National Library
of Canada

i+l

du Canada
Canadian Theses Service

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily dependent upon the
guality of the original thesis submitted for microfilming.

very effort has been made to ensure the highest quality of
reproduction possible.

1{ pages are missing, contact the university which granted
the degree.

Some rages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microformis governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

NL-339 {1.88/04)C

Biblioth nationale

Service des thases canadiennes

AVIS

La qualité de cette microforme dépend grandement de la

qualité de lathése soumise au microfilmage. Nous avons

:_out fait pour assurer une qualilé supérieure de reproduc-
ion.

S'il man?e des pages, veuillez communiquer avec
funiversité qui a contéré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées & l'aide d'un ruban usé ou si l'université nous a fait
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme est

soumise A la Loi canadienne sur le droit d'auteur, SRC
1970, ¢. C-30, et ses amendements subséquents.

Canadi



Computer Orbits of Chaotic Systems

by
Pankaj K. Kamthan

A Thesis
in
The Department
of
Mathematics and Statistics

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Science at
Concordia University
Montreal, Quebec, Canada

September, 1990

© Pankaj K. Kamthan, 1990



BRSSP e Fald e I D R

.*. Nationat Library Bibliothéque nationale
of Canada du Canada
Canadian Theses Service Service des théses caradiennes
Ottawa, Canada
KIA ON4

The author has granted an irevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothdque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thase
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve (a propriété du droit d'auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent é&tre
imprimés ou autrement reproduits sans son
autorisation.

ISBN ©-315-64666-7

Canadi



Computer Orbits of Chaotic Systems

by
Pankaj K. Kamthan

ABSTRACT

let T: X - X, X=[0,1] be a transformation. When t admits an (ergodic)
invariant measure, the Birkhoff Ergodic Theorem describes the asymptotic (statistical)
behaviour of the (chaotic) system (X, t). Among all the invariant measures that are
associated with T, those that are absolutely continuous with respect to the Lebesgue
measure (ACIMs) are physically relevant.

When subjected to a numerical or computer experiment, chaotic systems give rise 1o
(inexact) computer-generated orbits. We discuss the following question: to what extent
do the computer orbits of a chaotic system reflect the true dynamics of the actual
system?

An important tool employed in this study is the shadowing property of the system.
The shadowing property has limitations towards computation, e.g. it lacks stability with
respect to external perturbations. The other tool utilized is the ACIM. For a large class
of transformations T which admit a (unique) ACIM L, it is shown that the computer
orbits of T exhibit L.

ACIMs are stable with respect to a large class of deterministic (and stochastic)
perturbations. This result is used to show that there is stability of the shadowing
property for certain families of Markov operators. Finally, applications to chaotic
dynamics of cellular automata and fractals are discussed.
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INTRODUCTION

The way various phenomena or processes in nature evolve in time is often
described by a non-autonomous system of first-order ordinary differential
equations,

dx _
ar = FoaD,

where x(t) is a vector in the phase-space X describing the state of the system and
F(x,t) is a (nonlinear) differentiable function describing the (continuous) time
evolution of x(t). When time t is discrete and integer valued (lime discretization)

we obtain a map,

Xn+1™ t(xﬂ)

Maps can arise in continuous time systems in the form of a Poincaré surface of
section [223,229]. Such mathematical modelling is usually done on the basis of a
time series extracted from an experimental data based on the observed phenomena
[249-253].

A phase-space X together with a transformation T constitute a dynamical
system (X, 1). The time evolution of the dynamical system is represented by the

orbit {x, T(:® tz(x), ..}, X € X, i.e. given the past it determines the future. The
main purpose of the study of dynamical systems is to understand the nature of all
orbits. Inestigations of orbits of dynamical systems go as far back as the 17th
century when Kepler proposed the three laws of motion for the planetary orbits for
our solar system.

Almost a century ago it was known that some deterministic dynamical systems
exhibit incredibly complex behaviour. Poincaré had found that the general solution
of the three-body problem of celestial mechanics [205] can be very complex. In the
1940's, Cartwright-Littlewood [206] and Levinson [207] observed unpredictable
long-term behaviour in the solutions of forced Van der Pol equations. In the 1950's,
Belousov observed chaotic oscillations in the colour of a mixture of citric and
sulphuric acid, potassium bromate and a cerium sait. In the 1960's, such
unpredictable or chaotic behaviour was observed for‘he first time in simple models
when Lorenz [208] studied a highly simplified model of Rayieigh-Bénard convection
in fluids in connection to the meteorological problem of we.: er predictions. Relateu
results were observed by Hayashi [209] in his work with . snlinear electricai




circuits. With the advent of fast computers since the 1970's, long-term
integrations have become a routine facility and chaotic phenornena has been observed
in many systems and in various domains of science [210-219]: astronomy,
meteorology, ecology, chemistry, fluid dyinamics, optics, computer networks,
epidimiology, human physiology and quantum mechanics. (See [237] for a
historical outline of nonlinear dynamics and chaos.) :

Recently there has baen a considerable interest in the study of chaotic dynamics
of low-dimensicnal dissipative systems [10] due to the richness of complex
behaviours they exhibit. When a system is diz.ipative, its orbits contract the
volume of the phase-space in time. A geometrical picture of chaotic behaviour on the
phase-space of a dissipative system was first provided by Smale [220], who showed
that the phenomenon of ‘stretching and folding' occurs on the phase-space, giving
rise to a hoiseshoe type structure.

Dissipative systems are characterized by the presence of an attractor. An
attractor is a compact subset of the phase-space to which the orbits of the system
converge as time t — o, and the basin of attraction of an attractor is the closure of
the set of initial conditions whose orbits converge to the attractor. An attractor could
be a fixed point, a set of dimension zero or a closed curve, a set of dimension one.
When the attractor is a set of hon-integral dimension i.e. a fractal, it is called a
strange attractor. The term strange attractor was coined by Ruelle-Takens [221]
while investigating the phenomena of fluid turbulence and has become a paradigm of
nonlinear dynamics.

There are various characterizations of chaos in a dynamical system: existence of
1) a positive Lyapunov exponent, 2) positive topological entropy, 3) an invariant
measure (weakest characterization) and various routes leading to chaos: period
doubling, intermittency, crisis. Existence of any of these parameters implies a
sensitive dependence on initial conditions on the phase-space: orbits starting closely
move apart rapidly. An attractor with this property is called a chaotic attractor. It
is typical that a strange attractor is chaotic (although this is not always so [222]).

Our interest lies in the study of attractor(s) which result from the asymptotic
motion of a chaotic system and contain all the information regarding the long-term
behaviour of the system. The description of geometric structure [198,221)] of a
chaotic attractor is usually not feasible due to extremely complicated dynamics. In
such a case, statistical analysis becomes necessary. A useful tool in this study is
ergodic theory along with its measure-theoretic considerations. A basic virtue of
ergodic theory is that it allows us to describe long-term behaviour of a system and
not to worry about transients.

Whenever a numerical experiment is carried out to study a dynamical system, it
is often subjected 1o unavoidable external perturbations. Since the use of computers

213



in these experiments has played a significant role in elucidating the underlying
nature of chaotic systems, it is important to investigate inherent limitation imposed
by computer roundoff/truncation errors (space discretization) on such numerical
studies. Therefore, it is crucial o understand whether what we see in computer-
generated pictures of chaotic attractors are artifacts due to chavs-amplified
roundoff/truncation errors or if they represent interesting new phenomenon
inherent in the real-world problem being studied. We thus face the following
central question:

In what sense and to what extent do numerical or computer experiments with
their inherent roundoff/truncation errors refiect the true dynamics of the actual
system?

In this thesis, we investigate the above question and study the long-term
behaviour of computer-generated orbits of one-dimensional chaotic systems through
the application of recent results in ergodic theory. We restrict ourselves to the
study of non-invertible mappings on an interval for the following reasons:

1 ) when difference equations are used as approximations to ordinary differential
equations, they often produce non-invertible mappings, and this is frequently the
case when a chaotic behaviour occurs [170],

2 ) they may serve as simple models for physical, biological and various other
systems,

3 ) the study of certain higher dimensional systems (e.g. the Lorenz system) can be
reduced to the study of maps of the interval,

4 ) they can be easily modelled on a computer.

We now present a brief outline of the content of the thesis. Reference to appendices
will appear at appropriate places in the chapters.




OUTLINE

CHAPTER1  ASYMPTOTIC DESCRIPTION OF CHAOTIC SYSTEMS: ROLE OF
INVARIANT MEASURES

The first chapter begins with a review of some basic notions from ergodic theory,
including the Birkhoff Ergodic Theorem. Thereafter we discuss the significance and
physical relevance of invariant measures in the asymptotic description of chaotic
systems which appears in experimental and computational work. Using the
Frobenius-Perron operator, we then describe the theory of invariant measures,
absolutely continuous with respect to Lebesgue measure (ACIMs), which are both
theoretically and physically significant measures.

CHAPTER2 MEASURES ON PERIODIC ORBITS

Let t: [0,1] — [0,1] be a transformation having a unique ACIM . It has been
observed that computer-generated orbits of t display W in the sense of Birkhoff
Ergodic Theorem. Since a computer orbit is necessarily periodic, this leads to the
question whether the periodic orbits of t display any of the invariant measures
associated with them. In this chapter, we discuss this question for one-dimensional
continuous transformations which admit an ergodic invariant measure.

CHAPTER3 PERTURBATION OF TRUE ORBIT: PSEUDO-ORBIT SHADOWING
PROPERTY
Pseudo-orbits arise when noise is introduced in a dynamical system, e.g. while

modelling the dynamical system on a computer. For chaotic systems, these pseudo-
orbits move apart rapidly from the true orbit. It has been observed that there often
exists another true orbit, with slightly different initial point, which stays near the
noisy numerical orbit, i.e. shadows it for a long period of time. In this chapter, we
discuss this property of chaotic systems, particularly for a large class of piecewise
monotonic transformations.

CHAPTER4 WHY COMPUTER ORBITS LIKE ABSOLUTELY CONTINUOUS INVARIANT
MEASURES
Let <: [0,1] — [0,1] be a transformation which admits a unique ACIM. It has
often been observed that the histograms of computer simulations of chaotic orbits of
T seem to display the ACIM and the computer orbits exhibit a chaotic behaviour



CHAPTER4 Contd

though the theoretical system and the computer are both completely deterministic.
In this chapter, we provide a theoretical justification to this computer phenomena
for piecewise monotonic transformations which admit an ACIM.

CHAPTERS PERTURBATION OF ABSOLUTELY CONTINUOUS INVARIANT MEASURES

Let 1:[0,1] = [0,1] be a transformation which admits an AC!M. During
numerical studies of T, it is subjected to numerous external perturbations. Since
an ACIM is a useful parameter for describing the asymptotic behaviour of the system
it is important to consider whether it is stable under any such unavoidable
perturbations. In this chapter, we show that the ACIMs which a piecewise monotonic
transformation admits are stable under a large class of both deterministic and
stochastic perturbations.

CHAPTER6 SHADOWING PROPERTY FOR MARKOV OPERATORS IN THE SPACE OF
DENSITIES
In this chapter, we deal with the generalized shadowing property and prove that a
class of constrictive Markov operators has this property. Frobenius-Perron
operators are an important example of such operators. Shadowing property may not
hold for all parameters for a class of maps. We prove that the generalized shadowing
property is stable and is valid for all parameters for many families of maps.

CHAPTER7  APPLICATIONS

Finally, based on several results in the preceeding chapters, we undertake some
applications of computer orbits of point transformations to cellular automata and
fractals.
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CHAPTER1

ASYMPTOTIC DESCRIPTION OF CHAOTIC SYSTEMS:
ROLE OF INVARIANT MEASURES

1.1 INTRODUCTION

Ergodic theory along with its measure-theoretic considerations have played an
important role in understanding and giving a statistical description of chaotic dynamical
systems. A main advantage in the study of ergodic theory is that it leaves out all
transients and describes only the asymptotic behaviour of a system. It is therefore of
interest to discuss the concepts which have brought in the significance of such a study.

In this Chapter, we review some fundamental notions from ergodic theory. The
significance of invariant measures in describing the long-term behaviour of chaotic
dynamical systems is discussed. We evoke Birkhoff Ergodic Theorem in this context.
Physical relevance of invariant measures exhibited during experimental and
computational work is considered. In terms of Frobenius-Perron operator, we then
review the theory of absolutely continuous invariant measures, which are physically

significant measures of great importance.

1.2 PRELIMINARIES
Let X be a compact metric space. We shall assume (X, B, [t) to be a normalized
measure space or a probability space, unless stated otherwise. We begin with stating

some basic definitions.

Measurable transformation A transformation T: X—X is measurable if,
v1(A) e B, for each A € B, where 1 (A) = {x:t(x) e A},




Invariant Measure Let T: XX be a measurable transformation. Then W is

invariant under T if, u(r"A):p,(A), for each A € B, i.e. for one application of the
transformation, the amount of mass that leaves a set is equal to the amount that enters,

making the transformation in a state of equilibrium with respect to the measure. An
invariant measure thus can be considered to be a parameter for describing the

equilibrium states of a dynamical system.

Measuyre Preserving transformation Let 1: X—X be a measurable
transformation. Then 7t Is said to be measure preserving if and only if W is an invariant

measure. We then also say that T is p-invariant.

Ergodic Megsure Let 7: X—X be a measurable transformation. Then J is said fo be
ergodic it TH(A)=A, A e Bimplies i(A)=0 or u(X/A)=0.
Bemark 1 Any invariant measure can be expressed as a sum of component ergodic

measures (ergodic decomposition).

Ergodic transformation Let 1: X—X be a measurable transformation. Then 7t is said
to be ergodic if and only if K is an ergodic measure. We then also say that T is J-

ergodic.

Absolutely Continuous Measure Let (X, B) be a measure space with two measures v
and K. We say that v is absolutely continuous with respect to p, if p(A)=0 implies
v(A)=0, foreach A e B. We then write v << .

If v <<}, then it is possible to represent v in terms of } by means of Radon-
Nikodym Theorem [105, Chapter ll1].
Theorem 1 Let (X,B) be a measure space with two O-finite




i
E
)

measures U and . If L <<} then there exists a unique (a.6.) f e Ll(X,B,u) such

that,
v(A)= j fdu, foreach Ae B,
A

Bemark 2 In a recent paper Wilansky [167] has shown that the assumption of v being

o-finite can be dropped.

Let M(X) denote the space of measureson (X, B). Let 1: X = X be a measurable

transformation. 7t induces a transformation t, on M(X) defined by
(t, W(A) =p(t']A), A e B Since T is measurable, T, L€ M(X) andso 1, is well
defined.

Singular and Non-Singular transformations Let T: X—X be a measurable
transformation. Then t is nonsingular, if 7, p(A)=u(t'lA)=0, whenever

H(A)=0,A€e B ie. 1, L <<, otherwise T is said to be singular.

Proposition 1 Let (X,B,u) be a normalized measure space and let T: X — X be

nonsingular. Then, if v <<}, we have T,V <<T,H<<H.

Density of a measure Letaset D (X,B,u) be defined by,
DXBu)={feL (XBu):f20,Ufll =1).

A function fe D (X,B,u) is called a density of 1. f is said to be an invariant density if

the corresponding measure is invariant. If fe D (X,B,u) then by Radon-Nikodym

Theorem the normalized measure, uf(A) =J. fdu<<pu,Ae B.
A




Support of a density The support of a density f is defined by,
supp (f) = {Xe X: f(x) > 0}.-

Support of a megsure The suppor of a measure W is defined by,

supp (1) =N {A e B: Aisclosed and pu(X\A) =0}

1.3 BIRKHOFF ERGODIC THEOREM
Let ©: (X,B,u) = (X,B,1u) be a measure preserving transformation and A € B.

For xe X a question of physical interest is:

With what frequency do the elements of the orbit {‘t"(X)};o lie in the set A?

Now, T'(x) e A if and only if X A(1:i (x)) = 1. Thus the number of elements of the
n-1
orbit {'t'ﬁ(x)}:;lo in A is equalto Zx A (‘c"(x)) and the relative frequency of
k=0

—

n-

-1 1 X
elements of the orbit [t"(x)};::l inAequals 7 2 Xa X). The interest lies in the
0

x
[[]

study of long-term behaviour of the orbit.
In 1831, Birkhoff proved one of the most important theorems of ergodic theory

[107]. The motivation for the ergodic theorem came from the work of Bolzmann and

Gibbs on statistical mechanics. The mathematical question (ergodic problem) arising

from their work was under what conditions the limit,
1 n-1
Jim & 2 S (1
k=0

exists and is independent of x € X, where f: X — R s a real-valued function on the



space X and T:X-X is a transformation. This limit is the average value of the

function f alongthe forward orbit of the transformation €. Birkhoff proved that the

limit (1) exists almost everywhere (a.e.) with respect to L.
1.3.1 THE ERGODIC THEOREM

A precise statement of the Birkhoff Ergodic Theorem is:

Iheorem 2 Let (X,B,u) be a measure space and T:X—X be a measure-preserving

transformation. If fe L, (X,B,1) (real) then the limit,
.1
,,li_rn,,;l;t: (5 (x)) = £'(x)
k=0

exists for almost all x e X. f‘ € Ll (X,B,n). Furthermore, f‘ ot= f‘ a.e. with

respect to p and if H(X) <o then, Jf‘ du =Jf du.
X X

1.3.2 CONSEQUENCES OF THE ERGODIC THEOREM

Corollary 1 If T is H-ergodic, then f‘ is a constant a.e. andif p(X) < o, then

»

f= —l——j fdu in Theorem 2,

KX/

s

n-

f (tXx)) and the space-
0

We define the time ayerage of fe L, (X,B,1t) to be, lim

N=—)oco

=1
"
W

1
obe, L [ro0an
average ) f(x)dp
X
Bemark 4 If T is ergodic, by Corollary 1, the time average equals the space average

(ergodic hypothesis). In other words, if we consider T as a dynamic which occurs every

unit of time, then for almost all starting points x € X, the average value of the function

10



f on the orbit of x, as it evolves through time, exists, and is equal 1o -u(Lx)- J fdu, the
X

. average value of a function f onthe space X. Identifying \he systems for which the
ergodic hypothesis holds still remains one of the most intricate problems in Mathematics
and Physics [169].

Bemark 5 Let T be p-ergodic, f = X5, A € B, and u(X) = 1. Then by Corollary 1,

n-1
dm, L) x, @0 = pa), pae. (2)
k=0
and the orbit of almost every point of X in an ergodic system enters the set A with

asymptotic relative frequency H(A). It follows that, if T admits an ergodic measure M,

f it
then for almost every point x € supp (i), the orbit ‘lTk(X)}M exhibits K in the sense of
equation (2).
Bemak 6 Let : X — X, X =[0,1] be a transformation with an ergodic measure H

which is absolutely continuous with respect ‘o Lebesgue measure m. Let f be the density

of p. Then by Theorem 1 and Remark 5,

n-1

Jim, L 3z @0 = fam,
A

k=0

for a.e. x € supp (1) where A cX is ameasurable set. f is known as the density of the

orbit [‘c"(x)};’:= 0 and is seen in experiments as a stochastic or chaotic behaviour of

orbits.

Let (X,B,}t) be a normalized measure space.

1



Corollary 2 Let T: (X,B,u) = (X,B,u) be measure preserving. Then 1 is ergodic if

and only if,

-,l,-iu (t'ANB) o p(A)u(B),asn— e, ABe B.
i=0

Motivated by Corollary 2, we have the following definitions:
Weal | St ixing transf i

A transformation < : (X,B,u) = (X,B,u) is weakly mixing if for all A,B € B,

n-} )
%le—l(t"AﬁB)-u(A)P(B)l—-)O, as n — oo, and T is strongly mixing if for all
i=1

AB e B, Wt " ANB) > u(A) u(B), as n—reo,

Mixing implies coarse-graining of the phase-space.

The concept of mixing was introduced in the early 1950's. The following ergodic property
was introduced by Rochlin [255] in 1964.

Exact transformation Let T: (X,B,u) = (X,B,1) be measure preserving such that

t(A)e B, foreach A€ B and lim u(t"A) =1, for each A € B, 1(A)>0. Then T is
called gxact (or p-exact).

Bemark 7 in general we have, T exact = t strongly mixing = T weakly mixing =

T ergodic.

12



If we start with a set A € B of initial condition of nonzero measure then after a large
number of iterations of an exact transformation T the points will have spread and
completely filled the space X. 7t strongly mixing means that any set B € B as it moves
under T becomes asympiotically independent of a fixed set A€ B. t weakly mixing
means that B becomes independent of A if we neglect a finite number of times. t
ergodic means B becomes independent of A on the average.

These ergodic properties guarantee the existence of chaotic behaviour of orbits
of T onthe phase space X. They also characterize the evolution of entropy of the system

to a state of thermodynamic equilibrium [66].

1.3.3 LIMITATIONS OF THE ERGODIC THEOREM

1) it M is a continuous measure, then every point of X has H-measure 0, and
therefore no matter what starting point x is used, one cannot be certain that it will
exhibit MK in the sense of equation (2). The equation (2) holds for almost every
point x € supp(lL), yet it is in general impossible to specify a single point x where
the equation actually holds.

2) Since the theorem gives no information about the rate of convergence of the time
averages, in general, there is no way of knowing how well a finite segment of a

theoretical orbit T exhibits p. (Only in special cases, such as of Markov

( 1%
maps [34)], the speed of numerically computing the orbit {‘ck(x) y can be
k=0
assessed).
3) There are computational difficullies in implementing the Birkhoff Ergodic Theorem.

in many cases, the exceptional set of y-measure 0 may be prohibitively large. For

13
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example, for a large class of piecewise-linear transformations T, the rationals are
eventually periodic. But the rationals are the only points with which computations

can be performed. Thus for such transformations f‘ cannot be found in practice by

direct iteration of the difference equation, x_,,=T(xy).

1.4 INVARIANT MEASURES OF CHAOTIC DYNAMICAL SYSTEMS

Experiments with dynamical systems usually exhibit a transient behaviour foi'owed
by an asymptotic motion lying on an attractor in the phase space. Since an attractor gives
a global picture of the physical long-term behaviour of a dynamical system, one can
provide a classification of the different levels of complexity of motions by observing its
geometric structure. In many situations, determining the geometric structure is not
feasible due to extreme complication of the dynamics. In such caces, statistical analysis
becomes very important. Instead of studying the attractor itself, we study the statistical
behaviour of the system on the attractor, which is often all that is required.

An attractor, if one exists, is usually equipped with an asymptotic measure i.e. an
invariant measure which describes how frequently each part of the attractor are visited
by the orbit describing the system. We therefore focus our attention on the study of
invariant measures rather than on attractors.

The importance of invariant measures in the study of chaotic dynamical systems
results from the following facts:

1) The invariant measures are one of the quantitative measures to characterize the
chaotic motion which is generated by one-dimensional (Poincaré) maps [152, Sec. 2.2).

2) The invariant measures leave out all transient effects and therefore describe only

14



asymptotic equilibrium behaviour of the system.
3) The extraction of relevant information from chaotic dynamical systems requires the
measurement of quantities that remain invariant under a smooth change of courdinates.
One class of such invariants is of static invariants. Typical strange attractors are
characterized by an infinite number of them, though only the low order ones are relevant
for experimental applications [149]. The static invariants depend primarily on
invariant measures (and their supports). Then invariant measures provide a measure-
theoretic description of the attractor, if one exists.

An invariant measure is thus a useful tool for describing the asymptotic equilibrium

behaviour of a chaotic dynamical system.

1.5 PHYSICAL MEASURES

in general, a dynamical system can have many invariant measures. The Krylov-
Bogoliubov Theorem guarantees the existence of an invariant measure for continuous
transformations on compact spaces. For example, tent maps on [0,1] possess an infinite
number of ergodic measures [80]. A strange attractor, if it exists, typically comes with
uncountably many ergodic invariant measures [32, Sec. |, E ]. Not all of these invariant
measures ére physically relevant. For example, If x is an unstable fixed point of a

dynamical system (X,T), then the Dirac measure at point x is an invariant measure,

but it is not observed. In physical experiments and computer simulations, it seems that
one invariant measure K is produced by the time that the system spends in various parts
of the phase space X. It appears in many physical systems that the computer-generated
orbits have well defined time averages whose histograms are approximately those defined

by ergodic invariant measures of the system. Thus there is a selection process of the
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natural or physical measure p [32,81,82,84,85,112,148]. We are thus led to the

following question:

Which ergodic invariant measure is selected by the numerical or computer-generated
orbits of the dynamical system?

A satisfactory answer has been obtained, first in the case of Anosov diffeomorphisms
[89], then in the case of an Axiom A diffeomorphisms [127,128], and recently in case
of a general form of a diffeomorphism having hyperbolic invariant sets [50]. There the
time average for almost all initial conditions with respect to the Lebesgue measure in the

neighborhood of an attractor yield the same measure on the atiractor.

1.6 KOLMOGOROV AND SRB MEASURES

In general, arguments for selecting a physical measure are:
(1) that it describes physical time averages,
(2) it is smooth along unstable directions, and
(3) itis stable under small stochastic perturbations.

One possibility for a physical measure that satisfies (1), (2) and (3) is the
Kolmogorov measure [32]. A physical system is usually affected by small random
perturbations €, whose resulting effect is to smear out asymptotic behaviour and thereby

provide the system with one invariant measure us. If us converges to a measure uK, as
€— 0, then K is called the Kolmogorov measure. For example, the Axiom-A systems

[116] and piecewise-expanding transformations of the unit interval [6] have Kolmogorov
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measures. However, this approach may have difficulties: an attractor does not always
have an open basin of attraction, and thus the added noise may force the syste'm to jump
around on several attractors.

Another physical measure is the Sinai-Ruelle-Bowen or the SRB measure [32].
(For hyperbolic systems, the SRB measure is a special Gibbs measure [268].) In
general, we define it as follows:

Let (X,B,i) be a measure space, T: X — X be a transformation and f € C(X).

Then W is said to be the SRB measure if 1 is invariant and

Jim %;} F@) =)!fdu

not just for p-almost all x, but for all x in a set of positive Lebesgue measure.
(Lebesgue measure corresponds to a more natural 'notion of sampling' than the measure M
which is often singular.)

By definition, the SRB measure - if it exists, is unique. Itis typical that the

SRB measure is stable under small random perturbations [12] (though this may not

always be the case under computer observation [4]). It has applications to physical
contexts such as in giving a thermodynamic description of fractals [268] and in
estimating topological entropy and pressure [22,200]. For some systems such as Axiom

A systems, B

SRB exists and is in fact equal to |.1K. though often it is easier to study SRB

measures. (We note here that there may be physical measures which are not SRB [32].
Keller [286,287] (cf. [284]) has civen examples of maps which have no physical

measures.)
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1.7 FROBENIUS-PERRON OPERATOR

In this section, we consider the Frobenius-Perron operator which was introduced by
Rechard in [122). Following a random distribution of initial states led to a development
of the notion of Frobenius-Perron operator and an examination of its properties as a

means of siudying the asymptotic properties of flows of densities.

Let us suppose that we have a random variable x on X = [0,1] with probability

density function f(x). Then for any measurable set A c [0,1], Prob {x € A} = .[ f dm,

where m is the Lebesgue measure on [0,1]. Let T: [0,1] — [0,1] be a transformation.

Then t(x) is also a random variable. We then have the question:

What is the probability distribution of T(x)?

( | .
We can write: Prob {t(x) € A} = Prob {x & T'A} = I f dm. To obtain a
TlA

density function for T(x), we must write the last integral as J‘¢dm, for some function
A

¢- Obviously, if such a ¢ exists, it will depend on f and the transformation 7.

Let us assume that t is nonsingular and define, W(A) = If dm where
TIA

fe Ll([O,l]) and A is an arbitrary measurable set. Since T is nonsingular,

m(A)=0 implies T,m= m(tA) = 0 which in turn implies that (A)=0. Hence

H << m. Then, by the Radon-Nikodym Theorem, there ¢ € L such that for all
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measurable sets A, U(A) =I¢dm. ¢ is unique a.e. and dependson T and f. We
A

define the Frobenius-Perron operator P"r for © by setting P.f =¢. Thus P.f is

interpreted as the density function of T(x). A precise definition of P, is:

Erobenius-Perron operator. Let 7:{0,1] — [0,1] be a nonsingular transformation. For

any fe L, define P f by IP,f dm= If dm where A c [0,1] is a measurable set. P1
A vIA

is called the Erobenius-Perron operator corresponding to .

Bemark 9 By Proposition 1, we also have T, << m. We note that f is the density of V]

and ¢ is the density of T, . Therefore, P_: D(X,B,u) = D(X,B,t, ). The operators
Tt M(X) -M(X) and P.: D(X,B,j1) —» D(X,B,t, ) are equivalent, but P actson L,

which is often easier to work with inan the space of measures.

1.7.1 SIGNIFICANCE OF FROBENIUS-PERRON OPERATOR

Apart from the geometric difficulty in studying the strange attractor, there is
a measure-theoretic problem. Aithough the Birkhoff Ergodic Theorem guarantees that
orbits will exhibit the measures on the strange attractor, it is true gnly for almost all
initial states of the system. We may have an orbit starting from an exceptional point.
For example, as in the case of T: [0,11 — [0,1] defined by, T(x) = 4x(1-x). (See Fig. 1).
The worst part about these exceptional behaviours is that we have no a priori way of
predicting which initial states will lead to them. Inspite of the sensitivity of orbits to

initial states this is not usually reflected in the distribution of states within long orbits.
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Furthermore, there are no analytic tools for studying individual orbits. (Birkhoff
Ergodic Theorem requires the existence of an invariant measure for 1.) Therefore, the
study of individual orbits of a dynamical system is often inconvenient. We then have to
resort to an aiternative approach to avoid these problems. Instead of studying
individual orbits, we then study ensembles of orbits and their evolution in time.
Advantage of Frobenius-Perron Operator

Let T: X — X be a transformation and let {x;} be a collection of starting points in

X. Then, each point X, is transformed to a point T(x). If we regard the initial states as
distributed according to a probability density function f(x), then the collection of points

(t(xi)] is distributed according to a probability density function P_f.

PR oboony P
't(xl) 1:(x2) 't(x3) 't(xi) P f(x)

This approach treats the dynamical system as a stochastic process. Instead of orbits at a

point x in the phase space X, we study the evolution of the probability density

( 1
functions i.e. {l f.P.f, pff, P:f, j}. Often the limits of such sequences are the

densities of measures on the strange attractor which are invariant under . One of the

main advantages of studying PT rather than 1 is that, while T is a nonlinear (and often
discontinuous) transformation on X, P1 is a bounded linear operator on Ll(X). Thus in

examining the behavior of {P:} (i.e. studying the asymptotic behaviour of the dynamical
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system t) we can apply the powerful tools of linear functional analysis.

1.8 ABSOLUTELY CONTINUOUS INVARIANT MEASURES

An invariant closed set, such as a periodic orbit supports an invariant measure.
Thus a transformation T will in general have a multitude of such measures. Most of these
measures will be trivial in the sense that their support form a finite set, and so the
invariant measure does not produce any new information about the dynamics of 7. In
order to avoid trivial measures, we require that an invariant measure ) be continuous.
Thus it gives a measure zero to any finite set of periodic points of 7.

We are particularly interested in those invariant measures which are physically
meaningful i.e. the ones that are observed for large sets of initial starting points.
Therefore, the interest lies in an invariant measure whose support is a set of positive
Lebesgue measure. Then due to Birkhoff Ergodic Theorem, 1), 2) and 3) of Sec. 1.4 have
an additional significance in that they describe dynamical behaviour of orbits on a large
set of phase space.

One class of such measures is that of t-invariant measures which are absolutely
continuous with respect to Lebesgue measure (ACIMs). The statistical description here is
of great value. The purpose of an ACIM is to describe the statistical properties of orbits:

the frequency with which an orbit falls into a set is given by the measure of that set. The

density f of a finite ACIM is an L1 function which can be thought of as the density of the
distribution of typical points in the support of that measure. When a map which has an

ACIM L, it also has sensitive dependence on initial conditions [192] (though the converse
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is not true [142,144]), and therefore it implies that chaotic behaviour exists on a set of
positive Lebesgue measure of the phase space. The supportof f, where f is the density
of 1 with respect to the Lebesgue measure, indicates that part of the phase space on

which the chaos resides.
The following result gives a necessary and sufficient condition for a measure 1o

be an ACIM, and thus brings in the significance of Frobenius-Perron operator in the
theory of absolutely continuous invariant measures.

Iheorem 3 [114). Let (X,B,n) be a measure space, T: X — X be a nonsingular

transformation and P be the Frobenius-Perron operator associated with t. Consider a
T
nonnegative function fe Ll (X,B,u). Then the measure My given by,

g(A) = [ £ pax)
A

is invariant if and only if f is a fixed point of P ie. Pf=1.

Proof. First, assume that uj is invariant. Then by definition of an invariant measure,

1 (A) =uf(t"A), foreach Ae B so that,
[fwuen=roonan, Aes (3)
A TIlA
By definition of a Frobenius-Perron operator,
[fooneo = [rson@n, acs (4)
TlA A

By (3) and (4), we have, P f=f. Conversely, if P.f=f forsome fe L, f=>0 then
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from the definition of the Frobenius-Perron operator equation (3) follows and M ¢ is
invariant.

Bemark 10. By Theorem 1 and 3 it follows that an absolutely continuous measure Is an
ACIM if and only if its density function is a fixed point of the Frobenius-Perron operator.
Bemark 11. Though the invariant density of an ACIM for a transformation is the fixed
point of the Frobenius-Perron operator induced by the transformation, to determine the
density explicitly, one has to solve a complicated s “t of functional equations. Since this is

usually very difficult, one then resorts to approximation techniques [38,64,162,279].

1.9 ONE-DIMENSIONAL MAPS WITH ABSOLUTELY CONTINUOUS INVARIANT
MEASURES
There is an abundance of maps which have an ACIM in one-dimension. In this
section, we consider some examples of maps 1: X = X, X =[0,1] (unless stated
otherwise) which admit a finite ACIM.
Example 1 Lasota-Yorke Maps
T is said to be piecewise monotonic and C’ if there exists a partition

O0=3a,<a <..<a,=1 of X of X such that for each i=1,...n, Ti:t'(*’i.pﬁ) isa C"

function which can be extended to the closed interval [ai 1 ai] asa C' function. 1

a

need not be continuous at a.. A differentiable map 1 is said to be, c*%ifrisa

Hélder continuous function with exponent o > 0. It was shown by Lasota-Yorke in

[57) that if T is piecewise monotonic, C? andinfit 1> 1 (i.e. T is uniformly
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expanding) then T has an ACIM. The number of monotonic segments of T is shown to
be an upper bound for the number of independent ACIMs [103]. The k-adic maps
T X — X given by 'tk(x) =kx (mod 1) considered by Rényi in [123] are of these
type. A similar result was proved by Adler in [126] and is known as the Folklore
Theorem.

The result of Lasota-Yorke was extended to a larger class of maps by Wong in

[100), who showed the existence of ACIMs for maps which are piecewise monotonic,

', inf iti' | > 1 and I_tl_T is of bounded variation on [a; ;,a] for each i=1,.., n.
i
has been shown by Gora-Schmitt in [150] that the last condition cannot be dispensed

with. Another extension is due to Rychlik in [166] who has shown the existence of

an ACIM for maps which are piecewise monotonic, c'*® and expanding.

E e 2 Misiurewicz M

Let A be a finite subset of an interval X containing its endpoints. Let £: X\ — X
be a continuous map, strictly monotone on each component of X\A, which satisfies

the following conditions:

(1) 1 isofclass CaonX\A
(2) T &) =0, for xe X\A

(3) 1 has a non-positive Schwarzian derivative [96] i.e.

2
1) ‘t"(x)
S t(x):TT,(S:;) % [TX)-) <0 on X\A

(4) 1 x)=x then D) > 1
(5) Thereis a neighbourhood U of A such that for every ae A and n>0,
@) e AU X\W)

(6) Forevery ae A thereis a neighbourhood W, of a and constants
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C;;C,>0, u20 such that
cllx-alush(x)lsczlx-a!u' for xe W,.

(7) It'x)I>1, for xe J\U

(8) If ae A is a periodic point for T, then it is a fixed point for <.

Thatis, amap 1 satisfies Misiurewicz conditions if it has nonpositive Schwarzian
derivative, no sinks and orbits of critical points stay away from critical points.
Since © may have critical points, it is not uniformly expanding. It was shown by
Misuirewicz in [67] that T has an ACIM. It has further been shown by
Benedicks-Misiurewicz in [141] that if T satisfies conditions (1)-(5) and we do

not allow critical points to be mapped onto critical points, then a necessary and

sufficient condition for T to have an ACIM is, jlog [T ()] dx < -oo.
X

Ulam-Von Neumann in {124] had shown the existence of an ACIM for the
logistic map 1(x) = 1-2x2, which satisfies the conditions (1)-(8).

Misiurewicz showed the existence of an ACIM for 1(x) = Ax(1 - x) for
uncountably many parameter values A, and this result was extended by Yacobson in
[125] for a set U < [2,4] of A's with positive Lebesgue measure. Alternative
approaches to Yacobson's result are obtained by Benedicks-Carleson [143],
Guckenheimer [154], Johnson [201] and Rychlik [283]. Chernov [196] has
derived a characteristic condition for ) tobelongto U in terms of kneading
theory and Farmer [228] has derived a scaling law which gives a precise estimate
for the A's thatlead to chaos.

Example 3 Collet-Eckmann Maps

Let ©:[-1,1] = [-1,1] be a map satisfying the following conditions:
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(1) < isdefinedon Y =[t(1), 1] and takes values in Y. It is strictly increasing

on [t(1), 0] and strictly decreasing on X. 7(0) = 1

(2) 1 isofclass c!
L
2
(3) The function T is Lipschitz continuous, and |t'] = is convex on [t(1), 0]

andon X.

| [
. |T(x)| - |T(x)
(4)  limsup |5 <o foh x>0
(5) Thereisa c, >0 and 0 >0 such that
(a) EDT"(I)Ezclexp(nG), forall n>0
(b) If ™(z)=0 forsome m>0, then
| |
}Dfm (2)! > ¢, exp(m8).

The conditions (3) and (4) can be replaced by the condition that T has a non-
positive Schwarzian derivative. It is shown by Collet-Eckmann in [21] that T has
an ACIM.

Bemark 12 The condition Sf <0 on the Schwarzian derivative, although very
powerful, has the disadvantage of being too restrictive (e.g. it is not invariant under
C”™ change of coordinates). This condition can be replaced by smoothness conditions
[97]. It has been shown by van Strien [90] and Nowicki-van Strien in [160] that
we can have the existence of ACIMs for Misiurewicz maps and for Collet-Eckmann
maps (using the results of [258]) respectively while dispensing the condition on the

Schwarzian derivative.
Example 4 Markov Maps

Amap 1. X — X is said fo be C2 Markov if there exists a countable

family {Ij] of disjoint open intervals in X such that,

(1) nu (X- Uj Ij) =0 W is the Lebesgue measure,
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(2) for every j, there is a set K of indices such that,
"(I,-) =k\eJK Ik (mod 0),

(3) for every x€ Ul 7 exists and [*x)} > o0 for some fixed o > 0,

(4) thereexistsa B>1 and n,>0 such that, if

T™(x) € Y I forall 0<m<ny-1, then |Dt"b(X)| =B

(5) there exists m>0 such that HL(T""(I} NI =0 forevery i, j,
(6) thereexist C>0 and 0<Y <1 such that,

)

oy) 1

Y
<ckx-yl,

It was shown by Adler in [126] and Bowen in [111] that T has a unique ACIM (see

[113], Chapter 1ll). The result has been extended to C] T Markov maps by Bose
in [11].
Example 5 Random Maps

A random map of [0,1] is a stochastic process T(X) specified by a finite

collection of measurable functions T ! [0,1] = [0,1], i = 1,...,n, and a probability

n
vector P= (pl,,,,,pn) i.e. plz 0 and z Pi = 1.

i=1

We define 1(x) = ti(x) with probability P, and assume that the selection of

functions is an independent identically distributed process so that

T(x) = T, 0 Tim-l

m
0..0 til(x) with probability JIJP-B-

. n
A measure L on [0,1] is said to be T-invariant if u(A)=2 piu(‘q1 (A))

i=1

for each measurable set A. It was shown by Pelikan in [161] that if each T, is
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piecewise monotonic and C2. and

Y e

& TT T !
then t has an ACIM. The existence of ergodic ACIMs for certain random maps of
[0,1] has also been shown by Morita in [147,184].

Some other existence results for ACIMs for one-dimensional piecewise

monotonic maps are established in [58,59,61,73,87,88,142,261-267,
280,284,285]. Results of existence of ACIMs for higher dimensional maps are

obtained in [177,178,180,273-276,278].

1.10 ABSOLUTELY CONTINUOUS INVARIANT MEASURE AS A PHYSICAL MEASURE

For many transformations T, the existence of j, and Hsrp is consistent
with the observed fact that it is the ACIM which appears in numerical and computer
experiments [13,20). That Is, of the uncountable number of ergodic invariant
measures available to T, the computer-generated orbits of T select the ACIM which
is then also the physical measure.

A problem of interest is then to characterize the systems for which the SRB
measure is absolutely continuous with respect to the Lebesgue measure. We have the
following result in that direction:

Iheorem 4 Let (X,B,u) be anormalized measure spaceand 7: X — X bea
measurable transformation. If p is the unique ACIM for 7, then W is the SRB
measure if and only if T is H-exact.

Proof Let m denote the Lebesgue measure on X. The SRB measure of T is defined
as the weak limit of {1, m) as n — oo, if it exists. Let f be the density of L.
Now, Tom= (P: 1) dm, where P. is the Frobenius-Perron operator corresponding

fo T
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Since {P.','l} is a weakly compact set in LI(X,m), it follows that {P:l} convergesto f If

and only if T is exact [114, Sec. 4.4). Therefore, it follows that if T has a unique ACIM

M, then p is the SRB measure if and only if T is p-exact.
Bemark 13 A similar characterization of SRB measures for piecewise expansive Markov
maps was obtained in [23].
Statistical Stability Let tT: X — X be a nonsingular transformation and P, be the
Frobenius-Perron operator corresponding to 1. Then T is said to be statistically stable
if there exists a unique f,e€ D suchthat P.f, = f, and
Jim_WPf-f,11=0, foreach fe D.

We then have,

Proposition 2. Let (X,B,m) be a normalized measure spaceand T: X — X bean m-

invariant transformation, where m is the Lebesgue measure. If T has the SRB measure

p which is absolutely continuous with respect to m, then 1T is statistically stable.
Proof By Theorem 4 it follows that p is the unique invariant measure with respect to

which T is exact. Furthermore, since T is m-invariant, we have from [193] that T is
statistically stable.
1.10.1 EXAMPLES

Example 11 Let 1,=[0,1] — [0,1], A >1, be a triangle map (Fig. 2) defined by,

Ax, O0<x S_%
‘t;‘(x) =

A q.x0 L
1_1(1 X), lsxsl
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Let P be the Frobenius-Perron operator corresponding to tA‘ Then,

P, fx)= ){% ( } j{{‘—l (l-x)) , f€L,([0,1}, m) where m is the

L
A
Lebesgue measure. Since P,1=1, m is T-invariant. 7, is piecewise munotonic,

expanding, C? and has only one turning point. So T, is a Lasota-Yorke map with the
unique ACIM m. Furthermore, it is shown in [129] that T, is m-exact. Hence by
Theorem 4 for any A > 1, the Lebesgue measure m is the SRB measure for T,» and

hence the physical measure.
Example 12 Let 1:[0,1] = [0,1] be the quadratic map 1(x) =4x(1 - x). T is a non-

expanding Misiurewicz map and has the unique ACIM,
Bx) = ——e m(x),

nyx(1 - %)

where m is the Lebesgue measure. Furthermore, since 1T is topologically conjugate to
the tent map T, of Example 11, and exactness preserves topological conjugacy, T is M-
exact. Therefore, by Theorem 4, W is the SRB measure for <.
Example 13 Let t:[0,1] = [0,1] be the Gauss transformation (Fig. 3) defined by,

% - [%] , x#20

o(x) =

0 , x=0

where [x] denotes greatest integer < x. T is one of the most frequently studied examples

of chaotic systems [248]. T is countably piecewise expanding and preserves the Borel

measure on [0,1] given by
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=1 |1
uG(A)-InZJI-f-xdm'

where A C[0,1] is a Borel setand m is the Lebesgue measure on [0,1]. H Is known as
the Gauss measure and is the unique ACIM. Furthermore, by Theorem 1.2 of Chapter Iil of
[113]), 7T is H-exact. Hence, by Theorem 4, l.lG is the SRB measure for 1.
Bemark 14 In general, if 1:[0,1] = [0,1] is any Markov transformation, there exists a
unique t-invariant probability measure L on the Borel o-algebra of [0,1] which is
absolutely continuous with respect to Lebesgue measure and T is exact with respect to

[113]. Then by Theorem 4, K is the SRB measure.
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CHAPTER 2
MEASURES ON PERIODIC ORBITS

2.1 MOTIVATION

For a dynamical system (X,T), we are interested in the study of asymptotic
behaviour of the orbit {Tl‘(x)]';::(r The utility of periodic-orbit description is well-
known [3,16,28,130,151,239]: the set of all periodic orbits can be used to
characterize a strange attractor [28,151] or a fractal chaotic attractor [130].
Periodic orbits are topological invariants i.e. any change of coordinates will not
change the periodicity of an orbit. Thus changing the point of observation or the
variable that is being observed in an experiment will not change the cycle structure.
This is important since the characterization of the attractor should be robust. It is
then of interest to study the nature of the distribution of periodic orbits of T. It was
Bowen [7] who first considered this problem and obtained measures with maximum
entropy as the limit of measures concentrated on periodic orbits. In [104,115]
generic properties of invariant measures defined on periodic orbits of Axiom A
diffeomorphisms were studied.

Suppose X =[0,1] and t: X = X has an ACIM {. Computer simulation of the

iterated system, X ,1=1 (xp, n=0,12,.. often show that the computer-generated

+
orbit have histograms which are close to f, the density of i, i.e. they exhibit f in
terms of Birkhoff Ergodic Theorem. Since a computer is a finite-state machine, a
computer orbit necessarily must be periodic. This has led to the following question:
Do the (true) periodic orbits of T exhibit any of the invariant measures
associated with it? If so, which ones?
in [49], the asymptotic distribution of periodic orbits in one- dimensional

chaotic systems with measures absolutely continuous with respect to Lebesgue



measure, is investigated and rigorous limit theorems are proved, which support the
heuristic claim that the empirical distribution along a ‘typical' periodic orbit is close
to the 'observed' invariant distribution of the transformation.

in this Chapter, we consider the above question for a large class of one-
dimensional transformations. We begin with the discussion of the question for a

simple tent map.

2.2 MEASURES ON PERIODIC-ORBITS OF THE TENT MAP
Consider the tent map T, [0,1] = [0,1] defined by,

2x, 0<x<

12(x) =

which is a prototype of one-dimensional expanding maps. It has periodic orbits of all
periods and aperiodic orbits which are chaotic. We shall prove the existence of long

periodic orbits of T, which exhibit Lebesgue measure, the unique ACIM.

2.2.1 CONSTRUCTION OF A SET OF PERIODIC ORBITS OF THE TENT MAP

Consider the set, D={0< %— <1, (x,p) =1}, p isanodd prime and N isa
P

positive integer. Let T= 12ID :D —[0,1]. Then t:D — D. We then have the

following:

Theorem 1 [92]. The map t©:D — D is an isomorphism. Let k=k(pN) be the

k :
minimum integer > 1 such that pN12° £ 1. Then the number of points in each orbit

N-.1
is k and, the number of periodic orbits is .[Lt_lz)_k‘l___] i.e. T induces a partition of
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D into disjoint periodic orbits of equal length.

Proof Since,
2 (eveninteger) 4 2x 1
N ’ 2
p P

2 (odd integer) if 2%

T is an isomorphism.

2x]
If 2 has a period 1, then 2( +c—2—x , ce Z, so that, leZl:t 1,
p )"

since k is minimal, 1 must be a multiple of k.

Let Z.(pN) be the order of 2 ( mod pN) ie. l(pN) is the minimum integer > 1
AeY
suchthat P12 -1 Now, 2%.1=(2*- 1) @*+1). So, pN12%-1 and we have

hat k<A(p) <2k ie. 1<-2X < 2. Since =2~ is an integer, A(PN) =k, 2k.
that (pP)s2k i h [ (D) i nteger, A(p")

N
). Clearly, if A (pV) is odd the first case occurs and if

A
Thus, k=AM, (2

A (p") is even, the second case occurs.

2x (2" ) 2x
We now show that, if —-E D, then 1:" =—N—l . f
p 2N )

Loi+l i
xe[zm’ 2m] ie. —ilﬁsxs‘z—‘*ml then i<2™x<i+1 Thus,

0<2™x-i<1 or Os-zmx+i+lsl according to as i is even or odd.

We therefore write,

i+l
2™x -i X €| ™ '—2 , for i even



m [_i_ Li_l_]
2 x+i+1 X€E|pm’ om

[od

. X .
i 1_ i+l
Then, 4 <5 <=5

=1 ie.

pN

Let x

2m+l

or ] _i<1l. Since i is an integer,

By (1) and (2) we then have,

(4. ) i
N :2_"_1 2k+1x1 [mel] ) Sk
N = - ’
ACAY AN A L7
( r
Tk -21; 2k+1xl . [2k+lxl] o ) 2k+1x
N = - ’
2kp } pN pN i pN
2%, @i, 2
We can write, ——= N =
p p p
k+1 k+1
N, ~k+1 27 x 27 +2x
Now, if P 127, then[ N{I=( N)l-l
p p

obtain Tk(}_’;_}_le Similarly, it pN125-1 [
) == . . ) N
(P") " P
2x1 2%
Tk("ﬁl' =-—N1—-
\P") »
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2m+1
i= 1 , [ ] is the greatest integer < x

(1)

» for 1 odd

ipN < 2"k < G+1) pN

(2)

is even (3)

is odd (4)

is odd, and so by (4), we

2

k+1
X

1] is even, and so by (3),




2x -
Thus, the period of —-Nl is exactly k:» Since Card (D) = [Bz-l—)pN-l, so the number
P

N
L.

[
t(p-1
of periodic orbits is Cari @) _ L(p-1)p

2k
BRemark 1.  Theorem 1 has been generalized to a piecewise linear map

T: (011 = [0.1] with an infinite number of partition points in [233], where it has
been shown that if T is restricted to certain domains, then an explicit bound can be

obtained for the number of periodic orbits of T in that domain.

2.2.2 LONG PERIODIC ORBITS OF THE TENT MAP EXHIBIT LEBESGUE MEASURE

We shall need the following

) '
Lemmai. Let pl ZM) -1, where A(p)>1 is minimal and assume p™ |l ZMP)-I ie.

the division is exact. Then for any N>m, pN l27"- 1 ifandonly if A' is a multiple

L] ll
of A(p) pN*" and the minimum value of A' > 0 such that pNI 2" -1 equals

Ap) P

Proof For N =m', the result is obvious by hypothesis (p‘“'ll ZMP)-I since A(p) is

minimal). Assume the result, for N=1>m'

Then, pi*112¥- 1 which implies, p! 124" -1 sothat X' =z (p) P
1+1 Ap) p™
Therefore, P~ 12 - 1.

Ap)p™ + zpkm’
Now, 2 o7 -1=(1+yp'“)zpm. (yp) =1

(5)

= zyp'+ multiple of p'*! (6)

By (5) and (6), we have that p | z, and so the lemma follows by induction.

We now prove bur main result of the section,
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Theorem 2 [92). The proportion of points in any fixed periodic orbit of ""2' p Which
lies in an interval [a,b] approaches m([a,b]) = b-a, where m is the Lebesgue
measure, as pN™ — oo, i.e.
k 1
. 1 fron
Al 1Y w0 = [0 ax (7)
i=0 0

xeD
Proof We can have the representation,

1 N 2x
2™"%, = qupN + 1, I T € Zo 0<1p <p” gng —le D.
P
2m+l
x1 T
Let m vary from 1 to 2k. Then, we have, N = 9m *— and by (3) and (4)
P Y
T
..."N.L , I, even
P
.tm(lew
\PN)~
N
P "Tm . odd
P

2x

|
Now, Card {m: t'“["pﬁ'} € (ab), 1<mg 2k} by definition,

) o pN-rm
Card 1 m:—; € (a,b), r,, even; € (a,b), r,, odd
pN m pN m

Card {m: pN a<r, < pN b, 1, even; pNa < pN -Ty < pr, Tm odd} (8)
By Lemma 1, k=K. pN*“', k'=k(p) and N> m' Let rl,...,r;‘.
classes of r,(mod p) i.e. the residue classes when N=1. Then, k'=k'or 2k' ang

be the residue

Tn=PMi +1}, 0<i<p™™, 1<j<2k' for N2 m'. So, the RHS of (8) is,
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" . 1
Card{pra < p"‘i+13< pNb,i + 1; even; pNa<ph- p'“x-x’j< pNb, i +1, oddj}
l

f. N N (X N N . ]
+ § Card {i: PTa+15-p <pTi<p b+r-p, it odd }
#

& [- N m" N, : 1
=2Card*l‘°P a-r<phi<pa-t, 1+rgcvenj}
31

Z | N-m Z [ N-miyp,
= 2[%}—) + 0(1)] + Z[_;a_z(_lg_a)_+ 0(1)}. (since the number of even

i=1 i=1

(odd) integers in an interval (a,b) is (bi 2) +0(1)),

= 2k'pV™(b-a) + O(K),

Dividing throughout by 2k = 2k’ pN‘"', N>m' we obtain

(2x1] l( 1 \l
Card 1 m: 1:‘“\ pN) € (a,b), l <mg k{=(b-a)+ OkpN_m.).
k . N .
Therefore, for x ¢ D, L 2{ Xy (F%) = b-a=m(lab]), as P¥ ™ - oo

k 1

N 1 o

e lin, e Dty 00 = [t 8%
1= 0

xeD

This ends the proof of the theorem.

2.2.3 REMARKS
Remark 2 The points of D for which equation (7) holds are known, thereby lending

useful meaning fo the a.e. statement in the Birkhoif Ergodic Theorem. Therefore,
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Theorem 2 is also known as One-Dimensional Practical Ergodic Theorem. A two-

dimensional analogue of Theorem 2 has been obtained in [93].

Remark 3 The result of Theorem 2 carries over to maps topologically conjugate to 1:2.

eg. T(x) = 4x(1-x).

Bemark 4 Theorem 2 is a number theoretic result, and hence has its limitations. To
extend the result to a larger class of transformations we have to use different

techniques.

2.3 PERIODIC ORBIT MEASURE (POM) PROPERTY FOR CONTINUOUS MAPS

Let (X,d) be a compact metric spaceand T:X — X be a continuous map. It is
shown in [115] that if T has the specification property [91], then any invariant
measure can be approximated by a sequence of measures supported on periodic orbits.
We discuss this in detail in Appendix A.

Let T: X = X, X=[0,1] admit a 1-ergodic measure M. In this section, we
prove that if T is continuous and piecewise expanding transformation which takes
intervals of its defining partition eventually onto all of the space, then long periodic

orbits of T will display the measure K. We need the following definitions:

Periodic Orbit Measure (POM) property let T: X = X, and | beany T-

ergodic measure. If for any such measure there exists a sequence of periodic orbits
=X, T(X)s...,T  (X) = X such that, =— 8. — U weakly as n—eo,
T T ; ‘0 P y

where O is the Dirac measure, then we say that t has the POM property.

Eventually onto transformaiion A transformation t: X — X, is called eventually
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bi

onto, if for any non-trivial interval K c X there exists an integer M such
that, ™HK) = X.

Uniformly eventually onto transformation The map 1: X — X s called uniformly
eventually onto, if and only if ¥ 8>0 3 N(§) suchthat VK< X, m(K) > 8, we

have tN(s)(K)=x, K Is any non-trivial interval.
We then have the following:

Theorem 3 [36]. Let 1: X = X, X=[0,1] be continuous and eventually onto.
Then T has the POM property.
Proot If T is continuous and eventually onto, it follows by definition that it is

uniformly eventually onto. Then for any given €>0 3and N(8) € IN such that, if an

interval K c X and m(K) > §, then 'tN(B)(K) =X
Let L be a T-ergodic measure. Without loss of generality, we assume that lL is
a continuous measure. Let R be the set of all H-regular points

n-1
ie. R ={x € [0,1): Vge C[0,1], %—2 g(t™) —= u(g), asn = w}.

k=0

Then L(R) = 1. Let {gn}:=1 < C[0,1] be a sequence of functions which is dense in
C[o,1].

Let M,,=rlr$1§15>;l { i gill} and o, be the common modulus of continuity for
GG Let {€n }::] be a monotonically decreasing sequence, such that
€, 4 0 as n—eo,
Construcli T, iodic orbits ¥,
Fix ne N. Let §>0 be a small number such that

w,(5) <-§ﬂ- (9)

Let us fix x, &€ R and then fix Nn such that V N> Nn
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% E gi(ﬁ"n)) - K(9)

< 5 foreach 15ign (10)
k=0 4

Choose an integer T, > N, such that,

NO.M, _&
BT ()

Let K be a closed interval of diameter & such that

) c K (12)

Consider all the intervals ’t'ill o 1:;; 0...0 'cz (K), where

T j=1.,T, and ij = 1,..,n, , for some n,,.

T
X [c.5 -1, ciJ]
Then by (11) X, belongs o one of these intervals, say L. Now, IT“(L) is some
interval in K.

We can, if required make L smallier to have, m(t"(L)) <d for
k=0,1,., T,

T, - .
If T"(QL) has diameter less than 8, we must increase it. Since T is eventually onto,

Ty +1

there exists a smallest positive integer t such thatK =7 (L) has diameter

greater or equal to 8. Thus we have,

Hx) € TL) and m@L) <8 k=01, T+t -1,

Furthermore, 'tN@(K) = [0,1], Since T is eventually onto, so that,
T, +t+N . ) i ) )
ot @)(L) =[0,1]> L which implies that, 2N 1as a fixed point, say y, in

L (since tT“+”N(8) is continuous). Thus, ‘L'k(y,,) € tk(L), for each k = 0,1,2,...

Define ¥ to be the orbit of ¥, under .

41




POM property of T

Ta+t+NE)-1

L__ Y oty - nio)

# ' '
We have, Iy, (9)- “(gi)} = m o

Ty+t-1

(ﬁ(yn)] - gitk(xn)]

U S
T, +t+N() Zégi

Ty +1+N@)-1

)
i, [ofton)- ofts)

Ty +t+ N@)-1

+ N S— z [qlf"(xn)) - u(gi)}

T, +t+N(d) ]

IA

1 En
ﬂ)n(S) + Tﬂ- 2.N(5).Mn + -4-— '

+ by (9), (10), and (11)

NI;P
|

+

1A
2 B

(13)

So now we have, L, (g) = W(g), V ge C[0,1]. Let {gnk} be a subsequence of

{gn) such that,
Ilg,&-gll-—)o as n, —> oo (14)

We then have, for any n, <n,

|u—,n(g) - u(g)l < My, (9) - u-,n(g,.k)l +

My, (Gn) - 1(gg)| + [W(gn) - 1(9)

by (13) and (14), <Ilg-g,kll+en+llgq(- gll—=0, as n—eo
Hence T has the POM property.
Remark 5 Let 1; X — X be a map with a unique ACIM H. Then | is T-ergodic and

Theorem 3 is applicable.
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Bemark € The map 1:2 considered in Sec. 2.2 is continuous and eventually onto,

hence by Theorem 3 it has the POM property.

2.3.1 EXAMPLE

Consider the partition of {0,1] given as follows:

n
0<l<-3l<l< <2 -

1 _
2 <G g =a,<..1

Define amap t which satisfies,

(a) T (am) =1, n=1,2_3.,... ,

(b)  t(a,, )=2a, , n=123..,
1

(c) t[5}=0, () =1,

(d) <t is linear on each of the subintervals I ={a,- 1, a;] of partition.

1 is shown in Fig. 4. Then 7T is continuous and %1 1 s an expansive

homeomorphism with expansive constant,

M. M2
o ' 2n—l 2n-2 _
?g=n,11£enl:f |T'(x)| = 1 o =2
2“ ) 2!\-1

We now show that the map T is eventually onto. Let J be any interval in [0,1]. f J
lies completely in Tn for some n then its length is expanded by a factor A = 2.

Similarly for t(J), T4(J),... Thus eventually TXJ) contains a_for some i. So we can

assume it to be true for J.
Now, if a,€ J for n even, then 1€ t(J). If a,€ J for n odd, then by (b),
a € T™(J), forsome k. By (c), 0O ©*!(J) and 1€ ©*XJ). Therefore, in either

case, we canassumethat 1 € J.
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The image of an interval around 1 must contain an interval of the form

{

| 3 .1 l} for some n (by (b)). Then, again some subsequent image under T

must contain {al , l} for some n. Again, some subsequent image under T must contain
[al , l} and the next image must contain [0,1], so that T is eventually onto. Thus by

Theorem 3, T has the POM property.

2.3.2 AGENERALIZATION
We can have transformations which may not be eventually onto.

Example 1 Let t: [0,1] — [0,1] be a piecewise monotonic and onto map such that

©(0) =0, but T(x) >0,V x#0 For example, as in Fig. 5. For any interval K not
containing 0, O ¢ ti(K) V i. Hence 1 is not eventually onto and Theorem 3 does not
hold.

For such cases, we have the following more general result, which applies to
transformations that are not eventually onto. We state the result without proof.
Iheorem 4 [36]. Let T:1—1, I=[0,1] be a continuous transformation satisfying
the conditions:

(1) There exists a finite family of closed intervals I = {Il,...,In] such that

IL.NL,k#1 consists of at most one point, ik-}jl Ii =1 and for any interval K 1

there exists a positive integer t and 1 <ig N with T (K) D L
Let | be a probability t-ergodic measure satisfying one of the following conditions:
(2) u(ll)>0’ for i=1,.., N

_ _ -k
(3) it Ii;""'lip el, u(lj‘)—O, Vs = 1,..,p then the set, I}(go s‘;l T (Ij‘)

includes some interval L, with H(L)>0,
Then the measure K can be approximated by measures with supports concentrated on

periodic orbits.
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CHAPTER 3
PERTURBATION OF TRUE ORBIT:
PSEUDO-ORBIT SHADOWING FROPERTY

3.1 INTRODUCTION

Computers are often employed in studying the asymptotic behaviour of chaotic
systems. During such a numerical or computer experiment these systems are
subjected to unavoidable external perturbations. Since chaotic systems are
characterised by their sensitive dependence on initial condition [40], these
perturbations will be amplified and different orbits starting close together will move
apart rapidly. For example, for chaotic systems such as the logistic map, the distance
between two nearby orbits on the average grow geometrically on every iterate. We are
therefore led to the following fundamental question:

To what extent does a perturbed orbit (or a pseudo-orbit) have the
(unpredictable) properties of a true (or an exact) orbit of a chaotic system?

For example, in [185] it was shown that the mixing property of the Chebyshev
map T(x) = x*-2 is preserved by the computer-generated orbits of 7.

A tool which has been used frequently while investigating the above question is
the shadowing property of the system. While the pseudo-orbit will diverge
exponentially from the true orbit with the same initial point, there often exists a
different true orbit with a slightly different initial point which stays near the noisy
orbit i.e. shadows it for a long period of time. It is then of interest to know the
conditions under which such a shadowing orbit exists.

If the shadowing orbits exist, and are in some sense typical of the entire family of
true orbits, the pseudo-orbits will reflect this same typical behaviour (though it is

still an open question [165, Sec. 4.11] whether the typical properties of the entire




family of true orbits, if any, are retained by the family of shadowing orbits).
In this Chapter, we study the question of shadowing property for some chaotic systems,

in particular that of piecewise monotonic maps on an interval.

3.2 BASIC DEFINITIONS

Let (X,T) be adynamical system. In general, we assume X to be the unit
interval with the Euclidean metric, uniess stated otherwise. The dynamical study of T
is largely concerned with the ‘orbits' of T:

Orbit A sequence {t"(x)}” is called the (true) orbit of the point x € X.
=0

It T X — X is a map with l'tl -1l<d (i.e. T, is a (localized) perturbation of 1),
then each orbit (7] (x)]:=0 of T, is almost an orbit of T in the sense that

It (x)!- 1’1‘“ (x) 1< 9, for n=0,1,2,.... This can be used to motivate the definition
of a pseudo-orbit of T.

Pseudo-QOrhit Let ad >0 begiven. A 3-pseudo orbit for T: X — X is a sequence

{*n :;0, x, € X, n=0,1,2,... such that, i‘t(x,,)-xn+l !5 o, for each n=0,1,2,....
Bemark 1 The concept of the pseudo orbit goes back at least to Birkhoff [131] (cf.
[25]). Pseudo-orbits arise when noise is introduced in a dynamical system e.g.
during computer simulation. This gives rise to small deterministic perturbations in
the form of roundoffitruncation errors, resulting in computer-generated &-pseudo-
orbits, where 8 denotes the maximum magnitude of perturbation.

Remark 2 Pseudo-orbit description has been found useful in giving a precise
mathematical definition of attractors {83, 168} and in the study of asymptotic
behaviour of invariant measures of small random perturbations of dynamical systems
[83, 146]. The utility of pseudo-orbits has also been found in characterization of
topological entropy of a given system [156,157].

For 1 to be 'stable’ we would like each pseudo-orbit for T to be closely related
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to a true orbit of T. The following definition was introduced by Bowen in [108]:

Shadowing Givenan £>0,a 3-pseudo orbit {xn};) for T is e-shadowed by an

xe X i, 1T -X,| <g, V¥ n=0,12,...

Pseudo-Orbit Shadowing Property T is said to have the pseudo-orbit shadowing

property (POSP or just shadowing property) if for every € >0, there exists a

3> 0 such that each 8-pseudo-orbit for T is &-shadowed by some point of X.
The shadowing property has been discussed in various contexts. For Anosov

diffeomorphisms in [89,110,238], for Axiom-A diffeomorphisms in (8,108,109],

for planar diffeomorphisms in [54], for Cl-diffeomorphisms of ka in {30], for
expansive and generic homeomorphisms in [76.101,132,133,197,231,247], for
subshifts of finite type in [101], for hyperbolic flows in [35], for first return maps
of real flows in [232], for non-invertible smooth maps in [95], for continuous maps
on isolated invariant sets in [172, 173], for expanding maps of compact Riemannian
manifolds in [116], for piecewise monotonic maps in [17,19,25,27,45,52,74,134,
181,256,272]), and more generally for a sequence of Cl-maps of a Banach space in
[26). Shadowing property for some nonhyperbolic conservative systems has been
established in [236].

The concept of shadowing property has found applications in various contexts.
Structural stability was obtained in [101] for expansive homeomorphisms with
shadowing property. It is used in [50,89] to show the stability of invariant measures
of Axiom A systems with support on stochastic attractors. Shadowing property (of
planar diffeomorphisms on hyperbolic sets) has been employed in [230,240,241] to
give an alternative proof of Smale's Homoclinic Theorem [220]. Topological entropy
has been estimated in [153,155,157,158,179] for expansive maps with shadowing

property. We shall discuss this in detail in Appendix C. Recently, the shadowing
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property has also been applied to the problem of noise reduction for data generated by

chaotic dynamical systems [269,270].

3.3 CHARACTERIZATIONS OF SHADOWING PROPERTY

In this section, we consider some characterizations of the shadowing property,
which shall be applicable in the sequel. It is clear that the shadowing property of 1
does not depend on the choice of metricon X. We assume X=10,1] for all the resuits
discussed in this section, unless stated otherwise.
Theorem 1 Let 7: X — X, be a continuous mapping. Then for every integer N> 1, T
has the shadowing property if and only if ™ does.
Proof The proof is similar to that of Lemma 2, Sec. 6.3, Chapter 6.

A powerful method for the extension of results of dynamical systems with
stochastic behaviour is a topological conjugation of such systems [1,2]. This
motivates the following result:

Theorem 2 [17] Let a mapping t:X — X, be topologically conjugated by means of a

homeomorphism h: X — X to a mapping t= h'l'c h, having the shadowing property.

Then T also has the shadowing property.
Proot Let {ﬁ“}mo be a d-pseudo orbit of the map % i.e. |’f(ﬁn) -R | <8, for

each n=0,1,2,.... Set xn=h'1 X, and consider the sequence {Xn}:;o. By definition,
| |
A A1 | _ | . .
Szlﬁml-f(xn) l = :h X, ,-hh thxn} = [h%,;-hTx;1. Butsince h isa

homeomorphism, it is continuous and hence uniformly continuous as a map of the
compact set X into itself. Therefore for any 6> 0 there exists a 3>0 such that

K-Y]<§= |hx - hy | < §. Thus the sequence {x, }:;0 is a O-pseudo orbit

of the map .

As the map % possesses the shadowing property, for any € >0 there exists
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8> 0 such that for any s-pseudo orbit {ﬁ"}mo of the map %, there exists a point

| n
R € X such that, }‘f ﬁn-ﬁn} <&, foreach n=0,1,2,... Ifweset, x=h&, then,

{ n bl ng P 1 1
£> "E i-ﬁn} =;h hfh'hx-h hﬁn} = Ih Tx-h xnl. Now applying again the
uniform continuity of the map h, we obtain, iT" (x) -Xni <g, foreach n=0,1,2,..
i.e. the orbit {t“(x)}:’=0 shadows the 6-pseudo orbit of the map 1. This completes
the proof.

Let X=X XX X.. ntimes. A metric d, on X is defined by,
d,(x,y) =max_ 1% -yl X = KpenXg) Y= peo¥n) € X, x, 5, € X.
T induces the mapping T of Xn defined by, T, (x) = (tx,,...,Tx,), where
X = (xl,...,xn) € X,, X, € X.
Following [51], we then have,
Theorem 3 If T: X—X has the shadowing property, then 1, : X, — X, also has
the shadowing property.
Proof Let an €>0 begivenand 8 >0 be a number determined by the shadowing
property of T; corresponding to €. Let {Xk};":o be a 8-pseudo orbit of T If we
denote x* = (X'f,---,x,lf ), k=0,1,2,... then {xi‘};;O , 1<i<n isa &-pseudo orbit of

1 since, |*cx'i‘-x’i‘”|s d, (txk xk1y for each i=1,2,.,n and k=0,12,... .

Now, since T has the shadowing property, thereisa ¥, € X 1 <i<n, with
k
I"kyi' X; Ige , k=0,12,.. Set y= (yl,...,yn). Then,
ky = - XK
dn(fii(y),X)—lrg,agnltkyx e
ie. ye Xn €-shadows the &-pseudo orbit { x"}:' -o This completes the proof.

We need the following definitions for our next result:
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Tracing The dynamical system (X,T) is fracing if for a sequence {xn};o with
Am, (k) -x_ 1=0, thereisan xe X with lim lt"x - x, =0.

In general, (X,7) is tracing does not imply that T has the shadowing property [51].
1-Connectedness The dvnamical system (X,T) is said to be 1-connected if

b
V x,y€ X andevery &> 0 there are 3-pseudo orbits {xn};) and {yn}mo so that
Xo=X=Yp,and Yo=Y =X,
Theorem 4 ([51] If (X,T) is tracing and 1-connected, then T has the shadowing
property.

Proof Assume that the conclusion is not true. Then there is an € >0 such that for

each k> 1, there is a %-pseudo orbit, ["11(’"-9"13; } of T suchthatthereisno ze X
k

with, I1ri z- x}‘l <g, foreach j=1,..N,. By t-connectedness, there is a % -pseudo
. Ky —Jk _Jk+1 _4
orbit {z';,...,sz} with z'f,-xNk and z'L“(—xj , k=1,2,3,....

Rewriting the indices of the sequence,

{cons XS, 25, 8, x5* 1} we have a sequence {xn};) such that,
k-

’ Nk’ 19“ 1 l
| . .
xp) - X, V< ie. lim lx,-x =0 (i)
Since (X,T) is tracing, there is a ze X with,
Jdim_ Iz - x, 1=0. (i)
. N
Therefore, by (i) and (ii), {xi} is e-shadowed for some k > 0, which is a
il

contradiction. This completes the proof of the theorem.

Let B(X,e) = {ye X:Ix-yl<e] betheclosed &ball about x € X. We then
have the following generalities [25]:
Theorem 5 Themap T: X — X has the shadowing property if for every € >0, there

isa 8>0 suchthat
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B (tx, € +3) < T[B(x,£)] (i)
holds for all x € X.

Proof Letan € >0 be given and ’0 be a d-pseudo orbit of 1. Assume, that the

condition (i) holds. Define set. * . , ... as follows:

Wo=B(xse), W, =W, Nt  Blx,e)l, kz1. Then 1" (W) =B(x, €),
[B(x,€)! N
and T©(W)=1Wy) N B(x,€)=17"""0" N B(x,£). By condition (i),
r ]
B((x,), £+8) < 7/ B(Xg8) I Also ET(X& - X, i <. Hence, 1(W) = B(x,€). By

induction, it follows that ¥ (W) =B(x,,€) for each k2 0. Thus

W, # @, Vk>0. By construction, W, D W, ., k> 0. Therefore, W =kr§0 W, # g

[ | | | | )
We note that Wk=<lxe X: Xy <k, {"(x) “Xl<e, .., Ifk(x) - "kl 5:-:]}. So that W

is precisely the set of points which &-shadow the 8-pseudo orbit {x"};o' Thus t
has the shadowing property.
Remark 4. Consider the family of tent maps T,: [0,2] — [0,2], 1 <s< 2, given by,
sX , O<sxsg1
1=
s(2-x) , 1ex<?2

The condition of Theorem 5 is satisfied by the tent map T, but is not satisfied by any

other tent map t,, s # 2. It fails at the critical point ¢ = 1.

Theorem 6 T: X — X has the shadowing property if there is a constant A > 1 such
that for every €>0, there is a 8 >0 and a positive integer N such that for each

x € X, there is a positive integer n=n(x) <N satisfying

T[BA"x), e+8) ]l (T W (y)Ix-yl<e, tix-Tyl<Ae, 1<i<n). (i)
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Proof Letan € >0 be given and {x,,};o be a §-pseudo orbit of T. Assume that a
constant A > 1 exists such that condition (i) is satisfied. For xe X and n a
positive integer, write A(x,n)={y:lx-yl<e, I'ci(x) - ‘ti(y)l <Ag, 1<i<n),
Then we can rewrite (i) as,

t{B(t"(x), s+8)} c ™ [Ax,n)]. (ii)
Define integers m, and N, andsets W), k>0 as follows:

m, =0, n, = n(x,), Wo = A(xmo, ny andfor k> 1

m =m,+n, =n,+..+0n,
n = n(xmk)
W = -m - 1 A
=W Nt ClAGy . n) 1)
We claim that,

+1
T (W,)=1[A("mk’“k)] , foreach k2 0. (iii)
We show that (iii) holds, by induction on k. By definition, (iii) holds for k = 0.

Suppose that k > 0 and (iii) holds for k. Now, since

1
)= tm“"‘+ (Wk) nf{A(xmm’ nkﬂ)]. it is sufficient to show that

AGn o, T W

1
,tm'k*l.’- (wk

+1

We have, T [A(n, .My, ) ST [BGy ] CTIBE (xn),e+8), by (i),

1 lma1 ]
St [ Al 1= T WAy, ) = AWl = Meriw,

Now, fixan i20. If i=0, then ye W, CB(x; €). Thus, |'r°(y) - xOI <e.

For i> 1, wite i=m, +j, where k>0 and 0<j<n, Then,

. | jom, o
[ty - x| < [T ) - )l ¢ }r’ Gm) =X o
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Now, T ) =7 @ ghed e W)= [AG, .0l by (i),
| |
and therefore {'C y)- T'(ka)! < Ag. Also, we let | T () - Xy +j! <8 Hence,

[t -x| <e . if S<O-De
As we have seen in Theorem 5, W =kr30Wk # & and is the set of points y

which g-shadow the &-pseudo orbit {xn}“ . Thus T has the shadowing property.
=0

This completes the proof.

Theorem 7 [179]. Let T be a continuous map of a compact metric space (X, d) into
itself. If T is anisometry and X is totally disconnected, then T has the shadowing
property.

Proof. Let £>0 be given. Since X is compact and totally disconnected there exists a
partition P={A,...,Ap} of X such that each A, isclosed and diam (A)) <E,
1<i<n. Let d(A,B)=inf {d(a,b):ae A,be B} for A,B c X. Set

0 =rlng? d(Al, Aj). Then & > 0. Furthermore, since 1T is an isometry we have,

d(t{A), TA) = d(A; A) 2 8
for (i, j) € {1,..n),i#j and k> 0. Let (x,}__, bea &-pseudo-orbit of 1.

Suppose that X, € A, . Then by induction X, € Tk(A;O), for each k > 0. Therefore any

point x € Ai., , €&-shadows {x Hence T has the shadowing property and the

k}k=0‘
proof is complete.
Remark 5. A generalization of Theorem 7 is obtained in form of Theorem 1, Sec. 7.8,

Chapter 7.

3.4 EXAMPLES

In this section, we test some maps for the shadowing property.
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Example 1 Consider the class of mappings T, [0,1] = [0,1], 0<a<1,
defined by,
% , if 0<x<a
Tx) =

ll‘-'% , ifagx<l.

See Fig. 6. T, is similar to Bernoulli shifts which are a prototype of one-dimensional

chaotic maps [152]. We show that ta has the shadowing property. Fixan €>0 anda
8-pseudo orbit {x,}~ - Let, Km=go{y e [0,1]: |13 (¥) - Xol <€ } and let
=0 n=

A = min T, = min {3, il_;} >1. Thenif 8=(A-1)e, it follows by induction that

Km is nonempty for each m > 0. Also K, = Km+ and K, is compact for each

1

m > 0. Therefore, K = n{:jo Kmn is non empty. Since K is precisely the set of points

that e-shadow the given d-pseudo orbit, T has the shadowing property.

Example 2 Consider the class of mappings 'ta: [0,1] — [0,1] defined by,

Ty (x)=0x, O0<a<l.

We show that 1, has the shadowing property. Let €>0. For agiven r let

{Xos--»Xn} be a §-pseudo orbit of T le.
Ita(xk)-x“llsa for each k=0,1,..., n-1. Set, Tj=‘r'a ), j=01,.n,

~ - - - - - I X._ . '
y € [0,1). Then, IX}H xﬂ':l"d"j X}HI < I‘txj tle-}-”’. j xﬁ-l{

so Ixj' le + &. By induction it follows that, Iij- le < d , foreach j.
“1-a

Therefore n being arbitrary, if we let & = (1-a) €, then T, has the shadowing

property.



Bemark 6 It is easily seen from the analysis of Example 2, that any contracting

mapping of a compact metric space into itself has the shadowing property [121].

Example 3 Consider the tent map, T JE: [0,1] = [0,1] defined by,

2x , 0<x<
'Cﬁ(X)=

2(1x) ,

<x<1

We show that = I does not have the shadowing property [116, Chapter IV, 4.1]. We

=2- i i i T ©_d)=c -
note that c=2-42 is a repelling fixed point of I and 5(2) Take the &

pseudo orbit {x,,};) of T 5 given by,

J'
\ xl=1:ﬁ(xo), x2='c5(xl), Xy =C, x4=c+8, x5=tJ_2_(x4),...,

=

Xo=

[ 5]

xk+l=‘cﬁ (xk),k_>_4.

=1la. p+y=do 1L
For p=(3 2/2), note that tji( P+y)=s Tzﬁ(p+2).

Consider the interval, I= {x: Ix-%lsi—@ -2f2_)}. Then TB./E (D is the interval

whose left endpointis ¢ and so 142 (I) is the interval whose right endpoint is c.

.
{2 1

Hence, if ye I then, 142(y)5c<c+8=x4. For, ==X <+ and

J‘

'
2

1
2)
Therefore, when & is small enough, the orbit of y cannot shadow the

| | | |
Sfji (¥Y) <5 we have, :xkﬂ-r%l (y){__.ﬁ{xk-t%(ﬁ{’ for each k > 4.

o-pseudo-orbit {Xn};o. Thus T [; does not have the shadowing property.
Example 4 Let T, :[0,1]1 = [0,1], 0 <a< 1, be the map given by,

%, O<x<a
T{x) =
-’1‘—::-, asxsg1

and T, be the tent map, given by,
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1
2x, Osxs2
T)(X) =
1
2(1-x), Esxsl

By Theorem 1 of [2], 7, 2 is topologically semi-conjugate 10 1, Therefore, from
Theorem 2 and Example 1, it follows that T, has the (almost) shadowing property.
Since T, Is topologically semi-conjugate to the quadratic map ©: [0,1] — [0,1] given
by 6(x) =4x(1-x), this in turn implies the (almost) shadowing property for ©.
Bemark 7. Let 1,: [0,1] = [0,1], u>1 be atent map given by,

px, 0gxg
Tu(x) =

u(l - x), -;-sxsl.

J’luf

, lis

It is shown in [194] that T2_ restricted to the interval
(194] that & (4

topologically conjugate to Ty on [0,1]. Then from Theorem 2, and Examples 3 and 4,

it follows that even though T _ does not have the shadowing property,

ip)

tji restricted to the interval [Y2 - 1,2 -v’—2-] has the shadowing property.

3.5 SHADOWING PROPERTY FOR HYPERBOLIC SYSTEMS

The shadowing property was originally discussed for a restricted class of maps,
namely for Anosov diffeomorphisms (which are everywhere hyperbolic) [108,110].
For maps with a chaotic attractor, this means essentially that each point x in the
attractor must have a stable manifold and an unstable manifold: under the map T,

infinitisimal displacements in the stable direction decay exponentially while

infinitisimal displacements in the unstable direction grow exponentially. A point
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where the stable and unstable manifolds intersect is called a homoclinic intersection;
if the manifolds are parallel, this is called a homoclinic tangency. To be everywhere
hyperbolic it is required that the system does not have homoclinic tangencies i.e. the
angle between the stable and unstable directions be bounded away from zero. If these
requirements are satisfied it is possible to show that a true orbit can be found near the
noisy numerical orbit for arbitrary long period of times. An important result

obtained in such a case is the shadowing lemma.

3.6 SHADOWING LEMMA
We state the lemma as follows:
Let T: X = X be a continuous map for which X is a hyperbolic invariant set. Then

for every £>0, thereisa &> 0 such that every &-pseudo-orbit {xn};) of T in

X is e-shadowed by a point x € X.

Various proofs of the shadowing lemma have been given. Some of them are by
Bowen [8], Conley [242], Robinson [243], Newhouse [244], Ekeland [245], Lanford
[121], Shub [246], and Palmer [241].

3.6.1  LIMITATION OF THE SHADOWING LEMMA

Since the shadowing property for pseudo orbits was given for (everywhere)
hyperbolic dynamical systems, there has been a considerable research work,
investigating the shadowing property and its applications to both theoretical and
applied problems. The proof of the shadowing lemma depends on the fact that the stable
and unstable manifolds are never parallel when they intersect. Aithough such
hyperbolic systems were initially believed to be generic, we now know that quite the
opposite is true: most dynamical systems of interest have homoclinic tangencies.

Therefore they do not have the requisite uniform hyperbolicity and the shadcwing
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lemma does not apply. Therefore to extend this result to, say a class of piecewise

continuous dynamical systems, we have to use different techniques.

3.7 THEORETICAL RESULTS OF SHADOWING FOR NON-HYPERBOLIC SYSTEMS
We shall now restrict ourselves to the study of shadowing property for non-
hyperbolic systems for the rest of the chapter. An important class of such dynamical

systems is that of piecewise expanding maps.

3.7.1  SHADOWING PROPERTY FOR PIECEWISE EXPANDING MAPS
We have shadowing property for piecewise expanding maps which take their

intervals of partition to the whole space.

l+a

Iheorem 8 [17]. Let ©: XX, X =[0,1] be a piecewise monotonic, C and

expanding map with expanding constant A > 1, such that X, =X, where X, is any
interval of partition described in the definition of T. Then T has the shadowing

property. 3
Proof Let Y =§ X. where § denotes the boundary, Y = (;301:'“ Y, and X=X\Y. j

By construction of the set X, itis densein X and T(X N X)= X for each i. For

any point x € X? we denote by X{x) the set X

.
Fixan €>0 andchoosea 8 & (0, &(1 - 7{-)). Let xy e X suchthat [TX-Y|<§
say x € xi Set y' = tlly Then by the expanding property, we obtain,
5>~y = l‘t‘t;l‘tx - Tt;lyl 2 't}ltx-';ilyl = lx- y'l

ie. there exists a point y'€ X(x) N X suchthat Ty' =y and |x - ¥/ <%
Suppose that {xn};ﬂ isa &-pseudo orbit of 1. Choose an arbitrary positive

integer N and set yy =xy. As Iy |-y, l<d there exists a yy € X{x, )N X

1

58




| | =
such that, - Yval < and Tyn, =Y Now,

3
A
lex ey e axo ok oy 5(1_1_)

(TN~ N4l < [PXN2 " XNal + e " YNal < 8+_7C - 8\ + M:e. Therefore there
exists a yy,€ X(xy,) "X such that, Ty, =Yy, and

X0 = Yoyl (1 +l+L1

1"N2 yN-z{ <o A A‘2 )<£. Continuing this construction, we have for arbitrary

\

n< N that there exists a y, € X(x;) N X such that, Ty,=Y,,, and

(IIL\—I—

Ka- ¥l 1+t 3+ Ral < 8 1_.;: < €. In this way, we construct the

N
Cr e
segment of the orbit {Yn};) of the system 1, shadowing the 8-pseudo orbit (xn}:=o
on the time interval [0,N]. But since N can be chosen arbitrarily large, the result

follows.
3.7.2 REMARKS

Remark 8 For one-dimensional representation of the Lorenz system a similar result
as of Theorem 8 was obtained in [55].
Bemark 9 The condition tX;=X in the statement of Theorem 8 is sufficient [164]
(cf. [17]) but not necessary. The family of tent maps in Remark 4 doesn't satisfy
this condition but have the shadowing property for almost all parameters s e (1, 2)
[25]. We therefore have to use different methods to test the shadowing property for
expanding maps which don't satisfy this condition.

We now discuss the shadowing property in the family of tent maps, which are a
prototype for the one-parameter family of expanding unimodal maps. It is well known

that these maps exhibit a chaotic behaviour (see e.g. [77]).
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3.8 SHADOWING PROPERTY IN THE FAMILY OF TENT MAPS
We consider the one-parameter family of tent maps (See Fig. 7) i.e. the
piecewise linear maps tg: [0,2]1 = [0,2], 2 <s< 2 defined by,
SX , Ogx<1

T(x) =

s(2x) , 1gxg?2
We note that c¢=1 is the common critical point of all the tent maps. We shall test the
tent maps for the shadowing property in terms of the behaviour of the iterates their
critical point ¢. To do that we shall need some basic concepts of kneading theory
developed in [71]. The idea is to associate with each point a sequence of symbols
describing on which side of the critical point its successive iterates lie.
Kneading sequence Let v=v(s)= V,V,.. be the kneading sequence of ’ts ie. the
(extended) itinerary of the critical value ¢ defined as follows:
it ) <c

if Tic)>c.

v,=L,
v,=C, if Tc)=c
v,=R,

Signature Sequence A signature sequence G = o(s) = 0,0, .. is defined by,

6,,=0, it v=L,

on+1='l» it vp=C,

G,1="COn ¥ v,=R,
Denote by <x,y> the interval [x,y] or [y,x], x#y whichever makes sense. We
shall use the following lemma [25] which we state without proof.
Lemma 1. Given a parameter s, if €>0 is sufficiently small then,

a) f Ix-cl<e, then 1 [B(x,£)] = B(t(x), s€),

b) If ze <x,y> and c ¢ int <x,y>, then 1(z) € <t(x), T(y)> and
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1400 - 1)) = s - ¥}
c) If x=y, then ce int <1:'s‘(x), t‘s‘(y)> for some k > 0.
Bemark 10. By Lemma 1, it follows that given a parameter s, a positive integer n
and ¢ >0 sufficiently small, the endpoints of T{c - €, c +€] are T4(c) and
To(c) + s"E, where the sign is given by the signature sequence.
Recurrent Point. A point x € X is I-recurrent if for every €>0 thereis a

- . | |
positive integer n such that, 1T(x) -xI <.

3.8.1  ANECESSARY AND SUFFICIENT CONDITION FOR THE SHADOWING PROPERTY
FOR TENT MAPS

In this section, we obtain necessary and sufficient conditions for a tent map to
have the shadowing property. These conditions are that the critical point is recurrent
and returns close to itself on the 'correct side’, a condition which can be stated in
terms of the kneading and signature sequences.
Theorem 9 [25). Let s# 2. Then T has the shadowing property if and only if for
every €> 0, there is a positive integer M such that

ce {n(y): i) - neie 0<i<M).
Proof Fix the parameter s and denote ts by <.
Pad 1: Necessity

We first suppose that the condition holds and prove that T has the shadowing
property. Let an € >0 be given. We show that the condition of Theorem 6 holds with
A=s* 3=(s-1)¢ and N=M+1 ie. foreach x € [0,2] there is a positive integer
n = n(x) < M+1 such that,

T[B(r), s&)] < (" T 1(y) : Ix - yl <&, i(x) - Ti(y)l < s%€, 1<i<n) (i)

which is implied by,
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B(t"x, s€) = {T(y) : Ix - yl <&, Iti(x) - ti(y)l < s%¢, 1<ign) (i)

1+45

Suppose first that Ta(c) =C ie s= 5 Let € >0 be small enough so that

ce xi[c-e,c-c-e] for i=1 or 2 and also (S+53)8<%-. Then equation (ii) holds
with, n(x) =1, if Ix-cl>¢,

n(x)=2, if £<x-d<e,

n(x) =3, |f £ > <Ix- cl<-

Now suppose that, Ix -cl< -3- Then, 1:3(x) € [c,c +sg] and
s

( . 1
{13(y) x-Yl < g, {'l:'(x) ) <s%, 1<i< 3} - {c, B(x) + s3e}. Since

r 1T ]
!B(T(x), s€)| = ¢, T(X) + 5!, so equation (i) holds with n(x) = 3. Similarly, the
condition of Theorem 6 holds if %(c) =c.

We may therefore suppose that T(c) # ¢ and t*(c) #¢, and £>0 is small

N 1
4 4 .
enough so that ¢ & 'c"c SE,C+SE 1cig4. For nz>1 let,

( - . ]
C,= ‘lt“(y): 1T{(y) - 1) <€, O<i<gn } We may also assume that M is the least

positive integer such that ce C " Our choice of € insures that M> 5. If Ix-cl > €,

then equation (ii) holds with n(x)=1. Now fix x with [x-c| <& For n>1 let,
[ I o ]
D,,=‘lt“(v): l(x) - T(Y)! <k, Ogisn} and

[ e o )
E,= {7y Y <ge, 1T - Ty <s%, 1<ign h

Then Du and En are intervals. With this notation, equations (i) and (ii) become,

t{BOTX), s8)] ¢ 1(E,) (i)’
ad B(x), s€) CE, (i
Now, if
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lk-cls*<e and ce intD,,.., int D, (1i1)
we have, D, = <t5(c), T(x) + 0,£> and () = T(x) - 0, /*dl s Suppose first that

ce D, 1<k <M. We claim that Ix-cl gM 5 ¢. If not, then by equation (iii) ,

Dy

that ce C,,, we have as in equation (i) that
Cu= <Mc), ™M) + c,€> andso c € G, CD,, a contradiction. Therefore,

Ix-cl Mse if ce Dk’ l1<k<M

= <tM(c), ‘cM(c) + GM[b"C' sM+ e]>. Since M is the least positive integer such

Let k be the least positive integer such that Ix-cl k5 g. Thus 1 <k <M. From
equation (i) and the fact that c¢ D,,... D, ., we getthat

L] k_l’
D, , =<(x) - o, ¥ &, t¥(x) + 5, €> Thensince c € D, ;.

k-
D, = [Tk(x) - €, T + 8}. Finally since ¢ € D, (D) = 7 1x) - se, T 1(x) + se} cE_ g
so (i) holds with n(x) = k+1.

Now suppose that 5 < k < M, is the least positive integer such that c € Dk.
Using equation (i) again, we have, <T(x), T(x) + o, e><D,. Suppose, for
definiteness that ©, = +1. We then consider the cases when ™(x) > ¢ and ) <c
Case1 Let T(x)2c.
By the minimality of k, c€ D,...D, ; andso ™(x) +0,,€ € D . Thus

™) +s£=11*"'®) +0, €)e (D, ) CE. But ce E, andso

[ )
le, ‘tk(x)+s€| E . Since csr‘%x)sc+e we have,
L 16 3

1 1 [ 1

t‘lB(Tk(x), s€)| =1|C, ™x) + sec7(E) and therefore (i)’ holds with n(x) = k.
Case2 Let T4x) <c.

We have chosen the € so small that k > 5. Since c e Ek. we have

: -4
ce E,_, U..UE_ . AsinCase1, o x)+0, €€ D,

[ 1
T +se =t ‘W +o, e D, )CcE andlc, ™x) +s'el ¢ E,




But s+2<5% since s2Y3 andso 4B, )] Caic, T + (42| C K,
Therefore, equation (i)' holds with n(x) = k.
Pan 2: Sufficiency

Suppose now that the condition does not hold. We then show that T can't have
shadowing property. |f T does not have the shadowing property then there is an €>0
such that for every 8 >0, there a 8-pseudo-orbit which cannot be &-shadowed by
any true orbit.
Case 1 Suppose that the critical point is not t-recurrent. Then there is an £>0
such that, Et"(c)-ci>e, V3l (iv)
Thengiven 0 <d <€, let {x"};o bea 8-pseudo orbit defined as follows:

Xy=C, X, =1(C) +§, x, = ‘rk'l(xl) k22
Suppose that {xn}"° canbe €-shadowed by the orbit of y. Let m be the least
n=0

positive integer such that ¢ € <t™(y), x,,>. (If no such integer exists, then by Lemma
1 (c), t(y)=xl. which is impossible since X, > s, the maximum value of T). Then
1(c) € <t(y), x> and c ¢ <1t(y), X, Therefore, rz(c) € <1:2(y), X>. But x2=‘t(x1),
SO assuming m>2, c € <tz(y), x>, Continuing in this way, we obtain that

¢, T(c) € <t™(y), X,>, and so E‘t'"(C)-CE <g, a contradiction to (iv).

Case 2 Suppose that the condition fails for € >0 but that the critical point is -

( | . ]
recurrent. From Part 1, we have C,,=‘lr“(y): IT(y) - 1(0) <€, 0<ign }

Since ce C, forall n>1, we have C,=<1'(c), T(c) + 6,£>. Thus, if it“(c) - Ci <Eg,
we must have 6,=+1 or -1 accordingto as V,=R or L.

Given 0<d <€, weconstructa d-pseudo orbit {xn}::o as follows. Since c is

! |
T-recurrent, }tk(C) -C} <d forsome k1. Let,




) , if 0<igk-l
vk, fi>k

Suppose that {xn}” canbe e-shadowed by the orbit of y. Then {xm}”* canbe ¢-
n=0 m

shadowed by the orbit of ‘t'k(y). Hence, tk+j(y) € Cj , forevery j> 0. In particular
we have A, it Ty > e

o= (v)

A, it ™) <o)
j ktj . . ‘t" ke
By Lemma 1, c e <7(c), T Ac)> forsome j> 1. Since <t(c), T (y)>:Cj. we

have Iri(C)-C| <€. Thus,

.= (Vl)

Since ce <‘ri(c), tk+j(y)>, both (v) and (vi) cannot hold simultaneously. This
completes the proof.

We then have the following corollary [25] of Theorem 9, which we state without
proof.
Corollary 1. Let s# 2. Then ‘ts has the shadowing property if and only if for every
£> 0, there is a positive integer n such that, it's’(c) -ci <¢ and, either v,=C or

o,=+1or -1, accordingtoas v,=LorR.
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3.8.2 GENERAL REMARKS
Bemark 11. Corollary 1 states that for s # 2, T; has the shadowing property if and

only if the critical point c=1 is T,-recurrent and for every €>0 thereis a

| | | i
positive integer n such that |75(C)- | <& and either T(C)=c or i1{(x)-c| hasa

local maximum at x=c. In particular, T has the shadowing property if the critical

1+45

point is  periodic (e.g. if S =—-—2—-), and doesn't if the critical point is preperiodic

(ile. has a periodic point in its orbit), but not periodic (e.g. if s =f2').

Bemark 12. Restricting the parameters to lie in the interval [ﬁ R 2} is a technical
convenience. For 1< s < 2, tf restricted to an appropriate interval is
topologically conjugate to 'l:s2 [194]. Hence, Theorem 9 holds for the parameter
interval (1,2].

Remark 13. !t is shown in [25] that T, has the shadowing property for almost all
parameters s € (1,2] and the set of parameters for which T, does not have the
shadowing property is locally uncountable.

Bemark 14. If for some fixed parameter, we don't have the shadowing property for a
map, it is of interest to know whether the shadowing occurs for a slightly different
parameter. In fact, we have the following question:

Can a noisy orbit be approximated by a true orbit for slightly greater parameter
value (increased parameter shadowing)?

The tent maps T, are shown in [25,74] to have the increased parameter

shadowing property for all parameters. Similar‘results are established for a family of

quadratic maps in (74] and for a family of one-dimensional Poincaré maps

corresponding to the Lorenz system in [256).
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3.8.3 AGENERALIZATION

in this section, we present a generalization of the main result of Sec. 3.8.1. We

need the following basic definitions:

Uniformly Piecewise linear map A map T. X—X, X =[0,1] is said to be uniformly
piecewise linear if there are O5ees Oy and s> 1 such that,

x) =o.xsx, for xe [a ,a ] where 0=a;<a<..<a,= 1 are the turning
points of T and the sign depends on i=1,...,m.

Linking Property. Let T: X— X andan €>0 be given. A point xe€ X is e-linked

to a point y € X by t, if there exists an integer m > 1 and a point z € B(x,e) such
that T"(z)=y and |T'(X) -T'(Z)l <e, for 0gj< m. Wesaythat xe X is lin.3d to

ye X by t if x is elinkedto y by t for each £€>0. A subset C of X is linked
by T, if every point ¢ € C is linked to one of the pointsin C by T.

We then have the following:
Theorem 10 [27]. Suppose T is a map that is conjugate to a continuous uniformly
piecewise linear map of a compact interval to itself. Then T has the shadowing
property if and only if the set of all turning points of T is linked by .
Example 5. Let T, 1 <s</2 be the family of tent maps considered in Sec. 3.8.

Then c¢=1 is the critical point for T, foreach s. When s # 2, then

() e [153(1), 15(1)], for each j> 0 where [Tz(l), Ts(l)] is a proper subinterval of
(0,2). Therefore, by definition, 1 is linked to neither 0 nor 2 by T, Sofor 1 to
be linkedto O or 2, we must have s=2 ie. by Theorem 10, T, has the shadowing
property if and only if either s=2 or 1 is linked to itself.

Remark 15. In Theorem 9, the condition for shadowing property for the tent map Ts,

s# 2 is that, for any given €> 0, there exists an integer M > 1 such that,

{ . . 1
le “ltM(y): IT'(}')-T'(I)I <E, OsjsMJ’ i.e. 1 is linked to itself by T.. Thus by

Example 5, Theorem 10 generalizes Theorem 9.
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3.9 SHADOWING PROPERTY IN THE FAMILY OF QUADRATIC MAPS

In Example 4 we have seen that the quadratic map (x) =4x(1 - x) which is
topologically conjugate to the tent map T, has the shadowing property. This motivates
the question whether we have shadowing property for other quadratic maps. Consider

the family of quadratic maps t,: [0,1]1 — [0,1] given by T,(x) = Ax(1-x), 1<A<4,

which are a prototype for the one-parameter family of non-expanding unimodal maps
with negative Schwarzian derivative. These maps are well known for mimicking
various biological models [62, 69] and exhibiting a chaotic behaviour {77] as the
parameter A is varied. Shadowing property for T, is shown in [52] for a set of
chaotic parameters A of positive Lebesgue measure obtained in {125]. T, are also
shown in [74] to have the increased parameter shadowing property for almost all

parameters, when they have attracting periodic orbits.

3.10 LIMITATIONS OF THE SHADOWING PROPERTY

Though shadowing property is useful in studying the reliability of numerical data
obtained from pseudo-orbits during experiments with chaotic systems, there exist
inherent limitations of the shadowing property towards computer implementation:
1) A map may not have the shadowing property for all parameters. (See Remark
13.) Thus there is a lack of continuity in the shadowing property. A small change in
the parameter may result in a loss of the shadowing property: this can have important
consequences during computer simulation of the system under study.
2) Even though a map may have the shadowing property with measure one, it is not
necessarily reflected during computation: computation takes place on a set of measure
zero.
3) A computer necessarily has a finite accuracy. Therefore, for a given &-pseudo-
orbit, there may not be a necessary € in the computer memory, and hence an €-

shadowing orbit.
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4) When fixed-precision arithmetic is employed during computation, the numbers
generated (and hence the initial conditions) are all rational. Therefore, even though
the system under study may be chaotic, the shadowing orbits are unstable periodic,
rather than chaotic [78,137,202). (For systems such as Bernoulli shifts, the
unstable periodic orbits mimic chaotic orbits on binary computers [203], but reasons
for this have nothing to do with shadowing property.)

To avoid some of the above problems during the computer simulation of a chaotic
system, we resort to special methods to ensure that there exists a shadowing orbit near
the pseudo-orbit which shadows it for a long period of time. One such method is

discussed in Appendix B.
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CHAPTER 4
WHY COMPUTER ORBITS LIKE ABSOLUTELY CONTINUOUS
INVARIANT MEASURES

4.1 INTRODUCTION

Computer experiments have played a very important role in understanding
the nature of chaotic phenomena and in suggesting directions for theoretical analysis
[29,99,102]. However, care should be taken in the interpretation of computer data.
Computer simulation of chaotic dynamical systems results in the generation of a
chaotic computer orbit which diverges from the true chaotic orbit rapidly (e.g. in
the case of Lorenz system [65]). Since the theoretical system and the computer are
completely deterministic, it leads to the following questions:

How and why does the computer produce chaotic orbits and, in what sense are the
computer orbits chaotic?

In this Chapter, we explain this computer phenomena for a large class of one-
dimensional transformations.

It has long been observed that the histogram of computer simulation of chaotic
orbits seem to display the invariant measure that is absolutely continuous with
respect to Lebesgue measure. In [15,33] this was given a theoretical justification and
it was shown that the computer orbits of piecewise monotonic transformations of the
form kx (mod 1) display Lebesgue measure, the unique ACIM. Unfortunately, the
number-theoretic methods used have limita.tions and there are deficiencies in the
random perturbation model X e1= T(xy) + W, W is a random variable, used for
computer simulation. We obtain analogous results for general piecewise monotonic
transformations on the unit interval using different methods. This leads to the

following question which was also raised in {49,137] while studying the




distributional properties of long-periodic orbits of maps with an ergodic invariant
measure:

Why do computer-generated orbits (mostly) give the statistics of the theoretical
invariant density?

We discuss this question later on in the chapter. We now proceed 1o prove that if
a transformation has a unique ACIM, then the histograms of sufficiently long computer
orbits of the transformation approximate the histogram obtained from the density of
the ACIM. This result justifies the use of a computer to predict long-term behaviour

of a system which has an ACIM.

4.2 DESCRIPTION OF THE COMPUTER SPACE

Let T: XX, X =[0,1] be a piecewise monotonic transformation which has a
unique ACIM K. For example, T may be in the class of piecewise expanding Lasota-
Yorke maps or in the class of non-expanding Misiurewicz maps.

We begin with describing the framework and the set of numbers with which a
computer works i.e. the computer space. For a fixed precision, the computer
distinguishes only a finite number of points in the interval [0,1]. Since a computer is
a finite-state machine, it discretizes the continuous phase space into finite number of
cells. Let M denote the number of phase cells, C denote the computer space and ¢ a

computer point. Then C is a finite space. Let N = Card (C). Any ce C canbe

identified with a small interval IiN)c X, consisting of all abstract points which are
treated by the computer as c.

In our computer analysis, we use the floating-point arithmetic [135, Sec. 4.2].
Therefore the distribution of computer points in X may not be uniform. We

represent a real number as an ordered pair (e,?), where e is the integral part and

7




f is the fractional part. We have, - ElsesEz and ? is represented as a binary

string
F
7={f], ey f}:]. f=z-.2£:- , 'fi=0°r 1.
i=l

For fixed E,, E, and F the computer 'sees’ the real numbers as (¢, ) =2°. £, so that

in any ‘computer interval [2°, 2e+l] , e=-E,-E +1,..,-1, wehave exaclly 2
computer distinguishable points.

To obtain a high precision, we should have large ranges of e and f: a large range
for e produces points closer to zero and a large range for f produces an increase in

the density of available computer points. Thetefore, in our case, we -1all let

Ev F - oo,

We have, N = E1 2F and the smallest computer interval has the length,

-El+l -El
2 -2 )
F + Thus, we assume ihat,
™) :
Iy |>ﬁ, for each N, (i)
where, S = 5 11 = When the computer points are uniformly distributed
EQ -2 )

N)
we have I, 1= %I_ Now, having described the computer space, we give a computer

model for the theoretical transformation <.

4.3 ACOMPUTERMODEL FOR THE THEORETICAL TRANSFORMATION
A computer model is a variant of the theoretical transformation with which a

computer works. We denote the computer model by T:C->C. tand Ty are related

by the equation,
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Jim sugw I't(x)-ﬁ‘(c)! =0 (i)

X€E

T acts on a continuous phase space while T, acts on a discrete finite set. On
application of ’t_N any point in the space C is either periodic or eventually periodic
and there are finite number of periodic orbits. For chaotic systems, we wish to know
the asymptotic statistical behavior of the periodic orbits of TN For that, we have to

relate the computer transformation "I:_N to the theoretical transformation <.

4.4 ANAPPROXIMATION FOR THE THEORETICAL TRANSFORMATION

We define 1:N, N=1,2,3,..., a transformation which relates EN and T, as

follows:

Forany ce C andany X € IiN), we have;

anio ™
| (N)-> I<N) linearly and I(N) =] , k=0,1,2,...
tN © 'k
e o CACRIENS

()]
where I %60 is the computer interval containing the theoretical point T;f,(x)-

N
x, " L
Then, 1) the histogram of {%N(c)} and {‘t,‘f,(x)} are the same and
k=0 k<0
2) Ty 7T uniformly. (iii)

We can now describe the statistical behavior of computer orbits using the above

construction.

4.5 DISTRIBUTION OF COMPUTER ORBITS

L
The distribution of a computer orbit {'«C‘k(x)}k=o is determined by its histogram

obtained as follows:
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Let P be a uniform partition of [0,1] and let every computer interval

L
_k
I.cle P Ifthen Card (I} is the number of points of {tN(c)} which lie in every
k=0

. 1 .
interval I e P, the vector T (Card (), Card (I),...), I, L, ..€ P isthe

required histogram.

Now, sin~, T has a unique ACIM W, its density function f,asa
consequence of Birkhoff Ergodic Theorem, can be regarded as the statistical
description of the long term behaviour of the orbits starting at almost every point in

supp (M). Following Remark 1) of Sec. 1.3.3 we have to find starting points ¢ such

L

_k
that the distribution of the computer orbit {tN(C)} for large L approximates the
k=0

ACIM H. To do that, we introduce the following definition:
L

Eree Computer Orbit A finite segment of a computer orbit {i:,(c)} is 'free’ if

k=0
_k+1

T # ), V k<L

If the transformation "tN admits long periodic orbits, it also has long free orbits:

L
_k
if ¢ is a periodic point with period L+2, then {tN(C)} is the free orbit of length
k=0

L.
We shall prove that for such starting points the histograms induced by the
sequence of corresponding free orbits approximates the histogram of the

transformation T induced by the ACIM.

4.6 MAIN RESULT: ASYMPTOTIC BEHAVIOUR OF COMPUTER ORBITS

To prove our desired result, we need the following lemma.

Ly
=k -
Lemma i [41] Let VN={‘N(°)} be a finite segment of the Ty-orbit and let,
k=0
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‘¢
ry

)

where m is the Lebesgue measure and X is the characteristic function. Then,
a) My is almost an ACIM,

Ly
uN(vN)=J'N.m=]_Nl+1 Z“I'{,(c)

k=0

b) for -Iﬁz T>0, N=1,23,. the family {leru of densities is weakly
N U Nng

precompact in Ll.
c) fN—)} as N — oo, weakly in Ll, where f isthe density of the unique ACIM
p for the theoretical transformation 7.

™
Proof Denote I.=1. .
(a) It is obvious that uN(vN) is absolutely continuous with respect to Lebesgue
measure. To prove that it is almost tN-invariant it is sufficient to prove that,

Ug dpty (V) — _[(gOtN) dpy(vy)| <

T Sup |91, for any g e C[0,1].

Im
We have, Ig(x) dpy (vN)—j(gotN) duN(VN) =
‘w ( p ! (1] |\ !
L, +1 rN(c): I ] 9t dm(x) - Z' { l g(ty(x)) dm(x)]
), }
L{C) 1;@
By the definition of 'cN we have,
I_k+l
™ ©
[ oty ameo = == [ s amay)
%o ’ 0! 2o
Thus, J g(x) dpty () - J- (got
1 2suplgl
i I jg(x)dm(x)- " J ot dme | <32

+l(x) llN”

Therefore, if I..N is sufficiently large, the measure uN(vN) is almost tN-invariant.
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(b) Sincs, N is a free orbit, we have for any point ¢ which is the computer

representation of the point x,

Ly ! eyt
1 I -1 i
fuN(vN)E=EfN(X)isLN+I Yy { %] xlt.@ gy (1)
5]_:1:1 » by (i)
5%, by hypothesis.

i.e. the family {fN}N is uniformly bounded. Hence it is weakly precompact in
n=]

L' [108).
(c) Let fy—f weaklyin L, as N — o, We prove that f.m is t-invariant.

For any g e C[0,1], we have

' I g fdm(x) - _[ (got) f dm(x)

s |[ oF ameo) - [ of dmeo

+ | [afydmt) - [(goty £y dmex)

+ | Jtony £y am0) - f (o) £ydmx)

+ | [gon fyydmex) - [ (gon 7 dmcx

= A+B+C+D (say).

Since fy, — f weakly in L, AandD—0,as N — o,

Furthermore, B<-‘7lﬂP—'g—', by (a)

"LN+1

2suplgl as N— by (b
_<_MN+1_)O| °°' y()'

Let @, denote the modulus of continuity of g. Then since Ty —>7T uniformly, (by

(iiiy ) and the function fN are uniformly integrable (by (b) ), we have,
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| | -
C<w, (sup {tN B "{) IfN dm(x) = 0, as N — . Therefore, f — f,as N —

weakly in Ll. This completes the proof of the lemma.

We can now prove our main result.
(O
Theorem 1 [41]. Let vy= {IN(C)J’H be a sequence of long free computer orbits

satistying,

L,

—_>a> for =1,2,3,...
N_a 0, for N=1,23

Then for any fixed partition P of [0,1], the sequence of histograms induced by {VN‘»"
L IN=1
on P approaches the histogram on P induced by the ACIM of the transformation T.

Proof. By the Lemma 1 (c), fyy— f weakly in Ll, as N — . So for any interval

I e P, we have, I fydm— J‘ fdm , as N — . Since any theoretical interval
I I

Card {vy A1)

Ly+1

Ie P is the union of computer intervals, we have, j fydm= - Hence,
I

Cad [VN I}
LN +1

histogram of the ACIM U for t.

- J-f dm, as N — e . Thus the histogram of {VN} approaches the
I

4.6.1 REMARKS

Bemark 1 A similar result as of Theorem 1 has been obtained by Blank [17] under
the assumption that the dynamical system (X,T) has a globally attracting stochastic
attractor (a, 1) [94]. It is also shown that, if T has the shadowing property, then
for almost all computer orbits, the true orbits shadowing these computer orbits

display the invariant measure p in the sense of Birkhoff's Ergodic Theorem.
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Bemark 2 For a system T which has the shadowing property and admits a unique
ACIM H, almost all computer orbits starting from a point in supp (1), exhibit Kt in
the sense of Birkhoff Ergodic Theorem (e.g. in case of Anosov Systems [19]). The
significance of Theorem 1 comes from the fact that long computer orbits exhibit |t
even though we may not have any information regarding the shadowing property of <
Bemark 3 Numerical evidence is presented in [14] that some discrete nonlinear
systems obey a scaling law of, <L>~M?" where <L> is the average period-length of
a computer orbit and M is the number of phase celis. Generically, the scaling

exponent € appeared to be smaller than 1. For example, for the logistic map

x)=1- 2x% e = ?17: Thus, for long-periodic computer orbits of such systems which

have an ACIM, Theorem 1 holds if M® > Na.

4.7 CHAOTIC BEHAVIOUR OF COMPUTER ORBITS

By Theorem 1, we conclude that, if there exists long periodic computer orbits or
long non-periodic orbits which occupy a significant portion of the computer space for
all precision, then the measures derived from computer simulation must approach the
ACIM of the theoretical transformation under consideration i.e. for all the systems
which have an ACIM, the process of discretization of the phase space forces the
computer orbits to display only the ACIM. Since the ACIM is supported on intervals
(which form the chaotic attractor), this gives the computer orbit a chaotic behaviour.
These computer orbits are chaotic in the sense that there doesn't exist any finite

algorithm which can describe all the iterates of the orbit.

4.8 APPLICATION TO PIECEWISE LINEAR TRANSFORMATIONS

- . i-1 1] .
Let P be the partition of [0,1] given by, P ={Ii: [_—n ’ 'rT}' i=1,.., n}. Let
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at

7: [0,1] = [0,1] be defined by,

d.
'ti(x) =T 'l,(x) =S$X + Fl .

where s, € S= {pj: i=1,..,s, (p,2) =1}, the set of all possible slopes of 1t and d,

is an integer. For example, T can be the map shown in Fig. 8. Now, define a set

DN = {-a—N: l1<axg :12N , aodd, N> 2}. Then DN is a finite set with Card
n2

N-1
(Dy) =M2 . Let xe Dy. Then, for some j and an integer d;

(=}

(x) =p’—a—N-+ -#:LN eD

n2 n2 N

Thus T DN —-)DN is well defined. It is shown in [41] that the minimum length of the

periodic orbit of 'l:IDN is 2N'2/s. Since the computer orbit V) consists of points of

the form _aﬁ » a computer with precision greater than n2N will recognize the orbit,

n2
making it possible to apply Theorem 1.

4.9 GENERALIZATIONS
1) A transformation may have more than one ACIM. The result of Theorem 1 applies
also to this situation provided the different ACIMs are separated by a distance larger
than the computer precision. Then the orbit starting from a point in the support or in
the basin oi attraction of a particular ACIM displays the histogram of that particular
measure.
2) We have assumed for T to have a finite partition in our analysis. With the

1L

[
results of [38], the histograms of computer orbits {TN(C)} can be used to
k=0

approximate the invariant density of a map T with an infinite number of pieces on the

interval, e.g. for the Gauss transformation.
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3) In this chapter, we restricted ourselves to maps in one-dimension. The result of
Theorem 1 is valid in higher dimensions, though the problem of determining the
number of independent ACIMs is a difficult one in higher dimensions. This is due to the
question of the support of a function of bounded variation in higher dimensions.
Whereas in one-dimensional case, the support of such functions are finite union of
intervals, a function of bounded variation in higher dimensions may have support with

no interior {37].

410  GENERAL REMARKS

Bemark 4 We have employed floating-point arithmetic throughout our computational
analysis in this Chapter. It is stated in [137,288], that floating-point arithmetic
introduces errors that cannot easily be controlled, especially when the system is
chaotic. It has been suggested that Turing's theory of computable numbers [16] can
correctly formulate chaos theory in the context of computation. It would be then of
interest to know whether we can reformulate our results in terms of this theory.
Remark 5 Even with arbitrarily high precision of computation, the asymptotic
properties of a system modelled on a computer can differ qualitatively from those of
the original system. It is shown in [16] that the method of computing the density of an
ACIM of a dynamical system (X,T), for which the set of preimages of periodic points of
T is dense in X, by the histogram of the computer orbit, may lead to significant

errors. We therefore have to be careful while applying Theorem 1 in such cases.
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CHAPTER 5
PERTURBATION OF ABSOLUTELY CONTINUOUS
INVARIANT MEASURES

5.1 MOTIVATION

Physical systems are usually affected by a number of small external
fluctuations (e.g. due to external noise or due to roundoff/truncation errors in
computation). We are then concerned with the question of stability in the presence
of noise which can be described as recovering parameters of dynamical systems from
the study of their deterministic or stochastic perturbations. The parameter which
can be obtained in this way can be considered as stable under perturbations and thus
has physical sense. Since an ACIM is a parameter which describes the asymptotic
statistical behavior of dynamical systems for typical points in the phase space, it is
of interest to discuss the above question for dynamical systems which admit an ACIM.

It was Kolmogorov who first discussed the question of stability of invariant
measures. Khasminski [183] considered this problem in case of diffusion processes,
and Sinai [89], and Kifer [50,204], Young [277] and Collet [254] in case of
hyperbolic dynamical systems. Using a convolution form of Frobenius-Perron
operator, the stability has been studied for piecewise expanding maps by Jablonski
[289] and Boyarsky [6,18], and for some non-expanding unimodal maps by
Boyarsky [9] and Collet [24], which admit a unique ACIM. For piecewise monotonic
maps crasidered in [57,100,166], stability results were obtained by Gora in [42]
for various types of stochastic perturbations. Using a general random perturbation
model, Kifer [53,116,146] has also obtained such results for piecewise monotonic
maps. Blank [63,182,234,257] has obtained stability results for higher dimen-
sional transformations and for various types of deterministic and stochastic

perturbations.



Lasota-Mackey [195] have obtained stability results which have found application to
construction of fractals by iterated function systems.

In this Chapter, we discuss the stochastic stability of ACIMs of piecewise
monotonic maps based on the properties of a stochastic operator proposed by Keller
in [48]. The definition of the stochastic operator can be applied to bow
deterministic and randomly perturbed systems. In Appendix D, we shall also
briefly consider a more general random perturbation model described by Kifer in
[116]). We begin with developing the necessary background for proving the desired

results.

5.2 ATHEORY OF STOCHASTIC STABILITY

Let X =[0,1] and 1 be the Borel-probability measure on X. Let (L, 1I1l))
be the space of equivalence classes of p-integrable, real valued functions on X.
For a function f: X — R and any pattiton P={0=a,<a <..<a,=1) we
define,

V(=sup Y 17@)-Fa ),

i=1

and for an equivalence class f € L, let, V(f)=inf (V(f): f € f). Denote,

BV = {fe L,: V(f) <=} and define,

ifly = V() + 1IN,
Then, Illl, is a norm on BV, which makes (BV, Il ll) into a Banach space [46]. BV is
a dense linear subspase of (L, Illl) and {f e BV:Ilifll,< 1} isa !l compact
subset of Ll[46]. In the sequel we shall not distinguish between a function and its
equivalence class. We also assume that all the identities hold almost everywhere

with respect to H. We begin with some basic definitions:
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Linear Stochastic Operator We say that an operator P:L, = L, is a linear
stochastic operator if it satisfies the following conditions:
(1) PBV)cBV

(2) there exist constants o> 1,C >0 and IN such that,

IPll, < oo, and IPFl, < TUfl,+Clfl, , fe BV

(3) P isstochastic ie. P>0 and ij du=jfdu, fe L, sothat IIPl =1.

- Notation Let S denote the class of all linear stochastic operators and let S(c,C) be

a subclass of S which satisfies the condition (2) for a fixed o andC.

We then have the following properties [46]:

The operators in S are quasi-compact as operators on (BV, Il ll,), so that by

lonescu-Tulcea and Marinescu Theorem [47] we have

Eroperty 1

(a) P has only finitely many eigenvalues ll,.--.lp of modulus 1,

(b) the set {ll,...,lp] is fully cyclic and hence contained in a finite subgroup of
the circle and

(c) the corresponding eigenspaces Ei are finite-dimensional subspaces of BV.

Propery 2 We have the following spectral decomposition for P:

P
(a) P= z A, @.+Q where the ®,'s are projections onto the E's, I®J <1,
=1

Q.0 =0,i»jand Q:L =L, is a linear operator with,

sup IIQ'\Il <p+1, QBV)cBY, IIQ"IIV_<_ Mq" forsome 0<q<1, M>0 and
Qod.=d,0Q=0, foreach i.
(b) Foieach Le R,IAl=1and fe L, the limit

n-1 .
® AP (N =lim, 1Y AP existsin L, ang
0

83



@, , A=A,
O(AP) =
o, otherwise

For operators, P: BV — Ll. we introduce the norm,

Pl = sup (IIPfll: f € BV, Ifll,< 1).
S-Bounded Sequence A sequence {P,,]:'=l is called S-bounded, if there are o > 1
and C>0 suchthat P,e S(o,C) ,V n=123,..
Stochastically Stable Operator An operator Pe S is stochastically stable if,

P, - Pll = 0, as n — o, implies l® (1,Py) - P (1,P)ll, —> oo, @5 N> co
for each S-bounded sequence {Pn) ;.
Remark 1. Since @ is continuous, the above definition can be interpreted as of

stochastic stability of P under perturbations of initial conditions.

We need the following lemmas:

p
Lemma 1 [48). If PRe S, P=E7Lid>i+ Q, IQM, < Mg® then for each A € R
=l

with Al=1:

&AM -1, ,
(1) A= ; m: 9. + (1-A) ®(A,P) + (AId - Q) ~ is a bounded linear
A#h
operator on BV.
(2) AQ)=Qd-(P-OAP))’
(3) (@ @AP)-1d) ® (A R)=A®) (P-R)DPAR).

P
lemma 2 M8). If PeS, P= ) A,®+Q IQU<Mq" Re S(@.C) and
=l

A e R, Al =1, then there are constants B, (depending on P only),



1 o
Bplx l+|1 ~A1. I AP and T'= C{a-l}

A#d l
such that, if lIP-Rill<1, then

I (L,P) - 1dl. @ LRI, < (B, +B_,).T P -RIl { 2+ l‘l"f'_Rﬂ} 4
1

Ing

Proof By Definition 1 of a linear stochastic operator, we have, for f € BY,

Id (LR) fil, < lim_sup = 1 ZIIRfII < max li hmsup IR f"vs max C{a 1J"Rfll,

<T. IIf!ll (i)
Also for any N e IN,

N-1 .
Ad-Q =2 ) AQ'+AQ". Al Q) (ii).
0
Hence for any f e Ll, we have,
1® (L) - 1d) ® (AR) £ I, < I AQ) . (PR) . @ AR) f I, by Lemma 1 (3)

<(B,; +N.(p+1) . IPRI. ® ALR) £ Il + M;“I—}H (P -1Jd) OLR) I,

by Lemma 1 (1), equation (ii} and Property 2,
n 1
<( (Bp‘7L +N. (p+1)) . iP -RIli + M, I—E (WP, + 1).NfN

<(Bp+By). (N.IWP-RIl-+q") . T Iifll . by equation (i, for suitable B,

In IP-RII
Choosing N =|"TJpq™ [+1 , the lemma foliows.

We then have the following corollary:

Corollary 1 Let, A, (PR)=inf A. Then, if P e Sand (Py); is S-bounded then,

A, (PP) =0 (P - Pylil. 1In P - Pl 1).

Ergodic Operator The operator P is ergodic, if dim (El) =dim (® (1,P) (Ll)) =1.
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Mixing Operator The operator P is mixing, if P is ergodic and 1 is the only
eigenvalue of P of modulus 1.
We then have the following necessary conditions for ergodicity and mixing:

Lemma 3 [48] Let P,Re S.
(a) If P is ergodic, then
(1y HoAP)-d(1,R) ||15_A1 (P,R) and

(2) @®UP)-®ALR)=(d-(P-® (AP . PRI (1LR)

(b} If P is mixing, then

By
Jim sup PN - RYfI, < APR) + D IOARIN, forall F Ly, Ifl <1, where
j=2

1= ll,...,KpR are the eigenvalues of modulus 1 of R.

Proof (a) If P is ergodic, then
® (LP) (f) = j fdu. ® (1P) Q).

Hence, ® (1,P) (@ (1,R) (f)) =j<x> (LR) () dt . @ (LP) (1)
=jfdu.d> (1LP) (1) = @ (1,P) ()

and so by Lemma 1, (1) follows. Also, (2) follows from Lemma 2 and Corollary 1.

(b) Now, if P is mixing,

P
IE"- RY) (DI, < ID(1,P) - ©(1LRN, + Z IDOR) ()l + I QP - QR (),
j=2

PR

by (a), _<_Al (P,R) + Z II<I>(7»J,R) (‘)‘)IIl + IIQ(PN) - Q(RN)fII. Therefore, by
j=2

Property 2,

Ry
i, sup 1P - R™) (DIl < A PR) + ) IOAR) (DI,
i=2
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5.3  ASUFFICIENT CRITERIA FOR STOCHASTIC STABILITY

In this section, we prove the following criteria for stochastic stability:
Thegrem 1 Let Pe S, {P,} . be S-bounded and Am WP - P il =0.
Then,
(a) 1) It P is ergodic then, lld(1,P) - <I>(1,Pn)lll = O(lP - PJILInlP - PlI) > 0
as n — o je. P is stochastically stable.
Furthermore,

2) Py isergodic for A, (P,P;)<1.

N L N
(b) If P is mixing, then nh_l}’)“r}lin” sup lI(P -Pf)flll=0 , foreach
fe L, and P, is mixing for sufficient large n.

Proof (a) 1)Since P is ergodic, we have by Lemma 3(a) that,
> (A,P)-d (LPyll, < A, (P,Py). By Corollary 1,

! I
A, (P,P)=0 (NP -P . |In WP - Pl Since kim IP-PJIl=0, A (PP —0,
as 1 —) oo,

2) Now, if P, is not ergodic, there exists an h#0e€ {h: P.h =h} such

that, Ih du=0. As @ (1,P) (h) =J-h du . @ (1,P) (1) =0, we have,
0 <, = P (1,P) (h) - @ (1,Py) (h) I, <lid (1,P) - @ (LPII, IRl -,
by Cauchy-Schwarz inequality,
<Ihll, , a contradiction.
(b) If Py, is not mixing, then by Lemma 3(b). P, has an eigenvalue of modulus 1

different from 1. Since the spectrum of P, is fully cyclic, by Property 1(b), there

™ (i)
exists an eigenvalue A  of P, with ,x(n)l =1 and ll - ll >0.
Now, P is mixing, so from Lemma 2, we have

= 1 ; -1
B, , ;ll Ty 1N 10 P, =

—.
11-2)
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Furthermore,

1
® +B In P - PN
IdA P,,)llls(h ) 7L<n>| P] .. p-p .12 +—l;q—i)—> 0, as n - oo,

\

But, ||¢(7L®,Pn)|ll=l , for each n = 1,2,3,..., which is a contradiction.
Hence, it follows from Lemma 3(b), that both P and P, are mixing. This
completes the proof of the theorem.

We now consider the applications of the model discussed in this section.
5.4 DETERMINISTIC PERTURBATIONS OF PIECEWISE EXPANDING MAPS

Let X = [0,1] with the Lebesgue measure m. We denote the class of all
piecewise expanding Wong maps by C. The Frobenius-Perron operator,

P.: L1 - L1 associated with T is given by,
J‘g.Pdem=J'(got)fdm , VfeL, and ge L...
It can be shown, by the change of variable formula that,

N
Pf0)= O F@ 1 @) . 1T L @)L g gy 0= f&) .
i=1 1 i 1

yet' ®
Onthe class C of piecewise expanding maps, we introduce the following:
Skorokhod metric. d(t,,t,) =inf {e>0: 3A¢[0,1] and F 6:[0,1] = [0,1] such

that m(A)>1-€, ¢ is a diffeomorphism,

1l <e).

1
1,1,=1,001, and V x€ A, o) - x| <e, |5

We can now define what it means by small deterministic perturbations of a map 7.
Small Deterministic Perturbations. Let {t,} be a family of maps from the space X

into itself and T: X » X be amap. If d(t,, ) = 0, as n — o, then T, are said to

be small deterministic perturbations of the map 1.
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We shall need the following characterization of variation:

Define the Integral I (@), of afunction de L, by,
I (@) z)= J' @ (x) dpt (%),

X<z
Property 3 Let fe BV and ®e L,. Then,
If ® dul < V(). | J' @), +1 Jd) dul. il <2 . Iifl, . uj(d» I,

Proof. Let J,,....,J,, be a partition of X into subintervals such that J,<.g]

and assume that @ is constant on each J. Denote G = j(¢).

Then,

M M
“f.<bdu,= i=1!f'¢du = i=1uijd>d"1 » for some u, e co f(J.)

M
Z u, [G®) - G@)]|, where a,, b, are endpoints of J,,

Li=1

M
szi“m 'uii.lIGlL,+ G(O)'“li +iG(1)'“Mi, where
i=2
O0=infX, and 1 =supX,
< V() . IGll, + G . Uil

<2 Iifil, . IGH,, .

Now for a general @, the required inequality follows by approximation.

Property 4 For fe€ L, V(f)=sup de)du

, where the supremum extends

overall ®e L, with I j((b) I.<1 and I<D du =0.
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Proof By Property 3, it follows that
V() 2 sup |J'f.d>du .

Therefore, we prove the reverse inequality. Let S = sgp l J‘ f.odp I the

supremum as in the statement of the Property; and assume that S < eo. Choose a
sequence {I,) of finite partitions of X, into subintervals, IH . finer than I,

which generates the o-algebra on X. Then the expectation E_ [fIL] — f a.e. with

respect o M. This implies that for each version f of f, —1 J. dp -7,
Tl N

everywhere except for a set N(f) of zero . measure, where I(x) denotes the

Kk
element of I containing x. Now, the sums of the type z I ?(ai)-T(ai_l)I with

i=1

a ¢ N(f), can be approximated by the integrals J. f.®dy, with @ as required.

8,<... <
& ¢ N(f)

k
The sup . zlf(ai%?(ai_l)lss <eo. Thatis, 'flxm(.f.) is of bounded
i=1

variation and can be extended to a function ? on the whole of X (by using one-sided

k
limits), such that  sup 2 lf(a.)-]‘(a‘ 1)' <S. Since f is also a version
B <. <8 ! 1-

i=1
of f, we finally have V(f) <S. This completes the proof.

Denote P, = P, . We then have,

Lemma 4 [48]. If P,, P, are the Frobenius-Perron operators corresponding to
T, T, € G, then WP, -P,lll < 12.d(1,, T,).

IP.f - P,fl

(P,f - P,f)

| lp s -pgl dm=[g.®,f-P,fdm=[f. (got, - gor,) dm

Proof Let fe BV, g= . Then,
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z
<2Iifll,. sup IJ‘(gm:1 - got,)dm!, by Property 3,
0
Zz
<2.1fl,. sup de+ |j (got,00 - got,) dm 1)
0

for any €, 0 and A in the definition of d,

<2. llfilv.sgp (4e+e+¢),

=12 .¢e.fll,
Therefore, lIIP, - P,ll<12d (1, ,1,).
We then have the following result of stability for piecewise expanding Wong maps
from Lemma 4.
Theorem 2 Let 1,1T,€ C and P, P, be their corresponding Frobenius-Perron
operators. If [Pn}:=1 is S-bounded and d(t, t,) = 0, as n — oo, then Theorem 1
holds. In particular, if T is ergodic, then T, is ergodic for large n, and the unique

invariant densities of T, converge in L, to thatof 7.

5.4.1 REMARKS

Bemark 2 The existence and conditions of uniqueness of absolutely continuous
invariant measures for the maps of class C were shown in [100]. By Theorem 2, it
follows that such ACIMs are stable under the class of deterministic perturbations
considered.

Bemark 3 A similar result as of Theorem 2 was obtained by Kowalski in [56] for
Lasota-Yorke maps and by Blank in [182] for various types of deterministic

perturbations.
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55 STOCHASTIC PERTURBATIONS OF PIECEWISE MONOTONIC MAPS
Let X =[0,1] and m be the Lebesgue measureon X. Let T: X > X bea
piecewise monotonic map. Let P denote the Frobenius-Perron operator associated

with T. From [87], P is given by,

PF() = ) £(3) o),

yet'®)
fe Lv ge L., Var(g) <eo, and itis shown in [46] that P e S. We now add

stochastic perturbations to the process x__ , = t(x,), n =0,1,2,.. described by the
transformation T.

Small Stochastic Perturbations. Let K(x,y): X x X = R be a stochastic kernel.
Consider the Markov process X,, n = 0,1,2,... described by the transition
probability p(x,y) = K(z(x),y). This means that a particle jumps from x to T(x)
and then disperses randomly nearly T(x) with the distribution K(z(x),y). It can
thus be interpreted as a slochastic perturbation of the transformation . The time

evolution of the densities of the process X, is given by,

PK : Ll - Ll, PK fx) = I f(u) p(u,x) dm(u) = j P f(u) K(u,x) dm(u).

We shall need the following result from [46].
Lemma 5 Let u=®(1,P) (1) m. Then,
(1) = is m-ergodic iff P is ergodic, and
(2) = is p-exact iff T is H-weakly mixing iff P is strongly mixing.

We then have the following stability result for piecewise monotonic maps.
Iheorem 3 [48] Let P e S be the Frobenius-Perron operator of a piecewise
monotonic map T: X — X, which satisfies (2) of the definition of the stochastic

operator for k=1. For ze X, set,

K,(y) =jK(x,y> dm(x), B, = ((x,y) : x<z<yory<z<x),

X<z
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f ) =BJ' _[ K(x) dm(x) dm(y) , o(K) = sup b(a).

Then for PK defined as above, we have,
(a) IIPKIIl < IIPIIl =1
(b) V(Pcf)<sup V(K,) . V(Pf)
ZEX
(c)  K,(y,) 2Ky(y,),y, <y, implies that P and Py are in the same class
S(a,C).
(d) ipP- PKIII < c(K).IPl, .
Breof (a) Since K is stochastic, the result follows from the definition of the

stochastic operator.

(b) Take o€ L, with llj(q)) ll.<1 and f¢ dm =0 then,
IPKf¢dm=IPf$dm (i)
where ¢ (x) =IK(x,y) o(y) dy such that J‘E)dm=I¢dm=0 and

|I($)(Z) < V(K,), by Property 4.

= UKZ - ¢dm

Applying Property 4 to equation (i) again, we obtain, V(PKf) <V(Pf) sug( V(,)
z€

(c) Since K,(y) is monotonically decreasing and 0 <K, <1 we have,
VK,)<1,VzeX

Therefore, by (b),

V(P,f) < V(PS). (ii)
By assumption, for P, we have,

IPfh, < ot Ufl, + clifil, (iii)
Now,

P fll, = V(P, f) + IP, fll

93



< V(Pf) +Ifll,, by (ii) and since P, fil, = Ifll

= (IPfl, - lIf1l,) + Ufll, = IPA, < o P Hfll, + CUAN, , by (i),

Hence P and PK are in the same class S(a,C)
[F!
(d) For fe BV, set F=Pf-P.f and ¢=—F—-

Then, [ IPf - Pyfidm = [F. ¢ dm = [P 1. 6) - [K(x) 6(x) . dm(x)) dm(y)

Furthermore,

l j o) - j K(y,x) 6(x) dm(x)) dm(y) |

lygz)

=1 o) 21y 00y @ - [ KEx) dintx) cmey) 1

{x<z)

< -' | Xy<z) (y)- I K(x,y) dm(x) | dm(y)

{x<z)

= J' K(x,y) dm(x) dm(y) ,

by the definition of K(x,y) and conditions (ii) and (iv)

= b(z).
Hence, J'EPf - PKfE dm < c¢(K) . V(Pf) <c(K) . IIPIl, . Nfll, . <c(K) . liPIl,.
Therefore, P - PKlll < c(K) IIPll, . This completes the proof.
Bemark 4 By Theorems 1, 3 and Lemma 5, we conclude that if T is ergodic then
small stochastic perturbations of the transformation 1t cause only small
perturbations of the invariant density. If T is mixing, then even the way of
convergence is not much affected by the perturbation.
5.6 GENERALREMARK

The significance of invariant measures which are stable with respect to

random perturbations, has been underlined by Ruelle {81-86,163,171} in
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connection with the mathematical models for the phenomenon of hydrodynamic
turbulence. Then it is natural to assume that physical relevant measures, such as

ACIMs, which may describe turbulence must be stable under any perturbations.
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CHAPTER 6
SHADOWING PROPERTY FOR MARKOV OPERATORS IN THE
SPACE OF DENSITIES

6.1  INTRODUCTION

The shadowing property for certain dynamical systems was studied in Chapter
3. We saw that the family of tent maps have the shadowing property for almost all
paramaeter values, aithough they fail to have the shadowing property for an
uncountable dense set of parameters.

In this Chapter, we study the question of shadowing property for an operator
on the family of maps. We propose a generalized shadowing property for linear
operators and show that certain Markov operators P:L, — L, have this property on
a weakly compact subsets of the space of probability density functions. An important
class of such operators are the Frobenius-Perron operators. We shall prove that
unlike the situation in the space X itself, the generalized shadowing property is
valid for all parameters in families of maps. Thus there is continuity with respect
to the generalized shadowing property.

We now give the necessary background to prove the above stated results.

6.2 PREREQUISITES

We have the following basic definitions:
Generalized shadowing property Let X be a nonempty subset of a linear space with
metrics d, and d, and let an operator T: (X.d) - (X,d,) linearly. We say that T
has the (3,€)-generalized shadowing property with respect to d, and d, (or simply
the genera..zed shadowing property) if, for each € >0, there exists a § > 0 such

that every 8 -pseudo orbit (in d)) can be €-shadowed by a true orbit (in d).



T""' .

Let (X,B,u) be a finite measure space and let L, =L (X,B,u) with the L.-
norm Il Let D, denote the space of densities on X. Then (D,,6) is a metric
space, where G is the metric induced by the L-norm Il
Markoy operator A linear operator P:L, = L, is called Markov if P(Dl)ch.
Bemark 1 A Markov operator P describes the evolution of densities in dynamical
systems. The Frobenius-Perron operator is an important example of a Markov
opera*ar. The study of asymptotic properties of Markov operators provides a natural
generalization to the analogous results obtained in ergodic theory, where Frobenius-
Perron operators are studied (and in the theory of Harris operalors [259]). For a
recent survey in the asymptotic theory of Markov (and related) operators see
[235].

The notion of constrictiveness in the theory of Markov operators was introduced by
Lasota.

Constrictive Markov Operator A Markov operator P: L, =L, is weakly (strongly)
constrictive if there exists a weakly (strongly) precompact set A CLl such that,

nli_r’ngﬁigt;‘ WIPf - gll =0 , for fe D,

The Markov operator P: Ll - Ll is quasi-constrictive if we have a set
A€ B, u(A) < andconstants 0<e<1, §>0 satisfying the following condition:

Forevery fe D,, there exists an integer N = N(f) such that

jP"fduse, for n2 N, U(E) <.
Eu(XW)

The importance of the above condition comes from the realization that it can
be considered as a generalization of the Doeblin condition [106] in the theory of

Markov processes. The quasi-constrictiveness of Markov operators is a substantial
refinement of their quasi-compactness.

Following [186] we call the set A as an attractor for the iterates of densities
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under P. From [175] we have,

Lemma 1. In the class of Markov operators, the notions of weakly constrictive,
strongly constrictive and quasi-constrictive operators are equivalent.

The significance of Lemma 1 comes from the fact that for many operators appearing
in applied problems the weak constrictiveness is much easier to verify.

In the sequel, we delete the adjectives strong, weak or quasi for constrictive Markov
operators.

Bemark 2 Spectral decomposition and asymptotic periodicity of constrictive Markov
operators has been discussed in [62, 138, 175, 176] under gradually weakened
conditions concerning the existence of the attractor. Applications of constrictive
Markov operators have been considered in [60, 114].

Vague Convergence We say that a sequence {f,} in D, converges vaguely to f, if
for any h e C(X), we have,

j h(x) £,(x) 1(dx) — j' h(x) £(x) j(dx) , as 1 — .
X X

Topology of Vague and Weak convergence Let {¢,} be a countable dense subset of

Lol
C(X) in the supn. ‘m topology. Let B, = sup [0,(X)! >0 andlet {0} bea sequence
X€E

of positive real numbers such that z o f,=a < 1. Define a seminorm Il on L,
=1

bYI
i71-3 o, U¢n<x) £) u(dx)l |
n=1

Then Illl defines the topology of vague convergence on D, and Il f l<all fll,. Let P
be the metric induced by llll. For a weakly compact set D c D, the weak topology of

L, restricted to D, is defined by i,
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6.3 PRELIMINARY RESULTS
Let (X,p) be a compact metric space. For A c X, closed let
A ={xeX: yigg p(x,y) < €} be an € neighbourhood of A. We shall need the

following asymptotic stability result.
Lemma 1 [12]. Let P: (X,p) = (X,p) be continuous map. Assume that there
exists a closed set A C X such that PA=A and that,

p(PA) = inf, P(PxY) = 0, as § - (i)
uniformly for all x e X. Thenforany €>0 andany § >0 3 a positive integer
N>P'A_ cA, for n2N.

Proof From [72], we know that there exists a neighbourhood U of A such that

P(U) c U. We can assume that, U c A,. Then, it is enough to prove that for some

positive integer N, we have PN(AG+5) cU. Let d =inf {P(x,y):x€ A,y ¢ U}.

From equation (i), we have that there exists an N such that for any n > N and any

x € X, we have p(P"x,A) <%. Hence PN(AE .5 ©A4 < U. This completes the

[ 8]

proof of the lemma.
The following result relates the existence of the generalized shadowing

property of an operator and its iterates.

Lemma 2 [12). If P is continuous in the P metric and PN hasthe (3,€)-

generalized shadowing property, then P has the (-I%-,Gl)-generalized shadowing

property, where

= S Sy, 8 oo . 38 3§ 5
€y =max (0(E) + 1 () +9) + 15 -+ D-tmes DN R ) TR

and  is the modulus of continuity of P in the P-metric, i.e.
o) =sup {p(Px,Py):x,ye X, p(x,y) <t}.

If P is continuous in the P metric and has the (9,€)-generalized shadowing
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property, then P\ also has the (8,€)-generalized shadowing property.

Proof Patt1 Let {XoX;...} bea —%-pseudo orbit of P. We take sequence of

points {Xe:XpiXpys--.}s which form a -pseudo orbit for PV. Since P"' hasthe
(5.€)-generalized shadowing property, there exists a point ye X such that for any

positive integer k, we have,
kN
PPy, ) <&, (1)

We now prove that there exists an €, such that for any k andany 1<j< N-1,

kN +j
PR Y Xy ) <E, (2)

By (1) and the definition of ®, we obtain,
PP * iy, Plx,)) < e) (3)

. o o . .
Since, {x,} 4 isa N Pseudo orbit, we obtain,

PR Xy, ) SPE ), Pltgy) + PR Xy, ) <000 +2

by (3). Thus equation (2) holds for j=1. Continuing, in this way we obtain (2) by

induction, for j < N-1.

Bat2 Let (x, x,,...} bea §-pseudo orbit for P, Then

(X Pt seeer P (X, Kpy POX Dyern PN (K ),0n0) (4)

is a d-pseudo arbit for P. Since P has the generalized shadowing property, there
exists a y € X such that the orbit {y, Py, sz,...} approximates the pseudo orbit

N N
given by (4) within €. Therefore, it follows that the orbit {y, P y, P y,...},
approximates the orbit {Xxe xl,...} within €; which completes the proof of the

lemma.
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We now proceed to express Lemma 2 more explicitly in case of a Markov

operator.

A Special Metric A iated with a Markoy O I
Let (X,X,1) be a measure space with X a countably generated o-algebra of

measurable sets. If P is a Markov operator on Ll = Ll(X,Z,u) then there exists a

transition function P(, ), which is a measurable function in the first variable and a

measure in the second variable, such that P is the unique operator satisfying,

[engau= jf(x) ( j'P(x, dy) 9(y)) p(dx)

for all fe L, and ge L., i.e. P is adjoint fo the operator Qg(x) =JP(x,dy) g(y).
Using this representation of the operator P, we associate a special

metric with P. Let {¢,} be a countable dense subsetof C(X). We define the metric

p* as follows:

p*(f.q) = 2 ick
0

n=1 k=

J'«p,,od‘) f - 9) dul,

= I I
where 0<c<1, and Za,,anl-c , 0, >0 and B,,=sug( =¢n(x)}_
p— X€

Bemark 3. The metric p* gives the weak topology of Ll on any weakly compact set
in L,
Bemark 4. ¥ p =p* is the special metric associated with the operator P in
Lemma 2, then

e, =eM+ &yl + O

na 8-V
—_—

1
=€(2)
c N(1 - %)

101




The following lemma compares the metrics G and p.
Lemma 3 [12). Let ¢ be the norm metric in L1=L1(X,B,u) and p the metric
of weak convergence defined in Sec. 6.2. Then for all f,g € D, we have,

p(f,9) < 6(f,9).

Proof We have,

o= o J(pn(xxf(x) - 9(x)) H(dx)
n=1

< Z ap. i () - g(x) u(dx>'

< o.0(f,9)

<o(f.9) , since o< 1.
We now have the requisite background to prove main results of the chapter and

discuss their applications.

6.4  SHADOWING PROPERTY FOR CONSTRICTIVE MARKOV OPERATORS IN THE
SPACE OF DENSITIES
In this section, we obtain a sufficient condition for a constrictive Markov
operator to have the (3,£)-generalized shadowing property. Under specific
conditions, we also obtain an estimate of & in terms of €.
Let D be a compact set of (D;,p). The main result is
Iheorem 1 [12]. Let P: L1—> Ll, L1=L1(X,B,p.), be a constrictive Markov
operator with the attractor A consisting of a single element f‘ of a p-compact
set DcD,. Assume PDcD. If lim IIP"f- All =0 uniformly for all fe D,
then P: (D,0) — (D,p) has the generalized shadowing property (with respect to the
metrics ¢ and p).

Proot Fixan &> 0. By Lemma 1, there exists an integer N >0 such that
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N, .
P ‘D)cA,. Let 8=Ni. Let N be the smallest positive integer such that,

[

PNA_)cA, (1)
Let P=P" and
5
k=—Q"|+1. (2)

where [X] denoles the greatest integer < X. Then, we have,

k <Ny, kN > N, and l_’kfoe A, , forany fo€ D. (3)
Consider any §-pseudo orbit (fo fy, f---) of P starting from the point
f.eD ie.

o(Pf, f,,) <8, foreach n=012,.
then, by Lemma 3, we have,

p(Pf,, fo.p <8, foreach n=0,12,. (4)

Claim: p(FJfo, f)se, for j<0,1.2..., k.

= .
For |=0, the result is obvious. For j=1, P(Pf, fj)s_J5 ,» by (4).

Therefore assume the result to be true for j itself. We then have,
Sitl == = = : :
o f,f,,)so®®S), Bf)+0f, f;, )<is+8=(+1)8.
, = . :
Hence, by induction, o(P f,, f) < jd , foreach 1 <j<k.
By Lemma 3, we get
—J
p(Pf, f)<kd<e. (5)

-
So, the §-pseudo orbit (in P), (fo f}, fp-.-} and the true orbit (Pfo} stay close
(within €) to each other for the first k iterates. We prove that this is the case for

other iterates also.
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— =k
By (1), PAH cA,, and by (3), P f,e A, From (5), we have,

3 €’

I € A, , s and so again by (1), P f € A, Furthermore, (4) implies that

=k+1 .
fra1€ A, 5 Then since P foe A, f, 1€ A ; and since A consists of

only one element,

p(?k+ lf(,, Frop <E+E+8) <3k

By repeating the above argument by induction and combining it with (5), we obtain:

For j=1, p(ﬁl_f‘, f9<3e whenever c(?fj, fj +7 <d for j2 0.

Therefore, P= PN has the generalized shadowing property. By Lemma 2, we
conclude that P also has this property. This completes the proof.
BRemark 5. The Markov operator P: L, - L, L, =L (X,X,u) considered in Sec.

6.3 satisfies the condition P(D)c D of Theorem 1 for a class of weakly compact sets
Dc Lr

BRemark 6. For a constrictive Markov operator P we can have the following

spectral decomposition [114, Sec. 5.3]:

Pf)= D M(DE) + QU (x)
i=1

where, 4(x) = [ £x) k(x) u(ex)
X

for some integer v, g€ Dr kie L. fori=1,...,vand Q: L1")L1‘ Now, P is
exactif and only if v=1 [114, Sec. 5.5]. Thus, Theorem 1 gives a sufficient
condition of generalized shadowing property for exact Markov operators.

In practical situations where we have exponential convergence of the iterates
1o the invariant density, it is of interest to know when we can express § in terms of

E.
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LSk o drabingh

Theorem 2 [12). Suppose that there exist M >0 and 0<q <1 such that for any
feD,

WP"f - £°il, < Mq" (1)
If p* is the metric associated with P, then P has the (3,€) generalized shadowing
property with

+n)

& = constant (n) el , as €— 0, forsome n>0.

Proof Let N, be the constant in Theorem 1. We wish to have,
No
IP°f - £l <.
[ N
Comparing with (1), it is sufficient to take No='l1°gq(ﬁ)J + 1. Then, by Theorem
1, Lemma 2 and Remark 4, we kiiow that P has the ('S,E) generalized shadowing
property with
N
@ -1
NNgg- )

3= 3 = _ 2. 1yN-1
o NNoande—Be(c) + 3¢

1
c
3 ~ constant —£—
(log )

Since N < N, , and - can be chosen arbitrarily close to 1, we have,

(+n)
= constant €

1
¢ Joafe)
(ﬁ)

logEo)’

a-n)

€ = constant €. = constant €

n,+n
where n,n, are arbitrarily small positive real numbers. Thus, for n= ] - 2 ,
]

— + —_
we obtain, § = constant (n) Ea i , n>0. Therefore, P has the (9, €)-generalized
shadowing property (in P*). This completes the proof.
Bematk 7  Shadowing properly of constrictive Markcv operators describing the
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evolution of densities in some stochastically perturbed dynamical systems will be
discussed in Appendix E.

6.5  APPLICATION TO FROBENIUS-PERRON OPERATOR

Let (X,B,}t) be ameasurespace and T: X — X be a non-singular
transformation. Let P be the Frobenius-Perron operator associated with t. Then
P, is a Markov operator and the metric associated with P is p*. The following
result expresses the relation between the exactness of T and P..
Lemma 4 [114, Sec.4.4]. Let (X,B,t) be a probability space and 1: X — X a
nonsingular transformation. Assume that there exists a unique f‘e D such that
P1f‘= f' , where P is the Frobenius-Perron operator corresponding to 1. Then

T is H-exact, where L is the measure whose density is f', if and only it for every
. n *
fe D, nh_r;n”IIPf-f Ill=0.

Bemark 8. From Lemma 4 it follows that P, is a constrictive Markov operator if T
is p-exact. The assumption in Lemma 4 for a unique f € D such that P.f" =f",
conforms with the fact that a constrictive Markov operator has a stationary density
[114, Sec. 5.4].

Then from Theorem 1 and Remark 8, we have
Theorem 3 Let (X,B,u) be probability space, and let T: X — X be pH-exact,
where W is an ACIM with density f'. Let D bea P"-compact subset of D, and

assume that P.D  D. Assume that IPf - £, =0 as n— e uniformly with
respectto fe D. Then, P.: (D,0) = (D,p*) has the generalized shadowing

property.

6.6 EXAMPLES: PIECEWISE EXPANDING AND RANDOM MAPS

We now consider the application to constrictive Markov operators induced by
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certain piecewise expanding ard random maps of the unit interval X.

Piecewise Expanding Maps Let © € C, where C Is the class of all Wong maps

considered in Sec. 1.9. It is shown in [46] that the Frobenius-Perron operator
P, e S, the class of all linear stochastic operators considered in Chapter 5. As in

Theorem 1 of [57], there exists a constant K independent of f, such that

im, sup \ZP:f <K for every fe D of bounded variation. Let
D={fe D;:Vf <K'}, where K'>K. Then D isP™ compact in L,. Let T admit
a unique ACIM M with respect to which it is exact. Let f‘ be the density of L.
Then, by Property 2 of Chapter 5 it follows that,

WPZS - £y <Mq"
i.e. the convergence to f‘ is uniform with respect to all f e D, where M>0 and
0 <q<1 areboth independent of f. Hence, by definition of i llv, we have,

IIP:f - f‘lll < Mq"—> 0, as n— oo uniformly with respect to fe D.
Therefore, by Theorem 3, P.: (D,0) — (D, p™) has the gereralized shadowing
property.

Random Maps Let T € R, where R is the class of all Pelikan random maps of Sec.

N

1.9. It is shown in [161] that the Markov operator P, definedby P = Zpi P,
i=0

satisfies,

] 1
Y P.f <aVf +KIfll,,

forall fe BV andsome 0 <o <1, K>0, bothindependent of f. Hence,
1
P fll, = XP,f + P fll, <aVf +KIfll, + Ifll, < aulifll,, + K'lfll,

forsome a <1 and K'>0 i.e. P, € S(a,K'), asubclass of S.
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In [161], sufficient conditions are given for T to have a unique ACIM M. Let
" be the density of . Then again by Property 2,
7 - £, < Mq"

i.e. the convergence to f‘ is uniform with respect to all f € D, where M> 0 and
0<q<1 areboth independent of f. Hence by Theorem 1. P.: (D,6) = (D,p) has

the generalized shadowing property.

6.7  CONTINUITY OF SHADOWING PROPERTY
In this section, we prove that for many families of maps the generalized
shadowing property continues to hold as the parameter is varied over its range. The
desired result is
Iheorem 4 [12). Let {"x}x cA c C be a family of maps, where A is a parameter
space, which admits a unique ACIM K, on the unit interval X. Assume that the map
A=, from (A] |) = (Cd) is continuous, (1)

where d is the Skorokhod-metric of Sec. 5.3. If P)':Ptl. the Frobenius-Perron

operator corresponding to T,, then for each A,€ A 3 aneighbourhood N of Ayd
foreach ¢ >0 3 ad >0 and every &-pseudo orbit (in ©) can be shadowed by a
true orbit (in p*) uniformly for all Ae A, ie. if {fo fys -} satisfies

OP, fr . <5 forany Aoe N, then p* (P} fo f) <e foral A e N.

Proof Since each T, has a unique ACIM, from Sec. 4.4 of[114], each T, is H,-
exact. Therefore, by Remark 8, P, is a constrictive Markov operator. From Sec.
6.5.1 it follows that the convergence is uniform for f in the weakly compact set
D={fe D;: V(f) <L}, where L is a sufficiently large positive real number i.e.,

lim IIP;f - fl;=0 uniformly for fe D. We now construct the desired

n—)oo

neighbourhood N. Then, by Theorem 1, we will have the generalized shadowing

property for P, uniformly for A e N,
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Following the representation of Pz in Theorem 1 of [57], there exist
constants 1> 1 and T >0 such that,
IP}flly < 1Al + A, fe Ly

Also P,(BV) € BV, where BV ={f€ L V(f) <}, so that (P, }, _ 3 ©8(n,D.
Then by Theorem 2, Sec. 5.3, Chapter 5 and condition (1), it implies that the map
Ao f,‘ from (A,!1) = (D, 0) is continuous, where | | is the absolute value norm.
Fix A,€ A. Thengiven €>0 3 aneighbourhood Nc A of A, suchthat Ae N
implies IIf;, - fx,,"1 < €. This completes the proof.
Bemark 8. Any family of maps satisfying the statement of Theorem 4 is said to have
the stability of shadowing property.
6.7.1 EXAMPLE

Consider the family of tent maps 7,: X — X, defined by,

AX, Osxs-;-

'tl(x) =

Al - x),
1,000}
where Ae A=[1+p,2],p>0. Then, | A 21+p>1.
All the maps T, have the same partition: Il = [0,l] and 12= [-1-, 1].
2 2
Since each 1, has only one turning point in its partition, it has a unique ACIM.

=]
Furthermore, V(‘t'k(x)llj=0, for i=1,2, since T, is piecewise linear. Thus the

\

family (t,} < C. Also, Ao T, is continuous. Hence, the hypothesis of Theorem 4
is satisfied. By Remark 9, the generalized shadowing property is stable for this
family of tent maps.

Remark 10. Although the map T: X — X may not have the shadowing property, the
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Frobenius-Perron operator corresponding to T, P.:L, — L, may have the
generalized shadowing property. For example, consider the tent map
©:[0,1] = [0,1], defined by,

f2x,  o0sxs<1

(x) =

21 - x),

1
=—<x<1.
2S%s

It is shown in Example 3, Sec. 3.4, Chapter 3 that T does not have the
shadowing property. However, by the previous example, we see that P, has the

generalized shadowing property with respect to the metrics © and p*.
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CHAPTER7
APPLICATIONS

I APPLICATION TO CELLULAR AUTOMATA
7.1 INTRODUCTION

Pattern formation is a widespread phenomenon of great importance in
physical, and especially in biological sciences [5,139,140]. A major question from
the modelling point of view is how to describe local interaction of cells. One way to
model local interaction is by using the theory of Markov random fields [98]. To use
this model, we have to know local conditional probabilities i.e. how a cell's state of
health is influenced by its neighbours. These probabilities are, in general, difficult
to compute and even if they are known, the method of Markov random fields ia
computationally very complex.

In this Chapter, we describe a different method of modelling interacting
cellular systems. We discuss a model considered in [39] for interacting cellular
systems which employs one-dimensional point transformations on configuration
(pattern) space of cellular automata. These transformations reflect the interaction
of neighbours and has a probabilistic interpretation. From the results of Chapter 4,
for certain point transformations there is a theoretical justification for using
computer orbits on the configuration space to compute the asymptotic (invariant)
measures for the transformation. This will enable us to study pattern formation of
cellular automata. The point transformation model reduces to the local deterministic
rules used in cellular automata [118]. Various perturbations on the rules can also
be considered in a natural way in the model. We shall refer the model as the point

model since it is defined by a point transformation on the configuration space.




7.2 APOINT TRANSFORMATION MODEL FOR ONE-CELL SYSTEMS

We start with a single cell and present a heuristic description of how to
construct a point transformation on configuration space, which reflect the dynamics
of value changes for the cells.

The value of a cell, a discrete site, is described by a real variable x, taking
values in the interval [0,1). For si.'nplicity and physical interpretation, we shall
think of a cell as a biological cell, whose value represents its state of health on a
scale 0-1. When x = 0, we think of the cell as being completely ill, while x = 1
means the cell is perfectly healthy. Any intermediate value of x would mean that
the cell is infected. How a cell changes its value or health in a unit of time is
represented by a transformation <: [0,1] — [0,1]. If the cell has value x initially,

then its value after n units of time is T(x).

7.2.1 DEFINITION OF THE POINT-TRANSFORMATION

in order to define T, we choose a partition of the value (health) set [0,1].

For example, consider the partition [0,%], [-%,%], [%,1]. Here [O,-:l,j] denotes poor

health, [%%] denotes dubious health and [%"'1] denotes good health. A cell can

assume any value in the continuum of each partition element.

Denote the interval of partition [0%] by 0, [%rg-] by 1 and [%,1] by 2.
Now, consider the transformation T shown in Fig. 9. T is continuous on each of the

three value sets. The parameters Pop P.‘ ¢ P P21 are the transition probabilities,

12
which represent the probabilities of going from one value set to another. For

example, the probability of going from 0 to 1 ie. from [0,—;,—] to [—;—,%] is,
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1, A1l 2
; '[0.31m [3,31'

01

1
o3
where | | is the absolute value norm. P, is the fraction of [0.%] which Is

transformed into [%,%-l. Thus t reflects the probability of a cell changing its value
state 0 to state 1. The basic characteristics of the model can be summarized as:
(1) Thecells are situated on a discrete set of sites. They do not have to be
identical or arranged in a regular array.
(2) The value of each cell is described by a number in the continuum | = [0,1).
(3) The state of each cell in the array is updated in discrete time steps.
(4) The value of each cell attime n depends on its own value at time n-1 and
the states of health of the cells in a local neighbourhood of the cell at time
n-1.
Hemark 1 Our model can be considered similar to a continuous analogue of the
Hodgepodge machine, a cellular automata described in [31].
7.3  ASYMPTOTIC BEHAVIOUR OF THE POINT MODEL
We are interested in the limiting behaviour of T on the configuration space.
Let T aimitan ACIM . The existence of |1 reflects the fact that chaotic behaviour
exists on the configuration space. If f is the density function of W with respect to
Lebesgue measure, the support of f indicates the portion of the configuration space

on which the chaos resides. If for example, T is a Lasota-Yorke map it is known

(103 ] that support of f must contain a discontinuity point of T i.e. % or %— in

our case. Therefore if supportof f is very small, then we know it must be centred

at one of the discontinuity points and the dynamics of T is virtually predictable.
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Otherwise, if support of f is large, the chaotic region is also large and it is difficult
to have good predictions.

It was shown in Chapter 4 that if a piecewise monotonic transformation <
has a unique ACIM, then the histograms of sufficiently long computer orbits of T
approximate the histogram of the ACIM. Following Remark 1) of Sec. 4.9 the result
also holds for transformations with more than one ACIM. These measures are
absolutely continuous with respect to Lebesgue measure and are the very ones the
computer ‘likes' to display. In their ability to reflect local interaction, these
measures on the configuration space give meaningful prediction for the long-term
behaviour of interacting cellular systems. Thus, by observing a simulated cellular
system on a computer, one can predict the true long-term behaviour of the orbits
i.e. the computer orbit which is only an approximation to the theoretical dynamics
of the cellular system, nonetheless exhibits the true long-term behaviour of the
system.

In Appendix F, we present a variety of histograms of orbits of T for
various choices of transition probabilities ar.d transformations, representing the

wide range of possible asymptotic behaviour possible for one-cell systems.

7.4  APPLICATION OF THE POINT MODEL TO CELLULAR AUTOMATA

Cellular automata were invented by von Neumann and Ulam while
investigating the possibility of constructing self-replicating machines [75]. Since
then they have found applications in various nonlinear areas of physical, chemical
and biological systems [117]. They are viewed as discrete dynamical systems
capable of self-organization [118] and universality [119]. Basic properties and
defining characteristics of cellular automata are discussed in [117).

The point model has many common features with cellular automata but there
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are important differences: in the point model, the value of each cell ranges in a
continuum, homogeneity is not required, and the rules for updating the values on the
array can vary with location. This facilitates the considerations of boundary
conditions, for example. The point transformation, describes the deterministic rule
for updating the values of the cells, but can also be interpreted in a probabilistic
way.

We can use a point transformation to describe the rules for cellular automata.

7.4.1 MODELLING ONE-CELL CELLULAR AUTOMATA

Define one-dimensional transformations T as follows:

. 1
X , 1f05x52
T(X) =
x-—é—, if Lex<l
and
x+%, 1f0<x5%
T,(x) =

as shown in Fig. 10. This corresponds to Py =0=1-P,; and P, =1=1-P,
respectively.

To model one-cell cellular automata on a linear array with rule r, we define
the transformation 17: X — X, X =[0,1] as follows:

Let x € X. To this point, we assign a configuration of the cellular automata,

€, where
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- 1
0, if 05x52

i 1
1, if 25x_<_1.

The rule r gives the updated configuration which replaces ¢&; let us denote it
by €. We now define, T(x)='t£. (x). The transformation T models the rule r
precisely and all information which can be obtained from rule r can be obtained
from t as well. Fig. 11 shows rule 126 for two different initial configurations

using a point transformation t on a 400-cell array.

7.4.2 PERTURBATION OF CELLULAR AUTOMATA

In our framework of point transformations, the problem of small
perturbations for the cellular automata can be handled naturally. The behaviour of
perturbed cellular automata can be studied in our setting in many different ways.
We consider the following cases:
Casei The slopes of t are perturbed so that instead of T we obtain a point
transformation T, with slope 1+ 6, 6 > 0. Fig. 12 shows an orbit of T, for
8 =0.01 on a 400-cell array.
Case2 7 ischanged in such a way that 1, is replaced by T, and T, is replaced by
T,.5 35 shown in Fig. 13. Here Ts and 1.5
value states. T is defined by P, = 6=1-P,, and T,.5 s defined by

P, =1-8=1-P Fig. 14 shows an orbit for d=0.01.

reflect the probability of changing

Case3 T is perturbed by a small random variable Wa with range [-8,8]. In this

case the stochastic process X 1= T(xp) + Wa describes the dynamics of the cellular
automata. Fig. 15 shows the histograms of orbits for § = 0.01 in a 10-cell linear

array.
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From [57] for Case 1 and 2 and from [61] for Case 3, we conclude that, for
any 6 >0, there exists an ACIM Hg for the perturbed cellular automata, and that
the weak limit of W5, as § — 0, W, is an invariant measure under 1. We want
to be an ACIM. Since K could be a point measure, we therefore require a
convergence for g, which is stronger than weak convergence in the space of
measures. Let f,5 be the density of K5, which is approximated by the histogram of
the perturbec' cellular automata. If the family F = { fa} 550 is uniformly bounded,
it follows from Theorem 9, Chapter IV. 8 of [105], that F is weakly sequentially
compact, and hence that F has a limit point f which is the density of a measure M,
invariant under 1. Then, W is absolutely continuous with respect to Lebesgue

measure, and so is a nontrivial invariant measure.

il APPLICATION TO FRACTALS
7.5 INTRODUCTION

Fractals were introduced by Mandelbrot [199] to give a precise geometric
description of natural objects. A theory which successfully describes the
construction of fractals is of iterated function systems. Iterated function systems
were introduced in [225] and since then they have found important applications in
many fields, especially in the area of computer graphics [188-191).

In this chapter, we discuss the relationship between iterated function
systems and dynamical systems. By studying the orbits of ‘associated' dynamical
systems of the corresponding iterated function systems, we can obtain more
information about fractals. These dynamical systems often exhibit a chaotic
behaviour on the fractal. When implemented on a computer, a dynamical system t

gives rise to computer orbits. Vve show that T has the shadowing property and so
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the computer orbits can be shadowed arbitrarily close by the true orbits. This
explains why Random lteration Algorithm can successfully generate fractals [187,
Sec. 4.8). When t admits a unique ACIM, long computer orbits of T exhibit the
ACIM. This justifies the use of a computer in predicting the long-term behaviour of

dynamics on a fractal.

7.6  ITERATED FUNCTION SYSTEMS AND DYNAMICAL SYSTEMS
In this section, we develop the necessary background for further study. We
shall assume X to be the unit interval [0,1] with the Euclidean metric (though

most of the results go over for X a compact metric space).

lterated Function System (IFS) Let 7,: X = X, n=1,..,N be a finite set of

contraction mappings with contractivity factors A, respectively. Then
(X; 'tl,...,'tN} is called an (hyperbolic) IFS. A = max{?»l,...,?»N} is called the
contractivity of the IFS.

Let H(X) denote the space of all (nonempty) compact subsets of X. Then
H(X) is a compact and complete metric space with respect to the metric h defined

by,
h (A,B) =max {lA - B, IB - Al},

for any A,B € H(X), where |A-Bl=sup ing {la-bl). The transformation
acAbe
T: HX) = H(X) defined by,
N

T®) =, (B)
for any B € H(X), is a contraction mapping on (H(X), h) with contractivity factor
A. T has a unique fixed point A € H(X) satisfies,

A=T(A) =0 7,(A),

and is given by, A=nlign“T”(B), for any B € H(X).
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Attractor of the IFS. The set A, which is the fixed point of T is called the attractor
of the IFS.

There are a number of algorithms available for approximating the attractor
A [224-227].
Code Space associated with the IFS. Let X denote the code spaceon N symbols, i.e.
X ={0,1,.,N-1}, N is apositive integer. Let d. be ametricon X defined by
A

d.(p,0)= ,
P et (N+1)"

for all p =(p,), 0 =(0,) € X.
For ce X, ne IN and x € X, let ¢ (0, n, x) =':<,l 0“020 °To,,(x)-
Then,
¢ (0) =lim_¢ (5, n, x)
exists, belongs to A, and is independent of x € X. Furthermore, ¢ :Z— A is

continuous and onto.

Address of a point of the Attractor. An address of a point ae A is any element of the

set,
-1
¢ (@) ={oce Z: ¢(c) =a).
Totally Disconnected IFS. The IFS is said to be totally disconnected, if each point of

its attractor possesses a unique address.

Just Touching IFS. The IFS is said 1o be just touching if it is not totally disconnected
but its attractor A contains an open set O such that,

(1) % (O)rwj O=g,Vije (1,..N}, i#j.

N
(2) ik=Jl ti(O)cO.
Overlapping IFS. The IFS is said to be overlapping if it is neither just touching nor
disconnected.
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Shift Dynamical System associated with the IFS. Let {X; *,,...,Ty} be a totally
disconnected IFS with attractor A. The associated shift transformation on A. is
the transformation ‘ts:A — A defined by,
1,(a) = Tl (a), for ae T, A).
The dynamical system (A, T) Is called the shift dynamical system associated
with the IFS.
Bemark 2  Let {X;1,,...,Ty} be atotally disconnected IFS with attractor A. Let
A, ""s) be the shift dynamical system associated with the IFS. Let Z be the
associated code space of N symbols and let t5: £ — X be defined by,
Ty (010203...) = 0,0,0,.. foral 6=0,0,0,..€ z.
Then the dynamical systems (A, 1g) and (=, T,) are homeomorphic (with respect
to ¢ defined above). This gives an advaniage of symbolic dynamics. Since topological
conjugacy preserves dynamics, we can study the easy-to-deal-with code space X to
understand the chaotic dynamics on the fractal A.
In the next definition, we consider the IFS of two maps to keep the notations
succinct.
Random Shift Dynamical Syztem associated with the IFS. Let {X; 1, 1,) beanIFS
with attractor A. Assume that both A A and T,; A=A are invertible. The
associated random shift transformation on A is the transformation T, :A—A
defined by,
11 (xy) | if xp€ T,(A)\T(A),

Tps o) = B (%), if X,€ T,(A)\T/(A),
1 (xp) or B (xy, if x,€ 1(A) N1 A)

foreach n = 0,1,... . The dynamical system (A, "Rs) is called the random shift

dynamical system associated with the IFS.
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7.6.1 EXAMPLES
We now undertake some examples of different types of iterated function
systems considered in the previous section.

Example 1. Theset I=([0,1} 00 =1x 1,00 =1x+2) is an IFS witn

contractivity factor =% and the attractor as the classical Cantor set C.I is a

totally disconnected IFS and its associated shift dynamical system (C, ts) is given
by,

. 1
3x , 1fxe3C,

T5(X) =

3x-2, if xe%C+%.

Example2. The set I = {[0,1]; T,(x) =%x, Tx) = %x + %} is an IFS with

1
2

associated random shift dynamical system ([0,1], Tp¢) is given by,
2 , if xe [0,-;-],

contractivity factor A == and the attractor [0,1). 1 is a just touching IFS and its

TRS(X) = Oorl, if x=

Bxampled. Theset I=([0.1 1) =1x, 5,00 =3x+1) isan IFs win

3
4

associated random shift dynamical system ([0,1], tRS) is given by,
2x , i 5,
X if xe [0 4)

contractivity factor A == and the attractor [0,1]. I is an overlapping IFS and its

Tps(X) =

4,.1 1
3x 3 1fxe[4,l].
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or

2%, ifxe [o,-;-],
Trs(X) =

4, .1 1
3x 3 if xe (=, 1].

7.7  CHAOTIC DYNAMICS ON FRACTALS

The orbits of shift dynamical systems associated with an IFS often exhibit a
chaotic behaviour. It is known that the shift dynamical system associated with a
totally disconnected IFS (of two or more mappings) is chaotic [187, Sec. 4.8,
Theorem 1]). The random shift dynamical systems associated with a just touching or
overlapping 1FSs are usually piecewise linear expanding maps, which admit an ACIM.
Hence typical orbits of these dynamical systems are also chaotic and the chaotic
behaviour occurs on a large part of the phase space. (Here we note that the attractor
of a totally disconnected IFS is often a set of zero Lebesgue measure, and so the shift

dynamical system associated with the IFS does not have an ACIM.)

7.8  COMPUTER ORBITS OF SHIFT DYNAMICAL SYSTEMS: SHADOWING PROPERTY
ONFRACTALS
Computer simulation of a (chaotic) shift dynamical system will generate a
chaotic computer orbit which diverges from the true orbit rapidly. The following
theorem says that there always exists a shadowing orbit arbitrarily close to the
computer orbit, thereby lending meaning to the computation of shift dynamics.
Theorem 1 [187, Sec. 4.7]. Let {X; 'L'l,...,‘rN} be an IFS of contractivity
A, O0<XA <1 Let A be the attractor of the IFS and suppose that each of the

transformation T, A — A is invertible. Let (A, T) denote the associated shift or
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random shift dynamical system according as the IFS is totally disconnected or just
touching/overlapping. Then T: A — A has the shadowing property.
Proof. For n=1,2,3,..., choose ©, € {1,..,N} such that 't;ll, 1;21, tgal,... is the
sequence of inverse maps used to compute T(Xy), T(X), T(X),... . Let d: T A
be the code space map associated with the IFS and let x,=¢ (0,0,0....). We then
compare the true orbit {T(x9),_g = {9(0,,,0,,,0,,5.)) ¢ of the point x,
with the 8-pseudo-orbit  {x,)~_
Let M be a sufficiently large positive integer. Since TM(xo) and t(xy_,)

both belong to A, we have,

tM(x) - T (xy N < diam A< 1. (1)
Since ™(x,) and 1 (x)4.p are both computed with the same inverse map tg,:d and
A is the contractivity of the IFS, we obtain,

M Xx) - %, 1< Adiam A <A (2)
Hence, from (1) and (2) it follows that,

T Xxg) - Ty M <P TM 7 Uk - xpp o |+ Xy g = TRy !
<8+

and so repeating the above argument, we have,

M) - %y J<AB +2).

By induction, we then obtain,

M Ax) - %y ) <AB+ A 4. + A5 5 42K,

M-K =
Hence, for any inleger n, 0 <n<M,

() - xJ < AS+ AT + o+ AT oA

Now, since M was arbitrary, we finally have,

lt"(xo)-x,,lslﬁ(l+l+7\.2+...)=-1—)‘—85:,
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for n=1,23,.. . Therefore T: A— A has the shadowing property. This completes
the proof.

7.9  ASYMPTOTIC BEHAVIOUR OF COMPUTER ORBITS OF SHIFT DYNAMICAL
SYSTEMS ON FRACTALS
We are interested in the long-term behaviour of computer orbits of shift
dynamics on fractals. Let {X; 'tl,...,'tN] be an IFS with attractor A and associated
shift dynamical system (A, ). If T admits a unique ACIM M, the results of Chapter
4 are applicable and sufficiently long computer orbits of T exhibit the measure M.
We state this as,
Proposition 1. Let {X; T,....,ty} be an IFS with attractor A. Let (A, T) be a shift
dynamical system associated with the IFS, which admits a unique ACIM H. Let f be
the density of 1. Then the histograms of sufficiently long computer orbits of

approach the histogram of f in the sense of Theorem 1, Sec. 4.6, Chapter 4.
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CONCLUSION

We studied piecewise monotonic maps T on the interval [0,1] as a prototype for
one-dimensional chaotic systems. When T admits an (ergodic) invariant measure, the
Birkhoff Ergodic Theorem describes the long-term behaviour of the system. Among all
the invariant measures that <t admits, the ACIMs are the ones which appear in
experimental and computational work, describing the chaotic behaviour of orbits of T
on alarge pari of the phase space. Wher: T admits a unique ACIM I, is continuous and
eventually onto, the (true) periodic orbits of T exhibit L (the POM property).

Numerical and computer experiments play a significant role in studying chaotic
systems. In such experiments, the system under study is subjected to (unavoidable)
external perturbations, giving rise to computer orbits. While analysing the reliability
of computer orbits, the shadowing property plays an important role. For nonhyperbolic
systems, results of existence of shadowing property have been obtained only for a few
classes of maps, such as for tent maps and quadratic maps. Despite its usefulness, the
shadowing property has limitations towards computation: it may not hold for all
parameters in a family of maps, and thus lacks stability with respect to external
perturbations. In higher dimensions, the situation is different and generalized
shadowing property for constrictive Markov operators (Frobenius-Perron operators
are an important example of such operators) is valid for all parameters in a family of
maps.

For a large class of transformations T which admit an ACIM, the computer orbits of
T exhibit the ACIM. This justifies the use of computer orbits in predicting the long-
term behaviour of a system which admits an ACIM. Furthermore, ACIMs are stable with
respect to a large class of both deterministic and stochastic perturbations.

Point transformations can be employed to model the rules of cellular automata and
associate dynamical systems to iterated function systems. Computer orbits of these point
transformations can then be used to study the pattern formation of cellular automata and
chaolic dynamics on fractals generated by iterated function systems.




APPENDIX A
MEASURE ON PERIODIC ORBITS OF MAPS WITH
SPECIFICATION PROPERTY

In this Appendix, we briefly discuss the case of the invariant measures on
periodic orbits of transformations which have the specification property.
Specification Property [115]. The dynamical system consisting of a compact metric
space (X,d) and the continuous transformation T from X onto itself has the
specification property if the following holds: |

For a given £> 0 there exists an integer M(€) such that for any k » 2, for any
k points x,,..., X, € X, for any string of integers,

a, < bl <a,< b2< . <8 < bk, a- b.}1 2 M(e) for 2<i<k and for any integer p
with p>2M(E) +b, -2, there exists a point xe X with Tx=x such that

d('r“x,'c"xi)s_e for a<ng<b, 1gigk

Example 1 The shift map on any compact metric state space has the specification

property [91]. In particular, the Bernoulli shift T:[0,1] — [0,1] defined by
T(x)=2x mod 1 has the specification property since it can be displayed as factors of

the shift on a finite alphabet.

Bemark 1 The definition does not depend on the choice of the metric d. For example,
when k=2, the definition means that whenever there are two ‘pieces of orbits'

{’!:“xl ra gng bll and {t“x2 ra,<ng bz}’ they may be approximated up to € by
one periodic orbit - the orbit of x - provideci that the time for switching from the
first piece of orbit to the second (i.e. a,- bl) and the time for switching back (i.e.

P - (b,- a)) are larger than M(e) the number M(€) being independent of the pieces
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of orbit. For any arbitrary k the specification property requires that such an
approximation is possible for any number k of pieces of orbits, M(€) being
independent of k.

Let M, (X) denote the space of all measures under : X — X. Let x € X have

the minimal period p. We associate with x the unique measure Hx which has mass %

at each of the points x, T(x),..., *(x). Then H_Is T-ergodic. Let M.(p) denote the

cat of these measures. Then the specification property guarantees that any invariant
measure, in particular the ACIM, can be approached by the measures supported on
periodic orbits and we have,

Theorem 1 [115]. If (X,t) satisfies the specification property then, for ne€ IN,
LL_I“ M.(p) is weakly dense in M, (X), i.e. T has the POM property.

Bemark 2 The proof of Theorem 1 does not require T to be continuous or onto.
Bemark 3 Motivated by Theorem 1 and using a weaker form of the specification
property, Hotbauer first proved that the set of measures on periodic orbits of
unimodal maps and certain monotonic mod 1 maps is weakly dense in the space of
measures invariant under T [44]. Then he proved that the set of measures on
periodic orbits of continuous piecewise monotonic maps is weakly dense in the space of
ergodic measures invariant under t [43). There is a large class of transformations
which are continuous but not necessarily (finitely) piecewise monotonic. For
example, the transformation shown in Fig. 4 is of this type. Therefore, to extend the
result to transformations which are continuous but not necessarily finitely piecewise

monotonic, we have to use different techniques, as seen in Chapter 2.
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APPENDIX B
COMPUTATIONAL RESULTS ON SHADOWING PROPERTY

In this Appendix, we discuss a computer-aided method for determining how
long the shadowing property applies to orbits of one-dimensional nonhyperbolic
systems. The technique is described for the quadratic map %(x) = ax(1 - x), which is
a prototype for one-dimensional unimodal maps with negative Schwarzian
derivative. We also discuss the necessity for restricting the shadowing property to

computable numbers.

B.1  SHADOWING FOR A QUADRATIC MAP

The purpose is to be able to generate a computer orbit and then to calculate
rigorously how long a true orbit exists near the computer orbit. We can then
directly compute how close the true orbit is to the computer orbit. We examine T
for values of a and initial conditions x, for which the dynamics appears to be
chaotic.

Let N be the number of iterates of the map T until which shadowing occurs

for any computer orbit of 7. A true orbit of t will be given by {xn)L where
Xpe1™ xp).
While using a computer to iterate T, numerical roundoff/truncation errors are

encountered. Therefore, numerically we are actually computing,

Yne1= T +Eqs
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where E, is some small roundoff/truncation error which depends on both the

computer and on the algorithm employed. This generates a (noisy or pseudo)

N . . .
computer orbit {y,.}mo . Furthermore, there is some maximum noise amplitude

8>0 such that,
El=ly_,,- Wyl < 8, Vn=01,..N.

N
{¥n},_o is a 8-pseudo orbit for T if,
IyMl- wyy)l <9, Vn=01,.,N

. N N
and the true orbit {x,}__,, €-shadows {¥nl,_o if

Ix,-yl<e, Vn=0,1,..,N.

B.1.1 CONSTRUCTION OF THE SHADOWING ORBIT

The method we use can be thought of as a form of interval arithmetic. A true
. N . . N
orbit {xp),_q is selected by finding a sequence of intervals {1} _, such that

N
X, € I, foreach n = 0,1,....,N. We use the set of intervals {I;}__ to bound the

location of each X, without actually knowing the location of X; within I,

The intervals {In)l:=0 are defined by starting with the endpoint interval I,.
Choose XN=YN and set IN to be the one-point interval [yN, yN]. Given some
interval 1., select I, sothat

wd )ol, (1)

This is known as the pesting condition. The computer must verify this condition for
each n=1.2,..N-1. Given an interval I we show how to construct I_ ..

Let I, =i, i:]. The computer verification proceeds first by constructing an

interval 'in_ as a first approximation to I _,. This is done by first taking the

1
inverse of the endpoints of a broader form of I.:

-1
?,,_1 =2 @, where T, =i;- Cpin+c, 0< ¢, << 1 is a number which depends on
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-1
the computer, ® and ? * are the computer models for t and ¢! respectively.

Define T l(.) by requiring that for each n, the interval I, must lie on the same

side of the critical point ¢ as does y,:
sgn(i: - ¢) = sgn(iy - ¢) = sgn(y, - c). |

Next, 1 a.p IS further thickened iteratively until the new larger interval ?,, |

satisfies, ’E(in_ l) D ?,,. An upper bound for the difference between % (?n_l) and

'c(in_l) (when 0<x<1 and 0<a <4) can be obtained:

Tx) - C£, < R(x) < T(x) + Cfy

where c, is a constant depending on the computer and €, is the computer double-

. . . = l.\+
precision machine epsilon. Let ‘l‘n =0 g1

/.\+
C3.1, ,+C5l,

)b and then define,

In-l= ln-l'

¢, is a constant depending on the computer. If In_ is chosen sufficiently large,

1
condition (1) can be verified numerically since there is a bound on error size when

T is evaluated at points in [0,1]. On the other hand, if 1, is chosen too large it

1
may be impossible to define In_2 satisfying (1). Thus the objective at each step is

N
to choose In_1 just large enough that (1) can be guaranteed to hold. While [Yn}n-_-o

is computed using computer single-precision, the intervals {In}io are computed

using computer double-precision arithmetic.

N .
If the intervals {I,}__, are successfully determined, then given x,€ I,

condition (1) implies that x,€ 't(In_l). Thus there exists X, 1€ In_1 such that

N
X =T(x ), and (X3}, _o is a true orbit with x,€ I, foreach n = 0,1,...,N.
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B.1.2 REMARKS

Bemark 1 The reason that this procedure works for chaotic orbits is that the map T
is expanding on average. For small intervals I, near y,, we may typically expect
that T(I) is larger than I, Thus the key idea of the method is to start with the
endpoint y,, rather than vy, and proceed backwards, since the map is contracting
for backward iterates.

Bemark 2 The method was originally carried out in [134] with a 14-digit accuracy
CRAY-XMP computer with the following data:

E,=10"a=38,¢,=2% ¢,=2°¢,=10%,¢,=2" and y,= 0.

The results obtained were:
N=10" and e=10"
N
i.e. for N= 107 iterates, the pseudo-orbit [y,,]n=0 with a=3.8 and y,=04 is

e-shadowed by a true orbit {xn}io within €= 10'8.

Bemark 3  The technique of the method has been extended to higher dimensions
[134].

Bemark 4 A technique similar to the one described in this section, has been
employed in [248] to prove the shadowing property for countably piecewise
expanding maps such as the Gauss transformation, using the theory of continued

fractions.

B.2 SHADOWING WITH COMPUTABLE NUMBERS

A computable number [136] is a number whose decimal expansion
€,€,... €y can be generated by an algorithm, to arbitrary high but finite accuracy N
by a computer. {2, ¢, T and all numbers whose decimals can be computed, e.g. by
continued fractions, are computable.

Computable numbers form only a countable set of the continuum, so that
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almost all numbers that can be defined to exist can never be computed by any
algorithm. All irrationals can be defined as limits of infinite sequences of
computable numbers (rationals) but aimost ail of these limits are noncomputable.
Therefore, the properties that are true with measure one (e.g. the shadowing
property) are not necessarily reflected in computation; computation takes place on a
set of measure zero.

There are countably many algorithms and countably many computable
numbers, hence only countably many initial conditions. So almost all pseudo-orbits
that can be defined to exist theoretically cannot be computed. Therefore, it is
necessary 1o restrict the shadowing property to pseudo-orbits generated by
computable numbers. In fact, the following form of shadowing lemma has been stated
by Paimore-McCauley in that direction:

Iheorem 1 (78] Let : X — X, X =[0,11 be a piecewise differentiable map for

which X an hyperbolic invariant set. Consider a uniform lattice of 2N points in
N-bit precision in X. Let {xn};o be a computable pseudo-orbit of these lattice
points such that, i‘t(xn) - xnﬂi <2'N, for n=0,12,...

Then,

(1) if {xn];o is periodic, then there is a unique computable shadowing orbit

(ya),_o ©f T, such that (Yn}y-q is periodic and [y, - x| <o’ for n=
0,1,2,....
(2) if {x,)._, is non-periodic then there is a unique computable shadowing
orbit {y,}_, which is chaotic (70] and [y,- X <N  for n=01.2..
Remark 5 Theorem 1 has found applications [271] in the discussion of shadowing

property on a (fractal) strange repeller generated by hyperbolic dynamical systems.
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APPENDIX C
APPLICATIONS OF SHADOWING PROPERTY

In this Appendix, we consider two applications of the shadowing property.

C.1  MEASURES ON PERIODIC ORBITS OF MAPS WITH SHADOWING PROPERTY

Let T be a continuous map from a compact metric space X to itself.

It is shown in [8] that a large class C of Axiom A systems (X, 1) have the
shadowing property, which in turn implies that they have specification property
[115, Chapter 23]. Therefore, from Theorem 1 of Appendix A, we conclude that the
class C of the Axiom A systems have POM property.

JTopologically Transitive Map T is said to be (topologically) transitive if there exists

adense orbitof T in X.

Strongly Transitive Map T is said to be strongly transitive, if for any open subset

U c X, there is an integer N >0 such that j@ori ) =X.

Lemma 1 [68]. Let T:X — X, X =[0,1] be a continuous piecewise monotone map.
Then transitivity and strong transitivity are equivalent for 1.

It is obvious that if T is eventually onto, it is strongly transitive. Conversely, we
have:

lemma 2 [27]. Let . X = X, X=[0,1] be a (strongly) transitive, continuous
and piecewise monotone map with shadowing property. Then T is eventually onto.

By Lemma 1, 2 and Theorem 3 of Chapter 2, we have
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Proposition 1 Let 7: X — X, X =[0,1] be a (strongly) transitive, continuous,
piecewise monotone map. If T has the shadowing property, then 7 also has the POM
property.

It is shown by Parry [79] that every continuous strongly transitive piecewise
monotone map of a compact interval is conjugate to a continuous uniformly piecewise
linear map of the unit interval onto itself. Furthermore, the shadowing property

preserves topological conjugacy (Theorem 2, Chapter 3). We therefore have:

Corollary 1 Let 1: XOSOX, X =[0,1] be a continuous uniformly piecewise linear
map. f t has the shadowing property, it also has the POM property.

C.2 TOPOLOGICAL ENTROPY OF MAPS WITH SHADOWING PROPERTY

We now discuss the relation between shadowing property and topological entropy
for a continuous map T: X — X, X =[0,1]. Though topological entropy was first
defined in [159), the definition due to Bowen in [153] has been found more suitable
for maps with shadowing property. We begin with stating the necessary definitions.
The entropy of amap T tells roughly how many different orbits T has. We can think
of 1: X — X as representing some real process which one is observing, there will be
an error € >0 of observation so that one cannot 'see’ that states x and y are distinct
if Ix-yl <€ Now one sees that the orbits {T(x)}"_, and {t(y)),_, are different
provided that It'%x) - ‘tk(y)l > ¢ for some k > 0. From this viewpoint the number of
orbits could be finite, countable or uncountable depending on 7. If one now bounds the

time of observation by n and observes only the initial segment of the orbit of

-1
X, {Tk(x)]Lo one will see only finitely many orbits (by compactness of X). This
motivates the following definition:

(n.€) -Separated Set, Letan ne IN and € >0 begiven. Asubset AcX is
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(n. €)-separated if for each x,y € A, x#y, thereisa k, 0 <k <n, such that
] ]
Ithx) - 7)) > e.

Let s(n, €) denote the maximum cardinality of an (n, €)-separated set. To
measure how many distinct asymptotic behaviours we can observe, we have to look at
the asymptotic behaviour of s(n, €). Therefore we let,

_1 1
h(t, €) = lim_sup — log s(n, €).

Topological Enjropy. The topological entropy of the map t is given by,

h(t) =e11_{)n ) h(z, ).

Bemark 1 h is a quantitative measure of topological form of chaotic behaviour of
orbits e.g. as observed by Li-Yorke in [198].
Remark 2 For Axiom-A systems, which have shadowing properly, the topological
entropy was obtained [153] in terms of the growth rate of the number of periodic
orbits of period n as n — e, Usually these maps may have positive topological
entropy. The case of zero topological entropy has been investigated by Shimomura in
[155]. Topological entropy of piecewise monotonic maps of an interval is studied in
[3,281,282,290].

We can mimic the above definitions for pseudo-orbits as follows:
A collection C of d-pseudo-orbits is (n, €)-separated if for each
{x), {yJe C, x;#y, thereexistsa k, 0 <k <n such that Exk- yki €. Let
s(n,e,8) denote the maximum cardinality of an (n, €)-separated set of 8-pseudo-
orbits. s(n,e,8) <o, since X" =Xx X x ... n-times is compact. Let,

h' (1, €, 8) = lim_ sup % log s(n, €, &)

and h'(t,€)=lim h* (1, €, 8).
-0

Bseudo-Entropy. The pseudo-entropy of T is given by,

h' () = Jim h’ (1, £).
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Misiurewicz [15€] (cf. [157)) considered the calculation of entropy from (not
necessarily periodic) pseudo-orbits and obtained the following result:
Iheorem 1 The topological entropy h(?) is equal to the pseudo-entropy h'(v).
A 8-pseudo-orbit (xi} is periodic if X, ., =X, forsome nx1 andall k>0,
0 < r < n. Computer orbits are an important example of periocic pseudo-orbits. Let B
denote a setof (n, €)-separated periodic d-pseudo-orbits of period n and
ixk- yki >¢, forsome k, 0 <k <n. Let P(n, €,8) denote the maximum cardinality of
such a set. Now set,
H' (1, ¢, 9) =lim, sup-rlT log P(n, €, 8),
H' (1,€)=lim H'(1,¢, )
-0
ad  H'(y=lim H (5,8

then the following is shown by Barge-Swanson in [157]:
Theorem 2. The topological entropy h(T) is equal to the growth rate H'() of the
number of (separated) periodic pseudo-orbits.
Expansive Map The map T is said to be expansive if there exists an € >0 such that,
for each x,y € X, x#y, ET"(X) -T"(y)i 2¢, forsome ne IN.
Then the following lemma is obvious:
Lemma 2. If T: X = X is expansive, then there exists an (n, €)-separated set
AcX

From Theorem 2 and Lemma 2 we have the following estimate of topological
entropy.
Proposition 2. Let 1: X — X, X =[0,1] be a continuous expansive map. If T has the
shadowing property, then

h(t) = lim, sup 1 log F(t)
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where F (1) ={xe X: T(x) =x).

Bemark 3. Proposition 2 has also been stated by Shimomura in [158]. For T an
homeomorphism, Theorem 3 was first proved by Bowen in [153].
Bemark 4. Shimomura [179] has also proved that if T: X — X, X =[0,1], isa

continuous map with dense periodic orbits and shadowing property then h(t) > 0.
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APPENDIX D
A GENERAL RANDOM PERTURBATION MODEL FOR ABSOLUTELY
CONTINUOUS INVARIANT MEASURES ;

In this Appendix, we undertake a random perturbation model which has been
described in [53,116]. The stability results have been obtained in the following
setting: ‘

Let T be a continuous map of a metric space X into itself and P(X) denote
the space of Bore!l probability measures on X with the topology of weak convergence.

Consider a family [Qi ,Xx€ X, e>0}) e P(X) such that all maps Qf : X - e P(X),

sending x to Qi are Borel. Also assume that for each bounded continuous function g

on X,

=0 (i)

[EQLACHRE

eh-TO,f 29(
Small Random Perturbations. Let {xfl, n=0,1,2...} be a family of Markov chains

corresponding to the dynamical system (X,T) with transition probabilities,
PxA) =P(X;, € A:Xp=x} = Q[ (A) (i)

defined for any x € X and a Borel set A € X. Then, Xf, are said to be gsmall
random perturbations of the map 1.

Invarant Measure for a Markov Chain. A probability measure W on X is an
invariant measure of the Markov chain Xy if for any Borel set Ac X,
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jPe(x,A) dpt(x) = p&(A) (iil)
X

Example 1. Consider the tent map 1: [0,1] — [0,1] defined by,

The Markov chain, X, =1(X__)+X; @(X,) W,, where W, is an independent
random variable supported on a small interval [-a, a] and J = [a, 1 -a] was shown to

have an ACIM in [19].

Theorem 1 [116]. If the conditions (i) - (iii) are satisfied and ue‘ — L weakly
for some subsequence €,— 0, then M is an invariant measure of the map <.
Bemark 1. Theorem 1 was originally proved by Khasminski in [183].

Bemark 2. Our purpose is to specify measures which can be obtained by means of

weak limits of invariant measures of Markov chains Xf, when € = 0. Theorem 1
says that these limiting measures must belong to the space of Borel T-invariant
probability measures on X. If these spaces contain a lot of elements the problem
becomes rather complicated. On the other hand, if T is uniquely ergodic i.e. there
exists only one t-invariant measure U € P(X), then by Theorem 1, invariant
measures of the random perturbations must converge weakly to K, when the
parameter of perturbations tends to zero. The measure M can then be considered to
be stable with respect to such perturbations.

Bemark 3. Another problem of interest here is to specify conditions on random
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perturbations, which ensure that weak limits of their invariant measure¢s have their

support on attractors, and has been discussed in [146].

In general, neither the Markov chain XS nor the dynamical systerﬁ X,T)
may have any invariant measures at all. Nevertheless, if X is compact there is a
sufficient condition for existence of invariant measures.
Theorem 2 [116]. Let X, n=0,1,2,... be a Markov chain on a compact space X
with transition probabilities,

P(x,A) =P{X, € A:X,=x).

Suppose that the measures P(x,®) € P(X) dependon x continuously in the topology
of weak convergence in P(X). Then the Markov chain X, has at least one invariant
measure in the sense of (iii).

Bemark 4. Another assumption called the Doeblin condition [106, Chapter V,

Sec. 5] ensures existence and uniqueness of invariant measures for Markov chains.
If random perturbation Xf, satisfy Doeblin condition then for each € there is only

one invariant measure H° of X,s,. and so the limiting behavior of e as e >0
becomes even more interesting since, usually, there are a lot of t-invariant
measures which enforces the question about the right candidate for a limit of
measures |,
Bemark 5 Applications of the above model were considered in [116] for Lasota-
Yorke maps and for some quadratic maps of the interval [0,1] which satisfy
Misiurewicz conditions. The second application is of special interest. Though there
is a stability with respect to random perturbations, in general, there is no stability
with respect to deterministic perturbations. This can be explained as follows:
Consider the family of quadratic maps T,: [0,11 — [0,1] given by

T,(x) =4Ax (1-x) with A closeto 1. Then t(x) is a Misiurewicz map and hence
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has a unique ACIM L. Define n, =min (n>1:ﬂ(%)z-;-]. 't'l'(%)=0, Vn>1.

Then, if 'c': (%) >-%- , by continuity there exists a a(A) such that 1> a(A) > A and

ol 1 1. " .
'tam(-i— =7 Therefore, 5 isa periodic point of Tag) and the corresponding

periodic orbit is an attracting one, since T (%) =0, for every A.

Thus we have found a monotonically increasing sequence (Ak} ’

Ak-—e 1, k — o such that any 1:}1 is an attracting periodic orbit containing %and

only one point of this orbit can be 1o the right of -;— The complement of the basin of
this periodic orbit has zero Lebesgue measure, by Proposition Il 5.7 of [145].
Therefore, the invariant measure “7‘1 supported by this periodic orbit is stable
with respect to random perturbations.

On the other hand, the measures ”’x do not converge as Kk—> 1 tothe ACIM

p of Ty since these periodic orbits have only ene point to the right of —;' and so all

weak limits of the corresponding invariant measures have support in the interval

[O, %]. Therefore, we do not have stability with respect to deterministic
perturbations. This can have the following physical interpretation:

We can assign a perturbation to some point of the coordinate piane-x-
coordinate measure deterministic part of the perturbation and the y-coordinate
measures the random part of the perturbation. Then the above argument says that
when perturbations approach zero along any straight line passing through zero
except the x-axis then the invariant measures of perturbations converge weakly to
the corresponding ACIM W. Otherwise, if perturbations approach zero along a curve

which is sufficiently close to the x-axis, the convergénce may not take place.
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APPENDIX E
SHADOWING PROPERTY FOR CONSTRICTIVE MARKOV
OPERATORS OF STOCHASTICALLY PERTURBED SYSTEMS

In this Appendix, we discuss the generalized shadowing property of Markov operators
which describe the densities of evolution of stochastically perturbed systems.
E.1  DISCRETE TIME SYSTEMS WITH CONSTANTLY APPUED STOCHASTIC
PERTURBATIONS
Let : X — X, X =[0,1] be a map which generates the discrete dynamical
system,
X . 1=Uxy), for n=0,1.2,..
Consider the stochastically perturbed system,
xn+l=t(xn)+Wn, n=0,1,2,... , (1)
where the small stochastic perturbations W, are random variables, which satisfies
the following conditions:
(a) 7T is (Borel) measurable and supT(x)=a<1
(b) The initial conditon Xy,€ X is independent of the perturbations {Wp) -
(c) The random variables W, , n=0,1,2,... are independent (and so called white

noise), 0 < W, <1-a and all have the distribution with density g l.e.

Prob (W, € B) = J g(x)dx, for n<0,1.2... BcX,B isa Borel set.
B

Let D, be the space of all densities in X and let fa€ D, denote the density

of distribution of x;. By (1), x_ _, isthe sum of two random variables: 1(x;) and
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W,. Since in calculating X,...,X, we require only We,...,W_ ,, T(x,) and Wy, are
independent. Let h: X — R be an arbitrary, bounded measurable function. The

mathematical expectation of h(x_, l) is given from Theorem 10.2.1 of [114] by,

Elh(x,, )1 = [ hG0F, , (00dx (2)
X

The joint density of (x, Wp) is f(y) g(z). Therefore, we also have,
E[h(x_, )] =E[h(x(x,) + W]

= ” h(w(y) +2) £(y) 9(2) dy dz
XX
By change of variables, we can then write,

EIh(x,, )1 = [ [ 60 £, 9x - 5092 dx dy (3)
XY

where Y = (ye X:x2>1(y)}.
Since h was arbitrary, we obtain by (2) and (3) that,

fani®= [Fi) - sy, for nedt2.. (4)
Y

Thus given an arbitrary density f, the evolution of densities given by (1) is

described by the sequence of iterates (P"fol » where,

Pf(x) =jf(y> g(x - T(y) dy (5)
Y

is a Markov operator from L1 into itself. It is shown in [60] that P is weakly
constrictive. Therefore, by Theorem 1 of Chapter 6, we obtain the following result.
E_m,pgsnmn_t Let the stochastically perturbed system given by (1) satisfy
condition (a) - (c). Let the evolution of densities by the system be described by the
Markov operator P given by (5) with the attractor A consisting of a single element
.fm of a P-compact set Dch. Then if PDc D and nli_x,n“HPn f -Alll= O uniformly
for all fe D, P: (D,6) = (D,p) has the generalized shadowing property.
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E.2  DISCRETE TIME SYSTEMS WITH RANDOMLY APPLIED STOCHASTIC

PERTURBATIONS

We now consider a nonsingular transformation 1T: X = X, X =[0,1] with
the stochastically perturbed system,

X 1= Wy, for n=0,1.2,... (6)
where x e X and W, are random variables. The system evolves according to the
transformation 1(x,) with following interni -iion: At the n™instant of time, the
precise location of x, is not known, though we know its density f,(x,). At the next
instant of time (n + 1) the transition x,-» T(x;) occurs with probability
1-¢€,e>0. Furthermore, the value of X_,, is uncertain with probability & (see

Fig. 16). If x =y, then X,,q May be considered as a random variable distributed

+1
with a density K(x,y).

Let P, be the Frobenius-Perron operator associated with 1. Now, given the
density f, of x, and aBorelset A C X, we would like to calculate the probability
that x__, € A.

In our random applied perturbation process, X .1 ¢anbe reached in any one
of the following ways:

(1)  deterministically with probabilty 1-& and
(Il) stochastically with probability &
Thus, in the deterministic case x__,=T(x,) and

Prob, (x, € A) = Prob, (t(x,) € A) (7)

As the density of T(x,) is P f,, we have,

Prob, (t(x;) € A = j P, £,(x) dx (8)
A

If the stochastic perturbation occurs then,
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Prob; (x ,,€ A:x;=Y) =IK(x,y) dx
A

Since x,, is a random variable with density fn we also have,

Proby (x,, & A)= [ Proby (x,,, & Atxa=3) £s®) by (9)
X

Thus by (8) and (), we obtain,

Proby (x,, & 4)= [ I Kexy) £,0) ayl dx (10)
A X

Combining equation (7) and (10), we get,
Prob (x_, € A)=(1 -e)Probl(ane A)+eProbn(xn+le A)

- J' [(1 - &) P, £,(x) + € [K(xy) £, dy] dx.
A X

Since A is arbitrary, this implies,

foe1=(1-8) Pf(x) + €] K(x,y) fi(y) dy.
X

Thus the expression for the operator P describing the evolution of densities by the

process is,

Pf(x) = (1 - e)Pf(x) + | K(x.y) f(y) dy. (11)
X

Then, P is a Markov operator from Ll into itself. Assuming that the stochastic
kernel K(x,y) is uniformly integrable it is shown in [60] that P, is weakly
constrictive. Then again applying Theorem 1 of Chapter 6 we have,

Propositiori 2 Let the stochastically perturbed system, corresponding to a
nonsingular transformation, be given by (6). Let the evolution of densities by the
system be described by the operator P, in (11), with attractor B consisting of a

single element f' of a p-compact set DCDI. Then, if P.DcD and
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Jim IIP,f-Bll, =0 uniformly for all fe D, P (D,0) = (Dp) has the
generalized shadowing property.
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APPENDIX F
HISTOGRAMS OF CELLULAR AUTOMATA

For one-dimensional configuration space considered in Chapter 7, Sec. 7.3,
we display some point transformations and the associated histograms, which the

orbits of the transformations produce. In Fig. 17 we have two disjoint histograms:

one has its support centred at the point -%- while the other has its support centred

around the point % The histogram that appears is determined by the starting point.

In Fig. 18, we have a transformation in which there is much overlap in the
middle value interval and it is less likely to have two disjoint histograms, since
orbits will now be able to range through last parts of configuration. In this case all
starting points will tend to a unique histogram.

Fig. 19 shows a transformation which has a unique histogram and whose
support is concentrated in a fairly narrow region in one side of the configuration
space.

In Chapter 7, we restricted ourselves to the study of transformations which
were piecewise (unifornilly) expanding on the configuration space. For
transformations T which are not uniformly expanding on the configuration space,we
can have the following interpretation: in case of biological cells, if a cell and all its
neighbours are all in very good health, we would expect them all to become
completely healthy. This implies that the orbit of T in the configuration space
should tend to be the fixed point 1. Thus, the point 1 is a local attractor. Fig. 20
shows the histogram of such a transformation: all the orbits converge to the

attractor {1}.
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FIGURE 17

ple=1)s .1 ; pli-®)z .1 ; p(1-2)s .2  p(2-1)= .2
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starting point = ,23456
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FIGURE 18
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number of Iterations = 100880
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number of iterations = 10088
starting point = ,23456
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FIGURE 19
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FIGURE 20
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