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' Abstract - .

L - Cconsistent Global State:
' . Algorithms'
and an Application in
Distributed Garbage Collection

L]

7

Y . Shang Heping (

4

Consistent. global state of a distributed system is an
jmportant péradigm. Efficient solutions to a number of
- . .. ) .
distributed problems can be obtained using this fundamental

concept. In this ‘thesis, some problems of consistent globél

/¢

state detection, are discussed extensively. Based on the

degree of. ptocess éoordination, consistent~gl&bal state

detection algorithms are classified. An experimental imple-,
’ o ’ ¢ \ . 0

mentation of several detection algorithms is presented, and

the performance of these algorithms is\stuaied. A new type

".of .consistent global state .detection algorithm is proposed.

The theme of thls,thesis'is.to study consistent global state
\ .
detection in distributed systems, and to examine an applica-

tion of a probabilistic detection algorithm. °
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tion and communication technologies have brought .abolit the
- \ . ~ P

creat‘ioﬁ of ‘Dis’tlri‘.ﬁuted ' Computer Systems r(DCS) ;arg their
. applications. ;Exz DCS, a numbér, of inde‘pendent- and k&synchrc;-
no;:s'p;océssor-memqry bairs are ’.1.nt:erc'cfnnected by \communica-:
tion cﬁanne&s. {‘Intez:-proqessor cognmunica‘tion Ts 'achi,eved by
passing hessages through qompunic::atién chanrels. Propag%ntion

°

There is nho cpminon clock running on DCS.

‘/' ‘. ’ o . PO

"Manylproble.ms in distributed systemsg could be easily
- . - ' '

v ~and efficiently solved if there wert% a mechanism which could
take anapshots of the whole di’str.ibutgd system [Venkathhss] .
b['NaEa::'djLané‘s_] \[El.margawr'eéj\,[pr_xandxwes']. However, the lack of

a éommo;l 'clock, the/élriétion of mes_sﬁ trangi® time, the

A ¥ A . . .
] ’1&/\/ asynchronous characteristics among processors, and the

[

absence of a master pracessor have made it impossible for

T

. aRy single process to cg ¢ an Instantaneops- 'étiaté_ of the

~ ° d , « .
entire system. . ‘ /_}
.-

LY .

: , -
N , “

: o -1/ ;
q I 4 . - ."D B ‘ ~,
Ay \} 9

t ‘ “‘—

.,-6evel.6pmér}t of mi,'cr.‘gelectronj.cs as well as interconnec- |

B 7 . .
. of messagks takes a ‘finite but variahle amount of /,a—kﬂ:

b

b P R
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intuitive in ‘centralized systems, must be approached with

caution in the DCS environment Based on the requirements of

applications, global states have been classified [Li87] into

» four main types, namely, Statistical Global State, Stable

- Global State, and Synchronized

Consistent Global State,
Global State. In this thesis, we will eiplore the consistent

globai state extensively.

s . -

The thesis 1is ‘organized as

follaws:
sections of this chapter are introductions to the Models of

distributed computations that we will use, and some -basic

concepts and properties of consistent: global state. The
relationship among the physical time system, the virtual
y time system, 7nd. tne consistent g‘lo.bal ”state is examined in
) chapter two. Algorithms for detecting a consistent global
state and a classification Scheme of these algorithms based

on the Degree of coordination of 1ocal state recording a¥e

presented in chapter three._ A Global state‘ Kernel (GBK_)

which carries a,number of consistent global state detegtion

algorithms is presented in chapter four.

results of perfomance characteristics of some detection
algorithms are also presented in this chapter. An Applica-

tion of a probabilistic detectio orithm on garbage

collection is the topic of chapter five.gfinally, the con-
o : N

- . .
, Y

The concept of state for ‘a complete system, which is-

The following

Heurietic test .

f‘.’

)

"
&



clueione of this thesis and some suggestions for future work

are presented in chapter six. S

1.1. Distributed Computer Systems

'We are considering a' class of multi-computer systems
known ae" distributed coﬁputer systems (DCS). There is no
universally accepted definition for a distributed computer
system, but such a system can be characterized by the fol-
lo&ing'propertiee [Davies81):

‘= It inclldes an arbﬁtrary'number of computer systems and
'user processes; -

- Tﬁe arch;tecture is modular, consisting of a possibly
varying number of processing elements; . 7

- Communication is achieved via message passing on Shared
communication structure (excluding sharedcmeﬁ!5y);

- Some.system-wide control is perrormed, so as to prcvide
for dynamic inter-process cooperation and run time
management; |

- Inter-processg message trensit deiay 'is variable and
some non-zero time always exists between the occurrence

of a send event at a source process and the correspond—

ing occurrence of “the receive event. - - s

~

.The distributed computations in this thesis are viewed
- - \ *
'db being embedded in a DCS environment. It is necessary to

achieve a precise understanding of the DCS envirohment. The

-

"

[ 4

T

.
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following initial assumptions are made regarding their’

operational characteristics.

Channel Assumptions:

Inter-process communication is through point to point‘

directed communication channels;

Delivery of a message through the con\mmni;j:ation systen
takes a finite, variable, but positive time (Causa}l-
ty) . “ ‘

"an‘unbo'unded number of x'n‘essage. ‘buffers exist':u in each

channel;

\

No assumption, is made on the order of message delivery

in each channel. : m -

Process Assumptions:'

-

Processes commdnicate via messages t.hroﬁigh explicit
send .and rgceive events; ) ;
An event a in a process P is Atomic and changeﬂs the
state of P from the previous state r,‘o”l a new state,

which’ is denoted by S(a). An evént can be a Send Event .

" which puts a message into the buffer of an output

/|

]

e

channel of the process, or a Reteive Event which gets a
messaqe from the buffer of an input 'chgmnel% ot the
process, or an Internal Event which invokes an internal
operation of the g;ijocess. An event is completely exe-
cuted at one single process:’

A gbmmon Clock does not exist in DCS. ]

~

-
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1.2. Model of Distribﬁted Computation

The main; purpose of a model is to precisely deﬁ.ne
specific properties or characteristics of a system, so that

the properties of the system can be analyzed or even proved.
: A
In this subsection, a model of distributed comgutatioma' ina

DCS environment is reviewed.
) : ' B V‘ﬂ .
1.2.1. Partial Ordering

In the\fb}lowing, we define distributed computations in

. the DCS environment more precisely. We assume that a distri-

»
buted computation is composed of a, set of events that are

distributed among a number of prccesses. " Each event is

. Atomic and can be executed in a Single Process. A single

process is repreented by a Sequence of, events that are
ordered , by | the time of occurrence. Communication . among

processes is achieved by message passing.

As we know, ‘a computation .executed #n a uni-processor
system can be abstrécteé as a set of evehts and a precedence
relation: In the distributed envi;g\nment, “however, it is
som times i\n'\possible to say which of two events occurred
firZ¢.,\ i.e., the precedence relationship in A. distributed
colmputat:'lon is no longer totally drdered. The precedence
relation of a dist':ributed computation is .a partially ordered

relation (Lamport78] [Pratts8é].



pefinition 1.1.:

' ‘ A ‘distributed computation can be modelled as a set of
partial ordered relati?ns ‘"—>" on a set of events of a

& cémputation (Davies81]: '

s - 1If events a and § belong to a same process and event a
Precedes event g8, then a —> §;

-. If event a is a send event and event‘p is the corres-

; z o ponding receive 'event, then a —> BJ bac;guae of Causa-
et " s
‘ - If a —> B a?\d B —> 1, then a —> r, i.e., the
‘relatioon “i-—>"'is Transitive;

. - Two distinct events a and B are Concurrent events if
neither a —> g8, nor g —> a; . *

=~ a ~——> a for any event a (" stands for Not), i.e., the

relation "——>" is Irreflexive. - ‘ -
For any two events a and’g, if a —> p, then we say
event B Depends On a. If neither a —> B, nor 8§ —M> a,’
: then we say events a and § are Independent. * L

1.2.2. Spgcé-’l‘ime Model

\

_ Partially ordered events of a distributed computation

. can be graphically viewed as a ébace—'ripe Diagran [Altqfd_BS]
(Lamport78]. A space.—t;lme diagr.am‘is a two.dimensional e;rent

. graph as shown in Fi'};tire 1.1. Here the space represents

érocesses P, Q and 'R 'in the vertical axis. The time repre- -

‘ 3

. .
. . °
v
. .
*
" 2 - . L]
3

» * A
. . .

Wil e N R . B *



-

sents the actual time of occurrence of each e‘v-entk in the
horizontal axis. The nodes (points) denote ‘.events of the
aistributed’ computation. All the events that o'ccur in a
‘ﬁrﬁctss beloncj oto the same horizontal line. Message trans-
mission is identified l}jy a directed line from a send event

to the corresponding receive event.

P . P P2 P3 “Pg' Ps '
O o— O O 07 >_~
Q t'11| a2 d3- d4
(o) (o) O “ O >
R ry 12'2 ,-_' ra ) ]r4
o o o o >
0 ’ - . Time
Figure 1.1. Space-Time Diagram ‘¢

3

Ir a space-time diagia'm, e\{entg of different processes
are partially or:iéred, due to the send-receive causality. It
is easy to deduce that there is a p;ath from event a to event
B, if and only isf a has a causally effect on 8. If events

b

are concurrer}t then- such a causal. path does not exist

»

Figure 1.1, ?event rq4 depends on q;. 'I'herefore, there is a

path from qy to ry. Events p3, g3 and r; are independent. In

general, a space-time diagram is an acyclic: directed g;:'a'p‘h.

L]

=7 =

between th\em in the &pace-time diagram. For example, in g

[
LTty -
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/ The speg_e-time diagram is a graphical representetion of
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'partially rdered events of a distributed computation. It ie‘

used to/ Depict the {(temporal) depengence  of events, ,which
represe/nts ‘a possible history of the execution of a distri-
buted computation The space-—time diegrem is an Jintuitive.

and visible method for describing physical realities. It can

)aé used to define a’ qlobal state of a distributed system. In

/ this thesis‘'we use the space-time diagram as a Synonym for a
/ , Gistributed computation. _ '
/ . + . o

i / 1.3. Global State . _ S

' v

-

/ A Global State of a distributed eyetem is composed of
/ ' the local states of all comstituent processes and channels. -
The initial global state specifies that all the constituei\t
grocesses are in their initial etatee and (all the channels
are empty. The global state is altered by the . occurrence of
a event in a constituent process. A Receive Evént a can
v . " occur in the global state Sy if there is . a message M at the
head: of the buffer of input channel‘ C4 of process Pj. After .
the occurrence of event «a, .tnh.e global state of the system
' ,wiil change to S' which is the same -as S% except tnat the
state of Pj changes to its next etate S(a), and the state .ot
C4 no longer includes M. Simjlarly, a Send Event can be

envisaged. An Internal Event a déccurs 'in the global state Su

s

when a c@gnges the process state of Py to S(a). After the

‘
- ? 2
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occurrence of -this event, the global state of the system
will change to §! bhich is the same as S, except that the
‘process state of Pj changes to S(a). b -

‘o
i
<

- Although an Instantaneous Global State of a distributed

~system is a mathematical fiction, it is a very useful fic-

tion. The concept of global state in DCS is naturally based
on the concept Bf instantanéous state. In fact the concept
of global state' in a DCS environment is an extension of the
concept of system state in centralized systems. An ins-
tantaneqys global statge of a distributed system is cbhposed
of the local states of all its .constituent proc?esseé and,
gommunication channels, which were recorded at some Time
"Instant [Li87]. An instantaneous global state can be depic-
ted as a Vertical Cut in a space-time diagram. Iﬁ~Figu;e
1.2, line XX'=(S(p3), S(43), S(x3), Q-P(mjy), R—Q,(ﬁ3)) is an
_instantaneous global state recorded at t: Here S(p2), S(43).,

y
and S(rp) are Local Process States corresponding to process

" P, Q, and_R respectively. Q-P(m;) and- R-Q(m3) are Channel

states indicating a message M; in channel Q-P and a messageé

"Mz in channel R-Q. - ' ‘ .

-

® ) ) -~
1.3.1. Space-Time Cut \ )

o

-

We introduce two special nodes, .a Source Node S and a

L]

Terminal Node T, in a spﬁﬁe-time diagram.  The two nodes form

the first and last nodes in a space-time diagram és illus~-

. . -9 -
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v

.trated in Figure 1.3.
formed by a set of edges

node from the S node.

O

- _Edges. along mrizontal line in a space-time diagram

A Cut in a space-time diagram is

4

are Process Edges;

' - pefinitions 1.2. [Li87]:

- 10 -

Figure 1.3. Spéce-’l‘ime Cut
\ ‘ .

.

*

e

whose removal will disconnect the T

, ) P2 : P3
o) -1 —O >
.Iml _— i jma
| ,
Q d1 d2 Q3| 4 qy4 ds N
T Q 1 O Q
- P fma
. | )
R rg | T tt
(o] D } Q >
0 oy tX' Theoretical Time °
4 m»ﬂ ’ . .
. N
Figure 1.2. Instantaneous Cut
[ 4
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- Cross edges between two different horizontal links are
Channel Edges:; .

-~ A channel edge interseﬁctinq a cut is a i‘-‘orward Edge if
it emanates from an event node in the S-partition of
the cut and -terminates in the T-partition, else it is a
Backward Edge; n 5

- A c.ut‘is an‘ Inetanteneous Cut if it is a Vertical cut

— inr the space-time diagram at a particular time instant;

B cut ie a Consistent Ccut if it does not contain back-.

ward channel edges and has ,precisely one edge on each

horizontal line. ' ‘ ]

kY

In Figure 1.3., cut XX's= {s(p1), S(42), S(ri), Q-R(my),
R-Q(mz)}‘is an instantaneous cut; and cut YY'=(S(py)., S(qg).,
S(r3), P-Q(m3), R-Q(my)) is a consistent cut.

/#f
1.3.2. ch_éistent’ Global State
. Definitions 1.3.:
.A consistent global state is defined as a recorded

1

global ‘state corresponding to a consistent cut. ) ' . =

As explained in [bhandyBS] and ([Li87], a recorded -
_consistent globaf‘ state Sy may not ‘have actually occurred

instantaneously in the course of the computation. However,'
' =
if a consistent globa\l state detection algorithm started -
A
with the computation in the initial state Sy and terminated

-



R

/

/“with the computation in the terminate state S then there

exists a Sequence of computation (C1, C€2), such that S, is
reachable from So through Cl and Sy is reachable from S,

through C2. This is known as the. geachability Property.

e

Another important property-—of the consistent global
'state is‘ that a consistent global state /preservea the Global
Inv)ariant property. A global invariant of a distributed
'comégtation,j:s a prdperty satisfied by the ‘processes as long
as the Sequence of events of the computation possesses a
Valid @erial Uni-processor Schedule. :rhe state attained in
the computation of the eqnivalent event trace is a consis-
tent global’ state of the systems. In distributed computa-
tions, the actual phyéical time of occurnenoe of the events
is not important, but the 'precedence relationship bet@een

matching send and receive events must be obeyed. The global

invariant property can be used to’reveal this precedence

3

relationship.

-12 -
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4 : Chapter II. Time Systems in DCS

-

The main reason for the impossibility of making use of
the -instantaneous global staté~in a distributed system is

~

the absence of a Common Clock. Tf we had a common clocfc so
.\'t:hat physical time could be maintained, then an instan-
taneous global state of the distributed system could \bé\
. practically captured. Caneptually,. the, existence wof a ’
common clock enables one to establish a total ordering among

the events of the distributed computation according ’ ‘to the

time of occurrence. We. could interpret this total ordering

as a valid serial uni-processor schedule of the distributed

v

computation. In a uni-processor system, an instantaneous

v

snapshot of a computation can be obtained effectively.
According to the' definition in chapter one, this instan-
tanedus global state is a consistent global. state. In this
chapter, we will explore the relationship between time and

B the consistent global state in the DCS environment. o ™~

. s
%
)

2.1. Physical Time “

® .
The concept of t;.ime is fundamental to our way of think-

ing.’ In the absence of time, our world will become uninter-

| o ime

P
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: y orefable and, nobody' can ‘cooperate with_ others a;md nobody
needs . to :know others. When referring to timo, .most people
o are using Theoretical T,ime. 'I,‘heoreti:cal timo h an abatrao—y

tion of physical theory. In the real world we maintain Rnel
o, Time. Before defining the consistent global state by time,-

A we first examine’ the difference betwaen theoretical time and
real time. .
1 : ‘ e
. ¥ . ,
; 2.1.1. Theoretical Time and Clock . °
P ‘

\

©

Thedretical time s a dimengion dof the physical univer-’ )
. se which orders _the sequence of events. It designates an -
event by an q.nsf.;m‘t in this seguence (McCarthy87]. The

: passage of time is indiceted by a dev'ioe, called a clock.

h < .
X v

.Definition 2.1.: - . -7
Let TCj(t) denote-the “time -obtained by reading’a
Theoretical Clock at plage i at theoretical time t. The

b

theoretigal tiroe g‘yetem and clock satisfy the fol'lowinq two

conditions: } ) : .
TCl: - Vi,p [dTCy(t)/dt = 1 ] ]
' ¥ TC2: ¥i,3,t[TCi(t) = TCy(t)] . ' n
. - ¥ )

From TCl and TC2, we observe that the theoretical time .

system has two ‘functions: to order even’t;é and to assign time

0

‘instants. A theoretical clock runs contihuously forward and '

J

<

T L, L S
e . ) .
1
I8
-~

",
73
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with a constant speed of unity (TC1l) . The readfng of theore- .

' tical .clocks at different locations is identical (Tc2) »

-
R . | ¢

Real Time and Clock

[y

2.1.2.

| 4 .
, The', word Theory carries anh unrealizability tone.

there are no ‘clocks in the real world that satisfy

C'lo

Indeed,

TCl apd TC2. s in the real world#are Real CIOcks. Real
T 9 / A .
clocks are not v perfectly’ accurate and are not perfectly

¢
synchronized.'

Definition 2.2.: S P S -

R
Let RCi(t) denote t"he time obtained by reading a real
clock at place iat theoretical time t "The real time system

o+

enforces the following two inequalities.
{

RC1: There exists a constant € << 1,
\ s Vi\ﬁ [ldRcj(t)/dt - 1| < €] |
« RC2:- There exists a suffiCiently sma&l constant ¢, A
Vi,j,tlIRCi(E)-Rej(E)] <'6 1 & . =

N

Obviously, TC1l and TC2 are theoretical abstractions of

RC1 and RC2. The smaller the cbnstants € and § are, the more

'similar are “the behaviors of ' the two time systems. When €

" and ) reach their limit zero, real clocks become theoretical 0

>

clocks. L, ~ -

- ( . .

We inktpduce the concept of a Common Clock, which is a’

‘o

'.clock~tpat does 'not precisely keep the theoretical time, but

A —
a -

. .
y . e = 15 =~ . : 4
- .
. L

o
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@g .can be read identically anywhere (RCJ. and 'rcz'), with a
] . - b - -
common clock, all the events of%a distributed computation

can be totally ordered by their unigque time instant of

. occurrence, and most concepts in centralized systema‘ can be oD
) vdirectly mapped int‘o' distributed systems, Also, a consiitent
global ‘state can be easily capt:_u'red by means of a common L
clock. . - :

Theorem 2.1.:

An instantaneous global state of a distributed system
obtained at a specif:(c common time T is a consistent global’

state. Here, the local states of constituent processes and

4

channels are recorded at a common clock instant T.
» - v [

Proof: The instanténeous global state obtained at \a
‘ specific time inst\ar;t can be\ viewed as a vertical cut
in’a space-time 'diagram. Accordihg to our assumptiéns'_
in chapter one,, message delay in channels is strictly
positive. Consequentgly, the channel edges are gi@laygi ’
, forward ' going. Tﬁerefore, ita is impossible for a

s

vertical c;ut': ‘to contain a backward channel edge. Henge,

<

~

) ' . an instantaneous global state recorded at a specific

common time is a consistent global state. )

t

. -
—

Based on the nofion of a common clock, mechanisms us}ed ‘ e

for collecting system states in centralized syé‘t’em&can be

1
e - - o — . . ¢ ‘
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easily externded to the DCS environment. ‘We will ‘come back to

t]iis type of detection algorithm in the next chapter.

'l’heorem_ 2.2.:

5 . !

If each procesces Pj maintains . a real clock RCj, and if
, b
the local process states and channel states of Fj in a .
global state G are recorded when Rci = T, then the global’

state G may not be\a consistent global state.

Proot: Acéording to definition 2.2, real clocks in dif-
ferent processors may not be identical. For example, in
Figure 2.1, ch reaches T after '‘RCq reaches T. Cut &x'=

" {S(p3),  S(d3), ‘Q-P(mz)) contains a backward channel
edg?ﬂ( Q-P(;‘\z) . QOnseﬁuently, XXt is not a consistent

cut. / - -
. ' ‘ .
~ a
P X
P P1 P2 P3 . P4 Ps
: b -J A\ ) 3" 2 >
Iml [m————— -~ RCp=T Ll ’
.9 Q | ; fds dg ds
O o—T—0O O O >
gy 3! CQ=T Time
H - e—
xl o 3 -

Figure 2.1. "'Real Time Instantaneous Cut _

-
In Figure 2.1, process P has received a message yet to

be sent at a future time. The globa“b state information
¢ represented by this .cut clearly vioiatgs Causality. Indeed,

»

- y7

)

e .
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the events contained in ‘the S-partition-of the cut do not
have a corresponding valid uni-processor schedule. A way to

. )
avoid this anomalous behaviour will be discussed in the next

chapter. e .

The definition of consistent global state does not
necessarily need the notion of common time. The common time

is useful only because it makes the concept of global state

in the DCS environment as intuitive as that in the &entral-.
ized system. What is really neede;d/i/s. mechanisms which model

" the causal:}.ty between arbitrary events. These mechanisms dg

not necessarily refer to t‘:"heoretical time. We call a mecha=-
niem wlfuich completely characterizes the causality, but doe_s
not refér {:o theoretical time, as a Virtual Time System. In

the following, we will develop two such mechanisms.

2:2. Virtual Tine

N « R
In [Chandy85) and [Li87], the consistent global state

"of distributed computations is defined oh a Sequence of

events which corresponds to a valid serial uni-processor

. schedule. If event a precedes event B', then a appears before

B in. the sequence. The position cf the events in a sequence
can be regarded as the virtual t‘:ime at which the events
occurred. The virtual time system is-a flexible abstrection
of the real time system [Jefferson85] [MarqanBS][Lamport?B]

It has been applied to convert partially ordered events of a

2

.

w
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distributed computation into a serial sequence. The theore-
tical time system, the common clock system and the virtual
time system constitute the Time %xstems in this fhesis.

Y
¥

-

2.2.1. Logical Time and Clock ' -

[Lamport78)] introduced a logical Time system to exploit
the precedence relationships among distributed events. In
this systemn, Logical Clocks are used for Labeling thé events
of a comnytation.‘The igtéger label of an event identi;ies

Ve

the logical time at which the event occurs.

Definition 2.3.:
Let LC(a) denote the logical clock label of event .

The LC(a) ust satisfy the following condition:

LCl: Vo gla—>f > LC(a)<LC(B)] -

The partial order relation "—>" |is define® in Defi-
nition 1.1. LClJasserts that if event a precedes event § in
the sequence, then the 1ogid§1 clock label of a must be
smaller than that of B8; if the lbgicai clock label of event
a is smaller than that of event B, thénfthe relation "g

. precades a" is impossible.

~ AN

Ordering events of agdistribg;ed computation according'

to their logical clock labels produces a’'valid uni-processor
schedule of the computation. If the logical clock labels of

two' events a and § are identical (whiéq is possible, we will

- 19 -



discuss it Iater), then a can .be placed'ehead of 8 in the

' sequence, or vice versa.

-,

. |\ .
Let (a3, @3, ..., ap) be a Valid serial uni-processor

schedule of a distributed computation according to: their

logical clock labels. Let Sj be @ cut of the distributed

o™\

computation with events a,, aj, ..., and,ai in.the s-parti-'

tion, "and events ai+1, ...; and a, in the T-partition.

Theorem 2.3.: 84 is q consi§tent cut. S . L
Proof: Suppose there is a backward chapnel edge: in the
B cut Sj, i.e., there exists 1 $jS i, 1 <ks n such that
ij ax —> aq. Since ay — o implies LC(ak)<LC(aj), tha

existence of a backward channel implies that event ak

' should appear ahead of event aj in the sequence. This

is Contn@diction as k>j |

Ly

. | The aboye theorem suggests that logical clocks 'can be
used for detectidng eonsistent global state._The detai}s'mill
be_ discussed in chepter three. The logical clock has been
used in a number of applications, such as deadlock datgétion

and termination detection [Lamport78] [Morgan85] [Chandy83].
-~ ' .\

- - The logical time system is’ only used for producinq a
sequence of. events for a computation which possesses a valid
serial unirprocessor schedule. In the case of distributed
computations, there_afe some events which'ere\non causal and -

can be executed Independently of one another. Their logical

L

- 20 ~
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\\n /,. . .

clock 1qbefs cannot reveal such a, relationship, which we

¢

call Independence.

Theoren 2.4.:

o

. , ’ '
Independence among the events of a distributed computa-

‘tion cannot be ‘'revealed by examining the loqicalﬂ.clock

labels of the events. -

Proof: . Two events a and 8 in a distributed system are"

independent events if neither a —> B, mor f-—> a.
From Lgl,. if two events are g:oncurrent, their logical
clock labels do not have to satisfy any constraint. In
- othér word, it could be that LC(&')?LCkﬁ), LC(a)=LC(B),

or LC(a)<LC(B). ‘ o =

’

Suppose we have a set of events of 5 distributed system'

and each event in the gét is labelled with a logical time

insf;nt. Assume we have two\;pbels LC(a){LC(ﬁ). We cannot
deduce whether a precedes B or they are independent. qu
example, in Figure 2.2, ;C(r2)<LC(q6)'does not imply-r, —>
dg, while LC(r2)<ﬁb(q8) does imply rjp _— qB.,Théréfore, we

Conclude .that the logical time system does not Preserve the

independence information. . ﬁe need a labelling mechanism.

1 —

which reveals indeQQQQgJE distributed ébeqts.‘

A logical clock LC(a) is a function from a.set of
g \
events of a computation to a set of integers. In practice, a

1C(a) éan be any fﬁnction as long as LC(a) satisfies LC1.

4?‘ 4 - 21 -
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. .
The following algérithm is an implementation of the logical

4

clock designed by [Morgans85]. Figure 2.2 shows an example of
executing this algorithm.

P | 1 2 3 4 5 6 7
J J \f v 1% ‘ 01 U »
' . 3
Q 1 3 4 , 16 8 9 ]
(e (o) (o) O~ O >
R 1 2 15 6 ‘7 8 o
(o O i O O (o O >
-Logical Time
. | Figure 2.2. Logical Time Examble f

N

Algorithm 2.1.: ' .

_Each constituent process of a computation maintains an

integer variable ILC as its logical clock. The LC is ini-

tialized to zero. For each process, iﬁmediately before the'

. occurrence of an event a, do: V ',

P4

)

Begin ‘
v Case a is a Send Event (A),
Begin . . .
LC :=LC+ 11 g ,
s _ ST i=LC;
append ST as time stamp on the outgoing message?
End; )



Case a is a Receive Event (B):

Begin

ST := time stamp on.the income message, o ¢

IC := 1 + Max( LC, ST); - | )
End;, '

case a¢ is ah Internal Event (C):
IC = LC + 1;
End;

End; - [

. \
’ N

-
“

"When the event a occurs, the value of IC is regafded as

.the logical clock label of a:

-

Theorem 2.5.:
The labe&g function LC(a) implemented by algorithm
2.1 satisfies LC1. .

v -

Procfz By definificn 1.1, if event a, depends on event . .
R ag, then there exiets a‘seqﬁence‘qf eyents ao;—al, ooy |
ay so that evencslai (0sism-1) and aj4q are either in
. the same proceés and aj precedes a@j4+j, Oor aj is a send
event and ai+q is - the corresponding receive event.. In

the former case, LC(aj)<LC(aj4)) by case (A) and (C)' of
algorithm ;.1?‘or in the latter case, LC(aj)<LC(aj+i)

o ) .
.by.case (B). The relation new js transitive, therefore,

we have LC(ag)<LC(ap) . . ’_ § | -

2.2.2. Global Time and Clock

)

' ' Y
Since the publication of [Lamport78], the use of par-

tial ordering as a, 1ogica1 clock in place sof the common

clock in a distributed. ‘system has become apparen@ The

e
v
R4
”
~
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events of a distributed computation are expressed' as a

partial order. We have observed that the logical time system

explained previously implies a totally ordered relation and .

cannot be \Qsed to represent the independent events in a

distributed cbmputation. We therefore propose in this thesis
4 Global Time System to replace the logical time systen.

This global time system specifically}addressas the indepen-

i}

den;e of distributed eévents.

Like a logical clock, a global clock maintained in =a’

global time system is a mechanism for Labelling the events

of a distributed computation. Suppose a distributed system
is composed of N processes and a set of events S.- The global

clock label of an event represents the global time instant
’ ) r

»
at which the event occurs.®™

~

Definitich 2.4.:

A-global clock label G'ié'an N;eleﬁent vector <d1, Gy,

e GN>. Gy (1<isN) is an integer. The irreflexive and tran-

sitive .relation « is defined on these global clock labels.
Two labels LA and LB are related by "«" iff .

- Vien[ LAj'S LBy ] and 34N LAy % LBy ] ~ 'm
=t ‘ . .

4

. Definition 2.5.:

" Let GF(a) denote the global clock label of an event a.
GC(&) must satisfy‘the following requirement:
GCl: Va,ﬁes[“’—>ﬁ S m—> GC(a)«GC(ﬁf] ™

<

- 24 -

-

v"‘

B

C
o epadn af

;itgéﬁ

it

o
Pri s

4



y oy *
‘ L}
GC1 asserts that event B depends on event a if and only

4if the global clock label of a is earlier ( « ) than that of

'd
global clock label of &' is earlier than that of B, nor vice

versa.

R
The major difference of the global time anq‘thé logical
: ”

we can cdiggbver the - precedent relationship aﬁong then.
® - "
However, with logical clock labels, we cannot distinguish

two events are dependent-or not.

A global clock GC(a) is a function from a set of events

to a set of labels. The requirément which the ﬁuncéion GC(a)

qust satisfy is contained in GCl. The following algorithm

" implements a GC(a). Figure 2.3 illustrates the algorithm;

Algorithm 2.2.: L

Each constituent process of a computation maintains an
N-element integer vector GC.= <C;, Cz, ..., Cy> as ité
global clock. The Cj are initialized to zero. For each

- process Py, immédiately before the occurrence of an event a,

do:
Begin - ' .
Case a is a Send Event (A):
" Begin’
. GC o <C1, C2' LRI Ci+1’ LRI ) cN); g
) ST (:= GC;
’ append ST as time stamp on,the outgoing messag&:
a T L End;
. . . v
- - 25 -
. " ~ X
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. . ..
f. Events a and f are independent if and only if neither the

time i{s that when events are labelled with global time, then

i
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Case a is a Receive Event (B):
Begin ‘ . ,
. ST := time stamp on the incoming message;
for each j (0SjsSN) do ..
Dy 3= nax(cj, STj).
GC '- <D1, Dz, XY Di+1' se ey DN)’ 3
End; ’ )
case B is an Internal Event (C): : >
Gc o= <C1, Cz, LN ) Ci':"‘l' . e ey ‘CN>,
End; ' .
End; * . '

<

When the event a occurs, the vﬁéy of vector GC is the

'global clock label of a.

P <1,0,0> <2,1,0> <3,1,0>  <4,3,3>
' : O~ O Q== () T ?
\ e
| I 1
Q {4 <1,3,1>
(o O O - >
<0,1,0> <1,2,0> ,l_l
R ‘ <1'3'4>
- O O o~ (» >
. <0,0,1> <1,3,2> <1,3,3> Global‘ Time

Figure 2.3. Global Time Example:
l . “~ . N
Theoreg 2.6.: * N
The ftincti::n GC(a) implemented Sy élgofithm 2.2 satis-

Y

fies GCl.
Proof: \For any two events ag —> @t

O By definigion,l.l, event ay depends on event ap //

implies that there exists a sequence of events ag, @1,

+

ces, Oy 8O that events aj and aj4q (1sism-1) are either

-26 - i
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in a same process and aj preceqés ai+1, Oorjaj is a send
‘avent and aj;q is tpe corresponding receiwve event. In
the former éase, GC(aj)«GC(aj4q) by case (A) d (C)’of
the ﬁ}qorithm 2.2. In the latter case, GC(aj)«GC(aji41)
by case (é). Relation "«" is transitive, theref&re, we

have GC(ag) « GC(ap). .

Y

Conversely, for anyrtwo 1ébels GC(q)«GC(B):

(1) suppose even£ B ——> a. From the previous proof,
we have Géiﬁ)«GC(a) which is a Contradiction.

(2) Suppose events a apd B are indepéhdgﬁt. Let a be
in process Pj and § be in process Pi. According to our
algorithm, GC(a) {>GC(B)i and‘GC(g)j<GC(pij, whicﬁ means
- K]

‘>

that GC(a)«GC(B) is Impossible. g . o=
4

Corollary: ’ ) ' L

The global clock GC(a) infplemented by algorithm 2.2 is .

a One-To-One functiop from an event set of a distributed

computation to a global clock label set. \

. Algorithm 2.2 offers us a way to identify the evengs of
a distributed computation- uniquely. If every event of a
distributed computation is stamped with its global time of
occurrence, then we can easily reconstruct the space-Xime

diagram of the distributed computation that took place.
»

Since some properties, such as global state and global
. A - )

4
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invariant can be visualized on a space-time diagram, the

gtobal time system is a useful tool for many applications.’

L

s )

The information maintained‘by the globai time system is
a superget of that maintained by.’the logical time syltém.
For ex mple, the global time system can be used to derive an
evénf: sequence which is a valici serial:- uni-processor sche-
dule for 'a distributed c?xt{putgtion. A séquence “can bé iimply
obtained by orde?i’ng (".«(«") the events linearly according to
their global clock ldbels. In case neither Gé(a)«GC(ﬁ) ' r;or

GC(B) a'« ‘Gc;(a), we can arbitrarily place one ahead of the

other. '

[

~ The global time system is superior to the ’loéical time

system. The relation Mt is isomorphic to the- relation-

>" among the xevex;ts of a distributed compu}:ation,
whereas the-relation <" on logical clock labels does not
" possess this  property. Wi_th the globql clock labels, we can
igeﬁtify ‘'whether two events of a computation are dependent.
To identify indepgnden“tly distributed events is crucial in
.some applicatiogs; An example ‘of such - an application is
presented in chapter five. The global time system ir a

. practical model for reéresentingo distributed computations in

¢

the DCS’ environment. -

“ ’ Al
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Chapter III. : ‘~ : : o
Copsistent Global State Detection . "o

*

.

- - . s - 8
| 'Many distributed computations require gathering of
‘ 'global states in decision making. Such a requirgﬁent can be . °
‘ efficiently met if a good method for gathering global infor-— :
mation exists. However,. as explained( in chapter one, an’ ¢
Instantaneous Global state of a distributeUd system. cennot be
Dr'eali;stically obtained. In other words, an eiact snapshot of

an entire distributed system is impossible to obtain.

) - Among the different kinds of 'global state classified in-
/ [DNi87], the COnsistent Global State is the most /hnp(r-gl\t v
one. ‘A consistent glob’al state of a distributed computation * ’

» » . .
) possesses the properties of Causgliﬁy and Global Invariant

)

- 'p'reservablility. 'These properties are useful in %ynamic P

- . .‘resource alLocation, distributed system debugging and diag-
[ N I

nosis,’ and fault-tolerant distributed computation [Lig7].

? —————

\_\ However, consistent global states are not easily recordable. ‘
. ‘§ _ We must provide mechanisms to Coordinate individual proces- )
o . .

. ses in local state recording or to interpret and selegt

relevant local state recordings and Compile them to form a

-

et fe e
" P ¢ MR -

consistent global state.
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To detect a global state in distributed systems is not
as eésy as in bgntralized systems. In the DCS environmaﬁt,’a
master site which controls all physlq;lﬂbn logical resources

may not exist. There is -no common clock which can be used .

for process syr{chronization. What we can do is to allow-
"individual processeé to record their own process and channel

states. This means that the global state detection algorithm

is intrinsically distributed, i.e., every process contribu-
tes a little to the global state detection without perfect

synchronization in physical time.

Typ;cally, a globalyétate detection aigorithm consists’
of a set. of processes that are coordinated in their local
state recording. -There -is a Coordinator which assembles
local states of individual processes. To detect a consigtent
global state, a Two—PhaQe Procedurq is . foilbwed; In the
first phase; called the Probe Phase, processes are coordina-
ted in the process of local state recor&ing.pBecause of the
asynchrogoué chgracteristics of DCS, local states are %ot
recorded simultaneously in different processors.. Usually, (

the probe phase will bua;antee that if an event is accounted

" for in one local recording, then any cause (predecessor)

event of it must be also accounted for in some other process

recording. In the second phase, called the Compilation

Phase, the coordinator gathers all local states .and compiles

- 30 -~
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\\\?elay if recording is coordinated.

fe

~

then to form aicénsistent global state [Venkatesh88]. Ob-

<

] viously the semantics of a consistent global state are

application dependent.

A consistent global state .detection algorithm shou}d

minimize thg.COofdination overhead. This is not only because

>

the cost of communication between computers is much higher

than that within a computer, but also because of the severe

delay to the pending computation caused by the communication

v

In this chapter, we will explore and introduce some

consistent global state detection algorithms in the DCS
environmenf, hereafter referred to as detection algorithms.
Based-,on ‘the Dégree of process coqrdiriation, 'wer classify
consistent global state detection aigorithms' in£o three
categories: Punctual Algorithms, Coordinated Algorithms, and
Probabilistic Algorithms. In most of our discussion, %e
concentrate on the probe phase. of state recording. We will
use the term local information to denote both‘process ana
its channel states. | |

~

3.1. Punctual Algorithm g o

There are various ways to achieve syﬂbhronization. A

rather obvious way is to use Physical Time. In:centraliéed"

systens, processes can be synchionized by using Interruption

- 31—
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Mechanisms./ae borrow the idea of Time-Out Interruption in

deriving' a class of detection aigorithms.

In a centralized system with a common clock, an'insfan-
taneous state can be captured by using a time-out mechanism.
- . 4

At a specific time instant, the time-out interrupt mechanism

" preempts the system control and enforces a process to take

local state recording. We extenq the time-out .interrupt
mechanism to DCS using one of the time systems presented
eaglier. This extended time-out mechanism enables us to
force précesses of a distributed camputation to record their

local ,information at an arbitrary Pre—specified time.

3.1.1. Using The Real Time System N

s
To extend the time-out mechanism to DCS, a direct and

simple way is to utilize the interruption system on each
machine and synéhronize their real clocks. In practice such
a synchronization is inexact. As we proved in theorem 2.2,
an instantaneous global{state obtained by us%ng real'clock§
in different processors may not be A consistent global
state. However,iif we can synchronize real clocks with a‘
ceftain accuracy (defined below), then the agomalous pheno-
menon in state recording can be eliminated and a consistent
globa} state can be captured by applying this extended time-

out mechanism.



\
> a

. Let 7 be the shortest ti%ﬁ for transferring a message

between two arbitrary processes. With r and € (RCl), we can

synchronize real c;bcks in 1;cs so that the difference of any

two clocks will be less than a small § (RC2) [LamportéS]

[8hins7].

Theorem 3.1.:

If a message of a distributed computation will not be
put into the bﬁffer of an input channel until its transmis-
sion time is longer®than u > &§/(1-¢) a& if local states are
recorded at thg same real time T, | then the instantaneous

PN
- .

lglobal\sty is a consistent global Egtate.

’Prodf: The reason for the anomalous behaviour is that, in
a global state, the real time instant ch(t') of an
‘effect event # at processor j is' earlier than the ;eal
time instar;t RC{(t) of event a at processor i that
causes B. To avoid this ’anomalous behaviour, we must

guarantee that RCy(t')>RCj(t): Since the time delay

between a. send event and the corresponding receive

event is longer than u, then we must show that:

vi,j,t[chkt+¥) > RCj (t) ] (A)

From RC1: vj;t[ldncj(t)/dt - 1] <€] and € << 1

— (3) Vj t[RCj(t)-RCj(t+u) > (1-5)*p] (Omi‘t)
(b) ¥y t[RCj(t+#)'RCj(t) > (1-6)*u]

—> Yy, t[RCj(t+u)-RCl(t) > (1- e)*u-nci(t)+ncj(t)]

L}

e
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b o
From RC2: ¥y i3 [|RCi(t) - RCy(t) | < )
L= ¥, 9,4 [RCH (E+u) =RCy (€) > (1-€) #u=§)
Inequality (A) will hold if (1-€¢)-86 > 0, i.e., ,
v B> 8§/ (1-€) ‘ - \

- ‘\2\_ ©
The Acr\it):“ial pi“oble\m here is to obtain a small enough §
(with certain 1 and €) so that a punctual algorithm using
real clocks can be practica:h)'{ applied. Real clocks can

—~—

drift with respect to one another. They must be éeriodically

. resynchronized. One. ‘simple' scheme for synchronizing real
AY

clocks in DCS is to allow one computér to send a reset

v

+signal periodically to every other computer through a broad-

casting medium. Another scheme is to adjust the rate of

individual 1local clock periodically, based on information .

gathered by one computer [Gusetta87]. This has the advantage
H

that there are no discontinuities in the value of time.

Using the time-out interrupt with the a};ove restriction
provides a simple‘ and yet effici‘ent detection algorithm.
There is no coordination overhead in local state recording.
The coordination overhead is replaced by the clock synchro-
nization and the message delay caused by satisfying 6/(1-6)
The disadvantages of this detection algorithm are that every
message suffers a delay g > 6/(1—6), and cox.;\putations gt a

.

process may be interrupted due to local state recording.
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3.1.2. 'Using The Logical Time System

3

5 ' .
We hoﬁe proved in theorem 2,3 that the logical timo system

can be used to detect . a consistent global state in a DCS

environment. The folldwing is a detection algorithm:

Y

Algorithm 3.1.: ' d

ﬁach constituent process of a computation maintains an -

integer variable LC as its logical clock. LC is initialized

to zero. Each process also maintains an integer variable TO

as its time-out clock. TO is set by the application.
..

immediately before the occurrence of \ an

For
each process Pjy,

event «a, do:

Begin
OLD_LC :=LC; -
case a is a Send Event: B v
- Begin - :
' Lc = LC + l' . ) -
ST := LC;
append ST as time stamp to the outgoing message.
End;
" case «a is a Receive Event:
Begin
ST := time stamp on the iqcoming messagen
I IC := 1 + Max( LC, ST);
End; '

‘case @ is an Internal Event:

LC Y= IC + 1; ’
End; , , ) ” ,(‘
if ( (OLD_LC < TO) && (LC 2 TO) ) then

Begin

record local process state of Py?

send local information to the coordinator,/z -
End; -

End; N B . ) v m

record local channel states Pj: -

The logical time system is defined in definitioh 2.3..

ERERE o ..
ﬁ:}-ﬁd’rp&.‘i\ N e - S

-
-
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" Theorem 3.2.:

-

A globa\ state recorded at any particular logical alock
label L by Algorithm 3.1 is a consistent global state.

. ?roof: Suppose a recorded~§lob:i state is an inconéistent
globa}"state, fhen there must exist two evehts a —> 8
so that g is accounted for in the global state while a
is not included in the global state. From theorem 2.5,
we have LC(a)<LC(8)<L. Since 8 has been recorded in the
global state, by algorithm&3.1, we have LC(B)<L, there- C
. :  fore LC(a) <L. Thus,~qvent}a must be accounted for in

the ‘'global state which is a cOntradictioq with the

o

assumption. m

]

- ~ In order to record a con;ngtent globa% state by means
| of a logical time system, processes should be interruﬁted

right before their logical ‘clocks reach a ‘pre-specified

label L, énd then local states should be recorded. In a ;eal

time system, if a real clock i reaches T at time t; (refers

‘ , to, a clock k), and if a real clock j reaches T at time t;
(refers to the same clock k), then [tq - t,| will be guaran-

teed to be less than a small § (RC2). However, in the logi-

cal time system, if a logical clock i reaches L at time t1'

(refers to a real clock k), and if a logical élock j reaches

L at time t, (refers to ;he same‘real ciock k) , then there -

will be no § such that |t; - t3]| < é§. This implies that ev?h~

. * [
. . . :
fefe e - R S . , . R CA



‘3.1.3. Using The Global Time System

(.

though the local 'states are recorded at the same logical
clock label L, the physical time deviation. of occurrence’ of
local state recording may be unpredictably long. Figure 3.1
is an‘b}:ample of a poor case scenario for algorithm 3.1. In
thuis oexa_mple, we record a; consistent gloiaa,l. state at a
logical clock label 4. Here, process R will not record its

local state until the message from process P has been recei-

ved, which 4is a long time ,after P has recorded its local

state.
P [ 1 2 : 4, 56 7 8 9 10
O (o] = (] O—0 (o O O O >
: L ,
Q 1 2 l et . 6 19 10 111
O O_Q—Lu o— O (o) (o (o >
° 3 : 4 5 T : -
R 1 O 111
(o (o] "-I OQ >
» 2 \ \\\' Logical Time
_J 1l 2 3 4 5 6 7 8 9
e Rttt e TEL T B L LR L BT L B P o L L LT LS
B ' R . Real Time
1 R *.'
Figure 3.1. - A Worse Case of Algorithm 3.1. .

' | h

.

The global t=ime% sy,st:_ém can also be used t-:o detect

consistent x‘g‘loi)ai ‘states. The following 1is ‘a detection
{. algorithm using the global time system: T, [\ Y
P _ - 37 - -
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‘ Algorithm 3.2.: - - .

Each constitu:ot process of a computation maintains a
N-element integer vector GC = <Cy, C3, «:c, Cy> as its
global clock. The C; are initialized to zero. Each process
also maintains an N-element integer vector TO = <T3, Ty,
..;, Ty> as its time-out clock. TO is set by the applica-

tion. For each process Pj, 1mmediatoly before the occurronco

i

case % is a Send Event: Y

GC 1= <Cl’ C2' oc-, Ci+1' Ci+1' ee 0y CN>'
_ 8T := GC;
append ST -as time stamp to the outgoing message;
End:;
ase a is a Receive Event:
Begin
ST := time stamp on the income message;
for each i1 (0<isN) do:
Dy := Max(Cj, STy):
GC H <D1, D2, e0 ey Di+1, cepy DN>: —\-
End[ . -
case a is n Internal Event'
Gc o= <C11 Cz’ oog' Ci""l, Ci+1, se ey CN>;

End; -

. if ( (OLD_GC « TO) && (TO « = 1C) ) then ) \
< Begin :
= , record local process state of Py;

record local channel states Py’

send the local information to the coordinator;
Tt End; } - =, i ,

End; :

R

* o«

3
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Theorem 3.3.: ‘
w .
A globalistate recorded-at a particular global clock \

}L

Proof: Suppose a recorded global state is an inconsistent

label G by algorithm 3.2 is a consistent global state.
’ '

global state, then there must exist two events a —> B

‘sucfx that f is accounted for in the global stzte‘ and a
\ is not included iné:e global state. From theorem 2.6, a

%, ) ) we have GC(a) «GC(f)«G. And from algorithm 3.2, we have,

) GC(B) «G, therefor_e GC(a)«G. Thus event a must be ac-

counted for in the recorded.global state. This isl a

\
Contradiction. - ' =

A
-./:'\ B
A global glock label G = le, T2, ..., Ty> at process -

Py can be explained as the time immediately befoye the

occurrence of its Tjth event or that immediately before the
“Bccurrence of the event effected by' the Tjtﬁ event af pro— ' (J-'
cess Py (1<4i,3<sN). As in the 1ogica1 time system, the time
, difference between two local state recérdings may still-be

very long.

3.2, Coordinated Algorithm

Implicitly! processes in punctual algorithms are co-
' ordinated by synchronized clocks. There is no other
coordination- overhead except in the form of clock synchro-

|
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nization. The punctual algorithms «z\:re easier to use than
other algorithms. However, punctual algorithms require clock
synchronization, and there d?uay exist an unpredictable time
delay among -local state recording at diq}fferent processes.

Coordinated detection algorithms are used to overcome these

, {disadvantages.

(4

2

The main working characteristics of the coordingfed
algorithms discussed in this section are as follows:
- At least one of the processes of a distributed computa-
tion is designated as a Coordinator. Only‘ a coordinatoz;
can acquire global statesq\E — .
- A coordinator coo‘irdinates other processes to perform
local state recording and pieces together all 1local
inforlﬁation to form a. global state;
- Processes cannot predict exactly when to record their

locel gtates.
~ LN

A numberr of coordinated detection algorithms working
under various environments has been pr;posed: As pointed out
l;y [‘Gligor85], n;—any distributed algorithms are erronequs.
Among these proposals, [Chandy85] formalized the concept of
consistent global st'ate and presented a simple algorithm

(CLA) to detect it correctly. [Lis7] dealt with the concept

of global state entirely and classified global ,stiates into

four main types. [Venkates88] proposed an efficient detec-

tion' algorithm M) to work on more flexible environme_nts.

A\

A

'
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o

Some other similar algorithms suggested by ([Fische82]
 [Bpzialetts6) . [Lai87] will not be discussed here.

)

( 3.2.1. Chandy's Algorithm [Chandy85]
~ I —"

' CLA is an algorithm for detectihg consistent global
state. It is a simple algorithm in the sense that 'it requir-‘

es communication channe€ls to be Lossless and FIFO. As point~-

ed  out by [Venkatesh88], CILA is an inefficient detection
algorithm because there is a Coordination Message to ¥be
transmitted on each channel. The following is a'description
of an extended CILA.
_Algorithml 3.3.: . R

Let P be "a coordinator of a distributed computation.

Each constituent process. of the compuatation -naintains a

monotonic g.nteger variable M, which indicates the ordinal
number of the latest local state recording 1nitiated by P.
For each input channel Ij, there is an input message counter

ch. M and ICj are initialized to zero.

>

1’1‘his is an extended CILA algorithm It supports multi-
ple initiation of global state detections. '




o s

s

]

A

. If P wants to detect a global sﬁate, do:

Begin )
. M.-M'*'ll
:= local process state of P;
g each input.channel I4 of P do
ICyM = 0; . o
CPsMu.s empty: o
Sty := M; .
A4 send STy to each of its output channels;

End,

For each process Py, if it receives an M from Ij, do:

/

\

Begin

MC := STy received from the input channel Ij:
ICj i= ICJl + 1;
C ) then . ‘
Begin T
= MC;
PSiy := local process state of Pé
for each input channel Iy of P4 do
ICkMm = 07
CPijM := empty:
STM Hiad A"l,
send STy to each of 1is output channels:
End;
CSiM := {CSymM) U {ch )i

if STy received from every input chunnel of Pj then

send PSyy and CSjy to the coordinator;

End:

~

Y

. . .
The probe phase of the Mth getection terminstes when

all processes have received STy.from all input channels. The

global state of the Mth detection is the local process

states (PSgy) and the channel states (CSgy).

<

The coordinated local -state recording procedure is

performed at every process of the computation.

So- the

recording architecture. constitutes a layer between the

application_ cqmputationr and the cq?munication subsystenm.

.

L

Y
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CO€rdination messages (STy) are not seen at the agplicatigp“‘;/

layer. | S . '

—

The correctness of this extended CLA has been proved by -

[Venkatesh88]. Since a coordination message is received-on

. every chanan} the number of coordination messages for eagp\

’

global state detection with N proceésses and E channels will

-

be equal to O.(E)=0(NZ2). - ' D e

¥

J3.2.2. ‘Venkatesh's Algorit [Venkateshaé]: .,

z
3

As'oointed qpt by [Venkatesh88]:
~  There are inportant applications of DCS such as distri-
huted. discrete event simulation and process control
involving periodic, sensor sampling which do not require
the communication channels tco be FIFO, ’

- It is’ imp0551ble fo aghieve totally reliable: communica-
tion; : y 2 ’ . N
f- CLA cannot advantageously utilize either the‘"out-of-'
band" signalling or the broadcasting facilities in _somé
- interconnection networks. J~- ~ ¢ ’:Q

' He has"proposed a’ coordinated -detection algorithm VIR.

VLR has been proved to function correctly eVen in Non-FIFQ

N

and/o? Lossy communication channels. ’ -

s, -

The central idea behind VLR is that . in order to deter-

ane the number of application messages in transit, we'-

¢ _4?_ ) . @

e s e .

O
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assign counters,v at both ende of a channel. This is unliko
the case of CIA where counters are only associated with

'input channels. The following is a description.of VLR.
, \ N ‘

Iilgori.t:hm2 3.4.3

Y
/ Let P be a coordinator of a distributed computation.

E#ch constituent process of thé™~"computation maintains a .

mbnotonic integer variable M, which indicates the ordinal

number of the 1atest local state recording initialized by P.

For each input channel I4 and output channel Ok, thera qi/ ‘an

input\;nessage. counter ch and an output message counter Ock
e .

\ \ /
., respectively.-M, ICq, q“i’ock are initialized to zero.

/
3

,{: ,

If P vkants to detect-a globaklﬁstate, do:

“Begi - . e
SV M M 1; ' — _
P M :=-local process state of Pi '

M = V k{ IC ’ OG.I( )l ]
S‘I’p:= M; 3 ) .
send“ST to each of its output channels35
End' 4

7

P
- hed

.

2This ‘'VIR can work on Lossless .and non-FIFO message
channels. It supports multiple initiation of global state detections.

. 370 send the M along every output channel is only for
improving detection response in case of losing an M. It is

"sufficient to send the M along the edges of a minimum span-
‘ning tree-rooted at the process P.

"



' Por each process P4, immediate before the occurrence of
event a, do: ‘ .

~ —_—

Begin
: case a ig' a Send Event: ,
' Begin -
let Ox be the output channel for the message;
OCy := OCk + 1;
° 8T '- M,
¢ " i gtamp the outgoing message with ST;
En
case a is a Receive Event:
Begin -
let 14 be the input channel of coming message; -
Tm ICs + 1;
gmp on the incoming message;
while RST > M ) do:
Begin .
. = M+ 1; <.
) - PSiM := local process state of Pj; . s
- ., CSjM = ¥y x( IC4, OCx };
- ‘ ST := M;
‘send ST to each of its output channels3; .
send PSimy and CSjy to the coordimator;
S End,
End; . _
End; . ’
End;

-«

The probe phase of ‘the MtD global 'state detection will

be termina{:ed when every process has recdrded its 1local
information which' has been stamped with ST=M. The global .
’ ' state of the Mth detection is the- local states (PSsM) and
the channel states (CSgy). The chahnel state of cﬁannél cj

is CSgM(IC4) ~ CSgy(OCK) - . -
] ] . TN
: , S .
' In VLR algorithm, each application message carries a
flag to toleraté the possibility of n&h—FIFo delivery or

loss of messages..The number of marker messages (M) in a

system witthlproceéses and E communication channels will be

¢




equal to O(E)=0(N2). Since a process does noﬁ have to wait
for markers or flag messages from the other message channels
af;ef recording its own process state, the probe bhasa ot
the VLR algorithm is faster than that of the CLA al%orithm.
A performance study of VLR and CLA will be presented ¢n

sl

chapter four.

/

If the communication subsystem of computations assures
FIFO delivery and Lossless transmissioq,.theﬁ a significant
reduction of markef/traffic can be obtained. In a FIFO and
lossless environment, the marker messages only need to
travel along‘the edges of a minimum spanning tree rooted at
the coordinator. The number of marker messages in the new
VLR algorithﬁ working with FIFO and lossless communication
channels will be (N-1), which ‘has an improvement factor of
O(N) over CLA. The VLR algorithm can be extended to detéét

other types of global state, which is out of the scope of

this thesis and will not be examined here.

3.3. Probabilistic Algorithm

<

o
As we eng;ined previously, the punctual d?tection
algorithms assume synchronized clocks and the coordinated
detection algorithms néed coordination of procésses in the
process of recording. Both';ncur synchronization overhead.
The response time of these élgorithms may suffer because of

this syncﬁ;onization overhead. We therefore introduce pro-
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babilistic detection algorithms to overcome the.above disad-

- vantages. In this subsection, we develop such a pfobabi;is-

tic detection algorithm.

& ¥ The central idea behind our probabilistic detectio;
algorithm is to allow processes to perform their computation
freely. There is no synchronization in eithr clock. update
or local state recording.. The price we pay is the inability

to gugréntee consistency in every global state formed from

the local recordings.
o

Let 5 = (S(gj), 3(g3), ..., S(gy)) be a global state of
a distributed computation, gj be the é@ent of local- state

recording at process Pj, and GC(gj) be the global time

. P :
instant ‘at which process Pj recorded its local information

8(g91) .

fheorem 3.4.:
B The global state S8 = (S(gj1), S(g3), ..., S(gNLy'is\a
consistent globdl‘state, iff:. ’
“d4,enl GC(gi)«GC(gy) ]
Proof: Suppose 'GC(gi)«GC(éj)o for some i and‘ j. From
:definition 2.5, event g; is a cause of-event g4. Hence
there must exist a send event & and a corresponding

receive event B8, such that GC(gj)«GC(a&) or gj=a, and

GC(B)«GC(gy) or B=gy. The message sent by a is a back-

-
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- ward channel edge. Therefore the recorded global state

is not consistent.

Conversely, if a recorded global state S |is
N 'consistent, the Qvents g1: 92+ +«., and gy must be
indebgndent, i.e, there does not exist i, 3 € N such

that GC(gi)i(GC(gj) . | -

Theorem 3.4 is the basis of our ‘probabilistic algori-

thm. It is used to detect or construct a consistent global

state from a set of local recordings of each process. Our
probabilistic algorithm .assumes the existence of the Global
Clock. We assume the global clocks are maintained as a layer

between the application and the communication subsystem;

In order to have an efficlent probabilistic detection
algorithm, \we adopt the working scheme suggested by
[Liskov86]. In this model, ?ﬁ/ere is a ;Logically Central:fzed
Information Service (LCIS) which stores a set of local
information fof each process. Any process c;n ask the LCIS
for a .consistent global state. The LCIS is responsible for

gathering local information from -individual processes and

assembling ‘the most recent local information of each procéss'

that c¢an be used to form a consistent global state. The LCIS
is not guaranteed ‘to offer a consistent global state at any

time, unless a large enough window or set of local “record-

ings is’nwintained.aThe LCIS 1is to be sdq@rimposed on the _

e - 48 - ”Q, *
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underlying computation, i.e., it-must'run concurrently with,

but not alter, the underlying application.

To detect a consistent global state, the probébilistic

detection algérithm does not synchronize local ;nformaﬁion

recording at each process. Instead, an individual process

-can record its local state at any time. If the communication

& .
supsystem supports message broadcasting, then before asking

ECIS, a process can broadcast a sighal to all other procggl'

*ses'of the computation. Upon receiving the signal, a process

can record its local information. This approach likely can.

enhance the probability,of success and improve the resﬁonse

time rof the detection algorithm.

‘The merits of the probabilistic algorithﬁ'are”twofold.

“‘Egrst, there~” is no‘coprdination'overhead: any process can

Yxequest a consistent"global state at any time, and processes

work independently., Secondly, a consistent global state

™
detection does not .require synchronization which may delay

the underlying computation. The probabilistic algorithm is |

more sugtable for real-time applications.

‘-
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.. Chapter IV. Global State Kernel

[§

s

@ The Global State Kernel (GSK), an experimental imple-

menitation of the global state detection algorithms by

[Chandy85] and [Venkateshsa]; is presented in this chapter.

The purpose of this work is to study -the performance charac-

teristics of the' algorithms. The implementation and its-
» 'y

measurement were perforr't;‘ed on a Distributed Network of SUN
Workstations, because n}easured data are isel‘ieved ﬁo be mo?e
realistic than s'imulated results. We inténci to caompare the
performan‘:e of these algorithms under some variations of Dcs
environménts, and thus extract the influential factors of

L

the environments.
' &

4.1. GSK Implementation i s -

qQ

The GSK provides a .test bed “or experimentation with
different global state detection algorithms under various
communication environments. Our GSK ‘implementatioﬁl follows
the organization scheme discussed in chapter three. GSK is a

software package that lies _be'tween the application and the

‘,'com'mun:k\cation systein. It has several built-in algorithms for

coordinated global state detection.

1

B
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4.1.1. Enviromments and Requirements

L]

The GSK was implemented on a group of SUN 3/50 worksta-

€ions (12), under the Network File System ‘(NFS). The NFS

&
serves as a master of file management and inter-process

-

communication control. Each BSUN workstation com:a\ins a

Motorola MC68020 processor, 4 megabytes random access me-

, mory, and a hiéh speed 32 bit VME bus. The workstations

communicate with one- another through an Ethernet. There is

no local. disk in any workstation. _

The Operating Systenm is an enhanced 4.2BSD version of
UNIX provided by SUN. There are two types of inter-process
message 'channels vailable —— the Lossy and non-FIFO mes-
sage channel and the Reliable and FIFO message channel.
These channels are point to point channels. Each endpoint
has' a global name (Port). An inter-process— message travels
from an out end'point (Output Channel) at a source process,
via the NFS server, ko the in endpoint (Input 'Channél) at
the destination process. An output channel can cemmunicate

with one or more output channels, whereas an input channel

can only listen to-®ne input channel.

Five -global state detection algorithms were implemented
in the GSK. They are:
- Chandy'’'s detection algorithm (CILA): ~




).

R
15

- Venkatesh's detection algorithm for rq;iablg and - FIFO T
communication channels (VLRc);:
. ’

+

- Venkatesh's detection algorithm for lossytgnd_non-FIFo
communication channels (VLRc-non); | o .

‘- Venkatesh's stable global state detection algorithm ford
reliable and FIFO communication channels4(vinsljf N

- Venkatesh's stable global state detection algorithm for A =

lossy and non-FIFO communication channels (Vlés-non).
. Ed

All above implemented algorf%hms*‘supported multipde
coofﬁinators and simultaneous global state detection initia-
tion: Sincé the stable global sﬁate is not the topic of this °
thesis, we Wi]:l not discuss VLRs and VI:Rs-non. .The main
charagtéf&étics of the consistent global state detection

»
algorithms are summarized in Figure 4.1.

A

4.1.2. GSK Design ’ ¢
P ’In our implementation, we assumed.that the GSK and the
application processes are executed in the DCS environment,
which were introduced in chapter one.
e : - :
- ) 4 . . /
\) h
. b .
> .' (I‘
-
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' Lossy & non~FIFO

Reliable & FIFO

A o~ v

1.CLA does not work
under this channel.

2.The implemented CLA
under this channel
is the same as under
the reliable & FIFO
channel environment.

3.Mdasured data are
accepted only when

. messages were cor-
rectly transferred.

Probe Phaée

b

1.Marker: Travels in all
communication channels
2.Flag: Not to be used.
3.Termination: Receive
a marker from all of
. the input channels at
each process site.
Compilation Phase
A channel state is the
number of messages re-
ceived between state
recording and marker
receiving.

Loy

Probe Phase ;
1.Marker: Travels along
“every channel.
2.Flag: Appended on all

application messages.
3.Termination: All

process receives a

marker or ‘flag.

Compilation Phase

A channel gtate is the
differencd of output &
input message counters

| Notes: -~

“(a) Listed properties are for one completed detection.
(b) Both Marker and Flag are coordinated ‘messages,
while marker is a standalone message and flag is
attached on each application megsage.

(c) Local information of each process-is send to the
coordinator along a minimum spanning tree of the
communication network rooted at the coordinator. -
(d) The implemented CLA algorithm under lossy & non-
: FIFO channel is only for performance testing.

Probe Phase

/\‘process receives a

Compilation Phase

of the channel.

l.Marker: Travel along
minimum spanning tree
rooted at, coordinator.

2.Flag: Appended on all
application messages.

3.Termination: All

maker or Tlag.

A channel state is the,
difference of output &
input message counters
of the channel.

Figure 4.1.
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‘Generally speaking, the GSK is resLonaible for monitor-
.
;ng endpoints of each message channel, coordinating the

application processes to record their local states, and

. assembling 1local :informatign into an appropriate global
| state. In our implementation, the GSK is composed of a
| B number of ‘communication processes and signial handlers. For
| each application process there are two corresponding proces-
sesa,—— Input Channel Monitor (ICM), and Process Manager
«" (PM). ICM is an jInput channel observer. Whenever there is a
readable message in the message buffer of an‘input channe;,
the ICM will send a signal to its PM. The PM handles signals®
from both the ICM and the userT:Specifically the PM performs
the following opefations: ' ‘
tﬁd - To append“Br extract coordination ipformation Kflags)
’ qp each application message;
- To generate spehial coordination message (markers) ;
= To analygze coordination information (markers or flags):
- To count the number of application messages at each

. <
endpoint of message channels;

- . (&
- To enforce the.local infaormation récording,at an appro-

-

- priate time; S ‘ :

- To forward the recorded local information to the coor-

dinator; - . .
3 . = To execute initiation procedures of globai detection;
. - To compile all recorded lotal information into a global -

state at the coordinator.

- 54 - ’ {
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The coordinated detection algorithms assume that.the‘
topolody of process communication is known. In order to
handle dynamic changes of process topology, we assume proce-
sses are responsible to report changes in their channel
connections. A General Manager is then established to relay
all these changes to form the complete process topology. The
responsibility of the GM is to gather 'and assemble the
channel connection information from each‘PM, and to Enform

‘ééch‘PMlof any ch&ngei The GM is a remote’ procedure. Any PM

can call it without knowing where the GM located. Figure

+4.2. shows the structure of the GSK.

<

&he‘central idea behind cCla, VLRc, and VLRc-non is that
1oc;i state reéordinglis coordinated so tﬁat iéian event is
accounted”for in the global state, then any event that may

# be a cause of that event should also be included. The nﬁmber )
"of user messages at each endpoint is counted in order to

-

reveal the number of aéplication messages in transit on the
channels. If an appliéétion procéss sends a message, its PMD~
will increment the associated output message counter; and
upon receiving ap‘application message, the PM will increment
the corresponding input message counter. Local state re-
cording is enforced by the PM. The PM, which serves as a

coordinator, is responsible for,}nitialliqg a global state

detection, collecting all. local information from each PM,

4.
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.and compilfng it into a global state. Several ecoordinators

' can concurrenﬁly activate global state .detection.

“A
Process Py cae Process Pp
Application .
Global State ) =7 -
Kernel -
‘ il <mmmmmpmmo=e> PMp, © )
B - G
0 i : GM } L 8
. ICM; Ce—— ' ., | TCMp
Kernel ,
Global Statej . -
Network L -
1 , —_ Y
k Communication Subsystem !
. g
> Message Channel .
wr ————> Signal Channel
------ > Initialization Control - .
! /
. N . L . . - .
‘ Figure 4.2. ,Global,state'Ksrnel . x//
4.1.3. GSK Reference Manual o - 9

An zpr plication can invoke GS; fynctions by inéiuding
the GSX 1ibrary in their pr@grams. GSK functions ars written
in ¢, which in turn invoke UNIX system functions (UNIX
library (3s) and (2) [Sun86]). In this subsection we des-
_cribe the syntax of the GSK functions.[&ost GSK functions’

have an error return, which normally is -1.

- 56 -
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Descriptions: )

Process Identifier (PID) : A user must assi a unique name

7 ~(PID) to each application prdcess. The GSK identifies

.application processes by their PID. ' -

.
A

~ 'Coordinator: Any appligation process can be designated to}

d tbe a co%rdinator when the GSK is initialized. Only a

coordinator can detect global states. There is no

AN

rw ~restriction on the number of coordinators in an appli-

_+ cation. However, the s o
4

' f‘- ‘?ffe

a coordination message is

onal to the number of coordinators,

and will

he -performance of the detection alg;rithm. .
: ’ ; ¥

in advance, which. processes it will communicate with. -
) ] N

« The ichannel.connectién is gescribed in a file which has

€ v 7:"
’ 12_PID, ...
. @ PID, s s 0 °
. ‘o .to nl_PID, n2 _P¥D, ...y R
r ‘ «
- ] \W\ Notes that the f11e has a terminator period (“ "),
o { The ch3nnel topology description above specifies
5" : ) that' there are message channels from process PID_1 to
. ) LI proi‘:ess 11_PID, from ‘procesé PSD 1 to process 12_PID,
7 ’ . ' '
R ) frqm_"‘prt?'cess PID_2 to process 21_PID, etc. Q
. ) . s . & - e R \ ¢ " P
L ‘ , °
) p < )
La - . ) - 57 -
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Channel Topology (CTj: Each application process must know,,
. \ P

t

.
STy

o

5
[



—

’ .
“-
K

/-'-L.—-/ *
el

a

3 3“ s
, {

. . ’
nr /

. Local State Fraﬁé'(LSF):

- > e e Yy e T R ES PRGY VR, I AR
~ <, . . T TR T T
- o

. .

Data Structure:

Process State Frame (PSF):

" struct PSF {

int PID;
char- process_state[max_length];
S A R

AW

The constituents of a local process state depgnd

. - -y
. - ‘on the application. The application should include a ) -
. procedure that can record local states of each process. ’
The procedure for local state recording Sshould have tha
following form.
Staée_recorder( state) *
char *state
. Channe%(staté frame (CSF): )
% . -Qtruct CSF  { ' :
int from_PID[max_. channels];
int to_PID[(max_channels]:; .
Ant counter[max_channels];
.7 - L)
[ - The constituents of a chahnel state include the
i—‘?} . counter[]. represehting the number of messages in tran-
; “ . sit on the channel whose out endpoint is connected to ~ .
’ process to_PID[] and wnose. endpoint ‘is connected to . -

14

préccss from PID[]}. - .

struct LSF (
int coordinator _PID;
int first_MKNO, “last_MKNO;
PSF process_state;,

CSF* channel state; “ :
- ) = \
»” .

.
¢ 1= B8 - i / —
. .
’ . i +
s
' . . . . .
-



4+ Global Sta/qa Frame (GSF): : ' .

. t . struct GSF. { o
~ int INN; 7~
int CFcC;

. - PSF localastéte[‘max _process];
— . CSF channel_state;

) ¢

The semantics of first‘_MKNo, last__mmd, INN, and CFC

will not be“‘t discussed in’this thesis. \Details are presented'

in [(Li87] and [Venkateshs8s8].

v

s

calling Sequences:
h Before executing an .application computation, the GM

should be run at a' console. The GSK is initializede when

-avery application process has called function start_GSK():

int start GSK( PID, Coordinator, C_topo) .

int PIDy )
LY char Coordinator(]:; >
CT C_topo; '

$

& g ¥ v RN
If a process calls gtart_GSK() with coordinator="y".,
then it will be initialized as a coordifiator.

int collect_state( GSF) \ -
struct GSF *GSF; -

return (GSF *GSF) ; ' <=

& v w ,—\‘r
Collect_state() is an asynchronous function, #.e., it

will return to the caller without waiting fo:i completion of

global state detection. The GSF does not contain a valid

global state until the field CFC of the .gl?al state frame °*

fe

~(GSF) 1is set to =-2. R X
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After initialization, 'the\“‘cu will: ask the user to
h

.'identify.the detection algorit

to be used, andathan print. \//

the complete process topology on the‘éonsole, which has the

following format:

A

Total Application Processes: xxx;

1. Pid: xxx;
2. Pid: xxx;

TQ:al Channels:
1. From pid:

Host Name: xxx; Coordinator: yeslnc:

2. From Pid:

Host Name: xxx; Coordinator: yes|no;

XXX

¥xx —=--=> To Pid: xxx;

Xxx =-=--> To Pid: xxk; C ’

Minimum Spanning Tree For Sending Markers:
1. Rooted At Coordinat Pid: xxx;

- 1. .From Pid:
2. From Pid:

XXX -=--=> To Pid: xxxf
XXX -==> To Pld: xxx;

2. Rooted At Coordinator Pid: xxx; //’/,

1. From Pid:
2. From Pid:

h]

XXX -==> To Pid: xxx;
XXX =---=> To Pid: xxx;

~ Minimum Spanninc.; Trd§ For Sending Local States:
1. To Coordinator Pid: xxx;

1. From Pid:

xXxXx —---=-> To Pid: xxx; ]

2. From Pid: xxx +--> To Pid: xxx;

2, To Coordinator Pid: xxx; - ) -

1. From Pid:
2. From Pid:

XXX --=> To Pid: xxx;
XXX =-=> To Pid: xxx:

All of the application messages actually filter through '

tives:

. . ' '
the GSK which supports the following communication primi-i

h |
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‘performance study is the Diffuse

.. .- x}’\ f o [ - {

int send_message( to_PID, length, message) .
int to_PID, 1length;
char *message;

int receive_message( from_PID, message)
int from PID;

.char *message;

return (int length);

+

There are several functions which are used for inter-
facing’ with the communication subsystem. Since they are-

machine dependent, the details are not described here.

™
s

>

4.2. Performance Measurement ' TN

The ' performance analysis of an algorithm is quite

important, because there are generally several candidates‘

available for a given problem. Abstract complexity analysis
often deals with the worst case scenario, and the,conclu-
sions are sometimes not convincing. In order to choose a

.

good algorithm for an application, we still have to evaluate
the ‘performance and requiréments of competing algorithms,
through-ggperimentation. In this subsection we present our
measﬁrement of the performance of the coordinated detection

algorithms. A/

o

4.2.1.; Diffused Computation

one of the applications that wé have chosen for our

AComputation [(Pijkstraso].

‘A diffused computation consis of a number of diffuséd

&

7
o
’
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~ processes (N)\ and message charmlels (E) . Diffused processes
cooperate with one another by exchanging messages through
'pointt to point message'channels. Among*ditfusad px;ocessen,
there is a special one, called the Initiator. At the begin-
riing of \a diffused computation, all diffused proce;sas
except the .’Hn)tiator are blocked, waiting for messages from

any one of their input channels, which are initially empty.

A diffused computation is started by the initiator
which sends messages to its output channels. I.tfter sending
the first message, the initiator will behave the same as a

normal diffused pr::cess. Upon receiving a message from an

— input chafimel, a diffused process can \send an arbitrary
(including none) number of niessages on it tput qnﬁela,
~and then block itself/to wait for a message from any input

channel. A diffused computation is terminated if all aqif-

fused processes are blocked, and there is no message in

transit on any channel.

The global infor;natiorf of a diffused computation is
collected with following purposes in mind: >
(1) Global Invariant Validation: I:et- 'S4 “¢1SisN) be the

number of messages that the diffﬁsed process Pj has

sent out; let Rj be the number of messages that Py has

X received. Let My (1<JSE) be the number of messagés in

transit at the channel Cq. Obviously, the following

\

- 62 =




(2)

]

equation will be always hold during the diffused com-
v . :

" putation: : .

IS; = IRy + IM4 L

-5 .
The above global invariant is used to validate our

GSK implementation. The constituents of the process

‘state of process Py are S4y, Ry, and Mjy.

&

Terﬁinatioﬁ Petection: If each diffused process sends
only a finite number of messages, then the compptation
will terminate eventually. For termination detection,
the constituent of a local process state for Py is its’

working state. The working state of a diffusion process

. 4 .
is either Blocked or Waiting.

The reasons for applying the diffused computations for

our evaluation are: - ' ~

i

The diffused computation is simple;

It dées not place any restriction.on the process topd-,
logy, which enab}es us test some best gnd worst- cases
for the detection algorithms; )

It does not place any restriction on the process commu-
nication. We can easily control the mésgage broadcast
patﬁ?rn on any ahannel;

It takes little CPU time for its own computation.




K
4.2.2. Communication Subsystem

’

In conventional djgtributed systems, the inter-proénga
communication is expensive compared with other syatem‘ func~
‘tions. When distributed algori‘timms ?fe implemented in a DCS
environment, the inter-pfocess communication overhead ' be-

comes critical. In the GSK, the communicition ‘overhead 1is

due to the marker traffic. TFurthermore, the real message

delay is very difficult to characterize accurately enough
by theoretical analysis. In this subsection, we will study
the performance characteristics of our commumication synt'cm.v
We wi'll pay' special attention to the - performance behaviour

of the different types of channels.

Py

The SUN Ethernet local network uses the Internet Proto-

col [SUN86]. It allows processes at different workstations

to communicate with one another by point to point channels,

called Sockets. A 'sockét has a type which specifies the
semantics of the communication. A Stream type provide‘sA
sequenced, reliable, | and two-way ‘connection baseq on byte
streams ;Jii:h an out-of-band data transmission. A Dgram type
supp;rts ‘datagrams, which are connectionless, nﬁn-sgquenced,
and uknreliable, and have a: fixed maximum message length. A
RAW socket‘ provides °a1ccess‘l to internal network interfaces.
Thg Raw 'socket is avz}ilable to super-users only. System

function Getusage()- is‘ used to obtain information about any

-~
~ v

-~
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resource consumed by the processes. Figure 4.3 shows the

¢

structure ‘of the SUN local network.

)
—

Application vee Application y
Process . Process
a - —— R A
c '
GSK —— S — GSK P
Transport hayer : -

& B
‘Communication Communication 4

Subsystem Subsystem 4 ——

Network Layer

Physical Layer

y |
Data Link Layer l -

A: User Time =--~- Time spent in user processes
System Time --- Time spent -in system processes 4
C: Real Time --- Time spent fo transmit of a message

N k . A

»>

}
@

Figure 4.3~ Inter Process Communication
: | (

* We suspect that when the.qdmmunication system saturat-
es, message propagation time will increase dramathally.
Also as shown in Figure 4.3, th;' bandwidtﬂ@&pf physicai
cASIes and- the commgnEcatiophsubsystem may affect‘EPe per-

formance chaf&cterisfics of message transmission.'In order

5 t s
ot PO S )

to identify the bottleneck of our communication system, we

b}

&
f
L
X
R
3
£
1y,
by
‘

)
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isolate these factors from one another, and test each one

independently. Testing processes are described below.

A Test Process was designed to measure the perrofmance

of the communication system. The test 'procegs sends a

message of 260 bytes to an Echo Process located at another “

workstation. The test process keeps tfack of the local time
delay from th? sending of a message fo its return from the
echo process. Each type of channel is evaluated under the
following three situations:

(a) Only the test and echo .process-pair‘_ is running in the

system. We denote such a situation by Communication

System Idle; s
(b) 30 Disturbance Process-pairs, which ]are evenly dis-
fributed M.;_\mo,ng the other 10 workstations, execute

. concurrently with the test and’ echo proceas-paif. A

v disturbance process-pair does nothin; but repeatedly
;end long messages to one another. This test is desig-
ned to saturate the physical and data link layer of the

/j'}omm nication network. This situation is described(\_ as

’C&/ Cable Busy.

(c) Three distu:;banc'e ‘process-pairs executed concurrently
with the test and. echo process-pair on the same work-
stations. These disturbance process-pairs are giiren a
lower priority than the test and echo processes. This

J
.

1 —
/ - . .



designed to saturate the communication subsystem. We

, call such a situation as Subsystem Busy.

riéurc 4.4 shows the message propagation delay for

Streah éhanncl from 3:00 am to 9:00 am. Each sampled data is

_an average of 200 tests. F:[t’;ure 4.5 shows the message propa-

gation delay for Dgram channel. Figure 4.6 is the average of .

our test. Figure 4.7 shows the performance comparison of the

two different types of channels under the ditferent test

g

situations. -

110
100 -M&M;
- 90 +- '
3
E 2 d
“ 80 )
70 )
¢ 60 R L L L 1] ] 1] |l t i i i
3:00 am 4:00 am 3:00 am 6:00 am 7:00 am 8:00 am 9:00 am
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.

From these measurements, we observe:
Laasage'propagation time for Dgram channels is.Six Time
faster than that of Stream channels; ‘

The physical cable is not f gztflgneck of th connmu-
nication system; r o .

Because of the NFS server, iﬁ is difficult to saturate

the communication subsystem at each work-station.

The local areavnetwprk has high bandwidth, low prdpaga;'

time, and extremely low error rates. However, it is
‘. _ .
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4.2.3. Performance Characteristics

. ®
impossible to achieve totally religble communic;tion. From
our .]measureme'nt, we see the price ;:e have to pay in o.rde'r. to
achieve "perfect" communica}:ion.l Message transmission .time 7
is six ti‘me slower. And even worse, according to our obser-
vation, it still does not achieve‘.i-o‘o% delivery. This result

reveals that fewer sup‘ﬁort requifementsf shoﬁld be placed on
! 3

the lower communigation layer, ta;md,'t,he application layer

should have more’ in::?ligence to handle 'communicai‘.ion érrob
. L e - v

to ignprove the overall performance.

’

-
« o -«
’

.

Our measurements are based on diffused dcomputations. We
assume there are N application processes and E communication
channels in a diffusion computatioi'l. We énélyze the speed of

a detection algorithm by deriving the time interval between

he initiation of 'a detec;tioﬁkind the final compilation of.
the consistent glébal state. We define the messagé comple-
xity as the number of t;arker message g;'ansmitted in the
communication. dystemn. Obviousiy, the twp compléxities are

inter-related.

/

As poig\ted by [Venkatesh88], the worst case message

‘a

coniplexity for CLA and. VLRc-non are O(E)=0(N2)4, and for

VLRc is O(N). It is not difficult to discover that the time

. 470 send a marker onto every channel is not \n'eces‘sa'ry.'
See chapter g.2.2. ’
| N

"’y . ! ' » .t 2
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' complexity for C’KA is O(E)=O0(N2), for VLRc\ and VLRojon are

O(N). Pigure 4.8 summariZes the time and m\essage complexi-
— ‘.ﬂ 1
ties of these thrxee, algorlwth;s. However, ‘thesé abstract,

\
bomplexity do not reveal the actual performauce, as the o

proportfonal conétant in the cbmplexity measures d6 vary s
T drasticalfy between two algorithms or between two,)different o
énviroﬁfnents . \ : ‘ ‘ -
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- Vge aphly . CLA\ CLA _non, VLRc, “and VLRc_rion to detect y .

terminatipn of a di ffused computation. CLA_non is Chandy's

-CLA. - algorithx \hﬁt&%ﬁﬁng lossy & non-FIFo commpnication

[ » & / '9 °medium. It is onl sed tor performance comparison. CLA does
o »

S
()

. ’not (support Qo’Ssy & non—F/mc%iommunlcatlon ehvironment. ¢

L However, we, fo\md in the course of our tW that’ messages in ‘

;;; - . ’ | "' : Dgram channel@ were, seldom lost or dellvered out of _sequence. .
i, . } .. at . \p?r ,thea purpOSe of comp.ariSon, we accep'};_‘~ the éneasured +data o
“_.." & " ‘v of CVLA non only in case every message has been correctly

- " trgn\.ferred. Lo - .
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) Process Topology:

Process topology ‘afi‘ects tha mar er traffic, which in

-~
turn affects the speed ot the detﬁ\ ction’ alqorithms. Fianc

4 9 and Figure 4.10 are two process topologiu used in our

. performance measurement.
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Figure 4.10.
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+  In application 1 and 2,

Appli?tion z

A
‘ : f

13 application prbcesses are

‘ \)Q)Qtations. Process P; is dosignatcd




o

-
and P9 are running at workstation 2; Process Py, ,P16 and

P2o are running at workstation 3; Process P13, P17 \and P21

\'are running at workstation 4, and ‘process P14, Pjg and
: i =

are running at workstation 5. Altogether 14 channels exist

1

in application 1, and 37 channels in application 2.

, ~
We fise application 1 to check, in a real computation,

4 .
how much time we can gain under the nop-FIFO channel enviro-

nments. From the performance point of view, the difference

)

-

between CLA and VIRc ii that in CILa, the PM‘- will send 1ts,

local information to the coordinator after 1t has received

{
one coordinatioa message from each input channel. We call:

the time interval from the recording of the 1local process‘
state by g a MM to the sending of the local information to

) L "\-L\ . .
the cobrdinator the Local Information Detentlon Time. Ap-

plication 2,6 is designed to maximize the local information

detention time.

Test Par;ameters :

)

The speed of the detection algorithms depends on the
performance of the communication systiem. The performance ‘of
[] . ke

the communication system depends on message traffic. We

3

apply the following three different Test ‘Cases to control .

the message traffmic in the system: v

“ 3
(a) After receiving & message, a diffused process sends one
’ ' »
message to each of its output channels, and then it
. [ ,‘. . .
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)

blocks itself, The coordinator Py initiates a state

.detection infrequently (evetry 5 seconds):
(b) After receiving a message, the diffusion procesi sends
T one me§sage to each of its output channels and blocks
itself. The coordinator P; initiates a state detection

. often (egory 2 seconds): >
(c) After redeiving a message, the’ diffusion procesa sands
five mesdages to each of its output channelsland then
block® itself. The coordinator Py initiate& a state

detection often (every 2 secondé). )

Figure 4.11 and Figure 4.ig contain the-measured data.
" for abplicatiohs,l and 2 respectively. The time unit used in
both.figuros is milliseconds. The St;te Detection Time is‘
real time interval in the coordinator statiod between the
invocation of :§011ect_state() and the derivation ‘ef the
. consistent globai ,state. The Local Information Detention
Timi. is -an averagé real time interval measured in each
process between the invocation of state recorder() and the
sending of the local information to the coordinator. The
Application .Message 1is ‘the tdtal number of application
( messages be sent out duriog the diffusion.computathgn//%he
Total Marker is the total numofr of marker nessages sent out
. during the diffusion computation. The underling SUN network‘

is too fragile to undertake the test course (c) when using a

-
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non-FIFO message channel. All of the measured data are from

the average of 25 te‘sts.

”y‘ - ]
State Local Application| Total .
Detection |Information| Message Marker ,
Time Detention | Sent Out |Sent Out }”
cra [a| 1134 22 196 276
b| . 1046 27 196 828 \
) VLRc |a 828 3 196 270 »
b 1087 ., 4 196 - 870 Y
CLA_non|a| ) 461 22 196 276
bl|'* 508 29 196 828
Q ¥
) VLRc_rion|a 483 6 _ 198 276 .
“ b 512 5 ' 196 828 :
‘ i . .
igure 4.11. Performance under Case 1 J . &
- i * 4
| L V.
. State Local Application| Total
Detection |{Information| .Message |.Marker
.- N asen Time Detentic‘m Sent' Out |Sent Out
. 1135 ¥ 202 4541 110
CLA 1322 267 - zé 541 660
. 3157 573 5185 1980
'd ]
. a 992 4 " 541 85
LRc| \\b \g;g\ 4 541 i 510
- c 2 ( 9 4927 1615
—~ la 841 246 541 110
P CLA_non b 827 220 541 " 660
. e 2777 599 5185 1980
. e ! - m‘ll' i
Co- i la 612’ »26 . 541 110 e~
- VLRc__z b 740 66 541 660 A
c "
) b Figure 4.12. Per"formance under Case 2 - , i
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Analysis of the Results SR
We intend to examine the relationship among the commu-
nication environment, the message traffic, and the speed of

the detection algorithms. The influence of thae communication

gpvironment and the message traffic on the speed are tested.

O ’
The speed is measured at the coordinator P; which is the

ronly user process running on workstation 1 during the test-

ing. The measured time interval at P, is equal to the time
consumptionufor the detectionualgorithm, plus the time‘sﬁhﬁt
waiting for the local information. This time can be obtained
by calling the UNIX function Getusage(). However, the time
spent waiting for the local  information cannot be obtained
directly. In order to include this time, we hacg\to use real

clocks in our performancé testing.

RN

\\ ‘ Because of the use of real clocks, it is inevitable

that the :esult' also includes some internal expenses which

is not caused by the detection algorithm, such as process

i

I

funct:'Lons. These uncontrollable factors— are the cause of

swapping, resource scheduling,” ‘and some system managemént

high variation in our measured data, even if we use the

5

a\iérage value of the test resulta.‘

- " . . . ]

The conclusions from our measured data are:

(a) The detection alg’orithms that use',gossy and non-FIFO

4

message channels ‘are faster than those that use feli-

. . : . .
. - 76 -
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(b)

abié and FIfO message channels. This guggésts that
allowin§ the application layer handle communication
errors will achidve better perfprﬁénce: ‘ |
VLR performs better than CLA br; fairly K conventional
distributed systems; whére'commphication is egpensive

compared to local cémmunication and la}ge messages are

traﬁsmitted more efficiently than small ones. From our -
observation, the time needed by CLA is almost equal to
that needed by VIRc plus the local detention time.’ In’

other words, it is.the local detention time.that makes
CLA sléwer éhan VLRc; . h

When thé communication system is éatur%Fed, VLRc algo-
rithm is better than CLA algorithm. This can be explai~-

ned as the message complexity of CLA is O(E), while,

_ the message compléxity,of VLRc is O(N). Wﬁen|measuring

the test case (c) of applicationhz, the local detention
time is double of that of test cases ‘(a) and (b). The
increase of message propagation time causes an extra

delay in global state detection.
L
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Chapter V. Distributed Garbage Collection
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Higim perfom;nce for many appl;cations is achievable in .
_ parallel or distfibuted systems. Such applications are often
v{zﬁritte{\ in applicative or logic programming languages, both
of which require garbage collection. In some imperative
. ‘ 'lax{guages, such as Lisp, SmallTalk, and CLU, memory space is
not deallocated explicitly and so garbage collection is
kre@ired) The\zrefﬁore, gérbage collection Qin a ‘distributed

computatipn is an important problem [Hudak82] [Waiker84]

[Hugpesas]ﬁ ) ) A%

In this chapter, we will present an effidient garbage
collection algorithm“for collecting obsolete objects in the

language CLU in a DCS environment. This algorithm 1 as deri-
vative of our Probabilistic global state detection algorithm

—— 'each Node (computer) of the system is responsible  for

its own collection.: '

"

- c

: ')
5.1. CLU Language Introduction

L ‘ . CLU [Liskov77]) :[Liskov84] is an Object_-Oriented pro-
* " . % - 2 .
gramming language, which regards programs as operating on

- Al

. ¢
Y el T we L

w,_,,v.x
TR
.
s L
e s ety *

4
o
Se,



potentially ever-lasting objects. Usually, programs are

developed by means of problem decomposition in a top down

fashion. :CLU provides programmers with abstraction mecha-

nisms for program, design and implementation. Compared with
conventional languages which support only Procedure Abstrac-
tion, CLU provides, in addition to procedures, linguistic
‘mechanismsn that support the use of Data Abstraction and

control Abstraction.

Data Abstraction is used to specify a new type of data
object. It. may consist of a set of objects and aﬁ set of
operations that characterize the behaviour of the objects,
such as object creation, object read-out and object modifi-
cation. Controlé Abstraction is used to sequence the needed
actions, gimilar to the operation' of If, Wwhile, \and For
statements in all other lar{cuages. In addition, CLU allows
the user to define repetition methods. A Procedure Abstrac-
tion specifies a computa}:ion on a set of input objects, and

the production of a set of output objects.

- P
Ll

Program Structure
' CLU supports structured programm1ng in which problems
are decomposed based on abstractions (objects and opera-

tions). Each- abstraction may be further decomposed. An

abstraction isolates the nse from the implementation, i.e.,

an abstraction can be used without knowledge of its imple‘-‘

mentation, or implementé‘d without knowledge of its use.

- 79 -
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A CLU program consists of a group of, Nodules. Each
module is either a single abség;ction or, if Parameterized,
a class of related abstractions. Modules are haver embedded
in each other. Mcsﬁles are a separate textual unit, and can
be compiled” independently  of one ‘other. There are three

types of modules in CLU:

Procedure ——— Supports procedure abstraction;
Iterator- —_— Supports control abstraction;
Cluster ——— Supports data abstraction.

A Procedure ;erforms an action on objects, and termina-
tes by returning objects. Argﬁments are Shared between the
caller and the ihnvoker, known as Call By Sharing. A proced-
{1re has no global variable unless it is defined inside a
cluster. An Iterator is similar to a procedure. It is uﬁad
to compute a séquencé of objects balged on its arguments. Ob-
jects "in the sequence are provided"‘ to the caller one at a
tim:a. A Cluster implements a data abstraction. It consists
of a set of Objects and a set of .Px\'imitive Operations to

\

create and to manipulate these objects. Operations can be

either procedures ‘or iterators. Procedures, iterators, and

clusters can all be parameterized. Parameterization provides

the ability to define a 'class of related abstractions in a

.
'single module, which implies that the module was written

without knowledge of the wtual types of parameters.

v :
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" denote the same object.

Program Semantics

The basic elements of CLU semantics are Objects and
Variables. Objects are data entities that are created and
manipulated by programs. Variables are object names (Pﬁin—

térs) used in a program to refer to objects.

Each object has a Type, which chara{:teriies its be-
haviour. A type defines a set of primitive operations to
E_g&te, and to manipulate objects of that type. An object.is
created and manipulated only via the operations of its type.

Objects can have con;ponents which are other objects. The

- ‘'existence of the objects is Independent of the activities of

the procedures andl iterators. The space; for the objects is
allocated from a dynamic storage area (Heap),ﬁand it is Not
Deallocated explicitly. In practice, the heap space occupied
'py an object can be reclaimed after the object is no longer

Accessible by a CLU program.

o -
CLU variables are object names used in a program to

Denot® objects at execution time. Unlike variables in many

other languages, where variables are containers of values,

CLU variables are object names rather than the obj;cts

themselves. As a result; it is possifale for two variables to

-

"

,The&e are two basic‘actions. in the cCLU .ianguage: As-

”aiqnﬁenﬁ: and Inyocaﬁion. An assignment primitive X:=E causes

\ ' .
\ - . ' ]
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variable X to denote the object.resulting from the evalua-
tion of expression E. Assignment neither copies the object

nor affects the state of any object. The invocation involves

assigning arguments through gssignment. Objects are shared

beiween the caller and the invoker.

Distributed CLU

We ﬁow suggest a CLU implementation under the DCS
environment, called Distributed CLU. Sugpose we haQe a
distributed computer system with ﬁp loosely synchronized
nodes (computers). ﬁodés are connected by message channels

(no shared memory): In this system, the heap is distributed

and has partitions residing at all N nodes. -We assume that

: ; S
memory space for CLU objects is allocated from this Dis-

tributed Heap, and objects can be referred to unifggzly
regardless of their location. bviously, there should be‘a
mechanism for accessing objects) by their Unique oﬁjac;
names. We assume that afteg An objegt is created at a node,
it will not move to other nodes. However, objectE;§;§;aéra

permitted to travel around the whole distributed system.

5.2. Garbage Collection in Distributed CLU

; .
_. Programming languages such as CLU, Lisp and SmallTalk

use a model of computation in which objects reside in a Heap
and  objects are not deallocated Explicitly. Instead, gar-
i A

bage collection ‘is performed ‘at some convenient time to

L4 L} '




impiication of such
ibuted tg,fﬁaivi-

aeallocate the Inaccessible Objects.
an implementation is that the heap is dis
‘dual Nodes (computers),’and that objécts are accessible at
any node regardless of their location. In this section, we
will develop a Garbage Collection Algorithm for, memory
resources occupied by inaccessible objects. First of all, we

define some terms which will be used in this chapter..

Terminology: -—
Object: An object is a:data eng}ty; together with a set

of operations to c¢reate and to manipulaté:itself or
other objects., The memory space needed by an object is
L4

allocated from a Distributed Heap.

+

Object Name: An bjéct name is a Pointer that a progrggz

mer uses to refer to the object. An object name is

denoted by a CLU variable, - which may migrate to othér

nodes.

ILocal Object: An object is local - node Nj (1sis<N), if
it is inaccessible at other hbdes, or. if its'space is

. allocated from a heap partition that belongs to Nj.

'Remote“Object: An objecﬁkis'remote to node Nj (1<i<N), if
it is accessibleﬁ?t.Ni, and the object name was either
received from another node, or sent -to other nodes.

]
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Public Object'- An object is public to node Nj (1515&), ir
its accessibility at other nodes' is uncertain, and _the

object space is allocated from the heap partition that

A3

belongs to Nj.

- Iocal Garbage CO{}B&tiOﬂ: Local garbége collection Lj
(1€i<N) is a garbage collection process at node Nj. Lj

reclaims the heap space of the inaccessible local ob-
. R
jects of Nj. rﬁ - ’
b4 \ . R
Public Garbage Collection: Public garbage collection is a

LY

garbage coiléction process. . When a node wishes toa
\ ellminate its public object (0), it asks this prbcess
to find out from a most recently detdcted global state

‘

to see if O is accessible at &ny other nodes.

\ ;
5.2.1. Distributed Garbage

[

The garhage in this context is the memory space alloca~

&

o

ted to the Inaccessible Objects. In non-distributed systenms,

-

an object is accessible if it is denoted by variables of an

active procedure, or if it is a component of an accessible

!

object. S e .

) _ \iy o £.

oy * : . o
In a DCS environment,fhowéver{}the object accessibility
. £ . - ' \ .
is not that intuitive. First,. objects can pé referred to at
any node. An inaccessible .object at one node may bé acces-

sible at another node. Secondly, object names may be 'in

L - 84 -
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trénsit. Because bf'theizelay,bf nessage trannnisnionﬂ an
f%naccessible object at one instant magibecomé Wccessible at
some otzer ’instant.;'This special pro %am in‘ diatrrbutcd
systems is known as the Transit Prob}em,\ybich ve navo seen

_already in the context of a éhannel gtate in thae galobal

3
state.

»$ -~

\J

As shown in Figure 5.1, at t;, node ﬁz is the only node
iat which ébject X may be"referred to. Suppose after sending
the object name of X to node N, N deletes its' own refer-
ence to.X and N; receives the object namé of X at tg. If N3
performg local garbage colI’Etion at\t3, it-will find x was
inaccessible at Nq; and if Ny perrorms local garbage‘collec-

tion at t5,’it»wiri‘find objegt X -was inaccessible at N3

too. If the globbl garbége‘collection has gone through® the

above(‘it may deci@e object X is 1napeéssib1e_ab both N; and
N3, and destroy object X incdrrectly.”Indeed, even if an
object is inaccessible at any node, it may not be a garbage
if a reference to the object is in transit. To handle the
‘transit problem in distributed gystems, we define accessibli-

. - . RS
lity as follows: )

- ’ ' - -
Definition 5.1: .

‘In the DCS anironment, an object is accessible if it

is either accessible at one of N nodes, or its name is in

*ransit. If. an object name is in trdﬁsit in a channel we

say that the object is accessible from that channel. . =
-~

[ ]
£
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t1: Object ¥ is accessible at Ny only
ty: Np sends the name of X to N;
performs local garbage collection
’ ty: oéject X becomes inaccessible at Ny
tgs: N3 receives the object name of X

N, performs local garbage collection

Figure 5.1. 'Transit Problem .

v
. ‘e

5.2.2. Garbage Cpllection vs Global State

~The global state aetection and the distributed garbage

. ‘ collection problems are related. Intuitively, the distribu-

ted garbage collection needs global iﬁformationoabout,the

whole system. If there is a global state available, then the
. . -

accessibility of objects at each node and chanrel can be?
revealed. This implies that'distributed gyarbage collection :
would have the same requirements as global state detectipn.

In particular, local garbage collection at each node is

+ -
.
.
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synchronized, and the global barbagé'collect;on conmpiles the

information from all nodes [Ali84) [Hughes85] [Liskov86].

In [Li87), global states have been classified accordipg
to the usage requirements. In order to détermine the kind of

global state needed for a distributed garbage collection,  we

N :
need to examine the inherent properties of object accessibi-‘:

lity. The inaccessibility is a Stable Properéy (Liskov8é6],
i.e.; an inagcessible object remdins inacc;ssible until it
is deallocated. . The stable property can be revealed by a
stable -global state [Li87). However, our‘accessiﬁility is
defined on both prbcesses and channels and a st;ble globel
state does not contain enough channel information. Thus, a
stable global stafe is no% ,suitable for the &istributed

3 '

garbage collection.

The transit proﬁlém makes garbaqé collection in dis-
tributed systems much more  difficult than in ceﬁtraliqed
systems. There are different approaches to solve the transit
problem. Some distributed garbage collection algorithms
(Ali84]) [HudakB82) are only valid for tightly couﬁled paral-
lel drchitectures where the messége transmission is _instan-
taneous. Then a stable global state is sufficient for detec-

ting the accessibility of objects.: Some other ,algerithms

-make impractical assumptions, for examples, the existence of

" a common clock in the distributed systems [Hudges85], or

bounded delay time. for méésage passing [Liskov86].

- 87 -
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In order to.solve the transit broblem, we will apply a

&wo-ﬁhase-Comhit Protocol in our distributed garbage collec- '

tion algorithm. Either the sender or the receiver shéuld %

remember the transaction involving an object name transmis-

sion until the transaction has completed. P

Two~Phase~-Commit ,Protocol for Object Name Transmission:

‘At the Sender's Site::When sending an object name® to

another node, the sender marks the object in-transit;"

¢ after receiving the Acknowledge Message from the rec-

»*

eiver, the sender removes the mark.

At the Receiver's Site: Upon receiving an object name, the

receiver returns an acknowledge message to the sender.g

Unfortunately, the two-phase-commit protocol does not
solve the transit problem completely. If the information
about the object access'ibility_ at each node 1is collected
‘independently, then there may exist the case of incorrect
garbage collection. For example, in Figure\s.z,,N2>is the
only node that -may refer to object X at t;. Suppose N, sends
the object name of X to node N; at t,, and ehen receives the

acknowledge message from Nj at ts. N, releases its reference

will. be incorrectly destroyed. Thiz is because at ty, object
- ‘ - D r )
% .
- 88 -

to object X at tg. If a global garﬁage collection makes use
o . e
of the information from N; at t; and N, at t,, then ‘object X
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X is not accessible at node. N; and not marked in-transit,

and at to, object X is not accessible at node N2 and is not
marked in-transit.

=se Q oo oo
C

3 t, ts ts Time

. - t3: Object X is accéssible at Nj only
' ta: Nj performs local garbage collection
‘ N2 sends the name of X to Nj
t3: N; receives the object name of X ’
t4: N; send the acknowledge message to Nj
ts: N; receives the acknowledge message
“tg: Object X becomes inaccessible at Nj
t7: N performs local garbage collection

\
. ( . Figure 5.2. Two-phase-Commit »

ol

!

4

v

"If we examine the transit problem carefully, we will
diséover that the cause of the above error is that.of incon-
sistency between the cﬁannel states and the process states.
In .this inconsistent global state, an effect event (N,
having received an acknowledge message) is included in the

. globai statef but not the cause event (N, sending the ack~-

. ~nowledge to%WN,). However, if the global garbage collection

has used a consistent global state, then either the object X

«
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"~ will be marked accessible at a node, or its- name will- be

marked as in transit.u

'From the above ,‘d'iscussion we can co;xclude-~that when
using the two—phase-comﬁit protocol the transit problen cén f
be solved if and only if the global state for the globai
garbage collection is a consistenﬁwiﬂpbal state. Here,‘a.
node state is a list of accessible remote objects and a list
of public objects whose accessibility is uncertain. A chan-

nel state is a list of objects whose name has been sert out

‘but for the sender has not received the acknowledge message

from the receiver.

.

5

5.2.3. Probabilistic Collection Aldorithms

v
.

We now present our garbage'c6llection.algorithms for

distributed CLU ‘objects. Our method allows each ‘pode to
, R

perform local garbage collection Independently of other

nodes without communicating with other nodes which contain

the other parts of the heap. In particular, different .nodes

can use different ‘garbage collection techniques, and do
~ f 1
local garbage collectlon at any time.

In our algorithm, each node will maintain a list of its
Public‘bbject names and a list of its Remote Object names.
The garbage collection at each node is responsible for

reclaiming its inaccessible local objects, and deleting its
. e S
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inaccessible remote object names. At the - erid of a local
garbage‘bo%lection, the node will inferm other nodes of itl
accessibility of the 'remote objects. The accessibility oé
public dbjects is deteeted by the global garbage collection.

-

)

-

Every node needs global information,for’alobal garbage /.
\ ] 1y

'collection. In order to have better performance under the

. DCS environment, we adopt the working model proposed by /

[Liskov86]. In this model, nodes do not ‘communicate with ongl

/
another. Instead, information about inter-node references is
stored in a Logical Central Service (LCS). The node cohmggi-

cate with the LCS periodically to update the accessibiﬁity

of thé remote objects and to examine the accessibilyty of

. i
, o /

Nodes provide the LCS with information about -their

! v N/
its public objects. ) ' : , / ;ﬁ

remote object accessibility and public object nam 8. The ICS
determines accessability of these public objectsz An innova-
tive part of our algorithm is that each node/ communicates

with the LCS independently. Local garbaée qbllections are
' /

performed asynchronously.'l ’ '«/
Data Structure: /

/
-each node Nj (1Si<N) maintains two lists/as Node 8tate°

« -

Access-list <remote-object~name> _/
,BWhen a remote object is aécessiy e from Ny, its name is
in Access-1list (i.e., when an /object name is received,

o
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its name is added to this 1list, and after local garbage.
éollection, the inaccessible remote objects at Nj are

deleted from this list); - :

Fs

Public-1ist: <public-object-name, global~time>’
Evefy public object has an entry in this 1list (i.e.,
’Qhen a .local objéct becomes a pﬁblio object, its 6bject
name and the global time of creation are added %3 this
list, and after global garbage collection, the inacces-
sible)public objects with the same global clock label

4

‘ ' are deleted from this list); g om “k

Each node Nj (1sisN) maintains a list as Channel State:’

., Transit-list: . <object-name, target-node>

‘After an object name has been sent out and before the

. " acknowledge is receéived, the object name is in the
> . C, .

:_,, liSt. ’ - . ’ : ' [ ]

-

.There are two Data Structures in our algorithm:

Loca1=state:<node-state,channel—state,global-timé,node-id>
The node node-id at indicated global-time recorded this
. ~

o oL node-state and channel-state;

s

[}

- - Garbage-list: <public-object-name, global-time>

' Thé LCS informs a node that a public object created at .

the indicated global-time is garbage. ' "




. Algorithm:
The: accessibility pf the pubiic otjects‘is detected at
the ILCS by analyzing a consistent global state. We use the .

# Probabilistic Algorithm for the ‘consistent global state

detection. The probabilistic detection algorithm has aixeagy

’

been discussed in chapter three.

We assume that'there is a global tiné.system undexyi
the user computation}wictions which are regarded as events
in the Global Time syotem are: sending and receiving an ack-
nowledge, message, and the prooess state recording. Our
qiotributed garbage collection algorithm deals with the
detection of public object occessioility.
Algorithm 5.1.

. . . - ' {
' _ Local Garbage Collection at Each Node Nj (1SiSN)}

Begin
: do local object garbage collection; |
for every object-name € Access-list : '
if it is no longer accessible from Nj then
delete it from Access-list; ‘
record a local state; . .
send the local state to LCS; . .
while ‘there is a G := Garbage-list from LCS
for every-<object-name, global-time> e Public-list
‘ . 1f <object-name, global-time>
R - = G<object~name, global-time> then :
e Lo : delete it from Public-list;
, ' . declare it as garbage;
End; ' :

3 Taa i s
RE T
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Algorithm 5.2.:

&

'Global Garbage Collection at LCS: ‘ -

o

. Begin
.,  do forever '
' read a local state Ls from any node;
store the LS Into the local state database DB; _
'if f£ind a new consistent global state GS in DB then
for. every Ny do: '
, '‘Begin -
let garbage-list G := empty: ' -
for every <object-name, global-time> €
GS< <Public-list>, Ny > do:
_1f the object.is inacéess ble from any node
and channel in.the GS then
add the object to garbage-list G;
Send the Garbage-list G to node Nji:
for every local state- LS -of Ny € DB
if global time of LS4 « gloéal time of Gsi
delete LS4 from Dg
End; . . .
End; ’ ! , v . -,

\

The crucial part'of our algorithm is to detect a con-
. ©
sistent global state. from a set of local states which were

recorded synchronously at differentﬂnodes.'From Theoren 3.4,

'

if none of events leading to the recording of a local state

. depends on others yet to be accounted for, in the record
states, then the recorded global state is consistent. So the

following "algorithm will deteot a consistent global state

'from the local state database DB.

S~

o Let LSj be the jth global state of node Nj (1SisN).
Let LSjg be the oldest local state of node "Nj in DB. Let

9

LSjmax be the latest local state of node Ni in DB.

L]

S

>
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Algorithm 5 3.. , L. %,
- Consistent Global State Collection from DB: - ,
@ ’ . ;
Begin ‘ 4 . . .
GS = empty; ’ . . ,
for each i (0Si<N) do: . ' s
6S t= GS U { LSjmax ) L !
fq; dach i (0<i<N) do: ‘ , o
Begin ] : : . ;
~ GS' := GS; ’ ' o
LSj4 := local state belongs to GS; AN
if ? 1find_GS( Lsij) ) then ‘ 3
return( false)? .. "/
if ( Gs I= Gs' ) then : /
1 = 0; PR . : /
End; ' . .
q!:'eturn( truel; o - . ‘ ¢
End; . N ! ?

L] N
’

find_GS( LSi5)
Begin '
for each 1 (0<1<N) do:
Begin
~lem t= local state belongs to GS,_
“for each k (N2k20) do:
if ( GC(LSlm) « GC(LSij) ) then
if ( k I= -1 )
return( false); h . .
GS - ( LSyp )i
GS U { LSy }: . , .

GS :
GS :
End;
return( true); (
End; . ) e ‘ =

»

The tlme complexity of the - above consistent global
state collection algorithms is 0(§ ? LSi4) (1<isN, 0SjsSMAX),

since any "local state in DB could be in GS only once. Func-

tion find GS( LSjj) returns a global state in which none of -

the global clock labels of the lqcal states are qreater than

("«f) the GC(LSij).

- 95 -~ ~
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5.2.4. .Simulation Report -

-~ N (

our pfobabilistic algorithm has no overhead for coor- .

dination and synchronization, but it requires additional

local state recordings. The number of additionél locall state
recordingseis the most important performance characteristic
of our probabilistic algorithm. In order to study_such’a
factor, we implemented algorithm 5.3 and simulated ‘algorithm

5.2 on a SUN workstation.

-

The probability of finding a consistent global state

frolm a set of local states depends on several things. Among

them, the process topology and the probability of occurrence

of local state recording events are crucial énd)afe simula-

ted. .
’ 3

Process Topology: Obviously, the more’ message ‘channels .

and processes are there in .a computation, the higher the

probability will be that‘two local state recording events
;re dependent, therefore, ;he more additional- local states
will be needed in order to find a consistent giobal state.
For the channel connection, we ~£imh1ated the worst: case

scenario —— each process can send messages directed to

N

other processes (complete connection) and a better case

scenario —— each process can only directly éénd messages to

—

!
- i e
- .

L,
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one process <(linear connection).

In our -simulaticn, the | ¢

.

number of processes is varied from five to thirty.

et F

Local State Recording.' In our simulation, we sune .

c\, ¢

o | ,that the distribution of message sending .events an localﬂ

state recording events are even. The probability ot occur-. -
rence of a local gtate recording event bet 28N two message’

Q ) sendwu; events is varied from 1/4 to 1/32. - ’

Figure 5.3 shows the'sixﬁulatiqn' results for the com-

plete connection and Figure 5.4 shows the simulation, restilts

3

Here,

for the linear connection. a window meand the average
-~ ¢+ : . ' , . ' , ’
snumber of local sta‘tesl”for finding a consistent global ’
state. w ) E "
, e PN
. - T Number of Processes °
. 5° | 10 15 20 25 | "30°
> ) 14 | 2.1 | 1.9 | ‘1.8 | 1.8 | 1.7 | 1.6
r- ’ » - g .
- "r‘ 1/8 7 3_.8 3‘06 3.0 (2-8 ‘2.4 201 ) yaah N
. s e )
>3‘§ 1/12| 6.7 8.2 6.0 )4.@ 3.4 3.4 g
B ..ﬁ".‘.: |1/16] 10.8 20.1 | 11.5 | 9.3 | -6.1| 41 '
.- e gﬁ 1720| .23.7 | 32.5 | 38.2 | 17.7 | 9.1 | 7.8 )
. ow ” v . .
Eg 1/14 ﬁ3.0 57.0 44.5 31..0 18.0 11.2 -
: § 18| s1.0| 57.0 | 60:0 | a7.0 | 45.0 33.2
) 1/32| 54.0 | 57.0 | *60.0 | 60.0 | 51.0 | .46.0
R = = = j _I
r " .
* Figurg,5.3. Window Size in Complete Connection

-

. - - *
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e \5.3.‘ -aiscussion\” .

. e : % * . M . . R

- £ ' The digtribu{'.ea «garbagé’ collectfon algorithm ‘discussed i

‘ " above allows the héaé space for distributed CLU objects to '

. L be rectaimed in an efficient manner. This algorithm can
. - < " SN < . : u lﬁ)
o ‘ B ] ) ot .- 98 - ’ ,‘; :
@ " ‘ - -
¢ 4 -

b B \) . .
) -

. : S ! ~ T
/ v N s . .
< , - , , .- -8 . ' {
e S i - -
£ -7 Number of .Processes i
” v |8 | 20 15 20 |, 25 30
. ? 1/4 | 2.2 | 2.0 19| 19| 1.7 1.7 -
‘%“E- /8 | 3.4 | 3.5 3.3[ 2.9 " 2.5 | L2.®
“o.811/12) 5.7 | 6.8 | 6.2 | 4.7 | 4.1 | -3.2 .
h .ﬂ‘ - - : ‘-L s,
. 3% |1m6[ 118 | 3300 1%.3 | s | 5.6 | 4.4 ,
Nl . ' p
N EB 1/20 1‘8.0 269 31.2 15.5 10.1 | 8.7
| pw ‘ -
E,.‘ 1/24] 26.0 44.0 |1:40.0 § 34.0 19.9. 13.1 v
: "~ og, 1/28| 37.0 | 50.0 | 54.0 | S4:0 | 36.0 | 27.8 [
. - o
oAl 1/32}| 55.5 57.0 |'60.0 | .54.0 | 44.0 40.0
) o . . i
. ) - ‘ ‘
R . '
~ ', Figure~Ss4. Window Size in Linea? Connection .
.o . . st
+ t ' L ) n . )
A - - ’ PN
- o _ . | - ‘ //:
i From our /simul“ation results we can find that the pro- ‘
— ;
bability of “occurrence of a 1local, state recording event
P - ’ .
{J . -between * two message sending events heavlily affects the

- window size. ghis’ suggests to us that if local .states can be

recorded wiaghin\ka small tin;iyterval, then the ;gndow size
. v < . & . .

. d
. will'be relatively small.\;b

’
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distributed

dynamic ‘resource ~allocation, ‘such as orphan detection

actually be used in t}}ei c_}eneral problam

[Walker84], -task deletion '['f-ludak82],' and inconsistent repli-

cated data detection. Our algoritl{m has several performance

' advantages. First, the garbage\ collection at each node is

totally Independent. Because- local garbage collection at
each node is asynchronous, the node can perform local gar-

bage collection at any time, for example, as a' background

task‘. '

Second, ‘our aigo;ithm separates local. arid global gar-~
bags collection. The laitter is performed in the LCS. We all
know that the. amount of garbage collection can be substan-
tial. Sso this problem decomposition may lead td® better
overall computation efficiency, and may prove especially
valuable in a real- t{me system.. In general, our algorithm
does not cause delayg 'oéuser(, computations except ‘when

recording local 'state, which is- not time costly.

Our algorithm is a probabilistic algofithm in the sense

‘that global garbage may not be collected unless the LCB

finds a consistent global ‘stdte. To improve the probability
of success, the follotwing suggestimons may be considered:

- If the commonication ‘system supports message broad-

casting, a node sends a sigmal to 11 bther nodes

before recording its local state. Upon recai’ving such a

-
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‘dignal, eac‘h’node should record its.local state as soon ) / '

as possiblae. - | y

- Make loc‘al‘é sj:ate'recordind in a Burst Mode, i.e., when
a node re}:ords .its local state, ;I.t‘will record its
local state ‘several tirt;es within a short time p;riod.

- In the applicat,ions where ga!rbage should have a maximum
lifetime, the probabilistic algorit:hm.s can be used in
conjunction with coordinatgd' élgorithms to meet the

~‘pu43qgirement -while retaining a reduced synchronization

ovefhead .
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Chapter VI. Conclusions

6.1. Consistent Global State

The concept of consistent global state in distributed
computer systems was form3lized i x[Cﬁandyss] and in (Li87].

The most important property of consistent global state is

that of cCausality Preservation /if an event is included
in a global state, then its cause event is also included in
the glpbal_ state. Consistent global states pgssess some-
other properties such as Reachability, Recaverability, and

Global Invariant Preservability. Efficient sgolution to

problems like rollback recovery, dynamic resource allpca-

~tion, fault-tolerant computing, and distributed debugging

can be.derived using these fundamental concepts.

The problem of consistent global state detection can be
regarded as  an extension of the generic problem of distribu-
ted clock synchronizatién. A simple solution to this problem
is to assume a common clock in distributed'systems. Hoﬁever,

this assumption is impracticable. In this thesis, we presen-

~ ted four. different time systems, namely, Theoretical Time

System, Synchronized Real Time System, Logicil Time System,’

¢ .

~
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and Global Time System. We proved that any Instantaneous
Global State in terms of the above time systems is a consis-
tent global state. More importantly, the instantaneous
global state in terms of the above time systems (except the

il
theoretical time system) can be captured practicya.l»ly.,

According to the Degree of process cooperation, ‘w'é o

classified consistent global state detection algorithms into

three categories, namely Punctual Algorithms, Coordinated
Algorithms, and Probabilistic Algorithms. Punctual algori-
thms are a conceptual extension of the time-out interruption
of uﬁi-processor systems. They are easily applied.‘Punctual
a]}gorithms require synchronized local clocks on different

computers. Most of consistent giobal State detection algori-
¢

thms examined were coordinated algorithms. The’ coordinatedi‘

algorithms involve coor§inqtion off the other proc.esses to
perform global state collection. ‘Obviously, a coordinated
detection algoritﬁm has synchroniz\ation overhead. The synch-
ronization overhead’ is expensive in distributed computer
systems. £ probabilistic algorithm allows the processes
perform their 1local state recording“asynéhronously and so
does not incur any synchronization overhead. However, a

probabilistic algori}:hm does not guarantee the detection of
% , .ot -

"a consistent global state and - may require more redundant

local state recording. ' £
. .

»

s
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The performance study of the coordinated Qéﬁection"
algorithms presented in chapter four is experimgn;al. The
measured data indicated that intér-computer communication is
expensive} especially when perfect transmission is needed,
or when the communication system is saturated. Our perfor-
mance study reveq%ed thét~distribu§ed algorithms can achievae
better performance if the application layer can handle some
communication errors. According to our obserQatién, the rate
of message transmission is very 1low. wé also conéluda that

the VLR algorithm has better performance characteristics

than the CLA algorithm.

Garbage collection in distribgted computer systems is

_an importanp'problem. It requires gathering global infor-

mation. If resources or their pointers are allowed to migr-
ate from a node to another, the global state for resource
deallocation must be Consistent. ‘A probabilistic detection
algorithm is a better ‘cdndidate than other algorithms,

because of the reason already mentioned. &~

6.2. cContributions and Related Work R

This thesis studied tfe conslstent global state of a
DCS extensively. We viewed a consistent global state as a
sé?t of instantaneous globai state in terms of a time sys-
tem. We ﬁresented four time systems for the purpose of

consistent global state detection.. Moreover we classified
- 103 -~
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detection algorithms into three categories, and applied the
probabilistic detection algorithm to distributed garbage

collection. Based cm the discussion in [Li87] and [Venka-
f-r“‘;v

tesH88]/ we implemented an experimental global state kernel

for a performance study. ! ' : )

1

"The problem of distributed clock synchronization .is

viewed as an extension of the generic problem of consistent '

global state detection. Global Time was formulated after
examining the relatiohship between the consistent global
state and the physical theory of time."Ideas,, similar to
global time have ‘been used ‘in a number of places: in
[Walker8‘4], it was wused to detect crashed nodes; in
(Liskov86], it was 'used to update inconsistent replica of
data; in [Passier88) and [Radha87], it was used to support
rollback 1and recow‘;ery. The global.time system is used to

R f, s
describe the .independence of distributed events. We proved

’ the isomorphism between the global time model and the space-

time model of distributed computations.

The original idea of a probabilistic algorithm for
cohsistent global state detection belongs to my supervisor
Dr. Li. Whath did was to design the probabilistic detectioh
algorithm and t\o ‘apply it to the distributed garbage collec-
tion problenm. Wé noticed that there is no literature on the
probabilistic detection algorith?ns.
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6.3. Future WOry

/ .
y M | )
.. We have 7resented a probabilistic algorithm for consis-
"tent global /state detection. This algorithm hope'tuny' can’ ¥

perform, l%:ter in a DCS environment. Some analytic and

experime/ﬁtal evaluation 'of“ this '-9pprtoiach will be needed to
establ/i/sh +the claim. . ) . )
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