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multiple templates.

ABSTRACT
COMPUTER RECOGNITION OF HUMAN SPEECH
f .

( -
! ‘ Mathew Joseph Palakal

Speech is thé most efficient and convenient means for
communicating information among humans. If computeérs could
be given the abiiitx for voice communication,-their value

and ease of  use for human would inerease. To develop

<,economically, machines that could talk and listen, need more

IS

intensivé research.

“First part’ qf this thesis‘is'a detailed study of the
problems associated yith.isolated-word fecognition systems .
A spéaker-independent‘isblated—word recogﬁitioh’ system was
_@eveloped and implemented on a microprocessof.based system.
Speaker normalization‘ was achféved by keeping mulﬁiple
‘reference templates which cbuld_accomﬁodate variatiogs of

many speekers. A clustering technique was used to create

' i

- . {
In the second part, a new solution for accessing a -

'largeo lexicon in speaker-indepsndent continuous speech

;recognition syatemé_ is prbﬁosed ‘and successfully

iii
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‘network. A lexical access ﬁree‘is‘built'during the learning
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‘§f&ge wvhich would access a set of words from the lexicon

when some Sufficient Conditions are detected in the data.

Ve AL
An experiment was condufted to test the perecentage of .
words accessed from the lexicon and "to verify o

speaker-independency. iny 2.3% of the words were accessed
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from a lexicon of 9000 words. . .
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. © . INPRODUCTION

One of the most predominant’~chéracteristics which
distinguishes humen beings from animals is the . ability . to

speak:. Even though human beings have numerous means 6f

communication, such as writing, Morse Code, and sign

o

languages, speech remains the most powerful .

Speech processﬁng on computers has been of interest to
researchers since the early 1950's. * Speech processing is

composed of two basic branches, namely, Speech Synthesis and

_Speébh',Recognition. Although +there has been considerable

developement-in the speech synthesis field, little progress
. e
has °been made in speech recognition because of the

complexity of speech siénals. For instance, thére is a

great extent. of variation in +the same spoken word frqm

speaker to speaker. In the féllowing sectfoq we shall

examine how speech is produced by humen beings. <

]

1.1 Speech Production

\
S

Human speech . is produced by &a physical system

consisting of four main parts: lungs, vocal tract, nasal

»
.

e
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tract, and vocal cords (see Fig 1.1): The dir necessary to
produce spegch is supplied by‘the lungs. The wa¥eform shape
is generated ,by the vocal cords with the vocal and naéal

tract acting as filters. ]

\ Speech sound thus produced can be separated into two
different classes: Voiced and Unvoiced. Voiced)Soupd is
produced by a vibratory motion of the vocal cords. The

natural frequences of the vocal cords are called formants‘3
They appear as f1, £2,.f3, and 80 on. Only the first 3
formants - are considered in speéch analyéis. Voiced sounds
have typical fundamenfal frequencies: 12Q ﬁz for men, 220 Hz

for women; and 300 Hz for children (1],

. ' .
Unvoiced or voiceless sounds are produced by ‘a
turbulent <flow of air caused by an extreme narrowing of the

)
vocal cord at some point. The frequency ranges of these

sounds are rather wide and flét-and vary from 4000 Hz to

8000 Hz .

1.2 Linguistic Aspect Of Speech 5

The waveform generated By th% vocal cords is converted

. into linguistic form at the listener's end. In turn, the

listener fits’his auditor& sensations 1into sequences of
words and sentences. The words are merely representations
of acoustic symbols. ‘However, words are formed by smaller
linguistic units qalléd the phonemes . Phonemes on their

own, do not convey any concept unless they are put together

| Sm——
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with other phonemes. These linguistic units are strictly
language dependent. Fig. 1.2 shows a tree represehtation
of phonetic features and a phonetic representation of +the

standard English language [28].

Phonemes conbined into = larger units are cglled
syllables . Syllables on their own or put together ‘'with
more syllables form words. Therefore, words could be
mono~-syllabic or multi-syllebic. Different rules ?gfyate
the possible combinations of phonemes in forming syllables.
Syllables usually have a( vowel as the central phoneme

surrounded by one or meny consonants. The phoneme may be
spoken differently at different times depending on the
context'-represent}ng the same basic unit. The different

realizations of the samd phonemes are called "allophones".

+

1.3 Acoustic Characteristics of Phonemes.

Speech sound is divided into two main groups, Vowels
and Consonants. The basic distinguishing features of

different phoneme classes are described here.

Vowels.

Vowelé are produced thropgh an open vocal 1tract, ‘thus
making a voiced sourcé. The %ey characteristic of vowels is
.that they possess substantial energy in the low and
mid-formants [3]. Different vowels can be distinéuished by

the position of the tongue, jaw, and the rounding of the

.
A s i ot b o oo
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e

lips. The formant frequencies can be determined by the

shape of the vocal tract. The second formant fiéés when the

tongue moves forward.

There are tﬁree different categori%s of vowels. The
"front  vowels" (e.g./1,1,e/), the "back vowels"
(e.g./u,U,0,a/), and the "central vowels" (e.g./al,s, /).
Vowel recognifionﬂ can be carried out’ by locating and
measuring the first three formants. Variations in the
length of the vocal tract ceuse the vowels of .different

speakers to be different [4].

Certain types of consonanté such as labial, dental, and
velar h%ve their own significant effecté on the formant
transitions to or from an adjacent vowel. The effect shifts
the formants in the middle of the vowel, thus meking it hard
to élassify the vowels. Another problem arises due to "lax"
and "tense" vowels in the English language. The same vowel
in it$s "lax" and "tense" form has a duration difference.
This duration difference 1is caused by vowel stressing.
Also, vowels followed by voiced consonants are usually
longer than thoge followéd by unvoiced consonants [4]. Fig
1.3 shows the manner-of-articulation of the vocalic sounds

[

with examples.[30]

Consonants.

LS ’ Py
Consonants are divided into several groups according to

, the "manner-of-articulation". The five major groups of

~
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consonants in the English language are, plosives,
fricatives, nasals, glides, and affricates. Depending on

the "manner-of-érticulation", these groups share different

" acoustic properties. The sharp rising of the first formant

is a fair enough ipdicatidn that the sentence started with a
consonant. The place of articulation can be found using the
transitions of +the second and third formants. Labial
consonants have an overall lower formant. The second and
third formants have a tendency to rise for dental consonants

¢
and for velar consonants these formants are closer +to each

'othey. A brief .study of the various consonant groups is

described below.

i) Plosive (Stop) Consonants .

. -

&

"Dhe plosive consonants (Stop Consonants) (B,D,G) are

voiced end (P,T,K) are voiceless. These consonants begin
with a brief silence followed by an abrupt increase in
amplitude at the releasing point of the consonaq&. Hence,
the amplitu@e of th; burst wiil be significaﬁtly diffeg_ A
between the voiced and unvoiced consonants | The
distinguishable features of plosives depend on the adjacent

phonemes. FPig 1.4 shows the place of articulation of the

stop consonants.

\
A

Ey

Stop consonants may occur at the beginning of a word,
within the word, of at the end of the word. Stop consonants

wvhich occur within a word could easily be confused for the

v
Cor .
-

end of the word during speech recognition.
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ii) Pricatives.

The fricative sounds are produced by a - turbulent air

flow . There are voiced fricatives (/V/,/DH/,/2/,/2H/), and
unvoiced fricatives (/¥/,/TH/,/S/,/SH/,/H/). High zero

crossing rate and a small increase in high-frequency energy

when total energy 1is 1low are some of the clues to detect

weak fricatives. Voiced fricatives have greater,

low-frequency energy at the beginnfng of 1the Jfricative
sound. Unvoiced fricatives are longer than voiced
fricatives.. Refer to Fig 1.5 which shows an illustration of

how these sounds are produéed.

eg: N/ vote ‘
/DH/‘ then’
/%2/ © 200
/ZH/ azure .
/F/ for |
- /mH/ »_thi‘x:u‘ S
| /8/ gee L ) o
/SH/ she | '

/H/ he
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iii) Nasals. ]

) . v
. \

In +the \}ggiisﬁ language, the nesal ‘'sounds (/m,n/) are
usuélly adjacent\to a.vowel. Because of the presence of the
hasal, fhe ad jacent vowels are also subject to nasalization.
A significant increase in the bandwidth of the first formant
is an after-effect of nasalization. The first. formant is

usually stationary when these souﬂds are produced but the

second and third formant vary considerably from speaker to

. speaker|8]. RN '
eg: A.TE " ne
/N/ . 'no )
L]
Glides.

Glides (/w,r,1,y/) and nasal§ are similan in that they
both occur equusively beside vowels. Glides and nasals
fogether are also known as "sonorants". Each glide sound
has - a unique formant .characteristic [5]. . The formant
transition into =& vowel ‘is very smooth and sléw and the
dynamics of the traqsitions to adjacent vowels are the

distinguishing characteristics of these sounds. sRefer to

Fig 1.6 for an illustration and classification of Glides and

- Nasal sounds. ' ! \)
(i eg: JY/  you e
/W/ we v
/R/ read
x %L/ let
: 3

-
L3
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- Pig 1.6 Classification of Nasals and Glides
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iv) Affricates and Dipthongs.’

. ,

Combinations of vowels are called dipthongs, whereaé,

7/ .
"combinations of consonants are called affricates. The
sounds,  (/EY,IH/,/IH,UW/,/0Y,IH/,/AW,UH/,/AY,1H/,/OW,UW/)

are the dipthongs and the sounds, (/CH,SH/,/JH,ZH/) are the

affricates in the English language.

-

Dipthongsl and affricates have the same  formant
transitions as glides. The transitions take place to one
vowel position followed by a short steady ‘étate and then

motion to & second target which has a longer duration (s].

>
eg: /EY,1H/  say . -

/1H,U0W/ new .

/76¥TKH/ ‘boy

s /AW, UB/ out

/AY,TH/ I | N
/OW,UW/ g0 ‘
/CH,SH/ ~chew ‘

- [JH,ZH/ jar .

i
»

'The characteristics of each flass of phonemes described
above are not independent. When speech is prPduced ﬁ& human
beings, =a prototypical set of‘fea%ures is not generated.
The listener somehow aligns the features properly, discards

the bad ones, and recognizes the speech correctly.

Phonetic detection glgorithms are usually formalized in
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such a way as 1o accept a largeisep of features jointly,

. rather then looking for one particular fqafurél ‘The speech

recognition systems ©based on acoustic-phonetic-recognition

(APR) are called feature-based systems. =~ |
AL - '

1.4 Speéch ReéOgnition By Computegs. -

o
. 4
x s

"o

Speech recognition by computers started in +the early

“fiffieS' and* has taken various approaches since then. The

s

two types of speech decoding médels\which are currently used

are the "active" model and the "passive" model [29].  'The

passive model is , for the most part, used in isolated Qerd'

peognition systems. The basic necessary steps involved in,

this model are acoustic processing, feature extraction, and

pattern recognition. Fig 1.7 shows a typical iéolated word

o

recognition system based on this model.
A : : ¢

) - e

The active model is msed in more complex task
decomposition problems such as continuous speedh'recognition
systems and speech understanding systems. This model is

based on Knowledge Sources at various 1levels of signal

9

interpretation. Fig 1 .8 shows a model of such a system.

Speech decoding research is currently being éone i ;the

v

following major- areas:

"a)  Isolated word, Speakér-dependent systems for

3

limifed vocabularies.
b) Isolated word, Speaker-independent systems. ('

_¢) Continuous Speech Recognition Systems. - ®

- ~ . ¢

3

3

&r
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© speech recognition systems.
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d) Speech Understanding systems.

1
/ 3

Spggch recognition -involves ; variety of principles:
which include challenging tasks such as detecting vowels and
consongnts, matchiné pronunciation of words, and making use
of the prosodic, syntactic, and semantic .features. ‘;Modern
speech nécognitiop syétems employ eitﬁer some or all of the
above constraints. Appendix A shows some = of the majqr

!

institutions which are active in the Speech Processing .
' 4
field.

‘ B)
After more +than 35 years of research, automatic
recognition of natural or conversational speech‘is still

beyond reach. Advanced developments in digital technology

have. substantially contributed to the recent advances in

[

Why is speech recognition so 4ifficult? The main
reason is that the acoustic signal is extremely variable.

This variation comes from +the speaker's dialect, his

" personality , and his emotional conditions. The chances

that a selected speaker will speak the same word twice and

T

.the resulting acoustic signal will ©be identical is very
o

slim. Word boundaries may not be apparent in the signal.
Silent geps, in the same word may be confused with word
boundaries. Numerous such problems make it difficult for

computers to recognize speech.
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Fig 1.8 An Active Model Speech Recognition System
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1.5 Speech Recognition Systems: Past and Presenén

It was evident to early researchers that the speech
signal could be decomposed into simple sinusoidal wave-forms
by analysis‘[2].~ These decompositions could be approximated
by electronic "filters" which separate ‘the ‘gifferent

frequencies.

The complexity of speech recognition by machine
increases as we seek for speaker-independency and continuous
speech recognition under poor acoustic environments. ' By
carefully avoiding these complexities, éarly researchers
focused their attention on isolated word recognizers for a

small vocabulary set for a selected group of people.

5

Sonoéraphs of speech signals were used by Dreyfus-Graf
in the '50s in ordergto recognize human speecp. The first
speech recognizer developed by Davis, Bidduph, and Balashek
of Bell Telephone in 1952, used zero;crossing count of‘ the
8 ‘ech signal <filtered at P different frequencies. Later

on, Many more speech recognizers were developed using more

v

filter banks.

A major - break-thfbugh in 1isolated-word, speaker

dependent speech recognition occurred when Dudley and

ffﬂaf;shek [33] developed a system which would segment the

~ .

word into phonetic units. Perfect recognition was achieved

for a single speaker. During the ‘sixties, more  word

<
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recognizers were- available wit& greater expanding
capabilities. _Some word recognizers were able to handle a
vocabulary size of 500 words. Another system developed Dby
Gold could recognize 10 speaskers with 86% accuracy. The
system developed By Medress was based on extracting more
linguistic information from the speech signal.
N

The first commercial speech recognizer was developed by
Threshold Technology in 1972. Recognition difficulties
increased as the number of words in the vocabulary increased

and the need for speaker independency came into the picture.

Commercially available speech recognizers are effective

~aonly within narrow 1limits. Problems such ag, small

vocabulary, need for training, misrecognition, and high cost
are ‘some of the major drawbacks. Most of these recognizers
use Linear Predictive Coding for feature extraction and
Dynamic Programming algorithms for time normalization and

template matching. Even though' these techniques produce
. s

Very ‘good recognition rates, ordin;ry. small-scale
microprocessors are not capable of performing such tasks.
If\Iow cost systems are desirable theﬁ tﬁey must use simpler
techniques. Nippen, Verbex, Bell Labs, and Threshold
Technology are some of the leading manufacturers of.
co;méicial speech recognizers. Table 1.1 shows some of the
currents speech recognizers available 1in .the market for

commercial applications {10].

[
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Manufacturer Model

Verbex 1800
Nippon Elec. ' DP-100
Threshold Téeh T-500
Interstate Elec VRM
Heuristies 7000
Centigram MIKE 4725

o

Scott Insts. VET/1
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Table 1.1

Speaker-

independent

No
No
No
No
No

No

Connected Prace

speech in §
Yes 65,000
Yes 65,000
No - 12,000
No 2400
No 3300
No 3500
No 500

e 0N

Error

Rate %

5.9
Te1
12'6
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From the evaluation table , it can be concluded that,
for a reasonégly good recognition systen, the cost is too
high. Therefore, a 1low-cost recognition system with an
acceptable’ reéognition rafe and a reasonably sized

vocabulary (of size 50) has many applications.

Voice activated systems are used in air traffic
control, computer-aided design , production and process
control etc. Connected speech recognition systems can be
useful for blind people to speak into a system, for

dictating machines, and finally, the listening typewriters.

"
i

The purpose of +this thesis work was +to develop a
low-cost, speaker-independent, isolated-word speech
recognition‘system for a small vocabula}y set. Chapter 2
explains the development of such a system in more detail.
Due to hardware limitations, the goal was not fully achieved
and the work was redirected +towards a continuous speech
recogniton‘ system which is under development on a Vax-780
machine. This wérk is explained in Chapters 3 and 4. The

results and progress are reported in Chapter 5.
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Chapter 1II

A SPEAKER-INDEPENDENT ISOLATED WORD RECOGNITION SYSTEM

In this chapter we discuss the implementation of an

isolated-word recognition system.

The recognition system can be considered as a Passive
Model. Multiple templates were created during the learning
stage for each word in the vocabulary as reference patterns.
These multiple templates were created using the clustering
algorithm. Many aspécts of speech recognition systems, such
as, end-point detection, time alignment, feature extraction,
and distance measure were cénsidered in develop;ng this

system. ' r

2.1 Hardware Organization 0f The System

@

This system was developed on a low cost microprocessor
éystem which consists of a Z80 cpu, 48K RAM, and floppy disk
drives. The speech board was made by Heuristic Inc. (Los

Altos, California). :

The speech board consists of .three audio bandpass
filters,> one overall zero-crossing detector, a compression
amplifier, A/D converter, and an analog multiplexer. Fig

2.1 shows the hardware configuration of the speech board.

The incoming speech signal is filtered in threé‘major
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5

Fig 2.1 Schematic Diagram of the §

peech Board
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frequency domains. The ranges of the filters are, 150Hz to
900Hz (f1), 900Hz to 2200Hz (f2), and 2200Hz to 5000Hz (£3).
Each) filter values corresponds to the aéproximéte
frequencies of +the formants f1, f2, and £3 of the average

vocal tract.

The speech signal is sampled at every 10 msec for 1.5
sec. Thus, 150 samples are collected from each
bandamounting to a total of (150%) 600 data sampies per
utterance. Fig 2.2 shows the algorithﬁ for preprocessing
and recognition ﬁhich constitute the software part of the

system. s

2.2 Preprocessing.

A Dbeep from the microphone marks the beginning of the
speech window and. the speaker begins to speak. After 1.5
sec another Tbeep maéks the end of speech collection. The
speakér mey be slow in his response and may start speaking
moments later. Therefore, the speech samples ﬁay have sets
of data which do ﬁot contain any relevant information. The
speech is also accepted in a noisy environment but actual
speech should not be confused with noise. Therefore, the

beginning and end time of the actual length of the speech

must be detected before any further processing.

The algorithm used here is similar to the one proposed

{
by Rabiner and Sambur [25]. The idea is that the meesured

semples from band 0, 1, and 2 are added,jegefﬁ;; and checked,
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Fig 2.2 Preprocessing and Recognition
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against a threshold value starting froﬁ'time, t=1.

This threshold value is loweredl or the beginning poiﬁt
or the end point of the speech is moved backward or forward,
if the zero-cfossing count at that point is greater than a
zanother) threshold value. This is because the fricative »
sounds have low energy but highér zero—croésing densities.
If +the actual speech does not constitute at least 100 msec
(minimum word length), then the. system considers the
utterance as poor data. The data will be rejected if either
the beginning or end point cannot be detected. In order not
to confuse’ a stop consonant apbearing in thg ﬁiddle of a

word as word-end, the minimum word iength'isu checked. The

stop consonant leaves a short silence after the consonant.

Selecting Evenly Spaced Samples and Time Wraping

o
The actual speech data obtained after performing the

begin—end algorithm is stored in a temporarj buffer. . The
length of the speech may vary even for the same word spoken
at different times. Therefore, a standard length has to be,
maintained for every word spoken. For this reason, a set of
evenly spaced samples are selected from the speeqh data.
fhe selection must be made in such a way as not to lose any

vital information on the speech.

‘The standard length is kept as 64 samples/word.

obvious that this represents only the first 160 msec of

utterance thus losing a considerable amount of informetion.
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There are various techniques used by researcher® Xor
retaining a small set of data from a large set with a

maximum amount of.informatidn. »
¢ ,
Linear Interpolation with +translation is, used here
since it has reported very good results. Traﬁglation is
used for +time warping. Time warping eliminates timing
difference between two utterances.\ Linear time aligmnment
means that two utterances to be compared are stretched or

compressed linearly so that they will have the same length.

Non-linear +time warping techniques such as Dynamic

Programming were used in various isolated word recognition

systems. However, it was .shown that for monosyllabic worids,

linear time warping gives good results [27].

2.% Test Data Collection v

Speaker independent speech recogniﬁion systems must’ be
capable of extracting speaker-independent features from
speech pattern. Another way to achieve speaker independency
is by storing multiple templates which will accommodate many
variations of the same word. This is also'-known as speaker
" normalization. - The numbe{ of such templates depends on the

syStem capabilities such as memory availability.

The recognition system under consideration uses
multiple templates for a 20 word vocabulary. The(¢rpining
samples are collected from a wideJrange of speakers. Native

and non-native ZEnglish speakers (ﬁale and female) " were

included as candidates for data collection. 32 speakers (8

2

og’




native English speake;s, 8 female native Englisﬁ speakers, 8
non-native male Eng%ish speekers, apd 8 non-native: female
English speakers) were asﬁed to come at 4 dffferent times
and each time 4 sampies of each word were collected giving
(32%4*4) 512 gpeech p;tterns/word. | : ’

3

The vocabularj set consists of 10 command words, STOP,

1
START, BRASE, ENTER, RUBOUT, GO, NO, HELP, YES, REPEAT, eand

- the' digits from O to 9. Considering the need for real time

recognition and availability of“RAM area to store the

templates, 10 témplates/Word with a total of 200 were made

- for the 20 word vocabulary. The clustéring technique was

used to create femplates from the 1a§ge set 'of speech

petterns.

Organization of Multiple Te@plakes

The objectiwe is to create a small .set of templates out
of a large set of sample patterns so that the templates will

represent the maximum variations present in the sample set.

Since variations between speakers are very large, the

training patterns may span a lérge area in the feature -
space. Simple averaging of the training ﬁatterns is
meaningless. Therefore, it 1is necessary to- use some

meaningful approach to extract templates.

o i

1S .
Th§re are various clustering methods available and the

n .
"Maximin" (maximum-minimum-distance) clustering algorithm

&

[26] is used here. We consider each sample pattern which
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Pig 2.% Clustering Algorithm

4
L]

Find an arbitrary inifiallpoint inthe data space.
Let this be the 1st cluster point, C,

The 'point with the maximum distance, from C, yoyuld

£

be the second cluster point, 02 :

The successive  cluster points; ﬁC5 , Ca

gy

Cy ‘(n={0) aré calculated by finding all the

ninimum distances to every éxisting cluster point

and finding the maxima of all minimas.

If desired number of clusters are not found, goto
\ . -

step 3 éls%ﬂ:inue with step 5.
Compute the domain for each cluster point.  The

Y

domain is computed by finding ‘all the distances
between data points. ang cluster points. The
points ~ with minimum distanées _belong td the
closest cluéter péint;

Find the cluster center by calculating the average

of all the pgints beipnging to thé same domain.

2]

f
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contains 64 speech samples as a data point in the space. We

have 512 such data points for each word. These data points

are classified into 10 domains and - the midpoint of each’

domain is the desired template. The Maximin clustériﬁg‘

algorithm is explaiﬂed in Fig 2.3.

The cluster center found in Step 6 is the desired

temdplate. The aigorithm is peformed for every word in the

vocabulary. - f

The number of templates (domains) for edach word could
be increased or decreased. The 1arger the number of

templates, the greatef the diversity of speech patterns.

/
2.4 Recognition Procedure

‘Becognition gsihg the template “matching technique * is
basically applied here. The first three formants and the
zero-crossing count are %hg features used for matching. In
the wusual way of templaté matching, every template is
matched against the target word (unknown word) and the word
which gives the minimum difference is cgnsidered as
recognized. In our éystem we have 10 templatés for eacﬁ
word and a total of 200 templates for the entire vocabulary.
Matching against each word not only slows down the ‘systen

but also - affects +the performance of the system. One

solution +to +this problem is to ciassify the speech signal

and the vocabulary set so thattonly one class (group) of

4

templates ig needed to be considered for matching.

e
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4

~

Classification is done based on the acousﬁic features
of the words. The entire vocabulary 'is classified ;nto
seven groups with respect to the acoustic behaviour. /These
features are speaker-independent and applied with "a priori"

knowledge. The . target word goes through classification

first and receives a class-label.

Classification Technique .

Classification of +the target speech pattern prior to
template matching would give a better recognition rate and
recognition +time. Classification is done by making use of
the "peaks" and "dips" on the zero crossing signal. Peaks
'méy appear as, high-peak, medium—peaﬁ, or lopreak: The
terms high) medium, and low corggspond 1o the amﬁlitu@e of

the peak.

The peak-dip detection algorithm counts the peaks on
the zero crossing signal and the beginning time (%), and

the ending time (t,) of the peaks. The peak-dip

characteristic on the signal represents -the acoustic

property of the speech itself. The classification algorithm

finds an'\ov%rall distinguishable charactetristic of the

signals rather than locating or detecting any phonetic
o~ - .

features. : g




L4

The 20 wprd vocabulary is classified into 7 groups with

e
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clags-labels as follows: R
HSPB High-Single~-Peak (Beginning)
MSPB Medium-Single-Peak (Beginning)
. MSPE Medium-Single-Peak (End)
HSPE High-Single-Peak (End)
¢ HMP High-Multiple-Peaks - | .
MMP Med ium-Multipl e—'Pve'aks
IMp Low-Multiple-Peaks 2

"Fig 2.5 illustrates the Peak Labelling Algorithm-

-

1
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.
Fig 2.5 Péak Labelling Algorithm

regeat
repeat
find-peak(p, 4y te )*

case p,

> by hp :=true (* high-peak *)
2ty <ty i mp :=true (*medium peak*)
?

%1 Ctp o 1p s=true (* 1ow¥pegk *)
end (* end-case *)
ntil
until ( by OR mp OR 1p )
~until ( n = N) '

where,

N = number of speech samples (64)

th,m,l are thresholds
Pn = number of peaks

' tb,e time beginning and time end.
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6 Classification Algorithm

Fig 2
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Once %he number of peaks and the type of peaks are
detected, the classification-is ¢arried out by the algorithﬁ

shown in Fig 2.6.

Each group described in the above algorithm contains

the following words:

Group 1: SEVEN, START, STOP

Group 2: YES, ERASE

Group 3: HELP,'FOUR, GO, TWO, ZERO

Group 4: REPEAT, ENTER, BIGHT L
Group 5: SIX -
Group 6: NINE, ONE, THREE, FIVE, (NO)
Group 7: RUBOUT, (NO)

The wunvoiced fricatives sound "s" give rise to high

zero crossing in Group 1 , Group 2, and Group 5. In Group 2

this property (the high peak) will appear at the end of +the

speech and in Group 1 the peak will appear at the beginning
of the speech. Inlqroup 5, the "s" and "x" sounds of the
SIX produce a multiple high peak at the beginning and at the

end of the speech.

Group 3 contains words starting with fricative sounds
and plosive sounds. These fricative sounds and plosive
sounds have lower Zgro crossing rates.and will appear at the
beginning of +the word. Group 4 contains the words with
plosive sounds "p", "t", and "g" which will genbrafe ﬁéaks

!
'

towards the end of the speech.
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Group 6 . and Group 7 have words starting with sonorant

sounds which have 1low gzero-crossing counts and mnultiple

-3

peaks. ' ; -

- Template Matching and Recognition

The +target word is subjected to go through the above

described classification process Dbefore the actual

process (template matching) is completed.
Unknown words are matched only against those words in the

group into whith they were classified.

A Wedight Punction is used in ce®culating the distance

° 1
measure between the unknown .and the prototypes. The
weightea distance is calculated separately'for each feature

vecﬁor (fo

, f1 , fo , =and 25 ) . The distance

~is calculated as follows:

W < | R
0 =§=1 1 (fo1 = foi)i
‘ :(f1i“f1i)|

|(f21 - £21) ]

W k
‘2 F §i1 T(2ei = zei) |

n T

74

Loy
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where, ‘ N

fo,f1,f2,zc ) ‘
are the féature vectors of the templates,

fl-l 1 !

0, f1,f2, z

are the feature vectors of the target word,

1/W is the weight function

(W = the co-variance factor), -/

D is the weighted distance between +the two

patterns.

/

Distance is now calculated begween every word in the
game group and th2 target word and is stored in a Distance
Buffer (DB). The word which contains the minimum distance
in DB could be sélected as the word recognized. However,
instead of finding just the ‘first minimum, the first 5
minimas are found and, in order to be a‘potential candidate
for recognition, at least 3 out of 5 miﬁgmas mugt be present

in the same word.

:

2.5 Reéults and Conclusion

-

The Real-time response of the system was excellent.
The recognition rate was approximately 0% which is not

within the acceptable range. However, various interesting

observations were made :

i) Multisyllabic words -were easier to recognize
¢

than monosyllabic-words since the features were

|
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correctly detectéd.

’

4i) The clustering technique is. definitely a

promising approéch for creating multiple templates
in order to achieve speaker-independency for a

small vocabulary set.

iii) The system could be easily implemented on a
more powerful machine (e.g. a 16 bit
microprocessor) which would help to extract more.

features for group classification

iv) Words classified into the correct group - were
always correctly recognized. Wrong classification

wag the major cause for misrecognition.

v) The templates were made permanent and there is
no need for further training the system for a new

user. )

¥

vi) One overall zero-crossing detector is not:
enough and there- muét be at' least one
zero~crossing detector for each band . This would
give Tbetter distinguiéhable features between the

speech signals.

vii) SelectiBﬁTBT;words in the vocabulary set is
§186 important. Since small set word recognizers
have many applicetions, +these words should be
selected carefu}ly s0 that they may be recognized

easily.
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stuéy on continuous speech recognition sysfems and a
contribution to +the problem of accessing a very large

lexicon. .
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Chapter III _ . A

CONTINUOUS SPEECH RECOGNITION

In this chapter' we look at the problem of continuous
speech recognition , the techniques used by researchers, and

also the system under development at Concordia University.

By continuous speech recognition, we mean the

capability of fecoénizing natural speech which contains long

stﬁings of words spoken with or without pauses between each

word. The vocabulary size of such systems will depend on

t particular 1language we are dealing with and the size

will wusually be more than 15000 words.  Usual speech

“—

recognition techniques such as those used in isolated-word
recognition systems are not adequate in this case because of
the very large vocabulafy size. Therefore, detailed study
of acoustic signals, extraction of more features, and.
hypofhesization of syllgbies becomes necessary to carry out

-~

such tasks.

Active model speech recognitidﬁ‘ systems must be
éonsidered in order to handle complex problems associated
with continuous speech recognition. Rule-based systems for
correctly predigfiﬁg acoustic properties of speecb sounds
are- also used by recent researchers [12]. Rule—baséd

systems give more insight into the characteristic acoustic

i
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features of speech sounds based on small data.

'
. , . .
Segméntation * is an important aspect of continuous

speech recognition. Segmentation , meaﬁs, segmenting
utterances into phonemes. This process ﬁay not bé‘necessary
in isolated—word ;ecognitioﬂ systems. Usually, the adjacent
phonetic events will interfere with the phoneme under
consideration thus making segmentation difficult. In
situations such a;. "} screan" and "Ice cream", even the
boundary detection of words wiil be difficult. Therefore,
it is necessary +to provide higher 1level knowledge. 1In

traditional continuous speech recognition systems, a lattice

of segment/label is produced first.

-

3.1 Continuous Speech Recognition Systems (CSR).

Several continuous speech recognit%on and speech
uﬂderstanding systems have bgen developed by incorporating
various techniques. Appendix-A shows various institutions
which are currently iﬁvolved in different aspects of speech(

“pnoggssing and the technique they are using.
~

The Hearsay I and 1II, the Harpy, the Dragon systems by )
Carnegie-Mellon, the Hwim (hear what I mean) systen by‘BBN,
the SDC systeﬁs , the IBM system, and the Lincoln systenm
developed am MIT are some of %the continu g speegh
recognition and speech understanding systems developed in
.the past. A brief look at the design criteria used in these-

)

gystems are considered now.
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Preprocessing, Knowledge representation, and Matching

'
are the mainfégsign principles behind all the CSR systems.

Preprocessing consists of three important concepts, namely,

parametric representation of speech signal, 1labelling, and

segmentation.

1

Dragon uses the amplitﬁde and zero—croséing froﬁ a
‘5~channel-octave-filter as its .parameténs for the speech
signal. Using +these parameters, the system then computes
the probabilities for each of 33 ﬁossiple phonemic symbol

for every 10 ms segments of speech. In order to accommodate

ailophonic variations, +the system uses multiple reference. .

templates for each phonemic symbol.

T

Hearséy—l also uses 5-channel-octave-filter to
represent its parametefs for speech in the form of

amplitudes and zero-crossings. Every 10 ms of speech is

: “then classified' and given & phonemic 1label Dbased on a

predefined set of cluster centers. Syllable-like segmé;ts

are then obtained from each cluster with the same lgbel.

OUnlike Dragon and Hearsay-I, the  Lincoln system uses
the LPC.ppectrum analysis and tracks. formants to use .as
parameters. It performs a preliminary segmentation and
labels theosegments as vbwels, fricatives, or stop ' sounds.
The 1labels ‘ére further classified into acoustic-—phonetic

elements by computing further spectral measurements such as

formant  frequencies, formant measurements, and formant

amplitudes etc. :

S -
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The IBM system uses energy spec%na and spectral changeg
for segmeﬁtation and adopts the same technique as template

matching in Dragon for labelling.

M
\

o

Knowledge representation iE the next major step
involvedl Knowledgilnay be represented as networks or as
produdtion rules. The CSR systems are nérmally furnished
with three different knowledge sources: the v?honological

rules, lexicon, and syntax [31].

~

Tbel Dragon and IEM systems ‘have all fh; knéwledge
‘represented as a finité—state network which reﬁresents a
hierarchy® of probgb;listic functions. The Lincoln system
uses a set of p;géuction rules to represent knowledge.
Hearsay-I organizes .;ts knowledge as independent but
cooperating modules whicﬁ allow easyq modification when
necessary. The representg%fbn of knowledge in each module
is ratherldifferent. For example, production and.prediction

” .

(hypothesis) rules are used to represent syntax knowledge,
‘héreas, thé”i;xicon is simply & representation of phonemic
i dee-fgr8817 Even though IBM and ﬁragon use network
3 representation, Dragon evaluates the 1ikelihoodh of all
possible path while IBM evaluates only the most 1likely

paths.

Matching is  the ofizfl' step involved. A ystack
containing a lisﬂ of alternative word sequences arranged in
™ -,
descending order with respect to their likelihood is used byt +

all systems except Dragon. Each of these words is matched

i
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against +the unmatched symbol string to ‘estimate  the
likelihood of occurrence. A new list of acceptable word
L}

sequences is generated and this process is repeated for the

entire utterance.

\
\

The performances of these systems were different as

reported in [31]. The Hearsay-I and Dragon used . 102
J

sentences and the Lincoln system used 275 while the IBM used

363 sentences for its test run. Hearsaj—i had 31% sentence

~accuracy and 55% word accuracy for 4 speakers and 5 trials.

Dragon " achieved 49% sentence accuracy and 83% wori/gccuracy
for a single speaker. The.Lincoln~system has 49% / sentence

accuracy for 6-speakers and 1 trial. IBM, with 81% sentence

vaécuracy and 97% word accuracy had the best performance for

L4

a single speaker.

—

A comparison among these gystems is not simple since
the experiment. was Eafried_out differently. However, the
overall performance gaQe an insight intoJthe still existing
problems. Better segmentation, 1labelting, and improved

matching techniques are still needed.

L
t

%.2 Expert Systems in Speech Recognition.

The area of computer science where the machine has +to
see images, listen and understand voices, is stiliA;n its

early stages. These are some of the areas where artificial

intelligence can be applied so that thg,maéhine may emulate’

-

intelligent behaviour. It is also’yﬁn these areas where

researchers come up with

“fiew kind of approéch using Expert
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sttems .

collection of facts, rules of thumb, and methods of applying
those rules and making inferences [13]. These programs
differ from ?onventional computer programs because their
tasks do not entail algorithmic‘solutions, rather they infer
Br deduce conclusions based on available knowledge Dby
applying pertinent - rules. Expert systems were used
preﬁiously in various other fields such as medical diagnosis
[14], crew scheduling for space- shuttles, ILANDSAT imagery

1

- [15] and so on.

N ¢

The primary sou;;g of-expert's knowledge must come from
at least one human expert who has adequate knowledge and

experience in the specific field.

Properties of Expert Systems.

a) Structure of expert systems is modular. Thus, the
knowledge about the problems, inference
procedures, global data base, and information

about current.problems (input) are well seiarated.

b) Modularization of inference procedures allows

4‘_’——~_~——_ﬂ—’*”4’fg’//paxa%léi/4 processing capabili%y. (will be

explained in detail later on) (
c) Any module of the expert could be changed easily
whenever it becomes. necessary. For example, if

new knowledge becomes available it could be added

=]

b b ey




48
to the knowledge base without interfering with

other modules.

Knowledge in exﬁeft systems is usually represented in
the format of production rules. Rule-based systems opérate
by applying rules, makiﬁg inferences, and applying further
rules, if necessary, depending on +the inference or
inferences made previously. Rule-based systems are
favorable if thg system .under consideration has to be
constructed baged ‘'on previous experience. ‘ Thée rulé
interpreter uses _control strategies based on

top-down( goal-driven), bottom-up(data-driven), or both. -

.

The Expert System Under Consideration

\
\ ! v N .
A speaker-independent continuous speech recognition

syétem under developement, as we have seen earlier, must be
capable of performlné complex tasks The numerous processes
which carry out such tasks may have to work directly on the
speech pattern for extracting various features. ‘By taking

into account various objectives, the speech recognition

system has the following design properties:

0

a) Parallel execution capability. Since real-time
‘recognition is desired, parallelism is a must.

b) A - distributed knowledge module fér’ problem
solving. Using this, it is possible to separately
ﬁpdafe_ each piece of knowledge when-ﬁew knowledge
becomeé available. ‘

c) A control strategy capable of scheduling sensory
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procedures will extract new cues from the data
when it is necessary for confirming or supporting

an inference currgntly made.

03

In consideration with the above design requirements, a
system has been developed as proposed by De Mori.[16] which
extracts acustic cues, generates sylléb%c hypothesis, and
accesses a very large lexicon. Th; cooperation of
computational activities has been conceived using the

paradigm of an Exper} System Society [17].

S .
Experts are computing agents which execute reasoning -

. programs using structural and procedural knowledge in an

integral form. They cooperate in extracting acoustic cues
from the signal, in generating hypotheses about bounds of
syllabic segments and phonetic feature hypothesis inside the

segments. . o

Fig 3.1 shows ghe expertg Expj (1 ¢ 3 € 5) of the
Auiditory Society, <their LIM, STM, and their communication
links: Each expert is associated with 8  Long Term Memory
(LTM) containing that Expert's knowledge and a Short Term
Memory (STM) where data interpretations are written. -

Each expert may create an instan?iation of }tself which
applies its knowledge to a particular set of dag; in some
particular context. Aﬁ instantiation may comgunicate witﬁ

»

other instantiations of +the same expert or with other

»

experts. The experts do not communicate through a*common
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X

data-base. They ére provided with an elaborate control

‘strategy.

3.3'Rgpresentation of Expert's Knﬁhledge
7

The knowledge of the experts contains context-sensitive
rules. It controls the extraction of spectral cues from
speech data, produces a description of the extracted cues,
and generates phonetic hypotheses. The algorithms for
generating de;criptions of acoustic data and for generating
hypotheses of corresponding phonetic features are expressed

in a frame language.

: Frame\language is particularly suitable for integrating
structural ' and procedural knowledge, /handling
context-sensitive knowledge, and making inferences. A frame
Ais an information structure éomprising e frame~name and a
numnber of slots. A slot contains information concerning e
particualr jitem called‘a slot filler [17]. Slo% fillers may
include descriptions of events, relations, results of
procedures, and invocations of other frames. Fig 3.2 shows

the physical structure of a frame and its components.

Slots can be filled by the results of‘ sensory
précedures invoked for extracting cues from data. The
content of already filled slots could be used as a
contextual reference for those sensory procedures not yet
.executed. A slot entry may be restricted b&iconditions
where predicates have 1o be ’evaluated or where the

evaluation of predicates may require further evaluation of
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"the functions which need  semantic information. The ‘slot

filling structures are définéd by a contgxt-frée érammér
whose re—writing rules are éhown in Table 3.1.
i
The terminal symbols are written in lower case letters
and the non-terminals in upper cdSel The startipg symbol is
<FRAME>.' The quantiﬁies appearing inside the Ybrackets eare
optional. An exponent k is applied whenever the ‘content of

the base is repeated k timeés,in a sequence.

N
¥
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TABLE 3.1

,' Rules of the frame-structure grammer . -

(FRAME)D
(SLOT-LISTY

(DESCRIPTION>

<CONDITIQNALD>

{CONNECTIVE>

|

:=(<KNAME} <SILOT-LIST>)
:=(<KNAME> [ (<DESCRIPTIONY)])k>O

":=(described-as <CHDES))

:=(<CONNECTIVE> <DESCRIPTIONSk>1
:=(not <DESCRIPTION>)
:=(filled-by <FRAMED)
:=<CONDITIONAL> o

:=(result-of <PROC>)

:=(when <PREDICATE EXPRESSION> '
<DESCRIPTION> . ,
[ (else <DESCRIPTION>)]
:=(unless <DESCRIPTION><DESCRIPTION>)
:=(case <NAME> of
(<DESCRIPTION> filled-by
<FRAME> )k>1 .

t=0r .
;=and
1=X0Tr

:=gequence .
\

——
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TABLE 3.1 (contd.)

-

<PREDICATE EXPRESSION> :=CPREDICATE>

<PROC>

<NAME>

<CHDES>

:=(not (PREDICATE>)
:=(<CONNECTIVE> (<PREDICATE>k>1

:=F=<{function>
:=P-<procedure>

t=any string of characters

/

:=any cue or hypothesis description '

-

"

PR

PRSP
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The know}edge stored in the LM of  an expert is a
co%}ection of algorithms, eagh having 8 frame structure:
When +the execution of an algorithm is ‘invoked, an
instantiation of the first <frame of the corresponding
structure is created into the expert's STM. The slots of
the frame get filled while the expert executes the
algorithm. Again, an attempt +to fill a slot may cause
iﬂstantiation of another frame and this operation can be
done recursively.

o

When all the slots of a frame instantiation are filled,

the frame instantiation is completed.

‘3 . M )
The slot described-as <CHDES) gets filled by generating

descriptions of acoustic cues or- interpreting hypotheses.
The execution of-a procedure can be initiated by trying to
fill that ﬁgg;;cular slot of the frame. A procedure in a
given instahtiation has access to all the slots which have
already been filled {or that parjicular instentiation. The
knowledge - of the procedural rules must come from human

3 .

experts who have previous experience in recognition systems.

The slot filled-by <CHDES> corresponds  to the

instantiation of a frame represented by its NAME. The slots

with connective descriptions may cause the invocation of

other frames and execution of procedures for extracting new

cues if necessary for evidence. The connective  sequence

implies that time consistency must be maintained while

s
&
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describing %he“temporal sequence ‘of events suqh that the

(i+1)st event must begin at the end of the ith onme.
{

Heuristic knowledge is incorporated in order to keep
" the number of instantiations as 1low as possible when
instantiations cannot reach completion. Conditionals and

preconditionals are also used for this ﬁurpose. Default

L d ~ \J -

conditions are also used for filling frame slots. Frame
instantiations that remain incomplete do not contribute any

~descriptions. If this happens, the frame will not be placed
in the experts' STM. '

Tﬁ%~frame language stfucture allows one to expréss
comﬁlex inferences and cue extraction rules very-easily.
Invocation of frames also corresponds to the sub-goal
approach wused in artificial intelligence. In this case,
filling a slo} is a sub-goal and the frame itself +the
main-goal’

3.4 Interaction of Experts to Decode Speech

,

Each cifcle__in FPig 3.1 is an expert. Each expert has

its own task to perform as described below.

The first expert is the Pata Acquisition Expert (DAE).
Thg speech signal is first sampled, quantized and”stored
into the "SIGNAL-STM". The DAE pre-emphasizes the signal
and computes the gross spectral fettures (GSF) and stores it
into, the GSF-STM. It then looks for the beginning of the

speech'and starts sending messages to the next expert, the
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Waveform Cue Descriptor '(WCD). The knowledge needed for
detecting beginning and end-points, windows for signal
processing, and various other thresholds are stored in the

LTM of the DAE.

The next expert, the Waveform Cue Descriptor, describes
thé total energy signal in terms of peaks and- valleys\ with
respect to time and based on zero-crossing densities. . The
DAE could still be fu&%tioniné while the WCD 1is performing
the' déscription task. - The alphabets‘of the descriptions,
also called the Primary Acous%ic Cues, are shown in Table

Short and Long refer to the duration of the peak or dip
baséﬁ"EﬁJ/%ime while high, medium,«and low are based oﬂ the

amplitude.

)

¥ith every detected symbol, the beginning time (tb)

thé end-time (te), and the zero-crossing count are included.

The extraction of these cues does not require any
céntextualrconstréﬁnts. The algorithm for the extractioﬁ
and description could be found in [12].&‘A set of such
‘acoustic cues is geperated by the WCD for '‘the sentence, "A
.good turn deserves another", spoken by a. male, native
English speaker, is shown in Fig. . 3. 0This ;articular

sentence will be used later for illustration purposes.
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{3 TABLE 3.2 v
"" The Primary Acoustic Cues
Short—deep—bip of the total energy)
Loné—deep-be of the total energy)
Skart-high-Dip - Of the t&tal erfbray)
Short-medium-Dip of the total energy)

Mpeak

Lpeak .
Lowpéak
SNS

MNS

INS
MVl

Lvi -

(medium duration peak) -

(
(
(
(
(
N\('
(
(
(
(

long duration peak )
low amplitude peak)

ort fricative segment)
medium fricative segment)
loﬂg fricative segmeﬁt)
(medium sonorant .segment)

(loﬂg sonorant segment)
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The waveform features are sent to the next expert, the

Primary Phonetic Feature Descriptor (PPFD). * .The PPFD

generates hypotheses of phonetic features that are related

to the acoustie cues with Context-Independent Rules (CIR).

" The descriptions made! by PPFD are called the Primary

Phonetic FeatZ:}s. The ruleé fo: éenerating.these features
are speaker“independent because nthey are based on
perceptuallx significant acoustic cués. These rules - are
stored in the LIM of the expert. Table 3.4 shows the

alphabet of these featufes.u

3

Only one symbol from the.above table will be generated

_by the PPFD for labelling and segmenting a set ?ﬁ acoustic

cues. For exanmple, the acoustic cue sequence,
<Long-mediun-dip> | <Long-high-dip><Mpeak>

would- .produce the symbol, XC (non—sonarant coptinuant

consonant), after testing and evaluatlng all necessary(ﬁ

sensory procedures. In Chaptef v, the 1ntermed1ate output

n

from PPFD demonstrates this process. . ’ . .

A,

. ) l “ :
PPFD performe two major tasks, namely, labelling and

*
2\

Pseudo Syllabic'Segments (PSS). The segmentatlon rules are

segmenting. The segments generated Dy PPFD are called

based on an attributed grammar proposed by DeMori [18]. The

rules operate in a top-down fashion.




Symbol

VC
VB

“ ’ ‘ * VFC
VBC

4o
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TABLE 3.4

Primafy Phonetic Features-

. Feature Descriptions

Front vowel
bentrallvowel
Back vowel
Front or central vowel
ﬁack or central vowel ’
' Uncertain vowel '/

Non-sonorant interrupted cgnsonadﬁ
Non-sonorant affricate consoﬁant
Non~sonorant continuant consonant
Sonorant consonant

1: ~jTHe /v/ or a NI consonant

-

A sonorant or the /v/ consonant

f‘/:\
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Referring.back to Fig 3.1 on the Experf System Society,
there is an inter-expert communication link betwegnﬁthe PPFD
and the Signal Processing Expert (SPE). The PPFD repeatedly

interacts with the SPE. The invocaéion of SPE occurs as |a

result of a frame instantiation in FPFD. The SPE carries

out various signal transformations depending on the messege
it receives from PPFD. For example, the SPE could:perfo%m
LPC analysis, FFT analysis, and so ,on. It is imporfant jo
note that one of the novelties of this system is that it
performs time-consuming signal processing anélysis only wh n
it is necessary and also only for a given frame/fof §peech

signal. ' -

-

»

The PPRD cbuld also retrieve information stored in
GSF-STM. This is neceséary when the cues generated by WCD

are insufficient to make a hypothesis of PSS or PPF.

. A series of frame instantiations made by the PPFD and

SPE is shown in Appendix B-I and B-I1 for our test sentence.

)
In Appendix B-I, ILTM3 is the long-term memory of PPFD.
The operation P-READ causes to receive.a meséage from WCD

which consists of the, K acoustic cue LDEEPﬁIP(O,5,1) and the
!

parameters tb, te, and zc. Tge FR-STATE n's are the frame

"instantiations.

s to the_instantiation of

A I

:_'The filled-by FRn's correspond

the frame, n in SPE. Appendix B-II shows the sequence of

3

instantiations by SPE.itself.

- e . )
ton . a
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Whenever:' the instaatia&ién starts with the frame name
FR-STATE 1, it mesns that the end of a Pseudo Syllsbic
/ - . '
Segment was reached with the current instantiation and a new

syllable hypothesis could be started with the incoming cues
from WCD. S |

A new freame instantiation 1is always caused by the

P-READ operation . The term described-as follows & PPF

which is described by the PPFD together with +time duration
of  the feature. The PS n's are context-inﬁependent

predicates.

The descriptions made by PPFD are stored in the STM of
the expert. Fig 3.6 shows the Phonetic Feature Descriptions

generated by the system for the test sentence along wvith its

prototypicai description . The features thus obtained are
. sent to the syllabic expert and then to' the lexical expert.

A solution +to +the problem of accessing a large lexicon is

14

described in detail in the next chapte}.

y
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Chapter IV

A SOLUTION TO. THE PROBLEM OF ACCESSING A.LARGE LEXICON

The Pseudo-Syllabic Segments generated by fhe Primary
Phonetic Feature Descriptor 'which is stored in the STM of
PPFD has yo be used for'accessing'wérds from the 1exidon.
This 1lexicon is. very 1large and presently it contains the
9000 most freﬁuently used English words. Accessing such a
large léiiqon_ for real-time recognition needs some special
approach so that only a small set of words will be retrieved
for further.recognition processes.

1 N ’ 4 .
In this chapter we. discuss syllabification of the

phonetic-feature gtring into proper =syllables, 1lexical

organization, and finally & - technique for accessing the

‘
lexicon. p

4.1 Problem of Lexical Representation and Lexical Accessing.

The first problem related to lexical accessing'is that

" the Primary Phonetic Feature Sjmbols generated by the system

are not error free. ZErrors may arise due to unambiguous

insertions of a wrong segment, loss of a segment, or the
absence of the correct hypothesis in =a segment. Word

hypothesizatidn becomes difficult as a .result pf this.

Another problem is that a word is not only a comblex‘

/
3
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~

<
.

}e;ation between orthographic symbols and acoustic cues; it
also has 1o contain information which is syntatic and
‘semantic in nature [29]. This " makes +the lexical item a

complex data j;ructure. . ‘ )

.Lexical accessing itself is the third problem. Two
types‘_of lexical access ., are known: the tép—gbwn
(model-driven) and the bottom-up (data-driven). The
top-dowp\éethod is based on fhe analysis~by-synthesis model
of speéch perception where information drawn from phonetic
features is used to search throﬁgh the lexicon for ©possible
wor®s. A set of Qords ;s then selected and the syntatic and
semantic constraints, are used for hypothesizing' the

-

following adjacent word.

-

Considering the existing problems, a new apbroéch has
been developed which will be discussed in detail later on.
In this approach, the generation and verification of the
lexical -hypothesis ié seen as a complex problem to be sqlved
by a complex plan. Lexical representation is obtainq@ by a
problem-reduction representation where subproblems involve
the evaluation of the syllabic hypothesis and detection of
anus@}c cues. Each suﬁproblem is represented by a graph of
subprobléms [32]. A lexical problem is solved when some of

its subproblems are solved.

A

A degree of solution for each elementary problem is
defined. Rules are provided for combining degrees of

solution in order to obtain evidence for the lexical
ST . :

)\

o
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hypothesis which is geherated when the corresponding lexical

problem has been solved.

4.2 Syllebification using Dynamic Programming

NDP-mthhing techniques Qefe used for ' nonlinear
time-normalization in various isolated word recognition
systems. ihelbasic idea of DP-matching has been reported in
éEveraltpublicationsy[20,2{,22]. In syllabification, the
~template which is a étring of phonetic features' is matched
aganist an unknown string of the same typé. This unknown

string may be shorter or longer in length compared‘to the

template. ' ~ ~os

In isolated word recognition systems, DP-matching is
used for +time-warping and recognition by comppting the
ninimum distance between the target word and the template.
However, the concept of Dynamic Pfogfamming is used here for
segmentation of phonetic featuré descriptions into
Pseudo-Syllabic—Segments (PSS) which contributes an

alignment for learning a Lexical Access Tree.
I~

DP-Matching Principle

’

Let,

bd
I

= X4 X3 L eee,X4 yooesX]

y1"y2 f"'tyj yerey¥yd (1)
where,

'
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X is the speéeh' pattern of the template

(prototype) and Y is the speech péttern of the unknown word.

The problem is to eliminate the +timing differenée between

these two patterns.

If we consider an i-j plane as shown in Fig 4.1, where

X and Y are developed along the i-axis and. j-axis

. respectivei&, then +the +timing difference betweeq}the two

patterns can be depicted by a sequence of points, c=(i,J)

_P=c(1), c(2),eene,c(k),ee.,c(K) (2)

where ,
o .
¥

e(k)=(i(k), (k).

The function, F, approximately realizes a mapping from
the time axis of pattern Y onto pattern X.® This function is

called the warping function .

When there is no timing difference, that is, the points

on the pattern match exactly, the warping function coincides

3

with the diagonal line, j=i.

The distance between the two pattern vectors is

calculated by,

L 4
4

dafe) = a(i,3) = gy - xg3 10 - (3)

Now, Jthe total - distance ‘betwgen tﬁe_ two patterns

becomes,

-
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k -
F = §i1‘d(c(k)) . w(k) , (4)

where, w(k) is a°* weighting dJoefficient. The

definition of the weighting coefficient wig) is given by

Sakoe and .Chiba [20] for both the. symmetric and asymmetric

*form.

0

A pratical DP-equation could be written as,
8(i,j"1') + d(ivj)v
g(i,3) = minfg(i-1,§-1)v+ da(1,j),

g(i-1,3) + d(i,j))

vhere, g(i,j) is the distance computed from the

i

origin to'the poifit (i,3).

This typical DP-matching technique is based on the

-7

following ' conditions:

a) Speech'patterns are-time—saqpled with & common and
‘ constant sampling’period.
"b) - There is no a priori knowledge about-any part‘ of

the speech sample, such as linguistic information.

The initial condition, g(1,1) = d{(1,1) holds.
c) The window adjustment is defined as,

j=r <=1 < = j+f , where r is the window size

4

a) . The -domain in:which the DP-equatioh.ig‘palculéted‘

is, , -

| e o
Y



1

[N
L]

1< i< Tandd < 3j< J where, I and J are »-'

the length of the speech patterns X, Y. *

4

The DP—equat;on described /above was modified to meet

our .objective in order to learn an acceptable degradation

for the speech pattern. The condition (b) does not hold an&

n

more since the input‘speech patterns are different in nature.

as ojposed to the data used for recognition purposes.
1= N

. First, phonetic feature ‘Vectors are ﬁhe input data for

the:DP—matching system. X is the +template feature vector;

and Y is a‘degrad?trbn of X generated by the system Bince

these patterns contain linguistically importa iﬁformation, s

* the weighting coefficient w(k) is sele with an a_priori

knowledge. i v . _
T
- :‘ | \ //./, . “
To. satisfy these characteristics’L/iEE/DP;eqUation (5)
is modified as, ’ a

Iy /
. . - ¢ . ’

! * - N bl

g(i,j-1) + D, ,

J !

o letaet g+ 1, ()

g(1,3) = minfg(i-1,3-1) + 8,

[y ' é
where,
Dy is the deletion‘error (weight).

Sij is the substitution errdr, and

o :
ij‘is the insertion grror.
P ’ < )

* Instead of  one weighting coefficient, there . are" 3-

~

w(k)'s'assoéiated. }

~

<
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v

]

\ The Y

"ﬁelet}on occurs.

Fsymbdl has

 Substitution Brror (S

Deletion Error (D)

; "

The deletion error is the deietion\gf a feature 6n the

tprototypq, , The distance path travel;\verticalfy up if a

The weight

L o

For example, the deletlonwerror

Y

varges depending

to be deleté%.
for a vowel is ten where as, the error for deletlng a vowel

1n 8’ dgphthong is only three.' Fig 4 2 shows an example of.9

Deletlon' Insertlon, anﬂ Substltw{ion errors. ¢

!
)

P 3 b ' .

Insertion Error (Ij) / .

) .
. ]
k4 IR <

Insertion *error is the insertion of a symbol in the

unknown ‘speech pattern, Y. The insertich error of & SON

*five and ten for a consonant. The path travgls horlzontally

upon an insertion. : ¢ T

& % ‘, N

13)

-
¥
’ , .
%

R Substitftion is the floweét if +theé symbols match

exéctly./ For example, i% a -vowel matches with a vowel, the

-

error 1s 0.

path - goes diagonally aften‘.&iybsyitution. .The
eubstltutlon welghts (erron) varwaor various.categories of

features and are’ kept on 1ook¥up table." The sﬁbstitutiqn
enrbr for a vowel with a consonant 10,. which 1is the
geximwy, ;\ R L g
¢ % . + “)‘ ..: .‘ g .

- \ ' ¢ ‘ .‘ "

‘on vwhich’

is-

If this occurs then weihave hoAdegraded,gymbél.‘

iy

*
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r

«

N

‘ N ; A )

‘(K The syllables " thus | obtained, - . are.
) J ¢ . , . v ) ‘

PSeﬂdo—Syllabic—Segments of Y, the unknown. These syllable
e L - Y

segments are used tor * learn ' & . . syllabic-tree

(word-access-tree). o~ f

- - b
' P # v

1"development" and its prototype.

%;_ . 76 .

-

FPig 4.3 -shows -.an illustration of the maiéhing
technique. As an example, the distance dy5 can ' be
calculated as,

¥ | .
| dpq + D(P2) , .
- dos = min d1q + S'()diz,Pg),

410 + I(Xp) X

]

The minimum - distance points are located and the path is

drawn from the origin to the end. B

Phe. syllable bounds’ of Y (the unknown string) cean be
found by drawing a perpendicular 1line to the i-axis

(Y-vector) from the point of intersection between the

minimum distance path and the syllable bound 1line on the _

j-axis (X-vector or the prototype). 1In Fig 4.4, Sp is the

sylléble-ﬁound—line on the prototype and 'Su is the

syllable-bound-line found .on the unknown after performing

the DP-matching algorithm.

The window size, r, is variable and Ehe value between 4
and 6 gave avery good result. Fig 4.4 shows )a systen

generated-._ DP-matching -~ path for  the  unknown  word

Ld



4.3 Lexical Accegs
! 7

C
The syllabic segments bbtained from DP-matching are .the

mgin tools for accéssing the ' lexicon. A “word

/ . ,
hypothesization is not possible at this point. The syllable

e
qegments simply contain a degraded version of primary

phonetic features which will correspond to a large set of

4

words in the lexicon. In other words, there may bYe many.

words which have the same phonetic structure.

-

The ' objective is 1o access a minimum number of such

words from the lexicon and make a word hypothesis. ,"The;

. 8ystem undefw consideration has a structure as shown in Fig

4.5., A detailed study of the function andwjmplementation of

this system compgnents . is now considered.

. R . LU T T v o Rk wunu,m‘c., W
t - M . ! Y

|

B i
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N,

The Lexical Access Tree

<

During the“}earning stage of the system, several words

will be spoken by several people and the system will

generate the degraded version of syllpbic segments. We

consider only the 'first two syllables of each wdrd. The
syllable segments generated after DP-mééching are used’ to
grov .the word access tree. This tree has a structure shown
in Fig 4.6.

K
In Fig 4.6, ¥, Y'which is the alphabet of  phonetic

features detected with context-independent rules an&fxi X,
vhich is the prototype.

t
Each node of this tree contains one phonetic feature.

The 1leaf node has more information stored 4§n it. It
contg}ns the prototype of +that particular syllable, the
stress information, the frequency count of the number of

times that pérticular node has been accessed, and also the

facility' of accommodating more information, if necessary,

"using the same path.

Duriné the learning process, the phonetic descriptions
are sent to a Lexical Access Tree (LAT) prior to performing

the DP-matching aigorithm. The LAT could be updated in +two

different ways: by creating a new node with g current symbol

or by adding a.new entry into the leaf 6f any given node.
Three actions are possiblévﬁhenever the tree is accessed:

Ny, ‘ . '

{
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i) the free is updsted by creating a new node.

-
~1i) the leaf of a node is updated

LY

iii) no updeating of the tree. A set of words is

accessed from the lexicon

The IAT slgorithm starts with the phonetic symbol
described at time, t=0. With +this symbol, the tree is
searched startlng from the root. If any node matches with
the symbol then the follow1ng branch is searched for the
next symbol at t = t+1. The search will terminate if any of

the following three conditions are satisfied:

"/ 1) if no more symbols are left on the PPFD's

- 4 .
symbol sequence - .
. - A
t

ii) if the branch node = nil

_1ii) if“the symbol does not match.

‘ )If termination oceurs (this must happen), all - the

!

\

‘combinations to deke a permissible syliable"is ,less than

(

'ured to access the Tﬁiiqgn. ‘
_ N

si;leble entries at the 1leaf of the node at time t-1 are

A

™~ \\\

,/ The tree will saturate at some point during the’

./
/

(3 \ > '
. learning ©process since the mpaximum number of feature

'y

1y100.

i
/

.
. v
y
‘ /
N
.
'

-

In Fig 4.6, xi s are_ the, features in the prototype and

Yj g are the features of the unknown. In ogher words. ve

v

.




. __.ugifig ‘a semantic network

P
88V, ¥ 415 are degradations of xjrg . 'The stress information

is represented as s, and f is the frequency gount.

4.4 Organization of Lexical Knowledge

¢

The wordé of a l‘exicon ;and t

syllables, acggbie—r/a’rﬁ//

/__,Itelations with -
cues, are represe.nted
ﬂéi[w]. ¥We call this a Lexical ‘ '
Network. The maW‘ical Network are nodes
end links . Each node is associated with a name, & body of
knowledge,- and a set of pr‘ocedures. Links establish
relations between nodes and have associated descriptions of
the rele‘mtions.ﬂ The types of messages which could be sent‘

between the nodes depend on these relattons. - e N

. The Lexical_yetw;:)rk is described by a graph grammar in
which nonterminal symbols - are represented by strings of

lower—case letters and terminal symbols with upper-case

letters. These rules are used for word hypofhesization, and ’
lexical accessing. Some of the rules are given Dbelow with —
- /—/
the starting symbol as "lexicon". . e —
Rule RIA1
lexicon := wes(1){wes(2){..s.lwes(c)i.... wes(g)
The symbol '|' represents a disjunction of items which .

céh be genlerated by the nonterminal symbol 'lexicon’.



L AN e -w«‘n\wgw;-f'wn}rmms‘;m-wwufmu‘;m.w-e;, SR - Pt en e e z ﬁ -
Ia. 8‘3
{ - ’ j
Rule ‘RL2 . , ‘
wes(c):= “WC{c) '
' ‘ stress ' 0(() , C ;
syllabic ' ) co
syltypes(c) ’ |
(j;
words(c)
. ‘1 \ N
o> . \ . .
Ruale RL3 - '
syltypes(c):= SYLT(c,1) SYLT(c,2)
' ' ttQ:-:_:—_-%’SNtype(i)
precedes ' , . <
. sufficient sufficient
condition condition

syltype(k)

O

b

. suffsylt(k,m)

w2

0

suffsylt(j,n)"'

/:""
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Y

. According to the Rule RLi, the lexical Network is é

o

collection of structures corfeSponding to word classz.

Each word in the’ lexicon may belong 1o one ;J‘L more word

classes WC(c) dépeﬁdihg on the variations it may get. WC(c)

is the 1label of'tbe node after further re-writing the rule

- RL1. . ’

) , ' ‘ /77‘\~\\
- A word c¢lass WC(c) contains some stress information and
a sequence of syllable types.liA virtual copy link connects
thé node WC(c¢) with the words belénging to that class as
shown in the graph of rule RL2. A word class is eactivated
when some sufficient‘conditidns are met. This property of
the word class will be inherited by every word node and

¢

become a virtual copy of the ;word class. Therefore, the

nonterminal &ymbol words(c) are “used  to represent the’

e

virtual copies of WCle}s—"

3\

The nonterminal symbol, s&ltypes(c) in Rule RL2 is used
for generatiég the phonetic - features of the syllable
belongﬁng to the word class WC(c). This symbol is further

re~written in Rule RL3.

1

According to Rule RL3, the sylltypes of word class

WC(c) are represented hy two nodes, SYLT(c,1) and SYLT(c,2).
The link from SYLT(c,1) to syltype(k) means that the first

syllable type WC(c) is equivalent to the &tructure of

syltype(k). °SYLT(F,2) has the same -structure as tﬁét; of

syltype(j). , T
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S

‘sufficient conditjons are met. ’ 3

B

- terﬁinatiohs. The dashed link between D(i) and fp(i) called

,SYLQ(c,1) precéds SYLT(6,2) in time. °SYLT(§,1) and
SYLT(c,2) argblinked with a set ‘of sufficient conditions

suffsylt(k,m) and suffsylt(j,n),  respectively. The nodes

S&LT(C,L) and . SYLT(c,2) become active oniy if Jthese

3

The - word class ' WC(c) becomes activel yhen all the

-

sufficient conditions are met and the relations between

<

are verified and #&lso when the stress informationﬁ_sp(c), is

satisfied and syltypes(c) are active. When WC(c) becomes. -

I} .
active the ,nonterminal symbol words(c) are expanded using
3
Rule RI4. . N ’

Rule RL4 . ' e

’

. words(é) :=IW(c,1)§W(c,2)}..,{ch;i)}...W(c,I)

a 1 v

» Ie is the- number’ of items. Each wofd%W(c,i)vof the

word class WC(c) inherits the properfies of that par%iculér

word cless end_has a node W(i) for  describing its
18 :

/

, o .
orthographic  representation. w(i) ‘also . possesses
id&ormation such as syntactic and semantic .descriptions.
Links are also established between the node W(i) and, the

f£ixéd part - of W(i) as shewnin Fule FL5. In Rule RLS, the’

7 ,
..node fp(i) precedes the node D(i). D(i) is’ the ﬁtefminaﬁiop

' Ny
node of the word. D(i) will contain a set of prototype

'ctx' means that phoremes in D(i) ‘may“.act as context

3

constraints‘ih the rules relating ghoneticvfeatures.of gp(i)

__with scoustic cues. - . o Ce

o » ]

.

©

/ '

N
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"Rule RL7

"

fé}iiiz sy11(i,1,1) sy11{( y],ﬂ) syl11(i,1,9(ij§))

o Q\/O\/Q o

‘ % s ~ precedes -, precedes . ..
T precédes . Pprecedes - e
: -
;
) Rule RL8 ) ‘
C

syl1(i,1,3) S(i,1,3) c.to S(i,1,3+1)

acceptable
degradation s

s1(k)

" o ADGR(i,1,3)
" be - |
“from S(i, I.J =1) ,/” . ;
/ A t ‘Z



~ - * -
'

* ‘ d . °
The nonterminal symbol d(x) could be written as shown

4

in Rule RI6. :

s ‘o

Rule RIL6

‘e ' 4

—~

d(x) := DSINGULAR(x) | DPLURAL(x)

The +termination parts of worde are different for
plurals and singulars, which affects the last syllablé. For
this reason, the fixed pgr% aﬁé termination part ‘are
separated. | ‘ g ‘

’

Rule RL7 establishes that the ﬁonterminalwsymbol fp(i)
is a disjunction of references of sy;lables. The last
syllable of each reference is usually incomplete and hés to
be completed by the termination part. The structure of each

syllabic node is defined by[Rule RIS8.
s

Each syllable S(i,1,j) is an instantiation equivalent
to a syllable represented by the node sl(k). The node
S(i,1,j) is activated if a set of acceptable degradations fgfz—“/
s1(k) has been hypothesized from the data. The set OF-
a&%eptable degradations is contained in the node ADGR(i,1,j)

which initially receives them from sl(k) +through +the 1link

DGR which could be modigied if necessary.

.
f




N Pig 4.7 Algorithm to Access Large Lexicon

begin

for every ¢ do

begin : ‘ ~
apply-rule-R12(wes(c))

apply—rule—RlB(syllfypes(c))

-

matchphon(SUF(c),data(Ta,Tb), var match:boolean)
_if match then
| expand-node(WC(e))
end . _ . _‘
/
end / ,
- : K
“~ -~
. S
’d/. J
| G -



—

The sufficient conditions for the word class, SUF(q),

1

Jis %he primary phonetic feature vector of the syllable

‘defectea:
é

Sequences of primary phonetic features define

syllable-types characterizing The

classes of syllables.

total number of such classes is less than 100. An algorithm

“ for' accessing a large lexicon using the features generated
by the system in the time interval T(a,b) is shown in TPig
407-

g

The algorithm shows that many subnetworks corresponding

*

4 3 . . N
to word classes for which there is sufficient evidence in

the ®ta can be expanded in parallel. Global eQidences ére
computed only for those word hyéétheses' belonging to

pre-selected word classes, that are’gonsistent with top-down
“@redictions and for which enough phonetic features have been

detected in the data.

J A——




. Chapter V '

7

'\\ SYSTEM PERFORMANCE AND EVALUATION
s . _—

¢

,0
The Expert system expl‘ained i}l thg previous chapters is
succesfully implemented and" currently running on a VAX
11/780 'maéhine o£ thé Graphic interactivq Laboratory at
Concordia Universityi The implementat%gn\was done in Pascal
language, however, work is already under way to transfer the

experts into LISP language which is more efficient for such

applications.

The speech signal was sampled at 20 KHz and quantized

'

over 12 'bits in a nromal computer Toom enviornment.

The orthographic representation of +the 9000 most
frequently.used Ehg}ish words with phonemic code vas c;eatqd
and Gsed as the lexicon of the system. With- every word in
the‘lexicon, information such as total number of syllables.
;nd stress information wete detected and attached

automatically.

5.1 Experiments on Lexical Accessing

The prime objective of this part of +the work was +to

investigate the size of the space of processes corresponding

to nodes of the type w(ec,i). A second objective was to test

- the épeaker-independent capability of the syétem.
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In order to verify the first objective,. the
I'd .

Lexical-Access-Tree was learned first and access rates were -

collected. Sufficient Copditions (SC) *were defined in order ‘

to execute the LAT algorithm.

—~

Choice of Sufficient Conditions

Different types of ©SC's could be considered. The SC
* v
which was chosen and implemented has a structure as shown in

Fig 5.1. Every X; in. the node is a phdnetic feature

generated by the system. The entries in the first leaf node

'\\“¥jn the tree, while searching, are considered as the possible

first syllables (sylltype(k)) of the word and the entries in

the next leaf node as the second syllable (sylltype(j)). 1In

Fig 5.1, the Skvi are the sylltypes.

The words with sylltype(k) succeeded by syiltype(j) are
accessed from the lexicon. The total number of words thus

selected would be of the syllable combinations, as shown

-below.

a

[(s1 83),(81 S4),...,(81 8j),(s2 83),(82 034')""'
(82 83),...,(Sk 8j)]

.

»

Another choicé of SC woula be to perform DP-matching on
every sylltype in the 1leaf node .against the degraded
syllable sequence obtained from the tree. Lexical access
will bYe made only if the distance between the syllables .is
below a certain threshold.  The following elgorithm

1

establishes the lexical 'accessing.

-

—_—
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begin

¢

Jfor every Sd1 da . | -.

perform—DP—ma‘tching(S_Q1 ,81,distaice1)
_}_{ (distance! < threshold) then
' perférm—DP-matching(Sdz’ Sp,distance?)
if (distance? < threshold) then
exﬁand—nodg(nwc (e))

eﬁd

— 3 ( ’ '
end o o ) g K\ ' .
i -
where, :
Sd1 ,d2 ~are degradations of By and Sz .
. At _the expense of more computing time, this choice of

SC will extract less words from the lexicon in comparison

with the previous one. Ambiguous word selection could s&lso

be avoided. - ) ~

.

The choice of SC in the first case is obviously the

. worst ' case yet the system accessed 2.3% of the lexicon which

T~

is well within +the acceptable range. Another important
aspect of IAT is its capability for 1learning. The
percentage of learning of the LAT must go down as more words

are learned and finally it must saturate. Anh experiment was

conducted to verify this . -
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Fig. 5.2a Output of
¢ #, 6, @, 1 LDEEPDIP) .
(6. 16, 38, 2  LPEAK)
(<16, 17, 22,./ 3 SHIGHDIP)
( 17, 26, 30, 4 _ LPEAK) ‘e
( 26, 28, 32, 5 SHIGHDIP)
( 28, 35, 48, 6 _ MPEAK)
( 35, 48, 7, 7 LDEEPDIP)
( 48, 58, 13, B _ LPEAK)
( 58, 65, 4, 9 LDEEPDIP)
( 65, 68, 2, 18  SPEAK)
¢ 68, €8} £, 11 LDEEPDIP).
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INPUT_SYMBOL

CURRENT_STATE

PROCEDURE#

LDEEPDIP &, . 24

-- NO SYLLABLE POSSIBLE --
-- NEXT STATE IS 2

KRARRARARRRRARNARRARRRRNRARAAARRRRRNAARRARARARNA

«

INPUT_SYMBOL CURRENT_STATE

PROCEDURE .#

LPEAK € ' 2 B

27?777 POSSIBLE BURST 1S CHECKED. -
X%XX% DIPHTONG IS CALLED -

11111 LPC IS CALLED

~=~ PERFORM ™ OUTPUT-SYLLABLE (1} " --
-~ NEXT STATE IS 1

PP .
N1 .
SON .
VF .
SRl .
NI . .
vB .
SON .
VF .
NC .
VF .

N1 ;/”/,r . . . .
*
NUL '

. . . . .

NUL NIP VFC
THE PI\? 15: ¢

U.ﬂ.lql‘2.2u2-3q3s4clv5“5'5.5.7‘5‘9'7.9,7.15'.8.ll,9,[2|.)

}

TOTAL DISTANCE ~. 24 . o ]

the Expert PPFD

.

SONV  SONP ' 'VC NIP

~~

RARRARARAANRARANAARARAARNNRAANARRARAARAAAAANRR

’ »
INPUT_.SYMBOL CURRENT_STATE PROCEDURE_#

- - - = - - ————— -

SHIGHDIP 16 . 1 .4

-- NO SYLLABLE POSSIBLE =--
-~ NBXT STATE IS 27

NARARAARARRARAR AN AXYRARRTNRAARNNRANNANNRRNANN

- INPUT_SYMBOL

CURRENT_STATE PROCEDURE.#

LPEAK 17 27 2

XX%%X DIPHTONG IS CALLED

1t LPC IS CALLED

-- PERFORtY " OUTPUT-SYLLWBLE (1) * ~--
-- MNEXT STATE 1S 1

RARNAAARRAAR R AN ARNARIAARR AR RARRAAARNANRAARARNRY

INPUT_SYMBOL CURRENT._STATE PROCEDURE_#

SHIGHDIP 26 i 1 4

-- MO SYLLAPLE PQSSICLE --
m—BLYL RIACL 10 )

. . .

VFC  NIP PP

' |

naee \Yord accéssed ! Tree was'not Jnarﬂid bkl S
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Fig 5.2b Section 6f the Lexicel-Access-Tree |

o
.
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Accessing the word "development"
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Ten sets of training words were selected at random with
" each set having 10 words. A single sepesker was asked +to
utter every word in each training set and statistics were

collected fbr all the tree updates, leaf ubdates, and ﬁords

accessed without the need for any updatés. ‘ -~

Fig 5.2a shows different intermediate ogtputs generated
gy various Expérts during the learning stage of the word
"development". In the DP—matéhing graph, the prototype and
the system generated PPF's are shown. Fig 5.2b shows a part
of the Iexical-Access-Tree with +the path (drawn in thick

ink) where it accesses +the word correctly. The entries

inside the curly brackéts are the sylltypes.

‘Fig 5.3 -shows the graph of the learning percentage
R =

versus the number of trials. I'

o

It is interesting to note, in Fig 5.4, that the number
of +tree updates went down rapidly as the tree started
learning. Pig 5.3 also shows that as the tree 1learns, the

number ' of trials needed is less for a new set of words.

o

From +the various graphs presenjfd, it can be concluded
-that the system performs within what was expected. It 1is
elso important to note +that there is a lot of room for

-

improvement in various levels of phe system.,
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-5 ._2 Conclusion

i

Various deéign objectives were achieved satisfactorily.
It was shown that word hypothesization need no‘t‘ be done on a’
large lexicon bﬁt only on a subset. Top-down con‘strainté
can now . be apﬁlied for further reducing the size of the

subset into a still smaller percentage of the lexigon.

Some of the different areas. where more work 'J¥s needed

" to improve the performance of the system are:

i) improving +the PPFD expert to gen ate better
. phohetic feature descgiptions. words with
stressed syllables ‘the descripti re very good.
However, for wor}ds starting wi ‘certain sounds,

the system either misses or enerates ambiguous

L3

symbols. These errors could easily be corrected ’
o}
— by developing more rules and executing sensory

' procedures.

ii) more héuri'stics ate needed while learning the
tree. For example, spurfous phonetic ‘sequences'
which are at 21‘.‘ime:a generated by the PPFD shquid
no,t b‘e used to learn the '-Eree. These must be

detected automatically and rejected accordingly.

i

iii) Mere Sufficient. Conditions are +to be
considered for accessing the lexicon. Since these

R conditions affect the percentage of words being
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accessed from the lexicon, much more work has to

be done.

iv) Further elimination of word hypothesization
cén be done with &a controlled extraction of
détaiIed features in well-gspecified intervals and
a well-specified context. This might neeq fur ther
execution of very sophisticated signal processing
and feature extraction algorithmé vhich need not
be executed all over the signal but only for the

specific intervel.

v) Real—timg performance of the  system cannot be
tested since = timesha;ing system is currently
being used. The response time, however, is ‘still
good; approximately 3 minutes turn%round t;mé to
access the vords.

vi) Special purpose computer architecture is
needed to -achieve parallelism. The system was
conceived 1in such a way as to meet these
requfrements whenever “multiprocessor systems are

available. This is also one of the qualities of

the e pért systems.

<A
Speaker-independency -was also successfully

demonstrated. The system correctly hypothesised
words spoken by non-native English speakers who

had very heavy accents.

L
&y

4
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L APPENDIX A
) ]

RECENT ACHIEVEMENTS IN ISOLATED WORD RECOGNITION

‘Institution

University of Kyoto
(OKOCHI, SAKAI, 1982)

Fujitsu
(NARA et AL., 1982)

KTH-Stockhoim
(ELENIUS et AL., 1982)

Bell Lab
(R. BROWN, 1982)

Helsinki University of
Techn.
(KOHONEN et AL., 1980)

Hewlett-Packard
(GREER et AL., 1982)

Royal Signal and
Radar Establishment

(MOORE et AL., 1982).

Bell-Northern
(MERMELSTEIN, 1982)

Purdue University
(KASYAP, 1979)

IBM -Yorktown

“(SILVERMAN et DIXON, 1980)

Bell Labs 4
(BROWN et RABINER, 1982)

University of Kiev
VINTSJUK, 1980)

Country

Japan

Japan

Sweden

U.S.A.

Finland

U.S.A.

England

Canaqa

U.S.A.

U.S.A.

U.S.A.

URSS

Research

. Trahezoida] DP matchfng

\

. -Model of typical

distortions for DP
matching

Use of temporal constraints
Beam search techniques

Associative memories

s

Beam search

Use of fuzzy algebra

-Comparison of several

acoustic parameters
for DP matching

Stochastic model

Use of "acoustic coﬁstraints
in DP matching

Use of graph theory.
methods for matching

Use of symbols describing
phones. in DP-matching

!

!

B STt



Institute -

CIT .
Challet et AL.

Cornell University
Hertz

KTH -

Carlsson et AL.
MIT

Klatt

Tl
Fisher

MIT
Searle et AL.

BNR
0'Shaughnessy

CNET
Vaissiere et AL.
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SPEECH. SYNTHESIS
Country
France
U.STA.'
Sweden
U.S.A.
U.S.A.
U.S.A./Cénada
Canada

France

e b S——————er

Research -

Speech ségments

Interactive System

"~ for rule development

-

Mu]ti—15nguage speech
synthesizer

Text-to-Speech
synthesizer

Text-to-Speech
development system

Speech analysis synthesis
based on pgrception

Text-to-speech

Prdsody

Bl

-
T e bt s M TN 1 L



Institute

Logica LTD '
(PECKMAN et AL., 1982)

Purdue University
(SIEGEL et AL.)

Fairchild °
(LYON, 1982)

Brown University
(SILVERMAN, 1982) .

Concordia University
(DE MORI, 1982)

University California
Berkeley
(BRODERSON, 1982)

Carnegie Mellon Univ.
(BISIANI, 1983)

Bell Labs
(WASTE et AL.)

Verbex
(McALLISTER)

NEC .
(Ishizuko et AL.)

INTEL :
.+ CHI FOON et AL.
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ARCHITECTURES

Country

England

U.S.A.

U.S.A.

Canada

U.S.A.

U.S.A.

U.S.A.

U.S.A.

Japan

U.S.A.

Research

Machines for computing
DP matching in real-time

SIMD machine for DP
matching, complexity
evaluation

Cochlear model

Machine for computing DP
matching with acoustic
constraints

Network architectures
for lexical access

ST DP matching

Architectures for
problem solving

Systolic chip for
DP matching

Systolic chip for

stochastic decoding on

a Markov model

Speech recognition pr%fessor

Speech recognition board
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PHRASE -RECOGNITION N

Iﬁstitution . . Country ) Research <
Nippoﬁ Electric Co. © Japan Two levels DP
(SAKOE, 1979) . . -
JSRU ‘ England Two levels DP . |
(BRIDLE et AL., 1982)
Naval ‘Res. Lab. U.S.A. : Two levels DP'
Washington
(SHORE & BURTON, 1982) -
Carnegie Mellon Univ. U.S.A. Large lexicon in

_ (SMITH & ERMAN, 1981) continuous speech
Kyoto Institute of C e Japan Spoken basic
Technology . ' ,
(NIIMI, 1979) .
NTT ' Japan . Automated travel infor-
(SHIKANO KOHDA, 1978) mation & reservation system
Bell Labs . U.S.A. Automated travel infor-
(LEVINSON, 1978) . mation'& reservation system
Auricle ' ] U.S.A. ) Viterbi algorithm
(WHITE, 1978) :

. ‘J \ ‘u

IBM Watson Center ¢ U.S.A. - Maykov chains
(BAHL et AL., 1981) : :
University of Kiev : URSS ' Dynamic programming
(VINTSJUK, 1980)
University of Yamanashi Japan : ’ ‘Spoken FORTRAN
(SHIGENAGA, 1979) .
Bell Labs U.S.A. ‘ Use of syntactic constraints
(RABINER & LEVINSON, 198]) o in DP matching
Concordia University Canada | . Speakef-{ndependent

(DE MORI, 1982) A , connected ‘letters & digits



RECOGNITION OF PHONETIC FEATURES ; .
Institution Country Research
BBN(Cambridge) U.S.A. " Use of dyphons
(ROUCOS et AL., %82) - Vo
Hi tachi - 5 Japan Phoneme recognition
(KOMATSU et AL., 1982)
Toshiba Japan Syllabic sounds
(WATANABE et AL., 1982) |
University: of Municﬁ ! *Germany Syllabic sounds
(RUSKE, 1982)
MIT U.S.A. Spectrogram reading
(ZUE et AL., 1982)
Electrotechnical Lab. _Japan Phoneme recoanition
Tokyo
(NAKAJIMA et AL., 1982)
Carnegie-Mellon Univ. U.S.A. X Use of phonetic features
(COLE et AL., 1982) ,
Academy of Sciences URSS Use of phonetic features
Moscow
(KNIPPER, 1980) .
University of Lvov URSS Piffoneme recognition
(GURA et AL., 1980) - »
Tokyo University Japan Plosive sounds recognition

(FUJISAKI, 1982)

Canberra University

- Concordia University

(SUEN & SANTERRE, 1981)

Concordia University .
(DE MORI, 1982)

Centre National Edutes
Telecommunications ~
(MERCIER, 1983)

Austrailia

Canada

Canada

France

Plosive sounds recognition
Plosive sounds recognition
Expert system for

speech decoding

Expert system for
speech decoding
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APPENDIX

B-1

Freme Instantiations by PPFD

(LDEEPDIPL #, §, 1)) result_of P_READ)
filled by FRLSTATE 1)

TATE |

*{filledoby FR24)

: PS & = FALSE} NIL}

LPEAKL 8§, 13, 2)) result_of F.READ)
f111ed-by FR_STATE 2

FR.STATE 2
("{f11led.by FR 8)
(described.as (NI* ( - 8§, 8, 71))
(described_as (VFC ( 7- 13, 18}))
(Lt PSS ) = TRUE) B
(CLDEEPDIP( 12, 18, 2)) result.of P_READ)
(f11led_by FRLSTATE 1)

FR.STATE 1
(™{f11led.by FR24)
{( PS F = FALSE) NIL)
1 LPEAKL 18, 29, 4)7 resultof P_READ)
(?111ed_by FR_STATE 2) .

FILSTATE 2
(*(f{1led by FR 8)
{described.as (NI ( 13- 18, 18, 20)))
(described_as (VFC ( 29~ 29, 285)))
(L PS 1 = TRUE)

3
(
(
RS
(
(
{
(

CCLOEEPDIPC 29, 41, B)) result.of P_READ) .

(¥1)1ed_by FR_STATE 1)

FRSTATE 1
(*{f11ladby FR24)
({ PS 8 » FALSE) NIL)
(1 MPEAK( 41, 47, £)) result_of P_READ)
(f11led_by FR.STATE 2)

FR.STATE 2
("(f1{1led by FR14) .
(described_as (N] ( 41- 44)))

({ PS5 3 » TRUE) ‘
£ LPEAK( 47, 78, 7)) result_of P_READ)
“ (f1lledby FR.STATE 1)

FR.STATE !
((filledby FR 9)
(describedas (VFC ( 47- 88, §2)))

(¢ PS 1 = TRUE)
({SDEEPDIP( 78, 72, W)) result—of P_READ)
(f1110d-by FR_STATE 1

FR.STATE 1
(( PS & = FALSE) KIL)
[ MPLAKL 72, 70, 9)) result.of P_READ)
(f1lled_by FR.ESTATE 17)

FR_STATE 17
(*(f1V1ed_by FR14)
(described.as (N] ( 72- 75, 78)}))
(described.as (VF* ( 76~ 78)))
({ PS 3 = FALSE) NIL)

)
}

C{SHIGHDIPC 78, 79, llH result_of P.READ)

(f1lledoby FR.STATE 18

( FR.ETATE 18

(*(f11led by FR 4)

(describedas (SON® ( 79, 79)})

(( PS § = FALSE) NIL)

11 MNS( 82, 87, 11)) result_of P_READ)
(f111edoby FR.STATE 2¥)

y '

{ FR.STATE 28
(*{f111ed by FR 3)
(in:r!b.d_l- (nc ¢ 82, 1))
(CPS & = FALSE) NIL)
t((SHIGHD P BB, 91, 120 result.of r_nm
(filled_by FR.STATE 29)

¢ FR.STATE 2
ors l e FALSE) MIL)
(¢ LPEAKC 91,1M), UH rouuh_nf P_READ)
(£111ed_by FUTAYI

¢ FR.ETATE 28 !
(*(fiVledby Fn 2
(described_as (V'C' t 91-181, 98)))
({ P§ 1 = TRUE)
(C SMEDDIP(1#1,182, 14)) result_of P_READ)
(f117ed_ by FRSTATE 1)

U FR.STATE 1
(*(f11led.by FR §)
(described.as (SOIV’( 191,182)))
(( PS B = FALSE) NIL
N ({ LPEAK(182,114, ll)) result_of P_READ)
{f11ledby FR.ETATE 21)

¢ FR.ITATE 1) :
(e(fi1ledby FR &)
(doscribed_as (NC (182,187)))
(described_as (VFC* (140-114,131)))
t{ PS 3 » TRUE)
((SOEEPDIP(114,117, 186)) result_of P_READ)
(f1lled by FR.STATE 1)

‘U FR.STATE 1

(L PS & = FALSE) NIL)
(¢ LPEAK(117,128, 17)) result_of P_READ)
(filledby FR.STATE 17)

( FR.STATE 17
(*(f111ed_by FR 6)
(describec_ss (VBC (117-129,123)))
(( PS 3 = FALSE) NIL)
(( SMEDDIP{120,129, 19)) fa.lult.nf P.READ)
{(f1lled by FI.JTAT! i

¢ FR.STATE 19 .
(*{f11led_by FR 4)
(described_as (SON™“(120,129))). ). '
(( P§ § = FALSE) NIL)
1 LP!AK(H,.!“. 191} muluf PLREAD )
{tiiled by FR.STA TEg28)

¢ FRSTATE 28 - A
("{f1lled.by FR 2}
(C PS 1 = TRUE)
CALDEEPDIP({ 140,148, 28)) result_of P_READ)
(f111edby FR.STATE 1)

{ FR.STATE 1
(*{f111ed_by FR24)

ko aprnn o A e
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Prame Instantiations by SPE

-

2

- F~TENG evaluates the difference the total energy

(FR14

(INT14 (result of P<INT14(INFUT)))
(LPCVAL (result of P-LPC(M-INT14)))
(result of F-TENG(M-INT14)))

(R14

(when

* (when

-

(when
(when
- (when

(P~VOCALIC

{(when

(when

P-LPC 1is the procedure evaluating théhLPC at the
middle ?f the interval INT14.

P-DESCR is the procedure to describe the vowel’
according to the frequency energy spectrum.

P14~P
(filled by P-VOCALIC))

(AND(NOT(Pi&

APPENDIX B-II

P141-P)))

(described as NI(INlel))\

POSSVOC P)

(described as VF* (INT142))))

(AND(NOT (P14~P),P142-P))
(described as NC(INT14)))

(AND (NOT (P14-~P) ,NOT (P142-P)))
gdeacribed as SONV(INT14)))

A

-P),OR(NOT ’(mua-r (M-INT14),

VOCP1~-P (LPCVAL
(filled by P-DESCR))

VoCP2-P (LPCVAL)

(described as NC(INT14)) ) )

from-its derivative.

P14~P 'is true if it is a long peak with low zero P
crossings and high R14 or the peak is followed .~
by a deep-dip or the peak is preceded by a
long medium

P141-P is true if
preceded by a

P142-P is true 1if
higher than

POSSVOC-P 41s true
and the energy amplitude of the first three
formants exceed 7db with the finest formant

113

or high dip.

it is not a long peak and is

deep dip.

the zero-crossing in the pedak is
70.

1

.

vhen the peak 1is preceded by a NS

lies below 500 Hj.

INTlAl is the first three time frames in INTlA
INT142 48 the first four time frames in INT1l4.

1

HRM-P 1is true vhen the difference of the total gnergy
from its derivatives is large while the deriva-

tive considerably high.

VOCP1-P 4s true when the frequency-energy spectrum
indicates vocalic properties.

VpCPZ-P is true when the first formant is degenerated

and the second formant lies 1n the range of

1000 H, and 1400 H,.

.
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APPENDIX C

“

"A Good Turn ~

Another!

Deserves
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