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ABSTRANCT

Concurreney Control Scheme for Design Object Bases
T. Srinivasan Narayanan. PPh.D.
Concordia University, 1989

Serializability of concurrently running transactions has been used as the only
correctness criterion in teaditional DBNMS. This has been recognized as o strie
condition for some of the non-teaditional transactions like design-activity. Recent
research has focussed on the need to suitably modify concurreney control eriterion
to make it applicable to non-traditional applications. 1t is our thesis that
enforcement of  constraints  delined on an application, domain or  database
behavior should be the goal of concurreney control schemes, These constraints
deline the correetness eriteria and as long as these correetness eriteria are satistied
it is immaterial whether the concurrent exceution ol transactions is serinlizable or
not. Thus, more concurreney  can be allowed  without  compromising  the
correctness ol the results.

Traditional transactions also limit the sharing of information among the
transactions thereby making than  iaapplicable 1o design environments,
Uncontrolled sharmg can create havoe.  However, controlled and monitored
sharing can be very useful. The runtime cheeking of these constraints ean
potentially be very expensive.  However,  eflicient consistency  enforeement,
mechanisms (alerters and iggers) are features of an inercasing number of gew
database systems.

In this thesis we present a design activity model, where a design aclimly
involves other design activitics andfor lansaclions. A transaction is a set of
actions; it is also a unit of consistency and alomedy. We assoclate Lwo Ly pes of
constraints, viz. validation and wesililily constraints with cach design activity;

this also holds true for the teaditional view  of Lransactions,  Validation




constraints specily correctness eriteria and the conditions under which a design
activity is deaned complete. They aliow us 1o capture the application dependent
and independent  correctness eriterin for the concurrent  exceution of  design
activities,  Visibility consteaints speeify the conditions under which sharing among
design activities oceurs, They are used for purposes like notification, dynamic

updales, and versions

We  also suggest an optimistie validation scheme dynamie validation

seheme for objeet-oriented databases, I this scheme validation constraints are

verified at the time of the completion of a desizn activity.



Acknowledgements

[ wish to express my deep gratitude and appreciation to D o Goyal and Dr, 1
Sadri, whose guidance, encouragement, and advice has enlightened my wav. T oam
especially indebted to them for many stimulating discussions and helpful suggestions,

I would like to thank Dr. V.S, Alagar, Dro TLEL LI, and Dro N Okaeday Tor their
encouragement. I would like to thank Dr. T, Radhakeishnan and NMro C0 Grossner for
allowing me to use the Microprocessor Systems laboratory for drawing, the figures,

I would like to thank Dr. [LI. Korth from University of “Texas at Nustine s
valuable suggestions were useful in the preparation of this tinal draft,

I would also like to thenk my Friends Mro RON Prasad, Nis, Ry Goyval, Nis,

Ramani Subramanian, and Mr. R, Subramanian for their encourngement and help,
Last, but not the least, T thank my parents, brother "Ts. Raghavan, and my wile
\'asumathi. Their understanding and support have heen invaluable 1o me.

The research reported in this thesis was done under grants from PCAR and

NSERC of Canada.




Table of Contents

Special Symbols
Lo T EOUUEETON o oiriieiieeieiieriereeseeeuiietserseassseistssencaenseriersrsnsssensessissronsnnsssssssanasss

2, Survey of Related Research o
2.0, The Problem of Concurreney Control e
2.2, Survey of Concurreney Control e
2.2 1, Concurreney Control Using Semantics v
2.2.1.1. Concurreney Control Using Data Type
2.2.1.2. Concurreney Control Using Transaction
2.2.2, Concurrency Control for Design Applications e,

3.0 Design Aetivity NModel .

3.2, 0bJeet Nodel e

S I W T P T W F USSR

330 SULIIIEITY  cerieneitiiiintsnriiiisiieiessastirissssssssssiertsssosnsssistsesssssonsonarsssnsnes

LoDy namie Valldation e erre e eee e e resaessrasss rasenesensensannes
LE Dyvnamie Valldation Selieme v
1.1 Dynmmie Backward Validation Using Locking (DBVL)

...... R R R R R B LR Y R Py R PN

LI L Correctness of DBV oo eneeee e

1.2, Performance ol Dynamic ValldatIon v eicnieenecennns
L2010 ClONCUITONEN iiiiiiiiiesiniciiriiieseenresiess s s s snesseensinenseesessaansaes
12,2, Casended ANDOPES et re et se st sberre s e e e aeee
F.2.30 Reeneettton TIHIC i ircers s cnensscessssensessseesnennns

L2 1 ModUEATTEY oo e rrrrrree e e s s e rene e ee s e cenas
125, Complexity of Dynamic Validation .

1.3, Other Design Nodels from the Generie NModel e,

Lo Applhieability of Dynamic Validation to Desigh Activity o

LG Dynamie Backward \ alidation with Forward Check ..........

D CONCIUSIONS it e rr s ee s e s ee et e s aeesres s eansanesssssnessusssssasseonsens
Dol Tplementation ISSUCS e me s carerie e ss s s anns
Do L NOUe APCHHCCTNEC covirieiiiiirerririe e eereereceierisncenresicaseeenanes

L L TR R E T R R Y L U

12
13
19
19
23
29
33
34
36

a1
"=



Figure
Figure
IMigure
Figure
Figure
IMigure

Figure

IYigure

List of Figures

2.1, An Example of Designer's Transaction 16
2.2, Intuitive Model of CAD Transaction 17
3.1. Tree Representation of o Design Aetivity o2
3.2, Tree Representation of an Aetion Fxecution 28
3.3. Model of the Distributed System 31
3. L Model of a Node 32
4.1, Timing Diagram ol Faccution and Re-exceeution of o
Transaction with Three Participating Objeets 17
L2, Transaction Lixeeution Tree ol f, 19
Vi




Notation
{) ] N/ 2

0

!
fyel o
T

lll.([-:-

Special Symbols

Represents

Ohjects

Objeet Nanager (OM) of o,

Transactions

Transaction Manager ("T'N) of

Destgn aelividies

Current state of o,

1< private copy of s, during ereculion
[,"s private copy of s, during re —execution

Steps of o transaction or an action

Actions

Sets of actions

States of the objeet hase
Logieal and

quantificer there exists
quantilier [or all
Cross Produet

U nion

NMember of

\arinbles

Vil




1
:

IV

4+

e

Chapter 1

Introduction

Conventional databases have proved useful for highly structured applications
involving simple entities that could be modeled by records, With the evolution of
the objeet-oriented data model [Keta86, Nano86, BeeeS7] the seenario is changing
[Ditt86]. Unstructured applications such as design that use complex objeets are
being developed using object-oriented databases [N woSS, BuehS6, HardS6, RaoS6,
Spoo86, Zdon86, INim88, WalpsS]. In addition to using object-oriented databases -
simply catled objeet bases [Alme8s, Blae8h, AWlsSG, Ande86, Dasg86], existing,
data models are also being enhaneed [(':n'(-.\‘(i, SchwR6, Ston8Ga, StonsS6h] 1o
accommodate the development of unstructured applications.

Design is typieally an unstractured activity. Normally o designer works in
parallel on multiple aspeets of o problem. Thus, o design activity ean he

modeled as o set of design-netions,” whose exeeution follows a partial order

dictated by the underlying applieation domain. We enn visunlize o design netivity
as o set of design-actions pune voted with pauses for thinking, organizing, ete.
Design is also characterized by cooperation among o number of designers.® This
cooperation includes sharing  of designs that are half-baked, that is enlled
uncommitted information.  Fhese features of a desien activity distingnish it from
the conventional notion of a transaction. Other diflerences inelude the duration of
a desizn activity as compared to o transaction. and the notion of a design-netion
as opposed to an action in a transaction. Normally design activities are of long
duration and span a number of sessions. In o design aetion the erphasize is more

on the effect of the action on invariants representing design eonstraint<, This is in

VThe wse of the word de«gn action rathor than acliony deliberate

2 It shonuld he noted that this 1s usually a conteatod sharing rother thane o global haning ol inlormation
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contrast to the conventional notion of an action where the effect is seen only as
aperating on duaizitems,

[rrespective of the methodology used (top=down or bhottom-up), a design
consists of snmller specinlized designs. The specialized designs in tuin consist of
more speeinlized designs, and <o on. Thus, a design activity can be modeled as a
Wicrarehy of designs, Bach design ean be treated as independent, so on completion
its results enn be shared with other designers. A design may undergo revisions to
mateh the evolving needs of the design team. At each stage, completed designs
are retained as versions,

Designers cooperate among  themselves by sharing their designs and the
nasorinted database objeets that ave ereated in the process of design. IPor instance,
a hisher level aetivity may ereate an object containing the specification to be
satisfied by the lower level designs. The lower Tevel and the higher level design
netivities <hare this speeifieation objeet,

Although the progress of a design may appear similar to the concurrent
evecution ol transactions, there are some essential differences in the characteristies
and requiveients of designs, These dillerences make the use of conventional
conenrrenes  control  techniques  inappropriate for design systems. Thus,
alternative conenrreney control sehemes are reguired for desigh activities, So as
not (o conjure images of conventional transactions we use the word designactivy
to distingnish o design activity from a conventional transaction.

The characteristies and vequirements of a designactivity can be identified by
analyzing the computations supported by design systems. According to Cohen
[Cohelt]. editing. analysis. synthesis, transformation, simulation and execution
are the different ty pes of manipulations supported by a design system. I'rom our

potnt ol view, classifying the manipulations into the following two types is
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suflicient [Goya88a).

1. Interactive,

2. Non-interaetive,

Liditing is an iInteractive computation punctunted with long pauses
[Walp88]. Most edit sessions are open-ended activities [Pu8S| and can take
several hours to complete. A designactivily contains one or more such sessions
interspersed over weeks or even months [Hask82]. These sessions are accompnnied
by queries or updates to the database. The results and responses of the queries
and updates are used in the session. Bditing being an unstructured activity
may contain frequent undos [Goya88a]. On the other hand, non-interactive
computation may include simulation, analysis ete. that ave performed by
executing instructions in batches. In general, computations like simulation ean
progress with certain tolerance in design and performance parameters, Results of
the simulation could automatically trigger changes in design ohjeets.

In addition to the above mentioned characteristies the following requirements
of design applications influence the concurreney control sehemes, In suggesting
these requiremnents it is asswmed that a designer is  associated  with cach

designactively.

I. A model that captures the characteristies of the actual design must be
developed [Kim8 1, Banesd, INort88a, Beer89). [For instance, the model of
a designactivity should capture several parallelly progressing aetivities of
a designer [Bane85].

2. The design  should support  application  and/or domain-specilie
correctness eriterion (validation) [KortS88¢] rather than the traditional

seralizabdity eriterion based on sequence of Reads and Widtes.



- -

3. Completed results of a designactivity should be globally available.
This means, that the results should be available Lo other designactivities
in the same and other projects. This implies that a designactivity can

commit, independently of its parent [IPu88|.

4. A designer should be made aware of any updates performed by other
designers on shared objects while the design is in progress - dynamic
updates [NaieR6]. This facility may lead to multiple reads of the same
information by a designactivity .

5. Acceess to multiple versions of the same objeet must be supported
IDICESH, Tadzsd, Chous6, INatz86. SkarS86, Bane87. Chou88, Kim38].
Concurreney  control mechanisms can make a judicious allocation of
versions to improve the conenrreney [ITadz88al.

6. Designachiedies need private copies of the objects [Bane85] they use.

Otherwise  recovery s complicated by counter operations [Gare83,
GareR7) or cascaded aborls.

The above mentioned chareteristies and requirements of designactivities
have led some researchers to propose new concurreney control schemes and
extensions to existing schemes [Hask82, Katz83, Lori83, Kim81, Bane85, Skarso).
The majority of these extensions propose relaxation of the serializability and
correctness requirements [NKim8 1 Bane85, Skar86]. Extensions to locking schemes
incorporate a speetrum of locks [Nort83] including — hierarchy of locks [IKort&8b)].
Fead and Woite locks which permit other transactions to simultancously read
and write with notification  capabilities have also been proposed [Skar86).
Eatensions to optimistie sehemes require the prevention of long transactions from
being continually aborted as shorter transactions commit [Goya88a). Parallelism

within o transaction has becn modeled by the use of nested transactions [Moss87,
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Feke87]. The use of semantic contents of the operations to elassify the actions
and consequently to increase concurreney has also been proposed. Most of these
schemes fall under pessimistic approach. These schemes do not permit aceess
between unrelated designactivities, i.c. those that are not related by the parent-
child or sibling relationships. Designactivities are not allowed to proceed in the
presennice of possible conflicts, The various concurrency control schemes are
surveyed in Chapter 2.

In this thesis we model a designactivity vecursively. A designacheity ot any
level can be committed and be made visible to its siblings amd  parents,
Additional sharing is supported by the explicit identifiention of  additional
dependents; here after unless otherwise stated reference to dependents will
include parents and siblings. Whenever a shared design or objeet is updated, the
dependents are notified. Later we shall preseribe conditions under which such
notifications are sent. In Chapter 3 we deseribe our notions of o designactimly

and the object model formally-.

We propose the use of an optimistic scheme and show that it suits objeet-
oriented design applications.  The use of private copies facilitates the sharing of
objeets by simultancous activities. Dynamic validation at commil tinie is used
to verify whether a design salislies the validation eriterin (the constraints,
invariants and rules specified for the activity), on the most recent copy of the
object base. The proposced concurreney control scheme allows o large set of
schedules, some of which are not permitted by similar optimistic seheme [Herls7].
During the validation phase, actions of a designactively are ve-excented inoa short
time as opposed to the execution phase which is subjeet to interruption wand
pauses. Object model permits the re-exceution to be performed in paratlel, therehy
reducing the validation dme. Re-execution is made possible by keeping log of the

operations, their ordering, and results. We deline the compatibility between the
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exeention and re-exceution results. This compatibility is used in defining the
correctness of concurrent exceution of designactivities. When the validation is
nnsueeessful, corrective actions, scleetive undo or controlled rollback are performed
instead of aborting the complete designactivity. The details of our concurrency

control scheme is presented in Chapter .

In concluding we cenumerate the benefits of our approach and provide

pointers for further investigation.



Chapter 2

A Survey of Related Research

This Chapter presents a survey of the research that is of common interest to
the following three arecas: concurrency control, objeet model and designaetivity
modeling. The main ohjective here is to present the developments that address the

requirements and characteristics of a designactivity.

2.1. The Problem of Concurrency Control

Traditionally a transaction is defined as a sequence of database operations
(Read, Write). 'There is only one Read and one Write per data objeet. A
transaction cannot read a data ohject after it is written. Two operations from
different transactions on the same data object are conflicting if at least one of
them is a Write. A transaction is also treated as o unit of recovery and
concurrency. This means that cither the entire transaction or no part of it is
evecuted, and transactions do not interfere  with each other to produce

inconsistent, results.

The concurrent exeeution of a set. of transactions, T, is represented by
schedules. A schedule is an arbitrary sequence of operations from the set of
transactions. A schedule I is serwad il for every two transactions £, and 1 that
appear in I, cither all operations of t, appear before all operations of 1 or viee
versa. A schedule 11 of T is conflict serealizable if there is ooserinl sehedide [T of
T such that every pair of conflicting operations have the same ordering in hotls
the schedules, Unless otherwise stated the term "serializable sehedule™ refers 1o
conilict serializable sehedule in this Chapter. A seheduleis 2ecoverable if for every

transaction {, that commits, /, S eommit follows the commit of every transaetion
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from which ¢, read. A schedule is cascade free if, no transaction reads or
ovepwrites n duta written by an uncommitted transaction. The task of the
coneurreney control system is to monitor and control the schedule so the overall
correctnms  of the database is maintained.  Conventional concurrency control
schemes guarantee  correctness using serializability and recoverability. A more
formal deseription of these concepts is available in [Papa86. Bern87].

In addition to confliet serializability there are other correctness criteria whose
special eases are of interest. View state serializability and final state serializability
are two such eriterin, Informally stated, a schedule 1 is view equivalent (view

serinfizable) to a serial schedule |, if a transaction ¢, reads the data item z from

! in Il then f, reads @ from the same transaction t_7 in I , and the final writes

of every data item are the same in J1oand I [Bern87]. Correetness criterion
defined by the view serializability is less striet than the one defined by confliet
serializability. Two schedules are final state equivalent if the final state produced
by the two sehedules ave the same irrespeetive of the intermediate values read and

written. In general finding whether a schedule is view serializable or final state

setinlizable is an NP-complete problem [Papa86].

2.2. Survey of Concurrency Control

A detailed study of concurreney control and recovery can be found in the
veferenees [Bern81, Kohl®1, Papas6, Bern87]. The research work of relevance to
this thesis ean he elassified into the following two areas:

I. Concurrency Control Using Semantics: This area of research

investizates  how  the concurrent execution  of transactions can be
improved by using data type and transaction semanties. Most of these

sehemes do not address the issues of design application transaction.
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2. Concurrency Control for Design Applications: This arean of
research investigates coneurrency control schemes for designactivity.

The objective of the former is to use data type semanties and transaction

semantics to improve concurrency. The objeetive of the Iatter is to model design

applications and to develop appropriate control schemes  [BaneS8s]. o this

Chapter we briefly review the pertinent literature from the two arens,

2.2.1. Concurrency Control Using Semantics
Depending upon the semanties used, concurreney control sehemes under this
area can be classified into two groups:
1. Schemes using relationships that exist between  different  database
operations defined on a specifie data type.
2. Schemes using relationships that  exist  between  different  database

operations issucd by a transaction,

2.2.1.1. Concurrency Control Using Data Type Semantics

Conventional concurrency  coutrol schemes  treat  all  database  entities
uniformly. Read and Wrile arve the only operations delined on every ohjeet, In
contrast, object-oriented databases consist of more than one data type. Fael data
type is characterized by a set of operations unique to that data type, This feature
of object model has been used by many researchers to develop coneurreney control
schemes using data type semanties (semanties of the operations pernitted on the
data). Thus, schemes desceribed in this section Tmplicitly assume an object-oriented
data model.

The initial research in this area was restricted to non-compound ohjects, i.e.
cach object contains only a set of primitive objects [BeeexT]o Sehwarz el Al

[Schwg ] present the synchronization issnes that arise swhen transaction facilities
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are  extended  to shared non-compound object types. Operation semantics,
ineluding the arguments, are used in deciding if two operations of a data type
depend on each other. This dependency information is used to schedule operations
from different transactions so that only recoverable and serializable schedules are
perinitted.

Herlihy [IHerl88]) and Weihl [Weih89] propose a decentralized concurrency
control scheme. When an objeet receives the request for an operation from a
transaction, the operation is exceuted on the intention list (private copy) of that
objeet for that transaction.  Before the response is sent to the transaction it is
cheeked if the transaction ean be serialized in all possible orders with other active
transactions. I so, the response is sent; otherwise the transaction is made to wait.
Response of the operation is also made use of in arriving at the decision. Updates
to the intention list are posted on the database only when the transaction

conrmils,

The last two schemes [Schw8 1, Herl88, Weihi89] are pessimistic in nature
heenuse they schedule an operation only if the commit of the operation is going to
produce correet result independent  of the commit or abort of the other
tramsactions. While Schwarz’s [Nehw8 1] scheme makes of use only the operation
and its arsument in deeiding i it ean be scheduled, Herlihy [Herl88] and Weihl's
[WeihRO) seheme makes use of the operation as well as its response.

Hlerlihy [11erl87] presents a set of optimistic concurreney control schemes for
non-compound obhjects using serial dependency relation. Informally stated, an
operation from a transaction {, is serially dependent on an operation from another
transaction £, i the result of the former is dependent on the latter. When an
objeet receives an operation from a transaction f, it is exccuted on the intention

list of the object for that transaction. When the transaction ¢, is ready to
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commit, the objects touched by the transaction cheek it the following condition is

true:

- t, ((start_time (t,) < commui_time (¢,)) X serwally_dependent (4, 1,))

namely whether the transaction ¢, vas performed an operation serially dependent
on a transaction that committed after ¢, started. If the transaction has performed
no serially dependent operation on any of the objects, then the transaction is
committed else aborted. This condition is less striet than the seheduling condition
used in [Herl88, Weih89]. All the three schemes [Sehws 1, HerlR7, Herl88, Weihs9)
produce a larger sct of recoverable and serializable sehedules than that produced
by schemes that simply characterize the operations as Read and Write,

Some recent papers consider the issues related to concurreney control of
compound objects. Badrinath et AL [Badr87, Badr88] present o scheme for
synchronizing operations on obhjects. A directed acyelie graph which represents
objects that are accessed by an action is used to achieve intra-object
synchronization. Inter-ohjeet synchronization is achieved by locking. Though this
scheme handles compound objects, it is not clearly stated how insertion new
objects into databuse will aflect the scheme. Hadzilacos el AL [Hadz8Rb] present a
synchronizing technique for transactions in object bases. A correetness eriterion
based on view serializability is presented and its implementation using locking, is
discussed. Unlike some of the previous sechemes [Sehws 1, HerlR7, Weihisg, Bades?,
Badr88] the one suggested by Hadzilacos el Al [Hadz88D] treats the transaction as

a set of partially ordered operations.
The main objective of the schemes diseussed in this seetion is to nse data-
type semanties. In this context, theory of operation-specifie loehing presented by

Korth [IKort83] is important. One lock mode is associwted with ench datahase
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operation. This approach is applicable to a varicty of schemes presented for
object-oriented databases. 1t allows added concurrency without increasing the

overhead in the transaction manager.

The serializability conditions used by the schemes of this section are less
striet than the ones imposed in the Read-Write model. Thus, more concurrency is
possible with these schemes, However, they do not address all the issues related to
designaclivities. For instance, transactions cannot make partial commits. With
the exeeption of {ITadz88b], other schemes [Schw84, Herl87, Badr87, Badr8s,
ilerlss, Wich89] treat the transaction as a sequence of actions. Sequence of

actions do not model the designactivity adequately.

2.2.1.2. Concurrency Control Using Transaction Semantics.

The schemes deseribed in the last section assume transaction as an atomice
unit for Failure and conecurreney considerations. In design and other environments
that contain long-lived transactions, such a condition is too restrictive. The
following schemes relax that condition by just treating the transaction as a unit
of Tailure atomicity. The resulting schedule may not be serializable in  the
traditional sense but it produces a consistent database. These schemes also make
use ol semanties of operations: however, the operations considered are generic
database operations,

Garein=NMolina [Gares3] introduces a semantically consistent schedule in which
transactions are classilied into several types. Omnly transactions of certain types
ean be interleaved arbitearity among themselves without aflecting the consistency
requirements. The set of transaction types that can be interleaved is called
compalibility  sel. This means that operations of the transactions in a

compatibility set ean be interleaved in any order. Transaction semanties and
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data-type semantics are used in the classification and in deciding the compatibility
set. Recovery from failure is provided by counter steps. Counter steps return the
database to a state that is semantically consistent with the initial state seen by
the failed transaction. Garcin-Molina et Al {Gare87} extend the iden of multiple
compatibility sets to a single compatibility set that allows treansactions of all
types to be interleaved.

Lynch [Lyne8] introduces multi-level atomicity. "Pransaction semanties o
operation semantics are captured using break-points and anlerleaving speeification,

Break-points specify a smaller unit of concurrency atomicity. Depending upon the
specification, a transaction may contain as many break-points as the number of
operations issued by it or may contain no break points at alll A transaction ¢an
have more than one set of hicravchically  related  hreak-point specilientions,
Interleaving specification desceribes interleavings of a set of transactions that are
allowed for different break-points of these transactions. This scheme is more
general than the last scheme [Gare87]. However, recovery issues are not diseussed
by Lynch [Lync84].

In interactive environments similar to design applications it is not possible to
specify break-points. interleaving specilication, counter-steps  and compatibility
sets. This is because designactivilies are open-ended and progress inoan ad hoe

manner [sce Section 3.2]. In the transaction approach, adding new  transaetion

types requires the knowledge of the existing information (interleaving specilication

ete.). This is not desirable in design environments considering the diversity  of

knowledge that could be present.,

2.2.2. Concurrency Control for Design Applications:

Predominant work done in this area is related to modeling o desiqnacloeaty
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by conventiond transactions and improving the sharing among designactivities.
Some of the characteristies and the requirements of  designactivity  listed in

Chapter 1 oare considered in suggesting these schemes,

A method  permitting record updates by long-lived transactions without
forbidding other users to access the modified records is presented by O'Neil
[ONeis6]. The iden belind this approach is that certain sequence of operations is
exeeted  Lwice to improve concurrency. Once to return the response to the
transaction and once during the commit phase. This approach is an improvement
of the techniques presented by Reuter {Reut82] and Gawlick [Gawl85). The
technique assumes record based fead-Write model. The long-lived transactions
that are considered herc arve relatively short, bateh transactions.

Some of the earlier seliemes [Hask82, Katz83, Lori83] define a designactivity
as noset ol transactions involving the public database and multiple private

databases, Data objeets are checked out of the public system into user’s private

database. When o transaction is complete the updates are checked into the
database. When o transaction fails, the databases (public and private) are
retnrned to the state before the current transaction started, and not to the state
helore  the designaclivity. Obviously  such  a scheme does not model the
refationship between different designs of a project. Since the complete set of data
objects used by atransaction has to he cheeked-out. Tt is hard for the designers to
prespecify all the data objeets they would need. I a data object required by a
transaction has already been checked-out then the execution of the transaction has
to be delaved or aborted,

NMost of the destgnactivety models suggested recently are based on nested
transactions [GrayTS, Moss87]. Nested transaction is a recursive coneept. A nested

transaction contains other nested transactions :md/or traditional transactions
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with sequence of actions. It is represented by a tree structure. A node in the tree
represents  a  nested transaction.  An aneestor  transaction  ean o commit
independently of its descendents, Only when a transaction commits, its results are
passed on to its parent. A descendent transaction ean aceess the results from its
ancestors.  Timestamping and locking schemes  [Mos87]  are presented  for
synchronizing transactions within a tree and across trees, 19ekete ef AL {PekeR7)
prove the correctness of the locking protocol presented in [Mosss7).

Kim et Al [Kim81] have suggested an augmented scheme that refines the
notion of check-out environment [Fask82, IKatz83, Lorig3]. "This is achieved by
introducing the notion of semi-public databases. A designactivily has semi-publie
database into which it may place the design objects it has updated. Onee o
designactivity places an objeet in its semi-public database, other authorized
designactivities may check it out. A designactivity  that eheeks out of another
designactivety s semi-public database becomes a child of that designactivety . A
designactivity may aceess both private and publie databases. \When o ehild
designactivity of a designactivily  commits, the changes to the semi-private
database of the parent and the public database are synehronously committed. The
public system manages both vhe public database and semi-public databases of all
designactivities. This scheme does not guarantee recoverable schedules. For
instance, if a parent designactivity  decides to abort, then some of the ehanges
made by its child arc also Tost, This means that the poblie database contains only
part of the changes committed by the elild.  Synehronization teehnicues soggested
in Kim et 4! [l\’im&l} use loeking, and the feead-Wrde model, ITn this selictne, as
in [ITask82, INatz83, Lori83], the user must prespeeify the ohjeets that will be sed,
The other limitation of the Kim ef A7 [KimS 1] sehemne isits inability to model the

parallelism present in a typical descgnactivity .
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Baneilhon et Al Ranes5] and Korth e Al [Kortssa] eliminate this limitation.
They model the desgnactsedy using o coneeptual hierarehy of multiple types of

transactions instead of 4 sequence of conventional transactions.

Designer Transaction

{2 e {3
L}

[7
e 19

I conventuna transt

n

1o

Figure 2.1. An Example of Designer’s Transaction

The top level of the lieravehy represents the des/gnactivity . Each designactivity
may consist of a set of cooperalmg transactions, Lach cooperating transaction is a
hierarchy of dient /subcontractor transactions, A client/subcontractor exists solely
to work on behall of  anothier  client/subeontractor  transaction.  Each
client/subeontractor transaction consists of a set of designer 's transaction which in
turn consists of a0 st of conventional  transactions {see Figure 2.1). Each
conventional transaetion i~ initiated from a window of the designer’s workstation.
Ficure 2.2 tlustrates an intuitive model of this seheme, The idea of public and
semi-public databases is still wsed in implementing the sharing among design
actinvities, Though the model of the designactieidty i< more powerful than previous
schemes [Hashs2, KaoA3, Loriss, KimS 1], there is no marked deviation from the

Read-Witke model and the locking scheme, The correctness eriterion used in this
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P-tran - Project Transaction
C-tran - Cooperating Transaction
S-tran - Client /Subeontractor Transact ion

Figure 2.2. Intuitive Model of TAD Transaction[Banc85].

scheme is less strict than the previous schemes [Mash®2, Katass, Loriks, INimR1].
There is no sharing between two transaetions that are nol components of Lthe
same group of cooperative transactions. This limitation is inherent in the
designactivety, model hecanse  no  two  transactions  above  the  level  of
client/subcontractor transactions can share incomplete objects. This approach
captures the transaction semantics or designactioety semanties by specifying a set
of conditions that arc to be preserved by the transaction. These conditions are
specified at the transaction initiation time, They are independent of the othier
transactions and the specifi of the conditions does not need any additiona)
knowledge.

Skarra et Al [Skar8G, Ferns9, Shars9] also deseribe a coneurreney control
model of cooperating transactions. In this scheme a designacticily is represented

recursively using  nested transactions and multi-level commit. Foael node in the
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Wierarehy ean be an atomice transaction similar to the nodes of nested transactions
or it ean he a Aransaction group (TG). A TG can recursively contain other TGs.
The root of the hierarchy represents an atomie fransaction. ISach transaction
group (/ produces an operation sequence, N, comprised of the interleaved sequence
of its members. S is correet under the semantic eriteria that G defines. The root
of every "I'Gosubtree has an atomic transaction parent. Operations from atomic
transactions are scheduled only if there is no dependeney between operations. The
dependeney relation used is an extended form of that used by Herlihy [[1erl87] and
Weihl [Weih89]. Here an operation a that is delayed due to its dependency
relation with an already seheduled operation, b, may be scheduled even before b is
committed. This is possible when the se juence of already scheduled operations is
commutative with the operation to be scheduled. Towever, it is not clear how this
seheduling ean be efliciently extended to more than two transactions. There is no

provision for sharing completed objeets across different subtrees in the hierarchy.

NMost conenrrencey control sehemes use the Read-Write model. More and more
CAD systems are designed using object-oriented databases. Using the Read- Write
model with suel systems will not allow us to exploit the benefits of object-
oriented systems. Despite theiv sophistieated nested structure [Banc85, Skarg9l,
aborting a transaction at any level implies aborting all the enclosed activities. In
addition, interaction with other concurrent activities is limited to the sibling
transactions that arve enclosed in the same parent transactions [Banc85, Skar8e.
FernS9, Skarsol. Al the sehiemes discussed in this seetion make use of locking
based  pessimistic schemes. Limitation  of - pessimistic  schemes in  design
cnvironment is diseussed in Chapter 1. Recently some researchers have suggested

alternatives to, or relaxation of, serializability as the correctness criterion

[INortSSe. Shargq].



Chapter 3
Model

The first seetion of this Chapter presents our model of the designactivity.

itv, is ditlicult to model. It is even more

Design being an opportunistic activ
difficult to define models for concurrency control beeause n typieal design includes
access to other incomplete or complete designs and aceess to the objeet base. A
model of the designactivity must include all those factors that are common to the
designactivities of diflerent application domains. This model ean then be used to
develop a control scheme for the sharing and completion of design activities,
Control schemes developed for  designactivities must, he  general  than  the
traditional concurrency control schemes.

The sccond seetion of this Chapter presents our objeet. model, and the
architecture of the distributed system.  We disenss how  the entities of onr

designactivily model are mapped to our objeet model,

3.1. Design Activity Model

Normally designactivities start by identifving some initial pool of design
andidates. Some of these are identified for rease, modification ete Design heing
an iterative activity proceeds in steps of refinement. However, the Tevels of detail
introduced in these steps are not uniform. At any stage of the desiguactienly -
even when a design has been completed - the designer may mahke maodilieations,
thereby creating a new design new  versions of the design, A very trivial
example is that of a generie stack which can then be modified for individual types

and implementation languages and systems,

A designactivity is domain-specific. Fven within an application two diflerent
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designs can have certain distinet validation conditions. Thus, no global criterion
for the validation of designs can be specified. It is, however, possible to model
these  validation  and  correctness criteria as a set of constraints on the
designactindty . Similarly rules for sharing, borrowing and copying can be tailored
to different  domains or problems. One of the important f{eatures ‘o[' a
destgnactivity is the ability to save partly completed designs for future use.
Organizations have different policies on their use, availability ete. Again these can

be modeled by rules or constraints.

A designactivily may he modeled as a number of pseudo independent
subaetivitics; the subactivities are themselves so madeled. Designers are assigned
these designactivities  or  subactivities.  In  general, because designactivities
depending on each other may need to be separated, they are said to be pseudo
independent. In faet the speetrum of dependencies among the various subtasks of
aogiven designactividly would range from complete independence to complete
dependence. ITn sueh a design environment, controlled sharing of information, for
example partially completed designs may be the only way to control design
PrOEress.

The above division of o designactivity can be defined recursively:

Definition  3.1: A designactivity  contains  other designactivities and/or

transactions.
Definition 3.2: A transaction contains a set of action invocations.

Informally stated, an action invocation is an operation performed on a data
objeet. A destgnactivity can be represented by a tree diagram, where each non-
leat” node represents a designactivity and each leal node represents a transaction.
The root of the tree is referred to as the project activity. It represents the way a

project is divided into various designactivities. as well as the dependencies among
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different activities in the traditional top-down and bottom-up designs,  The
terminologies child, parent, sibling, ancestor, and deseendent are used consistent
with the tree structure. Two designactivities are said to be wnrelated if they are
different and neither is a descendent of the other,

Each designactivity is characterized by two tyvpes of constraints, namely
validation constraints, and visibility constraints. Validation constraiuts
specify the conditions under which a designactivity s deemed  completed
(committed). Design requirements, design rules and correctness eriterin of the
conventional concurrency control scheme are some of the examples that come
under validation constraints. Visibility constraints specily the couditions under
which a designactivity allows itself (or its results) to be used by other
designactivities and/or conditions under which it uses the other designactiveties
(their results). One such constraint used in many design activity models [Baness,
Skar89] is: when a design and all its children are completed, it ean he used by its
parent and siblings. Such a usage is restricted to the parent and siblings of the

design.

The solid ares of the designactivity tree form the natural association among
different activities and represent the visibility constraints among them,  Dotted
arcs between unrelated activities represent dependeney between two anrelated
activities (sce Figure 3.1).

The completion of a designactivity is controlled by the validation constraints,
If a designactivity cannot be completed due to the violation of certain constraints
then the designer becomes aware of the violation. The designer can make the
necessary changes and attempt to commit iteratively um‘,il the designaclonly
conforms to the validation constraints., When a deseguactiondy is completed 1o

made visible to the other activities specified by the visibility constraints, These



Figure 3.1. Tree Representation of a Design Activity.

constraints may not only specify who gets to use the designactivity but also the
condition of usage. For example, visibility econstraints can be used to model
notiliention [Fernss]. Creation of versions, dynamic updates, and storing invalid
design are possible using the validation and visibility constraints.

The runtime cheeking of these constraints can be potentially very expensive.
There are however a set of restrieted constraints that can be efficiently satisfied -
weakly positive® [Seha78), and completely bound. These are powerful enough to
model a very large set of practieally occurring constraints, The use of alerters and
triggers [swa76, BuneT9]. which are standard features of an increasing number of
new database systemis (e.g. POSTGRIES [Ston&6a], Liden [Blac85]) can also be
used to efliciently implement consistent enforcement mechanisms.

This model of the designactivdy is simple and general. Its power can be
demonstrated by deriving other  designactividy  models by adding appropriate

) . ]2 .
3y formula [0 s weakly positive of i (.I .) i~ logreally equivalent to somie conjunctive normal form for-
mula having at most one unnegated vatiable i eaech conjunet
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constraints to it. This is illustrated in the next Chapter. The generie design model
introduced here can also be used to specify other non-design activities like
groupware system [EI89] that need to share information under diflerent
conditions.

As suggested earlier. validation constraints include different  serializability
criteria, design requirements, design rules ete. This means some of the validation
constraints like correctness conditions ean be checked as the designectimty
progresses using the existing concurreney control teehniques, Some of the other
conditions like design rules, performance requiremients ean be cheeked at the end
of the design when the designer thinks the designactimty is ready to be completed
(committed). In the next Chapter a validation scheme that does the validation at
the end for all types of constraints is presented. It is also shown, using an
implementation of the scheme how the validation and visibility consteaints are
used. This schenie satisfies the requirements of design applications and traditional

interactive applications,

3.2. Object Model

The object model deseribed here does not make any assumptions abouat the
n:ethod-sharing  amongst  different  objects. That is, our object madel s
independent of delegation [Libe86] or inheritance [Steis7, Ungas7]. Due to this
reason the concurrency control schemes deseribed here ean be used with any object.
model that assume delegation and/or inheritance. The following two approsches
to object-oriented computing are reported in the literature [YokoR7]. This thesis
follows the second approach.

1. In addition to ebjects, the notion of processes or monlors s introdueed

in Yokote et Al [Yokoxd]. This is also the approach  taken in
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Smalltalk —80 [Goldxsl.

2. The two entities, objects and processes can be combined into one single
entity by conceptually associating a process with each object and
making the object and the corresponding process indistinguishable from
each other. This is the approach taken by Aet—1 [Libe81), Goyal et Al
[Goya®T], and ABCL /1 [Shib87, Yone87]. This allows every entity in the
svstem to be treated uniformly.

Our objeet model is based on the one presented in Goyal et Al [Goya87] and
Hadzilacos et Al [ITadz88b]. The idea of object management and communication
between objeets is derived from Goyal et Al [Goya87]. Object structure and
operation characteristies are derived from Hadzilacos et Al [Hadz88b].

Definition 3.3: An object base is a set of objects.

Objecets are persistent, uniquely addressable and autonomous information
storing and processing agents. ISach object either models the behavior of an
abstract entity (designactivily, design specilication, transaction etc.) or represents
a physieal entity (processor, printer cte.) itself [Booc86]. Objects are classified into
several elasses. Objeets of the same class have a common behavior. Classes are
themselves modeled as ohjeets. A elass objeet consists of the declarations and
reentrant code for the operations of that class. It also contains the code for
initinlization, concurrencey control, recovery ete. These code modules are used

during objeet (process) execution.

Definition 3.4: An object class C is a 2-tuple <V,A>, where V is a set of
variables and A is a set of actions. An object instance of the class C
contains a state and an identity, where the state is a mapping of the variables

of C to values, and the identity is a value that uniquely identifies the object.



The values of the variables are drawn from the domains of object identity,
and primitive objects (Strings, Integers cte.). The state of an objeet may change
over the course of time. However, the value of its identity remains the same from
the time the objecet is created until it is deleted. Coneeptually, the state of an
object contains references to other objects rather than objeets  themselves,
although ptimitive objeets may be freely replieated to replace references to them
in an implementation. Values that arc assigned to state variables of an object are
also called atiributes. The state of the object base s a mapping from the set of
object identities in the object base to their respective states.

Informally stated, an action contains a sequence of operations (steps) on the
state variables of the object. An action is initiated through an action invocation
or invocation in short and the result is returned as a response. On receiving a
message with an invocation, the objeet exccutes a set of prespecified steps. A step
could be a local operation that makes use of the state value of the objeet or could
be an invocation to some other object. This means that an action can invoke
actions on other objects, and these in turn can invoke actions on other objects
and so on. After performing all the steps in the set, a response is returned to the
sender of the invocation. The action invocation and their responses ean be termed
as evenls. Evenls also encompass triggers, daemons cle. An action execution
begins when the message containing the corresponding invoeation is reecived by
an object, and is completed when the ohjeet that sent the message gets the

response.

Definition 3.5: An action A is a scquence of steps and is o unit of

consistency, and atomicity:

a. an action exccution is initiated through an action tmvocation
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h. 2 step could be cither a local step or an action invocation which in
Lurn initiates an action execution at the receiving object.

The term "unit of consisteney” implies that if an action were to be executed in

isolalion on a consistent object base it will perecive and produce a consistent

object base. The termn "unit of atomicity” implies that cither the entire action or

no part of it is executed.

The action invoeation K is a 5-tuple <4,p, @Q,A,k>, where { is the identity of
the original action on whose behalf this action is invoked, p is the identity of the
objeet ealled the inveker sending the message containing the action invocation, Q
specilies the set of objects that should receive the message, A is the action to be
invoked on the objeets in @, and ks used to identify the invoeation. Though in
general @ ean be a predieate (delining a set of objects), at this point we simply
treat @ Lo be an enumeration of object identities.

The response I to invocation K is a 5-tuple <¢,¢,p,r,k>, where ¢, and p
have the smme meaning as in the invoeation A, ¢ is the source object of the
response, and ris the value returned from ¢ for the invocation K. ris obtained as

a Tunetion of the following:

1. Results of the local steps in action .1 of K.

2, Responses returned to the invoeations in A of A,

Definition 3.6: A Local step « of an object o, is a pair (f,, g,) where

a!
f, 8 — R is a function from the set of states S of the object to the set of
results 2 and ¢, : § — S is a function from the set of states S to the set of

states S of the objeet,

Loeal steps are atomie operations on the variables of the objects [Beec87].

Thus, [, (8,) specities the result of the local step @ when execcuted on state s; and



d,(8;) specifies the new object state caused by the loeal step @ when exeeuted on

state s, .

A transaction is an action of a special class of object ealled transaction-
manager. A unique transaction-manager objeet is associated with each transaction
exccution. Function of a transaction-manager objeet is to manage the execution of
the associated transaction. In addition to transactions there are other actions
(abort, roll-back ete.) associated with the transaction-manager class. A
transaction-manager object can  also invoke certain  distinguished  actions,
including start-commit and commit in other objeets.

Due to its recursive nature, an action exccution ean be represented by a tree,
referred to as the action execution tree. The action execution tree of a
transaction is called transaction execution tree. In this tree the direeted edges
represent actions and the nodes represent objeets. Edges are from invoker to
receiver nodes. Recursively cach sub-tree represent an action execeution tree. The
arc between the parent and child represents the bidirectional comrunieation
between the two. [Figure 3.2 illustrates an example of the tree representation
described above. In the transaction execution tree, the root (level 0) is assoecinted

with the transaction object. The tree has at least two levels,
Definition 3.7: An action B of object o, is exccuted on behalf of an action A if
one of the foliowing conditions hold:

1. execution of A invokes /2 in o,.

2. exceution of € invokes I3 in o, where (" of o, is exceuted on behalf of

J

A.
Definition 3.8: An objcct is a participating object of an aetion A i it exeeutes

one or more actions on belalf of A .
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Figure 3.2. Tree Representation of an Action Execution.

Definition 3.9: A step «a, is exceuted on behalf of an action A if one of the
following conditions hold:
I.  a, isastepin .

2. a, isastepin Bowhere I3is an action exeeuted on behalf of A.

By imposing a total order on the <et ol steps of an action 4 one can get the
traditional  transaction of scquential steps. In traditional concurreney control
svstems the following definitions are used,

Definition 3.10: Given a sct of transactions T = {f.to. . . .. {, }. a schedule Z
is a 2-tuple -l NS> where:

I.  Eis a sequence of steps in T (1) is the union of the steps executed on

behalt of ¢, s, where 1< <n ).
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2. Every pair of steps executed on behall of a transaction ¢, (1 <1 <n)is
ordered consistently in I7. That is, if step a precedes (sueeeeds) step b in
t; then a precedes (succeedes) b in .

3. Sy is the initial state of the objeet base.

Definition 3.11: Two schedules 7, = (£ &) and 7, = (I, 5,) are equivalent
iff

1- Sl=lg2-

2. Schedules 7| and Z, bave the same set of steps.

3.  For cvery local step a, f,(s,,) is equivalent to [, (s,5), where a is o loeal
step of object 0,5 s, and s, are the states of o in 7, and 7,
respectively when a is exeeuted.

The use of the phrase "equivalent to" instead of "equal to™ in condition 3 mahes
this definition more general than traditional delinitions based on equality of
results. This property is used in Chapter 4 to deseribe an implementation that is

not restricted to equality of results.

Definition 3.12: A schedule 7 is a serial schedule iff for any two transactions 1,
to in T cither every step exceuted on behalf of £ precedes every step exeented on
behalf of t, or vice versa.,

Definition 3.13: A schedule 7 is serializable il it is equivalent Lo a serial

schedule.

3.2.1. Architecture

Every object in the system has an associated objeet manager, OM. The

functions of an OM include keeping track of action invoeations responses, and
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determining the next action to be executed. The latter function of the OM is
delegated 1o the seheduler in each OM. In systems where the OM creates a new

private copy it also ereates a copy of the OM(s) to schedule actions on the copy.

In conventional object-oriented systems, the actions are executed on a first-
come first-served basis, namely the OM(s) will simply be a FIFO queue. In others,
the ONI(s) can provide different mechanisms. FFor example, a dequeue action on an
cmplty quenc could be delayed until an appropriate time. The object manager is
also responsible for sending responses to the distinguished invocations issued by
the transaction manager. FFor instance, any of the following two responses can

result from n start-commit invocation.

[. Ready-to-commit: This is onec of the two responses returned for the
invoeation Commit-Request. It informs the transaction manager that the
objeet manager s ready to commit the changes requested by the
transaction,

2. Abnormal-event: This is the other response rveturned for the
invocation Commit-Request. It informs the transaction manager that the
objeet manager can not commit the transaction, and also instructs the
transaction to send an abort message to its participating objects. In the
case of traditional databases abnormal-event is called abort.

\ppropriate responses are defined for the other distinguished invocations.

To map the designactividy model to the object model we make the following
associations: each  designactivity is associated with an object similar to the
transaction-manager.  This objeet can issue all the privileged actions that are
invoked by a transaction-manager object. In addition, it has got the privilege to
create other designactieities and objeets.,

Our model of the distributed system  consists of some nodes that



-31-

communicate using messages over an abstract communication network, as shown
in Figure 3.3 [Mow87]. Each node consists of a set of processor elements (P'ls),
and some memory (sce Figure 3.14). lSach node is managed by a node-manager
object. which is resident on the P ecalled the manager PE (MPE). Each PI is
managed by its processor element manager (PLEOM). PEOM is responsible for
scheduling other OMs on the PE., Failure of communication to this node or the
failure of the node itself is modeled by the failure of the MPE. No assumption is
made about how the other PEs belonging to the node are conneeted among
themselves and to the PE. Failure of one or more of the Plis does not lead to a
node crash. Every pair of nodes ean communicate with ecach other either direetly

or indirectly using the network.

NcAe Node .o Node Node

I | I !

Communication System

Figure 3.3. Model of the Distributed System.

Each abstract objeet (data object. transaction) belongs to a single node
[Moss87. Dall85} known as its home sile. The home site of an objeet has complete
control over that object and its manipulation. This makes the management of o

single object easier. However, this does not prevent transactions from sending




invoeations to objeets resident on other nodes, Any replication or movement of an

object is explicit,

4
STABLE MEMORY
VOLATILE
PEs
v

Figure 3.4. Model of a Node.

All thessage transmissions in our computation model are asynchronous. That
ise nn objeet enn send n message whenever it likes, irrespective of the state of the
tareet objeet. Though message passing in a system of objects may take place
conenrrently. we asstme message arrivals at an objeet to be linearly ordered. Two
concurrent messazes arriving ot the same objeet will be arbitrarily ordered.

A communication system with the following characteristies is assumed:

1. Every message reaches its destination.

2. Virtaal cirenit is assumed between a source and a destination. Hence the
messiges arrive in the order in which they are sent.

3. \ultieast Communication is assumed.

R
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As soon as a dormant objeet becomes active, the OM initializes all inteenal
variables, structures ete. of the object. Currently active ohjects ean be visualized
to be resident on one or more of processor element (PE) objeets. Chapter H
discusses the role played by the node-manager objeet in the exeeution of an

action.

3.3. Summary

Unlike the existing designactivity models, the model presented in o this
Chapter does not impose any restriction on sharing completed results among
unrelated designactivities. Validation constraints are  used  to speeify  the
conditions that are to be satisfied for a designactivity to be correet and complete,
These constraints can be used tc capture correctness eriterin that  may  he
application dependent, or applieation independent. Serializability is one such
application independent condition. Thus, the model ean eapture a wide variety of
correctness criteria.

In general the validation process can be complex  needing exponential time
to find whether all the constraints are satislied for a designactivity. However, the
validation can be carried out effectively for certain subelisses of  validation
constraints such as weakly positive [SeheT8] and bounded (variables are bound to

some constants).

We associate  a transaction-nmanager  objeet  with each transaction to
communicate with other objects to achieve the required correetness, This allows
communication among transactions, and conscquently an implementation of a

distributed concurrency control scheme,




Chapter 4

Dynamic Validation

In interactive  decision-support  applications  there is considerable time
(thinking time) between sueeessive invocations of a transaction. A number of these
invocations may be disearded due to various reasons before the transaction is
committed, In this type of environment, pessimistic schemes are too restrictive.
Optimistie schemes like forward validation [llerl87] are not eflicient because a
transaction could be aborted in favor of other conflicting transactions. These
Lransactions may or may not commit eventually. Even if they commit, there is no
guarantee that they still contain the conflicting actions that caused the abort. The
bachward validation scheme [Herl87], where the decision to abort a transaction is
made at its commit time is suitable for this type of environment, because, when a
Cransaction wants to commit, there is no uncertainty in what it wants to commit.

Foven if it is aborted, it is done against the already committed transactions.

Re-execution of an entire transaction at its commit time will be faster
beentse of the absence of thinking time and the cancellations of invocations. This
idea forms the basis of the dynamie validation scheme, First a set of application
independent validation constraints are derived to demonstrate the use of dynamic
validation scheme for o set of transactions.  An implementation of the scheme
using loeking is discussed and its correetness is proved. We show the power of the
eencric model by deriving some  transaction models  from it. Finally  the
applieability of this scheme to the generie model, and the performance of the

scheme in comparison with other sehemes are discussed.

The execution of a transaction is done using private copies of the object.

Then we employ two-phase commit. In the validation phase the steps of the
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transaction are re-erecufed on the most recent copies of its participating objeets.

Due to the following reasons the re-exceution takes only a fraction of the

execution time.

In the next phase

1. No message (invoeation/response) is sent from the ON to other ONls on
behalf of the re-exccution. Each OM assumes the same responses as in
the execution phase.

2. The re-exceution is carried out concurrently in all participating ohjeets,

3. The re-exccution in an objeet is carried out only il the new state is
different from the previous state of the objeet. In faet, as long as the
result of any local reads remain unchaunged, there is no need for re-
exceution. This observation leads to a more eflicient implementation of

the algorithm which keeps track of changed state varinbles,

‘we shall refer to it as the lermination phase) appropriate

commit, abort or roll-back actions are taken based on the outcome of the
validation phase. The steps of the commit algorithm ean bhe simply stated as
follows.

Commil Start;

I. Validation Phase:

TM sends a commit-request Lo all the participating ONls,

[Bach participating OM re-executes all the local steps that were executed on
behalf of that transaction on a new private copy corresponding Lo the enrrent,
state of the object. This copy is ealled the re-creculion copy of  the
transaction with respect to that objeet.

During this re-exceution, every ON cheehs i the results (or efleets) obtained

during the original exeention and the re-execution are compalible (validation
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condition) for every local step. Any constraints specified for the steps or the
objects must be satisfied,
I the results are compatible then the OM sends a ready-to-commit message

direetly to the T™ clse sends an abnormal-event message.

II. Termination Phase:

If the TM reccives the ready-to-commit messages from all participating OMs,
it sends the commit message to all these OMs. The current state of cach of

the participating objects is changed to the modified re-execution copy.

If the TNl receives any abnormal-event 1inessage then the appropriately
specified action is taken. In conventional schemes this is normally abort. If
the transaction aborts, then both the execeution and re-execution copies of the
participating objects are discarded. In designactivities, the designer may
choose to abort, roll-back to some appropriate point (namely, undo the effects
ol some of the steps), or perform additional actions, including the save-

invalid action.

Unless otherwise stated a commit is treated as a global commit (implicit

visibility constraint). Sinee exceution and commit are performed using private

copies, recovery from an aborting transaction is trivial. When a transaction

commits, its re-exeeution copies (including the effects of the re-executed steps)

beecome the current copies of the participating objects. The use of private copies

prevent easeading aborts,

4.1. Dynamic Validation Scheme

The methods presented in this thesis are based on the following correctness

principle: Tn an objeet base, concurrent execution of the transactions is serializable
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if their order of execution is consistent in each participating object. That is, every
pair of transactions f; and (, commit in the same order in every common
participating object. ‘The serialization order achieved here is the order in which
the transactions commit.

In most of the existing concurreney control schemes, two loeal steps «a, b of an
object are deemed conflicting if one of the followir ¢ conditions is false for af least

one state s, of the object o,.

-(’a(‘(]b(s:)) =.(/l»(-(/a ('qv)) (II)
[alay ()= [, (5,) (1.2
fb(-(la (sl )) = fb (Sl) ( IZ{)

where f, : S—R and g, : S =5 represent functions representing the resalts and
new states, respectivelv, as defined in Section 3.1, T'ransactions with conliicting
steps are not allowed to be concurrently exceated at other states even i all the
above three conditions were true, This delinition of conflict was not only adequate
but was also needed to construet eflicient sehedulers for the existing record based

models in commercial applications.

With the object model and in particular design applications, these conditions
can be relaxed and still efficient schedulers ean be implemented. The only

requirement is that

fa(""x) =/a(s,1) “l)

where the original execution of the operation is on a copy of the objeet’s state s,
while the commit is performed on a copy of the object’s current (at commit tine)
state s',. Thus, the equation 1.1 cheeks it the two states of the object o, are

[

equivalent enongh to return the same result, for a. Sinee s’ is the pesult of

already committed transactions there is no need to check condition 4.1, Only
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condition 1.2 (or 4.3) must be checked for every local step of a transaction to
guarantee serializability. Obviously condition 4.4 is less restrictive than the

conditions given by 4.1 to 4.3.

This optimistic dynamic validation scheme is similar to the backward
validation schemes of [Ierl87, Kung81]. In backward validation schemes [Herl87,
FungR1} contliet is identified using static information that is insensitive to the
state of the objeet. In contrast, in our scheme invalidity of actions is identified
during the commit phase. Since the validation is performed with respect to the
current. state of the objeet we refer to our scheme as the Dynamic backward
valdation . It should also be noted that a transaction acquires a copy of an object
dynamieally when an invocation is sent to the object for the first time.
Serindizability can be guaranteed by providing arbitration schemes during this

commit phase, [or example, by locking as deseribed in the following section.

4.1.1. Dynamic Backward Validation using Locking (DBVL)

[ this seetion we shall use locking to provide the arbitration mechanism for
concerrrent commits. Normally an object manager can concurrently process the
commit-requests of more than one transaction, provided, all these transactions are
read-only with respeet to its objeet instance. The more interesting and useful
situntion is where some arbitration is required. One way of achieving arbitration
i~ through the following locking protocol.

[, .\ transaction is validated in an objeet only i it holds a validation lock

on the ohjeet,

2. I o transaction requests a validation lock on an object, the request can
be granted only if no other transaction holds a validation lock for the

same ohjeet,

R,
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3.  When a transaction commits or aborts, its locks are released.

4. All transactions not in their commit phase, have aceess to their private
copies of the objects. They are unaflected by this locking. Also new
private copies can be created for any new transaction even i the object
is locked.

When (, wants to perform the validation phase of its commit, the
participating object managers lock their respective objeets. This means only
can commit and the other transactions wanting to commit should wait. This
protocol could lead to deadlocks. A distributed deadlock detection and resolution
algorithm, e.g. Moss [Noss87], can be used to resolve this problem. Deadlock ean
be resolved by asking a transaction to release all its focks and restart its commit
phase (instead of restarting the entire exeention of the ftransaction). A
timestamp-based deadlock avoidance protocol can also he used [Goya®Rhb].

To improve concurrency during the commit phase, two types of validation
locks can be supported : IRead and Write. Read locks are compatible with each
other, while Write locks conflict with other Wrile and Read locks. Fach object

manager assigns the appropriate type of locks for a committing transaction.

4.1.1.1. Correctness of DBVL.

The following delinitions of compatible responses and results are used to
prove the correetness of DBVIL. FFor each database objeet the object designer
specifies the minimal response (or result) compatibilities eriterion for each action.
These criteria can be strengthened or weakened by individual transactions, We

can model this by a boolean function compatible:

Compalible: Action X Response X Response — A True, False |
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Application dependent or independent criteria can be used to define the
Compatible  Tunctions. For instance, equation 4.1 treats two results to be
compatible if they are equal. This definition of compatible results is independent
of application and even data type. The following type independent compatible

function defines a relation that contains the relation defined by equation 4.4:

1. Two results [,(s,) and f,(s';) of a local step a of an action A are
compatible if the responses and invocations that appear after the
exeention of @ in A remain equal whenever f, (s;) is replaced by f,(s" ;)

and vice versa. Let 14" denote such a compatible function.

Compalible’ (a, [,(5,). f,(s",)) (4.47)

2. I'wo responses of an invocation K are compatible if they are equal.

A correetness proof for the DBVI scheme under these criteria is presented below.

Lemma 4.1: T'wo responses reeeived by an invocation <t,oj,o,-,A,k> in two
diflerent. states S, and S, of the objeet base are compatible, if the following

conditions are true:

[. Every loeal step a of o, gets compatible results in S and S,.

2. Every invoeation A from o, to other objects (on behalf of a) gets

compatible responses in Sy and S,

Proof: The response to an invoeation is a function of
i, results of the loeal stepsin .1 and
ii.  responses to the invoceations in ..

[t follows from the definition of compatible results and responses (1.17) that the
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responses of A are equal in 8, and S,. Two responses are compatible if they are

equal. O

Theorem 4.1: If the same transaction is executed in two diflferent states Sy and
S, of the object base, the transaction will get compatible responses for every one
of its invocations in both the states, if every local step exeented on behialf of the

transaction gets compatible results in these two states,

Proof: The theorem is proved by induction on the height of the transaction
execution tree.

When there are only two levels (level 0 and level 1): The teansaction sends an
invocation to an object, the object executes only loeal steps on hehallf of the
invocation and returns a response to the invoker. I every one of these loeal steps
gets compatible results in the two different states of the objeet then compatible
responses will be returned in these two states.

When there are n levels: By the induetive hypothesis all invoeations sent
from objects in level one get compatible responses (in S and S,). T'his means all
the invocations which are sent from an object o, in level one on behall of the
invocation a (from level 0) will receive compatible responses, Fvery loeal step of
actions exceuted on behalf of a also gets compatible results in S and S, Henee,

a will receive compatible responses in these two states by Lenana 1.1, 0

Now, let us consider the exceution phase and the re-exceution phase ccommit
phase) of a transaction. A successful commit requires that the result, of every loeal
step be compatible with the one from the exeention phase. Heneeg the re-exeention
is a high speed replay of the exceution as far as the invocations and responses are

concerned - in fact the re-exeention does not send any messages, and assumes the
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same invocation and compatible responses as the execution phase. Only local steps
are excented in parallel in all the objects involved. The state may be diflerent
when the commit phase starts, and will be mapped appropriately by local steps to
the final state. Henee the overall execution of a (successfully) committed
transaction is a combination of invocations and responses from the execution
phase plus state changes from the commit phase. This overall execution is exactly
the same as a (full) execation of the transaction - running alone (serially) - from
Lhe same objeet base state as the starting state of the commit phase. The locking

protocol used during the commit phase enforces serializability.

Lemma 4.2: et () and £, be two transactions, and let them both invoke actions
on ohjeets oy and o, (among others). Then, using DBVL, ¢, and ¢, commit in o,

and oy, in the same order,
Proof: Such an ordering is enforeed by the locking protocol. O

Now we ean prove the main result of this Chapter. Note that our definition
of serinlizability (see page 30) is based on the notion of equivalent (or compatible)

results, and s less restrictive than the elassiceal serializability criterion.

Theorem 4.2: DBVL  cnforces  serializability for compatibility function

reprosented by equation L7,

Proof: Let ¢ = (V' I]) be a graph, |7 consists of nodes representing transactions,
and (4, £,y € 1, the set of edges, il there is an objeet o where ¢, commits before
f,o By Lemma L2, ¢ is acyelie, and induces a partial order between transactions.
Tahe n total order consistent with the partial order induced by &', then the

exeetion enforeed by DBVL is equivalent to the serial execution represented by

the total order. Here two results are defined to be equivalent if they are
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compatible according equation -1.'.

4.2. Performance of Dynamic Validation

To evaluate the performance of the dynamic validation scheme we compare
the concurrency and modularity offered by several schemes. An analysis is made to
justify the claim that the re-execution of the transaction takes ouly o fraction of

its execution under the specified conditions.

4.2.1. Concurrency

The following example illustrates that there exist schedules allowed by the

dyvnamic validation scheme that are not allowed by other established schemes,

Example 4.1:

Two transactions ¢; and (, concurrently perform the steps Debit(90%) and Debit
(100%) respectively on the same account object whose Balance is equal to 2008
Debit operation returns ‘Over Draft’ if the balance is smaller than the debit
amount else returns ‘OK’. The Balance is also updated to relleet the current
balance if the response is ‘O, According to the conllict definition of [[Hadzs8b]
two debit steps from dilferent transactions are conflicting at certain state values,
and thus should never be allowed concurrently.
Locking Scheme:
If transaction t; (L,) were to lock the account objeet first then the

transaction &, (1;) would wait until £, (1,) completes,
Time stamping:
I we assume the time stamp of ¢, (1,) is older than that of £, (1)) and if

L, () commits before £y, (ty) then 1 (1,) will be aborted [Berny7]
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because two debits are conflicting.
Optimistic - forward validation:
If 1o (1) wants to commit, then the responses [Herl87] of the steps of
the active transactions on the account object are compared. Since ¢,
(t,) and t, (t;) have the same response (OK), ¢, (¢;) will be aborted.
Optimistie - backward validation:
Assuming t, (¢;) commits before ¢, ({,,, the latter will be aborted when
it attempts its commit [Herl87].
Dynamic Validation Scheme:
During the execution phase ¢; and t. are going to get OK as their
responses, Irrespective of the order of their commits ¢, and ¢, will get
the same response from the account object during the re-execution
phase:
I ¢ decides to commit first then the re-execution of t; on the
current state of the account objeet will make Dalance equal to
110$. Later when f, wants to commit it is re-exccuted on the
aecount objeet whaose current balance is 110$ (not 200$). Even with
this balance, the account object will be returning the same response
("OI’) to t,. This means condition 1.1 is true and (, can commit.
Similarly ¢ is allowed to commit when ¢, commits first.
Thus, £, and ¢#; can commit in any order. As far as the acecunt object
is concerned there is no conlliet between ) and ¢, when they want to

commit,

The use of private copies in dynamic validation scheme prohibits certain

conllict serializable schedules. Under the circumstances (with private copies and

Jdistributed validation) the set of schedules allowed by dynamic validation is
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better than similar schemes [Schw8-, Herl87, Weih8S] This is beenuse of the use
of condition 4. instead of conditions .1 to 1.3. T'wo debit operations are not
commutative according to conditions .1 to £.3. This is true even if the

arguments of the Debit operations are considered.

4.2.2. Cascaded Aborts

Since each transaction gets an execution copy and the commit process is
arbitrated there are no cascaded aborts. Thus, schedules allowed by dynamic

validation are recoverable.

4.2.3. Re-execution time

Two different empirical analyses are provided to compare the re-execution
time with the execution time. The first analysis does not indicate the relative
influence of the amount of nesting and the number of invoeations on the ratio of
the exccution lime to re-execution time. The second analysis indicates how the
amount of nesting and number of invocations influence the ratio relative Lo ench

other.

Analysis 1

Let ¢; be a given transaction, n he the number of invoeations in an action,
and let p denote the average time taken by cach invocation to return the
response. L.et ¢ be the average time between receiving the response tooone
invocation and sending the next invocation. The [ollowing assumptions are nade

in this analysis:
1. Steps of an action are exccuted sequentially.
2. The average re-exceution time of an action is cqual to the average

exceution time.
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3. lsach action is performed on a distinet object.

Typically o transaction is a set of partially ordered actions. Thus, there may
he one or more sequences of actions in a transaction. One such sequence may
decide the exeeution time of the transaction. Die to the nesting among actions
and message passing, the exeeution time of an action is expected to be larger than
its re-cxecution tine,

The total time to exceute the actions on the average is denoted by ef and is

civen by the equation 1.5,

el =(n—=1)*qg+n*p (1.5)

During  the re-execution phase, the local steps of ¢, are exccuted in cach
participating objeet and the results of these local steps are compared with the
results of the execution phase. Let m denote the time taken in an object to find
whether the resalts are compatible. Sinee the re-execution is performed in parallel
in all the varticipating objeets and beeause of our assumptions 2 and 3 the total

re-execution time is given by equation 4.6.

=p+m (-1.6)
In condition .1 two results are compared to find whether they are equal, Since
local and comparison operations are performed on primitive objects (real, integer,
ete) it is reasonable to assume that these operations are of equal complexity, and,

thus, the re-exeeution time (14 is given by the equation 1.6,

=27 (.67)

This nlso suegests that the time taken to find if' two results are compatible should

he comparable to that of re-exceution time else it could result in an ineflicient
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implementation  of our scheme. Oue ol our future goals is to identify
compatibilities that ean be verilied efliciently, I we assume that an invoeation of
an action A on an objeet o, results in invoeation of action B on another object
o, then, sinee in the re-execution phase A and 5 will be executed in pa sallel, the
average re-execution time ¢ < 2 ¥ p. Thus, the lavger the depth of an invoeation
the smaller the re-exccution time. This is illustrated in Figure 4.1, Before the

response is returned to the transaction, re-exeeution and subsequently validation

are performed. If the validation suececds the response is returned to the

transaction.
Tr
I
0, e - /
O21 M2 I
03 -
€ -

[, Local Steps
my, Invoention from o, 1o 0
1, response frone o, 1o o

dotted line - time tahen To compare the results of local Steps

J

Figure 4.1. Timing diagram of Execution and Re-execution for.
a Transaction with Three Participating Objects.
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[sxeept for a database of only primitive objeets the depth { would be 2 2. In

objeet-oriented systems the depth is usually much greater. For a depth of 2,

rt = p. In most interactive and design environments the typical value of ¢ is
mueh greater than the typieal value of p, thus,
el >24%n 7 p (1.57)

Thus the ratio of the exeention time to re-execution time is at least 2n:1 (from
1.5%). To sum up, the analysis is that the re-exeention time will only be a small

fraction of Lhe execution time.

Analysis 2

The purpose of this analvsis is to find out the relative effects of the number
of invoeations and the nesting among actions on the exccution and re-execution
time ratio. The following simplifying assumptions are made to get a concise

evpression for the ratio so that such a comparison is possible.
[.  Steps of an action/transaction are executed sequentially.

20 All the feaf nodes of transaction execution tree are at level /.

3. Every node exeept the leaf level nodes contain n children.

Migure L2 represents the transaction execution tree of the assumed type with
no=2and [ = 1. Subseripted a represents an invoeation,

Let e represent the time for a message to reach its destination and x
represent the time taken by a loeal computation (execution of local steps). Let us
also assume that each objeet performs some loeal computation before sending an
invoeation or response. Fxceution time efy of an action at level & can be

represented by the following recursive equation,
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ety =n Y el +2 0 e +(n+1)

Solution to this recursive equation is given by equation £.7° i each leaf level node

performs only one loeal computation.

Transaction

3111

Figure 4.2. Transaction Exccution tree of /,.

! -1 -1
(f = n['l(.l)-}-(ﬁ N ) e+ 1) aN ) 1.7
1= J=1

The first term in the expression deseribes the time taker to execute the local steps
at the leaf Jevel of the tree. The second term gives the total time spent on
communication, The thivd term gives the time spent on the loeal steps in non-leaf
levels except the root. Egquation L7 ean be nodificd to iuelade the thinl >+ e

g at the top level Letween 1w invocations of tyan-netion<, The last terny i
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cquation 1.7 gives the time spent on thinking.

{~1 (~1
el =n'TNe)+ @ e Y+ ((n+1) el )+ (0 —1) ¥ g 47
t=1 J=1

The execeution time of of Figure 1.2 can be computed by setting n =2 and [ = 4

iu equation 1.7,

el =204 +28%Y ¢ + g

The re-execution time is computed as follows:

rt={n+1)*a2 4+ m 4.8

Sinee ench invoeation in an ohjeet has (n 41) local operations the first component
of the re-excention is (n41) ¥ &y and the second component m is the average
time taken to compare the results of the (n+1) local computations. As previously

discussed we enn assume that m is of the order of (n+1) * x. Thus,

l=2%(n4+1)*r 1.9
For the transaction £, where n =20t =6 * r. Let ra represent the ratio of
excention and re-exceution time. For Figure 1.2
ta = (29" 0+ 287 ¢ +¢q)/(6F 0)> L8+ 1.6(c/T)

In general, tor Taree value of noand {

ra > (! 7H/2 A (0 4+ 1)) >> 1

4.2.4. Modularity

In most concurreney control schemes the confliet information is stored in a

table, o confliel table [SehwSt] or o serial dependency relation [Herl87]. When new




operations are introduced these tables are updated. This means, the person
introducing the new operations must have complete knowledge of the other
operations of the objeet. In the dynamic validation scheme there is no need for
such knowledge; for each new operation only compatible results for the operation
need to be introduced. Only knowledge of the operation being introduced s

required.

4.2.5. Complexity of Dynamic Validation

In dynamic validation each objeet re-executes the loenl steps and  decides
whether to commit or restart a transaction. Thus, complexity of the dynamie
alidation can be computed in terms of loeal steps of actions. I an objeet were (o
re-exccute n loeal steps and compare their resalts then the complexity of dyvnamie
validation is O(n) in local step. This is assaming the comparison of results or

responses takes constant time,

4.3. Other Design Models from the Generic Model

The generie model of the designactivity presented in Chapter 3 is powerful
enough to model all transactions or designactiedy models deseribed in Chapter 2
along with their correetness eriterin, This is shown in four steps. In the first step,
the list of constraints that give rise to serinlizable and recoverable scehedules
similar to [Sehw® 1 Herl87, Herl87, Weihino] are presented. In the seeond step,
serializability for interactive sequentinl transactions is presented. by the third step,
the constraints that represent the nested transaction model with serinlizable
schedules or application dependent correctness  eriterin [Banesh, Skars] are
discussed. Finallv, some of the other possible desiquactieity models inelading

[Lyne8 1, Garess, GareR7] are deseribed.




I. Serializability for Sequential Transactions:
Validation constraints:
1. A projeet activity should contain only one node (a transaction).
2 A transaction should contain only a sequence of actions.

3. A transaction !, should be allowed to commit only if no transaction {;
with serially dependent action has committed in any of the common
participating objeets after {, has invoked an action on the ohject.

Unless stated otherwise the same set of validation and visibility constraints are
associated with every designactiody. Condition 3 assumes the use of optimistic
confliet serinlizable seheme with private copies. By replacing this constraint by the
following, serializable schedules using static and  dynamic two-phase locking
sehemes [Papas6] are obtained.

30 A transaction {, should not be allowed to exccute a conflicting action if
nnother live transaction ¢, has already executed one of the conflicting
actions in any of the common participating objeets.

Nerializability defined nsing equation -1 is weaker than the conflict serializability
defined using equation L1 to L3, Unless or otherwise stated the term serializable
refers to the one deseribed by the definitions 3,11 and 3.13 using the equivalent of

restlts deseribed by compatible equation 1.1,

H. Internctive Sequential Transactions:
We ean model the execeution of interactive sequential transactions using
cquation Lo The use of equation 1.4 in condition 3 guarantees serializable

<chedules,

[, Nested Pransactions:

I the following validation constraints and visibility constraints are applied
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on our generic designactivity model, a designactivity  model  which i

structurally similar to the nested transactions [Moss87] is obtained.
Validation Constraints:

1. A transaction contains only a sequencee of actions,

2. A designactivity commits only when all its children are committed,

3. A transaction commits only when equation .1 is true for all its

local steps.

4. A designactivity is aborted when its ancestor is aborted or if

equation .- is not true or due to some other reasons.
Visibility Constraints:
1.  Private copies of a completed designactivity must be validated
against and installed in favor of the private copies at its parent.
2.  Private copies available at an ancestor are available to its

descendents,

The validation and visibility constraints listed above ereate serinlizable
schedules using  dynamic validation. By replacing equation 1.4 in the
ralidation constraints by equation LU data types semanties are enptured ol
added coneurreney is possible. Most of the time o design is treated as
complete when it satislies certain design rules, functional specifieation, and
performance specilication. By replacing equation 1.1 by these specifications a
correetness eriterion that is applieation dependent [BaneSh, Skars9] ean be
obtained. As long as a desegnactivdy satisfies these reguirements it s Lreated
as complete. In this case the validation constraints associated with ench
transaction could be different.  These constraints could even permit non-

serializable schedules, With application dependent constraints and sequentinl
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transactions, models like [Lync84, Gare83, Garce87] can be specified.

V. Other Models:
The above visibility constraints can be altered easily to allow global
commits. This will represent models that permit sharing across projects.
A transaction can state the conditions under which it is using an object
from other projeets. For instance, a transaction can state that it makes
use of the current version of an objert and is not interested in the
updates to this object. Similarly a transaction can state if it is to be
aborted or just notified when a shared object is updated. How such a
notilication can be obtained with dvnamic updates is discussed in the
next seetion. This notification is applicable to design environment as
well as traditional interactive environment. In traditional environment

the notifieation will result. in the restart of the notified transaction.

4.4. Applicability of Dynamic Validation to Design Activity

The dynamic validation scheme can be extended to the entire designactivity
by treating each desegnactivity object as a transaction object and applying the
sane procedure,

In our validation scheme  designactivities  are validated only when the
designer thinks it is complete. If they are invalid they are not aborted, instead,
the designers are allowed to make the appropriate changes and attempt the
commit iteratively. Ninee the validation is done at the end of a designactivity
other designactivilies need not be delayed. Result of the completed activity is
made wvailable to any other designactivily  after establishing a  dependency
between the completed activity and the activity that makes use of its results. This

allows designactiedies 1o commit independently of their ancestors and making
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them available globally.

In the backward dvnamie validation scheme a transaction is validated only
at the time of its commit. If the validation is not succeessful the transaction is
asked to abort/rollback. Instead, if a live transaction is informed of a potential
conflict due to the commit of other transaction then the transaction ean take
appropriate actions immediately, instead of finding out at the end that it has to
abort/rollback. We describe a scheme using dynamic validation that detects

potential conflicts.

4.4.1. Dynamic Backward Validation with Forward Check

In this scheme an extra phase is added to the commit. In this new phase,
called the forward checking phase, the steps of the live transactions are re-executed
on the state s’ . obtained by re-exeeuting the steps of the committing
transaction. This is to say that each live transaction is validated against the
state-to-be.

Transaction manager of {; sends commit-request  message to all tie
participating object managers. The object manager of o, acquires a lock on the
object on behalf of £,. Only a transaction with this lock ean perform its commit-
phase check in the object. This lock is released when the object receives the
commit or abort message from the TN of 10 14 is necessary to hold o lock briefly
at the commit stage to enforee common commit order among transactions. This
lock will be of shorter duration compared to DBV beeause in this seheme there
may not be a re-execution of the committing transaction.  After acqniring this
lock loeal steps of the other live transactions are re-excented, Details of this

procedure is explained in the following paragraphs.

Let £y, .. 4, be the seb of transactions exeeuting in object o and let All

I
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these transactions start with the same state s, of o,. Let s,, 5;0, . . ., 5, be the

exeention copies of the transactions £ to f, respectively.

When o transaction [ wants to commit, it sends a request to o, and other
participating objeets, Sinee no other transaction has committed in object o, since
t) started, O, sends ready-to-commit message to the T™M of ¢, and starts the re-
exeention of the loeal steps of every transaction t, (2 <k <n) on a copy of s;;
(state-to-be), o o Unlike the re-execution deseribed in the last Chapter, this re-
exeeution executes the loeal steps of the other live transaction in an object. To
diflerentinte, this re-execution will be ealled testing or forward checking. The copy

§ 4 is called the testing copy of the transaction {.

After an interval of time, O, gets a message from the TN of . If this
message I an o abort message, s, and  all testing copies are deleted. The
transactions £, to , continue their exeeutions on their execution copies s;5 to s;,

respectively and £ s restarted.

I the message reeeived from the TN of ¢ is a commit message then s;; becomes

the current state of the o,.

The testing exeeution of of a transaction (, (2</<n ) could be in one of the

following four stages when Q) receives the message to commit.

1.  The complete set of loeal steps from t received by O, has bheen re

exceuted, aud all these loeal steps are found to have the compatible

results from «, and ;- In this case the exeeution copy of 1, s, is

1) i

disearded. Testing copy &, is renamed as s

' ,, and becomes the new

exeeation copy. Any new step from {) to O, will be executed on this s,;.

I the transaction (, wants to commit at this stage, O, can send ready-

to-commit message without any delay beeause the loeal steps from ¢, on

the current state of o, have already been performed.
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2. Re-execution is terminated because the last local step has received
incompatible result. In this case the transaction t) is asked to restart by
O; and the private copies of {, are discarded.

3.  Only a proper subset of the loeal steps received up to that point of time
has been re-executed and all these loeal steps have the same result from

sij and ¢ ;. In this case the testing is continued till one of the

J

following conditions is true:

a. A local step in testing receives incompatible result,
. No local step receives incompatible result.

c. A transaction { (kK% ) commits in o,.

If the testing stops due to condition (a) then the TN of 1, is ashed to restart
again. If the testing stops due to condition (b) then the execution copy of the
transaction is discarded and the testing copy is made the new exeeution copy.
Subsequent steps from ¢, are executed on this new copy. It is also possible that /)
is the next transaction in o; to start its commit, and when the testing of ! is
finished, TNI of L, is sent cither a ready-to-conunit message or a restart message,
If it stops due to condition (¢) then the testing copy is diseavded and the execution
continues with no changes. If & = j then the re-execution of the £ is continued
after acquiring the lock. From now on, it is similar to the commit of 1} exeept

that t; still has to find out if it can commit in o,.

Theorem 4.3: If compatibdity is a transitive relation then sehedules allowed by

DBVTC are correct.

Proof: \When a testing is performed for a transaction, it is eheeked whether its

results are compatible with those that are obtained during the previous testing or
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the exeention. Only under this condition DISVFC replaces the private copies of the
transaction by its testing copies. Since the compaltibility is a transitive relation,
results obtained during the commit phase are guaranteed to be compatible with

Lhe original exceeution phase results, O

In this scheme there are at most two private copies per transaction in an
objeet and there is no race condition. The first part of the previous statement can
be proved using the conditions under which testing copies are created and
discard «. The second part of the state nent follows from the fact that irrespective
of the forward checking phase a transaction re-executes all its local steps on the
current. state before commitling, Due to the forward checking phase the time
complexity and space requirements of this scheme are usually more than that of
dynamie validation,

One of the major disadvantages of the checking phase is the re-execution of
steps of live transactions. In designactivities  this is unlikely to be a major
probleme It would be, however, henelicial to pinpoint any possibility of failure at
an early stage. It should be noted that it is not necessary for an activity to abort

even when the possibility of confliet exists.

The alternative to deteetion of possible confliets using forward checking is to
deteet these possibilities using conflict tables, Conflict tables suffer from one major
disadvantage: when a new operation is added to an object the conflict table has to
be updated. These updates could be made only with a complete knowledge of
other operations. In contrast, enhancing the compatible relation does not impose
such restrictions,

The forward cheeking scheme not only restarts a transaction at an earlier

stage, but also gives dy namieally changing private copies [Maie86] to transactions.

1 the torward cheeking is successful for a live transaction then its private copies
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are replaced with corresponding test copies without users’ knowledge. The forward
checking will reduce the number of transactions that are restarted. An alternative
implementation of the scheme using timestamp and its correetness proof are

discussed in [Goya88b].



Chapter 5

Conclusions

In this thesis we have attempted to address some of the drawbacks of
traditional coneurreney control schemes. Serializability as a correctness criterion
hoo been implicit in these sehemes. This correetness eriterion is external to the
applieation, domain or database behavior. Serializability is a major hindrance in
the use of databases for long transactions, It leads to unavailability of data items
for long periods or repeated aborts of long transactions [Papa86]. To eliminate the
bottlencek ereated by the serializability we have proposed the use of application-,
domain- or database- <pecilie correet niess eriteria. These may be speeified as a set
ol validation constraints. Validation constraints can be applieation dependent or
independent. One way of specifying the constraints is by compatibility. This was
demonsteated in Chapter f,

We have demonstrated the use of our concurrencey control scheme for design
aetivities, These acetivities, usually, require sharing among  designers. We have
shown that sharing ean be controlled by specifying a set of visibility constraints,
Visibility constrints specify how objects are shared, copied ete. — including
versions. The number of designs that fail validation ean be reduced by notifying
the designactieities that arve aflected by a committing design. Visibility constraints

con be implemented using triggers,

haTel
We have presented a generie model of desdgnactivity. 1ach node in the tree
representation of the designactively  vepresents either o design activity or a
transaction. We do not specily any  constraints on the order of the actions
contained in a transaction. This [its well with the objeet model where actions

invoked on the same objeet ean he executed concurrently when the actions do not
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share common participating objects. Validation and visibility  consteaints are
associated with each node.

The proposed concurreney control scheme is based on dy namie validation, In
a dynamic validation scheme, transactions progress nsing private copies of .« hjeets,
Only at commit time they are validated against the cwrent copy of the abjeet
base. Performing the validation at the end of the designactivities is preferable for
the following reasons: 1) it improves concurreney; 2) reduees delavs hetween
designactivities; and 3) validation constraints need not he specified until the end
of the designaetivity. We have also shown that in design environment the re
execution for validation takes only a smali fraction of the total design time. An
unsuccessful validation does not lead to an abort as in conventional schemoes,
Instead. it allows the sdesigner to cornmit alter making the approprinte changes.

Though the dynamic validation scheme has been developed for design
applications, it ecan also be used for other interactive applications, sueh as

sroupware systems [12HiR9).

5.1. Implementation Issues

The proposed validation procedure requires that the commit or abnormal-
avent message be reecived from all the participating objeets hefore dectding to
comiit or retry (after making changes). However, the desiguactiedy objeet ny
not he aware of all the participating obicets beenuse of the object aaraeture, Thi
can be overcome in (wo wavs:

1. Whenever an action of an object is excented on behindf of o design, th

object identity is sent to the design and viee versas The decign objeer
has the list of objeets from which B -t peecive the eopmit or

abnormal-event message,
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2. Commit or abnormal cevent message is passed from the children to

parent and viee versa,

If no insertions and updates of objects have been made, then the execution
tree of o design will remain the same during the exeention and commit phases.
However, with insertions and updates the commit phase is slightly complicated. If
we assume that the set of destination objeets in a message is explicitly enumerated
then the insertion of objects will not affeet the re-execution. Deletion can be
hondled by retaining the ONM of the deleted objecet till all the transactions that
used the object are completed. Instead of enumeration, the destination objects
can be speetliecd using predicates. The elfeet of such specifieation on dynamic
validation scheme needs further investigation.

I'r ote copies of an objeet are created and destroyed by the objeet itself.  An
ohject creates a private copy only when it receives an invocation from another
object. In other schemes distinet private or semi-private databases are created and
managed by the global database manager.

We have used the decentralized control in dynamic validation scheme. There
is no centralized objeet  (seheduler) that controls the concurrent exeention of
transactions.  [nstead, participating objeets and  designactivities  communicate
among themsehves to achieve the correct exeeution. The decentralized approach
cinhles us to exploit the parallel exeention at the ohjeet fevel.

In desian applieations there is little difference between the object ereator and
the users o suel an environment the users ean be allowed to decide interactively
about the validation constraints. For instance, one can  decided  whether two
responses are compatible. This facility will allow  designers 1o experiment with

on-the-ly ideas,



-63-

5.1.3. Node Architecture

A suceessful implementation of the dynamic validation scheme ean benetit
from parallel execution, since cheeking the conditions ean be done concurrently in
every participating object. These conditions ean be evaluated faster by alloeating
cach objeet on a distinet processor clement (IPE). In practice such an alloeation
may not be possible and more than one objeet may be alloeated to the same 1P

The following configuration of PEs will suit the ahove requircments. The L.
that contains the node-manager object (NNO) that handles message from other
PEs. When a NMO receives a message for an object it cheeks i the objeet is
dormant, if so the NNO sends a request to the secondary memaory object manager
to feteh the object. After moving the object from scecondary stornge to one of the
processor element objeet manager (PFROM), the status of the ohjeet is ehanged to
non-dormant. If the processor element containing the PEON S free it s alloented
to the object and the object becomes active, Otherwise it is Kept in wait state till
the processor becomes free. Once the objeet becomes active it ean process the
message that has heen reeeived by the NONL on its behall. More than one objeet

an be alloeated to each PE.

When a NNO receives o message for an objeet, if the object is not dormant
the message is sent to the PEON that contains the active or the waiting objeet.
The above approach is shinilar to the approach nsed i operating systeias 1o
handle processes: but unlike processes, objects are persistent entities, Thos, an
objeet ean be in dormant state, wait state or active state, The conditions under
whieh state transitions take place are also different. Thus, techniques developed

for processes  can be used  with approprinte changes for states and s state

transitions.
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5.2. Future Research

One of the limitations of the proposed scheme is the difficulty in specifying
the constraints. In dyvnamie validation some of these constraints are specified
nsing compatible functions. To define compatibility functions. designers should
have a good understanding of the application. We also need to study schemes for
clleetive verifiention of compatibility using an eflicient implementation of the
coneurreney control seheme,

When o transaetion is found invalid the designer may have to undo the effect
ol some of the invoeations. Due to the use of private copies the problem of
undoing is difterent from the one presented in [Gare87]. Schemes that will make
this process simple and ellicient need to be further studied. A formal framework
to present the ideas about validation, visibility consuraint, and notification is also

worth pursiine.
Shew [Sheuss] specifies an algorithm for partinlly ordering a set of n
concurrent operations under given constraints in such way that
- no operation ean undo the effect ereated by some other operations(s) and
- no operation(s) block the exceution of other operation(s).
In genernl this aleorithm may need the enumeration of all »n! sequences of
operations. However, tor weakly positive constraintz a polynomial time algorithm
is possible. Feasibility of suceh o pessimistie algorithm for scheduling concurrent

destgnactivelres <should be further investizated,
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