CONTROL AND DYNAMICS OF
INVERTER-FED INDUCTION MOTOR

Krishnan Ramu,

A Thesis,
in
The Department
of
Electrical Engineering

Presented in Partial Fulfillment of the Requirements
for the degree of Doctor of Philosophy at
Concordia University
Montreal, Quebec, Canada

March 1982

© Krishnan Ramu, 1982
ABSTRACT

CONTROL AND DYNAMICS OF INVERTER-FED
INDUCTION MOTOR

Krishnan Ramu, Ph.D.
Concordia University, 1982

Three predominant fast response strategies for the control of inverter-fed induction motor drive are:

(i) Angle control scheme
(ii) Synchronous control scheme
(iii) Field-oriented control scheme

The unifying aspect of all the three schemes is identified. This is the simultaneous control of torque angle and magnitude of current phasor in the drive and is known as "frequency compensation".

It is proved that the response to a load torque disturbance or to a change in frequency is accompanied by a change in the speed of the magnetizing current phasor and hence the torque angle. The control of torque angle needs a knowledge of the characteristics of torque angle. It is proved that the incremental torque angle is a linear combination of drive electrical states only. The control consequence of torque angle feedback in a drive scheme is examined. It is shown that torque angle feedback alone
cannot stabilize a current source inverter-fed induction motor drive system. Feedback of torque angle and rotor speed has the effect of feeding all the system states in a scheme.

A generalized control concept of electric motor drives is developed to evaluate the different drive schemes from the control and the pole-zero assignment point of view. A comparison of the three drive schemes is given.

The role of drive inputs on the performance of an inverter-fed induction motor drive is investigated. The superiority of frequency input over voltage/current (magnitude) input is demonstrated. From the response of drive output signals, the suitability of some of them for feedback control purposes is evaluated. It is found that rotor speed is the best feedback signal for load torque disturbance and torque angle for frequency reference change.

An analysis and a step-by-step design of an angle controlled current source inverter-fed induction motor drive is presented. The design procedure is supported by the experimental results. The commutation delay in the current source inverter is modelled as a second order Padé transfer function. The effect of commutation delay on drive dynamics is evaluated.
ACKNOWLEDGEMENTS

I am grateful to Profs. J.F. Lindsay and V.R. Stefanovic for their guidance, help, encouragement and financial support during the course of this study.

I am also grateful to Prof. V. Ramachandran for his understanding and willingness to solve problems and shoulder responsibility.

Acknowledged is the assistance rendered by Selvaraj Seetharaman, Danny Juras and Christos Papaioannou during construction and testing of the experimental drives.

Teaching assistantship from the Electrical Engineering Department is gratefully acknowledged.

Thanks to Marie Berryman for her expert typing of the thesis.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>xiv</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Review of Previous Work</td>
<td>4</td>
</tr>
<tr>
<td>1.2.1 Methods for Speed Control of Induction Motor</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2 Development of Variable Frequency Drives</td>
<td>6</td>
</tr>
<tr>
<td>1.2.3 Steady-State Analysis</td>
<td>6</td>
</tr>
<tr>
<td>1.2.4 Losses</td>
<td>8</td>
</tr>
<tr>
<td>1.2.5 Inverter-Motor Interaction</td>
<td>9</td>
</tr>
<tr>
<td>1.2.6 Pulsating Torques</td>
<td>10</td>
</tr>
<tr>
<td>1.2.7 Stability</td>
<td>11</td>
</tr>
<tr>
<td>1.3 Scope of the Thesis</td>
<td>12</td>
</tr>
<tr>
<td>CHAPTER 2 FAST RESPONSE DRIVE STRATEGIES AND THEIR BASIS</td>
<td>14</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>14</td>
</tr>
<tr>
<td>2.2 Angle Control Scheme</td>
<td>15</td>
</tr>
<tr>
<td>2.3 Synchronous Control Scheme</td>
<td>19</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>2.4</td>
<td>Field-Oriented Control Scheme</td>
</tr>
<tr>
<td>2.5</td>
<td>Basic Principles of the Control Schemes</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>CONTROL CONSEQUENCES OF TORQUE ANGLE FEEDBACK</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>3.2</td>
<td>Relationship of Torque Angle to Machine Variables</td>
</tr>
<tr>
<td>3.3</td>
<td>Control Consequences of Torque Angle Feedback</td>
</tr>
<tr>
<td>3.4</td>
<td>Differences due to Torque Angle Feedback and Speed and Current Feedback Schemes</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Speed Feedback Scheme</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Current and Speed Feedback Scheme</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Torque Angle Feedback With Current and Speed Feedback Scheme</td>
</tr>
<tr>
<td>3.5</td>
<td>Generalized Control Concept of Electric Motor Drives</td>
</tr>
<tr>
<td>CHAPTER 4</td>
<td>COMPARISON OF THE CONTROL SCHEMES</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>4.2</td>
<td>Inter-Relationship of the Drive Schemes</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Angle Control Scheme</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Synchronous Control Scheme</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Field-Oriented Control Scheme</td>
</tr>
<tr>
<td>4.3</td>
<td>Evaluation of the Control Schemes by the Generalized Control Concept</td>
</tr>
</tbody>
</table>
4.3.1 Angle Control Scheme 67
4.3.2 Synchronous Control Scheme 72
4.3.3 Field-Oriented Control Scheme ... 74

4.4 Comparison of the Schemes 75

CHAPTER 5 TORQUE ANGLE AND ITS EFFECT ON
DRIVE CHARACTERISTICS 80
5.1 Introduction 80
5.2 Torque Angle Transfer Functions 80
5.3 Relationship Between Torque Angle Change
and Speed of Magnetizing Current Phasor .. 83
5.4 Time Responses of Torque Angle and
Incremental Speed of Magnetizing Current
Phasor .. 90
5.4.1 Current Input 91
5.4.2 Frequency Input 93
5.4.3 Load Torque Input 95

5.4 Stability Considerations With Torque
Angle Feedback 100

CHAPTER 6 CONTROL CHARACTERISTICS OF INVERTER-FED
INDUCTION MOTOR DRIVES 105
6.1 Introduction 105
6.2 Transfer Functions of the Open-Loop
Drives 106
6.3 Time Responses of the CSIM Drive 110
6.4 Time Responses of the VSIM Drive 113
6.5 Superiority of Frequency Input Over
Voltage/Current Input 113
8.1 Conclusions 167
8.2 Recommendations for Future Work 170
APPENDIX I Induction Motor Equations in Synchronously Rotating Reference Frames 171
APPENDIX II CSIM Drive Matrices 172
APPENDIX III CSIM Drive Parameters 174
APPENDIX IV Computation of Transfer Functions and Time Responses 175
APPENDIX V Transfer Functions of the Controllers in the Angle Controlled GSIM Drive 177
APPENDIX VI Experimental CSIM Drive Parameters 178
REFERENCES 179
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.1</td>
<td>Comparison of the Drive Schemes</td>
<td>78</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Torque Angle Transfer Functions</td>
<td>82</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>CSIM Drive Torque Angle Transfer Functions with Stator Dynamics</td>
<td>84</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Coefficients of Incremental Torque Angle</td>
<td>101</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Transfer Functions of the CSIM Drive</td>
<td>107</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Transfer Functions of the VSIM Drive</td>
<td>108</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>CSIM Drive: Open Loop Response Characteristics</td>
<td>114</td>
</tr>
<tr>
<td>Table 6.4</td>
<td>VSIM Drive on Open Loop: Response Characteristics</td>
<td>117</td>
</tr>
<tr>
<td>Table 6.5</td>
<td>Magnitudes of Rate of Change of Variables, Expressed in p.u. Basis, with Reference to Load Torque Input Produced Rate of Change</td>
<td>119</td>
</tr>
<tr>
<td>Table 6.6</td>
<td>Magnitudes of Steady-State Gains Expressed with Reference to Load Torque Input Steady-State Gains</td>
<td>120</td>
</tr>
<tr>
<td>Table 6.7</td>
<td>CSIM Drive with the Angle Feedback and Slip Speed-Current Interface</td>
<td>124</td>
</tr>
<tr>
<td>Table 6.8</td>
<td>Rise Times and Rate of Change of Variables for the CSIM Drive Without D.C. Link Filter</td>
<td>128</td>
</tr>
<tr>
<td>Table 6.9</td>
<td>Rise Times and Rate of Change of Variables for the CSIM Drive with the D.C. Link Filter</td>
<td>129</td>
</tr>
<tr>
<td>Table 6.10</td>
<td>CSIM Drive with D.C. Link Filter (Expressed in p.u. basis, with reference to load torque produced changes)</td>
<td>130</td>
</tr>
<tr>
<td>Table 7.1</td>
<td>Comparison of First and Second Order Padé Approximations with the Original Function</td>
<td>150</td>
</tr>
</tbody>
</table>
Table 7.2 Slip Speed vs. $K(s_s)$ 152
Table 7.3 Slip Speed vs L_b 156
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Voltage Source Inverter-fed Induction Motor Drive</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Current Source Inverter-fed Induction Motor Drive</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Current-Source Induction Motor Drive</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Block Diagram of Angle Controlled CSIM Drive</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>Synchronous Control Scheme</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>Resolution of Currents Along Field Axis</td>
<td>25</td>
</tr>
<tr>
<td>2.5</td>
<td>Field Oriented CSIM Drive</td>
<td>27</td>
</tr>
<tr>
<td>2.6</td>
<td>Simplified Equivalent Circuit of Induction Motor</td>
<td>31</td>
</tr>
<tr>
<td>2.7</td>
<td>Motor at Synchronous Speed</td>
<td>31</td>
</tr>
<tr>
<td>2.8</td>
<td>Motor After a Step Load</td>
<td>32</td>
</tr>
<tr>
<td>3.1</td>
<td>Phasor Diagram of CSIM Drive</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>Speed and Torque Angle Feedback Scheme</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>Speed Feedback Scheme</td>
<td>47</td>
</tr>
<tr>
<td>3.4</td>
<td>Current and Speed Feedback Scheme</td>
<td>50</td>
</tr>
<tr>
<td>3.5</td>
<td>Current, Speed and Torque Angle Feedback</td>
<td>52</td>
</tr>
<tr>
<td>3.6</td>
<td>D.C. Motor Drive Scheme</td>
<td>55</td>
</tr>
<tr>
<td>4.1</td>
<td>Control Inputs of the Angle Controlled Drive</td>
<td>68</td>
</tr>
<tr>
<td>4.2</td>
<td>State-Diagram of the Speed Controller</td>
<td>68</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Generation of inputs for Synchronous Control Scheme</td>
<td>PAGE</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Phasor Diagram for Perturbation Around an Operating Point with Constant Stator Current and Frequency</td>
<td>86</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Torque Angle Response for Current Input</td>
<td>92</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>Incremental Magnetizing Current Phasor Speed for Current Input</td>
<td>92</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>Torque Angle Response for Frequency Input</td>
<td>94</td>
</tr>
<tr>
<td>Figure 5.5</td>
<td>Incremental Speed of Magnetizing Current Phasor for Frequency Input</td>
<td>94</td>
</tr>
<tr>
<td>Figure 5.6</td>
<td>Torque Angle Response for Load Torque Input</td>
<td>96</td>
</tr>
<tr>
<td>Figure 5.7</td>
<td>Incremental Magnetizing Current Phasor Speed for Load Torque Input</td>
<td>96</td>
</tr>
<tr>
<td>Figure 6.1</td>
<td>CSIM Responses for Frequency Input</td>
<td>111</td>
</tr>
<tr>
<td>Figure 6.2</td>
<td>CSIM Responses for Load Torque Input</td>
<td>112</td>
</tr>
<tr>
<td>Figure 6.3</td>
<td>VSIM Responses for Frequency Input</td>
<td>115</td>
</tr>
<tr>
<td>Figure 6.4</td>
<td>VSIM Responses for Load Torque Input</td>
<td>116</td>
</tr>
<tr>
<td>Figure 6.5</td>
<td>Angle Feedback Strategy for CSIM Drive</td>
<td>123</td>
</tr>
<tr>
<td>Figure 6.6</td>
<td>Closed Loop Responses of CSIM for Frequency Input</td>
<td>125</td>
</tr>
<tr>
<td>Figure 6.7</td>
<td>Closed Loop CSIM Responses for Load Torque Input</td>
<td>126</td>
</tr>
<tr>
<td>Figure 7.1</td>
<td>Current Control Loop with Load</td>
<td>133</td>
</tr>
<tr>
<td>Figure 7.2</td>
<td>Overall Block Diagram of the Current Control Loop</td>
<td>135</td>
</tr>
</tbody>
</table>
Figure 7.3 Current Controller Realization 135
Figure 7.4 Modified \(I_m \) vs \(I_r \) Relationship 140
Figure 7.5 Outer Speed Loop and Slip Speed
 Loop of the CSIM Drive 141
Figure 7.6 Flow-Chart for the Computation of
 Slip Frequency 143
Figure 7.7 Current Source Inverter with Motor
 Load .. 146
Figure 7.8 Realization of Rate of Change
 of Torque Angle 155
Figure 7.9 Realization of Time Delay 155
Figure 7.10 Incorporation of \(K_a \) in the Slip
 Speed Derivative Loop' 157
Figure 7.11 Closed-Loop Speed-Input Reference
 Frequency Response (No Commutation
 Delay) 160
Figure 7.12 Closed-Loop Speed-Input Reference
 Response (With Commutation Delay) ... 161
Figure 7.13 Input Reference to Output Electromagnetic
 Torque Relationship in the
 Experimental Drive 163
Figure 7.14 Step Responses for Speed Reference
 Input with Load Proportional to
 Speed 165
Figure 7.15 Step Responses for Load Torque Input 166
NOMENCLATURE

A, B, C, D, K - Matrices

a_p - Sum of the poles

C - Commutation capacitance per leg

d - Disturbance vector

f - Friction coefficient of the machine

$G_1(s)$ - Transfer function of the speed controller

$G_2(s)$ - Transfer function of the real component of stator current controller

$G_3(s)$ - Transfer function of link current controller

$G_5(s)$ - Transfer function of the slip speed controller

$G_D(s)$ - Transfer function of the current source inverter commutation delay

$G_{dc}(s)$ - Transfer function of the front-end controlled rectifier delay

$G_L(s)$ - Transfer function of the equivalent link filter and induction motor stator

$G_{di}(s)$ - $G_L(s) \cdot G_{dc}(s)$

$H_1(s)$ - Transfer function of the current feedback block

i_a - Armature current of D.C. machine

i_{as}, i_{bs}, i_{cs} - Stator phase currents

I_d - D.C. link current
I_{sa} - Steady-state stator current
I_r - Steady-state real component of stator current
I_m - Steady-state magnetizing component of stator current
i_s - Stator current space phasor
ir - Rotor current space phasor
im - Magnetizing current space phasor
i_{Sl} - Component of stator current space phasor along stator reference axis
i_{S2} - Component of stator current space phasor in quadrature to stator reference axis
i_{SD} - Component of stator current space phasor along the field axis
i_{SO} - Component of stator current space phasor in quadrature to the field axis
ir - Rotor current magnitude in synchronously rotating reference frame
idr - d-axis rotor current in synchronously rotating reference frame
iqr - q-axis rotor current in synchronously rotating reference frame
J - Moment of inertia of the machine
K_b - Back emf constant in d.c. machine
K_t - Torque constant
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_a</td>
<td>Armature inductance of the D.C. machine</td>
</tr>
<tr>
<td>L_F</td>
<td>D.C. link filter inductance</td>
</tr>
<tr>
<td>L_s</td>
<td>Sum of the stator and rotor leakage inductances per phase</td>
</tr>
<tr>
<td>L_{kr}</td>
<td>Rotor leakage inductance per phase, referred to stator</td>
</tr>
<tr>
<td>L_{ks}</td>
<td>Stator leakage inductance per phase</td>
</tr>
<tr>
<td>L_m</td>
<td>Mutual inductance per phase</td>
</tr>
<tr>
<td>L_r</td>
<td>Rotor self-inductance per phase, referred to stator</td>
</tr>
<tr>
<td>L_s</td>
<td>Stator self-inductance per phase</td>
</tr>
<tr>
<td>n</td>
<td>Pairs of poles</td>
</tr>
<tr>
<td>R_F</td>
<td>D.C. link filter resistance</td>
</tr>
<tr>
<td>R_r</td>
<td>Stator referred rotor resistance per phase</td>
</tr>
<tr>
<td>R_s</td>
<td>Stator resistance per phase</td>
</tr>
<tr>
<td>p</td>
<td>Differential operator</td>
</tr>
<tr>
<td>s</td>
<td>Slip, Laplace operator</td>
</tr>
<tr>
<td>s_o</td>
<td>Slip at an operating point</td>
</tr>
<tr>
<td>s_s</td>
<td>Slip speed</td>
</tr>
<tr>
<td>T_e</td>
<td>Electromagnetic torque</td>
</tr>
<tr>
<td>T_l</td>
<td>Load torque</td>
</tr>
<tr>
<td>T_r</td>
<td>Rotor time constant</td>
</tr>
<tr>
<td>U</td>
<td>Input vector</td>
</tr>
<tr>
<td>V_d</td>
<td>Output voltage of the controlled rectifier</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>V_{ds}</td>
<td>Stator d-axis voltage in synchronously rotating reference frame</td>
</tr>
<tr>
<td>V_{qs}</td>
<td>Stator q-axis voltage in synchronously rotating reference frame</td>
</tr>
<tr>
<td>V_I</td>
<td>Inverter input voltage</td>
</tr>
<tr>
<td>ν_b</td>
<td>Base angular frequency</td>
</tr>
<tr>
<td>ω_e</td>
<td>Stator electrical angular frequency</td>
</tr>
<tr>
<td>ω_m</td>
<td>Rotor mechanical speed</td>
</tr>
<tr>
<td>ω_r</td>
<td>Rotor electrical speed</td>
</tr>
<tr>
<td>ω_{sl}</td>
<td>Angular slip frequency</td>
</tr>
<tr>
<td>X</td>
<td>State-vector</td>
</tr>
<tr>
<td>X_{tr}</td>
<td>Rotor leakage reactance per phase, referred to stator</td>
</tr>
<tr>
<td>X_{ls}</td>
<td>Stator leakage reactance per phase</td>
</tr>
<tr>
<td>X_m</td>
<td>Mutual reactance per phase</td>
</tr>
<tr>
<td>X_r</td>
<td>Rotor self-reactance per phase, referred to stator</td>
</tr>
<tr>
<td>X_s</td>
<td>Stator self-reactance per phase</td>
</tr>
<tr>
<td>Y</td>
<td>Output variable</td>
</tr>
<tr>
<td>σ_r</td>
<td>Rotor leakage coefficient</td>
</tr>
<tr>
<td>λ</td>
<td>Eigenvalue</td>
</tr>
<tr>
<td>ψ</td>
<td>Air-gap flux</td>
</tr>
<tr>
<td>θ</td>
<td>Torque angle</td>
</tr>
<tr>
<td>θ_1</td>
<td>$\tan^{-1}\left(\frac{i_{d_0}}{i_{q_0}}\right)$</td>
</tr>
<tr>
<td>ϕ</td>
<td>Power factor angle</td>
</tr>
</tbody>
</table>
\(\phi_s \) - Field angle referred to stator reference frame
\(\theta \) - Rotor angle referred to stator reference frame
\(\xi_s \) - Stator current space phasor angle referred to stator reference frame
\(\delta \) - Used with a variable to denote its incremental value

Subscript 'o' - Denotes the steady-state operating point value

Superscript 't' - Denotes the transpose of a vector, a matrix
CHAPTER 1
INTRODUCTION

1.1 Introduction

Speed and torque control of electric machines are the basis of industrial automation, quality control in production, increase in productivity and of energy saving in the present times. With the advent of thyristors and consequently a wide range of electronic power converters, the control of electric machines is now achieved with high efficiency and good system response.

Separately excited D.C. motor drives have found wide industrial application for the following reasons:

(i) The control task is made simple as the field and armature are independently controlled, leading to an all-purpose drive.

(ii) Mostly natural commutation can be used in the power converters thereby simplifying the power and control circuitry and providing a robust power conversion equipment.

To mention a few, they have the disadvantages of arcing at the commutator demanding frequent maintenance, larger rotor inertia causing a poor dynamic response, higher cost compared to the induction motor and problems of torque ripples at low speed operation.
The induction motor is inexpensive, robust, relatively light weight and capable of operation in hazardous environmental conditions. Driven from a variable frequency source, a wide speed variation is possible. The variable frequency is obtained either through direct conversion from the mains supply or through a D.C. power link. The direct frequency changer involves a large number of thyristor devices, a limited output frequency variation from the standard mains and the advantageous natural commutation process. The D.C. power link frequency converters provide a large frequency variation but rely on forced commutation. The D.C. link frequency converters are broadly classified into voltage and current source types. The Voltage Source Inverter-fed Induction Motor drive (hereafter referred to as VSIM drive) needs an additional controlled bridge converter for regeneration and is shown in Figure 1.1. The Current Source Inverter-fed Induction Motor drive shown in Figure 1.2 (hereafter referred to as CSIM drive) has four quadrant operation with twelve thyristors, the same number required for a four quadrant D.C. motor drive. The electromagnetic torque of the induction motor is directly controlled by the stator currents rather than the voltages and this fact has placed the CSIM in the forefront over the VSIM drive. CSIM drives have the advantages of:

(i) Inherent four quadrant operation without extra power switches.
Figure 1.1 Voltage Source Inverter-fed Induction Motor Drive

Figure 1.2 Current Source Inverter-fed Induction Motor Drive
(ii) Converter grade thyristors are used in the inverter part.

(iii) Provides a high impedance to misfiring of inverter thyristors.

(iv) Has a wide range of speed variation, meeting all-purpose drive requirements.

The CSIM drives are used extensively in fans, pumps, extruders, paper and pulp mills, machine tools etc.

1.2 Review of Previous Work

In this section the development of variable-speed drives using thyristor circuits is traced. The advantages of frequency control in induction motor drives over other control methods are discussed. The steady-state performance and dynamic control problems of these drives and the existing solutions to them are described.

1.2.1 Methods for speed control of induction motor

The following methods are used to obtain the speed control of induction motors:

(i) Phase control

(ii) Integral cycle control

(iii) Rotor, chopper control

(iv) Slip-power recovery control

(v) Variable frequency control
Brief descriptions of the above control methods are given in the following paragraphs.

Phase control: Applied voltage to the motor armature is varied by controlling the triggering angle of thyristors connected to the sinusoidal mains supply [1], [2]. The speed control range is very small. Efficiency of the drive is nearly equal to (1.0-slip) and therefore it is poor at low speeds.

Integral-cycle control: An integer number of cycles of the sinusoidal supply voltage is switched on and off to give an effective variation of applied voltage to the machine [3]. It has basically the same characteristics of phase controlled induction motors.

Rotor-chopper control: Rotor voltage is rectified and the rotor windings are shorted on and off using a chopper. Rotor current is varied and hence torque and speed control are obtained. The speed control range is much greater than the phase control and integral-cycle control methods but the efficiency remains poor [4]. A slip-ring induction motor is needed for this form of control.

Slip-power recovery control: The slip-power in the rotor is recovered and transferred back to the supply mains thereby increasing the efficiency of the drive. The speed control region in practice is limited from 0.5 p.u. to 1 p.u. The overall power factor is low [5], [6] when line commutated converters are used.
speed. The overall power factor is low [5], [6].

Variable frequency control: The interrelationship between the stator supply frequency and the synchronous speed of the induction motor indicates that frequency is a strong candidate for speed control of that machine. Due to the fact that rotor speed is always close to synchronous speed of the machine the efficiency is high. Availability of solid-state frequency converters with precise control of frequency has made possible variable speed induction motor drives with high efficiency and a wide speed range, hitherto not obtained with the previous methods [7].

1.2.2 Development of variable frequency drives

D.C. link converters of voltage, and current source types are considered in this section. Though one of the current source inverters was invented as early as 1934 [8], impulse commutated voltage source inverters and naturally commutated cycloconverters were favoured during the first stages of variable frequency induction motor drives development. Therefore various problems of VSIM were investigated first and the problems of CSIM came later to the attention of researchers.

1.2.3 Steady-state analysis

Steady-state analysis of the six-stepped voltage fed variable frequency induction motor was attempted in a
state-space formulation of the machine equations with the symmetry of currents as constraints to find the initial steady-state vector [9], [10], [11], [12], [13]. The direct evaluation of this vector spared the tedious computational effort of going through all the starting transients to find the steady-state of the machine. Switching function [14], with space-phasor representation of the machine is one of the techniques to evaluate the steady-state performance of inverter-fed machines [15], [16]. These solutions are analytical and hence an insight into the influence of machine parameters and other variables on instantaneous electromagnetic torque and various losses is obtained, whereas the state-variable methods do not provide such insight though they are computationally elegant.

Classical harmonic equivalent circuits are also used to find the steady-state of the inverter-fed induction motor [17], [18]. This method has the advantage of identifying the effects due to harmonics. To eliminate such effects requires the suppression of the corresponding input harmonic voltages. The only disadvantage of the harmonic analysis method is that a significant number of harmonics has to be considered for reasonable accuracy.

Introduction of current source inverter-fed drives [19], [20], [21], [22], [23] posed the question of evaluation of steady-state performance for application purposes. State-space methods provided an elegant solution procedure
including current harmonics and avoided the problem of finding the derivatives of stator current either by redefining the states [24] or using the rotor flux linkages for states [25]. The space-phasor approach yielded analytical closed form solutions and for small slips, the solution is simple [15]. Harmonic analysis [23] similar to the VSIM drives provided results of comparable accuracy. Though use of symmetrical components for steady-state evaluation of the CSIM drive [26] is computationally tedious, the saturation effect is taken into account.

1.2.4 Losses

Harmonic equivalent circuits are extensively used to separate the various losses that occur in inverter-fed induction machines [27], [28], [29] and the losses are invariably greater in comparison to the machine with a pure sinusoidal input. Reduction of losses lies in the direction of reducing the harmonic content of the input waveforms and hence the need for pulse-width modulated inverters. CSIM drives are slightly better in efficiency than VSIM drives [23], [30] up to the rated torque operation, but above this load the opposite is true. All induction machines have to be derated for application considerations to account for increased losses due to non-sinusoidal excitation.
1.2.5 Inverter-motor interaction

The interaction of an induction motor with the D.C. link consisting of energy storage elements is modelled on the basis that no reactive power is supplied by the D.C. link. The reactive power is obtained by the switching of the inverter itself. A stator referred equivalent circuit for steady-state analysis [31] for fundamental component relationships is of use when the source impedance has to be taken into account in the analysis. In the steady-state, the D.C. link constrains the quality of input current and voltage waveforms and its resistance lowers the maximum torque significantly.

Dynamic study of the inverter-fed induction motor involves the machine model in a synchronously rotating reference frame and the D.C. link is incorporated in the above model considering only the fundamental component of voltages and currents [32]. From the power relationship, the stator current is written in terms of the link current in the VSIM and stator voltage is given in terms of the inverter input voltage in the CSIM drives. An analog computer study of inverter-fed induction motor drive [33], [34] does not involve any approximation in the input voltage/current waveform and the only disadvantage of this method is that it does not lend itself to analytical design.
The CSIM drive model has the D.C. link incorporated along the same basis [35] and its analog computer representation with [36] and without [37] approximations are available.

1.2.6 Pulsating torques

Introduction of fifth and seventh harmonic currents with fundamental flux produces resultant sixth harmonic pulsating torque. The other higher order pulsating torques can be neglected in comparison to the sixth harmonic pulsating torque. They have the undesirable effect of producing speed oscillations and hence low frequency operation becomes difficult [38], [39]. Their magnitudes are comparable to the fundamental electromagnetic torque and hence they are of real concern at low loads, particularly at no load. In VSIM drives, the torque pulsations are reduced by eliminating the fifth and seventh harmonic voltages by suitable pulse-width modulation of the input voltage. They can also be minimized by a modified design of induction motor [40].

CSIM drives have a similar sixth harmonic pulsating torque [41]. Elimination of it is achieved by one of the following methods:

(i) Programming the D.C. link current in response to the operating point [42], [43].
(ii) Current pulse-width modulation [43], [44], [45].
(iii) Employment of twelve-step waveforms and twenty-four-stepped waveforms [46], [47].
(iv) Feedback control through an electromagnetic torque loop [48].
(v) Modifying machine parameters such as magnetizing inductance and rotor resistance [41], [49].

1.2.7 Stability

VSIM drives have exhibited instability on open loop in the 10 to 50 percent of base speed region and in the 0 to 60 percent of rated torque operation [50]. Machine constants and filter parameters influence the region of instability. CSIM drives are normally unstable on open loop [51], [52]. The methods used to stabilize the inverter-fed drives can be broadly classified into the following categories:

(i) Design of feedback control loops.

(ii) Machine modification.

Stabilization using feedback loops [52], [53] has the advantage of utilizing the standard available machine since the loops incorporated are external to the machine and are easy to implement. Also they do not deteriorate the steady-state characteristics.

Machine modification has proceeded on the lines of:

(i) Change in machine constants

(ii) Altogether new machine design
While the change in machine constants calls for change in steady-state characteristics, the new machine may not have this disadvantage and it provides leading reactive power for commutation of the thyristors. But feedback loops are still required. Details are given in Reference [54].

1.3 Scope of the Thesis

High performance and fast response drive strategies such as the angle control scheme [58], synchronous control scheme [59] and field-oriented control scheme [60] contributed to the development and widespread use of inverter-fed induction motor drives. In the literature, these schemes are posed as independent of each other. Each scheme is analysed in its isolation but there is no method to make a relative comparison of the drive schemes. The crucial role of the torque angle in the control of drive dynamics has not been investigated. The present thesis is concerned with the control and dynamics of inverter-fed induction motor drives and in particular that of the CSIM drives. The following aspects of them are studied:

(i) Unification of the three existing high performance drive control strategies.
(ii) The generalized control concept of inverter-fed induction motor drives.
(iii) A comparison of the drive schemes.
(iv) Torque angle characteristics and their role in drive dynamics.

(v) Assessment of the role of drive inputs and relative suitability of the possible feedback signals.

(vi) Modelling of the current source inverter commutation delay.

(vii) Analysis and design of the angle controlled CSIM drive.
CHAPTER 2
FAST RESPONSE DRIVE STRATEGIES AND THEIR BASIS

2.1 Introduction

The development of variable frequency induction motor drives are associated with three strategies at first:

(i) Constant slip control [55].
(ii) Constant volts per Hertz control [56].
(iii) Constant air-gap flux control [57].

They have differences not only in steady-state operation but also their dynamic performance is entirely different from each other [57]. The precise dynamic control of electromagnetic torque, speed and flux over most of the speed range is not satisfactory in that they are oscillatory [58]. The constant power operation or flux weakening mode is difficult to stabilize with front-end-controlled rectifier fully phased on [59]. Three prominent control schemes emerged to overcome the above problems and they are:

(i) Angle control scheme [58].
(ii) Synchronous control scheme [59].
(iii) Field-oriented control scheme [60].

Though the first two schemes are for the CSIM drives, it will be subsequently seen that they are also applicable to the VSIM drives.
Brief descriptions of these control schemes as applied to the CSIM drives and their salient features are given in this chapter. From the discussion emerges the basic underlying factor of all these schemes. The schemes are taken up in the order of their complexity, from the simplest to the most complex.

2.2 Angle Control Scheme

Figure 2.1 shows the block diagram of the CSIM drive with its power circuit. The front-end rectifier is fully controllable and capable of handling reversed power flow. The link filter with a fast acting current loop constitutes the current source. The current in the link is varied by changing the current reference not shown in the figure. The inverter is an auto-sequential commutated inverter delivering three phase currents to the stator of the induction motor. The frequency of the output currents is one sixth of the switching frequency of the inverter. This basic power circuit is considered throughout this study.

Fig. 2.2 shows the angle control scheme and Appendix-V lists the transfer function of the controllers. The drive has five loops, namely, unity speed feedback loop, slip speed loop, angle loop, inner current loop and an outer speed loop. The unity gain speed feedback loop consists of the inverter, motor, $G_{12}, G_{11}, G_{10}, G_7, G_n$ and is to basically run the
Figure 2.1. Current Source Induction Motor Drive
the inverter to give an output frequency corresponding to
the speed of the rotor. G_D is the block representing
the commutation delay in the current-source inverter.
The path via H_2, G_1, and G_5 gives the slip speed sig-
nal corresponding to the load whereas the loop consisting
of H_2, G_1, and G_6 is to provide angle control during
the load torque disturbance and reference frequency change.
The point y_6 decides the torque reference and the gain
block G_2 is used to obtain the rotor current reference.
The phasor sum of rotor current reference and the excita-
tion current forms the stator current reference. The
inner current loop is made up of G_3, controlled rectifier,
link filter, current feedback gain H_1. This loop is to
regulate the link current in a fast manner. The outer
speed loop consists of controlled rectifier, link, inver-
ter, G_{12}, G_{11}, H_2, G_1, and G_2.

For better utilization of the drive, it is necessary
to get maximum torque per ampere. The electromagnetic
torque is determined by the slip and the magnitude of the
rotor current. Therefore the slip signal block G_5 and
the rotor current reference gain block G_2 are to be co-
ordinated to achieve the objective of maximum torque per
ampere. The angle controller decides the torque angle
input for corresponding load torque. The load torque is
indicated by the torque reference. There is a definite
relationship between torque and torque angle and between
slip and torque. From this a relationship can be found
between torque reference and torque angle. This torque angle has to be fed to the inverter in the form of frequency. The rate of change of load is proportional to rate of change of torque angle and this is the frequency compensation to be applied to the induction motor during a load torque disturbance. The incremental frequency obtained is added to the slip frequency and rotational frequency to make up the stator frequency. The gain of the angle controller block G_0 has to be non-linear because the relationship between torque reference and torque angle is non-linear and also due to the fact that the commutation time in the inverter is both load and frequency dependent. The design of the drive is treated later in detail.

2.3 Synchronous Control Scheme

The synchronous control scheme for its implementation counts on the actual or calculated values of electromagnetic torque and torque angle. The relationship between electromagnetic torque and slip frequency can be correlated to the relationship between torque angle and slip frequency, and hence slip frequency can be obtained either through electromagnetic torque or torque angle. The scheme is mainly concerned with maintaining synchronism between motor flux and stator currents or in other words maintaining the synchronous speed of the flux phasor in the face of load disturbances.
The scheme is shown in Figure 2.3. The torque reference may be generated either through the slip speed signal or in a torque regulated drive it could be an external reference. It is assumed (but not shown in the Figure 2.3) that the drive has a current loop, flux loop and an outer speed loop interfacing the torque reference and current loop. Requested and actual values of torque set the demanded value of the sine of the torque angle. This is compared with the actual value of the sine of the torque angle to generate the needed slip frequency which in turn is added to the rotor mechanical speed to obtain the stator current frequency. Because of the comparison with measured values and the calculated values of the torque and torque angle, the scheme takes into account the effects of machine nonlinearities and parameter sensitivity of the machine. The speed of response of the torque angle loop is fast due to the absence of time constants in its path. The commutation delay is countered by the fast-acting angle loop. An important feature of the scheme is that the angle is independent of rotor speed and hence operation at and near zero speed becomes possible.

It is found that the torque angle calculated from stator current and air-gap flux is double-valued with reference to slip frequency. To avoid this situation, a modified torque angle between rotor flux and stator current is utilized for feedback in the angle loop. The
calculation circuit for electromagnetic torque and torque angle is given in [59].

A robust drive mostly based on synchronous control but with the additional feature of regulation of power factor is described in [44]. A variable flux program with the torque angle kept at its optimum above a certain load is implemented to obtain the high performance drive. Except at low speeds, keeping the torque angle constant amounts to having a constant power factor. The drive is an all-purpose one as it has a torque loop, current and voltage loops, angle loop, unity gain speed loop, an outer speed loop and an inner preprogrammed flux loop both to act upon the torque loop as well as on the angle loop.

2.4 Field-Oriented Control Scheme

A current space phasor is defined as

\[i_s(t) = i_{as}(t) + i_{bs}(t)e^{j2\pi/3} + i_{cs}(t)e^{-j2\pi/3} \]

(2.1)

and for sinusoidal three phase quantities, it becomes

\[i_s(t) = i_{es} \]

(2.2)

and

\[\omega_e(t) = \frac{d}{dt} [\epsilon_s(t)] \]

(2.3)
= electrical angular frequency of the supply currents

The machine equations in stator reference frame are:

\[R_s i_s - s + L_s \frac{d}{dt}(i_s) + L_m \frac{d}{dt}(i_r e^{j\Phi}) = u_s \] \hspace{1cm} (2.4)

\[R_r i_r - r + L_r \frac{d}{dt}(i_r) + L_m \frac{d}{dt}(i_s e^{-j\Phi}) = 0 \] \hspace{1cm} (2.5)

In the case of CSIM drives, the stator currents are the inputs and they can be changed in short time by proper design of controllers in the inner current control loop. The potentially large time constant introduced by the filter inductor could be countered in the manner of pole cancellation by the addition of a zero in the controller of the inner loop. Hence the real attention could be focussed on the rotor equation. Defining,

\[i_m(t) = i_m e^{j\Phi} = i_s + (1+\sigma_r i_r) e^{j\Phi} \] \hspace{1cm} (2.6)

where

\[L_r = L_m (1+\sigma_r) \] \hspace{1cm} (2.7)

Substituting equation (2.6) in (2.5) and separating out the real and imaginary equations of it into two equations, the following are obtained:

\[i_s(t) \cos(\epsilon_s - \Phi) = i_{SD} = T \frac{d}{dt} i_m + i_m \] \hspace{1cm} (2.8)
\[i_s(t) \sin(\epsilon_s - \phi_s) = i_{SQ} = \left(-\frac{d\phi_s}{dt} - \omega_m \right) i_m T_r \] (2.9)

and

\[T_r = \frac{L_r}{R_r} \]

\[\omega_m = \text{Rotor mechanical speed in rad/sec.} \]

Electromagnetic torque,

\[T_e = \frac{2}{3} \cdot \frac{L_m}{(1+\sigma)} i_m i_{SQ} \] (2.10)

The phasor diagram illustrating the current components on the field axis is shown in Figure 2.4. Equation 2.8 reveals that the flux producing component of stator space current phasor, \(i_{SP} \), has a time constant equal to that of the rotor and is greater than 0.5 second for machine larger than 15 h.p. The torque producing component \(i_{SQ} \) is changed in little time and in CSIM drives, the commutation time decides the speed of change of \(i_{SQ} \). From the above, it is appropriate to change the quadrature axis component of stator current phasor to vary the torque and hence control the drives in much faster manner. Once the two currents and their separate effects are understood and identified, then the control task is made simple. The best drive strategy follows in that the key variables \(i_{SQ} \), \(i_{SD} \), air-gap flux, angles \(\phi_s \) and \(\epsilon_s \) are measured and compared with their demanded values. In case of
Figure 2.4 Resolution of Currents Along Field Axis
error, that particular variable which is having the error is actuated to nullify the error. This provides a desirable non-interactive control in a highly coupled machine. The above strategy forms the basis of field-oriented control, a name derived from the fact that the control is exercised on the components of stator current phasor resolved along the field axis \([60], [61], [62], [63]\).

Since the flux (i.e. field) and the torque producing components are separately controlled they resemble that of the field and armature controlled D.C. machine. It is interesting to observe that the salient differences in time constants of the field and armature control loops are carried on to the induction machine from the D.C. machine.

Above some critical load, instability can occur with this scheme. This can be overcome if rotor flux is used instead of air-gap flux for orientation of stator current components and accordingly the proper angles are taken into account \([64]\).

The block diagram of the CSIM drive with this control strategy is shown in Figure 2.5. It could be seen that there need be no tachometer feedback for torque regulated drives. Also it is possible to reconstruct the flux and its angle signals from the instantaneous phase currents and induced voltages of the machine. But such a scheme involves the motor parameters and in case of changing
Figure 2.5 Field Oriented CSIM Drive
operating conditions proper care has to be exercised to compensate for the variation of parameters. A scheme with a solution to this problem is described in detail in [65], [66]. The implementation of field-oriented control in CSIM drives requires current feedback, air-gap flux, rotor speed and a processor to find the angles ϕ_s and ϵ_s. This information is used to create i_{SQ}, i_{SD} through co-ordinate transformation. Current i_{SQ} is superimposed upon the speed and torque error signal whereas the current i_{SD} is compared with the demanded field current for the running speed. At the end point for construction of current reference signal, no co-ordinate transformation is necessary for obvious reason. Hence the implementation of this strategy needs less complexity on CSIM drives than on VSIM drives. At the same time, the tremendous task of extracting the fundamental signals from the current signals and the induced emf signals, and also the removal of slot harmonics from the flux deserve attention.

The strategy discussed above is based on the calculation of current components and angles with respect to the stator reference frame. Instead, the same strategy can be implemented with reference frames chosen on the synchronously rotating reference frame [67] or in the rotor rotating reference frame [68]. The major advantage of these reference frames is that the bandwidth of the calculating circuit can be kept constant since the signals processed are not greater in frequency than the slip frequency, in
contrast to the stator reference frame calculator.

2.5 Basic Principles of the Control Schemes

All the three schemes described above have in common the following:

(i) Current Regulating loop which maintains essentially constant magnitude of the air-gap flux.

(ii) Speed feedback loop determining the shaft speed by setting the inverter output frequency.

(iii) Frequency compensation loop controlling the position of the air-gap mmf vector by transiently adjusting the inverter output frequency during the motor transients.

Features (i) and (ii) are commonly found in any CSIM drive system. The only distinguishing aspect of all the schemes, then, lies in the frequency compensation loop. In the following paragraphs, the need for transient correction of stator frequency during load and reference speed changes is explained using a steady-state equivalent circuit of the induction motor [69]. For the purpose of simplicity, the following assumptions are made:

(i) The stator impedance is neglected. Thus the terminal voltage becomes equal to the air-gap voltage.
(ii) Core losses are neglected.

(iii) Magnetic hysteresis and eddy currents are neglected so that air-gap flux is in phase with the motor magnetizing current and the frequency of the magnetizing current defines the synchronous speed.

(iv) Magnetizing current is constant during the load disturbance. This presumes that the time constant of the magnetizing branch is sufficiently greater than the time constant of the current controller.

(v) Commutation delay is neglected. Therefore, the motor input frequency can be changed instantaneously.

The simplified equivalent circuit of the induction motor is shown in Figure 2.6. Let the induction motor operate at synchronous speed. The corresponding phasor diagram is shown in Figure 2.7. Presently, the power factor is zero. With a step increase in the load and no change in motor input frequency the motor operation is represented by Figure 2.8. The following may be observed:

(i) The slip speed increases thereby building up the rotor current. Since the stator is supplied from a current source, the stator current remains constant. Hence the magnetizing current phasor is forced to part from its original position.
Figure 2.6 Simplified Equivalent Circuit of Induction Motor.

Figure 2.7 Motor at Synchronous Speed.
Figure 2.8 Motor After a Step Load
(ii) Magnetizing current phasor slows down decreasing the synchronous speed. The induced emf follows the magnetizing current phasor and the phase angle between stator current phasor and induced emf decreases. The power factor increases and more power is flowing into the stator.

(iii) Rotor current slowly builds up due to the increasing slip speed, even though there is reduction in induced emf due to the decrease in synchronous speed of air-gap mmf.

The cycle of events with the initiation of frequency compensation is outlined now. The inverter output frequency is transiently increased in order to keep the speed of the magnetizing current phasor constant. This involves the following:

(i) The phasor of the stator current is transiently speeded-up in order to assume a new position defined by the motor input power factor.

(ii) As the motor air-gap flux is maintained at the rated value, to meet the load, then, the stator current magnitude has to be increased to provide the necessary rotor current.

(iii) The induced emf remains constant. The rotor current and input power factor increase as the slip increases. The electromagnetic torque increases approximately in proportion to the
slip speed.

Hence, as a result of effective frequency compensation, the motor torque increases in step with the load without any oscillation giving a fast response stable drive. The frequency compensation to be applied is

$$\delta \omega_e = \frac{\delta \theta}{\delta t}$$ \hspace{1cm} (2.11)

where \(\theta \) is the torque angle.

Alternatively, from the equivalent circuit of Figure 2.6, and making a further assumption of neglecting rotor leakage inductance, the rotor current is given:

$$I_r = \frac{I_s}{1 - j \frac{R_e}{s X_m}}$$ \hspace{1cm} (2.12)

$$|I_r| = \frac{|I_s|}{\sqrt{1 + \left(\frac{R_e}{L_m}\right)^2 \cdot \frac{1}{s^2 \omega_e^2}}}$$ \hspace{1cm} (2.13)

On applying a step load, rotor current increases due to increasing slip, \(s \). Along with that if the frequency is changed, then the increase in rotor current is fast giving an enhanced electromagnetic torque. A change in inverter output frequency amounts to a change in the distribution of current in the magnetizing and rotor branches and in favour of meeting load transients. The
magnitude of stator current has to be simultaneously taken care of to keep the air-gap flux constant through the current channel. The flux producing component of stator current will undoubtedly decrease if the stator current magnitude is held constant and the inverter output frequency is increased. Further details are taken up in Chapter 6.
CHAPTER 3

CONTROL CONSEQUENCES OF TORQUE ANGLE FEEDBACK

3.1 Introduction

Torque angle is defined as the angle between the stator current phasor and the magnetizing current phasor, where the magnetizing current phasor is the resultant of the stator and rotor current phasors. All the fast response drive strategies have within them a torque angle loop is shown in Chapter 2. Understanding the effects of the torque angle loop, through a steady-state equivalent circuit is qualitative, and for precise utilisation it needs to be put on solid quantitative grounds. The section is concerned with the evaluation of torque angle as a function of other machine variables and the assessment of its impact on the control configuration of the drive [69], [70]. Together with the speed loop, the torque angle control loop provides a complete state feedback of all machine states in the machine rotor equations. This aspect, in line with the development of other D.C. and A.C. motor drives, provides a generalized control concept of the electric motor drives. The development of the generalized control concept is helpful in the evaluation of a control scheme and its scope in relation to any other standard scheme, and leads to the realization of the optimal control of the drives.
3.2 Relationship of Torque Angle to Machine Variables

In order to appreciate the effect of torque angle, it is necessary to find the constituents of the torque angle itself. The information is to be applied to evaluate its impact on small-signal stability of the CSIM drive. Hence the machine's small-signal equations are made use of to derive the relationship between the torque angle and other machine variables. The following assumptions are made in the machine model:

(i) Distributed windings so as to produce sinusoidal mmf in stator and rotor.
(ii) Saturation and core-looses are neglected.
(iii) Temperature and frequency effects on machine constants are neglected, though they can be incorporated in the developed model when it is necessary.

The reference frames are synchronously rotating and the equations are given in Appendix-I [71]. The derivation of the incremental torque angle, $\delta \theta$, in terms of the machine variables is given below:

A subscript ending with an 'o' denotes the steady-state value of a variable. The fundamental of the input currents are only considered and alignment is so made that the d-axis stator current is zero. The stator and rotor variables are denoted by the additional subscripts 's'
and 'r' along with the subscripts 'q' and 'd' for the quadrature and direct axes, respectively. The phasor diagram of the induction motor is shown in Figure 3.1 i_{mo} is the magnetizing current phasor and θ is the torque angle. From Figure 3.1, the following are obtained:

$$i_{ro} = \sqrt{i_{qro}^2 + i_{dro}^2}$$

(3.1)

$$\tan \theta_1 = \frac{|i_{dro}|}{|i_{qro}|}$$

(3.2)

$$\tan \theta = \frac{i_{ro} \sin \theta_1}{i_{qso} - i_{ro} \cos \theta_1}$$

(3.3)

Perturbing all the variables, equation (3.3) becomes

$$\tan(\theta + \delta \theta) = \frac{(i_{ro} + \delta i_r) \sin(\theta_1 + \delta \theta_1)}{(i_{qso} + \delta i_{qs}) - (i_{ro} + \delta i_r) \cos(\theta_1 + \delta \theta_1)}$$

(3.4)

Expanding equation (3.4) and neglecting second-order terms, results in an equation with small-signal variables in the form of:

$$\delta \theta = [a] \delta i_{qs} + [b] \delta i_r + [c] \delta \theta_1$$

(3.5)

where
Figure 3.1 Phasor Diagram of CSIM Drive
\[a = \frac{-\tan \theta}{h} \]

\[b = \frac{(\sin \theta_1 + \cos \theta_1 \tan \theta)}{h} \]

\[c = \frac{(i_\text{ro} \cos \theta_1 - i_\text{ro} \sin \theta_1 \tan \theta)}{h} \]

\[\delta \theta_1 = i_{q_\text{so}} - i_\text{ro} \cos \theta_1 + i_\text{ro} \sin \theta_1 \tan \theta \]

\(\delta \theta_1 \) in equation (3.5) can be written in terms of other machine states and is accomplished in the following steps:

\[i_{d \text{ro}} + \delta i_{d \text{r}} = (i_\text{ro} + \delta i_\text{r}) \sin(\theta_1 + \delta \theta_1) \]

\[i_{q \text{ro}} + \delta i_{q \text{r}} = -(i_\text{ro} + \delta i_\text{r}) \cos(\theta_1 + \delta \theta_1) \]

from which

\[\delta i_{d \text{r}} = [i_\text{ro} \cos \theta_1] \delta \theta_1 + [\sin \theta_1] \delta i_\text{r} \]

\[\delta i_{q \text{r}} = [i_\text{ro} \sin \theta_1] \delta \theta_1 - [\cos \theta_1] \delta i_\text{r} \]

Combining equations (3.8) and (3.9), it is seen that

\[\delta \theta_1 = \frac{1}{i_\text{ro}} [\cos \theta_1 \delta i_{d \text{r}} + \sin \theta_1 \delta i_{q \text{r}}] \]
On substitution of equation (3.10) in (3.5), the expression for $\delta \theta$ is obtained as

$$
\delta \theta = [a]\delta i_{qs} + [b_1]\delta i_{qr} + [c_1]\delta i_{dr}
$$

(3.11)

where

$$
b_1 = [-bc\cos \theta_1 + \frac{c}{i_{ro}} \sin \theta_1] = a
$$

(3.12)

$$
c_1 = [b\sin \theta_1 + \frac{c}{i_{ro}} \cos \theta_1] = \frac{-a}{\tan \theta}
$$

(3.13)

In a similar manner, the incremental torque angle of a VSIM drive can be obtained. Even in this case, the incremental torque angle is a function of only the electrical states, i.e., the stator and rotor currents along the quadrature and direct axes.

It is important to note that the incremental torque angle is dependent only on electrical states and not on the mechanical rotor speed. The use of torque angle for electromagnetic torque control is attractive in the sense that the generation of electromagnetic torque can be freed from the dependence on the slip speed signal generated from a reference and the rotor speed. At very low speeds, the slip signal that is generated by the above means would be inaccurate and hence the dynamic control of drives around such speeds is very difficult. Regulating torque angle and in turn electromagnetic torque would precisely control the dynamic response of the drive.
3.3 Control Consequences of Torque Angle Feedback

The CSIM drive equations on open loop can be arranged in state-space form of:

\[
\dot{X} = AX + BU + d
\] \hspace{1cm} (3.14)

\[
y = CX + DU
\] \hspace{1cm} (3.15)

where \(A, B, C, D \) are \(4 \times 4, 4 \times 2, 1 \times 4, 1 \times 2 \) matrices, respectively, and \(d \) is the disturbance vector.

\[
X = [\delta i_q s \delta i_q r \delta i_d r \delta \omega_m]^t
\] \hspace{1cm} (3.16)

\[
U = [\delta V_d \delta \omega_e]^t
\] \hspace{1cm} (3.17)

\[
d = [0 \ 0 \ 0 \ \delta T_L]^t
\] \hspace{1cm} (3.18)

The matrices \(A \) and \(B \) are given in Appendix-II. Depending upon the required output, matrices \(C \) and \(D \) can be derived.

The two independent inputs of the drive, the controlled rectifier voltage, \(\delta V_d \), and inverter frequency \(\delta \omega_e \), are normally decided by the feedback controllers. For illustration, a simple drive configuration shown in Figure 3.2 is considered. The slip speed determines the link voltage and the sum of angle error and the reference speed determines the stator frequency of the drive. The dynamic small-signal equations of the drive inputs are given below:
Figure 3.2 Speed and Torque Angle Feedback Scheme
\[\delta V_d = K_1 [\delta \omega_{\text{ref}} - \delta \omega_m] \] \hspace{1cm} (3.19)

\[\delta \omega_e = K_2 [\delta \omega_{\text{ref}} - \delta \omega_m] + \delta \omega_m + \delta \theta \] \hspace{1cm} (3.20)

Substituting equation (3.11) in (3.20),

\[\delta \omega_e = [a] \delta i_{qs} + [b_1] \delta i_{qr} + [c_1] \delta i_{dr} \]
\[+ [1-K_2] \delta \omega_m + [K_2] \delta \omega_{\text{ref}} \] \hspace{1cm} (3.21)

\[= [a \ b_1 \ c_1 \ (1-K_2)] \begin{bmatrix} \delta i_{qs} \\ \delta i_{qr} \\ \delta i_{dr} \\ \delta \omega_m \end{bmatrix} + [K_2] \delta \omega_{\text{ref}} \] \hspace{1cm} (3.22)

\[= [a \ b_1 \ c_1 \ (1-K_2)] X + [K_2] \delta \omega_{\text{ref}} \] \hspace{1cm} (3.23)

\[\delta V_d = [-K_1] \delta \omega_m + [K_1] \delta \omega_{\text{ref}} \] \hspace{1cm} (3.24)

\[\begin{bmatrix} \delta V_d \\ \delta \omega_e \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & -K_1 \\ a & b_1 & c_1 & (1-K_2) \end{bmatrix} \begin{bmatrix} \delta i_{qs} \\ \delta i_{qr} \\ \delta i_{dr} \\ \delta \omega_m \end{bmatrix} + \begin{bmatrix} \delta \omega_{\text{ref}} \end{bmatrix} \] \hspace{1cm} (3.25)
\[= [K] \delta \omega_{\text{ref}} \]

where matrix \(K \) is observable from equation (3.25). From equation (3.26) it is seen that the torque angle with rotor speed feedback constitutes a complete state feedback, i.e., with two signals alone a net effect of feeding four signals is obtained. Substituting equation (3.26) in (3.14) gives

\[\dot{X} = [A+\delta K]X + d + e \]

(3.27)

\[e = [B] \begin{bmatrix} \delta \omega \\ \delta \omega_{\text{ref}} \end{bmatrix} \]

(3.28)

The relative gains of the electrical states assigned by the torque angle feedback are fixed and cannot be changed at will. In spite of this rigidity of relationship of the torque angle with drive electrical states, it is shown subsequently that this does not affect the pole-zero assignment.

3.4 Differences Due to Torque Angle Feedback and Speed and Current Feedback Schemes

To fully understand the significance of torque angle feedback from the pole-zero assignment point of view, it is necessary to go over the simple schemes using speed feedback only as well as schemes using both speed and current feedbacks. The differences due to the influence of
these types of feedback is explained with regard to their ability to place poles and zeros in the drive system. For purposes of conceptual clarity, the controllers are constrained to be proportional in nature so that the system order is maintained at the minimum.

3.4.1 Speed feedback scheme

The CSIM drive including D.C. link filter with speed feedback, shown in Figure 3.3, is considered here. The closed-loop matrix is given by

\[
[A_c] = [A + BK]
\]

\[
\begin{bmatrix}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{bmatrix}
\]

(3.29)

The determinant of the closed-loop matrix is given by

\[
|\lambda I - A_c| = \lambda^4 + a_p \lambda^3 + b\lambda^2 + c\lambda + d
\]

(3.30)

where \(a_p = -(\text{sum of the poles}) \)

\[
\bigcap = -(a_{11} + a_{22} + a_{33})
\]

(3.31)
Figure 3.3 Speed Feedback Scheme
From equation (3.31), it is seen that the coefficient a_p is a constant and is unaffected by the feedback. The only elements modified by the feedback are denoted by the asterisk in equation (3.29). Therefore, the placement of the poles of the system are constrained in that their sum should always be equal to that defined by equation (3.31) and this, in turn, is decided by the machine and D.C. link filter constants. For a given drive whose details are given in the Appendix-III,

$$a_p = 20.567 \quad (3.32)$$

This demonstrates that the poles are situated near the imaginary axis, and it is not possible to move two poles farther away so that the remaining poles determine the system damping.

For the speed-torque transfer function, the zeros are computed by deleting the mechanical equation and also the speed controller, which amounts to deleting the fourth row and column in equation (3.29) using the direct method [57]. Then it is seen that the zeros are not affected by the feedback at all. Hence the positioning of poles and zeros for good transient response is limited when only speed feedback is used.
3.4.2 Current and speed feedback scheme

Although the feedback of both current and speed gives much more freedom in the assignment of poles and zeros than in the case of speed feedback only, there are constraints as shown below:

The closed-loop matrix of the drive system can be denoted by \(A_c \) and is given by

\[
[A_c] = \begin{bmatrix}
 a_{11}^* & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22}^* & a_{23} & a_{24} \\
 a_{31} & a_{32} & a_{33}^* & a_{34} \\
 a_{41} & a_{42} & a_{43} & a_{44}^*
\end{bmatrix}
\]

(3.33)

where the elements with the asterisk are those that are modified by the feedback. From the characteristic equation, the sum of the poles is

\[
a_p = -(a_{11}^* + a_{22} + a_{33})
\]

(3.34)

Equation (3.34) indicates that the poles can be varied by only one of the coefficients \(a_{11}^* \) whereas the other two coefficients are fixed. Within this constraint of the sum of the poles, some pole assignment is possible. The coefficient '\(a_p \)' for the drive model can be written in terms of machine and feedback parameters from the Figure 3.4 and
Figure 3.4 Current and Speed Feedback Scheme
the system matrices.

\[
\delta V_d = K_3 [K_1 (\delta \omega_{\text{ref}} - \delta \omega_m) - H_2 \delta i_{qs}]
\]

\[
a_p = -\left(\frac{R_L}{D_a} + \frac{L_r}{D_a} \delta V_d - \frac{L_R}{D_a} - \frac{R_r}{L_r} \right)
\]

(3.35)

(3.36)

Substituting equation (3.35) in (3.36),

\[
a_p = \frac{(R_L \delta V_d + L_R \delta V_d + \frac{R_D}{L_r} + K_3 H_2 L_r)}{D_a}
\]

(3.37)

For a particular value of current feedback gain H_2 and current controller gain K_3, the poles placement is inflexible. The zeros of the speed-load torque transfer function as computed by the direct method show that the zeros are changed by the feedbacks and only the current feedback gain H_2 and current controller gain K_3 have an influence.

3.4.3 Torque angle feedback with current and speed feedback scheme

Finally, the case of torque angle with current and speed feedbacks, shown in Figure 3.5, is considered. In this case, the closed-loop matrix becomes
Figure 3.5. Current, Speed and Torque Angle Feedback
\[
[A_c] = \begin{bmatrix}
a_{11}^* & a_{12} & a_{13}^* & a_{14}^* \\
a_{21}^* & a_{22}^* & a_{23} & a_{24}^* \\
a_{31}^* & a_{32}^* & a_{33}^* & a_{34}^* \\
a_{41}^* & a_{42} & a_{43} & a_{44}^* \\
\end{bmatrix}
\] (3.38)

where an asterisk denotes that the particular element has been modified by feedback. The sum of the poles is

\[
a_p = -(a_{11}^* + a_{22}^* + a_{33}^*)
\] (3.39)

All the coefficients in \(a_p\) are subject to change and depending upon the feedback gains and controller gains, a great amount of flexibility is obtained in pole placement. From the zeros of the speed-load torque transfer function, it can be seen that the zeros are assignable with enormous amount of freedom as the constituents of all the coefficients of the polynomial can be changed with feedback.

From the A matrix, it is seen that the elements of second and third column differ from each other and added with the different multiplier gains of each current in torque angle equation, the elements of the closed-loop matrix \([A+BK]\) are uniquely determined.
3.5 Generalized Control Concept of Electric Motor Drives

Any drive system can be represented by

\[
\dot{X} = AX + BU + d
\] \hspace{1cm} (3.40)
\[
y = c\dot{X} + DU
\] \hspace{1cm} (3.41)

and if the system is completely controllable then there exists an optimal input

\[
U = KX
\] \hspace{1cm} (3.42)

satisfying a given system performance index. This is the well known result of optimal control theory. Note that the input becomes a linear combination of all system states. With this type of control, the closed-loop system eigenvalues are determined by the characteristic equation of the matrix \([A+BK]\), and it is possible to assign the poles arbitrarily anywhere in the negative half of the complex plane and subsequently the zeros are also moved. This type of control not only assures the system stability requirement but also fulfils the system response requirement. Hence any system which has a complete state feedback will be superior to the one with incomplete state feedback in the above respects.

Applying this to simple D.C. drive system shown in Figure 3.6 and writing the relevant equations of the system,
Figure 3.6 D.C. Motor Drive Scheme

- 55 -
the following is obtained:

\[R_a i_a + L_a \frac{di_a}{dt} + K_b \omega_m = V_d \] \hspace{1cm} (3.43)

\[F \omega_m + J \frac{d \omega_m}{dt} - K_t i_a = -T_L \] \hspace{1cm} (3.44)

Alternatively, in the state-space form,

\[
\begin{bmatrix}
\frac{di_a}{dt} \\
\frac{d \omega_m}{dt}
\end{bmatrix} =
\begin{bmatrix}
-R_a/L_a & -K_b/L_a \\
K_t/J & -F/J
\end{bmatrix}
\begin{bmatrix}
i_a \\
\omega_m
\end{bmatrix} +
\begin{bmatrix}
1/L_a \\
0
\end{bmatrix} V_d +
\begin{bmatrix}
0 \\
-T_L/J
\end{bmatrix}
\]

(3.45)

Controllability can be ascertained by finding the rank of the \([B|AB]\) matrix and it is found that this matrix becomes equal to

\[
[B|AB] =
\begin{bmatrix}
1/L_a & -R_a/L_a^2 \\
0 & K_t/JL_a
\end{bmatrix}
\]

(3.46)

and it is controllable. Taking the closed-loop equation for the D.C. output voltage

\[V_d = K_a \left[K_1 (\omega_{ref} - \omega_m) - H_2 i_a \right] \]

(3.47)

\[= \left[-K_2 H_2 - K_1 K_2 H_1 \right] X + [K_1 K_2] \omega_{ref} \]

(3.48)
It is seen that the poles and zeros can be shifted to any desired position by the feedback. Also the input is a linear combination of the system states. This is precisely one of the reasons that optimal control is in-built in such a drive system and no further extensive studies are warranted in this direction for this particular class of drive systems.

Similarly many research papers have proved beyond doubt that a complete state feedback is superior to incomplete state feedback control in synchronous machine control and in case of inaccessible states, it is necessary to reconstruct them for feedback purposes [72].

Each controlling input to the induction motor is programmed to be a function of one or more states of the drive system. Certain feedback signals contain most of the states and in combination with those missing, will constitute an all state feedback as far as an input is considered. For example, the case of speed and torque angle feedback constitutes all the drive system states. Then it would be advantageous to classify the drive systems on the basis of the nature of state feedback, i.e., whether complete state feedback or incomplete state feedback. Identification of drive systems into one of the categories and along with application of modern control theory gives a general appraisal of the drive in terms of its response, i.e., whether the scheme is optimal in a certain sense or
To proceed, the controllability test is performed on the open loop induction motor system. It is found to be controllable. For the drive strategy given in Figure 3.5, it can be shown that the frequency input is a linear combination of all states whereas the link voltage is a function of only rotor speed and stator quadrature axis current. Hence with regard to link voltage input, the system has an incomplete state feedback. For a fast response and high performance drive system, it becomes obvious that the link voltage should also be decided by all the states. This is achieved only in the synchronous and field-oriented schemes, as shown later. Then in such a case, all the elements in the closed-loop matrix A_c excepting the elements a_{41} and a_{43} are modified by state feedback. This affords a great deal of flexibility in the choice of combinations of states to place the zeros and poles of the system at the desirable locations.
CHAPTER 4

COMPARISON OF THE CONTROL SCHEMES.

4.1 Introduction

The three fast response drive schemes have as their basis the aspect of frequency compensation. Their unity in frequency compensation and diversity in the following aspects make the schemes distinct in their own right and ingenious in engineering design:

(i) Sensing the torque angle and the method of frequency compensation
(ii) Reference frames used for computation of machine variables
(iii) Overcoming machine parameters' sensitivity
(iv) Flux magnitude control

This chapter deals with the interrelationship of the schemes and their differences from the engineering implementation point of view, and their control characteristics as evaluated by the generalized control concept of the electric motor drives. A comparison of the schemes completes the chapter.
4.2 Interrelationship of the Drive Schemes

The theory of the control of an inverter-fed induction motor is developed in the field-oriented control scheme with the machine model in stator reference frames. Based on this analysis and an understanding of frequency compensation, the three control schemes are considered in detail.

4.2.1 Angle control scheme

The angle control loop, the most crucial of the loops of the angle control scheme, shown in Figure 2.2 is considered first. The loop consists of G_{12}, G_{11}, H_2, G_1, G_6, G_7 and G_D. The output of the angle controller is y_3 and its input is y_6. An analysis of this output for an input is given below:

The controllers have the transfer functions:

$$G_1(s) = \frac{K_1(1+T_1s)}{s} \quad (4.1)$$
$$G_6(s) = \frac{K_6s}{(1+T_6s)} \quad (4.2)$$

$G_6(s)$ is essentially a differentiator and the denominator term is to attenuate the noise at high frequencies. For the range of frequency of interest, T_6 is negligible. Therefore the cascade transfer function of the two blocks G_1 and G_6 is a proportional and differential controller. The output y_3 is then,
\[y_3 = K_1 \cdot K_6 \cdot (1 + T_1 \frac{d}{dt}) \left[\omega_{\text{ref}} - \omega_m \right] \] \hspace{1cm} (4.3)

\[= -K_1 \cdot K_6 \cdot (1 + T_1 \frac{d}{dt}) \cdot \omega_m + K_1 \cdot K_6 (1 + T_1 \frac{d}{dt}) \omega_{\text{ref}} \] \hspace{1cm} (4.4)

From the electromechanical equation,

\[J \cdot \frac{d\omega_m}{dt} = T_e - T_L \] \hspace{1cm} (4.5)

and integrating equation (4.5),

\[J \cdot \omega_m = \int (T_e - T_L) \, dt \] \hspace{1cm} (4.6)

Adding equations (4.5) and (4.6) and rearranging,

\[(1 + T_1 \frac{d}{dt}) \cdot \omega_m = [T_e - T_L + T_1 \int (T_e - T_L) \, dt] / J \] \hspace{1cm} (4.7)

Substituting equation (4.7) in (4.4),

\[y_3 = - \frac{K_1 \cdot K_6}{J} [T_e - T_L + T_1 \int (T_e - T_L) \, dt] + K_1 \cdot K_6 (1 + T_1 \frac{d}{dt}) \omega_{\text{ref}} \] \hspace{1cm} (4.8)

From equation (4.8), it is seen that the frequency compensation is influenced by both load torque disturbance and reference frequency change. The component of frequency compensation due to a load torque disturbance is directly proportional to the difference between the electromagnetic torque and load torque and its integral. Similarly, the
component of frequency compensation due to reference frequency change is determined by the reference frequency change and its derivative. The action of the frequency compensator in coping with both load disturbance and frequency reference change is briefly described here.

(i) **Load torque disturbance**: The machine is operating in steady-state and a load torque increase is initiated. Then accordingly equation (4.8) in terms of small-signal variables becomes

\[y_3 = K_1 K_6 \left(-\frac{1}{J} \int (\delta T_e - \delta T_L) dt + T_L \right) + (1 + T_1 \frac{d}{dt}) \delta \omega_{\text{ref}} \]

Let

\[\delta \omega_{\text{ref}} = 0 \]

Hence, the frequency compensation added is sum of the negative of acceleration torque and the integral of the same. Both these components are positive and hence the frequency of the stator currents is increased. Due to this effect, the magnetizing current phasor is left undisturbed in its position. Note that for a decrease in load torque, the stator current phasor is slowed down thereby adjusting the torque angle to correspond to load conditions.

(ii) **Reference speed change**: When keeping the load torque constant, an increase in reference frequency is followed by an increasing stator current phasor speed
having two components. That directly due to reference frequency change is given by the term

\[-K_1 K_6 (1+T_1 \frac{d}{dt}) \delta \omega_{\text{ref}} \]

At the same time any change in electromagnetic torque beyond its steady-state level corresponding to load torque is countered by subtracting the stator frequency equivalent to a proportional change and its integral in the electromagnetic torque given by the term

\[-K_1 K_6 [\delta T_e + T_1 \int (\delta T_e) dt] / J \]

This balances the problem of reference speed changes in that the torque angle is maintained constant while the stator current phasor is speeded-up. Even during dynamic conditions, the constancy of electromagnetic torque is preserved for the reference speed change. For a negative reference change, the too fast slowing down of the stator current phasor if it affects the torque angle is instantaneously countered by the positive frequency compensation. This is explained by noting that if the torque angle is smaller than the required steady-state level, \(\delta T_e \) becomes negative and the frequency compensation term corresponding to this becomes positive.
Herein lies the ingenuity of the angle control scheme. Without measuring the torque angle and electromagnetic torque of the induction motor, the stator current phasor is positioned dynamically with the torque reference signal, and in this case it is generated by the slip speed. While the torque angle is dynamically corrected, the magnitude of the current phasor also undergoes change. The components of the current phasors are assumed to be in perfect quadrature to each other and are vectorially added. Dynamically, the torque and flux producing components are fixed by the stator current phasor and the torque angle controller. But in this scheme, the transient positioning of air-gap mmf is done without reference to the actual torque angle. There is also no feedback to help to control transiently the air-gap flux.

Another drawback is that since the excitation current is fixed, the air-gap flux is affected due to the magnetizing inductance's dependence on stator current value. There is no way to check this condition as long as there is no feedback of air-gap flux itself. In spite of the drawbacks mentioned, the angle control scheme is the simplest one inherently having frequency compensation.

4.2.2 Synchronous control scheme

The air-gap flux-linkages are measured with the stator currents and voltages from which electromagnetic torque and torque
angle are computed. The machine parameters do not enter into such a computation in a direct form. Unlike in the angle control scheme, the reference torque is compared to the actual value of the torque angle in the machine and then frequency correction is initiated. In turn, the reference torque angle is obtained from the difference of torque reference and actual electromagnetic torque. The changes in the machine parameters are fully accounted into the drive scheme in this manner. Note that all the computations are carried out in the stator reference frame and hence no transformations are required. Air-gap flux is set at the desired level due to its comparison with the measured air-gap flux. The drive needs air-gap flux sensors and also a minimum complexity computational circuit for torque and torque angle.

4.2.3 Field-oriented control scheme

This incorporates perfect decoupling of the machine and each output is controlled through a non-interactive channel. The resolution of the stator current phasor into two components along the air-gap flux axis (known as field axis) and the computation of these through the measured air-gap flux-linearages and stator currents provides the basis for comparison with the respective reference values. The machine magnetizing inductance changes depending upon the stator current, and for a case of constant direct
field axis stator current reference i_{SP}, shown in Figure 2.4, will alter the air-gap flux. Therefore, the addition of another loop to compare the actual air-gap flux with the desired value corrects the situation. Noting that,

$$\text{Modified air-gap flux} = \frac{L_m \cdot i_m}{(1 + \sigma)} \quad (4.11)$$

and

$$i_{SQ} = (T_r \cdot \frac{d}{dt} + 1) \cdot i_m \quad (4.12)$$

It is seen from the equations (4.11) and (4.12) the air-gap flux is proportional to magnetizing current phasor magnitude i_m. But i_m is not a simple proportion of i_{SQ} as it is related through the time delay. This necessitates the flux controlling loop mentioned above.

Similarly a control loop to force the generated torque to demanded value is accomplished comparing the actual with the requested values of the electromagnetic torque. The error of this sets the reference i_{SQ} which in turn is compared to the computed value. The machine parameter sensitivity is completely eliminated in this scheme. This scheme needs air-gap flux sensors and co-ordinate converters and hence results in complex control and computational circuitry.
4.3 Evaluation of the Control Schemes by the Generalized Control Concept

The fineness of the control achieved by each scheme can be evaluated by a generalized control concept of the electric motor drives. To obtain that, the drive control inputs have to be expressed in terms of their controlling functions. Results obtained are general in nature.

4.3.1 Angle control scheme

From the Figure 2.2, the control inputs of the drive can be simplified as shown in Figure 4.1. Assuming K_2, K_3, and K_5 to be simple proportional controller gains, the inputs can be written after drawing the state diagram of the speed controller. The state diagram of the speed controller is shown in Figure 4.2. From this state diagram, the following equation is obtained:

$$y_6 = K_1 T_1 [\delta \omega_{ref} - \delta \omega_m] + X_5 \tag{4.13}$$

From Figure 4.1, the following are obtained:

$$y_2 = K_5 y_6 \tag{4.14}$$

$$y_3 = K_6 \frac{dy_6}{dt} \tag{4.15}$$

$$= K_6 \frac{d}{dt} \left[K_1 T_1 [\delta \omega_{ref} - \delta \omega_m] + X_5 \right] \tag{4.16}$$
Figure 4.1 Control Inputs of the Angle Controlled Drive

Figure 4.2 State-Diagram of the Speed Controller
\[y_2 = K_6 K_1 (a_{41} \delta i_{qs} + a_{43} \delta i_{dr} - \delta \omega_m) \]

\[+ K_6 K_1 (1+T_L \frac{d}{dt}) \delta \omega_{ref} + \frac{K_6 K_T}{J} \delta T_L \] \hspace{1cm} (4.19)

The stator incremental frequency is

\[\delta \omega_e = y_2 + y_3 + \delta \omega_m \] \hspace{1cm} (4.20)

\[= [K_{21} \delta K_{23} K_{24} K_{25}] \hat{X} \]

\[+ [K_6 K_1 + K_5 + K_6 T_L \frac{d}{dt}] \delta \omega_{ref} \]

\[+ \frac{K_6 K_T}{J} \delta T_L \] \hspace{1cm} (4.21)

The link voltage, on the other hand, is
\[\delta V_d = K_3 (y_6 K_2 - \delta i_{qs}) \] \hspace{1cm} (4.22)

\[= K_3 \delta i_{qs} - K_3 K_2 T_1 \delta \omega_m + K_3 K_2 X_5 \]

\[+ K_3 K_2 T_1 \delta \omega_{ref} \]

\[= [K_{11} \ 0 \ 0 \ K_{14} \ K_{15}] X + K_3 K_2 T_1 \delta \omega_{ref} \] \hspace{1cm} (4.23)

The stator frequency and link voltage are not linear combinations of all the system states and particularly they are totally independent of the rotor q-axis current. This control scheme belongs to the category of incomplete state feedback. The control consequence of this is clearly shown in inadequate freedom of the pole-zero assignment explained in the following:

The closed-loop matrix \(A_c \) is of the form

\[
A_c = \begin{pmatrix}
 a_{11}^* & a_{12} & a_{13} & a_{14} & a_{15}^* \\
 a_{21}^* & a_{22} & a_{23} & a_{24} & a_{25}^* \\
 a_{31}^* & a_{32} & a_{33}^* & a_{34} & a_{35}^* \\
 a_{41} & 0 & a_{43} & 0 & 0 \\
 0 & 0 & 0 & a_{44} & 0
\end{pmatrix}
\] \hspace{1cm} (4.24)

The asterisk denotes that the elements are modified by the feedback. The sum of the closed-loop poles is
\[a_p = -(a_{11}^* + a_{22} + a_{33}^*) \] (4.25)

where only two elements are modified by the feedback. Similarly the zeros of the speed-load torque transfer function are computed using [57] and the sum is given by:

\[a_z = -(a_{11}^* + a_{22} + a_{33}) \] (4.26)

where only the element \(a_{11} \) is under control. From equations (4.25) and (4.26), the curtailment of freedom of assignment of poles and zeros is evident.

If the disturbance matrix, \(\bar{d} \), is examined, it is of the form:

\[
\begin{bmatrix}
 d_{11} & 0 \\
 d_{21}(1+T_a \frac{d}{dt}) & d_{22} \\
 d_{31}(1+T_b \frac{d}{dt}) & d_{32} \\
 0 & d_{42} \\
 d_{51} & 0
\end{bmatrix}
\]

The stator equation is not directly influenced by load torque and the electromechanical equation is not coupled directly to the reference speed. The former situation is effectively countered by adding the differentiated output of torque reference signal, \(y_6 \), into the current
reference. This brings in the element d_{12}, as shown by the equation (4.18).

4.3.2 Synchronous control scheme

Figure 4.3 shows the control input generation for the synchronous control scheme. Utilizing Figure 4.3 and the simplification, that for small torque angles,

$$\sin\delta \theta = \delta \theta$$ \hspace{1cm} (4.28)

the following can be deduced:

$$\delta V_d = K_b(K_2 Y_6 + K_3(\delta \omega_m - \delta \psi) - \delta i_{qs})$$ \hspace{1cm} (4.29)

$$\delta \psi = m_1 \delta i_{qs} + m_2 \delta i_{qr} + m_3 \delta i_{dr}$$ \hspace{1cm} (4.30)

and substituting for y_6 from equation (4.13),

$$\delta V_d = [K_{11} K_{12} K_{13} K_{14} K_{15}]X + d_{11} \delta \omega_{ref}$$ \hspace{1cm} (4.31)

The stator incremental frequency is

$$\delta \omega_e = [(y_6 - \delta T_e)K_4 - \delta \delta]K_5 + \delta \omega_m$$ \hspace{1cm} (4.32)

Obtaining incremental electromagnetic torque from the machine equation,
Figure 4.3 Generation of Inputs for Synchronous Control Scheme
\[\delta T_e = a_{41} \delta i_{qs} + a_{43} \delta i_{dr} \] (4.33)

\[\delta \theta = a \delta i_{qs} + b_1 \delta i_{qr} + c_1 \delta i_{dr} \] (4.34)

Substituting for \(\delta T_e \) from equation (4.33) and \(\delta \theta \) from equation (4.34) into equation (4.32),

\[\delta \omega_e = [K_{21} K_{22} K_{23} K_{24} K_{25}]X + a_{ref} \delta \omega_{ref} \] (4.35)

From equations (4.31) and (4.35), it is seen that the inputs are linear combinations of all the system states and the synchronous control scheme constitutes a complete state feedback. Hence the poles and zeros are arbitrarily assignable and the freedom is unrestricted in such an endeavour.

The disturbance matrix is similar to that for the angle control scheme excepting that no time derivatives of reference speed are included.

4.3.3 Field-oriented control scheme

By the same procedure adopted for the synchronous control scheme, it is found that the field-oriented scheme is a complete state feedback system. Also the state feedback gain matrix \(K \) is of the form
\[K = \begin{bmatrix} K_{11} & K_{12} & K_{13} & K_{14} & K_{15} \\ K_{21} & K_{22} & K_{23} & K_{24} & K_{25} \end{bmatrix} \] \hspace{1cm} (4.36)

and the individual gains can be independently changed by such variables as controller gains. The rigidity of their inter-relationship in simple angle feedback scheme is overcome in this way.

4.4 Comparison of the Schemes

The comparison of the schemes can be obtained using the generalized control concept of the drives. It is noted that the angle control scheme is one of the incomplete state feedback category whereas the synchronous and field-oriented control schemes are of the complete state feedback category. Optimal control can be achieved in the synchronous and field-oriented control schemes because of this structural property. But only sub-optimal control is possible in the angle control scheme. Hence the superiority of the two schemes over the angle control scheme.

Summing up from the physical point of view, the following comments are in order:

Of the three schemes analyzed, the angle control scheme is conceptually simple and intuitively appealing. Instead of measuring the torque angle for dynamic positioning of the air-gap flux, the angle is constructed from the
torque reference signal. In this way, the complexity of processing a large number of signals is eliminated. However, by using only the motor slip speed to reconstruct the torque angle, the control circuit has no information about the actual value of the air-gap flux nor about its precise position. Since all these variables are obtained indirectly and also the drive controllers depend on machine constants, the drive performance normally deteriorates due to magnetic saturation, change in operating frequency and change in winding temperature.

The synchronous control scheme avoids these difficulties by providing almost complete information about the key motor variables. Although the torque and its angle are calculated, motor currents, air-gap flux and speed are measured. Furthermore, this scheme is less sensitive to variation in motor parameters than the angle control scheme. The air-gap flux can be programmed and precisely controlled during constant-power operation. The unity gain frequency loop can also be obtained by using the flux linkages signal and the angle loop provides the slip and the sum of the two sets the stator frequency. Consequently the motor output speed may be controlled indirectly.

The field-oriented control is historically the oldest of the three schemes considered. This is the most complex scheme and has all the features of synchronous control in addition to a measurement of the flux producing component of the stator current. This enables a fast and accurate
positioning of the air-gap mmf phasor.

For ready reference, the comparison is listed in a tabular form and given in Table 4.1.
<table>
<thead>
<tr>
<th>Item for Comparison</th>
<th>Angle Control Scheme</th>
<th>Synchronous Control</th>
<th>Field oriented Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*CALCULATED</td>
<td></td>
<td>*CALCULATED</td>
</tr>
<tr>
<td>2. Angle</td>
<td>Constructed from steady state characteristics</td>
<td>Instantaneous</td>
<td>Instantaneous Calculation</td>
</tr>
<tr>
<td>3. Flux</td>
<td>Neither measured nor calculated</td>
<td>Uses either measured or a calculated one from terminal voltages and currents</td>
<td>Same as synchronous control</td>
</tr>
<tr>
<td>4. Programming the flux with no feedback</td>
<td>Possible but precisely implemented</td>
<td>Precisely implemented</td>
<td></td>
</tr>
<tr>
<td>5. Control loops</td>
<td>Current loop unity gain speed loop, an outer speed loop, angle compensating loop (4 loops)</td>
<td>Inner current loop, unity gain speed loop, Flux loop, Torque loop, Angle loop, Outer speed loop (6 loops)</td>
<td>Inner current loop, Unity gain speed loop, Flux loop, Torque loop, Angle loop, Field-oriented stator current component loop, Outer speed loop (6 loops)</td>
</tr>
<tr>
<td>6. Speed loop</td>
<td>Essential for operation</td>
<td>Optional but flux programming would suffer</td>
<td>Optional but flux programming would suffer</td>
</tr>
<tr>
<td>7. Parameter dependence</td>
<td>Large</td>
<td>To an extent, affects angle and electromagnetic torque calculation.</td>
<td></td>
</tr>
<tr>
<td>8. Design of Frequency compensator</td>
<td>Complicated due to dependence on machine parameters and operating conditions</td>
<td>Simple</td>
<td>Simple</td>
</tr>
<tr>
<td>Item for Comparison</td>
<td>Angle Control Scheme</td>
<td>Synchronous Control</td>
<td>Field Oriented Control</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>9. Nature of the Scheme</td>
<td>Conceptually Simple</td>
<td>More complex scheme</td>
<td>The most complex scheme</td>
</tr>
<tr>
<td>10. Others</td>
<td></td>
<td></td>
<td>Fast positioning of flux space phasor is made possible due to the comparison with the necessary stator current component</td>
</tr>
</tbody>
</table>
CHAPTER 5
TORQUE ANGLE AND ITS EFFECT ON DRIVE CHARACTERISTICS

5.1 Introduction

The central role played by the torque angle in the performance and stabilization of the drives has been covered in the previous chapters. An analysis of the various torque angle transfer functions and the time responses of the torque angle for various drive inputs is made. From the drive equations and the time response of the torque angle, it is shown that the change in the torque angle is associated with a change in speed of the magnetizing current phasor. In spite of the fact that torque angle is a linear combination of all electrical states, it is proved that it has a strong limitation in that its feedback alone cannot stabilize the drive system.

5.2 Torque Angle Transfer Functions

The transfer functions of torque angle for stator current magnitude, stator current frequency and load torque inputs are evaluated. The purpose for the evaluation of such transfer functions is:

(i) To find whether the transfer functions are minimum phase or non-minimum phase. This particular property of the transfer function indicates the limitations placed on the
magnitude of the gain of the compensator.

(ii) To compute the time responses.

The procedure for the computation of transfer functions and time responses is given in Appendix-IV. The link filter is neglected in this study. Note that even this extreme assumption is justifiable in the light of availability of converters with switching frequencies usually in the order of 5kHz for the front-end current source in a CSIM drive. Similar assumption is justified in the case of a fast acting PWM power converters for VSIM drives. The drive details pertain to Appendix-III. Stable operating points are chosen and torque angle transfer functions for both CSIM and VSIM drives are given in Table 5.1. This table is for a machine model neglecting stator dynamics in the case of CSIM drive.

All the transfer functions relating to torque angle are minimum phase in both the drives excepting for voltage input case in the VSIM drive. For frequency input, the CSIM drive has no steady-state gain in torque angle because the slip speed is the same and hence the relative angular positions of the stator and rotor fluxes remain the same. But in the VSIM drive, the frequency increase weakens the stator flux and to generate the same torque as in steady-state, the torque angle increases thereby showing a certain amount of steady-state gain.

In the case of a CSIM drive, there is no pole-zero
Table 5.1
Torque angle transfer functions

CSIM Drive

Operating point: slip = 0.005, $i_{qso} = 1.68$ p.u.,
frequency = 377 rad/sec, Electromagnetic torque = 1.335 p.u.

<table>
<thead>
<tr>
<th>Stator current (Magnitude)</th>
<th>Frequency</th>
<th>Load Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSG</td>
<td>ZEROS</td>
<td>SSG</td>
</tr>
<tr>
<td>-7.69</td>
<td>-3.70</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>-20.0+j221.1</td>
<td></td>
</tr>
</tbody>
</table>

POLES: $-0.264, -1.89+j33.8$

VEIM DRIVE

Operating point: slip = 0.0125, $V_{qso} = 1.414$,
frequency = 377 rad/sec, Electromagnetic torque = 0.97 p.u.

<table>
<thead>
<tr>
<th>Voltage (Magnitude)</th>
<th>frequency</th>
<th>Load Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSG</td>
<td>ZEROS</td>
<td>SSG</td>
</tr>
<tr>
<td>-0.514</td>
<td>-19.3</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>-32.1+j65.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>138.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

POLES: $-12.44+j63.6, -46.99+j374.1, -24.4$
cancellation for all the three inputs. For a closed-loop drive with simple angle feedback and slip speed current interface, the torque angle-frequency transfer function becomes non-minimum phase. When stator dynamics and link filter are included one after another, the CSIM torque angle transfer functions become non-minimum phase for frequency and load torque inputs and they are given in Table 5.2. Note then the drive has to be closed-loop to have a stable operation. And the closed-loop structure corresponds to the above description. Consideration of the link filter has affected both the nature of zeros and the location of both zeros and poles.

5.3 Relationship Between Torque Angle Change and Speed of Magnetizing Current Phasor

It has been stated in the second chapter that a change in torque angle is associated with a change in the speed of the magnetizing current phasor. The mechanism of torque angle change and its consequence is not explicit in the synchronously rotating reference frame model of the drive. But in space phasor modelling, the effect is discernible directly [60]. Neglecting the stator equations leads to the conclusion that i_{SQ} and i_{SD} are inputs at command, the remaining equations are then:

$$i_{SQ} = \frac{d\phi_s}{dt} - \omega_m i_m T_r$$ \hspace{1cm} (5.1)
Table 5.2
CSIM drive torque angle transfer functions with stator dynamics

Operating point: Slip=0.0125,
Stator current (Quadrature axis) = 1.68 p.u.
Frequency=377 rad/sec, Electro.Torque=0.97 p.u.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>Link Voltage</th>
<th>Frequency</th>
<th>Load Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SSG</td>
<td>ZEROS</td>
<td>SSG</td>
</tr>
<tr>
<td>With no link filter</td>
<td>-0.097</td>
<td>-2.89</td>
<td>0.186</td>
</tr>
<tr>
<td></td>
<td>-20.4+j81.5</td>
<td></td>
<td>-12.29,</td>
</tr>
<tr>
<td></td>
<td>POLES: -7.05, -28.5, -36.8+j300.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>with link filter</td>
<td>-0.98</td>
<td>-2.9,</td>
<td>0.186</td>
</tr>
<tr>
<td></td>
<td>-20.4+j81.5</td>
<td></td>
<td>13.46,</td>
</tr>
</tbody>
</table>
\[i_{SD} = (1 + T_r \frac{d}{dt} \phi_s) i_m \quad (5.2) \]

where

\(\phi_s \) is field angle.

and \(T_r \) is rotor time constant,

\[T_e = \frac{2}{3} \frac{L_m}{(1+\sigma_r)} i_m i_{SQ} \quad (5.3) \]

\[J \frac{d\omega_m}{dt} = T_e - T_L \quad (5.4) \]

Taking the small-signal increments of the variables, the equations become:

\[\delta i_{SQ} = [\frac{d}{dt}(\delta \phi_s) - \delta \omega_m] i_m T_r + (\omega_e - \omega_m) T_r \delta i_m \quad (5.5) \]

\[\delta i_{SD} = (T_r \frac{d}{dt} + 1) \delta i_m \quad (5.6) \]

\[\delta T_e = \frac{2}{3} \frac{L_m}{(1+\sigma_r)} [i_m \delta i_{SQ} + i_{SQ} \delta i_m] \quad (5.7) \]

\[\frac{d}{dt} (\delta \omega_m) = \frac{1}{J} (\delta T_e - \delta T_L) \quad (5.8) \]

The phasor diagram is shown in Figure 5.1 for constant stator current magnitude and frequency. Note that \(\frac{d}{dt} \delta \phi_s \) is the incremental speed of the magnetizing current phasor. With the following approximation, due to a large rotor time constant
Figure 5.1 Phasor Diagram for Perturbation Around an Operating Point with Constant Stator Current and Frequency
\[\delta i_m = 0 \] \hspace{1cm} (5.9)

\[\delta i_{SQ} = [p \delta \phi_s - \delta \omega_m] i_m T_L \] \hspace{1cm} (5.10)

\[p \delta \omega_m = \frac{1}{J} \left[\frac{2}{3} \frac{L_m}{(1+\sigma_r)} i_m \delta i_{SQ} \right] - \frac{1}{J} \delta T_L \] \hspace{1cm} (5.11)

and integrating equation (5.11),

\[\delta \omega_m = \frac{1}{J} \frac{2}{3} \frac{L_m}{(1+\sigma_r)} i_m \int (\delta i_{SQ}) dt - \frac{1}{J} \int (\delta T_L) dt \] \hspace{1cm} (5.12)

And combining equation (5.10) and (5.12),

\[p \delta \phi_s = \left[\frac{1}{i_m T_L} \delta i_{SQ} \right] + \frac{1}{J} \frac{2}{3} \frac{L_m i_m}{(1+\sigma_r)} \int (\delta i_{SQ}) dt \]

\[- \frac{1}{J} \int (\delta T_L) dt \] \hspace{1cm} (5.13)

It can be seen that \(\delta i_{SQ} \) changes directly the torque angle and is shown in the following:

\[\tan \theta = \frac{i_{SQ}}{i_{SDO}} \] \hspace{1cm} (5.14)

\[\tan(\theta + \delta \theta) = \frac{i_{SQ} + \delta i_{SQ}}{i_{SDO} + \delta i_{SD}} \]

\[= \frac{\tan \theta + \tan \delta \theta}{1 - \tan \theta \tan \delta \theta} \] \hspace{1cm} (5.15)

And treating \(\tan \delta \theta = \delta \theta \) \hspace{1cm} (5.16)
\[
\frac{i_{SQ} + \delta i_{SQ}}{i_{SDO}} = \frac{\tan \theta + \delta \theta}{1 - \tan \theta \delta \theta}
\]
(5.17)

\[
\delta \theta [i_{SDO} + i_{SQ} \tan \theta] = \delta i_{SQ}
\]
(5.18)

\[
\delta i_{SQ} = \left[\frac{2i_{SQ}}{\sin 2\theta} \right] \delta \theta
\]
(5.19)

\[
= \ell_1 \delta \theta
\]
(5.20)

where \(\ell_1 = \frac{2i_{SQ}}{\sin 2\theta} \)
(5.21)

\[
p \delta \phi_s = \left[\frac{\ell_1}{m \omega_T} \right] \delta \theta + \frac{1}{3} \frac{2}{(1+\sigma_1)} \int \delta \theta \int (\delta T_L) dt
\]
(5.22)

From equation (5.22), the dependence of the incremental speed of the magnetizing current phasor on load torque perturbation and change in torque angle is demonstrated.

Note that the change in the incremental stator frequency is absorbed in the incremental torque angle change itself.

An increase in load torque lowers the speed of magnetizing current phasor if supply frequency is constant. An increase in stator frequency causes an increase in torque angle and hence increases the magnetizing current phasor speed.

The maintenance of magnetizing current phasor speed in the face of load torque disturbance amounts to
\[p \delta \phi_s = 0 \quad (5.23) \]

which in turn means,

\[\left(\frac{L}{I_m} \right) \delta \phi_s + \frac{1}{3} \frac{L}{I_m} \frac{I_m}{I_f} \delta \omega_e \left(\frac{1}{p} \right) = \frac{1}{J} \delta T_L \quad (5.24) \]

where

\[p = \frac{d}{dt} \quad (5.25) \]

Hence,

\[[2 \delta p + 3 \delta \omega_e] \delta \phi_s = \delta T_L \quad (5.26) \]

where

\[\delta p = \frac{J \delta \omega_e}{I_m} \]

\[\delta \omega_e = \frac{L}{I_m} \frac{I_m}{I_f} \delta \phi_s \quad (5.27) \]

Note that change in torque angle is introduced by change in stator frequency and hence

\[p \delta \phi_s = \delta \omega_e \quad (5.28) \]

Substituting equation (5.28) into equation (5.26),

\[\frac{2 \delta p + 3 \delta \omega_e}{p} \delta \omega_e = \delta T_L \quad (5.29) \]
\[\delta \omega_e = \frac{P}{(k_2 B + k_3)} \delta T_L \]

(5.30)

This \(\delta \omega_e \) is the incremental frequency to be added to the frequency of the stator currents to overcome the load torque disturbance without changing the speed of the air-gap mmf. It is interesting to observe that the frequency compensator in the angle control scheme described in Chapter 4 also has the form given by equation (5.30).

5.4 Time Responses of Torque Angle and Incremental Speed of Magnetizing Current Phasor

The torque angle controls the magnitude of the torque and the flux-producing component of the stator current. In a CSIM drive, the behaviour of the torque angle acquires an importance during dynamic conditions as normally, for a few milliseconds, the magnitude of current cannot be increased due to the time constants involved both in current reference controller and current controller. Consider a load being applied to the rotor while the stator frequency is constant. The position of the stator current phasor must also be fixed in position since this is taken as the reference axis. If the frequency is not changed, the only way that the machine can adjust to increased loading is by an increase in the torque angle, i.e., by the magnetizing current phasor losing its position. This crucial phenomenon is examined in detail for a CSIM drive.
under dynamic conditions. Naturally this requires consideration of the torque angle responses for current, frequency and load torque inputs. The incremental input magnitude is assumed to be 0.02 p.u.. The operating point chosen is that given in Table 5.1 and the following discussion is with reference to this operating point.

5.4.1 Current input

An increase in stator current with constant load decreases the torque angle so as to maintain the torque producing component of stator current phasor the same, before and after perturbation. The torque angle reaches its steady-state with oscillations inherent for an open loop CSIM drive and is shown in Figure 5.2. The initial rate of change of incremental torque angle is small and for the first 80 msec, the plot of torque angle is almost a straight line of negative slope. The rate of change in this region is -0.345 rad/sec and the negative of this corresponds to the incremental speed of the magnetizing current phasor. A point-by-point computation of incremental magnetizing current phasor speed is shown in Figure 5.3. Note that the time considered has been reduced to one tenth of that in Figure 5.2 as the effect during the first 100 msec is very critical and important. In addition, it is within this interval that corrective action is normally initiated. The corrective action would in this case be
Figure 5.2 Torque Angle Response for Current Input

Figure 5.3 Incremental Magnetizing Current Phasor Speed for Current Input
a slowing down of the stator current phasor transiently by decreasing the frequency of the stator current.

5.4.2 Frequency input

The incremental torque angle and incremental gain of speed of magnetizing current phasor for frequency input are shown in Figures 5.4 and 5.5, respectively. It is observed that the incremental torque angle change may be considered linear for the first 40 msec. The magnetizing current phasor is speeded up and is done at a linear rate up to 100 msec with respect to the pre-disturbance speed. With respect to after disturbance speed, the magnetizing current phasor tries to catch up with the stator current phasor. The rate of change of incremental torque angle is 6.334 rad/sec and the rise time of it is zero because the steady-state gain is zero. But the rise time of frequency of magnetizing current phasor is around 80 msec. In a VSIM drive, the slope of the incremental torque angle is 48.22 rad/sec and rise time is 1.75 msec. There is a certain rise time for its torque angle because of a steady-state gain. Note that the salient difference in the incremental speed of the magnetizing current phasor between the two types of drives. This factor contributes to the dynamic problems of the CSIM drive.
Figure 5.4 Torque Angle Response for Frequency Input

Figure 5.5 Incremental Speed of Magnetizing Current Phasor for Frequency Input
5.4.3 Load torque input

The incremental torque angle and incremental speed of magnetizing current phasor are shown in Figures 5.6 and 5.7 respectively for a load torque input. The rate of rise of torque angle is 0.423 rad/sec and the rise time is large equalling the rotor time constant. This corresponds to the case of current input where the same slow response is comparable. A notable factor is the linearity of change of magnetizing current phasor speed over a period of the first 50 msec. This linearity in change points to the ease of compensation in a simple and direct manner.

In a VSIM drive, the slope of the incremental torque angle is the same as for a CSIM drive and the rise time is only 18.75 msec. The improvement in response time is due to the fact that there is no constraint to the change in the magnitude of stator current phasor in the form of controller time constants in a VSIM drive. The time constant associated with the torque angle can be identified as the rotor transient time constant. The difference in time constants of the two types of drives is proved using the drive equations as follows:

Case (i): CSIM drive

Considering the rotor equations of the induction machine given in Appendix-I.
Figure 5.6 Torque Angle Response for Load Torque Input

Figure 5.7 Incremental Magnetizing Current Phasor Speed for Load Torque Input.
\[
\begin{align*}
\left(\frac{X_r}{R_r + \frac{\omega_s}{\omega_b}} \right) i_{qr} + \frac{(\omega_e - \omega_r)}{\omega_b} X_r i_{dr} &= \frac{X_m i}{\omega_b} q s - \frac{(\omega_e - \omega_r)}{\omega_b} X_m i^r d s \\
\left(\frac{X_r}{R_r + \frac{\omega_s}{\omega_b}} \right) i_{qr} - \frac{(\omega_e - \omega_r)}{\omega_b} X_r i_{dr} &= \frac{X_m i}{\omega_b} q s - \frac{(\omega_e - \omega_r)}{\omega_b} X_m i^r d s
\end{align*}
\] (5.31)

As \(i_{ds} = 0 \) due to the alignment of the axes, and perturbing the equations around an operating point, the equations (5.31) and (5.32) are arranged in the form given below:

\[
\begin{bmatrix}
\delta i_{qr} \\
\delta i_{dr}
\end{bmatrix} =
\begin{bmatrix}
\frac{-R_r}{X_r} & \frac{\omega_s \delta \omega}{X_r} \\
-\frac{\omega_s \delta \omega}{X_r} & \frac{-R_r}{X_r}
\end{bmatrix}
\begin{bmatrix}
\delta i_{qr} \\
\delta i_{dr}
\end{bmatrix}
\]
(5.33)

For the load torque input case, \(\delta i_{qs} \) is constrained to be zero and treating the change in slip frequency \(\delta \omega_s \) as an input, the roots of the characteristic equation for (5.33) become,

\[
\lambda_{1,2} = \frac{-R_r \omega_b}{X_r} \pm j \omega_s \delta \omega
\] (5.34)
and hence the time constant of the rotor currents is equal to

$$\frac{R}{L_r}$$

(5.35)

= Rotor time constant

Note that the stator current magnitude and frequency are not disturbed and hence the change in rotor current alone affects the torque angle. Therefore, the time constant associated with incremental rotor current can be equated to that of the incremental torque angle.

Case (ii): VSI-M drive

Neglecting the stator resistance and stator leakage inductances, the stator equations are given by:

$$L_m p_i i_{qs} + L_m i_{qs} + L_p i_q + \omega L_i i_{qr} + L_m i_{dr} = V_{qs}$$

(5.36)

$$-L_m \omega i_{qs} + L_m i_{qs} + L_m i_{qs} + \omega L_m i_{qr} + L_m i_{dr} = V_{ds}$$

(5.37)

Taking the corresponding small-signal equations and with the following constraints imposed:

$$\delta V_{qs} = 0$$

(5.38)

$$\delta V_{ds} = 0$$

(5.39)
Rearranging the equations gives:

\[
\begin{bmatrix}
p & \omega_e & \delta i_{qs} \\
-\omega_e & p & \delta i_{ds}
\end{bmatrix}
= \begin{bmatrix}
p & -\omega_e & \delta i_{qr} \\
\omega_e & p & \delta i_{dr}
\end{bmatrix} \quad (5.40)
\]

From equation (5.40),

\[
\delta i_{qs} = -\delta i_{qr} \quad (5.41)
\]

\[
\delta i_{ds} = -\delta i_{dr} \quad (5.42)
\]

Substituting equations (5.41) and (5.42) in the small-signal rotor equations, with the assumption that \(\delta \omega_{sl} \) is an input, it is obtained:

\[
\begin{bmatrix}
p \delta i_{qr} \\
p \delta i_{dr}
\end{bmatrix}
= \begin{bmatrix}
-R_r & -\omega_{sl} & \delta i_{qr} \\
\frac{-R_r}{L_{tr}} & -\omega_{sl} & -\frac{R_r}{L_{tr}} & \delta i_{dr}
\end{bmatrix}
\]

\[
+ \begin{bmatrix}
-L_{tr} i_{dro} \\
L_{tr} i_{qro}
\end{bmatrix} \delta \omega_{sl} \quad (5.43)
\]

and hence rotor currents' time constant is given by

\[
\frac{R_r}{L_{tr}} \quad (5.44)
\]
As the change in rotor currents is reflected instantaneously in stator currents, the torque angle change is associated with the change in rotor currents. Hence the time constant of rotor currents can be directly related to the time constant of torque angle.

5.5 Stability Considerations with Torque Angle Feedback

The incremental torque angle is given as

\[\delta \theta = (a_1) \delta i_{qs} + (b_1) \delta i_{qr} + (c_1) \delta i_{dr} \] \hspace{1cm} (5.45)

where

\[b_1 = a \] \hspace{1cm} (5.46)

\[c_1 = \frac{-a}{\tan \delta} \] \hspace{1cm} (5.47)

The values \(a \) and \(c_1 \) are calculated for various operating points and are shown in Table 5.3. It is assumed that only torque angle is used for feedback and that too for determining the stator frequency. It corresponds to,

\[\delta \omega_e = \delta \omega_{ref} + K_1 (\delta \theta_{ref} - \delta \theta) \]

\[= \delta \omega_{ref} + K_1 \delta \theta_{ref} - K_2 \delta i_{qr} - K_2 \delta i_{qr} \] \hspace{1cm} (5.48)

\[+ \frac{K_2}{\tan \delta} \delta i_{dr} \]
Table 5.3

Coefficients of Incremental Torque Angle
Frequency = 377 rad/sec.,
Stator current (Magnitude) = 1.0 p.u.

<table>
<thead>
<tr>
<th>Ser. No.</th>
<th>Slip</th>
<th>Torque p.u.</th>
<th>Torque Angle, deg.</th>
<th>a</th>
<th>c1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.002</td>
<td>0.309</td>
<td>19.4</td>
<td>-0.354</td>
<td>1.006</td>
</tr>
<tr>
<td>2</td>
<td>0.004</td>
<td>0.453</td>
<td>34.6</td>
<td>-0.708</td>
<td>1.025</td>
</tr>
<tr>
<td>3</td>
<td>0.006</td>
<td>0.469</td>
<td>45.1</td>
<td>-1.061</td>
<td>1.057</td>
</tr>
<tr>
<td>4</td>
<td>0.008</td>
<td>0.437</td>
<td>52.03</td>
<td>-1.411</td>
<td>1.018</td>
</tr>
<tr>
<td>5</td>
<td>0.010</td>
<td>0.393</td>
<td>56.63</td>
<td>-1.175</td>
<td>1.158</td>
</tr>
<tr>
<td>6</td>
<td>0.012</td>
<td>0.352</td>
<td>59.7</td>
<td>-2.104</td>
<td>1.227</td>
</tr>
<tr>
<td>7</td>
<td>0.014</td>
<td>0.315</td>
<td>61.84</td>
<td>-2.444</td>
<td>1.308</td>
</tr>
<tr>
<td>8</td>
<td>0.016</td>
<td>0.284</td>
<td>63.3</td>
<td>-2.780</td>
<td>1.401</td>
</tr>
<tr>
<td>9</td>
<td>0.018</td>
<td>0.258</td>
<td>64.1</td>
<td>-3.114</td>
<td>1.505</td>
</tr>
<tr>
<td>10</td>
<td>0.020</td>
<td>0.236</td>
<td>64.76</td>
<td>-3.436</td>
<td>1.619</td>
</tr>
</tbody>
</table>
where
\[K_2 = K_1 a \]
\[= -K_3 \] \hspace{1cm} (5.49)

The A and B matrices for the open loop CSIM drive are numerically computed in p.u. values for the following operating point and are given below:

The operating point: Stator frequency = 377 rad/sec, slip = 0.0125, electromagnetic torque = 0.97 p.u., stator current (quadrature axis) = 1.6826 p.u. The base values are defined in Appendix-III.

\[
A = \begin{bmatrix}
-10.88 & 5.04 & -927.9 & -545.2 \\
10.35 & -6.81 & 878.3 & 737.6 \\
4.48 & 4.71 & -2.02 & -93.87 \\
1.21 & 0 & 3.53 & 0
\end{bmatrix} \] \hspace{1cm} (5.50)

\[
B = \begin{bmatrix}
285.91 & 0 \\
-272.0 & -218.75 \\
0 & 93.87 \\
0 & 0
\end{bmatrix} \] \hspace{1cm} (5.51)

Substituting (5.48) in (5.51) and obtaining the closed-loop matrix
\[
\begin{bmatrix}
-10.88 & 5.04 & -927.9 & -545.2 \\
10.35 - 218.75K_3 & -6.81 - 218.75K_3 & (878.3 + 218.75K_3) / \tan \theta & 737.6 \\
(4.48 + 93.87K_3) & (4.71 + 93.87K_3) & (-2.02 - 93.87) / \tan \theta & -93.87 \\
1.21 & 0 & 3.53 & 0 \\
\end{bmatrix}
\]

The characteristic equation of matrix \(A_c \) is

\[
\lambda^4 + a_p \lambda^3 + a_2 \lambda^2 + a_3 \lambda + a_4 = 0. \tag{5.53}
\]

Evaluating,

\[
a_p = -(a_{11} + a_{22} + a_{33}) \tag{5.54}
\]

\[
a_2 = a_{14}a_{41} + a_{34}a_{43} + a_{11}a_{22} + a_{22}a_{33} + a_{33}a_{11} - a_{13}a_{31} - a_{12}a_{21} - a_{23}a_{32}
\]

\[
= (-917.88 - 78606K_3 + 630 / \tan \theta)K_3 \tag{5.55}
\]

For stability, one essential condition is that the coefficients of the characteristic equation must be positive. For a CSIM drive, the operating point must be on the statically unstable portion of the torque-speed
characteristic and thus the angle θ cannot approach zero and must be greater than at pull-out torque. For the machine whose properties are given in Table 5.3 this angle must then be greater than 45 degrees. Therefore there is no positive value of K_3 for which a_2 can be positive. Hence the system cannot be stabilized with only torque angle feedback. A slip speed current interface and or unity speed feedback loop have to be introduced along with torque angle loop for stabilization. Note in that case, the first and fourth columns of the closed-loop matrix are modified for such feedbacks and depending upon the values of feedback controllers, stabilization is achieved.
CHAPTER 6
CONTROL CHARACTERISTICS OF INVERTER-FED
INDUCTION MOTOR DRIVES

6.1 Introduction

Efficient use of an inverter-fed induction motor drive necessitates a knowledge of the characteristics of the induction motor from a control point of view. The characteristics of both the VSIM and CSIM drives are investigated, neglecting the filter time constants in the link and in the feedback loops. Of particular interest is the role of the voltage/current and frequency inputs in the drive performance. Their effects on variables that are not often discussed such as torque angle, stator real power, air-gap flux-linkages and stator and rotor voltages/currents are studied. They are useful in the independent control of these variables and in the design of respective feedback loops to control the same. A by-product of this aspect of the study leads to the nature of feedback signals and their suitability for control purposes. The link filter is incorporated in CSIM drive study and it has little effect on the relative suitability of signals for feedback control. To enhance the value of the results arrived at for open-loop CSIM drives, a closed-loop CSIM drive with torque angle feedback and a slip speed current interface is included.
6.2 Transfer Functions of the Open-Loop Drives

The various transfer functions of the drives are computed following the procedure outlined in Appendix-IV. Table 6.1 lists the CSIM drive transfer functions and Table 6.2 contains the VSIM drive transfer functions. A glance at these transfer functions reveals a striking difference between the CSIM and the VSIM drive in their output speed behaviour for stator frequency input. The frequency input makes the CSIM drive's speed follow the input frequency without an error whereas for the VSIM drive, the rotor follows with an error on open-loop. This is explained in the following manner:

Frequency input does not change the steady-state value of the rotor current magnitude in a CSIM drive for constant load torque and stator current, as seen from the computed steady-state gain listed in Table 6.1. The inference is that the slip changes in a way that the magnetizing and rotor branch impedances maintain their relative magnitudes and hence the division of current amongst themselves is not changed. Therefore, the slope of the speed-torque characteristic for the new frequency will be the same as that of the previous operating frequency. Moreover, to generate the same electromagnetic torque, the slip speed has to remain the same and for increasing stator frequency the slip will decrease. Let subscripts 1 and 2 denote the variables before and after a frequency perturbation. If
Table 6.1
Transfer functions of the CSIM drive

Operating point description: slip=0.005, \(i_{qso} = 1.6826 \) p.u.,
\(\omega_{eo} = 377 \) rad/sec, \(T_{eo} = 1.335 \) p.u.

<table>
<thead>
<tr>
<th>OUTPUT</th>
<th>INPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CURRENT (MAGNITUDE)</td>
</tr>
<tr>
<td></td>
<td>SSG</td>
</tr>
<tr>
<td>Electromagnetic torque, (\delta T_e)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotor mechanical speed, (\delta \omega_m)</td>
<td>0.0282</td>
</tr>
<tr>
<td>Torque angle, (\delta \Theta)</td>
<td>-7.688</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(\delta V_{qs})</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotor current magnitude</td>
<td>-9.249</td>
</tr>
</tbody>
</table>

POLES: \(-0.26436, -1.89+j33.81\)

*SSG – Steady-state gain
Table 6.2
Transfer functions of the VSIM drive
Operating point: \(\text{slip} = 0.0125, \) \(\text{POLYS: } -12.442 + 363.613, \) \(\text{V}_{qso} = 1.414, \text{T}_{e0} = 0.97, \text{w}_{e0} = 377 \text{ rad/sec} \)

<table>
<thead>
<tr>
<th>OUTPUT</th>
<th>CURRENT (MAGNITUDE)</th>
<th>INPUT FREQUENCY</th>
<th>LOAD TORQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SSG</td>
<td>ZEROS</td>
<td>SSG</td>
</tr>
<tr>
<td>Electromagnetic torque</td>
<td>0</td>
<td>0.12x10^{-5}</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-11.7+326.6</td>
<td>-111.9</td>
<td>-24.196, 2123.3</td>
</tr>
<tr>
<td>Rotor mechanical speed</td>
<td>0.00657</td>
<td>-11.748+326.6</td>
<td>0.3242</td>
</tr>
<tr>
<td>Stator power</td>
<td>-0.0922</td>
<td>2.01, -13.23+32.06, -112.69, -2320.3</td>
<td>3.038</td>
</tr>
<tr>
<td>Stator current real comp.</td>
<td>-1.01</td>
<td>47.72, -45.06, -38.16+39.9</td>
<td>1.4321</td>
</tr>
<tr>
<td>Air-gap flux linkages</td>
<td>0.5134</td>
<td>-41.0, -13.72+64.65, 6.49x10^{-3}</td>
<td>-0.7157</td>
</tr>
<tr>
<td>Torque angle</td>
<td>-0.5135</td>
<td>-19.322, -32.145+65.75, 138.2</td>
<td>0.7112</td>
</tr>
<tr>
<td>Rotor current (Magnitude)</td>
<td>-1.16</td>
<td>30.51, -18.76+40.3, -129.3</td>
<td>1.608</td>
</tr>
</tbody>
</table>
\(\omega_e \) is the electrical stator frequency in rad/sec
\(\omega_r \) is the electrical rotor speed in rad/sec
\(s_0 \) is the slip

The equal slip speed condition is given by

\[
(6.1)
\]

then,

\[
\begin{align*}
\omega_{r1} &= (1.0 - s_0^1) \omega_e^1 \\
\omega_{r2} &= (1.0 - s_0^2) \omega_e^2
\end{align*}
\]

(6.2) (6.3)

Change in rotor speed = \(\delta \omega_r \)

\[
= (1.0 - s_0^2) \omega_{e2} - (1.0 - s_0^1) \omega_{e1}
\]

\[
= \omega_{e2} - \omega_{e1} + s_0^1 \omega_{e1} - s_0^2 \omega_{e2}
\]

\[
= \omega_{e2} - \omega_{e1}
\]

(6.4)

It may be seen that the rotor follows the stator frequency without an error in the CSIM drive.

In a VSIM drive, frequency input decreases the flux and hence the slope of the speed-torque characteristic decreases. To generate the same electromagnetic torque, the slip is bound to increase over the previous value. Hence there is a tracking error in rotor speed in the steady-state for stator frequency changes.
6.3 Time Responses of the CSIM Drive

An input of magnitude 0.02 p.u. is applied. The transient responses of the variables are normalized for plotting. The rise time of the variable is the time taken to rise to 90% of the new steady-state value and the rate of change of variable is the time derivative of the variable in the first 100 msec. The transient responses due to current/voltage (magnitude) are not considered in detail due to the fact that they are not independent inputs in a drive scheme and are related to frequency and load torque inputs.

Frequency input produces similar responses of electromagnetic torque, torque angle and stator quadrature axis voltage as shown in Figure 6.1. As the steady-state gains of the electromagnetic torque and torque angle are zero, rise time has no meaning whereas the rise time for stator voltage (magnitude) is in the order of 2 to 3 msec. The responses for load torque input are similar for electromagnetic torque and stator voltage (magnitude) and in the case of torque angle, the response is identical only for first 100 msec, as shown in Figure 6.2. The rise time for stator voltage (magnitude) and electromagnetic torque are nearly equal, whereas the rise time of torque angle is very large and exceeds three seconds. In contrast is the 8 msec rise time of mechanical rotor speed. It is to be noted that there is no linear relationship between the electromagnetic torque and incremental rotor speed beyond
Figure 6.1 CSIM Responses for Frequency Input.
Figure 6.2 CSIM Responses for Load Torque Input
100 msec, and hence one cannot be substituted for the other in the feedback. The rise times and rate of change of variables are given in Table 6.3.

6.4 Time Responses of VSIM Drive

The steady-state operating point is that given in Table 6.2. Figures 6.3 and 6.4 show the time responses of the variables in a VSIM drive for frequency and load torque inputs, respectively. For the first 99 msec, the responses of stator power, real component of stator current, magnitude of rotor current and electromagnetic torque for the frequency input are almost identical with the torque angle leading in response by 3 to 5 msec. This trend is repeated by these variables for load torque input, shown in Figure 6.4. The change in rotor speed, the negative of which is the instantaneous slip, is plotted in Figure 6.4 and on comparison with electromagnetic torque, it is observed that there is no linear relationship between them. The rise times and their initial rates of change are given in Table 6.4.

6.5 Superiority of Frequency Input Over Current/Voltage Input

The stator dynamics were neglected in the CSIM drive and therefore no time delay was involved in the change of
Table 6.3
CSIM drive: open loop response characteristics
(Magnitude of each input = 0.02 p.u.)

Note: t_r - rise time, msec

$\frac{d}{dt}$ (output) - rate of change in p.u. quantities/sec.

<table>
<thead>
<tr>
<th>OUTPUT</th>
<th>INPUT</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CURRENT (MAGNITUDE)</td>
<td>FREQUENCY</td>
<td>LOAD TORQUE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>t_r, msec</td>
<td>$\frac{d}{dt}$ (output)</td>
<td>t_r, msec</td>
<td>$\frac{d}{dt}$ (output)</td>
</tr>
<tr>
<td>Electromagnetic torque</td>
<td>0</td>
<td>0.4657</td>
<td>0</td>
<td>9.861</td>
</tr>
<tr>
<td>Rotor mechanical speed</td>
<td>17.0</td>
<td>0.0068</td>
<td>48.0</td>
<td>0.194</td>
</tr>
<tr>
<td>Torque angle</td>
<td>>1000</td>
<td>-0.345</td>
<td>0</td>
<td>6.334</td>
</tr>
<tr>
<td>Stator voltage magnitude (v_{gs})</td>
<td>-</td>
<td>-</td>
<td>2.5</td>
<td>11.745</td>
</tr>
<tr>
<td>Rotor current magnitude</td>
<td>>1000</td>
<td>-0.355</td>
<td>0</td>
<td>6.736</td>
</tr>
</tbody>
</table>
Figure 6.3 VSIM Responses for Frequency Input
Figure 6.4 VSIM Responses for Load Torque Input
Table 6.4
VSTM drive on open loop:
Response characteristics

<table>
<thead>
<tr>
<th>OUTPUT</th>
<th>INPUT</th>
<th>VOLTAGE (MAGNITUDE)</th>
<th>FREQUENCY</th>
<th>LOAD TORQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>t_msec d dt (output)</td>
<td>t_msec d dt (output)</td>
<td>t_msec d dt (output)</td>
</tr>
<tr>
<td>Electromagnetic torque</td>
<td>0</td>
<td>2.7345</td>
<td>0</td>
<td>42.86</td>
</tr>
<tr>
<td>Rotor mechanical speed</td>
<td>4.0</td>
<td>0.0426</td>
<td>27.5</td>
<td>0.3284</td>
</tr>
<tr>
<td>Stator power</td>
<td>0</td>
<td>60.92</td>
<td>3.0</td>
<td>153.2</td>
</tr>
<tr>
<td>Stator current, real component</td>
<td>0</td>
<td>28.68</td>
<td>3.5</td>
<td>53.5</td>
</tr>
<tr>
<td>Air-gap flux-linkages</td>
<td>7.0</td>
<td>1.722</td>
<td>5.75</td>
<td>-0.2978</td>
</tr>
<tr>
<td>Torque angle</td>
<td>2.5</td>
<td>16.379</td>
<td>1.75</td>
<td>48.22</td>
</tr>
<tr>
<td>Rotor current (magnitude)</td>
<td>0.5</td>
<td>30.976</td>
<td>3.5</td>
<td>63.26</td>
</tr>
</tbody>
</table>
current magnitude. It is to be observed that their input
magnitudes are the same, i.e., 0.02 p.u. In spite of all
these, the frequency input produces greater rate of change
of variables than the current magnitude input is clearly
demonstrated from the Tables 6.3 and 6.4. It is true for
both the VSIM and CSIM drives. To evaluate in full the
superiority of frequency input over the current/voltage
(magnitude) input, the steady-state gains and the rate of
change of variables are normalized in terms of the cor-
responding load torque produced steady-state gain and rate
of change of variables. These are given in Tables 6.5 and
6.6. In both types of drives, a lower p.u. frequency
input than current/voltage (magnitude) input will produce
a specified level of response of major output variables
such as rotor speed.

6.6 Control Characteristics of Drive Signals and Their
Suitability for Feedback Control

The control characteristic of a drive signal is asses-
sed from its rise time. It indicates the speed with which
the particular drive signal is capable of portraying the
true state of the drive under all conditions. From Tables
6.3 and 6.4 it is seen that load torque change is identi-
fied in the shortest time by rotor mechanical speed. Torque
angle gives the quickest indication of frequency change.
This applies to both CSIM and VSIM drives. Hence for both
Table 6.5

Magnitudes of rate of change of variables expressed in p.u. basis, with reference to load torque input produced rate of change.

<table>
<thead>
<tr>
<th>OUTPUT</th>
<th>CSIM</th>
<th>VSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CURRENT (MAGNITUDE)</td>
<td>FREQUENCY</td>
</tr>
<tr>
<td>Electromagnetic torque</td>
<td>0.787</td>
<td>16.68</td>
</tr>
<tr>
<td>Rotor mechanical speed.</td>
<td>0.511</td>
<td>14.60</td>
</tr>
<tr>
<td>Torque angle</td>
<td>0.815</td>
<td>14.97</td>
</tr>
<tr>
<td>Stator voltage (magnitude)</td>
<td>-</td>
<td>17.18</td>
</tr>
<tr>
<td>Stator power</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stator current real component</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rotor current (magnitude)</td>
<td>0.7836</td>
<td>14.869</td>
</tr>
<tr>
<td>Air-gap flux-linkages</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 6.6

Magnitudes of steady-state gains expressed with reference to load torque input steady-state gains

<table>
<thead>
<tr>
<th>OUTPUT</th>
<th>CSIM INPUT</th>
<th>VSIM INPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CURRENT (MAGNITUDE)</td>
<td>FREQUENCY</td>
</tr>
<tr>
<td>Electromagnetic torque</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rotor mechanical speed</td>
<td>1.59</td>
<td>18.83</td>
</tr>
<tr>
<td>Torque angle</td>
<td>1.587</td>
<td>0</td>
</tr>
<tr>
<td>Stator voltage (magnitude)</td>
<td>-</td>
<td>1.335</td>
</tr>
<tr>
<td>Stator power</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stator current, real component</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rotor current (magnitude)</td>
<td>1.482</td>
<td>0</td>
</tr>
<tr>
<td>Air-gap flux-linkages</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
load torque disturbance and reference change, there is no single drive variable that could indicate them in the minimum time possible. For instance, if rotor mechanical speed is used to meet the two types of changes, it would be beneficial in the case of load torque change. But for a frequency input change, this is the least desirable signal for feedback. The second best signal to indicate load torque change is torque angle in the case of VSIM drive and electromagnetic torque in the CSIM drive. Similarly, for the reference frequency change, the second best signal is rotor current magnitude or stator power.

From the transient responses shown in Figures 6.1, 6.2, 6.3 and 6.4, it is observed that magnitude of rotor current follows closely the torque angle. Hence the magnitude of rotor current can be substituted for torque angle in feedback. This simplifies the measuring and calculating circuit in comparison to the torque angle measuring and calculating circuit.

In all the fast response drive schemes such as synchronous control scheme and field-oriented control scheme, it is noticed that both rotor mechanical speed and torque angle are utilized for control. Therefore, the load torque and reference frequency changes are fastly detected and accordingly good dynamic control is exercised.
6.7 Closed-Loop CSIM Drive

An open-loop CSIM drive is unstable for desired operating points and hence all CSIM drives have closed-loop operation. Therefore, it becomes necessary to verify the results of the above sections for a closed-loop CSIM drive. For this purpose a closed-loop scheme given in Figure 6.5 is chosen. The torque angle reference θ_{ref} may be either generated by slip speed signal or any other suitable signal. The model considered for this study is simple and a change of slip speed will alter the current reference instantaneously. Stator dynamics and link filter are neglected.

For a controller gain of $K=0.1$, the transfer functions are given in Table 6.7. Their time responses are shown in Figures 6.6 and 6.7 for reference frequency change and load torque disturbance, respectively. The improvement in responses and stabilizing effect is obvious. From these transient responses of the variables, it is seen that the results of the section 6.6 is in agreement for the closed-loop drive too. Note the close similarity between the torque angle and rotor current magnitude responses, regardless of the input. It is very important to realise that torque angle and electromagnetic torque cannot be substituted for one another in a feedback scheme as they have different control characteristics.
Figure 6.5 Angle Feedback Strategy for CSIM Drive
Table 6.7
CSIM drive with the angle feedback and a slip speed-current interface

\[K_1 = 0.1, \ T_{eo} = 0.97, \ I_{qso} = 1.6826 \text{ p.u.} \]

<table>
<thead>
<tr>
<th>OUTPUT</th>
<th>CURRENT (MAGNITUDE)</th>
<th>FREQUENCY</th>
<th>LOAD TORQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SSG</td>
<td>ZEROS</td>
<td>SSG</td>
</tr>
<tr>
<td>Electromagnetic torque</td>
<td>0.832</td>
<td>-4.28, -36.89, -61.03</td>
<td>0</td>
</tr>
<tr>
<td>Rotor mechanical speed</td>
<td>0.0096</td>
<td>-4.28, -36.89</td>
<td>0.333</td>
</tr>
<tr>
<td>Torque angle</td>
<td>-0.283</td>
<td>-3.21, -50.8\pm j82.39</td>
<td>0</td>
</tr>
<tr>
<td>Stator voltage magnitude</td>
<td>-</td>
<td>-</td>
<td>1.152</td>
</tr>
<tr>
<td>Rotor current magnitude</td>
<td>0.699</td>
<td>-2.25, -43.85, -54.09</td>
<td>0</td>
</tr>
</tbody>
</table>

Poles: -2.495, -49\pm j16.678
Figure 6.6 Closed Loop Responses of CSIM for Frequency Input
Figure 6.7 Closed Loop CSIM Responses for Load Torque Input
6.8 Effect of Link Filter

Conventional CSIM drives have a D.C. link filter and hence the validity of the results must be verified by a model including the D.C. link filter. Along with the link filter, stator dynamics are also included in the model. The rise times of variables and the rate of change of variables with and without link filter are given in Tables 6.8 and 6.9 respectively. They adequately reinforce the results of the previous sections. To illustrate the results in the case of a CSIM drive with D.C. link filter included, the results are normalized with respect to corresponding load torque produced steady-state gains and rate of change of variables. This is listed in Table 6.10 and it clearly demonstrates the superiority of frequency input over link voltage input. Hence the incorporation of the link filter has little effect on the superiority of frequency input and on the suitability of a feedback signal.
Table 6.8
Rise times and rate of change of variables
for the CSIM drive without D.C. link filter

<table>
<thead>
<tr>
<th>OUTPUT</th>
<th>Link Voltage</th>
<th>INPUT.</th>
<th>Load Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rise time,ms</td>
<td>Rate of change</td>
<td>Rise time,ms</td>
</tr>
<tr>
<td>Electromagnetic Torque</td>
<td>575</td>
<td>0.01</td>
<td>0.0</td>
</tr>
<tr>
<td>Rotor Mechanical Speed</td>
<td>680</td>
<td>0.005</td>
<td>40.0</td>
</tr>
<tr>
<td>Torque Angle</td>
<td>325</td>
<td>0.099</td>
<td>0.0</td>
</tr>
<tr>
<td>Stator voltage (magnitude)</td>
<td>-</td>
<td>-</td>
<td>9.2</td>
</tr>
<tr>
<td>Rotor current (magnitude)</td>
<td>0</td>
<td>0.039</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Table 6.9
Rise times and rate of change of variables for the CSIM drive with the D.C. link filter

<table>
<thead>
<tr>
<th>OUTPUT</th>
<th>INPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Link Voltage</td>
</tr>
<tr>
<td></td>
<td>Rise time, ms</td>
</tr>
<tr>
<td>Electromagnetic Torque</td>
<td>0.0</td>
</tr>
<tr>
<td>Rotor Mechanical Speed</td>
<td>9.7</td>
</tr>
<tr>
<td>Torque angle</td>
<td>7.28</td>
</tr>
<tr>
<td>Stator Voltage (Magnitude)</td>
<td>600</td>
</tr>
<tr>
<td>Rotor Current (Magnitude)</td>
<td>24.76</td>
</tr>
</tbody>
</table>
Table 6.10

CSIM drive with D.C. link filter

(Expressed in p.u. basis, with reference to load torque produced changes)

<table>
<thead>
<tr>
<th>OUTPUT</th>
<th>STEADY-STATE GAIN</th>
<th>RATE OF CHANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INPUT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Link voltage</td>
<td>Frequency</td>
</tr>
<tr>
<td>Electromagnetic Torque</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Rotor Mechanical Speed</td>
<td>0.983</td>
<td>65.32</td>
</tr>
<tr>
<td>Torque angle</td>
<td>0.983</td>
<td>1.87</td>
</tr>
<tr>
<td>Stator voltage (Magnitude)</td>
<td>0.058</td>
<td>1.88</td>
</tr>
<tr>
<td>Rotor current (Magnitude)</td>
<td>0.273</td>
<td>0.52</td>
</tr>
</tbody>
</table>
CHAPTER 7

ANALYSIS AND DESIGN OF ANGLE CONTROLLED CSIM DRIVE

7.1 Introduction

Literature is available to design both the synchronous control scheme [44] and the field-oriented control scheme [61], [63], [66]. The systematic design of an angle controlled CSIM has to be started from scratch as there is not enough published material on this scheme. A step-by-step design procedure for the angle controlled CSIM drive is given in this chapter. The design of the inner current loop, linear relationship between reference and output of electromagnetic torque, maximum torque per ampere, speed controller and finally the frequency compensator constitute the core of the angle control scheme. For designing the frequency compensator, the commutation delay encountered in the inverter is modelled. Incorporation of this time delay into transfer function design techniques by a rational transfer function of Pade second order approximation is accurate. The effect of the commutation delay on drive dynamics is assessed in terms of the drive bandwidth. Experimental results of the drive are included to corroborate the design procedure.
7.2 Design of Current Control Loop

Synthesis of the current loop is made difficult due to:

(i) The input impedance of the induction motor varies with load condition.

(ii) The operating point is dependent upon many factors such as load torque, stator frequency and machine saturation.

The operating equations, even for a small-signal disturbance, will become four and hence a straightforward approach is ruled out. A simple and direct design of the current loop is possible by considering the physical insight provided by the steady-state equivalent circuit.

The following assumptions are made:

(i) Airgap flux is constant

(ii) Change in load condition is reflected in the equivalent rotor resistance.

Then the load and D.C. link with the current loop is of the form given in Figure 7.1. The D.C. link filter and the stator can be represented by a block diagram and its transfer function is given by:

\[G_1(s) = \frac{1}{(R+SL)} \] (7.1)

where
Figure 7.1 Current Control Loop with Load
\[R = R_p + 2R_s \quad (7.2) \]
\[L = L_p + 2L_s \quad (7.3) \]
\[S_0 \neq \text{slip} \]

The delay in the converter firing is represented by a transfer function of first order Padé approximation given as:

\[G_{dc}(s) = \frac{1 - bs}{1 + bs} \quad (7.4) \]

where

\[2b = T = \text{statistical average of delay} = \frac{1}{12} \text{ of the period of a.c. input waveform} \]
\[= (1/2) \times (1/60) \text{ seconds} \quad (7.5) \]

The first order approximation has errors in phase less than 4.7% up to 570 rad/sec and 7.8% up to 750 rad/sec. Also the irrational \(e^{-Ts} \) is replaced by a rational transfer function suited to linear design techniques. The overall block diagram of the current loop is given in Figure 7.2 and let,

\[G_{dt}(s) = G_L(s) G_{dc}(s) \quad (7.6) \]
Overall block diagram of the current control loop

Current controller realization
7.2.1 Design of current controller

The current controller is chosen to be a proportional and integral controller of the form:

\[G_c(s) = K_c \frac{(1+sT_c)}{s} \] \hspace{1cm} (7.7)

The transfer function of the link current and its reference is,

\[\frac{I_d(s)}{I_{ref}} = \frac{K_c(1+sT_c)}{s} \cdot K_{R dc} \cdot \frac{1}{R(1+s\frac{L}{R})} \] \hspace{1cm} (7.8)

\[1 + H_c \frac{K_c(1+sT_c)}{s} \cdot K_{R dc} \cdot \frac{1}{R(1+s\frac{L}{R})} \]

Let

\[T_c = \frac{L}{R} \] \hspace{1cm} (7.9)

Substituting equation (7.9) in (7.8),

\[\frac{I_d(s)}{I_{ref}} = \frac{K_c K_{G dc}}{s + \frac{K_c K_{R dc}}{R}} \] \hspace{1cm} (7.10)

\[= \frac{K_a}{s + K_b} \] \hspace{1cm} (7.11)
where

\[K_a = \frac{K_c R}{R} G_{dc} \] \hspace{1cm} (7.12)

\[K_b = H_1 F_a \] \hspace{1cm} (7.13)

Depending on the value of the gain of the current controller \(K_c \), the rise time of the link current is controlled. The delay time in the converter can be overcome by adding a derivative of the current error signal to the control signal. The controller given in equation (7.7) is realized as shown in the Figure 7.3. The zener clamps are to limit the control signal on the lower and higher levels. For safe operation during inversion, the maximum triggering angle of the controlled rectifier is limited to 155°. A linear relationship between control signal and the output link voltage in the converter is obtained with cosine inverse firing of the converter.
7.3 Strategy for Maximum Torque per Ampere and the Design of Current Reference Controller

For some applications of the drive, it is mandatory that maximum torque per ampere is extracted from the drive. The implementation criterion for such a strategy is developed from the steady-state operation of the induction motor. The electromagnetic torque of the induction motor is:

\[T_e = \frac{K_t}{R_m} \cdot \frac{\omega_{sl}}{1 + (\omega_{sl} T_x)^2} \cdot \left[I_r^2 + \frac{I_m^2}{1} \right] \] \hspace{1cm} (7.14)

where

\[T_x = \frac{(L_m + L_{sl})}{R_r} \] \hspace{1cm} (7.15)

\[\omega_{sl} = s \omega_e \] \hspace{1cm} (7.16)

For maximum torque per ampere, the criterion is

\[I_m = I_r \] \hspace{1cm} (7.17)

In this case, then the drive has a variable air-gap flux for varying load conditions. From a practical point of view, it is desirable to have the motor operating with a certain minimum level of flux even under no load condition.
This is to enable the fast generation of electromagnetic torque up to the value corresponding to the minimum level of flux. Therefore, the minimum level of flux up to some load is chosen on the basis of load and dynamic requirements of the drive. For the present, this will be fixed at 0.25 p.u. Hence the magnetizing current vs rotor current relationship is slightly modified from equation (7.17) and is shown in Figure 7.4. From this figure, the stator current reference is obtained as:

\[
I_{s,\text{ref}} = \sqrt{(0.25^2 + I_r^2)} \quad , \quad 0 < I_r < 0.25 \text{ p.u.}
\]

\[
= \sqrt{2} I_r \quad , \quad 0.25 < I_r < 1.00 \quad (7.28)
\]

\[
= \frac{1}{1 + I_r^2} \quad , \quad I_r > 1.00 \text{ p.u.}
\]

7.4 Design of Linear Relationship Between Reference Input and Output of Electromagnetic Torque

Linearity in input-output relationship of electromagnetic torque is a necessity for torque regulated drives. This relationship is enforced by co-ordinating the stator current reference and slip frequency. Considering the outer speed loop and slip frequency loop of the angle control scheme, shown in Figure 7.5, the blocks to be inter-related are \(G_2 \) and \(G_5 \). Writing the outputs, \(\omega_s' \) \(I_r \) as functions of the torque reference,
Figure 7.4 Modified I_m vs I_r Relationship
Figure 7.5 Outer Speed Loop and Slip Speed Loop of the CSIM Drive
\[\omega_{sL} = K_5 \tau \]
\[T_r = K_2 \tau = I_m \]
\[\omega_{sL} = K_5 \tau \] (7.19)

Substituting equations (7.19) and (7.20) in (7.14),

\[T_e = \frac{K_t}{R_c} \left[\frac{K_0 \tau}{1 + (K_0 \tau T_r)} \right] \frac{2K_2^2 \tau^2}{2} \] (7.21)

For \(T_e \) vs \(\tau \) linearity, let

\[1 + (K_5 \tau T_r)^2 = K_5 K_2^2 \tau^2 \] (7.22)

i.e. \[K_5^2 [T_r^2 \tau^2] - K_5 [K_2^2 \tau^2] + 1 = 0 \] (7.23)

\[K_5 = \frac{\frac{K_2^2 \tau^2}{2} \pm \sqrt[4]{\frac{4K_2^4 \tau^4}{4} - 4T_r^2 \tau^2}}{2T_r^2 \tau^2} \] (7.24)

\[\omega_{sL} = K_5 \tau \]

\[\omega_{sL} = \left[\frac{K_2^2}{2T_r^2} \right] \tau \left\{ \sqrt{\frac{K_2^2}{2T_r^2}} \tau^2 - \frac{1}{T_r^2} \right\} \] (7.25)

The flow-chart for the computation of slip frequency \(\omega_{sL} \) is given in Figure 7.6. Note that this could be implemented with available analog components.

Substituting the value of (7.23) in (7.21),
Figure 7.6. Flow-Chart for the Computation of Slip Frequency
\[T_e = \left[\frac{2K_t}{R_r} \right] \tau \]

Using equation (7.22) in (7.28),

\[T_{e,\text{max}} = \frac{2K_t}{R_r} \cdot \frac{I_r}{K_2} = \frac{2K_t}{R_r} \cdot \frac{I_m}{K_2} \]

\[= K_{ta} I_r \]

\[= K_{ta} I_m \]

where

\[K_{ta} = \frac{2K_t}{K_2 R_r} \]

The equation (7.28) corresponds to a D.C. motor drive with either a constant field excitation or with constant armature current.

7.5 Design of Frequency Compensator and the Speed Controller

The frequency compensator supplies the incremental stator frequency to move the stator current phasor in phase during load torque disturbance and frequency reference changes. The design of this block then needs an understanding of the crucial phenomenon in the current source inverter, i.e., of the commutation delay. A numerical quantification of commutation delay for an
operating point from the simple steady-state equivalent of the induction motor and its incorporation in the design via a second-order Pade approximation of $e^{-\frac{T_d s}{2}}$ is accomplished.

7.5.1 Commutation delay in the inverter

Hitherto, it is assumed that the inverter output frequency follows the frequency input command without a time delay. In an actual motor drive system there is a delay dependent on motor operating point.

The current source inverter in Figure 7.7 with thyristors T5 and T6 conducting is considered. The phase sequence is assumed to be A-B-C. At $t=t_1$, a signal is given to increase motor frequency. For this purpose, the current has to be transferred from the conducting phase C to phase A. Firing of T1 at $t=t_1$ commutates T5. But the current continues to flow into phase C, through T1 and D5 charging the commutation capacitors. As far as the motor is concerned, nothing has changed. The current starts to be transferred to phase A at $t=t_2$, only after the diode D1 is forward biased. The transfer of current from phase C to phase A is complete when diode D5 is reverse biased, i.e., at $t=t_3$. In the current source literature, time $[t_2-t_1]$ is known as charging time and interval $[t_3-t_2]$ is the transfer time. The sum of charging and transfer time constitutes the commutation
Figure 7.7 Current Source Inverter with Motor Load
time. This is the time delay involved between the frequency change request and the actual change of frequency. The transfer time is constant whereas the charging time is both load and frequency dependent [75]. The simulation of the drive model is concerned with the ideal 120 degrees rectangular current waveforms and hence the transfer time is also included in the commutation delay time. Because of this, the results of stability studies will be conservative.

Around a steady-state operating point, the commutation time is calculated either numerically, solving the system transcendental equations of the CSIM drive [75], [76], or using the simplified expression given in [77]. The maximum error involved in using the simplified expression is less than 2% in comparison with the rigorous solution [75]. This expression for commutation delay time is given below:

\[T_d = 5.73 \omega_e L_e C + \sqrt{3L_e C} \cdot (1+\pi/2) \] \hspace{1cm} (7.30)

where

\[T_d = \text{commutation delay time} \]

\[L_b = \frac{R_e}{\omega_s L} \left(\frac{R_e}{\omega_s L} \right)^2 \frac{L_e}{L_e + L_m} \] \hspace{1cm} (7.31)

\[L = L_{Ls} + L_{Lr} \]

\[\omega_e = \text{stator frequency, rad/sec} \]

\[\omega_s = \text{slip frequency, rad/sec} \]

\[C = \text{commutation capacitance, Farads} \]
7.5.2 Modelling of commutation delay

Commutation effects have been incorporated into an analog computer simulation of CSIM drives [36] and a simplified representation of the drive in average values has been formulated [37]. In the past it has been reported that the commutation has no effect on drive dynamic performance. But in the light of [75], [76] this conclusion seems to be highly improbable. A common aspect of these studies is that they are useful in analysis. When it is desired to include the commutation delay in the synthesis of CSIM drives via the frequency domain approach, no ready made model is available.

Delay time is modelled as a transfer function of the form $e^{-T_d s}$ where T_d is the delay time in control systems [77]. Since this transfer function is irrational, it is not possible to incorporate this directly into the linearised system equations. Hence a suitable linearised approximation has to be found for this transfer function.

It is known that when the commutation delay time corresponding to a commutation angle of 120 electrical degrees is exceeded, then it is impossible to recover the inverter to normal operation. Therefore for a very good design, the maximum commutation angle is assumed to be 120 electrical degrees. Then the guiding factor in modelling of commutation delay is this constraint put on engineering practice.
The closest approximation to the original transfer function e^{-T_ds} is the second order Pade approximation [78] and is given by

$$e^{-T_ds} = \frac{12-6T_ds+T^2_ds^2}{12+6T_ds+T^2_ds^2} \quad (7.32)$$

It is found that the second-order Pade approximation follows the original transfer function in phase till 120 electrical degrees with a maximum of 2% error, and in gain with no error at all. Table 7.1 shows the comparison of the first and second-order Pade approximations with the original transfer function.

The commutation delay model with its limitation is still the better alternative to the actual model in the sense that:

(i) Minimum complexity is involved

(ii) Time-hallowed frequency domain techniques are used when this model is incorporated in the design of CSIM drives.

7.5.3 Design of frequency compensator

The frequency compensator supplies an incremental frequency at the time of load torque disturbance and reference frequency change. Its output is proportional to the rate of change of torque angle. In the angle controlled scheme, the torque angle is not measured. Therefore,
Table 7.1

Comparison of first and second-order Pade approximations with the original function

<table>
<thead>
<tr>
<th>ωT_d, rad.</th>
<th>Original Phase, deg.</th>
<th>First Order Pade</th>
<th>Second Order Pade</th>
<th>% error First-order Pade</th>
<th>% error Second-order Pade</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-57.29</td>
<td>-53.13</td>
<td>-57.22</td>
<td>7.26</td>
<td>0.12</td>
</tr>
<tr>
<td>1.5</td>
<td>-85.94</td>
<td>-73.73</td>
<td>-85.41</td>
<td>14.20</td>
<td>0.61</td>
</tr>
<tr>
<td>2.0</td>
<td>-114.6</td>
<td>-90.00</td>
<td>-112.6</td>
<td>21.45</td>
<td>1.72</td>
</tr>
<tr>
<td>2.0943</td>
<td>-120.0</td>
<td>-92.63</td>
<td>-117.5</td>
<td>22.80</td>
<td>2.02</td>
</tr>
</tbody>
</table>
the torque angle change is to be reconstructed from other available measurements. One such variable normally available is the torque reference signal generated through the slip speed. The torque angle change can be written in terms of the other variables:

\[\frac{d\theta}{dt} = \left(\frac{d\theta}{ds_s} \right) \cdot \frac{ds}{dt} \] \hspace{1cm} (7.33)

where

\[s_s = \text{slip speed, rad/sec} \]

The relationship between the torque angle and slip speed is fixed regardless of the magnitude of current for a particular value of rotor resistance. The value of the rotor resistance used is that at the average operating temperature. Writing,

\[\frac{d\theta}{dt} = K(s_s) \cdot \frac{ds}{dt} \] \hspace{1cm} (7.34)

where

\[K(s_s) = \frac{d\theta}{ds_s} \] \hspace{1cm} (7.35)

\(K(s_s) \) vs \(s_s \) can be programmed in the form of function generator or in the read only memory of the digital circuit. For the drive given in Appendix III, the value of the \(K(s_s) \), varies by 8 times within zero to full-load torque region, as seen from the Table 7.2.
Table 7.2

Slip speed vs $K(s_s)$

<table>
<thead>
<tr>
<th>Slip-speed rpm</th>
<th>$K(s_s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>8.399</td>
</tr>
<tr>
<td>3.0</td>
<td>7.297</td>
</tr>
<tr>
<td>5.0</td>
<td>5.551</td>
</tr>
<tr>
<td>7.0</td>
<td>3.982</td>
</tr>
<tr>
<td>9.0</td>
<td>2.819</td>
</tr>
<tr>
<td>11.0</td>
<td>2.006</td>
</tr>
<tr>
<td>13.0</td>
<td>1.440</td>
</tr>
<tr>
<td>15.0</td>
<td>1.040</td>
</tr>
<tr>
<td>17.0</td>
<td>0.752</td>
</tr>
<tr>
<td>19.0</td>
<td>0.539</td>
</tr>
</tbody>
</table>
To compute equation (7.34), the rest that is needed is to compute the time derivative of slip speed. The realization of the rate of change of torque angle is given in Figure 7.8.

The gain K_a in the time derivative loop is used to offset the effect of inverter commutation delay, T_d. Keeping,

$$K_a \propto T_d$$ \hspace{1cm} (7.36)

gives a flexibility to assign the desired level of compensation for the commutation delay. T_d, from equation (7.30) is seen to be the sum of a constant term and a variable term. The variable term is proportional to the product of load dependent L_b and the stator frequency ω_e. The realization of T_d is shown in Figure 7.9. L_b vs s_s can be programmed in a read only memory or obtained through a function generator. The relevant information is shown in Table 7.3. Then the final step is to incorporate the computed gain K_a into Figure 7.8 to evaluate the rate of change of torque angle. It is given in the Figure 7.10.

Both $K(s_s)$ and L_b are dependent upon the rotor resistance, which is quite sensitive to temperature variation. To account for rotor resistance sensitivity, parameter adaption scheme [65] may be used to estimate the rotor time constant. Then the estimated value can be
Figure 7.8 Realization of Rate of Change of Torque Angle

Figure 7.9 Realization of Time Delay
Table 7.3

<table>
<thead>
<tr>
<th>Slip-speed rpm</th>
<th>L_b, Henry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.047</td>
</tr>
<tr>
<td>3.0</td>
<td>0.039</td>
</tr>
<tr>
<td>5.0</td>
<td>0.030</td>
</tr>
<tr>
<td>7.0</td>
<td>0.022</td>
</tr>
<tr>
<td>9.0</td>
<td>0.017</td>
</tr>
<tr>
<td>11.0</td>
<td>0.013</td>
</tr>
<tr>
<td>13.0</td>
<td>0.010</td>
</tr>
<tr>
<td>15.0</td>
<td>0.008</td>
</tr>
<tr>
<td>17.0</td>
<td>0.006</td>
</tr>
<tr>
<td>19.0</td>
<td>0.005</td>
</tr>
</tbody>
</table>
Figure 7.10 Incorporation of K_a in the slip speed Derivative Loop.
employed to modify both $K(s_g)$ and L_b.

7.5.4 Design of speed controller

With the design of current controller, current reference controller, slip speed controller and frequency compensator completed, the remaining things to be considered are the design of the speed controller and the unity speed feedback loop. In the unity speed loop, the filter is to be carefully chosen with a view to minimise the time delay and as well as to keep the ripple in the tacho-generator feedback to an acceptable level.

The speed controller, G_1, is designed by obtaining the open-loop transfer function between y_1 and y_6 and using the Bode-plot, the values of the controller gain and time constants are evaluated. This approach takes into account both the frequency control channel and current channel effect, in contrast to simplified design method [79].

7.5.5 Effect of commutation delay on drive dynamics

To assess the drive dynamics, the drive shown in Figure 2.2 is modelled on the lines of [52]. The transfer functions of the control blocks are given in Appendix V. The drive equations are written in the state-space form of
\[\dot{x} = Ax + Bu \] \hspace{2cm} (7.37)

where \(A \) and \(B \) are implied by context. If the desired output is expressed as

\[y = Cx + Du \] \hspace{2cm} (7.38)

then

\[y(s) = [C(sI-A)^{-1}B+D] u(s) \] \hspace{2cm} (7.39)

For a specific input and output, the Bode plot can be generated by substituting

\[s = j\omega \] \hspace{2cm} (7.40)

in equation (7.39) and varying \(\omega \) over the required range.

For illustration, the operating point considered is for rated current, 0.97 p.u. torque and rated stator frequency. A lead-lag compensator is chosen with break frequencies of 0.175 and 100 rad/sec for the zero and pole. The closed-loop frequency response of speed-input reference without commutation delay in the drive model and with commutation delay is shown in Figures 7.11 and 7.12 respectively. The model with commutation delay indicates the occurrence of instability with increasing gain and also a reduction in bandwidth of ten percent over that without
commutation delay. This points out the necessity for exhaustive modelling of the drive to assess dynamic performance both in terms of response and stability.

The drive data given in Appendix III, representing a typical CSIM drive, is used to illustrate the design procedure.

7.6 Experimental Results

The data of the experimental CSIM drive is given in Appendix VI. It is noted that the experimental machine does not represent a typical CSIM drive. The machine's flux is programmed as follows:

\[
I_m = 0.324 \text{ p.u. } 0 < \tau < 0.2
\]
\[
= 0.682 I_r \quad 0.2 < \tau < 0.4 \quad (7.42)
\]
\[
= 1 \text{ p.u. } \quad 0.4 < \tau < 1.5
\]

where \(\tau \) is the torque reference in p.u. For the experimental induction motor, it is found that linearization of torque reference to electromagnetic torque output cannot be implemented. It is because the value of the mutual inductance is large and hence magnetizing current is far below the value of the torque producing component of stator current. The experimental drive has the characteristics shown in Figure 7.13.

Time responses for a change in reference speed were measured using a strip chart recorder and have been
Figure 7.13
Input reference to output electromagnetic torque relationship in the experimental drive
transcribed for clarity in Fig. 7.14. The step input of speed reference is 240 rpm and the machine is in the steady-state at 480 rpm. The load that is presently on the machine is proportional to speed. The link current reference and slip frequency command change in a very short time whereas the link current follows its reference in 25 msec. This is due to the fact that the value of link filter and the stator leakage inductance is very high and amounts to 128 mH. Also the voltage available to force the current in the link filter is limited to 280V. The slow response in speed is the consequence of large inertia of the machine, its load, variable flux operation of the machine and the limited voltage available in the d.c. link.

The step responses for the load torque input are shown in Figure 7.15. The steady-state operating speed of the machine is 720 rpm. The magnitude of step load torque applied is 0.4 p.u., over the steady-state operating torque of 0.367 p.u. The drive operates in stable condition over its entire designed speed region of 0 to 2400 rpm.

The tuning of speed controller requires minimum effort. It is made possible due to the presence of the angle loop. Experimental results corroborate this aspect in the CSIM drive.
The responses were uniform over the entire speed-torque region. Oscillatory response was not present for all possible loading conditions. The dynamic performance improved by a factor of more than six, in comparison to uncontrolled deceleration of the machine system. The removal of frequency compensator in the drive scheme led to sustained oscillations around no load operating points and oscillatory response for other operating points.
Figure 7.14
Step responses for speed reference input with load proportional to speed
Figure 7.15
Step responses for load torque input
CHAPTER 8

CONCLUSION

8.1 Conclusions

Control and dynamics of inverter-fed induction motor drives were investigated. The following conclusions resulted from the study:

(i) The heart of all the three fast response drive strategies is the simultaneous control of torque angle and the stator current magnitude. This principle is known as 'frequency compensation'. The inner relationship of one scheme to another is evident with the understanding of this aspect.

(ii) Incremental torque angle is a linear combination of drive electrical states only. Its feedback alone cannot stabilize a CSIM drive system. Arbitrary pole-zero assignment is possible in a drive scheme with torque angle, stator current and rotor speed feedbacks.

(iii) The speed of the magnetizing current phasor changes with the onset of either a load torque disturbance or a change in reference frequency, even though the frequency of the stator current is maintained constant.
(iv) A generalized control concept of electric motor drive classifies the drive schemes into either one of complete or incomplete state feedback categories. The implications of each category are obtained from modern control theory. Further, the generalized control concept relatively evaluates the different drive schemes. The developed concept is applicable to any electric motor drive.

(v) The angle control scheme has an incomplete state feedback whereas the synchronous and field-oriented control schemes have complete state feedback. The consequence of this is that the angle control scheme is machine parameter dependent and the others are not. The comparison of the drive schemes has been given.

(vi) Frequency input is superior to voltage/current (magnitude) input for both the steady-state and dynamic control of the inverter-fed induction motor drives.

(vii) There is no single drive variable to identify both the load torque disturbance and reference frequency change in the shortest time. For load torque disturbance, rotor speed is the best feedback signal. Torque angle is the suitable signal for reference frequency change.
For load torque change, torque angle is the second best signal for feedback. For the CSIM drive, rotor current magnitude can be substituted for the torque angle in a feedback without affecting the dynamics. The link filter has little effect on the above conclusions regarding the suitability of feedback signals.

(viii) A step-by-step design of the angle controlled CSIM drive is given. The design consists of the following:

- Inner current loop
- Unity speed loop
- Slip speed loop
- Outer speed loop and
- Frequency compensation loop

The frequency compensation loop is designed taking into account the commutation delay of the current source inverter. For the purpose of incorporating the commutation delay in the design using frequency response methods, a second order Padé approximation of the delay is used. Consideration of the commutation delay indicates a 10% reduction in bandwidth of the drive for reference frequency change.

The design incorporates a linear relationship between the reference input and output of electromagnetic torque and a strategy to obtain maximum torque per ampere.
8.2 Recommendation for Future Work

There are two areas where further investigation may be of interest and value. The first is the application of linear multi-variable control design techniques for non-interactive control in inverter-fed induction motor drives. The other is the implementation of optimal control of inverter-fed drives.
APPENDIX I

Induction Motor Equations in Synchronously Rotating Reference Frames

The pertinent differential equations of the induction motor in synchronously rotating reference and in p.u. are given below:

\[
\begin{bmatrix}
V_{qs} \\
V_{ds}
\end{bmatrix}
=
\begin{bmatrix}
R_s + \frac{s}{\omega_b} & \frac{e}{\omega_b} X_s & \frac{m}{\omega_b} & \frac{e}{\omega_b} X_m \\
-\frac{e}{\omega_b} X_s & R_s + \frac{s}{\omega_b} & -\frac{e}{\omega_b} X_m & \frac{m}{\omega_b} \\
\frac{m}{\omega_b} & \frac{(e - \omega)}{\omega_p} X_m & R_r + \frac{r}{\omega_b} & \frac{(e - \omega)}{\omega_b} X_r \\
0 & \frac{-\omega}{\omega_b} X_m & \frac{m}{\omega_b} & \frac{-\omega}{\omega_b} X_r + \frac{r}{\omega_b}
\end{bmatrix}
\begin{bmatrix}
\dot{i}_{qs} \\
\dot{i}_{ds} \\
\dot{i}_{qr} \\
\dot{i}_{dr}
\end{bmatrix}
\]

\[T_e = \frac{X}{2} (i_{qs} \dot{i}_{dr} - i_{ds} \dot{i}_{qr})\] \hspace{1cm} (AI.1)

\[Jp \omega_r = T_e - T_L\] \hspace{1cm} (AI.2)

Note that the base current and base voltage are the rms values.
APPENDIX II

CSIM Drive Matrices

The elements of the matrices are in SI units

\[
A = \begin{bmatrix}
\frac{-R_L}{D_a} & \frac{L_R}{D_a} & \frac{-(1-s)\omega_m}{D_a} & \frac{-nL_i}{D_a} \\
\frac{M_R}{D_a} & \frac{-L_R}{D_a} & \frac{\omega_0}{D_a} & \frac{nL_i \omega_o}{D_a} \\
\frac{s_L^2}{L_L} & \frac{g_\omega}{L_L} & \frac{-R_L}{L_L} & \frac{-n(L_i^m q_s + L_i q)\omega_o}{L_L} \\
\frac{3 nL_i m}{2 J_{idro}} & 0 & \frac{3 nL_i m q_s}{2} & 0 \\
\end{bmatrix}
\]

(AII.1)

\[
B = \begin{bmatrix}
\frac{L_r}{D_a} & 0 & 0 \\
\frac{-L_m}{D_a} & \frac{-i_{dro}}{D_a} & \frac{(L_i^m q_s + L_i q)\omega_o}{L_r} \\
0 & 0 & 0 \\
\end{bmatrix}
\]

(AII.2)
Where
\[D_a = L_o L_r - L_m^2 \] (AII.3)
\[L_o' = L_s + \left(\frac{\pi^2}{18} \right) L_F \] (AII.4)
\[R_o = R_s + \left(\frac{\pi^2}{18} \right) R_F' \] (AII.5)
APPENDIX III

CSIM Drive Parameters

MACHINE DETAILS

30 H.P., 460V, 3-ph, \(\alpha \)-connected

Base Quantities: 460V, 22.38 kW

<table>
<thead>
<tr>
<th>SI Units</th>
<th>p.u.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_s) = 0.189 Ohm</td>
<td>(R_s) = 0.0199</td>
</tr>
<tr>
<td>(R_r) = 0.106 Ohm</td>
<td>(R_r) = 0.0112</td>
</tr>
<tr>
<td>(n) = 3</td>
<td></td>
</tr>
<tr>
<td>(f) = 0.0145 N-m sec/rad</td>
<td>(H) = 0.2367</td>
</tr>
<tr>
<td>(J) = 0.6709 Kgm.m</td>
<td>(X_s) = 2.054</td>
</tr>
<tr>
<td>(L_s) = 0.05151 Henry</td>
<td>(X_r) = 2.088</td>
</tr>
<tr>
<td>(L_r) = 0.05155 Henry</td>
<td>(X_m) = 1.987</td>
</tr>
<tr>
<td>(L_m) = 0.04983 Henry</td>
<td></td>
</tr>
</tbody>
</table>

FILTER DATA

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_F) = 0.05218 Ohm</td>
<td>(R_F) = 0.0055</td>
</tr>
<tr>
<td>(L_F) = 0.029 Henry</td>
<td>(L_F) = 1.156</td>
</tr>
</tbody>
</table>
APPENDIX IV

Computation of Transfer Functions and Time Responses

Computation of Transfer Functions

The transfer function between an output and input of voltage/current, stator frequency or load torque can be obtained on the lines of [73]. The steps involved are briefly given below:

\[
\dot{X} = AX + BU \quad \text{(AIV.1)} \\
Y = CX + DU \quad \text{(AIV.2)}
\]

where \(Y \) denotes the output, and \(A,B,C \) and \(D \) are matrices of appropriate dimensions, then

\[
Y(s) = [C(sI - A)^{-1}B + D]u(s) \quad \text{(AIV.3)}
\]

where \(I \) is the identity matrix of pertinent dimensions.

Computation of equation (AIV.3) is described in [73],[74].

Computation of Time Response

Substituting \(X = PZ \) in equation (AIV.1),

\[
P\dot{Z} = APZ + BU \quad \text{(AIV.4)} \\
\dot{Z} = P^{-1}APZ + P^{-1}BU \\
= MZ + HU \quad \text{(AIV.5)}
\]
where M is a diagonal matrix with distinct eigenvalues and

$$M = P^{-1}AP \quad (AIV.6)$$

$$H = P^{-1}B$$

solving for z_1, z_2, \ldots, z_q from equation (AIV.5),

$$z_n(t) = \left(\sum_{j=1}^{m} H_{nj} U_j \right) \frac{-1 + \exp(\lambda_n)}{\lambda_n} \quad (AIV.7)$$

where λ_n is the nth eigenvalue and m is the number of inputs. Once vector Z is evaluated by equation (AIV.7), the output y is obtained from equation (AIV.8).

$$y = CX + DU \quad (AIV.8)$$

$$= CPZ + DU$$
APPENDIX V

Transfer Functions of the Controllers in the Angle Controlled CSIM Drive

\[G_1(s) = \frac{K_1}{s} (1 + T_1 s) \]

\[G_2(s) = K_2 \]

\[G_3(s) = \frac{K_c (1 + T_c s)}{s} \]

\[G_5(s) = K_5 \]

\[G_6(s) = \text{Transfer function of frequency compensator discussed in the section 7.5.3.} \]

\[G_7(s) = K_7 \]

\[G_D(s) = \frac{12 - 6T_d s + T_d^2 s^2}{12 + 6T_d s + T_d^2 s^2} \]

\[G_10(s) = K_{10} \]

\[G_{11}(s) = \frac{K_{11}}{1 + T_{11} s} \]

\[G_{12}(s) = K_{12} \]

\[H_1(s) = K_{H1} \]

\[H_2(s) = K_{H2} \]
APPENDIX VI

EXPERIMENTAL CSIM DRIVE PARAMETERS

240V, 4H.P., 3-ph, Δ-connected semi-squirrel cage rotor

\[R_S = 1.85 \text{ ohms} \]
\[R_T = 2.128 \text{ ohms} \]
\[n = 1 \]
\[L_{lr} = L_{ls} = 9.104 \text{ mH} \]
\[R_m = 9569.38 \text{ ohms} \]
\[J = 0.1546 \text{ kg.m}^2 \]
\[R_F = 0.4 \text{ ohm} \]
\[L_F = 120 \text{ mH} \]
\[L_m = 637.9 \text{ mH} \]
\[C = 0.30 \mu\text{F} \]
\[K_R = 56.16 \]
\[K_C = 10 \]
\[K_1 = 1 \]
\[K_{10} = 1 \]
\[K_{11} = 1 \]
\[K_{12} = 0.004 \]
\[K_{H1} = 0.7235 \]
\[K_{H2} = 1 \]
\[T_1 = 1 \]
\[T_C = 0.0312 \]
\[T_{11} = 0.023 \]

Machine parameters were measured with 60Hz sinusoidal supply.
REFERENCES

51. N. Sato, M. Ishida and N. Sawaki, "Some Characteristics of Induction Motor Driven by Current Source Inverter";

65. L.J. Garces, "Parameter Adaption for the Speed Controlled Static Drive with Squirrel Cage Induction

