdi2
. -

-

(A.9)

The mesh, condit19ns. required since the center distance for each

of the geor pairs on the same two'shaft._s must be constant, can also be

Y
4

.
we
i

R

-

. written in terms of the gear diometers. LN
’ f 5 . . )
. d1 + du - d2 + d‘s < ! . (‘A. 10)
dq + d = dy + dg (A.11)
. , .
d7 + d1o, = d8‘+ d11 or (M12) ) ¢
‘ ds"‘? 010 - da + d1 1, [
. [ 1
) ’ d7 + d1° = dg + d12 or- (A.13) )
. .y . -
/ ‘. dg + dig = dy+ dq2
& » {
P The diameter "a" is token t ;)e a r'g_ference gear. Equotion (A.3) ‘can . .
' then be re-arranged to give *.he diameter of dqp as a function of S, o,
. ;J, [
and d; only. . .
d4.= reference diameter ) ¢
d-l . A ' G,
. dq2 = —— . (A.24) )
. ' se? : : B ’ ’
- L ! . —

To find expressions/for the rémaining diometers requires )

-

manipulating equotions (A 1), through (A.13Y. The diometers d{; and dg

can be found using equations (ALJQ) and (A 13) and"~ wrtting the didmeter

N . . '
v hd
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. " fﬁz, d, and d12 as functions of S, ¢, d4, dg and d10 With two equations
N
¢ m "
f: Ci and two unknowns. d5 and dyg can be qbsily found ' .
Diameter d12 is &Ireudy available as a function of the désgred
varia les fiom equution (A. 1u) Diambter dy can be found bf re-
arranging equation (A.h). Diameter dy cén- be found by re- arranging\
. . - '
equation (A.1). o : -
d, = Se’dqq . > ' (A.1%)
.; hd ‘ l A . e
nu) d.'ds * » * .
d“ - — R . (A.16)
¥ . Sd10 . . . )
Next equotions (A.14) through (A \6) are substituted into -
= . #
equations (A.10) and, (A 13) to give two eguations for diémeter dg.
7 - .
\\j ] . . .
g 8 Sdq0(Sdq08> -dp) o w
d%" ‘ ) ) ’ (A.17)
-(dq-Sd30) « ‘ ‘ '
* ¢ iy o
and :
. PRe . o ~
' ’ Y .
- . d40d1-5d10%0? .
‘ .. dg = . @, \ (A.18) °
” o 5d10-2-d1‘2 . . ‘. ) ‘
¢ ., Combining equations (A.17) and (A.18):
: \ | ’
“ d1(1—s.3) (3
dg *» —— (A.19)
- se2(1-s8¥) . s
-7 Substituting equation’ (A.18) into equaiion (K.18): AN
’ ' 2 Y
di(1-58°)(s-1) - - .
' ds - - - ’ ) (AAZO)

? . T [#2(1-58%)-(1-582)1(1-56)
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Diometer d, can be cdlculated by substituting equation (A.19) into~

equation (A.15).

o~

d,0(1-582) o o
dy = ——————;——— ) . . ' _ A (A.21)
(1-s8”) ‘ L CN

1 N

Diometer d, can.be éblculated‘by substituting equations (A.19) and

[

" (A.20) into equation (A.16). S . : o
' d1¢2(¢-1) . , ™
d, = . T (A.22)
\l‘ N -
82(1-58%)-(1-5922) ' . : .
n., ' 4 -
- <, Ny v SN

Diameters dg and dqq can be colculated using equations (A.2), (A.12) ~ '

o < ‘ ) ) — '
and previously calculated diameters.- “ . .

dqdg ; ' ,
d11 - . . (A.23)

'Sed,, ) . , .
Substituting {A.2) into (A.12) and substituting into the resulting
equation the values of dg and dqg gives diameter dg.

S - N
' dye(1-Se2)(e+1) S - R
dg = — < - (A.24) -
[(1-502)(22+2+1)-021(1-502)(22+1)-0(a-1)] °
“Digméter d,q can be calculated by substitutin% equation (A.22) and . R *
(A.24) into equoiion (A.23).
. o h ,

.dq(1-582)(2+1)

d11 - = , . (A.25)
. Se2[(1-582)(82+1)-8(e-1)] '

v

»

In a similar fashion df&ﬁeterﬁ dz and dg can be calculated using

equation (A.7) and (A.11)

LR
. - . -
- . ]

[ 7

o«

. ..
N
ot




atp

“\

s’sdsd-‘o . ' ' e ‘ ¢
' . (A.28)

.ds -
.o dg

+
.

Substituting (A.26) ond previously, calculated diameters, diameter.dg .
'S
T "TOm by obtained.

d(1-582)(e%-1)(2-1)

s " . — . (A.27)‘
: [62(1-503)-(1-502)][#2(1-5e3)-(1-582) 8% +2-1] * - .

- . g - .
< R

)
Using equation (A.26) and the diameters already calculated diameter dx

.1s found. . ' -
'd1¢“(¢3-1)(1—8a2)‘ . . !
dz- = - . (A.28)

. [62(1-50%)-(1-5¢2)J0"+0-1 S ,

. v o
'

This gives an expression for each %f the diameters of the geoké

as a function of S, @, and. the reference gear d,. White perfbrmed a

.
u

small additional améunt of manipulation to ﬁut these equotioﬁs in a
, . o < -
final, more simplified form. Defining two new variables ¢ and B as

follows:

: Y ' |

a - (1-582) ) . - ' ) (A.29)
é = ¢2(s+1)-(5¢2f1) r ) - . . , (A.30)

The diameters of the gears can be re-written as follows.

’
[

d1c' ) 2 ". ”

dx = -/ ) . c ~ (A.31)
1-8(1-a) , | X
R4 ;‘ v
\ . . t . - )
d,a8*(e3-1) , o a
d3 - - . "“ (A.32)
slprs-1 -
.
, . . )
- ’ B o ‘ . é
. ,\\ y
. \\ - \‘ _ ' — -
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‘d,az(a-z) L T oo . .
dl}'. - - . 4 . 7 (Ao3§)~-
B : . .
dja(s¥i) ' ’ ) S |
dg = ————— ' (A.34)
‘ v 3[1"(1-6)] \
dia(s2-1)(s-1) 54
© L dg = : _ (A.35)
(pot+e-1) ¢ . '
~
d; = dg. I { ' - ' (5.36)
. * died(e+1)
dg = : : ’ (A.37)

[a(¢2+¢+1)-02][a(¢2+1)éb(¢-1)]

dg = d, X . . (A.38)
‘ .
d-lc s ) v
dqo = ) : (A.39)
* (1-a)[1-8(1-a)]
d1a(¢+‘_1) ‘ ‘ ) .
(1-¢)[a(8<+1)-0(a-1}] - :
) . . . “
s ’ . N » v
, d1 . // ) ’ " . -
dyp = T | : o (A.41)
) (1-a) ' - 1 ) .

The method is cledrly olgeb?bically tediogs. These equatians
apply to a specific layout diagram and composite arrangement. If there

was interest in more than one arrangement, then'a si:}tg; analysis is
i 1

»

required. White and Sangar [12] examined all arrangbments for ‘the nine

’ ‘ . \
speed gear train. Wwhile they demonstroted that it is posslblecio h;udy
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mgr%:rrangemonts it 1is obvious that the method has practical

limitations.

v '

A.2 TJechnique 2: Per Osman, Saonkor ond Dukkipatil
° 4

s Osman, Sankar and Dukkipati [22] appliéd numerical techniques to

P} .

the analysis of the 9 speed double composite arrangement studied above.
The method resulted in significantly less mathematicol development to
generote‘an equivalent system“of equations.

The stepg of this method can be listed as was done for Whiie's

)
.
. .
~

method. .
-7 ) -
_1. 'Sselect a layout diagram, ,
< 2. Select o double composite arrangement, ’
3. write geor diometer equations to satisfy the sbéed and mesh
wrequirement as a function of the lowest ouﬁput/input ratio,
> the step ratio and a reference gear.

4. Seleoijthe gear diameters which determine the lowest

\\ ) output/input ratio S ond arbitrarily designate them as

", .-
independent variables Y., Y5, Ys.ﬁhnd Y4+ Yq. the reference
\\ geor is set to 1. Re-arrange the equations to ohtain

\ dnalytic.expression for the diameters of each geor as a

\ function of Y5, Y5, Y,, and #, subject to 2 equolity

\\ . .

\ constraints. ' : -

é{. §§loct values of X, x}. and X, which satisfy the 2 equality
. 1 s

_censtraints.

]

6. Evaluate diameters.

]
The technique follows the some Oppgfach as White's method however

the equations are daveloped in a slightly different manner. Gear dy is

L
f
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' once ogoin*considered the reference gear oqq_equctlons (A.1) through

(A.13) are used to produce a set gf dimensionless equhtions.

S =

(dg/dq)

A

\ sﬂ-

sed -

506 -

‘Sg/ =

*

s -

|

dy/dq)(dqg/dq)

(dg/aq) . %

(dy/dq)(dy1/dq)

-1 .

(012/d15‘

(dz/d1i

. (dq9/dq)

LI

(dp/dq)(dg/dy)

(d5/d1)(d11/d1)

(dafdq)(d,/dy)

(dg/dq)(dq2/dq)

Y

.,
(d3/d4)(dg/dq) -

(dsld1)(d1o/d1)'

(d3/d1)6d9/§1)

«(dg/dq)(dqq/dq)

(d3/dq)(dy/dy)

(dg/dq)(dq2/d )

.

-

-

(A.

(A.

- (A,

(A.

“ (A,

(A.

(A.

(A

The mesh equations are simildrly re-written, 4

1

1.+ (dy/dy) = (62/d1{/+ (dg/dy)

"

42)

43)

44)

“5) »

46)

47)

.48)

49)

50)

.51)

F
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(A:52)

»1 + (dy/dq) = (d3/dq) + (dg/dy)
"~ (d/9y) + (dyp/dy) = (dg/dy) + (d9q/dp) g (A:53) -
(dg/dq) + (dqg/dq) = (d/dg) + (dqp/dq) . © (A.54)

* 4

The lowest output/inpuf ratio S 1s a function of (d,/dq), (dg/dy) and"

.ot
(dqn/dq). Letting Y,, Yx and Y repregaht the normalized geor diameters
10/ 41 2 3. 4 .

respectively, equations (A.42) through (A.S54) can be re-arranged to give

\ 1
the normalized diameters of each of the gears. The normalized diameters

5

P . .
of d; and d,, can be found using equations (A.42), (A.44) and (A.45).

1

-~

.d2 - .
— = sedy, (A.55)
d, \ .
dqi2 1 ' :

L | (A.56)
d;  se?

>

Diometers dy and dg can be found uéing equations (A.48) and (A.52). An

expression for dz can be found by re-arranging (A.48). .

A} o

6
a5 sebv,ag \

= — | (A.57)

d1 Y'sc ,

o

Substituting equation (A.57) in equotion (A.48) ond re-arronging gives

J g
the normalized diameter of :Eif

v

ds (1+Y2)Y3 . v X (h.58) .
— ) ee——— v N . A.

)
£ «

‘Substituting (A.58) into (A.57) _gives the norimalized diameter of dx as

(S

follows:.’

\

(w3



, “can be found. Re-arranging equation (A.49) gives an expression for dg.

Using equations (A.49) and (A.53) the normalized dicmeter dg ond dq4

/]
. - - 204 - | /
d3 S‘DGY“( 1 +Y2) - ' ) . | N . k . . )
— g ——————— : ) g z (A.59) B -

»

- -

RS

. s
ST 1& y + ~ ‘
‘u da ¢V3611 .
— o —— v ‘ SN © (A.60)
g1 - Yud ' ‘ ,
‘. Substituting equation (A.60) into-equation (A.53) and re-arranging d
gives an expression for the normalized diameter of dqq. .
- ) J *
3 — A ‘d
d11 «Vy(¥3+Yy) . -
= B (A.61)
d1 (QV3+Y4) . - .
- ‘ . .
o, Substituting equation (A.61) in equatioﬁ (A.60) gives an expression
, o |} 3
- for the normalized diameter of dg.
- ( o o 3
dg ®8Yz(Ys+Y,)
—_—— , , . (A.62) *
dy  (eV3vy,) - ‘
n . ® -
Equations (A.51) and (A.54) have not been used to formulate the
diaometer equations. Substituting the ehuctions for each of the
" diameters into ;he~bquotions.r95u1ts in two equality constraints. Using
equation (A,51): i )
‘ \( * * t N &
] \ - . .
¢3Y3. ' ' . o N -
' 1 + VZ - + Y3 (A.GS)\\ -
Yo ' ’ :
Using equation (A.S54): ¢
»
. \ .



- YaYy -
Vg + Yy = ¥5+
=

The variablée S is a functign of Y5, Y3 and‘

“y303

eliminated from equations (A.55) through (A.64).
/ * ,
- . |
for the diameters of the gears, with two equality

dq
=1
o . d1 ‘
"
' dy  v3e® ~.'ol"(n-\/;_,) “
- - d1 . Y2 ‘ ('3+V2)
dy  #5(14v,)  #B(14vy) ‘
—— - -
. p d1 ’ (’6+Y2) (¢6+Y2) ,
dy
— = VYo= Y2
d1 ¢ .
\
ds Y2( 1+Y2) Y2( 1+Y2) ) .
dq (¢3+Y2) (¢5+Y2)
P4 . ‘
dg  Ya(1+Yp)  Yo(i+Yy) .
d1 (.6+Y2) ('6+Y2) *
AY — = Y3 e V3
d1 -
1 * i .
. " da vsﬂ( Y3'+Yl.) VS.(Ys‘fvl‘)
J - " -
' ) . >N\
- €
4 ‘ '
> ;
: &

(A.64)

Ya and can be

This gives equations
] ) qu
constraints.

(A.67) .

(A.71).



%. 2 . £y ‘ , 2
dg N Ysﬂ (V3+YI‘) ,
— = Vg = , . - (A,73)
d1 (Y3¢2+Y4) '
dy0 co o
e Y“ - Y“ , T (A.74)‘
d1 N : .

. . o (A.78)
dr (Y36%4Y,)  (Y3esv,) -

4

diz Ya¥y  Ye(Y3+Yy) - ’
— = . (A.76)
d1 Y3¢2 (V,3¢2+Y“)

“ ne ‘ !

The equality conjtraints become:

s . ' ' \ o w’
Y3 . XZ(X1+Y2)
1“4' Y2 g + Y3Y3 = s . . (A.77)
Yz (o +Y2) . '
DoYo¥, e Y3e2(YiiY,) S “
Y3 + Yq = V2 + b S T — . (A-78)

ﬂ¥3 . ,,QB"Z*YM) .7

. \
The method of Osman, Sankar, and Dukkipati requires far less

1

mathematical development théin White's method. The equations aore still

limited in ihot they apply only to one specif'ic layout diagram and

f ~

arrangement.

{ .

A.3 Technique 3: Per @he Author °

-~

“*In chapter 2, .0 new technique was presented for developing the

~ I
~

diometer equations based on the conventional arrangement. Because the

equations are based on the conventional arrangement which 1s most
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. general, they also apply to the siﬁgle and double composfite

i

arrangements. The steps can be summarized as follows: &
>
1. Select o léyout diagrom and not;e the number of speeds and
range exponent for each, group, . i T

‘.

- ,
- - ! . MY

2. Write eduutiong for the gears diameters corresponding to ;Ké

i - . >
. conventional arrangement, - /

. 3 Equate diameters of composite gears to develop equality
. ’ - constraints corresponding to a particular aorrangement,
4 Analytically evaluate the equality constraoints for a

consistent set of variables Y,, Y5, Yz, and Y,.
e ] N
. 5 Evaluate gear diameters. - ' ’
b .
] g s , i - . ;
Using the layout diagram of figure A.1, the number of speeds for
h ) : '

\* *
the first group is seen to be 3 and the range exponent is also 3 singe

A i

" the speeds increase by a factor of 83. For the second grou‘p. the number
- . ‘ ’ o - -t ~

v of speed& is again 3, however ., the range exponent: is 1.
¢ ) ) & ’ .
. - d1 - Y1. . . ’ (A.79) ?
Y, 83V +Y,) - Co o
] 1~ 1 2 " ! s R . ~ o .
dp = . ! ‘ ; /oo (A.80) .
A (Y1¢3fY2) ' ' - ’ i
T~
v e8(v,+Y,) ‘ ' . . N
1 1 2 ‘ Y
, d3 . - < ! J : - (A.8,1)
° ' ‘(Y1¢6+Y2) .- S ‘ "
B . * . . o \_\ i

7 . d“ L] Yz : ) » R ’ (A.82) ‘ -

YA(Y4Y5) o
g 2V "17I2 ( )
co . 5 * : L . . (A.83
- ¥ : Toe (V1¢3+Y2) - / e . . \
P A ‘ -
: »
rd - . i
/ e . - A 1\‘ Tir 2w s / ' ' :':wf




- - Ya2(V1+Y2) o
dp =
6
o (Y1¢6+Y2)
. d7 - ;{3 .,
o
* Y3¢(Y3+Y4)
d8 = s
T . (Y3¢+Y4)‘ .
Y ¢2(Y +Y,) )
3 37Ty
do = ’
-9 (v PYRY )'
3274y :
dio = Yo - ) |
~ ‘ ‘
Y3(Yg+Y,) .',
Jdiq = |

ﬂV3¢2+Y4) "

. v

. (vze€evy)

¢ Y3(Y3+V4) ‘.. ’ ,\‘.

t °

<

gear duﬁmust equal the diamete

‘equality constraint.

.

Yy o e
2
(V3¢ +Y4)

¢

s

\

Also gear dinmeter/ds must be equal to gear digmeter. d.

in the second eqhality constra

-

. - .
& o
.

Yo(Yq+Ya) '

.- = VY3

(v4834+v5) -~

int.

-y

!

’

" For the double composite arrangement under consideration the dicmeter of

r'of gear dg: This results in the first
‘ .

A

&y

“(A.91)

This resultg.



. ;;;;
et

\
-
D)
\
~ ¥

I - 209 -

-

Equations (A-79) through (A.92) are equiVoJehq to equations

(A.65) to (A.78) 1f Y, 1s set equal to”1. The analysis of chapter ‘2 -

: prdggneétfor an andlytic-procedure which is general in nature to solve ..

‘. -, T e
for diameters Y,, and Yg, -regardless of the double composite- selected.

‘A4 Summary 4 o -

This final method offers two clear advantages. ~ The equations for
. . ” ‘s

rd

. the gear diameters are written for the conventional arrangement and are -

» . Y
alsé valid for all single and double composite arrangements. There is

no need to develop a set of diametef\equationé for euch.arrhngement. ) -
The second gdvoﬁtage is ' that the equations can be written by in§pectiod ’
of the layout diagram. Since the layout dioggom'is mathematically . ’

-

based, a computer based procedure can be w}itten to generate the
. " -P B 3
different arrangements possible. , t - i . <
M 1\ s
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. <

OVERVIEV OF SOFTWARE USED FOR ANALYSIS OF
. . ¢ b

MULTI-SPEED GEAR DRIVES

v

- 4 3 . N /
+ M Y

o
The analyses presented in chapters 2 through 6 are calculation
- ' E 4

intensive. A module FORTRAN program wos:developed speci}ically to

L]

%erform these calculations. The following sactipn% preSent a brief | .

explanation of "the analysis performed by each module. T

_Main/ Program ] . LA . , ’

B.1

The program.module was used for the selection of the problem to
[ ~“ ’ n

be analysed, selection of output to_be‘written to dfsk. and optimization

subroutines. Program calls to the objective functions were made from

~ -

within different solutions. Figure .B.1 shows a'flow chart of the main

1
-

s . ' . - . .
program. , . -

B.2 - Solution 1 . a . ’ ' . -

LAEN ‘_ f

N -

This:module evoluate; the power capociéy bf a gear pair for a .

¥
'

N P

wide range of Opé}ating cond&tidns ond.desfén. The analysis is based on

«

AGMA 218 and includes all relevent calculations to determine the power )

-
~ - -

copocity‘of a ﬁoir of &xternal spur or helical geors. Inputs-to

-

_solution 1 oré as described in detail in chaper 3. A flow chart for.

- ¢ .

solution 1 is show %in figure B.2. Solution 1A performs multiple calls

-
- 3
. .
» -
‘ 3
- .

¢ @

. . . ’ ' -

<y
.
.
.~

.

.r'»‘ * . ’ . . ’
ek, M e ey Y, - N e S - o



SELECT TYPE OF OUTRUT _—
! REQUINED '

EVALUATE POWER CAPACITY
OF A CEAR MESH

EVALUATE R CAPACITY OF A
CEAR AS FUNCTION OF A e
VARIABLE

. . "
o

OETERMINE KINEMATIC VARIABLES
FOR ALL DRIVE ARRANGEMENTS

OPTMMZE DMVE FOR RADIAL® .
OIMENSIONS .
(S & CONSTANT)} -

OPTWAZE DRIVE FOR RADIAL -
OIMENSIONS
(S = CONSTANT)

OPTWMTE DRIVE FOR VOLUME
, OBJECTIVE 1
( 'STWTCONSTANT)

OPTMNZE DRIVE FOR VOLUME
‘(S = CONSTANT) s

A

OPTWAZE DAIVE mzvowu: o
(3 4 CONSTANT)

- . —~ °
- ! !

T ) _++ FIGURE B.1 o

- A

Ly ' . )
. -, .. Flow phart' of Main Routine for Gear Drive Analysis
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CALCULATE VARIABLES TO -
EVALUATE DESIGN FACTORS

1 -

CALCULATE SERWICE FACTOR
FOR PINON AND GEAR

_ L

CALCULATE ELASIC CO-EFRDIENT

.
™

1

. CALCULATE GEOMETRY FACTOR |

!

. o
TE OYNAMIC FACTOR

-

— :

CALCUCATE MARDNESS FACTOR FOR GEAR®

—
1_;
’ s

3

CALCULATE LOAD DISTRISUTION FACTOR

i

CALCWATE GEOMETRY FACTORJ
FOR PINION AND CEAR

1

CALOWLATE MITTING RESISTANCE POWER
RATING FOR PINION AND GEAR

{ .

* -CALCIRATE BENOING. STRENGTN POWER
RATING FOR PIMON AND GEAR '

“®

FIGURE B.2

'Flow Chart for Solution 1
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CALL SOL 1 TO

~
g

OUTPUT POWER RATINGS
TO PLOT FILE
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FIGURE B.3
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8.3 Solution 2

This module is used to determine the different kinematic
‘ .
arrangements which are possible for a given number of speeds. The

routine is capable of handlihg up‘to 6 shafts; ‘conventional, single

composite and double composite qHFangements; and different layout
. z ,

3

diagrams. o

Layout diagrams are generated based on the number of speeds

’ N

desired. The program finds the.factors of the number 'of speeds and
their unique combinations. Once the factors dnd their combinations are
found the allowable range exponents that are assopiated with a set of

factors are evaluated. For each unique combination of factors there

’

A
exists a set of single composite -and double composite arrangements in

1

addition to the conventional arrangement. All combinations of layout

¢

rangements are determined. A flow chart of\

—

diagrams and composite ar
’ .

-

solution 2 is shown in figure B.&4.

"B.4 - Solution 3

¢

This module evaluates the dynamic performance of fhe gear drive.
‘ o

Mass and stiffness properties of the individual components are required
as 1npu£ for each speed. Eigenvalues and eigenvalue derivatives are
‘cclculoted. The mass and stiffness matrices dre transformed into-.a

symmetric dynamic matrix with .equivalent eigenvalues. Eigenvalues and

eigenvectors are calculated using the Jacobi method. Eigenvalue

' derivqtives are calculated as shown in chapter 4. A flow chart of

¢ [y

solution 3 is shbyn in figure B.5 . .

3
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FIND PRIME FACTORS OF
NUMBER OF SPEEDS .

1

!

DETERMINE UNIQUE FACTOR
COMBINATIONS

DETERMINE POWERS WHICH
SATISFY RULES TO
DEFINE UNIQUE LAYOUTS

\

T

‘. SET
LAYOUT = #1

INCREMENT
LAYOUT

OUTPUT CONVENTIONAL
» ARRANGEMENT

OUTPUT SINGLE COMPOSITE
ARRANGEMENTS

OUTPUT DOUBLE COMPOSITE]
ARRANGEMENTS

Flow Chart for"Solutl.ion 2

FIGURE B.4
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Al

" READ MASS &
STIFFNESS MATRIX

/ !

ELIMINATE
STIFF COUPLINGS

1 -

, CAL.CULATE DYNAMIC MATRIX USING

THE CHOLESKI DECOMPOSITION

‘n

EVALUATE EIGENVALUES AND
EIGENVECTORS USING
THE JACOBI METHOQD

J.“

TRANSFORM EIGENVECTORS
AND NORMALIZE,

l

FIND EIGENVALVE DERIVATIVES
WITH RESPECT TO MASS &
STIFFNESS ELEMENTS

FIGURE B.5

+

Flow Chart for Solution 3
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B.5 Solution &4
)

This module performs an arrangement optimization for an objective

dimensions or maximum stiffness (stiffness

function/ﬁf minimum radia
/

criteria
/

J - -

calculated during the optimi.gtion process. The minimum cdiaometer array

based on speed ratios only). The diometers of all gears are

< L : )
is used to pioce constraints the gear diaometers for minimum size. A

ve
number of different optimization strategies can be used with this

routine. The univariate method was normally most efficient for this

onolys;!. A flow chart of solution 4 is shown in figure B.6

+

B.6 Solution 4a .

This module performs an orrongemént optimization similar to
soluQEBH'u except that the lowest output/input s&eed raotio is fixed.
The exact value is calculated using the specified input shaft speed and

lowest out speed. , °

B.7 Solution &b ~\

.

The moiule performs an arrangement optimization for an objective

-

function of minimum volume. The diameters of all gea?s are calculated
during the optimization process. The minimum dicmeter array is used o
place constraints on the gear diameters’for minimum size. ks with
solutions 4 and 4a, & number of optimization routines can be used.” The

random routine and the potterned.move methods were most effective for

this optimization.

‘7{

-
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L4

CALL SOLUTION 2 TO
FIND POSSIBLE ARRANGEMENTS

- READ INPUT FOR
./ RADIAL OPTMIZATION
. &

SELECT
ARR MENT -
ANGEME -

DETERMINE § OF PARAMETERS
! AND CONSTANTS FOR
COMPOSITE ARRANGEMENTS

RANDOM SEARCH IN
+ SPECIFIED DOMAIN

PATERNED MOVE
OPTIMIZATION

DISCRETE HEURISTIC
OPTMIZATION

UNIVARIATE
OPTIMIZATION

]

|

EVALUATE OBJECTIVE

FUNCTION

CALCULATE GEAR OIAMETER
VARIABLES FROM OPTIMIZATION
PARAMETERS AND OPTIMUM
DIAMETER ARRAY

QUTPUT
RESULTS

CALCULATE DIAMETER OF
ALL GEARS IN DRIVE

EVALUATE OBJECTIVE
FUNCTION .

[ROR ST BP Y I R Ty

e

NO

]

-

FIGURE B.6

Flow

Chart for Solutioﬁ 4
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B.8 Solution 5a . -

This module calculates the minimum diumetér matrix oésuming’the

‘

variables are dontinuoq;. The desired operating éonditions. composite

—

a

type. speed range, and speed'reduction ratio range are required inputs.

For each input speed and speed reduction ratio combindtion, the minimum

input gear diameter is calculated. Tﬁe optimum module and number of
feeth are determined for each input gear. The actual power capacity 1is

also calculated and printed for verification. -A flow chart of soluttion

= .
-

13
‘5a 1s shown in figure 3.2.

R

-~ - . ’- w ,
o

B.9 Solution 6 ' . -

This module calculates the optimum.dicmeter matrix using a

~7

discrete optimization technique. Results from soiuqién 6 are

approximately equivalent to those of solution 5a. Cost to obtain those

.

solutions 1is significantly larger. The only advantage is that the

N

variobles ~can be limited to discrete values. This routine makes use of

a discrete optimization technique. ’
4

'
' ! v
.

B.10 Solution 7

- f ’
This module optimizes the face width to diameter ratio of o mesh
to ensure that the rated power capacity exactly matches the required

power. For those meshes which represent minimum diameter input géors.!

- > ¢

the face width to diameter rutio.wlll be very close to the/yalue’used to

generagte the minimum diometer matrix. Those gears with excess power
" capacity as a result of kinematic requirements are reduced 1in width Fo

¥

ensure all components are optimized to the.power' requirements.
>
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c.1 Minimum Diometer Matrices for Standard Operating

o

Conditions

b

-TABLE C.1

-

3

Minimum Diometer Matrix (mm) for Standard Operating Conditions

with Face Width/Diameter Ratio of 0.1 .

CONVENTIONAL MESH

-

RPM SPEED REDUCTION RATIOS
. : 0.107 0.20 |.0.50 | 1.00 | 2.00 | 3.00°| 4.00 | 5.00
25 | 1359 | @e8. 493 | 336 | 307 | 296 | 290. /287
50 | 1097 | 698 | 398 | 270 | 2u6 | 239 |. 235 | 232
100 884 563 | 320 217 199 | -192 188 186
, -200 | 717 | 454 | 258 | 175 | 160°] 184.| 151 |- 149
. 300 | 632 | 401 | 228 | ‘155 | 441 | 136 | 133 | 132
'500 | 542 | 343 | 195 | 132 | 120 [ 116 | 114 [ 113
750 | 480 | sos] 172 | 117 | 106 | 102:] 100 99
1000 | 440 | 279 | "157 | 107 97 94 92 91
' 12000 [ 358 | -226 | ‘128 86 79 76 74 73
’ 4000 | 292 | 184 | 104 70 64 62 60 60"
- COMPOSITE INPUT GEAR
RPM SPEED REDUCTION RATIOS '
0.10 | 0.20 | 0.50 | 1.00 | 2.00 | 3.00 | 4.00 5.00,
25 | 1374 | 868 | 496 | 408 | 372 | 359 | 351 sd%
50 | 1105 | 705 | 398 | 328 | 209 | 288 | 282 | 278
100 | 887 | s67 | 322 | 264 | 240 | 231 | 227 | 225
200 | 720 | 456 | 259 [ 213 | 194c| 187 | 183 | 181
300 | 636 | 402 | 220 | 188 | 171 | 164.| 161 | 159
500 544 345 195 161 146 141 13? 136
750 482 305 173 | " a2 129 1247 | 122 120
1000 3, 280 158- 130 118 114 111 *110
2000 | 360 | 227 | 128 | 105 96 92 90 89
4000 | 294 | 185 | 104 85 78 75 73 72
Al y _
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TABLE C.2 ,

Minimum Digmeter Matrix (mm) for Standard Oper

. ‘with Face Width/Diameter Ratio of 0.2 - .
© . r _I“ . - _
’ CONVENTIONAL MESH Ly
RPM ’ SPEED REDUCTION RATIOS
’ 0.10 | 0.20 | 0.50 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 "\ -
. T 26| 1077 | 687 | .393 | 268 | 244 | 237 | 233 | .230
: 50 | 866 [ 553.[ 315 | ‘215 196, 189 | 186 | "183
100 701 |- -445 | 253 |- 173°| ' 157 152 149 147
'200 | 565 359 | 204 | 439.]| 127 122 | 120 | 118
300 | 500 317 | 180 122 112 | 108 | 106' 104 ,
. 500 | 428 |- 271°| 154 | “105 95 | . 92 | 90 89"
750 | 379 | p246 |. 136 g2 84 | .81 .80 79
. 1000 | 347 | 220 | 125 8. | 77| -7 73| .72
2000 | 282 | 178 | 101 68 |” 62 60 [ 59 | 88"
4000 | - 230 145 82 55 50 49 48 | _ #7 .
5 - q'- - - -
COMPOSITE INPUT GEAR 1
RPM . SPEED REDUCTION RATIOS \
0.10 | 0.20 | 0.50 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00
, 25 | 1086 | e69u.| 393 | ‘325 | 206 | 285 | 279 |. 275
50 |- 870 | s57 | 317 | 261 238 | 229 | 224 | 222
100 |- 704 | 447 } 285 | 210 | .191 | 184 | 180 | 178
200 568 | 361 205 | .169 154 148 145 143
300 | 501 319 | 18 149 135 130 128 | 126
s00 | 629 | 272 | 1S4 | 127 116 111 109 | 108
750 381 241 | 'a38 | 112 102 98 /96 95
1000 | 349°| 221 125 103 93 90 88 87
. 2000 284 179 101 83 | 78’ 73 71 70
4000 | 231 | 146 82 67 | 81 s9 | |s8 57
- ! . ‘: v
. - i o ’ :
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TABLE C.3

Mihimum Diaméter Matrix (mm) for Standard Operoting Conditions
with Face w1dth/016meter Ratio of 0. 3

1}

* \

CONVENTIONAL MESH

RPM

REGUCTION RATIOS . -

SPEED . ,
'] o0.10 | 0.20 | 0.50 | 1.00 | 2.00 | 3.00 | 4:00 | 5.00 ’
25 | 939 599 | 343 | 23 | 216 | 206 | 202 | *200 @+
50 | 756 | ‘83 | 2764 188 | 172 | 165 | 163 | 161 .
100 | 610 | 388 | 221 | 151 [ 138 | 133 | 130 | - 129 -
200 | 463 | 313 | 178 | 120 | 11| do7 | a0s | 103 . :
360 | 436 | 276 | 157 107 97 9% 92 91 : ’
500 | 373 |. 23 | 134 | 9 83 80"} 79 78 4
750 | 329 | 209 | 118 | 80 73 70, 69 69
1000 | 302 191 108 74 67 65| 63 63 .
2000 | <246 | 155 88 60 54 | 52 51 51 \
4000, | . 200 126 | ., 7 48 44 42 41 41 .
COMPOSITE INPUT" GEAR (
RPM | " ®  SPEED REDUCTION RATIOS
0.10 | 0.20 | 0.50 |-1.00 | 2.00 | 3.00 | 4.00 | 5.00 B
25 | o945 | 603 | 345 | 285 | 250 | 250 | 2us| 242
'50 | 762 | 4es | 277 | 229°| 208 | 207 | 196 | 194
100 | " 614 ‘| 389 | 222 | 184 167 | 161 158 | 156 ,
200 | 494 | 315 |- 179 | w8 | 134 | 129 | 127 | 125" -
300 [ 437 | 277 | 158 | 130 | 118 |- 11 | 112 | 110
500 { 374 | 237 | 135 | 111 | 101 97 95 o4 - :
‘750 | 331 | 210 | 119 | o8 89 86 84 83 )

.1000 | 304 | 192 | 109 90 81 78 77 % . . .
2000 | 247 | 1%6 88 72 | 66 63 62 61, <
4000 |' 201 | 127 71 59 53 | 51 50 50

= . ~ [} T \ -

: A
N 7~
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. “TABLE C.4 - . - , L
14 ) ’ . ! ) t
. _ Minimum Diaometer Matrix (mm) for Standard Operuating.Conditions « ——
. o with Face Width/Diameter Ratio of 0.4 :
| : T - 7
‘ . , CONVENTIONAL MESH X )
RPM - - ((~$PEED REDUCTION RATIOS
- . 0.10 | 0.20 | 0.50 |- 1.00 | 2.00 | 3.00 | 4.00 | 5.00
25 | 853 | s46 | 313 | 214 195 | 188 | 185 182
s0,| 688 438 |. 251 171 156°| 151 148 146 '
100 553 352, 201 137 125 | 121 119 117 .
200 447 | 284 162 110 101 97 95 .94
300 395 251 | 143 | 97 | " 89 85 84 ‘83
. 500 | 338 214 | 122 83 [+ 76 73 71 70 -
750 299 189 108 73 67 64 63 62 =
¥ 1000 | 274 | 173 | e8| 67 | - 61 59 58 57 . \
. " 2000 221 141 80 54 | 49 47 46 he - - -
. ' 4000 182 114 65 44 40 38 38 37 L
o . . T COMPOSITE INPUT GEAR
sy
. . RPM ‘ SPEED REDUCTION RATIOS : -
" | 0.10 [ 0.20 | 0.50 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00
| 25 | @56 | 550 | 314 | 260 | 237 | 228 |' 224 | 221 ‘
* , 50 691 | 440 252 .| 208 190 182 179 177 .
- B ( 100 | .657 | 355 202 167 152 46 | Ju3 | 141 . .
\ ) 200 | ‘449 | 286 163 134 122 118 115 114
. 300 397 252 143 | 118 108 |+ 104 |. 101 10
e, 500 339 215 122 101 92 88 86 | é&l :
750 | 300 | 190 | .108 89 | 81 78 | ‘786 | 75 o .
N 1000 275 174 99 81 7% | . 7 70 69 o
2000 | 223-| 141 80 66 | . 60 57 56 .| 56 ‘
4000 182 115 65 53 .48 | ¥4 46 | 45
¢ 3 ;T . . M . .
’ ’ s. - \\c ,/ . .
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Minimum Diumeter»Motrix (mm) for Standard Operating Conditions
- with Face Width/Diambtér Ratio of 0.5

.
A

.

TABLE C.5

a2,

i

1

CONVENTIONAL MESH

RPM | -~ *" SPEED REDUCTION RATIOS
0.10 | 0.20 {.0.50 .| 1.00 | 2.00 | 3.00 | &.00 3.00
25 793 506 290 199 181 176 172 170
"50° | 638 407 233 159 | Y45 140 138 | "136
100 513 327 187 | 127 117 112 110> 109
200 415 264 150 103 9y 90 88 87
« 300 366 233 133, 90 82 79 78 77
500 313 199 113 77 70 68 66 65
750 277 | 175 100 68 62 60 58 | . 58

1000 254 161 91 62 57 54 53 53 .
2000 206 130 74 50 46 44 | 43 43
. 4000 168 106 60 41 37 36 35 34
' COMPOSITE INPUT GEAR |

RPM | , " SPEED REDUCTION RATIOS
0.10.| 0.20 | 0.50 | 1.00 | 2.00 | 3.00 |- 4.00 | 5.00
25 | 797 | s509°| 291 | 242 | 220 | 212 | 208 | 205
50 | - 640 | 409 234 194 176 170 166 164
. 100 516 329 188 | 155 141 136 133 132
'200 416 265°| 151 125 114 | 109 107 106
300 367 233 133 110 100 96 - 94 93
' 500 315 200 113 94 85 2 80 79
750 | ‘278 176 100 83 75 2 71| - 70
1000 255 161 92 76 69 66 65 64
2000 207 131 74 61 55 53 52 52
4000 168 | 168 | 60 49 45 43 42 42
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R _. TABLE C.6 p ‘
Minimum D:lometer Motrix (mm) for Standard Operating Conditions . -

v

‘with Face Width/Diometer Ratio of 0. 6

. CONVENTIONAL MESH  ° BN . .
N - : .
- RPM_ ‘ SPEED REDUCTION RATIOS . .
| 0.10 | 0.20 | 0.50 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00
o ' 25 | 749 | w79 | 275 | 188 | 172 | 165 | 163 | 161 -
. » - 50 601 386 220 151 137 132 130 | " 129
- 100 485 309 | 177 | - 121 110 106 104 103 .
; . 200 391 249 142 97 88 85 83 83 ' _
' 300 345 219 125 85 78 |. 75 73 72 !
A 500 295 187 107 73 .66 64 | © 63 62 ’
* 750 261 165 9% | . 64 58 56 55 54
: 1000 | . 239 152 - 86 59 53 s1 | 50 50 -
L I 2000 194 | 123 70 47 43 41 41 40
4000 15851 100 56 |, 38 35 34 33 D)
: : [
COMPOSITE INPUT GEAR - , ; )
- ’ K ) <=
. RPM | -+ SPEED REDUCTION RATIOS X
: ' ) 0.10 |_0.20 | 0.50 | 1.00 | 2.00"| 3.00 | 4.00 | 5.00
% . : - - : . - . ///
25 755 481 27641 229°| 208 201 197 194 7
' , 50 605 385 221 183 | 167 161 |+ 157 155 ////
: - . 100 | 486 |y 311.| 177 | 147 134 129 | 126 124

200-| 393/~ 250 | 143°| 118 | 107 | 103 | v01 ] 100

500 | 37| 220 | 125 | 104 94 91 89 88 ‘
~ 500 | 297 | 188 | 107 88 80 |. 77 76 75 ' .
‘ : " 750 | 262 166 94 78 71 68 67 66
—— T 1000 | - 240 152 | 86 7 65 62 61 60
. © 2000 196 | 123 70 [ 58 52 50 49 49 :
- . 4000 159 100 57 w7 42 41 40 39 . .
t
t . . ’
' ' h ! 4 ) \/
e
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.o TABLE C.7 ( B

Minimum Diamefer Matrix (mm) for Stondaord Operating Conditions
with Face Width/Diameter Ratio of 0.7

) v

~

L ]
«

CONVENTIONAL MESH

RPM | SPEED REDUCTION RATIOS
0.10 | 0.20 | 0.504% 1.00 | 2.00 | 3.00 | 4.00 | 5.00
& v
25 713 457 262 180 | 164 158 155 154
50 574 367 210 144 131 126 124 122
100 462 294 168 115 105 101 99 98
200 118 237 135 92 | - 84 81 80 79
300 329 209 119 /) 81 74 71 70 69
500 281 | 178 102" 69 63 61 60 59
750 248 157 90 61 56 54 52 52
- 1000 { 228 iy |, 82 56 51 49 48 47
2000 | 185 117 66 45 41 39 39 |. 38
4000 150 95 54 | . 36 33 ‘32 31 31
. ‘

COMPOSITE INPUT GEAR

RPM .  SPEED REDUCTION RATIOS

. 0.10 1 0.20 0.50 1.00 2.00 3.00 4.00 5.00 -
. o .
25 716 460 263 219 199 192 188 185
50 576 368 211 175 159 153 150 148
- 100 464 . 296 169 140 127 123 120 119

200 374 | 238 136 112° | 102 98 96 95

300 } 330 210 120 99 90 87 85 84

500 282 179 102 84 77 74 72 71

750 249 158 90 74 67 65 . 64 63

; 1000 | 229 s | 82 68 62 59 58 | 57
,2000 185 117 66 55 50 48 47 46

/4000 151 9s | 54 44 40 39 38 37
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TABLE C.8

* Minimum Diometer Matrix (mm) for Standard Operating Conditions
with Face Width/Diameter Ratio of 0.8

CONVENTIONAL MESH

! . RPM ] SPEED REDUCTION RATIOS

0.10 0.20 0.50 1.00 2.00 3.00 4.00 5.00

25 686 | . 438,] 252 173 158 152 149 147
50 550 351 202 138 126 121 119 117

100 [. 442 | 283 | 182 | 111 101 97 95 ol

200 357 | 227 130 89 81 ©78 76 |+ 76

S 300 315 200 114 78 n 69 67 |, 66

. 500 | 269 | 171 | 97 66 61 58 57 57

~—~ 750 | 238 | 151 86 59 53 51 50 50
1000 | 218 | 138 79 54 49 47 46 45 5

2000 1772 12 64 43 | ~ 39 38 37 37

4000' | 144 '91 51 35 [ 32 | 3% .30 "30

COMPOSITE INPUT GEAR

RPM SPEED REDUCTION RATIOS

0.10 0.20 0.50 1.00 2.00 3.00 4.00 | 5.00

25 | 689 | 439 | 253 | 21 191 184 181 °| 178
50.| s53 | 353 | 202 | 168 | 153 | N7 | as | 1s2
100 | wue | 284 | 162 | 135 | 122 118 | 115 | 114

200 158 | 228 130 108 98 94 92 91

300 316 201 115 g5 86 83 81 80

> 500 270 172 98 81 74 77" 69 68
750 239 152 86 71 65 62. 61 60

1000 | 219 | 139 79 65 s9 | A7 56 55

2000 178 112 64 53 4 46.| 45 [NA

4000 144 91 | &2 43 39 - 37 36 36

b,
. @ /
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! TABLE c.9

Minimum Diometer Matrix (mm) for Standard Operating Conditions
with Face Width/Diameter Ratio of 0.9

[ 1 ‘ -

-, CONVENTIONAL MESH
RPM , SPEED REDUCTION RATIOS
0.10 | 0.20-1 0.5b { 1.00 | 2.00 | 3.00 | 4.00 | 5.00 -
» 25 659 423 243 167 152 | 147 144 142 ) .
’ 50 530 339 194 |~ 133 122 117 115 114 '
100 427 272 156 107 97 g4 92 91
200 344 219 125 86 78 75 74 73
300 303 193 110 75 69 66 65 .
"\ 500.| ‘259 165 94 64 58 56 55 54
750 229 145 83 56 51 50 49 48
1000 210 | 133 76 52 47 45 44 44
2000 170 108 61 42 38 37 36 35
4000 139 88 50 34 31 30 29 29

‘COMPOSITE INPUT GEAR

RPM SPEED REDUCTION RATIOS

=]

0.10 0.20 0.50 1.00 | 2.00 3..00 4.00 5.00

25 665 425 244 |- 204 185 178 174 172 ’ .
50 534 341 195 163 148 142, 139 137
100 429 273 157 130 118 114/ 111 110

200 | 346 | 220 | 126 | 108 | 95| of | 89| we8

300 | 305 | 194 | 111 92 | " 83 80 79 78

500 | 261 166 | ' 94 78 71 68 67 66

750 | 230 | 146 |. 83 69 62 60 59 58 B
1000 | 211 134 | ° 76 63 57 55 54 53 ' '
2000 | 197 | 108 61 51 46 44 | " 43 43
4Q00 .| 139 88 | , 50 41 37 ‘36 35 35

v
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\ TABLE C.10 . . [\

!

\ - .
- Minimum Diameter Matrix (mm) for Stondard Operating Conditions
' with Foce Width/Diameter Ratio of 1.0

CONVENTIONAL ARRANGEMENT

. RPM SPEED REDUCTION RATIOS

0.10 | 0.20 | 0.5s0 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00
25 | 639 | 410 | 235 161 147 | w2 | 139 | 137
50 514 328 188 129 117 113 1111 110
‘ 100 | 413 | 263 | 151 103 94 90 | 89 87
200 | 332 | 212 | 121 .82 75 72 71 70
500 | 293 | 186 106 72 66 64 62 62
500 | 250 | 159 91 62 56 54 53 52
t 750 221 140 80 54 49 & 48 47 46
1000 | 203 | 128 73 50 45 43 43 42
2000 | 164 | 104 59 40 36 35 34 34
4000 | 134 8 48 32 29 28 28 27

, . COMPOSITE PINION p

‘ RPM | . SPEED REDUCTION RATIOS A

0.10 0.20 | 0.50 1.00 2.00 3.00 4.90 5.00

)

. 25 642 441 236 197 179 172 169 166
‘ 50‘ 515 359 129 157 143 137 135 133
100 415 264 151 126 114 110 107 106

‘200 334 213 121 101 91 88 86 85

J 300 295 187 107 | - 88 go | . 77 76 75

AN - 500 252 160 91 7% 68 66 64 63
, 750 222 141, 80 66 60 58 57 56

- 1000 204 129 73 60 55 53 52 51

2000 165 | - 104 59 49 44 42 42 41.

4000 | 134 | 85 48 30 f 36 34 33 33

e

[
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C.2 Minimum diometer Matrices for Case Hardened Material

TABLE C.11»

Minimum Dioﬁeter Matrix (mm) for ‘Hardened Pinion and Gear
. Materials with Face wWidth/Diometer Ratio of 0.8

CONVENTIONAL ARRANGEMENT' .
: - N
RPM SPEED REDUCTION RATIOS S
0.10,| 0.20 | 0.50 | 1.00 | 2,00 [ 3.00 | 4.70 | 5.00
" -
25 | 578 | 368 210 14e |- 131 128 126 124
50 | 464 | 296 169 115 105 102 100 99 !
100 | 374 | 238 135 92 84 81 80 79
200 | 300 191 109 74 68 65" 64 63
300 | 265 168 96 90 60 58 56 56
500 | 227 144 82 55 51 49 48 48
; 750 200 127 72 49 45 43 42 | 42
. 1000 183 116 66 45 41 39 39 | -38
2000 149 94 53 36 33 32 31 3 '
4000 121 76 43 29 27 26 25 25
£OMPOSITE INPUT GEAR (
Vot
‘ RPM SPEED REDUCTION RATIOS

0.10 0.20 0.50 1.00 2.00 3.00 4.00 5.00

-

e

‘ 25 | s83 | 371 211 | 175 | 160 | 154 | 151 | 149
. 50 |, 467 | 299 | 169 [ 140 | 127 | 123 | 121 | 19 * '
‘ 100 | 376 | 239 | 136 | 112 |. 102 98 97 98 he ‘
: 200 | 302 | 193 | 109 90 82 79 77 76
300 | 267 | 169 96 79 [- 72 69 68 67
500 | 228 | 145 82 67 61 59 58 57 °
N, . 750 201 127 72 59 54 |~ 52 51 50
1000 | 184 | 117 66 54 49 48 47 46
2000 | 149 95 53 VN Y 38 8 | 37
. 4000 | 121 77 83 | 35.| 32 31 30 N\ 30
/ »
. s
-~ \\ - . ’> /
i ' LN C
- ’ e .
Eﬁf»‘. N s
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C.3 - Optimum Number of Input Gear Teeth Matrix. Standord Operating
Conditions.

L

TABLE C.12 |

Md??ix of Optimum Number of Teeth on Input Gear for a
Face Width/Diameter Ratio of 0.5 !

!
i

.
4

-

CONVENTIONAL MESH

RPM - .. SPEED hEDUCTION RATIOS

’ T\
0.10 | 0.20 | 0.50 | 1.00 | 2.00 | 3.00 | 4.00 | 5.
T ™ A3
<26 | 64371 239 | 114 78 57 41 81 | "o i
) s0 | %2 | 2s56.| 110 75 57 |* 44 |/ 43 43
" 100 485 258 118 80 55 53 |/ 52 43
200 | 490 | 249 118 81 57 50 49 48
300 | 490 | 256 125 85 58 56 49 48
500 | 518 | 266 133 85 81 53 52 52 ) .
750 | 523 | 276 133 85 63 56 55 | , S0
" 1000 520 278 137 88 67 56 55 50
2000 | 536 | 287 W - 9 68 59 s 54 54 ¥
4000 | 542 | 292 141 93 ‘70 62 |¥ s8: s
- COMPOSITE INPUT GEAR
RPM SPEED REDUCTION RATIOS ’
0.10 | 0.20 | 0.50 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 '
25 | 377 | 200 92 90 69 67 65 |. 65 (k
: 50 | 403 193 92 107 83 67 65 65 ~
100 | 406 | 207 89 110 78 75 63 62
200 426 209 95 118 80 77 67 67
300 | 434 | 221 94 112 87 76 74 66
500 | 421 220 98 18 | 77 77 70 69
750 | 438 | 222 102 | 117 89 80. 72 73
1000 | 441 229 101 119 92 78 76 ¥ 70
2000 | 4%6 | 237 105 125 92 84 78 73
4000 | a64-| 234 109 128 95 85, go] 76

. X
PRS-
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" TABLE C.\N3

" Matrix of Optimum Number of Teeth on Input
Face Width/Diameter Ratio of 1.0.

Gear for a

4

& LN CONVENTIONAL MESHQL
RPM |, SPEED REDUCTION RATIOS
\ .
’ i: 0.10 | 0.20 | 0.50 | %.00 | 2.00 | 3.00 | 4.00 | 5.00
. 25 453 226 111 76 58 45 44 43
50 L46 233 |, 119 71 56 54 44 43
100 488 249 119 81 59 | 50 49 48
200 498 267 124 85 59 52 51 50
. 300 | 509 265 126 86 63 55 49 49
} 500 514 264 129 83 62 56 50 50
750 524 277 133 86-|- 63 | 57 52 51
1000 528 P 274 |+ 133 87 64 59 54 53
' - 2000 532 288 140 89 566 58 55, 54
- 4000 549 293 140 92 70 61 57 54
) COMPOSITE INPUT GEAR ,
\ . ¥
‘ RPM . SPEED REDUCTION RATIOS
.0.170 | 0.20 | 0.50 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00
/
R 25 604 195 93 109 71 |, 68 67 66
50 406 208 89 112 79 65 64 63
i . 100 393 209 95 109 81 69 68 67
) . 200 421 218 96 | . 111 87 76 68 67
' . 300 418 222 101 119 89 |- 73 72 71
500 | 436 227 101 119 87 78 71 70
. 750° 438 223 101 121 |. 90 78 76 71
. 1000 434 224 104 120 91 80 74 73,
< 2000 456 231 108 124 95 81 76 75
4000 | - 466 241 110 128 96 85 80 76
LY
B 4
P
Fd
s A : , >
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C.4  Optimum Module Matrix. _Stondard Operating Condtions

/
« TABLE C.14

) Matrix of Optimum Module for Face Width/Diameter Ratio
of 0.5 for Standard Operating Conditions

¥
CONVENTIONAL MESH )

RPM |- SPEED REDUCTION RATIOS
LT | 0.10 | 0.20 | 0.50 | 1.00 | 2.00 | 3.00 Q.oo 5.00
26 | 1.81 | 2,12 | 2.54 | 2.54 | 3.18 | 4.23 | 4.23 | 4.23
'850 | 1.41 |['1.59 | 2.12 | 2.12 | 2.54 | 3.18 | 3.18 | 3.18
100 | 1.06 | 1.27 | 159 | 1.59 | 2.12 | 2.12 | 2.12 | 2.54
200 | 0.85 |1.06 | 1.27°] 1.27 | 1.59 | 1.81 1.81 1.81
300 | 0.75 | 0.91 | 1.06 | 1.06 | 1.41 1.41 1.59 | 1.89
500 | 0.60 | 0.75 | 0.85 | 0.91 1.15 | 1.27 | 1.27 | 1.27
750 | 0.5% | 0.64 | 0.75 | 0.79 | 0.98 | 1.06 | 1.06 | 1,15
1000 | 0.49 | 0.8 0.67 | 0.71°| 0.85 | '0.98 |.0.98 | 1.06
2000 | 0.38 | 0.45 { 0.53 | 0.55 | 0.67 | 0.75 | 0.79 | 0.79
4000 |.0.31 | 0.36 | 0.42 | 0.44 | 0.53 | 0.58 | 0.60 | 0.64

COMPOSITE INPUT GEAR
RPM ° ] SPEED REDUCTION RATIOS
T - .
0.10 | 0.20 | 0.50 l1.oo 2.00 | 3.00 | 4.00 | 5.00
——25 | 2,12 | 2,54 | 3.18 | 2.54 | 3.98 | 3.18 | 3.18 | 3.18
‘ 50 | 1.59 | 2.12 | 2.54 | 1.81 | 2.12 | 2.54 | 2.54 | 2.54
100 | 1.27 | 1.59 | 2.12 | 1.4 1.80 [-1.81 | 2.12 | 2.12
200 | 0.98 | 1.27 | 1.59 | 1.06 | 1.41 1.41 1.59 | 1.59
300 | 0.85 | 1.06 | 1.41 | 0.98 | 1.15 | 1.27 | 1.27 | 1.41
500 |,0.75 | 0.91 | 1.15 | 0.79 | 0.98 | 1.06 | 1.15 | 1.15
750 | 0.64 | 0.79 | 0.98 | 0.71 | 0.85 | 0.91 | 0.98 |{-0.98
1000 | 0.58 | 0.71 | 0.91 { 0.64 | 0.75 | 0.85 | 0.85 | 0.91
2000 | 0.45 | 0.55 | 0.76 | 0.49 | 0.60 | 0.64 | 0.67 |.0.71
4000 | 0.36 | 0.45 | 0.55 | 0.38 | 0.47 |.0.51 | 0.53 |-0.55
/\/ i |
) » . ‘
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: TABLE C.15
) . ) Sy
Optimum Module on Input Gear (mm). Face Width/
Diameter Ratio of 1.0 -
‘ e R —— et
‘;L
CONVENTIONAL MESH
RPM SPEED REDUCTION RATIOS .
0.10 | 0.20 | 0.50 | 1.00 | 2.00 | 3.00 | .00 | 5.00
25 | 1.1 | 1.81 ] 2.12 | 2.12 | 2.54 | 3.18 | 3.18 | 3.18
50 ] 1.15 | 1.41 | 1.59 | 1.81 ] 2.12 | 2.12 | 2.54 | 2.54 \
100 | 0.85 | 1.05 | 1.27 | 1.27 | 1.59 | 1.81 | 1.81 | 1.81% _
200 | 0.66 | 0.79 | 0.98 | 0.98 | 1.27 | 1.41 [ 1.41 | 1.41
* 300} 0.57|0.70 | d.85 | 0.85 |.1.06 | 1416 | 1.27 | 1.27
. 500 | 0.48 | 0.60 | 0.71 | 0.75°| 0.91 .98 | 1.06 | 1.06 .
‘ 750 | 0.42 | 0.50 | 0.61 | 0.64 | 0.79 | 0.85 | 0.91 | 0.91
1000 |.0.38 | 0.47 | 0.55 | 0.58 | 0.71 | 0.75 | 0.79 | 0.79
2000 | 0.31 | 0.36 |[0.42 | 0.45 | 0.55 | 0.61 | 0.64 | 0.64
4000 | 0.24 | 0.28 | 0.34 | 0.35 | 0.42°'| 0.47 | 0.49 | 0.51, .
COMPOSITE INPUT GEAR \
RPM SPEED REDUCTION RATIOS
- 0.10 | 0.20 | 0.50 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00
26 | 1.59 | 2.12 | 2.54 | 1.81 | 2.54 | 2.54 | 2.54 | 2.54
50 | 1.27.{ 1.59 | 2.12 | 1.47 | 1,817 | 2.12 | _2.12 | 2.12 -
90 | 1.06 | 1,27 | 1.59 | 1.16 1.2}/»/1.59 1.59 | 1.59
1 200 | 6.79 | 0.97 | 1.27 | 0.91. | 1.06 [ 1.16 | 1.27 | 1.27 .
a 300 | 0.71 ] 0.84 | 1,06 | 0.75 | 0.91 | 1.06 | 1.06 | 1.06"
‘ 500 | 0.57 | 0.70 | 0.91 | 0.64 | 0.79 | 0.85 | 0.91 ¥ 0.91 B}
N 750 | 0.50 | 0.63 | 0.79 | 0.55 | 0.67-| 0.75 | 0.5 | 0.79 ,
1000 | 0.47 | 0.57 | 0.71 | 0.51 | 0.61 | 0.67 | 0.71.| 0.71 ~ .
2000 {-0.36 | 0.45 ['0.55 | 0.40 | 0.47 | 0.53 | 0.55 | 0.55 ’
. 4000 | 0.28'| 0.35 | O0.44 | 0,31 | 0.37 | 0.41 | 0.42 | 0.44

“*a
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c.5 -~ fﬂogtor & - Eigenvalue borivctives

H

) \ s TABLE C.16

Eigenvalue Derivatives An/AM(1,1) (krud/s)/(kgtﬁ?) ,

o [

MASS NODE 1 ' | SPEED ’
v " EIGENVALUE - # 1 2 3 o
1 -4672 | -1501 | -4671 | -1785
. 2 =100 | © -26 -100 -27
3 -45 -2 43 ‘-5
~ 4 o | -3977 -17 -91
5 0 -7 0 | -3966
, b6 0 -1 0 0
7 A -35 | -38 -3 -6
’ 8 ‘ 0 -2 0 0
MASS NODE 2 ot SPEED
EIGENVALUE # 1 2 3 4
- 1 -6 -2314 -8 | -1700
“2 -500 | -1854 -500 | -1837
. 3 -48 -2 -45 -5
D 0 -721 -20 -89
\ 5 0 -263 o| -2
6 0 -1 0 0
.7 . -39 -38 -3 -6
8 0 -18 0 0
L . .
1 ’ -
‘ MASS NODE 3 , . SPEED
EIGENVALUE # 1 2 3 4
R 1 1 ‘“430 0 -430 0’
2 -162'| . o -162 0
- 3 -46 =14 -43 -10
4 0 0 -17 -36
. " > 8 0 o 0 0
® :6 . 0 "2 o 0
, 7 ‘ -34 -35 -3 -5
8 0 0 0 0

,
P R E
\ .
L) Lt R
. ‘e
PR
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s TABLE C.16 - Continued ot
EIGENVALUE # 1 2 3 4 //fﬂ
1 A 0 -260 | o0 -1022(» S
° 2 0| -1691" 0| -1539 '
v 73 , -28 -2. -39 -5
4 . -1493 |~ -385 | -246 -87 ‘
A . 5 - '-29 -61 | -1763 -29
- 6 ¢ -2 -1 ‘ 0 0
. 7 -98 -37 -6 -6
.8 -25 | * 0 0 0
MASS NODE 5 SPEED
EIGENVALUE # 1 2 3 4
h " i
' 1 0 0 ol -3118
2 ] -374 0 -37
3 -27 | ' =2 -39 -5
4 -67 -221 -250 -87
5 g -5848 | -1522 | -2201 | . =561
.8 * f =2 -1 0 .0
7 -103 -39 -7 -6
8 -196 -193 0 0’
MASS NODE 6 SPEED *
' EIGENVALUE # T 17 2 3 4 .
1 0 0 0 0
L2 0 o ,0 0.
3 -7 -5 0 [
4 0 0 -2 -5 :
5 ) () 0 0
6 ! -1 23| -219 -67
7 -4 -2 -15 ~6
~ 8 0 -0, -78 8
A
MASS NODE 7 SPEED
EIGENVALUE # 1 2 3 4 "
1 0 -27 o | o
2 0 -33 0 0
“ 3 -27 -2 0 0
4 -158' ~528 -2 -5 .
~ 5 -1122 -341 0 0
. 8 -2 -1 -58 -15
7 -104 -40 -16 -6
8 -113 -23 -8 -7




E:("'l .
A
k4
A
\ Eod
P
3
-
4
L
rd -
R r
- |

- 239 -

TABLE C.16 -~ Continued

Py

_MASS ]‘NODE 8 SPEED
EIGEN§VALUE # 1 2 3 IA
. -
1 0 -66 . 0 0
2 L () -15 | 0 0
3 -26 -2 0 0
4 . -371 -708 -2 . -5
5 -94 -401 0 0
. 6 -2 -1 -29 0
7 , -102 -38 -15 -6
8 -8263 | -3216 | -1966 -629
TABLE C.17

~

Eigenvalue Deriv

; .
atives (3n/dk) (krad/s)/(MNm/rqd)

I3

Lol

STIFFNESS (0-1) SPEED
EIGENVALUE # 17« 2 3 "
1 0.615 | 1.913 | 0,615 | 1.609
2 0.261 { 0.005 | 0,261 | 0.005
3 \ 0.679 | 0.623 | 7,178 | 2.173
4 0.000 [%2.091 | 0.797 | 5.4413
. 5. 0.000 | 0.002/| 0.000 | 7.156
6 > 0,215 | 1.366 | 0.000 | 0.001
7 | .2.381 | 2,878 | 0.204 | 0.433
8 0.000 | 0.002-| 0.000 | 0.Q00
STIFFNESS (1-2) SPEED
EIOENVALUE # 1 2 3 4
Y W ‘ :
i 0.660 | 3.708 | 0.660 { 6.279
2 2.727 | 0.439. | 2.728.4 0.445
3 0.005 | 0.000 | 0.004 | 0.000
4 0.000 | 3.985. | 0.006 | 0.001
. 5 0.000 { 0.086 | 0.000 | 6.851
6 0.000 | 0.000 | 0.000.| 0.000
7 0.008 | 0.000 | 0.001 | 0.000
8. \" 0.000 [ 0.014 | 0.000 | 0-000
N -
» - «
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17 -+ Continued
LN ’
_ STIFFNESS (3-4) SPEED
) EIGENVALUE # 1 2 3 4
i ] 1 0.057 | 0.337 | 0.057 | 0.932
. 2 0.400 | 0.321 | 0.437 | 0.298
3 0.311 |“1.202 | 0.015 | 0.493
4 1.967 | 1.220 [18.575 [13.905
e 5 . 0.003 | 0.015 | 1.332 | 0.053
6 0.449 | 0.035 | 0.000 | 0.000
g , ‘ 7 17.128 [10.905+ 1.266 | 1.611
S 8 0.010 | 0.000 { 0.000 | 0.000
STIFFNESS (4-5) \ . SPEED
EIGENVALUE # 1 2 3 4
) \ 1 0.000 | 0.354 | 0.000 | 6.944
; . 2 0.001 | 0.692 | 0.000 | 0.397
! 3 0.002 | 0.002 | 0.001,| 0.001
’ 4 2.838 | 3.615 | 0.001f( 0.000
. 5 0.711 | 0.239 | 5.920 | 0.607
. ) 6 . 0.000 | 0.000 | 0.000 | 0.000
. 7 . 0.005 | 0.001 | 0.000 | 0.000
® 8 0.150 |{0.095 | 0.000 | 0.Q00
- ‘\ . k«\ - -
STIFFNESS (5-6) ' SPEED
( K ° EIGENVALUE # 1 2 3 4
4 .
, 1 0.000 | 0.000 | 0.000 | 2.822
2 ’ 0.000 | 0.071 | -0.001 | 0.007
. 3 9.320 | 3.481 | 5.442 | 1.909
— 4 0.087 | 0.680 |14.095 | 7.803
f 5 0.621 | 0.373 | 1.656 | 1.030
6 2.723 | 0.590 | 0.379 | 0.185
7 - 10.031 | 4.241 | 0.124°} 0.000
a% f ©0.082 | 0.083 | 0.014 | 0.200
N sSTIFFNESS (7-8) SPEED
A EIGENVALUE # 1 2 3 4
, : 1 .0.000 | 0.010 |"0.000 | 0.000
2 0.000 | 0.018 | 0.000 | 0.0600
, 3 “ 0.001 | 0.000 | 0.000 | 0.000
4 0.058 | 0.040 | 0.000 | 0.001
5 0.798 | 0.363 | 0.000 |~0,000
6 "0.000 | 0.001 | 0.290 | 0.046
7 0.001 | 0.001 | 0.002 | 0.001
- 8 4.311 | 1.629 | 0.403 | 0.212
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. . TABLE C.17 - Continued
STIFFNESS (8-9) . SPEED '
ETGENVALUE # | 1 2 3 4
x 0.000 | 0.084 | 0.000 | 0.000
-2 0.000 | 0.003 | 0.000 | 0.000
3 3.951 | 0.547 | 0.038 | 0.008
4 0.480 | 2.152 | 0.097 | 0.267
5 0.010 | 0.098 | 0.000 | 0.000
6 1.276 | 15334 | 0.050 | 0.000
7 7.000 | 2.887 | 1.065 | 0.426
8 . 3.453 | 1.386 | 0.355 | 0.174
\
\\
1.
e ' P)
3 ] ’
b
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Anertia and Stiffness Matrices for 9 Speed Di~ive

. TABLE C. A
Op%imum Arrangement With Initial Shaft Diameters
*, .,
!
GEAR SHAFT
EN DIAM LAMDA WIDTH # DIAM
(mm) (mm) (mm)
~
1 80.7 0.504 40.7 1 30.0
2 182.0 0.114 20.8 2 40.0
3 264.7 0.100 26.5 3 50.0
4 230.8 40.7
5 129.5 20.8
6 46.8 268.5
7 111.1 0.510 56.7
8 155.5 0.214 33.3
9 207.6° 0.136 28.2
10 369.7 i 56.7 .
11 325.4 53.3
12 273.0 28.2
2
'TABLE C.19
Ratio of Shaft Speed to Input Shaft Speed
" SPEED -
SHAFT 1 2 3 4 5
1 1.000 1.000 1.000 | 1.000 1.000
2 0.350 1.406 5.651 " 0.350 1.406
3 0.105 0.422 1.698 0.167 0.672
SPEED
SHAFT 6 7 8 9
\’\ -
1 1.000 1.000 1.000 1.000
2 5.651 0.350 1.406 5.651
) 3 2.700 0.266 1.069 4.296

_-",3"‘.;:‘;;5&‘_ ot
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' ' TABLE C.20
. e
- K Bosic ond Equivalent Inertia of Geurs Referenced
’ ' to Input Shaft Speed (kgm ) ,
, GEAR SPEED
# | BASIC #1 #2 3 U #G
\ 1 ]| 0.0013 | 0.0013 | 0.0013 | 0.0013 0.0013
2 | 0.0175 | 0.0175 | 0.0175 | 0.0175 0.0175.
‘ . 3| 0,0099 | 0.0999 | 0.0999 | 0.0999 0.0999
4 | 0.0888 [ 0.0109.| 0.1755 | 2.8358 0.0109
5 | 0.0045 | 0.0006 | 0.0089 | 0.1433 0.0006
6 | 0.0001 | 0.0000 | 0.0002 | 0.0031 0.0000
7 | 0.0066 | 0.0008 | 0.0131 | 0.Z1i9 0.0008
8 | 0.0149 | 0.0018 | 0.0295 | 0.4770 0.0018
9 | 0.0403 | 0.0049 | 0.0797 | 1.2869 0.0049
10 | 0.8143 | 0.0090 | 0.1453 | 2.3475 0.p227
-11 | 0.2868 | 0.0032 | 0.0512 | 0.8267 0.0080
12 | 0.1206 | 0.0013 | 0.0215 | 0.3477 0.0034
GEAR SPEED
. ‘ # 5 6 7 8 .9
i 1 | 0.0013 | 0.0013 | 0.0013 | 0.0013 | 0.0013 -
2| 0.0175 | 0.0175 | 0.0175 | 0.0175 0.0175
3 | 0.0999 | 0.0999 | 0.0999 | 0.0999 0.0999
j 4 | 0.1755 | 2.8358 |-9.0109 | 0.1755 2.8358 ¥ > .
5 |.0.0089 | 0.1433 | 0.0006 | 0.0089 0.1433 -
. 6 | 0.0002 | 0.0031 | 0.0000 | 0.0002 0.0031
7 | 0.0131 | 0.2119 | 0.0008 | 0.0131 0.2119 ‘ N
. 8 | 0.0295 | 0.4770 | 0.0018 | 0.0295 0.4770 ’
9 | 0.0797 | 1.2869 | 0.0049 | 0.0797 1.2869
10 | 0.3673 | 5.9349 | 0.0576 | 0.9303 | 15.0317 - -
11 | 0.1294 | 2.0900 | 0.0203 | 0.3276 5.2936 ’
i 12 | 0.0544 | 0.8789 | 0.0085 | 0.1378 2.2262
R _ ) — N
T
é ~ - ,
oA, e
g, N



",
h
I

£ T

- 244 -

TABLE C.

21

Nas

Stiffness of Basic 'and_,Equivolent
Couplings (m:;/rod)

*

SPEED 1
# A B8 L BASIC EQUIV
1 0 2 | 159.4 0.320 0.3198
2 2 3 3.0 | 16.993 | 16.9928
3 3 1 3.0 | 16.993 | 16.9928
7 5| & 47.2 1.080 0.1320
8 6 4 67.2 0.759 0.0928
9 4 9 4.0 | 12.745 1.5588
10 9 7 84.9 0.601 0.0734
1 7 8 89.9 0.567-| 0.0693
15 | 12 | 10 5.0 | 10.196 0.1125
16 | 10| 11 5.0 | 10.196 0.1125
17 | 11| 15 | 164.9 0.309 0.0034
SPEED 2
’ A B L BASIC EQUIV
K 0 2| 159.4 0.320 0.3198
2 2 3 3.0 | 16.993 | 16.9928
3 3 + 3.0.] 16.993 | 16.9928
7 5 6 47.2 { 1.080 0.1320
8 6 4 67.2 0.759 0.0928
9 4 |9 4.0 | 12.745 1.5588
10 9 7 84.9 | -0.601 0.0734
1 71.8 89.9 0.567 0.0693
15 | 12 | 10 5.0 | 10.196 0.2846
16 | 10|11 | s.0 |-10.196 0.2846
17 | 11| 13 75.0 0.680 0.0189

.
.
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TABLE C.21 (Continued)

SPEED 3
B! L BASIC EQUIV
2 ] 159.4 0.320 { .0.3198
3 3.0 | 16.993 | 16.9928
1 3.0 | 16.993 | 16.9928
6 47.2 | 1.080 0.1320
4 67.2 0.759 0.0928
9 4.0 | 12.745 1.5588
7| 8.9 0.601 0.0734
8 89.9 0.567 0.0693
10 5.0 | 10.196 0.7195
11 |. 5.0 | 10.196 0.7195
13 | 249.8 0.204 0.0144
SPEED 4
B L BASIC EQUIV
21 45.0 1.133 1.1328
3 3.0 | 16.993 | 16.9928
1 ©3.0°| 16.993 16.9928
6 47.2 1.080 2.1333
4 67.2 0.759 | +1.5001
9 4.0 | 12.745 | 25.1862
7 84.9 0.601 1.1868
8 89.9 0.567 1.1203
10 5.0 | 10.196 1.8190
1 5.0 | 10.196 1.8190
13 | 164.9 0.309 0.0551
SPEED 5
B L BASIC EQUIV
2 45.0 1.133 1.1328
3, 30| 16.993 | 16.d038
1 3.0 | 16.993 | 16.9928
6 47.2 1.080 2.1333
4 67.2 0.759 1.5001"
9 4.0 | 12.745. /25.1862
7| 84.9 0.601 1.1868
8 89.9 0.567 1.1203
10 5.0 | 10.196 4.5988
1 5.0 | 10.196 4.5988
13 75.0 0.680 0.3065

e
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‘:SLE C.21 (Continued)

SPEED 6
# A B L BASIC EQUIV .
1 0| 2 45.0 1.133 1.1328
2 213 3.0 | 16.993 | 16.9928
3 3.1 3.0 | 16.993 | 16.9928
7 5, 6 47.2 1.080 2.1333
8 6 4 67.2 0.759 1.5001 P
9 4 9 4.0 | 12.745 | 25.1862
10 9 7 84.9 0.601 1.1868
11 7 8 89.9 | 0.567 1.1203
15 | 12 | 10 5.0 | 10.196 | 20.1489
16 ] 10 | 1 5.0 | 10.196 | 20.1489 \ g
17 | 11 | 13 | 249.8 Q.204 0.4032 -
£
SPEED 7 ‘
# A B L BASIC EQUIV '
1 0 2 92.2 0.553 0.5527
2 2 3 3.0 | 16.993 | 16.9928 .
3 3 1 3.0 | 16.993 | 16.9928
7 5 6 47.2 1.080 | 34.4710
8| 6 4 67.2 0.759 | 24.2398
9 4 9 4.0 [~12.745 |406.9552
10 9 7 84.9 | .0.601 | 19.1761
1 7 8 89.9 0.567 | 18.1020 -
15| 12 10 5.0 | 10.196 | 29.3923
16 | 10 | 11 5.0 | 10.196 | 29.3923
17 ] 11| 13| 164.9 0,309 0.8910 ,
SPEED 8 -
# A 2 L BASIC EQUIV -
.1 0 2 92.2 0.553 '0.5527 S
2 2 3 3.0 | 16.993 | 16.9928
3 3 1 . 3.0 | 16.993 | 16.9928
7 5 6 47.2 1.080 | 34.4710.
8 6 4 | 67.2 0.759 | 24.2398
9 4 9 6.0 | 12.745 |406.9552
10 9 7 84.9 0.601 | 19.1761
1|7 8 89.9 | .0.567 | 18.1020 _ S
15 | 12 | 10 5.0 | 10.196 | 74.3079 .
16 | 10 | 11 5.0 | 10.196. | 74.3079
17} 11 | 13 75.0 0.680 4.9538 .
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. TABLE C.21 (Continued) . ' . -
SPEED 9
) . #|! A B L BASIC | EQUIV -
: 1] o 2| 92.2| o.s53 | o0.5527
. 2| 2 3 3.0 | 16.993 | 16.9928
5| 3 1 3.0 | 16.993 | 16.9928 L
71 s 6| 47.2 1.080 | 34.4710 .
8| s 4| 67.2 | 0.759 | 24.2398
< 9l 4 9 4.0 | 12.745 [406.9552
10| 9 7| 84.9] o0.601 | 19.1761
- , 1] 7| 8| 89.9| 0.567 { 18.1020
15| 12 | 10 5.0 | 10.196 |187.8558
78| 10 | 11 5.0 | 10.196 {187.8558
17 | 11 | 13 | 249.8 | o0.204 | 3.7599

-
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