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Abstract

Construction of Extremal (48,24,12) Doubly-Even Codes

Sheridan Houghten

An crtremal error-correcting code is one that corrects the maximum possible num-
ber of errors for its length and dimension. A code’s error-correcting capability is
directly related to its minimum weight. According to Mallows and Sloane (1973).
the largest minimum weight of a self-dual, doubly-even binary code of length n and
dimension n/2 is d = 4[n/24] + 1.

Of such codes. there is one extremal code of length 24 and one known extremal
code of length 48. There is no known extremal code of length 72. The search for
other non-isomorphic extremal codes of length 48 may be divided into three cases.
We completed a search assuming one of these cases, finding only codes that are

isomorphic to the known code.
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Chapter 1

Introduction

‘This thesis is concerned with the construction of extremal self-dual (48,24, 12) doubly-
even codes. This chapter gives some of the basic definitions used in coding theory.
Some texthooks on the subject include [2, 5, 7, 8]. There is also a description of the

organization of the thesis and a summary of contributions.

1.1 Error-correcting Codes

Let 1 e (F(q). the finite field with ¢ elements. A code (" is a subset of ", the set of
veetors of length n with components from F. The elements of (" are called codewords.
A code can be either linearor non-linear. 1t is linear if for any two codewords u and
v, u+ v is also a codeword. If this is the case. then the code forms a linear subspace.
In this thesis, we are interested only in linear codes.

The weight wt(w) of a codeword w is the number of its non-zero components. A
code is cven if the weight of any vector in the code is divisible by 2, and doubly-even
if the weight of any vector is divisible by 4.

The minimum weight of a code is the smallest weight of the non-zero vectors in
the code. The distance between two codewords u and v is the number of components
in which they differ. For linear codes, minimum weight and minimum distance are
the same.

An (n,k.d) code is a k-dimensional subspace of F* with minimum distance d.
We can easily correct up to (d — 1)/2 errors by using mazimum likelihood decoding,

which involves simply choosing the closest codeword to the one we receive. Because

1



of its error-correcting abilities. we obviously find high minimum distance to be an
extremely desirable property of a code.

Two linear, binary codes are equivalent, or wsomorphic, if one can be obtained
from the other by a coordinate permutation of their codewords. lsomorphic codes
have the same decoding propertics.

We say that (' is cyclic if for every codeword v = vory ...y € (7, the vector
Un—100V1 . .. Un—2, obtained by cycling the elements of v one space to the right, is also

a codeword.

1.2 Self-Dual Codes

Let C be an (n,k,d) code over (/1'(2). If u and v are two vectors in (°, then their

inner product is defined as
n
u-v= Z ur, (mod 2).
=1
If w-v =0 then wand v are orthogonal. The dual of (" is defined as
Cr={ue(FR)"|u-v=0Vvec(]}.

A code C is self-dual if ' = ('L,

The largest minimum weight of a self-dual, doubly-even (u,n/2,d) code over
GF(2) is d = 4[nf24] + 4 [6]. A sclf-dual code that has the largest possible min
imum weight is an extremal code. Of such codes, the Golay code is the only (21, 12,8)
code and the Extended Quadratic Residue code QI is the only known (48,21, 12)
code. There is no known (72,36, 16) extremal code. Such codes are of particular in

terest because for any non-zero weight w, the codewords of weight w form a H-design

[1].

1.3 Objective and Contribution

Our objective is to determine whether the Extended Quadratic Residue Code is the

only (48,24.12) code. The method we use is exhaustive enumeration. "The search can



be divided into three cases. In this thesis we report the results of a search assuming

one of the cases.

1.4 Organization of Thesis

The layout of the remainder of the thesis is as follows: Chapter 2 gives techical defi-
nitions, mathematical preliminaries and background information about the research
preblem. Chapters 3, 4, 5 and 6 describe the methodology used to solve the problem.

Chapter 7 gives the results and conclusion.



Chapter 2

Mathematical Preliminaries and
Notation

This chapter gives some technical definitions and additional information that we
require to solve the problem of generating a (48,24, 12) doubly-even sell-dual code.

We refer to this code as D.

2.1 Generator Matrix

A generator matriz of an (n,k,d) code (" is a k x n matrix that contains A basis-
vectors. It is possible to have more than one basis, so obviously there can be more

than one generator matrix.

2.2 Weight Enumerator
The weight enumerator of C is
We(z,y) = apx™ + a1z 'y a4 an (2.1)

where a, is the number of vectors in C of weight i. The MacWilliams Identity relates

the weight enumerator of a code to that of its dual: [5, page 127]

1
Wei(z,y) = l—c.—lwc-(w+y,w—y)- (2.2)

The only possible non-zero coefficients in the weight enumerator of D are ay, ayy,

16y U20, A24, A28, A32, A36 and ags.



Define z as the length-48 vector whose components are all 1. Because z is in Dt
and D is self-dual, z is in D. For ecach vector of weight 7 in D there is a corresponding
vector of weight 48 — ¢ obtained by adding z. Thus the coefficients of the weight
enumerator are related as follows: ag = a48 = 1, 412 = aze, a16 = aaz, az = aqs.

From Eq. (2.1) and (2.2) we have

W))(:E,y) — I0y48 +0121‘12y36 + 016$16y32 44 a161.32y16 + 0,122',‘36_1]12 + 1,'48y0

and

1
Wp(z,y) = Wpi(z,y) = :?aWD(x +y,r—y).

By expanding szWp(x + y,z — y) and equating the coefficients of z%y*8, z1y™,
Oyt and 1'% to zero we get a system of equations which, when solved, give:
ay = aqg = 1,
a1y = ag = 17 2906,
g = Uy = Hh35 0()5,
(ay = azy = 3 995 376,
Uy = 7 631 630.
2.3 Miscellaneous Identities
Let dim (" denote the dimension of a code C. From linear algebra, we have
dimC 4 dimC* = n, (2.3)

for any linear (n. k,d) code C [7, page 8].
An infersection of two codewords is a position in which both codewords contain
a 1. We define a * b as the number of intersections between codewords a and b. We

have the following identity relating wt(a + b) and a * b: [7, page 14]
wi(a + b) = wt(a) + wit(b) — 2(a * b). (2.4)

Since all codewords of D must be doubly-even, v * w must be even for all codewords

vand w in D.



2.4 Quadratic Residue Codes

As previously mentioned, the only known (48.24,12) doubly-even, self-dual code
is the Extended Quadratic Residuce code of length 48, QR. Here we give a brief
description of this code. If we find any codes during our search, we must check
whether they are isomorphic to the known code. For further information on quadratic
residue codes, see [2].

An element ¢ € GF(p) is a quadratic residue modulo p if +* = a has non-zero

solutions in GF(p) [2, page 171]. For p = 47 the set of quadratic residues is
S =1{1,2,3,4,6,7,8,9,12,14,16,17,18.21, 24,25, 27, 28,132,314, 36, 37,42},

We define the Hall polynomial as (r) = Y5 0. The generator polynomial for

the (47,24,11) quadratic residue code can be obtained by
g(x) = ged(l + 0 4 -+ 4+ 2", 0(r)).
We find that
glo)=l+e+22 422+ + 2%+ 0"+ o0 e P e ey e

From g(r) we construct a generator matrix for the (47,24, 11} Quadratic Residue
code. Label the columns of the generator matrix from left to right as 0 to 46. Row |
of the matrix has a 1 in column ¢ if ' is in g(r), and a 0 otherwise. Any other row
7, 2 < j < 24, is obtained by cyclically shifting row j — | one column to the right.

To obtain the Extended Quadratic Residue code QR of length n 4 1 = 48, we
annex an overall parity check column to the matrix. We label this column as oc.

Fig. 2.1 gives the resulting generator matrix.

2.5 Reed-Muller Codes

The linear subspace of GF(2)® gencrated by the matrix shown in Fig. 2.2 is the first-
order Reed-Muller code, R(1,3), of length 8 [7. page29]. The automorphism group
of this code, AT'L(3,2), is known to be triply-transitive 2, page 366).
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FFigure 2.1: Generator matrix of QR

1111 111 111 222 222 222 233 333 333 334 444 444
0l 234 567 890 123 456 789 012 345 678 901 234 567 890 123 456

11t 110 111 Ol 011 100 011 000 100 000 000 OO0 OO0 OO0 000 000
101 111 011 101 101 110 001 100 010 000 000 QOO 00O OOO 000 000
100 111 101 110 110 111 000 110 001 000 000 000 000 OGO 000 000
100 011 1jJ0 111 0OIl! 011 100 OI1 000 100 000 OO0 O0CO 00O OO0 000
100 001 111 011 10t 101 110 001 100 010 000 OO0 000 00O Q00 000
100 000 111 10! 110 110 111 000 110 001 000 000 06O 00O 000 000
100 000 0i1 110 111 011 O11 100 O11 000 100 000 000 OO0 Q00 OO0
100 000 001 111 011 101 101 110 001 100 010 000 000 00O 000 000
100 000 000 111 101 110 110 111 000 110 001 000 €00 OO0 000 000
100 000 000 O1F 110 11 OIl OI1 100 011 000 100 000 00O Q00 OO0
100 000 000 001 111 011 101 101 110 001 100 010 000 00O GO0 000
100 000 000 000 11t 101 110 110 111 000 110 ©O1 0©CO 00O 000 000
100 0060 000 00C 011 110 111 011 O©11 100 011 ©00 100 00O Q0D OO0
100 000 000 000 OOF 111 O11 101 101 110 001 100 010 000 Q00 000
100 000 000 000 000 111 101 110 110 111 000 110 001 000 GO0 000
100 000 000 000 000 011 110 111 O©OI1 011 100 Oi1 000 100 000 000
100 0VO 000 000 0CO O0OF 111 O1t 101 101 110 001 100 010 000 Q00
100 000 000 000 000 000 111 101 110 110 111 000 110 001 Q00 QOO
100 000 o000 000 00O OO0 O11 110 111 ©O11 OI1 100 011 000 100 000
1060 000 000 000 GO0 000 00! 11t 011 101 101 110 001 100 010 000
100 000 00O 000 000 000 000 111 101 110 110 111 000 110 001 Q00
100 000 ooo OOU COU 000 000 011 110 111 011 Ol 100 O1f 00O 100
100 000 VOO GO0 000 00U 000 001 111 OI1 101 101 110 001 100 010
100 000 000 000 000 000 0OC OOV 111 101 110 110 111 000 110 Q01

Figure 2.2: Generator matrix of R(1,3)

— D OO

1
0
1
1

0O
O =
O O
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We find it convenient to use the generator matrix shown in Iig. 2.3. One can
obtain Fig. 2.3 from Fig. 2.2 by first replacing the first row of Fig 2.2 by the sum of

its first and fourth row, followed by some row and column permutations.

Figure 2.3: Modified generator matrix of R(1,3)

—_— e (O
—_— 0 O -
— s D
O ——_—

0
1
0
1

=R e
oo o -
oo — o

Taking three “copies” of the above, we obtain RAl, a (24,1, 12) code with gener
ator matrix shown in Fig. 2.4. Note that there are eight blocks, each three columns

wide; any three of these blocks may be mapped to any three others,

Figure 2.4: Generator matrix of I#A/

111 111 111 111 000 000 000 000
000 000 000 000 111 II1 111 111
111 111 000 000 1i1 111 000 000
111 000 1tl 000 111 000 111 000



Chapter 3

Search Strategy

To conduct our search, we first attempt to find the basic structure of the generator

matrix. Next we try to “fill in” the matrix by finding the possibilities row by row.

3.1 Finding the Structure of the Generator Ma-
trix

Because the number of weight-12 codewords in D is non-zero, we use as many of
these as possible when trying to form the generator matrix G. We label the rows of
(i as rowy,...,rowy. We have row, - row, = 0 since D is self-dual.

Due to column permutations, we can take any weight-12 word for row;. Let us

choose
row; = 111 111 111 111 000 000 000 000 000 000 000 000 000 000 000 000.

Consider the largest subspace D; of D with zeros in the first 12 positions. Suppose
dim D, = B. Choose f basis vectors of D; and place them at the bottom of the
matrix. Define a = 23 — 8. By permuting the rows, we obtain a generator matrix G,
of the form shown in Fig. 3.1, where * represents unknown entries.

We shall show that a = 10 and 8 = 13. First consider the subspace of length 12
formed by restricting the vectors to their first 12 coordinates. We call these restricted
rows row,(12), where 1 <7 < 24. The vectors row,(12),...,rowq4,(12) are linearly
independent, since if they were not, then some linear combination of TOWY, ..., TOWaqq

would be a length-48 vector with zeros in the first 12 positions; however, all such

9




Figure 3.1: Matrix (7,

1 1 4

1 2 3 e 8

1 11000 ... 000
Q * *
Io] 0 *

vectors are in D so such a linear combination is not possible. Let V) be the subspace
generated by row;(12). Since row;(12) - row,(12) =0 fori = 1,...;a0 + 1, and by
using Eq.(2.3), we have

14 (a+ 1) <dim(V)) + dim(V}') = 12, (3.1)

Next consider the subspace of length 36 formed by restricting the vectors to their
last 36 coordinates. We call these restricted rows row,(36), where 1 < ¢ < 24,
Let V; be the subspace generated by rowa42(36),...,7r0w4(36). We know that
rowa4+2(36),...,70wyy(36) are linearly independent since 7owqaq4a,...,70wyy are also
linearly independent. Also row;(36),...,rowy(36) must be lincarly independent
since if they were not, then some linear combination of row,,...,rowy, would be
a vector in the subspace generated by row;. Furthermore, row,(36) - row,(36) = 0

fori=a+2,...,24 and j = 2,...,24. Therefore
B+ (a+ f) < dim(Vy) + dim(V+) = 36, (3.2)
Adding (3.1) and (3.2) we obtain
24 2a +28 <48

So a + B < 23. However we know that a+ 3+ 1 = 24 since 24 is the total number of
rows in the generator matrix. Hence ( 3.1) and ( 3.2) are actually equalities. Solving

for o and 3, we find that a =10 and 3 = 13.

10



To choose the later rows of the generator matrix, we have to be more careful. The
new vector must be linearly independent from all previously-chosen vectors; also all
lincar combinations of the new vector with previously-chosen vectors must be valid
codewords.

When trying to choose rows, only row; has been previously chosen. We want to
choose a weight-12 word that has zeroes in the first 12 positions. If we are unable
to choose this word, then the last 13 rows and 36 columns of the matrix form a
code with parameters (36,13, 16). Using the MacWilliams Identity to find the weight
enurnerator for this code, we obtain fractional and negative coefficients, so such a

code is impossible. Hence by column permutations we can choose
row; = 000 000000000 111 111 111 111 000 000 000 000 600 000 000 000.

We permute the rows so that the generator matrix, Gz, has the form shown in Fig. 3.2.

Figure 3.2: Matrix G,

I 1 2 2 4

1 2 3 4 5 ‘e 8

1 110 0(000 ... 000

0 01 11000 ... 000
a * * 0
(4% * * *
:Ul 0 * *
;82 0 0 *

Consider the largest subspace D; of D with zeros in the last 24 positions. Suppose
dim Dy = a; + 2. Choose row, and rows of G, as the first two basis vectors of D,,
and then choose a further a, basis vectors and place them in rows 3 to 2 + ;. Now

consider the largest subspace of D3 of D with zeros in the first 24 positions. Suppose

11




dim D3 = ;. Choose 3; basis vectors of D3 and place them at the bottom of the
matrix. Define alpha; = 10 — q; and 3y = 12 — 3,. Let vy = ay + 3;. We know that
ay+7 + B =22.

Consider the subspace of length 24 formed by restricting the vectors to their first
24 columns. We call these restricted rows row,(24a), where 1 < i < 24, We know
that row:(24a),...,rows, +2(24a) are linearly independent since row,,..., row,, 42
must be linearly independent. Also row,(24a), ..., 70wy, 1y42(24a) are lincarly inde-
pendent since if they were not then some linear combination of row,...,rotw,, 442
would be a length-48 vector with zeros in the first 24 positions; however, all such vee-
tors are in D3. Let W) be the subspace generated by row,(21a),... JPOWs 42 2a).

We have row;(24a) - row;(24a) =0fori=1,...,a;+2and j = 1,...,0;4 v +2. So
(24 a)+ (2 + oy +7) < dim(Wy) + dim(W}') = 24, (3.9)

Next consider the subspace formed by restricting the vectors to their last 24
columns. Call these restricted rows row,(24b), where | < i < 24. We know that
rowyd — (,(24b),. .. ,row,4(245b) are linearly independent since rowy, — fy, . .., row,,
must be linearly independent. Also row,5 — v — 3o(24b),. . ., rowy(24h) must be
linearly independent since if they were not then some lincar combination of row,5 —
Y ~ B2, ...,rowyy would be a length-48 vector with zeros in the last 24 positions;
however, all such vectors are in D;. Let W, be the subspace generated by the last
B, restricted rows. We have row;(240) - row,(24b) = 0 for i = 25 — f3,...,24 and
J=20—~v-=p0,...,24. So

B2+ (B2 +v) < dim(W,) + dim(W;t) = 24. (3.4)
Adding (3.3) and (3.4), we get the inequalit.y
200 + 27 + 23, < 44.

However, we know that 2 + a; + v + 2 = 24 so the inequality is an cquality.
The subcode E formed by the last 3; rows and last 24 columns has weight enu-

merator Wg(z,y) = 2%+ (272 -2)2'%y'2 4 2%%". We expand the weight enumerator

12



of the dual, Wei(z,y) = 27‘:,2—bVH(x +y,z — y), and look at the coefficients obtained.
Since the coefficients must be integer and positive, B, < 5. The list of possibilities

for cvy, Ay and ~ is thus as follows:

(x) v f,
0 20 2
1 18 3
2 16 4
3 14 5

We shall show by construction that the maximum number of linearly-independent

words in F is just four. This construction is shown in Fig.(3.3).

Figure 3.3: Construction of a generator matrix for £

A B
rowy | 111 { 111 | 111 { 111 | 110 | 111 ] 111 | 111
row | 111 | 111 | 111 { 111 { 000 | 000 | 000 | 000
rowy | 111 [ 111 {000 [ 000 | 111 | 111 | 000 | 000
rowy | 1111000 | 111 { 000 | 111 | 000 | 111 | 000
rows | a b c d e f g h

We can choose any codeword for the first row — we choose the length-24 vector
whose components are all 1. Only weight-12 vectors remain. For the second row,
we choose the vector which has 12 ones at the start. To find the third row, we use
Iq.(2.4) as follows:

wl(rowz +rows) = wt(rowy)+ wt(rows)— 2(row; * rows)
12 = 12+ 12— 2(row; x rows) *

S0 rowy * rowy = 6, and so for rows, we place 6 ones in each of sections A and C.
Similarly, row, * rowys = 6 and row; * rows = 6. Using these facts, we find that row,
must contain 3 ones and 3 zeros in each of sections A, B, C and D. We then try to
find a fifth row. Using the same procedure, we find that any rows must contain 3/2
ones and 3/2 zeros in each of sections a, ..., h. This is impossible, so 8, is at most
4.

Hence there are just three cases to consider: namely, when 3, = 2, 3 and 4. In

this thesis, T consider only the case 8, = 4. Thus E is a (24,4, 12) code. It can be

shown that all such codes are equivalent to the code RM shown in Fig. 2.4. The

13



subcode formed by the first -1 rows and first 2.4 columns of D is also a (21,4, 12) code
and equivalent to the onc generated by the matrix in Fig. 2.4, Thus for this case,
eight rows are known -— the first four and the last four. The other two cases will
involve larger searches since fewer rows are known  specifically, four rows for the

case 3, = 2 and six rows for the case J, = 3.

3.2 The Structure of the Remaining Rows

Although we still have to construct the remaining 16 rows, we can determine some
information about their form by considering how these rows interact with the known
rows.

In these 16 rows, the last 24 columns of each possible lincar combination nmst
be codewords of RA* hecause of the intersection with the bottom copy of RAM. We
know from the weight enumerator that there are 24 codewords of weight 2 in RAM !
If w is such a codeword then for D to be doubly-even w must intersect cach ol the
linear combinations of RM in either zero or two places. Thus w has both of its ones
in the same block. All 24 codewords may be generated in 16 rows as follows:

2 2 3 4 4
) 8 1 ... 5§ 8
row 5 | 110

110
101

110
row 20 101 .

where a blank space denotes portions filled entirely by zeroes.

Since these 16 rows are linearly independent, together with the last 4 rows they
generate RM*. Therefore we can assume without loss of generality that cach of
these 16 rows has weight 2 in the last 24 columns. We can determine the possible
weights for the first 24 columns by looking at the intersection of cach row with the

top copy of RM. Let z be any codeword that appears in one of these rows, where
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the first 24 columns of & are denoted by z, and the last 24 columns by z,. Obviously
wi(x,) > 10, or wt(x) is less than the minimum weight of D.

The codeword obtained by adding row,; and row, is
rowy + rowy = 111 111 111 111 111 111 111 111 000 000 000 000 000 000 000 000.

“ach possible z must also satisfy the condition wt(z + row; + row,) > 12. Since
wl((z + row; + row,)y) = 2, wi((z + row; + rowg),) > 10. Thus wi(z,) < 14.
Since each codeword must be doubly-even, z, can have a weight of only 10 or 14.
Furthermore, if wi(z,) = 14, then wt((z + row; + rows),) = 10. Therefore we need

only consider the case wi(z,) = 10, and the matrix has the form shown in Fig. 3.4.

Figure 3.4: Basic structure of the generator matrix

2 2 4
1 4 5 8
A 111 m 111 000 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 111 11: m 111 000 000 000 000 000 000 000 000
m m 000 000 111 111 000 000 000 000 000 000 000 000 000 000
11 000 111 000 111 000 111 000 000 000 000 000 000 000 000 000

110 000 000 000 000 000 000 000
101 000 000 000 000 000 000 000
000 110 000 000 000 000 000 000
000 101 000 000 000 000 000 000
000 000 110 000 000 000 000 000
000 000 101 000 000 000 000 000
000 000 000 110 000 000 000 000
wt 10 000 000 000 101 000 000 000 000
000 000 000 000 110 000 000 000
000 ouo 000 000 101 000 000 000
000 000 000 000 000 110 000 000
000 000 000 000 000 101 000 ooo
000 000 000 000 000 000 110 000
000 000 000 000 000 000 101 060
000 000 00n 000 000 000 000 110
000 000 000 000 000 000 000 101
000 000 000 000 Goo 000 000 000 111 111 1 m 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000 000 111 111 111 11
000 000 000 000 000 000 000 000 11 111 000 000 111 111 000 000
000 000 000 000 000 000 000 000 111 000 111 000 111 000 111 noo

Each of the cight blocks in the first 24 columns of the generator matrix can
contain either 0, 1, 2 or 3 ones. Only certain combinations of block-weights are
possil)le.. Define by, by, by, and b5 to be the number of blocks containing 0, 1, 2, and
3 ones respectively. Then we have by + b; + b, + b3 = 8. Since the weight in the first
24 columns must be 10, we have b, + 2b, + 383 = -0.

If b5 > 2 for a given codeword w, then using the triply-transitive property on
column blocks, we can permute the blocks so that in the first two positions we have

two blocks of 3 ones and in the third position we have a block of s > 0 ones. In the
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fourth position there is a block of ¢ ones. We have

wt(row; + w) wt(rowy) +wl(w) =2row v uw)
12 +12 -2 7

10,

INIA I

which is too small. So b3 < 1 for any of the unknown rows.

If b3 = O then we have

!
o~

b + b + b,
b] + 2b2 = 10.

We have the following cases to consider:
case b b] bg b3
0.1 {3 0 5 0
0212 2 4 0
0311 4 3 0
0410 6 2 0
For case 0.1, we can permute the blocks s0 that the last three positions cach

contain blocks of 0 ones. Adding row; we obtain a veetor of weight 8. For case (0.2,
we can permute the blocks so that the first two positions cach contain blocks of 0
ones and the third contains a block of 1 one. Adding row, we obtain a veetor of
weight < 10. For case 0.4, we can permute the blocks so that the first two positions
each contain blocks of 2 ones. Adding row; we obtain a codeword of weight 14, "Thus
the only possibility is case 0.3.

If b3 = 1 then we have

!
-3

bo + b + b
b] + 2[)2 =

-1

So by = b, and we have the following cases to consider:
case { b b, by b3
110 7 0 |1

1211 5 1 1
1312 3 2 1
1413 1 3 1

For case 1.2, we can permute the blocks so that the first position contains the
block of 3 ones, the second the block of 2 ones and the third the block of no ones.
Adding row; we obtain a vector of weight 10. For cases 1.3 and 1.4, we can permute

the blocks so that the first position contains the block of 3 ones and the second and
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third positions contain blocks of 2 ones. Adding row; we obtain a vector of weight
< K.

Henee we need only consider cases 0.3 and 1.1. From here on, I refer to case 1.1
as a solulion of type 3 - 17, and case 0.3 as a solution of type 2° -0 - 1*. In general,
given a codeword x, if by, by, b; and bz are the number of blocks in z containing (. 1,
2, or 3 ones respectively, then we say that r is of type 0% . 161 . 262 . 363,

Fach y, a weight-12 linear combination of RM, has four blocks containing 3 ones
and four containing 3 zeros. If a is a solution of type 23-0-14, we can map the three
blocks containing 2 ones into the first three blocks; in addition the block containing
0 ones will be mapped to the fourth block because y * a must be even. Thus there
is one y whose four blocks containing 3 zeros occur in the same positinns as the four
blocks of @ containing 1 one. So @ + y is a solution of type 3 - 17.

We can show by counting that there are fewer possibilities of type 317 than of
type 2% -0 14 First consider vectors of type 3 - 17. There are eight blocks in which
we can place the block of three ones; in addition, there are three columns in which
we can place the 1 in each of the seven remaining blocks. Thus the total number of
possibilitics is 8*37 = 17496. Now consider vectors of type 23.0-11. There are g )
ways to p. «ce the three blocks containing 2 ones. Because the number of intersections
between any two vectors must be even, the block with only zeros is also fixed. There
are three ways to place the ones in each of the seven blocks containing either 1 or 2
ones. This gives a total of 8 x 7 x 37 = 122472 possibilities.

Since a vector of type 2% -0 11 can be transformed into a vector of type 3 - 17,
to fill in rows 5 to 20 of the generator matrix in the form of Fig. 3.4, we need only

consider vectors which are of type 3-17 in the first 24 columns.
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Chapter 4

Filling rows 5 to 8

This chapter describes how we generate candidates for rows 5 to 8. Each of these
rows is of type 3+ 17 in the first 24 columns and has 2 ones in the same block of the

last 24 columns.

4.1 Candidates for Rows 5 and 6

Due to the allowed column permutations, there is just one possibility of the required

type for the fifth row of the generator matrix, namely
rows = 111 100 100 100 100 100 100 100 110 000 000 000 000 000 00 000.

For the sixth row. there are two cases to consider after the allowed column per

mutations. namely:

Towe, = 111010010010 010010 010010 101 000 000 000 000 000 KOO 000
and

rowe, = 100111 100010 010010 010 010‘101 000 000 000 000 000 000 600.

If we choose rows, for the sixth row, then rows 5 and 6 of the generator matiix
both have 3 ones in the same block. From here on, I refer to this case as lype o, In
the case where these rows do not have a block of 3 ones in common, rows, is indeed

the only possibility we need to consider since we can move the block in which the
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sixth row has 3 ones to any position excepting that in which rows has 3 ones. From
here on, this case is referred to as type b.

In order to generate the candidate lists for later rows, we take the list of 17 496
vectors of type 3- 17, For each candidate z, we determine if z + combo has acceptable
weight for each linear combination combo of rows 1 to 6. If this is the case, then we
add r to the new list. We have to do this for each of the two possible sixth rows,
creating two lists type_a_list and type_b_list.

Type_a_list contains all candidates for row 7 onwards, given that the sixth row is
rows,; this contains a total of 3654 candidates. Type.b_list is the corresponding list

for the case that the sixth row is rowss, and contains 3678 candidates.

4.2 Candidates for Rows 7 and 8

A “simple™ algorithmi to do a complete search starting at row 7 is as follows:

curr_row = 06;
I'or cach matrix completed to curr_row do
begin
if  matrixis type a then
candlist := type_a_list;
clse
candlist := type_b_list;
compute all linear combinations of the first curr_row rows;
do_row(curr_row+1, candlist);

end.

Procedure do_row(rownum, candlist)
begin
for each candidate ¢ in candlist do
begin

if all linear combinations of ¢ with rows 1..rownum-1
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are doubly-even and have weight > 12 and < 36
then
store ¢ in candlist_rownum;
end,
for each candidate ¢ in candlist_rownum do
begin
rownum’th row of generator matrix := ¢;
if rownum = 20 then print matrix;
else if rownum = 8 then
do_row(rownum+1,candlist 7);
elsc if rownum is divisible by 2 then
do_row(rownum+1, candlist);
else
do_row(rownum+1. candlist _rownum):
end.

end:

Note that candlist does not change with every row. This is becanse of the 2 ones
that appear in the last 24 columns of all the candidates. Within an (odd, even) row
pair (row,,row,4 ), where 7 < i < 19, the 2 ones appear in the same 3-colunmm-wide
block. Thus row, + row,;; has a weight in the last 24 columns of 2, and a weight in
the first 24 columns of either 10 or 14. However, when we consider the next odd row,
namely row,,2, the 2 ones in the last 24 columns appear in a different block than
those of the two previous rows. So row, + row,42 has a weight in the last 24 coluinns
of 4, and a weight in the first 24 columns of ecither 8, 12 or 16. If we were to check
the list of candidates for row,4; to fill row, 4, then we would find no candidates that
would be acceptable. Thus we use the list of candidates for row,.

We can modify this algorithm a little in order to make it more efficient. We shall
now discuss several things that can be done in order to trim the search tree and

thereby save time.
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First, if the candidate list is ordered (say lexicographically) then we can insist
on certain orderings between rows.  Note that within any (odd, even)-row pair
(row,,row,4y), where 7 < 7 < 19, we can insist that row; is smaller lexicographi-

cally than row,;; because it must satisfy the same constraints, namely:

e all the linear combinations of it with rows 1...7 — 1 must have acceptable

weights, and

e both the even-row and the odd-row have 2 ones in the same 3-column-wide

block of the last 24 columns of the matrix.

Due to the above, and the fact that (row,,row,4+;) must be mutually compatible, we
can see that if ¢ is acceptable as odd row 7 and y as even row i 4+ 1, then z would
be equally acceptable as even row ¢ 4+ 1 were y to be odd row i. However, these two
cases are isomorphic, and so we need only consider the case where y is further down
the lexicographically-ordered list of candidates than z.

A second ordering relates to information obtained about the matrix as of the sixth
row. Recall that at row 6 there are two non-isomorphic cases, namely type a, in which
the block of 3 ones in rows matches to that of rows, and type b, in which they do not.
If we are working on a matrix of type a, then we can insist that all subsequent (odd,
even)-row pairs (row,,row,4+) have blocks of 3 ones that match up. This is the case
because if (row,, row,4;) did not have blocks of 3 ones that matched, then we could

exchange this pair with (rows,rows) (thereby “turning it into” a type b matrix).

Notc: even if we are dealing with a type b matrix, if a later pair of rows have
blocks of 3 ones that match, we still may be able to insist that all later pairs have
blocks of 3 ones that match, depending on which row this occurs at. However, we

don’t actually use this in order to simplify programming!

We do not follow the above algorithm exactly because after row 8 it becomes very
time-consuming. We use it only up to row 8, using the above modifications, and in
addition stopping at each row to run an isomorphism check of the code generated.

There are a total of 63 non-isomorphic matrices complete to row 7 — 5 of type a and
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58 of type b. For each of the above matrices, we run one level of the algorithm in
order to find the matrices complete to row 8, then check for isomorphic cases. Of a

total of 38124 matrices, 1607 are non-isomorphic 9 of type a and 1598 of type b,
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Chapter 5

Estimates

In order to design an algorithm to determine the remainder of the generator matrix,
we need to have a good idea of the number of candidates that will need to be examined
al each level of the search tree. In this case, a level is a particular row of the generator

matrix. For further information on the estimation process, refer to [3. 4].

5.1 Size and Shape of the Search Tree

‘There are 1607 starting matrices where the entries are filled in up to row 8 (of course,
rows 21 to 24 are also known). We could use the “simple algorithm™ mentioned in
the previous chapter, with currrow = 8. However, knowing nothing about the size
of the candidate list at each level after row 8, it is a very good idea to do an estimate
by selecting only a few of the good candidates at each level.

Suppose that at level {, we read a candidate list candlist,, generating the survivor
list o,. Instead of taking for row ¢, in turn, all |o,| survivors and continuing the search.
suppose that we take only & of them. For each of these k, we determine 0,4, ,, the
list of survivors for level 7 4+ 1 given the particular j'th choice of rows 1...:. Then

we estimate the total number of survivors at level 1 + 1 as

g,
J'Z,—I- * (Ial+1,l| + e IO’..H_L-').

The estimate of the number of tests required to generate the candidate lists for row

i+ 2 is numtests = (total number of survivors at level i + 1) * (average size of



candidate lists at level 7 + 1). For this specific case.

1%3'1* (lowgral + - o) o]+ + |71k

if 7 1s even.

numtests = o

T * ol + -+ +logia) + (o))
if 7 is odd.
If we continue the estimation for several consecutive levels, choosing & candidates
at every level from 7 to i + j, then the estimate of the total number of survivors at
level i 4+ j is:

|10l ol (|0':+J,1.....1| +- |0.+J,1, ket

IO’ ' lal+1,l,...,k| (IUH-J.L....II 4+ 4+ |UI+J.1,....k|)) v )+

ks =
Ikl ot k] okl + o+ ok, k) +-- +
|01+1,1,‘...k| (lo-l'f‘_l.k,..‘.ll +---+ |U. tok, ..k])) e ')

5.2 Estimates Obtained

Using the above. and doing a scarch using only three survivors at cach level, we
estimated the number of surviving candidates at cach level. and the number of tests

required to generate the candidate list for this level. The results are shown in Fig. H.1.

Figure 5.1: Initial Estimates

row# | #survivors, this test | #survivors, total | #tests req’d
9 ~ 700 1.1 k6 -
10 5-100 3217 7.8 I8
11 ~ 140-160 5.0 10 2.2 K10
12 0-20 3.8 E10 7.6 K11

As well as computing the linear combinations of the first eight rows of the gen
erator matrix, we can also use the last four rows. If, in fact, we use just one of the
last four rows (namely rows;) then we see a noticeable difference in the number of
survivors seen, beginning at level 11 This is because some linear combinations of
the first eleven rows will have a weight of 8 in the last 24 columns. Adding these
combinations to rows;, the weight in the last 24 columns is only 4, and thus the
overall weight may be less than 12. Note, however, that this means that we cannot,

use the list of survivors from level 11 as candidates for row)4, since adding row,; to a
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linear combination of row,;s with the first ten rows cannot cause its overall weight to
hecomne lower. Thus if we are using rows; as an extra check, at level 13 we must use
the list of survivors from level 9. Fig. 5.2 shows the results of the same estimation

process, except also computing the lincar combinations involving row,;.

Figure 5.2: Estimates using rowy,

row#t | #survivors, this test | #survivors, total | #tests req’d
9 ~ 700 1.1 E6 -
10 5-100 3.2 E7 7.8 E8
1 ~ 30 8.3 E8 2.2 E10
12 0-2 1.3 E7 2.2 E10

5.3 Trimming the Search Tree

We can again use the fact that the candidate lists are in lexicographical order to
further cut down the search. For every (odd, even)-row pair (row,, row,,). we can
cut out another 2/3 of the possibilities by using a further ordering. Recall that we
are restricting our choice of candidates to those of type 3-17, so both row, and row,4,

are of this type. Recall that
rowy +rowy = 111111111111 111 111 111 111 0600 006 000 000 000 000 000 000.

We shall now show that the codeword row, + row,.; + row; + row,, denoted as
(row, + row,41), is also a vector of type 3 - 17,

We know that in the first 24 columns, row, + row,;1 must have a weight of 10
or Il in order for it to be acceptable. If row, and row,4 have 3 ones in the same
block, then row, + row,y, is either of type 0° - 2% or 0- 27, If row, and row,;; do
not have 3 ones in the same block, then in row, + row,4;, there are two blocks of 2
ones obtained by matching up a block containing 1 one in one vector against a block
containing 3 ones in the other. The other blocks will contain either 2 ones or none.
again resulting in a vector of type 0°- 25 or 0-27. If row, + row,,, is of type 0° . 25,
then we can permute the blocks so that the 3 blocks of zeros are in the first three

positions; adding it to the second row of the generator matrix we obtain a vector of

o
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low weight. So row, + row,yy must be of type 0- 27, and (row, + row, ) is of type
317,

Because (row, + row,41)" is of type 3 - 17 and because it must satisfy the same
constraints. it must therefore be in the list of candidates for row,. Since the candidate
list is ordered, we can insist that (row, 4+ row,1) is further down the list than row, .,

thereby throwing out 2/3 of the possibilities for this pair.
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Chapter 6

Connection Machine Algorithm

This chapter describes the method used to extend each of the 1607 matrices completed
to row 8. Iiven with the shortcuts, the previously-mentioned algorithm is still very
slow - extending only one of the starting matrices takes around 1 day to run on
a DISC 5000/200 machine. For this reason, we decided to use the CM-2 and use a
different kind of algorithm to take advantage of the different architecture. As a result,

we completed the entire search on the CM-2 in about 12 CPU hours.

6.1 Architecture of the Connection Machine

The Connection Machine is a Single Instruction. Multiple Data-Stream, or SIMD
computer - one instruction is carried out in parallel across all “active” processors.
The version that 1 used, a CM-2. has a back end consisting of 8K processors each of
which have their own memory, and a front end which is a SPARC-2. A processor
is active if a particular bit (the context bit) in that processor is on; this may be
controlled by the user. Despite the fact that there are only 8K physical processors,
. we can allocate virtual processors; although all the work will not be done concurrently
in this case, it will “appear” so to the programmer. The language that I used to write
programs for the CM is C/Paris. Paris is a very low-level language for programming

the back end.
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6.2 Background Information

As previously mentioned, there are several ways to speed up the search. Most of
these use the fact that at each level, the candidate list is ordered, then insist upon
a particular order between rows of the generator matrix. To generate rows 9 to 20,
we consider together sets of four rows (quads) (rowsiyi, oWy, rowy 3, 10wy 44),
insisting upon a certain ordering within the rows of each quad and between quads
themselves.

Each vector in the candidate list for row 9 is also a candidate for rows 10 to 20. Of
these rows, rowg intersects only row,q in the last 24 colummns. This is true in general
for any (odd, even)-row pair (row,, row,4+) between rows 5 and 20. For this reason,
for any odd i, 5 < i < 19, the list of compatible pairs (row,, row,;,) is different from
the list of compatible pairs (row,, row,), where i < j <20 and j # 7 + 1.

Now consider the list of compatible (rowy, row;) pairs. We could say that rowy
and row;; are compatible if every lincar combination combo of the first cight rows
and rowg and row;, has acceptable weight. But we also know the last four rows of
the generator matrix. Until row 11, adding a linear combination of the last four rows
to combo cannot give a vector of lower weight. At row 11, however, it is possible that
combo has a weight in the last 24 columns of 8; adding row,; will reduce this to |
and may give a vector of overall low weight.

Assume that we know rows 1 to 8 and are trying to determine the list of compatible
(rowg, Trow,3) pairs. In this case, adding a linear combination of the last four rows
cannot make a difference since there is no weight-12 lincar combination of these rows
that has ones in columns 25 to 33 and 37 to 39.

We use two compatibility matrices, Cy 3, and Cy 3. For two specific row 9 candi-
dates = and y, Co,1i[z][y] is TRUE if all linear combinations of the first eight rows,
row,; and r and y have acceptable weights. Note that this also implies that Cy 3y [y][r]
is TRUE. Similarly, Cy13[z][y] is TRUE if all linear combinations of the first eight
rows and z (treated as row 9) and y (treated as row 13) have acceptable weights.

To generate the list of (rowq, row,y, row;;, row;,) quads, we first find the list of

possible row9-rowl0 pairs, then use Cyyy to determine the compatibility of pairs
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against cach other.  Every element in the list is also a candidate for the quads
(rowys, rowy 4, row; s, rowg) and (rowy7, row,s, rowyg, Towy). We use row;, as an
extra check for the quad (rows, rowg, rowy;,row;;); for the other quads, this is
translated to another combination of the last four rows, namely rowss for the quad
(rows, row4, row) s, rowg) and (rows, + rowss) for (rowyz, rowss, row;g, rowsy ). We
use Cg,y3 to determine the compatibility of quads against each other.

We insist upon the following orderings:

e Within any (odd-even)-row pairs (row,,row;4+;),7 > 9, the order within the
candidate list must be row,, row,,;, (row, + row,;+1)', where z’ denotes the

vector r complemented on the first 24 columns.

o The pair (rowsgq;,rows42) must come before the pair (rowyk4+3, TOW4k44) in

the list of possible pairs for any k > 2.

e The quad (rowsk 41, TOWsk12, TOWk 43, TOWk14) must appear before the quad

(rowargs, TOWs k46, TOWk 17, TOWk4g) in the list of possible quads for any & > 2.

Using the compatibility matrices in the described manner, we do not check all
possible combinations of the rows of the generator matrix. In particular, we are

missing:

o any lincar combinations involving the last four rows, excepting those explicitly

mentioned above

e any lincar combinations involving vectors from more than two (odd, even)- row

pairs - for example, rows + row;; + rows.

Hence even if the CM algorithm returns what it considers to be a “good” matrix
there may still be some combinations of the rows which have unacceptable weights;
we must, therefore still check the weight enumerator of all the matrices returned by
the M algorithm.

Since the last 24 columns, or “right-hand side”, of rows 9 to 20 is already known,

we only need to consider vectors of length 24 representing the first 24 columns of these
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rows. In addition, each of these rows must be of type 3- 17, so for cach 3-column-wide
block there are only four possibilities - one in which the block has 3 ones, and three
in which the block has 1 one. Since there are eight such blocks, we can use a table of
size 2 to store information about each possible vector; we use the following mapping,

between length-24 and length-16 vectors:

111 —~ 00
100 — 01
010 — 10
001 — 11.

Note that for two length-16 vectors .y and yy¢ and their corresponding length 21
vectors 24 and ya4, T16 + Y16 maps Lo (ray + yog)l.

To build the compatibility matrices, we consider all length-16 vectors v in the
table which, when converted to length-21; are doubly-even. These are the possible
length-16 vectors which, when mapped to length-21, can result from the addition of
a row 9 candidate 79 with either a row 11 candidate r11 or with a row 13 candidate
r13; thus we look at the length-16 mapping of (r9 4+ r11) or (r9 { r13). We have
to check that each linear combination of v with the first cight rows and. if necessary,
rows, has acceptable weight. The complement of the length-21 vector & is denoted
as ' and is accomplished by adding rows 1 and 2 to .r, so it is one of the combinations

that we check.

6.3 Description of Algorithm

A description of, and pseudocode for, the algorithm used on the Connection Machine
follows. Note: a 1 after a particular command indicates that the insirurtion 1s carried
out across all processors in parallel. In the following type of sitnation:
if Bt
then
S

else
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S

the condition B is checked in all processors in parallel. The command(s) in S are
carri «d out in parallel across all processors for which B is true; the command(s) in
S, are carried out in parallel across all processors for which B is false.

For cach matrix complete to row 8, we first compute the list of possible row 9's,

storing them in R9list:

compute all linear combinations of rows 1 to 8 and store each one in a
separate processor;
R9list := null;
for each candidate ¢ in candlist do
begin
broadcast ¢ across the set of linear combinations;
of ¢ + combo has acceptable weight for each combination combo
then
add ¢ to end of R9list;

end:

fo build the compatibility matrices, we need to find which codewords are valid

as cither (rowy + rowy;)! or (rowy + row;3)/. We do this in parallel, as follows:

for cach doubly-even vector r of length 24, such that each block
of & contains either 3 ones or 1 one do
begin
compute LI Swt; {weight in st 24 columns of each combination} {
RIIRHSwt := 0; t
RIBRHSwt := 4;
tf combination includes row 5 or row 6 then {
begin
RITRHSwt := RIIRHSwt + 2;
R13RHSwt := R1I3RHSwt + 2;
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if combination includes row T or row 8 then {
begin
RI11RHSwt := R11RHSwt + 2;
R13RHSwt := R1JRHSwt + 2;
end;
if R11IRHSwt < 4 ¢
then
R11RHSwt := RI1RHSwt + 4;
¢f LHSwt + RI1IRHSwt > 12 and is divisible by 4 for all combinations
then
x.R9_R11 := TRUE;
else
r.R9_R11 := FALSE;
if LHSwt + RI3RHSwt > 12 and is divisible by 4 for all combinations
then
r.RY_R13 := TRUL;
clse
r.RI_R13 := FALSE;

end:

We use this information to build the compatibility matrices:

for i :=1 to size of R9list do
begin
¢, := 1'th candidate in R9list;
for j :=1 to size of R9list do
begin
¢y := j'th candidate in R9list;
Co, 11)[j] := Conlj]li] := (&1 + ¢2). RI_RI1;
Conali]li] := Coualilli] := (e1 + c2). RI-IE13;

end;
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end;

When using the compatibility matrices, we need the list of row9/row10 tuples.

We store these tuples in triple list.

tripleJist := null;
for cach candidate 79 in R9list do
Jor cach candidate r10 in R9list do
if 10 comes further down R9list than r9 and
(r9 + r10) is in R9list and
(79 + r10)’ comes further down R9list than 10
then

add (79,710, (r9 4+ r10)) to end of triplelist;

The procedure makelist uses the compatibility matrix FEcompat to determine
which tuples, of size startsize 1, in startlist! are compatible with which tuples, of size
startsize?, in startlist2. The resulting tuples, of size newsize are then stored in newlist.
It is assumed that startsize2 < startsizel. Furthermore, if startsize2 < startsizel then

the last startsize2 components of startlist] must be elements of startlist2.

Proccdure makelist(FEcompat, newlist, startlist1, startlist2,
newsize, startsizel, startsize2)

load cach tuple in startlist]l into field C M tuple of a separate processor:
('Mcompat := all-1 vector of length sizeof{ R9list); §
for each column & of FEcompat do

AND k into CMcompat in each processor referencing k;
{processor having CMtuple = (x'....,Tstartsize1) NOW has }
{CMcompat = FEcompat[ry] A ... A FEcompat|zsarisizer] }
newlist := null;
Joreach tuple (y1. ..., Ystartsize2 )in startlist2 do

begin
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context_bit := CMcompat[y:] AND ... CMcompat{ysartszer]:
for each processor with context_bit = TRULE do
if (Y1s.- - Ystartsize2) comes further down startlist2
than (Tsaresizel-startsize241s- - - » Tstartsszel )

then

add (x1,..., Tstartsizel s Yls- - -« Ystartize2) L0 end of newlist;

end;

The complete algorithm follows:

For each matrix completed to row 8 do
begin
if matrix is type a then
candlist := type.a_list;
else

candlist := type.b_list:

compute list of possible row 9’s and store in R9list:

determine which codewords are valid as either (row9 + rowll)
or (row9 + rowl3)’;

compute list of R9/R10 tuples and store in triple.list;

build compatibility matrices Cg 1y and Cyya;

makelist(Cy 11, hexlist, triplelist, triplelist, 6, 3, 3);
makelist(Cy 13, dozenlist, hexlist, hexlist, 12, 6, 6);
makelist(Co 13, answerlist, dozenlist, hexlist, 18, 12, 6);

end.
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Chapter 7

Results

This chapter summarizes the results of the search for a (48,24, 12) doubly- even self-
dual code carried out on the Connection Machine, including how we determine if any

of these is equivalent to the only known code of these parameters.

7.1 Extended Quadratic Residue Code

Because the only known (48,24,12) doubly-even, self-dual code is the Extended
Quadratic Residue code, we naturally want to know if we find this code during our
scarch. To do this, we consider the 17296 codewords of weight 12 obtained from the
Fxtended Quadratic Residue code.

There are three generators for the automorphism of the code [3, page 491], namely:

o 00 = o0
"' 1i = i41  (mod 47)

oy {z’ - =t (mod47)}
oo
0

. { ir? (mod 47) }

where 7 is a primitive root mod 47, i.e. r satisfies r1® =

1
(mod 4T) V0 < i < 46. We use r =45, sor> =4 (mod 47).

~og
111

(mod 47) and r* # 1

All of the matrices returned by the Connection Machine algorithm have the same
basic structure, as shown in Fig. 3.4. All of the codewords in the generator ma-

trices are of weight 12, and furthermore the matrices are each broken up into 3
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basic parts. In order to determine if we have generated codes equivalent to the EFx-
tended Quadratic Residue code, we consider only the weight-12 words in the Extended
Quadratic Residue code, and try to create generator matrices in the same basic form
as those we have produced.

To determine if every weight-12 codeword from the Extended Quadratic Residue
code matrix can be mapped to every other, we use an “expanding horizon™: we choose
any codeword x and recursively apply 0y, 02 and o3 to it until we obtain a previously
seen codeword. At the end, we check if all codewords in the list have been seen. The
17296 codewords are divided into three orbits, one of size 8648 and two of size 4321.
This means that there are three possible first rows. We use as orbit representatives
codeword #12973, codeword #14877 and codeword #6300 respectively. For ecach
row;, we find the list clist of 630 weight-12 codewords which do not intersect row,.
For the case we are considering, there must be a subcode contained in the last |
rows which intersects neither row,; nor row,; this subcode has 1.1 weight-12 vectors.
Thus a given codeword in clist is a possible row; if 14 other codewords in elist do not
intersect it. For each row;, we break up the list of possible row,’s into orbits under
the action of the automorphism group of row;.

There are a total of fourteen (row;,row;) combinations once we break the lists
of row,’s into orbits. For row; = #12973, the row,’s arc in six different orbits. For
row, = #14877, the row;’s are in five different orbits. For row, = #6300, the row,’s
are in three different orbits.

To find the rest of the “top” part of the generator matrix for cach of the above,
we find all codewords in the list of 17296 that intersect only row; or row,. T'here are
a total of 14 rows in the “top” part; these are all the weight-12 linear combinations
of the first four rows. There are 192 rows in the “middle” section, 24 of which are of
type 3 - 17 and 168 of type 23-0- 1%. The “bottom” section consists of all weight 12
codewords which intersect neither row; nor row,.

So we now have a total of 14 matrices of size 220 x 48 formed from the extended
quadratic residue code and with the required structure. Of these, there are five

non-isomorphic matrices.
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7.2 Results from the Connection Machine Algo-
rithm

Of a total of 1607 non-isomorphic matrices complete to row 8, 9 are of type a and
1598 are of type b. We used the Connection Machine to try to complete the rest of
the rows for cach of the 1607 cases.

Using the Connection Machine algorithm we found a total of 1326 complete ma-
trices. Of these, 392 are of type a and 934 are of type b. As previously mentioned, it
is possible that some of these have codewords of invalid weight — a weight less than
12 or not doubly-even. When we checked the weight enumerator of each of these
matrices, we found that only 20 are acceptable - 11 type a and 9 type b.

For each of the 1326 cases, we found the 220 x 48 matrix composed of three parts:

o a “top” part of 14 rows, consisting of all the weight-12 linear combinations of

the first four rows of the generator matrix
o a “middle” part of 192 rows, consisting of:

— the middle 16 rows of the generator matrix

~ row, + row,; for each odd-row - even-row pair of the middle 16 rows

(row,, row,, )

— for cach of these (which are all of type 3 - 17) the corresponding 7 vectors

of type 23.0- 11,

e a “bottom” part of 14 rows, consisting of all the weight-12 linear combinations

of the last four rows of the generator matrix

We ran an isomorphism check on the above 1326 matrices, and of course also
compared them to the 5 matrices of the same structure which arise from the Extended
Quadratic Residue code. We found that 446 are non-isomorphic; 47 of these are of
type a and 399 are of type b. Of the 20 matrices with acceptable weight enumerator,
there are 5 non-isomorphic matrices — 1 of type a and 4 of type b. Each of these 5 is

isomorphic to one of the matrices from the Extended Quadratic Residue code.
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7.3 Conclusion

The search for extremal (48,24,12) doubly-even codes can be divided into three
cases. We completed a search assuming one of these cases, finding only codes that
are isomorphic to the Extended Quadratic Residue code. The other two cases are

still open.
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Appendix

This contains the CM programs and header files used to find complete matrices
given the first eight rows.

The mainline for the search is in the file bldcode.c, which is compiled to bldcod:.
Three parameters are required — the command line
cmattach bldcode main cand_file input._file
will “attach™ to the CM, which will then run the program bldcode with option main.
The list of candidates for the remaining rows of the generator matrix should be in
the file cand_file. Further required information should be in the file input_file, which

should contain the following information, in order:
¢ number of starting matrices in this batch
e row 6
o (row 7, row 8) for each of the starting matrices to be tested in this bateh

Rows | to 5 are the same for all input matrices, but the sixth row is different, for
type a and type b matrices, so the searches for typc a and type b matrices must be run

in separate batches.
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/%

/* bldextended.h

/*

/% */

CM_geometry_id_t curr_geom; /* current geometry */

CM_vp_set_id_t curr_vp; /* current vp set */

#define c8_id_fldlen 12
/* length of CM field containing the C8id of tuple-members.
/* Note: 700 is the expected C8 size, but 12 bits are allowed
/* just in case.
/*  x/
#define maxids 12 /* max #ids contained in any tuple */
#define max_tuples 15000 /* maximum size of tuple array */
typedef unsigned short tuple[maxids] [max_tuples];
/* A particular vector of candidate ids in the C8 set.
/* There are 1.5*N ids per tuple (N currently 2, 4, or 8)
/* The k’th tuple, for a tuple composed of n ids, is stored in
/* tuple[0] [k]...tuple[n-1][k]; tuple[n]...tuple[maxids-1] are
/* all-zero vectors.

/* x/

int build_extended_pairs(
/* If a tuple represents 2 or more candidates which are known to
/* be mutually compatible, then a necessary (but not sufficient)

/* condition that 2 tuples are compatible is that each row in one



/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

of the tuples is compatible with all of the rows in the other
tuple. This routine does this test.

On entry each VP represents a tuple and contains a column of
the multicompat containing a 1 for each candidate compatible
with all rows of that tuple. The column is in field cmcompat.
This function then passes through the list of test tuples,
testing each against each VP, and builds a list of
extended_pairs which contains the sequence number of each pair
of compatable tuples. The return value is the number of
extended pairs found.

Assumption: cm_test_tuple is contained in fe_test_tuple.
Then, due to ordering, only look at processors containing
tuples further down the list than the corresponding part

of fe_test_tuple[][ttndx].

/* The VP set must be correct on entry.
/% */
#ifdef SMARTC
tuple fe_test_tuple; /* set of FE tuples to test */
int fe_tuple_size; /* #candidates in each FE tuple */
CM_field_1d_t cm_test_tuple; /* set of tuples in CM */

int cm_tuple_size; /* #candidates 1n each CM tuple */

tuple extended_pairs; /* set of extended pairs found */

int max_extended_pairs; /* Size of extended_pair vector */

/* Stop and return -Ntt if we find too many to fit, where Ntt
/* = number of test_tuples whose results are cbmpletely

/* included in extended pairs, else return 0. */

#endif

)

void
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create_valid_c8_triples(

#1fdef SMARTC

tuple triplevec;

#endif

);
/*
/*
/*
/*

Return the list of valid pairs from globals C8list, which has
C8actual entries in it. Element O has the number of tuples in
the list. The rest of the elements have the 16-bit addresses

of the 3 elements associated with each pair. x*/

CM_field_id_t send_tuples_to_cm(
#ifdef SMARTC

tuple tuples,

int tuplesize

#endif

);
/*
/*
/*
/*
/*

send each of numtuples tuples of size tuplesize stored in
tuples to a separate processor. There are tuples[0][0] tuples
in all. Appropriate geometry should be defined beforehand e.g.
when sending triples, a vp-ratio of 2 is required (12 000

triples expected). */
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/* convert.h */

typedef struct{ /* records potential cands */
int val24; /* 24-bit value of cand */

int vallé; /* 16-bit value of cand */

int C8id; /* mapping into list of good

/* candidates for C8 x*/

}candrec;

int read_cands(/* char *filename, candrec *cands, int maxcands */);
/* read all the candidates from file filename into the
/* array at cands. maxcands is the size of the array, so
/* we are not allowed to read more than this.
/* Return the number of cands read. Return maxcands+1

/* if there are more in the file than the array can handle.

/* */

void /* convert from 16-long to 24-long format */
116t0124(
#if O
int A[],
int B[]
#endif
)i

void /* convert from 16-bit to 16-long form */
btol16(
#if O

int b,
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int A[]
#endif
)




/*
/*
/*
/*
/*
/*
/*
/*

CM
/

vo

#1i

/*

#e

multicompat.h -

Module to distribute the multi-compat matrix to the VPs.

A multi-compat is made from a compatability matrix by storing
the AND of several columns of the compatability matrix into

each VP. The particular columns which are combined waithan

each VP depends on the values of a set of fields within the
individual VPs.

*/
_field_id_t cmcompat; /* Field in CM to store columns of the

* multi compat */

id distribute_multi_compat (

fO

int mask; /* Pick out bit to use from valid */

int shift; /* Shift count to get bit in low order position */

CM_field_id cand_flds; /* Vector of field ids pointing to the
/* fields to be tested. */

int nflds; /* Number of fields to be tested. */

int fld_len; /* length of the test fields. All are the same. */

int C8_cand_16; /* Vector of candidates to use to form

multi-compat */

int Ncands; /* Number of candidates to process */

int Ntuples; /* Number of tuples that will be tested; only the first

Ntuples processors should contain columns of compat

matrix - the others should have all zeroes */

ndif

)
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/* paratest.h -

/* Control the testing of a set of candidates against a context in

parallel. */

#define

COORDSIZE 10

/* length of a coord field (codeid and batchid). */

#define
#define
#define
#define
#define
#define

NUM_PROCS 8192

STRING_LEN 24

POPCOUNT_LEN 6

SINGLY_EVEN_LEN POPCOUNT_LEN - 1
DOUBLY_EVEN_LEN POPCOUNT_LEN - 2
RESULT_STR_LEN 4

typedef struct { /* Define the geometry for the parallel structure
/* to be set up. */
int width; /% of the code space. == 256 at row 8 */

int Nbatch; /* Number of parallel batches to do at once. Must be

power of 2 */

CM_geometry_id_t geometry; /* to be used for reading back the

results. */

CM_vp_set_id_t build_vp_set;

CM_field_id_t codeid, batchid;

/* identify the codeid (= news coord within width, 0 base) and
/* batchid (= news coord with batches, 0 base) that each

/* processor is in. Codes index along the zero’th coord, batches
/* along the first. */

} paratest_rec;

extern paratest_rec *define_paratest(/* int width, int Nbatch */);



/%
/%
/*
/%

Return a paratest_rec which will allow parallel testing of
candidates in a code space of size width, with Nbatch results
in parallel. */

NOTE: this routine will change the vpset and geometry!!!! */

extern void do_paratest(

/* paratest_rec *ptr, int *cands, int Ncands, char *bits */);

/%
/%
/*
/*
/*
/*
/*
/*
/*
/*

Do a parallel test of the set of Ncands candidates in cands[]
according to the parallel parameters in ptr, which must have
been created by define_paratest. On return, the results of the
tests of the candidates will be stored as bits in bits[], with
1 byte per candidate.

The bits set will be cand_r9, r9.ri11, and r9_ri13, as defined
in table64.h. NOTE: this routine will change the vpset and
geometry!!!tt x/

NO candidate with a weight > 20 is allowed (length of count
field!!) */

extern void setup_basis(

/* paratest_rec *ccude, int basis[], int numbasis */);

/*
/*

Build the basis code for testing acceptability of various

strings with paratest. */
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/* table64.h -
/* Describe the record for the table of 64K 16-bit values. */

typedef struct { /* For each possible 16-bit value */

int val24; /* 24-bit equivalent of 16-bit value */

short canid; /* Candidate id if this value is a candidate
/* at R6 or -1 */

short C8id; /* position in list of C8 candidates if good;
-1 if not good for C8 */

short valid; /* Records the validity of this value in
/* several contexts, 1 bit per context. Contexts
/* selected by constants below. */

short popcount; /* population count of candidate */

}1lhscodes;

/* Identify bits in lhscode.valid */

#define cand_r7 1
/* Bit set if one of 3700 initial candidates */
#define cand_r9 2
/* bit set if one of 700 candidates in context of row 8 */
#define r9_ri1 4
/* Bit set if this represents the XOR of 2 valid r9 candidates,
/* and is valid as a r9-ril pair. %/
#define r9_ri3 8
/* Bit set if this represents the XOR of 2 valid r9 candidates,

/* and is valid as a r9-ri3 pair. */

#define tablesize 65536 /* 2°16 = #cand to be converted */
lhscodes table64k[tablesize];



#define MAX_C6_SIZE 4000
#define C8listsize MAX_C6_SIZE

extern int C8_cand_16[C8listsize];
/* 16-bit vals of remaining cands at R9 */
extern int C8actual; /* Number of items actually there */

extern int C6actual; /* Number of items actually there */

FILE *r7r8file; /* contains all r7-r8 combinations to test */

int

maketable(/* char *filename, candrec cands[], int maxcand */);
/* read candidates from ’'filename’; maxcands = max #candiates
/* £ill up table64k. table64k[i] has canid = to position of
/* i in ’filename’s candidate list (if in list), in which case
/* we also have valid = 1 */

#ifndef DEBUG

#define prism_alloc(len) CM_allocate_heap_field(len)

#else

#define prism_alloc(len) CM_allocate_heap_field(32)

#endif

#define Abort(msg) { fprintf(stderr,"’s\n",msg); exit(1); }

#define assert(e) if (!(e))Abort(‘'assert failed");

#define timing



/******************************************************#**********/

/*
/*
/*
/*
/*

bldcode.c -
Mainline for search for generator matrix for 48-24-12 code

assuming that there are 4 special rows at the start and end

of the matrix.

/****************#************************************************l

#include <stdio.h>

#include <math.h>

#include <cm/paris.h>

#include <cm/cmsr.h>

#include "paratest.h"

#include "table64.h"

#define Abort(msg) { fprintf(stderr,")s\n",msg); exit(1); }

void main(argc, argv)

char **argv;

argc;

char *option;

if (argc < 2)Abort("Option required");

option = argv[1];

[ rkkdookkokkRkoRkkk Init x/

fprintf(stderr,"warm booting..."); fflush(stdout);
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CM_init();

fprintf(stderr,"done\n");

printf("Testing option **¥*x/skx*x¥x\n", option);

if (strcmp(option, "paratest") == 0)

{
test_paratest();
}
else if (strcmp(option, "main") == Q)
{

if (argc < 4) Abort("Filenames required\n");
build_it(argv(2], argv(3]);

} else {
printf("%s unknown!!\n", option);

}

printf("Finis\n");

} /% main */
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/* bldextended.c -
/* Module to test a set of frontend tuples against a set of cm

/* tuples, given that the multicompat is present. */

#include <stdio.h>
#include <math.h>
#include <cm/paris.h>
#1include <cm/cmsr.h>
#include "paratest.h"
#include "table64.h"
#include "bldextended.h"

#1nclude "multicompat.h"

int build_extended_pairs(fe_test_tuple, fe_tuple_size, cm_test_tuple,
cm_tuple_size, extended_pairs, max_extended_pairs)
tuple fe_test_tuple; /* set of FE tuples to test */
int fe_tuple_size; /#* #candidates in each FE tuple */
CM_field_id_t cm_test_tuple; /* set of tuples in CM */
int cm_tuple_size; /* #candidates in each CM tuple */
tuple extended_pairs; /* set of extended pairs found */
int max_extended_pairs; /* Size of extended_pair vector */
/* Stop and return -Ntt if we find too many to fit, where
/* Ntt = number of test_tuples whose results are completely

/* included in extended pairs, else return 0. */

{ int nfound;
int ttndx, valndx;
int numtuples; /* #of FE tuples to test */

int full_count = 0, count;
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int i, j, firstnews;
CM_field_id_t news_id;

#define coord_len 14

#ifdef info
printf(
"Build_extended_pair(fe_tuple_size = d, cm_tuple_size = %d' 1",
fe_tuple_size, cm_tuple_size);

#tendif

nfound = 0;

numtuples = fe_test_tuple[0][0];

news_id = CM_allocate_heap_field(coord_len);
CM_set_context();

CM_my_news_coordinate_1L(news_id, 0, coord_len);

#ifdef timing
CM_timer_clear(2);
CM_timer_start(2);
#endif
for (ttndx = 1; ttndx <= numtuples; ttndx++)
{

CM_set_context();

/* Assumption: cm_test_tuple is contained in fe_test_tuple.
Then, due to ordering, only look at prdcessors containing
tuples further down the list than the corresponding part
of fe_test_tuple[][ttndx] */

CM_u_ge_constant_1L(

cm_test_tuple,

fe_test_tuple(fe_tuple_size-cm_tuple_size] [ttndx], c8_1d_fldlen);



CM_logand_context_with_test();

/* AND each bit of cmcompat corresponding to a member of
the FE tuple */
for (valndx = 0; valndx < fe_tuple_size; valndx++)
CM_logand_context(
CM_.add_offset_to_field_id(cmcompat, fe_test_tuple[valndx] [ttndx]));

if ((count = CM_global_count_context()) > 0)
/* valid extended pair(s) found in this iteration */

{

if (full_count >= max_extended_pairs) /* too many to fit */

return -full_count;

/* Pick out results here */
for(i = full_count; i < full_count + count; i++)
{

/* return news_id of first processor with context-bit set to FE */

firstnews = CM_global_u_min_1L(news_id, coord_len);
CM_u_write_to_processor_1L(
CM_fe_make_news_coordinate(curr_geom, 0, firstnews),

CM_context_flag, 0, 1);

for(j = 0; j < fe_tuple_size; j++)
exterded_pairs([j][i+1] = fe_test_tuple[j][ttndx];
for(j = 0; j < cm_tuple_size; j++)
extended_pairs[fe_tuplec size+j] [i+1] = CM_u_read_from_processor (
CM_fe_make_news_coordinate(curr_geom, 0, firstnews),
CM_add_offset_to_field_id(cm_test_tuple, j*c8_id_fldlen),
c8_id_fldlen);



#ifdef info
if (i < 200)
{
for(j = 0; j < cm_tuple_size+fe_tuple_size; j++)
printf("%d\t", extended_pairs[j][i+1]);
printf("\n");
}
#endif
}
nfound++;

full_count += count;

}
#ifdef timing

CM_timer_stop(2);

printf("Time required to determine #extended pairs + use send to
read results:\n");

CM_timer_print(2);

printf("\n");
#endif

extended_pairs[0][0] = full_count;
#ifdef info
printf("build_extended_pair: %d live scans\n", nfound);
printf(*\tfull count of good %d-es: %d\n";
fe_tuple_size+cm_tuple_size, full_count);
#endif
return 0;

} /* build_extended_pairs */
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void
create_valid_c8_triples(triplevec)
tuple triplevec;

{ int i, j, xor;

int np;

np = 0;
for (i = 0; i < CBactual; i++)
for (j =i + 1; j < CBactual; j++)
{
xor = C8_cand_16[i] ~ C8_cand_16[j];
if ((xor > C8_cand_16[j]) && (table64k[xor].valid & cand_r9))
{
/* (C8_cand_16[i], C8_cand_16[j], xor) is a valid tuple; increment np
by 1 and put C8id’s of each member of the tuple in triplevec,

which is passed back and eventually sent to BE */

np++;

triplevec[0] [np] = i;

triplevec(1] [np] = j;

table64k[xor] .C8id;

triplevec[2] [np]
}
}
#ifdeéf info
printf(" %d triples created\n", np);
#endif
triplevec [0] [0] = np;

} /* create_valid_r9_ri0_pairs */

(1]
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CM_field_id_t send_tuples_to_cm(tuples, tuplesize)
tuple tuples;
int tuplesize;
/* send each of numtuples tuples of size tuplesize stored in
/* tuples to a separate processor. Appropriate geometry should be
/* defined beforehand.
/* x/
{ int i, numtuples, temp;
CM_field_id_t tupleids;
int offset[1], start[1], end[1], axis[1], dim[1];

#ifdef timing
printf("send_tuples_to_cm:\n");
CM_timer_clear(2);
CM_timer_start(2);

#endif

tupleids = CM_allocate_heap_field(tuplesize*c8_id_fldlen);
numtuples = tuples[0] [0];

offset[0] = 1;

start[0] = 0;

end[0] = numtuples;

axis[0] = 0;

dim[0] = numtuples;

for(i = 0; i < tuplesize; i++)

CM_u_write_to_news_array_iL(tuples[i], offset, start, end, axis,

CM_add_offset_to_field_id(tupleids, i*c8_id_fldlen),

c8_id_fldlen, 1, dim, sizeof(unsigned short));



#ifdef timing
CM_timer_stop(2);
CM_timer_print(2);
printf ("\n");

#¥endif
return tupleids;

} /* send_tuples_to_cm */
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/********************************************************************/
/* buildexec.c -

/* Executive for testing (and running) the entire program.

/* Entered via entry point build_it from bldcode.c

/* with option "main".

/*

/********************************************************************/

#include <stdio.h>
#include <math.h>
#include <cm/paris.h>
#include <cm/cmsr.h>
#include "paratest.h"
#include "table64.h"
#include "convert.h"

#include "bldextended.h"

#define numbasis 8 /* number of basis vectors at current level */
#define width 256 /* = 2°8 = size of codespace at curr level x/

#define numbat 32 /*

2°13/2°8 = #batches to run at a time */

int basis[numbasis];

int C8_cand_16[C8listsize]; /* remaining candidates at R9 */

int CBactual; /* Number cf items actually there */
int C6actual; /* Number of i1tems actually there */
candrec c6set[MAX_C6_SIZE];

/* Hold all the candidates as of row 6 (= candidates for row 7) */
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static init(filel, file2)
char *filel, *file2;

{

C6actual = maketable(filel, c6set, MAX_C6_SIZE);

r7r8file = fopen(file2, "r");

if(r7r8file == NULL)

{
printf ("Error - cannot open ¥%s\n", file2);
exit(1);

}

} /% init %/

void
re_init(filel)
char *filel;
{
C6actual = maketable(filel, c6set, MAX_C6_SIZE);

void
define_vp(vp_ratio)
int vp_ratio;

{ int dim[1];
dim[0] = vp_ratio*NUM_PROCS;

curr_geom = CM_create_geometry(dim, 1);

curr_vp = CM_allocate_vp_set(curr_geom) ;
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void
display_matrices(answer_ids, size)
/* display all vectors (size vectors per matrix)
/* found in answer_ids[] */
tuple answer_ids;
int size; /* #vectors in matrix */
{ int i, j, k;
int vec16[16], vec24([24];

printf("%d complete matrices found\n", answer_ids[0][0]);
for(i = 1; i <= answer_ids[0]J[0]; i++)
{
for(j = 0; j < size; j++)
{
btol16(C8_cand_16[answer_ids[j][i]], vecl6);
116t0l24(vecif, vec24);
for(k = 0; k < 24; k+=3)
printf("%d%d%d ", vec24[k], vec24[k+1], vec24[k+2]);
printf("\n");
}
printf("\n");

void build_it(filel, file2)
char *filel, *file?2;
/* Try to build a (48,24,12) code using candidate list in filel and
£f7-r8’'s in file2. The CM has been warm booted. */
{ int cntri1, cntri3;

int i, j, t, row7_8_choice, maxtests;
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CM_field_id_t c8_triple_flds, c8_hex_flds, c8_dozen_flds;
tuple c8_triaple_ids, c8_hex_ids, c8_dozen_ids, answer_ids;

paratest_rec *code;

CM_timer_clear(5);
CM_timer_start(5);

init(filel, file2);
fscanf (r7r8file, "%d", &maxtests);
for (row7_8_choice = nextr7_8(basis); row7_8_choice < maxtests;

row7_8_choice = nextr7_8(basis))

/* nextr7_8 should put the required row 7 and row 8 into the
/* basis vector */

printf(“"case %d:\n", row7_8_choice);

code = define_paratest(width, numbat);

setup_basis(code, basis, numbasis);

do_R9(code, C6actual, c6set);
do_X(code) ;

cntril = cntri3 = 0;
for(1 = 0; 1 < tablesize; i++)
{
if (table64k[1].valid)
{
if (table64k[i].valid & r9_r11)
{
if (!(table64k[i].valid & r9_r13))
printf("R11 but not R13 in valid for table[%d]/n",i);
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cntril++;
if ((table64k[i].valid & (cand_r7 | cand_r9)))
printf("R9 or R7 and R11 in valid for table([%d}/n",i);

}
if (table64k[i].valid & r9_ri3)
{
cntri3++;
if ((table64k([i].valid & (cand_r7 | cand_r9)))
printf("R9 or R7 and R13 in valid for table(%d]/n",i);
}
}

}
#ifdef info

printf(" %d r9/riis and %d r9/r13s were found\n", cntrii, cntri3);
#endif

create_valid_c8_triples(c8_triple_ids);

/* define and set up geometry for vp-set of size 2 */

define_vp(2);

CM_set_vp_set (curr_vp);

c8_triple_flds = send_tuples_to_cm(cB_triple_ids, 3);

distribute_multi_compat(r9_ril, offset_from_bit(r9_rit),
c8_triple_flds, 3, c8_id_fldlen, C8_cand_16, C8actual,
c8_triple_ids[0] [0]);

t = build_extended_pairs(c8_triple_ids, 3, c8_triple flds, 3,
c8_hex_ids, max_tuples);
#1fdef info

printf("Return from build_extended_pairs: %d\n", t);
#endif

61



define_vp(1);

CM_set_vp_set(curr_vp);

c8_hex_flds = send_tuples_to_cm(c8_hex_ids, 6);

distribute_multi_compat(r9_r13, offset_from_bit(r9_r13),
c8_hex_£flds, 6, c8_id_fldlen, C8_cand_16, C8actual,
c8_hex_ids[0][0]);

t = build_extended_pairs(c8_hex_ids, 6, c8_hex_flds, 6,
c8_dozen_ids, max_tuples);
#ifdef info

printf("Return from build_extended_pairs: %d\n", t);
#endaf

t = build_extended_pairs(c8_dozen_ids, 12, c8_hex_flds, 6,

answer_ids, max_tuples);

if (answer_ids[0][0] > 0) /* good complete matrice(s) found */
display_matrices(answer_ids, 18);

else printf("zilch\n");

re_init(filel);
}
printf("overall time:\n");
CM_timer_stop(5);
CM_timer_print(5);
} /* build_it */°

65



/* convert.c */
#include <stdio.h>

#include '"convert.h"

#define length 24

int cand16[16]; /* curr. cand. in 16-long form */

int cand24[length]; /* curr. cand. in 24-long form */

FILE *candfile, *outfile;

void /* convert from 24-long to 16-long format */
124t0116 (A, B)

int A[];

int B[];

{ int i, aindex, bindex;

for(i = 0; i < 8; i++)
{

aindex

3%i;

bindex = 2%i;
B[bindex] = (A[aindex] == 0);

B[bindex+1] = (A[aindex+1] == 0);

void /* convert from 16-long to 24-long format */
116t0124 (A, B)
int A[l;
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int B(];

{ int 1, aindex, bindex;

for(i = 0; i < 8; i++)
{

aindex

2*1;

bindex = 3%i;
B(bindex] = (A[aindex] == 0);
B{bindex+1] (Alaindex+1] == 0);

B[bindex+2] (Afaindex] == A[aindex+1]);

int /* convert from 16-long to 16-bit form */
1tob16(A)
int A[];

{ int v, 3;

v =20;
for(j = 0; j < 16; j++)
{
v <K= 1;
v += A[j];
}

return v;

int /* convert from 24-long to 24-bit form */
1tob24(A)
int A[];

67



for(j = 0; j < 24; j++)
{

v <= 1;

v += A[j];
}

return v;

void

btol16(b, A) /* convert from 16-bit to 16-long form */
int b;

int A[];

{ int i;

for(i = 15; i >= 0; i--)
{

Ali]l = b & 01;

b >=1;

void /* get candidates and convert to 16-bit format */
processcand (cands, index)
candrec *cands;
int index;
{
124t0l116(cand24, candib);
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ltob16(candi16);
ltob24 (cand24);

cands[index] .vall6

cands[index] .val24

int

read_cands(filename, cands, maxcands)
char *filename;

candrec *cands;

int maxcands;

{ int i, t, £, count;

char line[48];

candfile = fopen(filename, "r");
if(candfile == NULL)
{
printf("Error - cannot open ¥%s\n", filename);
exit(1);
}
count = 0;
while((count < maxcands) &&
((f = (fscanf(candfile, "%s", &line))) !'= EOF))
{
for(i = 0; i < length; i++)
cand24[i] = (int) (linel[i] - '0’);
/* skip last 24 pbsitions */

processcand(cands, count);

count++;

}

fclose(candfile);
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return count;
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/* evalC8.c */
#include <cm/paris.h>
#include <stdio.h>
#include '"convert.h"
#include "paratest.h"

#include "table64.h"

#define length 24
#define pxlistsize 32896 /* total number of the original 216 entries
in table64k[] that must be checked by

paratestx; this is all doubly-even entries */

void
do_R9(code, C6actual, cands)
paratest_rec *code;
int C6actual;
candrec cands[];
/* check all C6 candidates to see if good for R9 */
{ int i, k, ind;
int clist[MAX_C6_SIZE];
/* list of R9 cands to pass to paratest_R9 */
char cbits[MAX_C6_SIZE]; /* cbits[i] stores the ’'valid’ field (from
table64k[]) returned by paratest of entry

i in clist */°

/* move all candidates in ’cands’ to clist, to pass to
paratest_R9 */
for(i = 0; 1 < C6actual; i++)

{



clist[i]

cands[i].val24;
15;

cbits[i]
}
do_paratest_R9(code, clist, C6actual, cbits);
#ifdef info
printf("C6actual = %d\n", C6actual);
#endif

k = 0; /* counts current position in list of good C8's */
for(i = 0; i < C6actual; i++)
{

ind

cands[i] .valil6;

table64k[ind] .valid |= (shortjcbats[i];

if (table64k[ind] .valid & cand_r9) /* good C8 candidate */

{
C8_cand_16[k] = ind; /* store 16-bit val in C8_cand_16 */
table64k[ind] .C8id = k; /* store position in list */

k++;

}
C8actual = k;
#ifdef info

printf("number of good R9 candidates found: %d\n", CBactual);
#endif

}

void
do_X(code)
paratest_rec *code;

/* check all doubly-even entries of table64k[]
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to check 1f good for R9_R11 or R9_R13 */
{ 1nt 1, k;
int pvali6[pxlistsize];
/* pvali16[i] stores 16-bit val of entry i in plist */
int plist[pxlistsize]; /* list of xor cands to pass to paratest_X */
char pbits[pxlistsize]; /* pbits[i] stores the ’valid’ field (from
table64k) ret by paratest of plist[i] */

/* move all doubly-even entries of table64k[] to plist, to past to
paratest_x ~ these are potential R9_R11’s and R9_R13’s */
k = 0; /* k marks current index of plist */
for(i = 0; i < tablesize; i++)
{
if((table64k[i].popcount & 03) == 0) /* doubly-even */
{
if(k >= pxlistsize)
Abort("pxlistsize too small");
plist[k] = table64k[i].val24;
pvali6[k] = i;
pbits[k] = 15;
k++;
}
/* else popcount not doubly even - invalid for R9_R11, R9_13
(so do nothing whatsoever) */

}

do_paratest_X(code, plist, pxlistsize, pbits);
for(1 = 0; i < pxlistsize; i++)

table64k[pval16[i]].valid |= (short)pbats[i];
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int nextr7_8(basis)
int basis([];

{ int i, j;
char line[48];
static int R7R8 = 0;

if (R7R8 == Q)
{
/* first 5 rows are the same for all cases */

basis[0] = 16773120;

basis{1] = 4095;

basis[2] = 16519104;
basis[3] = 14913080;
basis[4] = 16878436;

/* read r6 from file */
basis[5] = 0;
fscanf(r7r8file, "¥%s", &line);
for(i = 0; i < length; i++)
{
basis{5] <<= 1;
basis[5] = basis[5] =~ (int)(line[1] - ’0’);

}

/* read next r7/r8 combo from file */
for(j = 6; j < 8; j++)
{

basis[j] = 0;
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fscanf(r7r8file, "¥%s", &line);

for(1 = 0; i < length; i++)
{
basis[j] <<= 1;

basis[j] = basis[j] ~ (int)(line[i] - ’0’);

}

return R7R8++;

-1
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/* inittable.c »/
#include <stdio.h>
#include '"convert.h"

#include "table64.h"

int

getval24(v, pop)

int v;

int *pop;

/* return the 24-bit conversion of 16-bit val v;

/* pop contains the population count of the 24-bit value */

{ int i, u = 0, bval;

*pop = 0;
for(i = 0; i < 8; i++)
{

bval = v & 03; /* retrieve 2 rightmost bits of v */
v >>= 2;

if(bval == 0) /* 00 (->111) in current block */

{

(*pop)+=3;
u+=(7 << 3%i);
}
else
{
(*pop)++;
if(bval == 1) /* 01 (~>100) in current block */

u+=(4 << 3%i);
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else if(bval == 2) /* 10 (->010) in current block */
u+=(2 << 3*1);
else /* bval = 3; 11 (->001) in current block */
u+=(1 << 3*i);
}
}

return u;

int

maketable(filename, cands, maxcand)
char *filename;

candrec cands[];

int maxcand;

{ int numcands, i, ind;

int pop, popdistrib[25];

numcands = read_cands(filename, cands, maxcand);
#ifdef info
printf(''numcands = %d\n", numcands);

#endif

for(i = 0; i < 25; i++)
popdistrib[i] = 0;
for(i = 0; i < tablesize; i++)
{
table64k([i] .canid = -1;
table64k[i] .C8id = -1;
table64k(i] .valid = 0;
table64k[i].val24 = getval24(i, &pop);
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table64k[i] .popcount = pop;

popdistrib [pop] ++;
}
for(i = 0; i < numcands; i++)
{

ind = cands{i].val16;

table64k[ind] .canid = i+1;

table64k[ind] .valid |= cand_r7;

/* good as r7 cand - set corresp. bit */

}

return numcands;
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/* multicompat.c -
/* Create multi compat in cm from compat info in table64k

/* and a list of candidates. */

#include <stdio.h>
#include <math.h>
#include <cm/paris.h>
#include <cm/cmsr.h>
#include "table64.h"
#include "multicompat.h"

#include "bldextended.h"

#define BITS_PER_WORD 32
#define BITSHIFT 5

static cmcompatlen = 0; /* Length of cmpompat to date. It is

grown bigger as needed. */

void select_target(candidate, nflds, field, testlen)
CM_field_id_t field;
int candidate; /* The candidate number to find */
int nflds; /* Number of fields to test */
int testlen; /* length of each field */

/* Set the context bit 'in each vp in current vpset iff the value
/* candidate is one in field. field is divided up into maxids

/* sections, each of length testlen; the first nflds of these

/* each contain one C8id. */

int i;
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CM_set_context();
for (i = 0; i < nflds; i++)
{
CM_u_ne_constant_1L(CM_add_offset_to_field_id(field, i*testlen),
candidate, testlen);
CM_logand_context_with_test();
}
CM_invert_context();

} /% select_target */

void longand(target, bitvec, bitlen)
CM_field_id_t target; /* Target to AND the bits into */
int *bitvec; /* Bit vector to be downloaded to cm */

int bitlen; /* Length in bits */

/* AND *bitvec into target in every VP with its context bit set.
/* bitlen is the length of the vector bitvec in bits and may be

/* arbitrarily large. */

int 1i;

/* We assume integral number of words. */

assert ((CM_maximum_integer_length & (BITS_PER_WORD-1)) == 0);

for (i = 0; i < (bitlen - BITS_PER_WORD); i+=BITS_PER_WORD)
{
CM_logand_constant_2,1L(target, *bitvec, BITS_PER_WORD) ;
target = CM_add_offset_to_field_id(target, BITS_PER_WORD);
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bitvec += BITS_PER_WORD >> BITSHIFT;
}
if (i < bitlen)
CM_logand_constant_2_1L(target, *bitvec, bitlen - i);
} /% longand */

void distribute_multi_compat(mask, shift, cand_flds, nflds, fld_len,

C8_cand_16, Ncands, Ntuples)

int mask; /* Pick out bit to use from valid */

int shift; /* Shift count to get bit in low order position */

CM_field_ad_t cand_flds; /* Vector of field ids pointing to the
/* fields to be tested. */

int nflds; /* Number of fields to be tested. */

int fld_len; /* length of the test fields. All are the same. */

int *C8_cand_16; /* Vector of cands to use to form multi-compat */

int Ncands; /* Number of cands to process */

int Ntuples; /* Number of tuples that will be tested; only the

first Ntuples processors should contain columns of

compat matrix - the others should have all zeroces */

CM_field_id_t segment, news_coord;
int i, j, k, bit, xor;

static int bitveclen = 0;

static int *bitvec = NULL;

int count, temp;

#define coord_len 15 /* note: allows for vp-ratio <= 4 only */
tifdef info

printf("distribute_multicompat(mask = %d, shift = %d, nflds = Yd,
fld_len = %d, Ncands = %d\n", mask, shift, nflds, fld_len, Ncands);
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#endif

#ifdef timing
CM_timer_clear(1);
CM_timer_start(1);

#endif

/* Ensure bitvec big enough to build string in */
if (bitveclen < ((Ncands + 8) >> 3))
{
if (bitvec != NULL) free(bitvec);
bitveclen = (Ncands+8)>“3;
bitvec = (int *)malloc(bitveclen);
}
/* Ensure that cmcompat is big enough. */
if (cmcompatlen < Ncands)
{
if (cmcompatlen > 0) CM_deallocate_heap_field(cmcompat);
cmcompat = CM_allocate_heap_field(Ncands);

cmcompatlen = Ncands;

/* determine the first Ntuples processors */
news_coord = CM_allocate_heap_field(coord_len);
CM_my_news_coordinate_1L(news_coord, 0, coord_len);
CM_set_context();

CM_u_lt_constant_1L(news_coord, Ntuples, coord_len);

CM_logand_context_with_test();

/* Set target to all ones in these processors */
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segment = cmcompat;
for (i = 0; i < (Ncands - CM_maximum_integer_length);

i+=CM_maximum_integer_length)

CM_logorc1_2_1L(segment, segment, CM_maximum_integer_length);
segment = CM_add_offset_to_field_id(segment,
CM_maximum_integer_length) ;
}
CM_logorci_2_1iL(segment, segment, Ncands - i);

/* ensure target is all zeroes in rest */
CM_invert_context();

segment = cmcompat;

for (i = 0; i < (Ncands - CM_maximum_integer_length);

i+=CM_maximum_integer_length)

CM_u_move_zero_1L(segment, CM_maximum_integer_length);
segment = CM_add_offset_to_field_id(segment,
CM_maximum_integer_length) ;
¥
CM_u_move_zero_iL(segment, Ncands - i);
/* do everything in all processors from now on */

CM_set_convext();

/* Now build and download the Ncands columns of compat */
for (i = 0; i < Ncands; i++)
{

for (j = 0; j <= (int) (Ncands/BITS_PER_WORD); j++)

{
bitvec[j] = 0;



for (k = 0; (k < BITS_PER_WORD) &2&
(j*BITS_PER_WORD+k < Ncands); k++)
{
/* determine compatibility of cand i with cand (j*BITS_PER_WORD+k) */
xor = C8_cand_16[i] ~ C8_cand_16[j*BITS_PER_WORD+k];
bit = ((table64k[xor].valid & mask) >> shift);
bitvec[j] I= (bit << k);

}
select_target(i, nflds, cand_flds, fld_len);
longand(cmcompat, bitvec, Ncands);
}
#ifdef timing
CM_timer_stop(1);
CM_timer_print(1);
printf("\n");
#endif

} /% distribute_multi_compat */
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/* paratest.c -
/* Module to perform a parallel test of a set of candidates against a

/* particular code space. */

#include <stdio.h>
#include <math.h>
#include <cm/paris.h>
#include <cm/cmsr.h>
#include "paratest.h"
#include "table64.h"
#include "testprt.h"

#define NUM_PROCS 8192

#define STRING_LEN 24

#define POPCOUNT_LEN 6

#define SINGLY_EVEN_LEN POPCOUNT_LEN - 1
#define DOUBLY_EVEN_LEN POPCOUNT_LEN - 2
#define RESULT_STR_LEN 4

static int test_allocation = 0;

static CM_field_id_t testcode

/* Combination of value and basecode to be tested. */,
basecode

/* Code value in the original space */,
full_popcount *

/* where logcount puts its result. */,
codetest_result

/* Where the RESULT_STR_LEN bit result gets stored */,
singly_even

/* address the bit which tests singly vs doubly even counts */,
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doubly_even
/* address the count field with 2 low order bits ignored. */,
curcnt /* Compute full count / 2 (left and right side) here,
/* but divided by 2 (the low order bit always 0). */,
basecount_R13
/% RHS contribution to a count for r9/r13 test */,
basecount_R11
/* RHS contribution to a count for r9/ril test */,
r9_ril_results
/* bit location to store this result */,
r9_ri3_results
/* bit location to store this result */,
r9_results
/* bit location to store this result */,
merged_result_field;

/* reduce results to here for each space */

int offset_from_bit{(bitmask)
int bitmask;

/* return the bit offset that corr to the bit mask */

if (bitmask 1) return 0;

1l
[}

if (bitmask
if (bitmask
if (bitmask

2) return 1;

4) return 2;

8) return 3;
Abort("error in offset_from_bit");

} /% offset_from_bit */

static void init()

{
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PR A

test_allocation = 1;

testcode = prism_alloc(STRING_LEN); .

basecode = prism_alloc(STRING_LEN);

full_popcount = prism_alloc(POPCOUNT_LEN);
merged_result_field = prism_alloc(RESULT_STR_LEN);
curcnt = prism_alloc(SINGLY_EVEN_LEN);
prism_alloc(SINGLY_EVEN_LEN) ;
prism_alloc(SINGLY_EVEN_LEN);
CM_set_context();

basecount_R13

basecount_R11

codetest_result = prism_alloc(RESULT_STR_LEN);

singly_even = CM_add_offset_to_field_id(full_popcount, 1);

doubly_even = CM_add_offset_to_field_id(full_popcount, 2);

r9_results = CM_add_offset_to_field_id(codetest_result,
offset_from_bit(cand_r9));

r9_ri1_results = CM_add_offset_to_field_id(codetest_result,
offset_from_bit(r9_ri1));

r9_v13_results = CM_add_offset_to_field_id(codetest_result,
offset_from_bit(r9_r13));

} /% init */

paratest_rec *define_paratest(width, Nbatch)
int width;
int Nbatch;

paratest _rec *ptr;
int dim[2];

int i,j,k;
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ptr = (paratest_rec *)malloc(sizeof(paratest_rec));
if (ptr == NULL) Abor+("malloc fail");

ptr->width = dim[0] = width;

ptr->Nbatch = dim[1] = Nbatch;

ptr->geometry = CM_create_geometry(dim, 2);
ptr->build_vp_set = CM_allocate_vp_set(ptr->geometry);
CM_set_vp_set (ptr->build_vp_set);

if (test_allocation == 0) init();

ptr->batchid = prism_alloc(COORDSIZE);

ptr->codeid = prism_alloc(COORDSIZE);
CM_my_news_coordinate_iL(ptr->batchid, 1, COORDSIZE);
CM_my_news_coordinate_1iL(ptr->codeid, 0, COORDSIZE);
return ptr;

} /* define_paratest */

voad
setup_basis(code, basis, numbasis)
/* set up codespace using basis vectors in basis[] */
paratest_rec *code; /* for this paratest */
int basis[];
int numbasis; /* Number of basis vectors */
{ int 1;

CM_field_id_t blockor;

CM_set_context();

/* store combinations in basecode */
CM_u_move_zero_1iL(basecode, STRING_LEN);
for(i = 0; i < numbasis; i++)

{
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CM_load_context (CM_add_offset_to_tield_id(code->codeid, 1));
CM_logxor_constant_2_1L(basecode, basis[i], STRING_LEN);

CM_set_context();
/#*%%x%xx NOTE: basecount_Rix has the low order bit trimmed (1t is
/*xx**x always 0). Thus all arithmetic operations into them have
/**%x*xx been divided by 2!! */
CM_u_move_zero_1L(basecount_R11, SINGLY_EVEN_LEN);
CM_u_move_constant_iL(basecount_R13, 2, SINGLY_EVEN_LEN);
blockor = CM_allocate_stack_field(1);
for(i = 4; i < numbasis; i+=2)
{
/* add 1 (2) to basecount fields in all processors containing at
/* least a 1 in pid, for each block of 2 rows */
CM_logior_always_3_1L(blockor,
CM_add_offset_to_field_id(code->codeid, 1),
CM_add_offset_to_field_id(code->codeid, i+1), 1);
CM_load_context (blockor);
CM_u_add_constant_2_1L(basecount_R11, 1, SINGLY_EVEN_LEN);
CM_u_add_constant_2_1iL(basecount_R13, 1, SINGLY_EVEN_LEN) ;
}
/* if basecount_R11 < 2 (4), basecount_Ri1l += 2 (4); 1f >= 4,
no changes necessary due to adding a combination of extra rows */
CM_set_context(); /* do comparison on all processors */
CM_u_lt_constant_1L(basecount_R11, 2, SINGLY_EVEN_LEN);
CM_logand_context_with_test();
/* store test result in context bit */
CM_u_add_constant_2_iL(basecount_R11, 2, SINGLY_EVEN_LEN);
CM_deallocate_stack_through(blockor) ;
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} /* setup_basis */

void read_up_results(ptr, bits)
paratest_rec *ptr;
char *bits;
/* Read a batch of paratest results from the back end according to
/* the geometry in *ptr and store them in *bits.
/* If bits == NULL, this is a setup call, and no info is obtained

/* from the backend. */

static int feoffset{2] = { 0, 0}, festart[2] = {0, 0},
feend[2] = {1, 1}, feaxis[2] = {1, 0}, fedim[2] = {8192, 1};

static int cur_ndx;

1f (bits == NULL) {
cur_ndx = 0;
feend[0] = ptr->Nbatch;
return;
}
CM_u_read_from_news_array_1iL(bits+cur_ndx, feoffset, festart,
feend, feaxis, merged_result_field, RESULT_STR_LEN,
2, fedim, CM_8_bit);
cur_ndx += ptr->Nbatch;

} /* read_up_results */

void do_paratest_X(ptr, cands, Ncands, bits)
paratest_rec *ptr;
int * cands;

int Ncands;
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char * bits;

int cand_i, batch_i, batch_end;

int bi;

CM_set_vp_set(ptr->build_vp_set);
batch_end = ptr->Nbatch;
read_up_results(ptr, NULL); /* init indicesx*/
#ifdef timing
CM_timer_clear(0); CM_timer_start(0);
#endif
for (cand_i = 0; cand_i < Ncands; cand_1 += ptr->Nbatch) {
/* Send a test string to each section of cm */
for (batch_i = 0; batch_1 < batch_end; batch_i++) {
CM_set_context();
CM_u_eq_constant_1L{ptr->batchid, batch_1, COORDSIZE);
CM_logand_context_with_test();
bi = cand_1 + batch_i;
1f (bi >= Ncands) {
CM_u_move_constant_1iL(testcode, 0, STRING_LEN);
} else {
CM_logxor_constant_3_1iL(testcode, basecode, cands[bi],
STRING_LEN) ;
}
}
/* Now process the batch */
CM_set_context();
CM,u_logcount_2_2L(full_popcount, testcode, POPCOUNT_LEN,
STRING_LEN);
CM_u_move_zero_1L(codetest_result, RESULT_STR_LEN);
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/* Set flag for r9/r13 */
CM_u_add_3_1L(
curcnt, singly_even, basecount_R13, SINGLY_EVEN_LEN) ;

CM_u_ge_constant_1L(curcnt, 6, SINGLY_EVEN_LEN);
CM_store_test(r9._r13_results);
CM_logandc2_2_1L(r9_r13_resu1ts, curcnt, 1);
/* Now for r9/rit x/
CM_u_add_3_1L(

curcnt, singly_even, basecount_R11, SINGLY_EVEN_LEN) ;
CM_u_ge_constant_1iL(curcnt, 6, SINGLY_EVEN_LEN);
CM_store_test(r9_ri11_results);
CM_logandc2_2_1L(r9_r11_results, curcnt, 1);
/* End of testing. Now lets reduce the results and upload them */
CM_set_context();
CM_reduce_with_logand_iL(merged_result_field, codetest_result,

0, RESULT_STR_LEN, 0);
read_up_results(ptr, bits);
}

#ifdef timing

CM_timer_stop(0); printf("do_paratest: ");

CM_timer_print(0); printf("\n"); CM_timer_clear(0);

#endif

} /% do_paratest_X */

void do_paratest_R9(ptr, cands, Ncands, bits)
paratest_rec *ptr;
int * cands;
int Ncands;

char * bits;
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int cand_i, batch_1, batch_end;

int ba;

CM_set_vp_set(ptr->build_vp_set);
batch_end = ptr->Nbatch;
read_up_results(ptr, NULL); /* init indices*/
for (cand_i = 0; cand_i < Ncands; cand_i += ptr->Nbatch) {
/* Send a test string to each section of cm */
for (batch_1 = 0; batch_i < batch_end; batch_1++) {
CM_set_context();
CM_u_eq_constant_1L(ptr->batchid, batch_i, CODORDSIZE);
CM_logand_context_with_test();
bi = cand_i + batch_i;
if (bi >= Ncands) {
CM_u_move_constant_1L(testcode, 0, STRING_LEN);
} else {
CM_logxor_constant_3_1L(
testcode, basecode, cands[bi], STRING_LEN);
}
}
/* Now process the batch */
CM_set_context();
CM_u_logcount_2_2L(
full_popcount, testcode, POPCOUNT_LEN, STRING_LEN);
CM_u_move_zero_1L(codetest_result, RESULT_STR_LEN);
CM_u_add_3_1L(
curcnt, singly_even, basecount_R13, SINGLY_EVEN_LEN);
CM_u_subtract_constant_2_1L(curcnt, 1, SINGLY_EVEN_LEN);
CM_u_ge_constant_1L(curcnt, 6, SINGLY_EVEN_LEN);

CM_store_test(r9_results);
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CM_logandc2_2_1L(r9_resu1ts, curcnt, 1);

/* End of testing. Now lets reduce the results and upload them */
CM_set_context();
CM_reduce_with_logand_1L(merged_resu1t_fie1d, codetest_result,
0, RESULT_STR_LEN, 0);
read_up_results(ptr, bits);
}
} /* do_paratest_R9 */

int
get_pop(v) /* return popcount of 24-bit vector v */
int v;

{ int 1, pop;

pop = 0;

for(i = 0; i < 24; i++)

{
pop += (v & 01); /* add rightmost bit into pop */
v >>=1;

}

return pop;

}

void test_paratest()

{
paratest_rec *code_test_at_r8;
int cands[80];
char results[200];



int 1,),k;

printf("Ready to call define_paratest\n");
code_test_at_r8 = define_paratest (256, 32);
printf("Exit from call define_paratest\n");
for (i = 0; i < 80; i++) {
results[i] = 15; /* Not legal response */
cands[i] = rand() & Oxffffff;
vhile(get_pop(cands[i]) & 03) /* not doubly-even */
cands[i] = rand() & Oxffffff;
}
printf("Ready to call do_paratest\n");
do_paratest_x(code_test_at_rB, cands, 50, results);
printf("Exit from call do_paratest\n");
printf("candidates chosen:\n");
for (j = 0; j < 80; j+=10) {
for (i = 0; i < 10; i++) {
printf(" %X", cands[i+j]);
}
printf("\n");
}
printf("results:\n");
for (j = 0; j < 80; j+=10) {
for (i = 0; i < 10; i++) {
printf(" %2x", results[i+j]);
}
printf("\n");
}
printf("Exit from call test_paratest\n");
} /* test_paratest */
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