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ABSTRACT

Control of Multiple Link Flexible Joint Robot Manipulators

Nagaratnam Rabindran

The control problem for a robot manipulator with elastic joints is discussed. The
equations of motion of the manipulator is derived based on the singular perturbation
technique. This enables us to construct a reduced order "slow" subsystem of the full order
model which is of the same order as the rigid model. A "fast” subsystem is then con-
structed to represent the effects of the fast dynamics due to joint elasticity which also
represents the discrepancy between the full order model and the reduced order slow sub-
system. A composite adaptive control scheme based on the reduced order slow and fast
subsystem control laws is developed to robustly control the full order flexible system.
Numerical comparisons between linear/ nonlinear, adaptive/ nonadaptive control stra-
tegies are included to illustrate the performance capabilities of the proposed controllers.
Stability analysis of the full order system is also investigated, and bounds on the joint

elasticity is obtained for robust adaptive control.




-iv -

TO MY PARENTS
SAKUNTALA AND NAGARATNAM




ACKNOWLEDGEMENTS

First of all, I would like to express my thanks to my supervisor Dr. K. Khoraszni,
with whom I have been working for the past 2 years, and whose constant enthusiasm,

friendly advise and encouragement contributed greatly to the success of my research.

I was helped by a friendly atmosphere at Concordia and for that I want to thank the
graduate students with whom 1 interacted, with a special note to all colleagues at ER
building.

My thanks are also due to T. Ramalingam, Sanjay Mazumdar and Sanjay Mawalkar
for the fine hospitality shown to me during the fag end of the thesis. I am greatly
indebted to my friends V. Kanthalingam, S. Amuthakumar and M. Muruganantham for

providing a place to let my hair down!

Finally, I wish to thank my family, my parents, Sakuntala and N: garatnam, and my

brother, Radhakrishnan, who never ceased to encourage me.




-vi-

TABLE OF CONTENTS
CHAPTER 1:  INTRODUCTION ........cooevvemnensensssssesssesssssssesnssssssssnssssssescnsassssssssssssascans 1
CHAPTER 2: DERIVATION OF SINGULAR PERTURBATION MODEL ...........cccoevnee. 6
CHAPTER 3:  LINEAR CONTROL METHODS .....ccooveecunniennrersesemsarmmsssasesssssssssissssssssassssssssnsoss 19
3.a PD Nonadaptive Control Scheme for the Reduced Order System ..........ococneiuennnas 20
3.b PD Adaptive Control Scheme for the Reduced Order System .........cccoereecerennscseanes 28
CHAPTER 4: NONLINEAR CONTROL METHODS .........cccrccmnenerermmmmmisssssesssnssssssssssssnsssssasssses 39
4.a Feedback Linearizaticn for the Reduced Order SYStem ........ccocecnreriereeeesseneessssens 39
4.b Passivity Based Control Methods for the Reduced Order System ..........c.covveevereens 44
4.c Inverse Dynamics Method for the Reduced Order System ........c.cccvreeecreeeencrirnssense 51
CHAPTER 5: NUMERICAL SIMULATION .....ccccevvneuirescmsersmnssseneassmsnssssesssssssssmssssssssessasssssssses 57
5.2 Reduced Order MOGEL .........ovveceicnninecsnssnssssesssmssescssnsssssssssssseressssrsssssssssssssssssssss 57
5D FUll OTEr MOGEL ..........veivererernrerenressessessnnsenssssssrssesssssssssssssssessssssssssssssasssssssosssssns 69
5.c Comparison of Lincar Control MCLROGS ..........ccceieerrvnrinrisiensessneseninnissessessessesersssssns 80
5.d Comparison of Nonlincar Control MCthods ..........ccccevemiennereerersnnasmsnssessesasesmsmnesss 91
CHAPTER 6: STABILITY ANALYSIS OF ADAPTIVE SYSTEMS ......cccooeervmiricrnrereessessersssossens 95
6.2 Slotine and Li’s SCHCIME .......ccceerevrrinccisnmncenimmisississsnmsissssemmsssnsssosssssassssessns 96
6.b Craig, Hsu and Sastry’s SCHCME .......ccerevevrernereenroersessemssresisssessessierssesssssesnssesssosss 106
CHAPTER 7: CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK ......c.ccoouvieeennemnnnnnne 110
T.28 CONCIUSIONS ..ottt et es st s veseesesesresariosenssssssassesssssusasessstsrorssant asssssssnsosas 110
7.b Suggestions for FUILIE WOTK ... vrceiccesnrenveesnnssssssresesesssssssessassessesssssns 111




Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

- vii -

LIST OF FIGURES

Single link manipulator with joint fleXibility ..........ccccoeeveeerrererecrssrnsierraens
Two link manipulator with joint fleXibility .......cccooerevereirvriinene s
Linear control SChEMC .....c.occcveriieemreeeineeeseecesniniessessrn s esssesessenssnasses
Altemate representation of linear control scheme ...........coooovvivvivecevinne.
Adaptive linear CONrol SCRCME ......c.eeeivvcrenrnriesimnise s csssersssesesesesessenees
Model based CON'TOl SCHEME .......cocvvereriieicerrcnrnsnisrine e snaesarsessenens
Passivity based adaptive control SChEMIC ......ccccvrveniverenernrvernnrenescneeeens
Inverse dynamics adaptive control SChEme .......ccooovvvvenicrvicvnrsveec e

The position response of the reduced order slow subsystem (single
link flexible inanipulator) using linear nonadaptive control of
SCIRAYL. oo s ettt easatesaesesaseeaits

The position response of the reduced order slow subsystem (single
link flexible manipulator) using lincar nonadaptive control of
Seraji. The uncertainty in the parameters is 20%. ....o.ovveveverevicercrereeennns

The position response of the reduced order slow subsystem (iwo link
flexible manipulator) using linear nonadaptive control of Scraji. ..............

The velocity response of the reduced order slow subsystem (two link
flexible manipulator) using linear nonadaptive control of Seraji. ..............

The position response of the reduced order slow subsystem (two link
flexible manipulator) using lincar adaptive control of Seraji. The
uncertainty in the parameters S 209, ..o e

The velocity response of the reduced order slow subsystem (two link
flexible manipulator) using linear adaptive control of Scraji. The
uncertainty in the parameters is 20%. .oovooveveeevvnnene et

The position response of the reduced order slow subsysiem (two link
flexible manipulator) using nonlinear nonadaptive controller (feed-
Dack HNCAMZALION).  .o.ivereiiiriirerereiieeesinsrerseeas e e st st resse st e s evssessenns

The velocity response of the reduced order slow subsystem (two link
flexible manipulator) using nonlinear nonadaptive controller (feed-
back lINCAMZALION).  ...ociveeeecrece ettt sr e e nane

The position response of the reduced order slow subsystern (two link
flexible manipulator) using nonlincar nonadaptive controller (feed-
back lincarization). The uncertainty in the parameters is 20%. .................

The velocity response of the reduced order slow subsystem (two link
flexible manipulator) using nonlinear nonadaptive controller (feed-

59

59

60

60

61

61

63

63

64




Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

Figure 24

Figure 25

Figure 26

Figure 27
Figure 28

Figure 29

Figure 30

Figure 31

Figure 32

Figure 33

- viii -

back lincarization). The uncertainty in the parameters is 20%. ........cccovuves

The position response of the reduced order slow subsystem (two link
flexible manipulator) using nonlinear passive adaptive contiol of
SIOtNe aNd Li. .....ccovvieecrirrnrerie st e ssrssbesasssessssaorsass

The velocity response of the reduced order slow subsystem (two link
flexible manipulator) using nonlincar passive adaptive control of
SIOtNE aNd Li. ......cccovvn vttt s s sssssaassssssaons

The position response of the reduced order slow subsystem (two link
flexible manipulator) using nonlinear passive adaptive control of
Slotine and Li. The uncertainty in the parameters is 20%. .......ccoceveveernee

The velocity response of the reduced order slow subsystem (two link
flexible manipulator) using nonlinear passive adaptive control of
Slotine and Li. The uncertainty in the paramelers is 20%. ....oeevienniiienne

The position response of the reduced order slow subsystem (two link
flexible manipulator) using nonlinear adaptive control of
Craig el @l. ottt eccstsisrs st s s et n e asbene b

The velocity response of the reduced order slow subsystem (two link
flexible manipulator) using nonlinear adaptive control of
CrAZ CL AL, oot reseresresree s sesbrae e s ses st e s s s e e sasabsae s b e sanabassnss

The position responsc of the reduced order slcw subsystem (two link
flexible manipulator) using nonlincar adaptive control of Craig et al.
The uncertainty in the parameters iS 20%. ..ooccvevcniineincninnncsnninninens

The velority response of the reduced order slow subsystem (two link
fiexible manipulator) using nonlinear adaptive control of Craig et al.
The uncertainty in the parameters iS 20%. ...ovevcvvimieneiinnnnnneseninns

The responsc of the fast variables (single link manipulator). ..o

The position response of the full order system (two link flexible
manipulz‘or) using only the slow controller. The perturbation
PArAmCLEr 18 0.1, et et

The velocity response of the full order system (two link flexible
manipulator) using only the slow controller. The perwrbation
PArAMCICT iS (.1, oot ne st rssa s e s s nbebtn s e se st rees

The position response of the full order system (two link flexible
manipulator) using lincar nonadaptive control of Seraji. The
perturpation parameter is 0.1, v

The velocity response of the full order system (two link flexible
manipulator) using iincar nonadaptive control of Seraji. The
perturbation parameteris 0.1, i

The position response of the full order system (single link flexible
manipulator) using lincar nonadaptive control of Seraji. The
perturbation parameter is O.1. vt

The velocity response of the full order system (single link flexibie

‘———-1

64

65

66

66

67

67

68

68
70

mn

n

73

73

74




Figure 34

Figure 35

Figure 36

Figure 37

Figure 38

Figure 39

Figure 40

Figure 41

Figure 42

Figure 43

Figure 44

Figure 45

Figure 46

-iX -

manipulator) using lincar nonadaptive control of Scraji. The
perturbation paramecter is 0.1.

......................................................................

The position response of the full order system (single link flexible
manipulator) using lincar nonadaptive control of Scraji. The
perturbation parameter is 0.2, .....o..cccoveceeerecrinries e ssesesees

The velocity response of the full order system (single link flexible
manipulator) using lincar nonadaptive control of Scraji. The
perturbation paramelter is 0.2, .....c.ocveeeveveveeceicennes i e ese e sessesens

The position response of the full order system (single link flexible
manipulator) using lincar nonadaptive control of Scraji. The uncer-
tainty in the parameters is 20%. The perturbation parameter

is 0.1

...............................................................................................................

The position response of the full order system (single link flexible
manipulator) using lincar nonadaptive control of Seraji. The uncer-
tainty in the parameters is 20%. The perturbation parameter

BS 0.1, ot are bbb s b ne e

The position responsc of the full order system (two link flexible
manipulator) using lincar adaptive control of Seraji. The
perturbation parameter is 0.1, ...t eresens

The velocity responsc of the full order system (two link flexible
manipulator) using lincar adaptive control of Scraji. The
perturbation parameter iS5 0.2, ..o et ss s s

The position response of the full order system (two link flexible
manipulator) using lincar adaptive control of Scraji. The
perturbation parameter i 0.7, .ottt

The velecity response of the full order system (two link flexible
manipulator) using lincar adaptive control of Seraji. The
perturbation parameter is 0.2, .ocvvs veveereee e

The position response of the full order system (two link flexible
manipulator) using 1incar adaptive control of Seraji. The uncer-

tainty in the parameters is 20%. The perturbation parameter

BS 0.1. ettt

The velocity response of the full order sysicm (two link flexible
manipulator) using lincar adaptive control of Seraji. The uncer-

tainty in the paramcters is 20%. The perturbation paramcter

IS 0.1, s et et anananaa

The position response of the full order system (two link flexible
manipulator) using nonlinear nonadaptive controller (fcedback
lincarization). The perturbation parameter is 0.1, ....coccvvvivevinirenrerennenenns

The velocity response of the full order system (two link flexible
manipulator) using nonlincar nonadaptive controller (feedback
linearization). The perturbation parameter is 0.1, ...oocvveveeevnviicnrevenennines

The position response of the full order system (two link ficxible

75

75

76

77

77

18

78

79

79

81

81



Figure 47

Figure 48

Figure 49

Figure 50

Figure 51

Figure 52

Figure 53

Figure 54

Figure 55

Figure 56

Figurc 57

Figurce 58

Figure 59

-X -

manipulator) using nonlincar nonadaptive controller (feedback
lincarization). The perturbation parameter is 0.1. The uncertainty
in the parameters i5 2096, ..o e

The velocity response of the full order system (two link flexible
manipulator) using nonlinear nonadaptive controller (feedback
linearization). The perturbation parameter is 0.1. The uncertainty

in the parameters 1S 20%. ...ccoccevvicrcinnsn s sassssessssseres

The position response of the full order system (two link flexible
manipulator) using nonlincar nonadaptive controller (feedback
linearization). The perturbation parameter is 0.2. ......ccoiiieeivnscincncnsnsiannes

The velocity response of the full order system (two link flexible
manipulator) using nonlinear nonadaptive controller (feedback
linearization). The perturbation parameter is 0.2. .....c.coiivmenicncrinsisenns

The position response of the full order system (two link flexible
manipulator) using nonlincar passive adaptive control of
Slotine and Li. The puibirbation parameter is 0.1, ....ocociivciinnncnnsensnecsnns

The velocity response of the full order system (two link flexible
manipulator) using nonlinear passive adaptive control of
Slotine and Li. The perturbation parameter is 0.1, ......ccooiiviininienncnnns

The position response of the full order system (two link flexible
manipulator} using nonlinear passive adaptive control of

Slotine and Li. The perturbation parameter is 0.1. The uncertainty

in the parameters 1S 20%. ....covecveceiverenvrecererecsesssnitreosacsssssansiessmassssessssssssssos

The velocity response of the full order system (two link flexible
manipulator) using nonlinear passive adaptive control of

Slotine and Li. The perturbation parameter is 0.1. The uncertainty

in the parameters 1S 20%0. ....ocovivereeereeniestiicnsniersssesessseessssssssssssesesses

The position response of the full order system (two link flexible
manipulator) using nonlinear passive adaptive control of
Slotine and Li. The perturbation parameter is 0.2. .......ovecnniinnicvirenennns

The velocity response of the full order system (two link flexible
manipulator) using nonlincar passive adaptive control of
Slotine and Li. The perturbation parameter is 0.2. .......ccovviniccirnnenenenns

The position response of the full order sysiem (two link flexible
manipulator; using nonlinear adaptive control of Craig et ai.
The perturbation parameter iS 0.1, .....vvereeverenierircereeerieseesesnsresnsvesssensass

The velocity response of the full order system (two link flexible
manipulator) using nonlincar adaptive control of Craig et al.
The perturbation parameter iS 0.1, ....cooieriivniiniccnenenciencenesnses

The position response of the full order system (two link flexible
manipulator) using nonlinear adaptive control of Craig et al.
The uncertainty in the parameters iS 20%. ........ocerecerrerevsierniesensssinnessenseeses

The velocity responsc of the full order system (two link flexible

82

82

83

83

85

85

86

86

87

87

88

88

89




-Xi-

manipulator) using nonlinear adaptive control of Craig et 5\.
The uncertainty in the parameters S 20%. ...c..vvveincioceersecesnieeresesessesssssenns 89

Figure 60 The position response of the full order system (two link flexible
manipulator) using nonlinear adaptive control of Craig ct al.
The perturbation parameter is 0.2. ........cceveevmrenrieriinimensscennssssasssnesess 90

Figure 61 The velocity response of the full order system (two link fiexible
manipulator) using nonlincar adaptive control of Craig et al.
The perturbation parameter is 0.2, .......c.ceeeeirimmionnrinensensirsesessssssses 90

Figure 62 The position response of the full order system (single link flexible
manipulator) using nonlinear passive adaptive control of
Slotine and Li. The perturbation parameter is 0.29. ........ccccovmmeevrererenininnn. 92

Figure 63 The position response of the full order system (single link flexible
manipulator) using nonlinear adaptive control of Craig et al.

The perturbation parameter is 0.29. .......c.ceciirmmsnencensnennrnnnresnsisnnsnns 92
Figure 64 The response of one of the parameter estimates for the full order

system (single link flexible manipulator) using nonlincar passive

adaptive control law of Slotine and Li. .....ccccoevverecvveerrecesicrereensrnnes 93
Figure 65 UPDET DOUNAS Of € ....ovircerccervenenesiinciaranisssssssssesssssssssssesesssossnsssessasssssossens 103
FIgUE 66 REGIOND, R, AR, coescncmssssmmssssses s 105

Figure 67 Cross section of figure 66 showing regionb, R " ®and R




Chapter 1

Introduction

Robots used in the industry are programmable devices which manipulate and tran-
sport componenrs in order to perform manufacturing tasks, which are physically csmand-
ing, or repetitive for human operators to perform efficiently. Manipulators have also
been used extensively in hostile environments, such as nuclear power plant and waste
handling, deep sea exploration and maintenance and in space. In these applications the
manipulator is controlled by a remote human operator often referred to as the teleopera-
tor. However, a control system is necessary to compute appropriate actuator commands
tc realize the desired motion. Coniinuous or intermittent feedback from the joint sensors

which measure the joint 2agle is used to compute the required torque.

A non-sensory robot will move through approximately the same locations regardless
of what is happening around it. Yet the objects on which the robot is working are not
always of exactly the expected size or lie exactly in their expected positions. It is some-
times possible to cope with such uncertainties without recourse to sensors using compli-
ance. For example co.isider the task of inserting a shaft into a chamfered hole- a peg-in-
hole task. Even if the shaft is slightly dislocated, then a robot with compliance allows the
forces between the shaft and the chamfer to Jeflect the end effector into the shaft. For
compliance with external objects, flexibility is a desirable feature for a robot, although
most robots are currently designed to be mechanically stiff and rigid because of the
difficulty in controlling flexibie members. It has been shown experimentally in [14] that,
at least for a class of manipulators, the dominant source of compliance is due to torsional
clasticity of the actuators. One of the main difficulties encountered when considering the

control problem for robot manipulators with joint/ link elasticity is the mathematical



modeling. Singular perturbation, integral manifolds, feedback linearization and adaptive
control are among the techniques used for modeling and control of flexible joint manipu-
lators [6,9].

It has been shown in [13] that exact feedback linearization of the full order flexible
system is not possible. The main drawback with using feedback linearization techniques
is that the values of the parameters defining the actual system must be known precisely.
This requirement is hardly ever satisfied in practice as parametric uncertainties can be
present due to imprecise knowledge of the manipulator mass properties, unknown loads
and uncertainty in the load position of the end-effector. Consequently perfect cancella-
tions of the nonlinearities is not possible (due to imperfect modeling or inaccurate

parameter estimaics), which might lead to instability of the closed loop system.

Adaptive control strategies are used mainly to get over the difficulties arising from
parametric and structural uncertainties that are invariably present in the actual flexible
system. An advantage of the adaptive approach is that the accuracy of a manipulator car-
rying unknown loads improve with time as the adaptation mechanism keeps extracting
parameter information from tracking errors. Since these adaptive schemes are based on
rigid models, which is feedback linearizable and strictly passive, they cannot be applied
directly to flexible joint manipulators which are neither feedback linearizable nor passive
[6,9]. The presence of unmodeled high frequency dynamics due to joint elasticity can
J:ad to severe stability probleins for adaptive control algorithms that are designed based

on models which have neglected the parasitic effects.

In this thesis using singular perturbation theory, a reduced order model of the flexi-
ble syster is constructed which is indeed feedback linearizable. This facilitates the
development of a composite controller [7], consisting of a slow adaptive controller based
on the rigid robot model and a fast control designed to damp out the elastic oscillations at

the joints. Ghorbel et al [7] use velocity feedback to provide the necessary damping of




the fast dynamics. We use state feedback controller to provide the required damping of
the fast dynamics. It was found that a state feedback controller performed better than a
fast adaptive controller in damping out the fast dynamics. Once the fast control law
damps out the oscillations of the fast variables and the fast transicnts have decayed, the
slow part of the system is close to the dynamics of the rigid robot, which can then be con-

trolled by any technique. In short the controller takes the form
composite controller = slow controller + fast controller

This result is used in deriving a robust adaptive control law which takes into considera-
tion both parametric and dynamic uncertainties keeping the overall complexity

unchanged from that of a rigid control.

In this tisesis, for the sake of analysis and simulation, the manipulator is modeled as
set of n moving links connected in a serial chain with one end fixed on the ground and
the other end free. The bodies are joined together with revolute joints with sensors incor-
porated in each joint to measure the position, velocity and acceleration. An actuator is
provided at each joint to apply a torque on the neighboring link. The number of degrees
of freedom is the number of independent joint position variables, usually equal to the
number of joints. Euler- Lagrange formulation is used in modeling the dynamic behavior

of the manipulator.

Comparisons between three adaptive control schemes and feedback linearization
technique for 2 flexible joint manipulator have beea presented. The first scheme is based
on Seraji’s [15,16] scheme. Here, the control action is generated in part by an adaptive
feed forward controller which behaves as the inverse of the robot and is driven by the
desired trajectory. An adaptive feedback controller and an auxiliary signal are used to
enhance closed loop stability and to achieve faster adaptation. The parameters are

updated according to a scheme developed based on Lyapunov stability theory.



The second scheme is based on Slotine and Li’s [1,2] scheme. Though the flexible
joint robot does not possess the required passivity property on which Slotine and Li’s
scheme is based on, the application of the composite controlier reduces the full order
system to a rigid system thereby allowing the passivity properties of the rigid robot
dynamics to be utilized to guarantee certain desired performance specifications. This
does not lead to a linear system in the closed loop even in the ideal case that all the
parameters are known. The motivation for this scheme is that the regressor is indepen-
dent of the joint acceleration. In [7], Slotine and Li’s scheme has been applied to a single
link manipulator presuming that the damping coefficients are known. We have modified
the control law of Slotine and Li as it is directly not applicable to a single link manipula-

tor as skew symmetry property does not hold in the case of a single link manipulator.

The third scheme is based on Craig et al's [4] scheme. This scheme also known as
the computed torque method makes the closed loop system equivalent to a linear and
decoupled controllable system even though the parameters of the robot are assumed to be
unknown. This is accomplished by introducing a nonlinear controller in the feedback
loop so as to cancel the nonlinear terms in the dynamic equations. A servo controller is

then constructed for the linear model.

The main contents of each chapter are organized as follows:
Chapter 2  Derivation of Singular Perturbation Model

This chapter introduces the dynamical equations for a n link flexible joint manipulator.
The Euler-Lagrange formulation of manipulator dynamics is given. The dynamics are
then reformulated in terms of a singularly perturbed system with slow and fast dynamics.
Single link and two link flexible joint manipulator examples are used to illustrate the

concept of singular perturbation modeling.




Chapter 3  Linear Control Methods

This chapter introduces the basic concepts of linear control methods that are widely used
in manipulator control. PD nonadaptive and adaptive control schemes based on Seraji’s
algorithm have been discussed. Controllers for a single link and a two link flexible joint

manipulator are developed based on the schemes discussed.
Chapter 4 Nonlinear Control Methods

This chapter introduces the basic concepts of nonlinear and adaptive control methods.
Feedback linearization, passivity based adaptive control methods and adaptive inverse
dynamics methods have been discussed. Controllers for a single link and a two link flexi-

ble joint manipulator are developed based on the schemes discussed.
Chapter 5 Numerical Simulation

Simulation results for a single link and a two link flexible joint manipulator controlled by

the algorithms described in Chapters 3 and 4 are presented in this chapter.
Chapter 6  Stability Analysis of Adaptive Schemes

Stability analysis for the two nonlinear adaptive control schemes developed in Chapter 4

are presented in this chapter.




Chapter 2

Derivation of Singular Perturbation Model

The flexible model that has been used in our study has n+1 rigid links connected by
n flexible joints. Let g,, i=1,..,n denote the position of the i th link and ¢;,, i=1,..,n
denote the position of the i th actuator, It is assumed that the elasticity at the i th joint can
be modeled as a linear torsional spring with spring constant X, . The elastic force at the i
th joint is represented by Z; := K, (g, —4q;,, ). When the joint is perfectly rigid, we have

q; =q;,, foralli.

The equations of motion of the mechanical system can be derived from Euler-
Lagrange equations and are defined by

Mg +h(§.4)+e (=P U @1

where U = [Ul'_...U '] , U,.‘ is the force delivered by the i th actuator,

n

T T Z 1<i<n
yM(g)isa

=0t @ = @@ a@= ~Z,_, n+l<is2n

symmetric positive definite 2n x 2n inertia matrix, A ( § .(i’ ) is the vector of Coriolis, cen-
tripetal and gravitational forces and torques and P:= [OmT lmT]T

Due to the presence of joint elasticity there are now twice the number of degrees of
freedom in the flexible system as compared to the rigid system. Hence there is no longer
an independent control input for each degree of freedom. This means that it is not possi-
ble to cancel the nonlinearities of the system as in the computed torque scheme
(described in chapter 4) for rigid robots. Moreover (2.1) does not possess the passivity
properties of a rigid robot. As a result, standard control schemes in the literature cannot

be directly applied to (2.1). However, when all the joints are rigid (2.1) reduces to a rigid



body equations

MV( qr )“jr + hr (qr + qr ) = U.: (2.2)

1’ and M (g, ) is an n x n positive definite inertia matrix and

where ¢, =1[q,...4,

h,(q, .4, ) is the vector of Coriolis, centripetal and gravitational forces.

Assuming that all the spring constants K; are of the same order of magnitude, we

. ) . 1
can write K;:=K K;, i=1,..,n. Without loss of generality we take K;=1 and p:= —. It can
K

be safely assumed that the joint stiffness is large relative to other parameters in the sys-

1
tem. We realize this assumption of large joint stiffness by assuming that K = Y where ¢
€

is a parameter << 1. Proper scaling of parameters is essential for a successful implemen-
tation of singular perturbation technique. € is therefore chosen so that the proportionality
constant is in the same range as other parameters in the system- at the same time € should
be small enough to ensure that the settling time of the boundary layer dynamics is

sufficiently rapid.

- . M(§) Myq)
We partition matrix M and vector h as M(4)=
MAq) My(q)

[0 - . |
h(§.g)= . | where M, € R, i=1,.,3 and h; € R , j=1,2. With the above
Ad.4)

definitions the equations of motion (2.1) may be written as
[M1@02)+ M@ u2) | G - Mqu2) Z + b daZady + 220 (23)
[Mata w2 + M@ u2)| G - s@u2) 2 + @b pzud)-z=U"  @4)
where §:= [qfuz] ,qe R"andZe R".

The joint displacement g are the slow variables and the elastic forces at the joints Z

are the fast variables. This can be easily seen by expressing (2.3)-(2.4) in a standard state




space singularly perturbed form. We denote M —'( §) by H(¢) and write H(q) as follows
H(§) Hyq)

M (§)=H(§)= [

i ) ] ,H, € R"™, i=1,.4 where H, and H are non-
Hi(q)H(])

singular matrices since the inertia matrix M is positive definite.

Equations (2.3)-(2.4) may be rewritten as

§=—(Hh +Hyhy)+(Hy=H)Z+HU (2.5)
WZ == ((H  ~Hh, + (Hy= H Dhp) + (—H +Hy+H-H ) Z + (Hy-H YU (2.6)
which is in the standard singularly perturbed form. Both models (2.3)-(2.4) and (2.5)-

(2.6) are well posed with respect to the perturbation parameter p.
The rigid model is obtained by setting p=0 and by eliminating Z from (2.3)-(2.4) to
give
(M A2M,+M ) G + (hy+h) = U™ Q@7

which can also be written as

G = (M +2M,+M3) " (U™ ~h ~h,) (2.82)
or from (2.5)-(2.6) by eliminating Z with p=0to give
§= [—(H2 ~H)H | +H,+H~H 4)“(H2-H4)+H2]U"

+ [(H2 —H)H +Hy+H=H )" (H ~H)-H, ]h,
+ [(H2 ~H\)-H +H,+H~H ) '(H,~H 4)—H2]h2. (2.8b)
Equations (2.5)-(2.6) represent a complex, highly nonlinear and coupled system.
Given the complexity of the rigid model (2.8a) or (2.8b), the full order model (2.5)-(2.6)
will not be easy to handle without simplification as far as control system dJesign is con-
cermned. However, the rigid model obtained from (2.5)-(2.6) does not accurately model
the system if the joint flexibility is not negligible, and in fact, undesirable oscillations

will occur using controllers designed based on only the rigid model.



To overcome these difficulties the full order system is broken down into two
subsystemns- the slow and fast subsystems. The slcw subsystem is the same as the reduced
order rigid model obtained earlier with yu = 0 whereas the fast subsystem (to be derived
later in this chapter) represents the discrepancy between the full order model and the
reduced order rigid model due to the presence of joint flexibility. The lightly damped
oscillations due to joint elasticity should initially be damped out by the control law

designed for the fast subsystem,

The fact that the equations of motion appear as a singularly perturbed system means
that standard results from singular perturbation theory can be used to derive and analyze
reduced order models of (2.5)-(2.6) for which the controller design proves to be simple.
We utilize the concept of composite control and choose the control input U " of the form
U= U"(q q)+ v’ (n,.n,). where U™ is the slow control and U™ is the fast control.
(n, and n, to be defined shortly). When this composite controller is applied to the full
order system, the fast controller stabilizes the oscillations due to the joint flexibility
thereby making the dynamics of the full order system equivalent to that of the reduced

order system which can be controlled by any technique.

To this end we rewrite (2.6) in the configuration space with the transformations

zZ,=2 (2.9a)
and
Z',=¢Z (2.9b)
to arrive at
& =2, (2.9¢)

€2 y=~((H ~H ph +(H =H Jh)+(~H +H 4t H—H )Z" +H,H)U (29d)

Setting € =0 in (2.9¢)-(2.9d), corresponds to obtaining a "quasi steady state" (gss),

for the fast variables 2~ yand Z° ,- The actual fast variables deviate from their gss values.
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The difference of the fast variables from their quasi steady state is used to define new fast
variables n, and n,. This is now used to represent the fast dynamics present due to tor-
sional elasticity at the joints. We have

L] - qss

nm=2Z 7,

® gss

Ny =Z Z ] (2.10)
or equivalently

. -1 .
"=z, - [—H1+H2+H3—H4] [((H,—Hg)h,+(H2—H4)h2)—(H2—H4)U ’]

=2z, 2.11)
where U ~ is the torque applied to the slow subsystem (rigid model). Computing the time

derivative of n; and 1, along the trajectories of the full order system (2.5)-(2.6) in the

fast-time-scale 1=t/g, we get

. X d . - d L4 d *qss
— =g =eZ e—(Z,")=2Z —2Z,")=n—2") (120
dt dt dt dt

dn,

—= 62" ) = ~(H \—H I (+(H=H Yho) + (-H +Ho+H-H ) Z |+ Hy-H) U
T

= ~((H =H Dk (+(H y=H D) + (~H +H y+Hy=H ) (N, +Z°% ) + (H,=H ) U" (2.12b)
After simple algebraic manipulation and setting € = 0 in (2.12a)-(2.12b) we arrive at the

fast subsystem which is expressed in the slow-time-scale

ey =m, (2.13a)

€1, = (—H +H+Hy-H )M, + (H,-H Y U (0 my) (2.13b)
where U is the torque applied to the fast subsystem in order to stabilize the fast

dynamics. Combining (2.13a) and (2.13b) we may alternatively express the fast subsys-

tem as
2., .
€, + (H,~H ,~H,+H )M, = (H,-H YU ;M. (2.14)
For sufficiently small € and shortly after t=0 the slow states q and ¢ more or less
remain constant while the fast states Z.! and Z'z rapidly approach to their quasi steady

states provided the fast subsystem is asymptotically stable. Therefore, we have to design




-11 -

U™ such that 1n,-0 and n,—0 as ¢ —eo, 50 that the quasi steady state is an attractive sur-
face and the restriction of the full order system dynamics on this surface is meaningful.
Consequently Z'l and Z"2 approach their quasi steady states and therefore the rigid

model dynamics become the dominant one.

In order to illustrate the concept of composite controller and its utility and to make
comparisons between linear /nonlinear, adaptive/ nonadaptive controllers, two examples
- a single link and a two link flexible joint inanipulator are considered. Singular perturba-
tion models are obtained in the next section, controllers are presented in Chapter 3 and 4

and numerical simulation results are presented in Chapter 5.

Example 1 Single link Manipulator

Refer to figure 1 for the setup and definitions of the variables. We have an actuator
delivering a torque T,, to a motor shaft which is connected through a gear traintoa link
of length ! (uniform bar), mass m and moment of inertia 1/3 mi®. For simplicity we
model the elasticity at the joint as a linear torsional spring of stiffness K. The equations
of motion are derived using Lagrangian formulation. The kinetic energy of the system is

2 2

1 . 1 .
KE = —mi’6, +—J 6 ., (2.15)
6 2
where J,_ is the inertia of the motor. We assume that the rotor inertia is symmetric about

its axis of rotation, therefore the gravitational potential is a function of only 6,[9]. The
total potential energy of the system is

PE = P(8)) + P(8,-9).
The second term in the above equation is due to the elastic potential of the spring and is

given by

P,=—©8,-8) K (8,-9).

1
2
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Figure 1. Single link manipulator with joint flexibility.
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The Lagrangian L of the system is defined as L =KE - PE , which for our system

becomes

1 .21 .2 mgl 1

==mi®, +=J 6, +-(1-cosb)- —K(8,-8)".
6 2 2 2

The equations of motion found from Euler-Lagrange equations are now governed by

1o 1
—mi’, + B,6, + —S-sind, + K (6,-0) =0 (2.16)
3 2

1.8, +B,.68 =T +T,, 217
where 7, is the secondary side torque T, of the gear mechanism (gear ratio n) reflected
on the primary side and is given by

T

T,)'= -— , T,=K(©0-8).
n

Incorporation of the effects of the joint elasticity renders 1t impossible for the appli-
cation of conventional control schemes used to control rigid manipulators. However, by
assuming that the joint stiffness is large a singularly perturbed model can be constructed,
for which conventional control schemes may be developed through a model reduction
scheme. To express the full order flexible system (2.16)-(2.17) in a standard singular per-

turbed form we let the elastic force at the joint be represented by
T,=K(6,-0)=Z. (2.18)

Equations (2.16) and (2.17) may now be rewritten in terms of either 6, and Z or 0, and
Z and using (2.18). In this thesis we choose to use 8, and Z, as it is the link angle that
one wishes to control. Letting € = 1K , X,=6, , X,=0, ,Z,=2 and Z, = €,
and rewriting (2.16), (2.17) using (2.18) and the relationships between the primary side

and secondary side of the gear mechanism, we arrive at
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X, =X, (2.19a)
: 2 mgl
2
e2,=2, (2.19)
. B, 3B, 3gsinX, T, 3 1 B,
2 2 2
J  ml 2l n, m”  nJ, J,

The rigid model or the slow subsystem is obtained by first setting € =0 in (2.19c)-
(2.19d) to get the quasi-steady-states

s

B, 3B Igsink, T,
o5 Jp ml 21 nl, "
3 1
IR
ml~  n'J,

which when substituted in (2.19b) and after simplification yields in the configuration
space
B,

an+——
n

mglsinG,

-=-T (2.20)

2
ml . .
[——+n.]m 0, + 0, + m

3n 2n
where T’ is the torque for the slow subsystem. Note that the coefficient of T’ is nega-

tive as the equation is written in terms of the load side.

The fast subsystem is found by first defining a new fast variable m, and n, as the

difference between the fast variables Z, and Z, from their quasi steady state values as

qss

n, =2,-2Z," ,n, =2,-2," and then computing their derivatives along the trajectories

of the full order system to obtain

. 3
szn.lmn, + [—- + nJ n, = Tmf (2.21)

ml 2 n2!m

where TL is the fast torque applied to (2.21) to stabilize the fast dynamics. The total con-
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trol input is a composite controller consisting of a slow control and a fast control.

Example 2 Two link Manipulator

Refer to figure 2 for the setup 4nd definitions of variables. The actuators are coupled to
the links through linear torsional springs. The equations of motion are derived using the

Euler- Lagrange formulation

m11‘71+m12‘7.3+5221‘1'32+8|+K1(41“12)=0 (2.22a)
Mgy + Moy + C g +8,+ K (43— q4) =0 (2.22b)
06, -K,(qy-4,)=U, (2.22¢)
T yia-Ky(4,-44)=U, (2.22d)

where m,; are the entries of the inertia matrix

2 2
ml. "+myl "+l myll,c08 (@44)

2 (2.23)
mylyl . cos(q—qy) myl,+l,

M(q)=
where m; , 1; are the mass and moment of inertia of the i th link, /; , /; are the length and
distance to the center of mass of the i th link from the joint axis,

Cagp = =Myl 1 5in( g, ~¢)

Cyip =myly L sin( g~ ¢}

g, = [m,lcl +myl, ]gcos(q, )

82 = Myl ,cos(a;)
g is the gravitational constant, K; is the stiffness of the i th spring, J; is the inertia of the
actuators and n; is the i th gear ratio. The inpur torque U, and U, arz the control vari-
ables.

The equations of motion (2.22a)-(2.22d) may be rewritten in a singularly perturbed

1 1 1
form of (2.3)-(2.4) by defining p = — = — = — as the perturbation parameter and fast
kK, k, X

variables Z,, and Z,,as Z,; =K(q;—q,) and Z,, =K (g, - q,)-
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We get
m;, m;, 114, mzlllczsin(uzn)d:+(m,lc,+it-1211)gcos(q,) Z,
o+ 9 + =0 (2.24)
Mma Myl g, —ml,l ,SiN(UZ | )q | + myl, ,8c0s(q3) 21
n i n’JZ Z U
[ 171 (2) ] [1] - [ 121 11] _ [ 11] - 1 . 2.25)
0 nyJ, q ny J.Z,, Zy U,

The rigid model of the full order system is obtained by first setting p = 0 in (2.25) to
get the quasi-steady states Z,,” =n 1, §,-U," and Z,,* = 1ty G3—U, which
after substitution in (2.24) gives

[’"11*"12"1 my, } [‘71] . {(mllcx"'”’zll)gcos(ql)]: [Ul‘] (2.26)
vl .

2 ..
The fast dynamics due to torsional elasticity at the joints is represented by the fast
subsystem which is obtained by first defining new fast variables n;, and n,,, measuring

the deviation of the original fast variables Z,, and Z,, from the quasi-steady states,

gss

specifically n,; =2,,-2,," and n,, =Z,,-2,,*". Computing the time derivatives of

n,, and 1,, along the trajectories of the full order system (2.24)-(2.25) and defining a new

. 4 .
fast time scale T = — and setting p = 0 we get

m
2 2
dmy dmy,
— =p——=-n;;-U/(ny) (2.27)
drt dt
2 2
dmy, dny,
, SR ='“21“U2f(n21) (2:28)
dz dt

where U,/ and sz are the control inputs applied to the fast subsystem. The fast con-
trols are inactive on the quasi steady state surface and are so designed that the equili-
brium point n,, =n,, = 0 is asymptotically stable. The control input is a composite con-

troller consisting of a slow control and a fast control.
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In the next chapter, we present the basic concepts of linear control methods that
have been widely used in manipulator control. PD nonadaptive and adaptive control
schemes based on Seraji’s algorithm are discussed. Controllers for a single link and a two

link flexible joint manipulator are developed based on these schemes.




Chapter 3

Linear Control Methods

For a given nonlinear system local linearization may be employed to derive linear
models which are approximations of the nonlinear equations in the neighborhood of an
operating point. As the system moves the operating point is moved along and at each
operating point a new linearization is performed. This results in a linear but time varying

system.

Though the dynamic equations describing the manipulator motion are inherently
nonlinear and highly coupled with each link exerting inertial, centripetal and Coriolis
torques on all other links, linearization about an operating point presents an approximate

but computationly simple solution to the manipulator control problem.

When designing a control law for the full order flexible system, the coupling effects
between the slow and fast subsystems have to be included . The lightly damped oscilla-
tions due to joint elasticity should be completely damped out by the control law designed
for the fast subsystem. These oscillations die at a faster rate than the rigid motion dynam-
ics. Once these oscillations have decayed, the slow part of the system is identical to the
dynamics of the rigid robot, which can be controlled by any control scheme that is dis-
cussed in the next sections.

The chosen control law for the fast subsystem is a state feedback controller
designed to place the poles of the fast subsystem at desired locations in the complex
plane away from the poles of the slow subsystem. The fast controller is given by

U’ =k, m + KM, G0
where n, and n, are the new fast variables and X, and K, are the feedback gain con-

stants. The subscript f denotes the fast subsystem.
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A composite controller based on the reduced order slow and fast subsystem control
laws is used to control the full order flexible system (2.5)-(2.6) which takes the form

vt =u”+uv, (3.2)

However the fast variables n, and n, should be expressed in terms of the original vari-

ables when the composite controller is applied to the full order system.

3.a PD Nonadaptive Control Scheme for the Reduced Order System

Here we present a simple solution to the manipulator control of the reduced order
system based on linear multivariable theory. The control scheme described in [15]
achieves tracking of any reference trajectory and also provides stability. The control
scheme consists of multivariable feedforward and feedback controllers. The feedforward
controller is the inverse of the linearized model of robot dynamics. This ensures that the
manipulator joint angles track any reference trajectories. The feedback controller is of

proportional-derivative (PD) type and achieves stability and pole placement.

The reduced order rigid body equation of the flexible joint manipulator is given by
M,(4,)4, +h (q,.4)=U" (3.3)
where q, =[q,..9, ]T and M, (g,) is an n x n positive definite inertia matrix and
h.(q, .q, ) is the vector of Coriolis, centripetal and gravitational forces. The elements of

M, and h, are nonlinear functions of ¢, and g4,.

Suppose that the initial condition of the robot end effector corresponds to the angu-
lar position, velocity and acceleration vectors 4, , (}, and z}, in the joint space. Then the
joint torque vector v required to produce this condition is given by (3.3) as

U° =M,(4,)4, +h, (4 .4). (3.4)
Let the operating point corresponding to the initial condition of the manipulator be

denoted by P= (4, ,t}, ). Now suppose that the joint torque vector is varied by AU ", that
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isU™ =U" +AU™, and let the resulting variations in the joint position and velocity be
Q, and Q,, ie,q (t)=4 (t)+Q, and 4, (t)=¢f, (t)+Q,. Then assuming that the

change in M, (g, )is negligible, i.e. M, (4, + Q, ) = M,({, ), from (3.3) we have

M,(4,) (4 +8,)+h (4, +0,.4,+0,)=U" +aU". (3.5)
Expanding h, about the operating point P=(d, , 4, ) using Taylor series expansion, we
obtain
. . [ oh, oh, )
b (440,440 =h (4 .40+ | —| 0+ [ ] G 09
9, Jp 34, Ip

When the variations 0, and 0, are small, second and higher order terms in Q, and 0,

can be neglected in the above expansion and (3.5) can be written as

M4, )4 +h (4.4 )+A0, +BO, +CQ, =U" +AU" (3.7)

where the constant n x n matrices A, B and C are given by A = [M, (q,)] R
P

ah, oh

r

. . From (3.4) and (3.7) we obtain
q,
P 'p

AQ, +BO, +C0, =AU". (3.8)

Equation (3.8) gives a set of coupled linear time invariant differential equations

which describe the incremental behavior of the robot dynamics for variations in the

neighborhood of the operating point P= (4, ,é, ). The coefficient matrices appearing in

the model (3.8) are dependent on the nominal operating point P. It can be shown that this
linear model of the robot is both observable and controllable.

The control scheme is adopted as shown in figure 3 and consists of two separate

controllers as follows:

(1) Due to the controllability of the linear model of the manipulator, a state feedback

control law may be designed to place the poles of the linear model at any desired
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2
Q(s)=C+Bs+As

2, KGRk, + K, 5 |

AU™

Robot

| Manipuiator

Figure 3. Linear Control Scheme.

o,
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location in the complex plane. We let the feedback controller be specified by
T, =K, (Q4(1)-0, (£))+K, (Q,(1)-0, (1)). (39)
(2) A feedforward controller is used to achieve tracking of any desired trajectory
Q,( ). This controller is of the form

Ty = Aéd + BQd +CQ,. (3.10)
Hence, the total control law is given by

AU (1) =T, (1) + T, (1)
=K, (Q,0)-Q, 1) + K, (Q,(1)-0, () + AQ,()+B0, ()+CQ, (1)  (3.11)

which can be written as

AU™(t)=K,e(t)+K,é(t)+AQ,(1) +BO, (¢ )+ CO4(t) (3.12)
where e(t)=0,(t)-0Q,(t) denotes the incremental position error in tracking. This
alternate representation of the control law is shown in figure 4. Since the desired velocity
0,(t ) and acceleration 0,(t)and the actual velocity Q, (¢ ) are directly available, it is
not necessary to perform numerical differentiation in order to implement the control law
(3.12). When the "incremental” control law is applied to the manipulator model (3.3), the
total control law is given by

Ut =0" +aU"

=U" +K,e(1)+K,é(1)+AG,(1)+BO, (1)+C0,(1). (3.13)
The total control law is the sum of two components- the first component is the value at

the operating point P namely U ™ and the second being the contribution due to incremen-
tal feedforward and feedback controllers. The total desired trajectory is ¢, =4, + @, and
the total actual trajectory is ¢, = 4, + Q,. Substituting these in (3.13) gives the total con-
trol law in terms of the total variables as

U =K,E(1)+K E(t)+AQd(t)+BQd(t )+ CQ(t)Y+T(t) (3.14)
where T = U~k 4y~ 4, K, (‘74 4 )- A4d Bqd Cq4, reflects the effect of the

operating point P in the total control law and E(t ) =g,(t)~-gq, (t).
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Figure 4. Alternate Representation of Linear Control Scheme.
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When (3.14) is applied to the robot model given by (3.8), we obtain

AQ, +BQ, +CQ, =K,e(t) +K,é(t)+AQ,(1)+BO, (1)+CQ,(1).
This can be written as

Aé'(t)+(B+Kv)é(t)+(C+Kp)e(t)=0. (3.15)
Equation (3.15) describes the dynamic behavior of the tracking error in terms of the feed-
back gains X, and K,. The solutien of (3.15) is e(t)=0 for all t if the initial conditions
[Q, (1) .Qd (t))and [Q, (¢) ,Q, (#)] match exactly. However, in general the initial con-
ditions are mismatched and e(t) is a nonzero function of time. The gains K, and K, must
be chosen in a manner that ensures the spectrum of (3.15) lie in the left half of the com-
plex plane such that the tracking error e(r)—0 as t—e. In fact by placing the poles at

desired locations, the transient response of the tracking error can be shaped at discretion.

The feedforward controller does not affect the error characteristic polynomial. The
role of T, is to ensure that the right hand side of the error differential equation (3.15) is
equal to zero. If there is a mismatch between the robot model and the feedforward con-
troller T, (3.15) will have on its right hand side a forcing function which is a function of
the desired trajectory. Therefore, the steady state value of the tracking error e(t) is no
longer zero but a time function of Q,( ). However, stability and transient response of

e(t) is unaffected by 7.

When the excursions of g, and ¢, from the operating point P=(4, , r}r ) are large, it
is necessary to adjust the gains of the feedforward controller T, to ensure good tracking.
For this to be simple and efficient, it is assumed that Q, (¢ )= Q,(¢)and O (t)=0,(t)
i.e any position and velocity errors e(t)=Q,(t)-0,(t) and é(t)=Qd(t)—Q,(t)
are reduced to zero sufficiently fast by the feedback controller. Thus the gains A, B and C
of the feedforward controller are evaluated on the basis of the desired trajectories instead
of the actual trajectories @, () and O, (1)and depend only on Q,(¢)and Q,(¢) which

are known in advance.
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Suppose that the robot is required to track a preplanned position and velocity tra-

jectory g,(¢)and ¢,(¢) in time z,. We discretize ¢, into N instants of time [r,......rN ]

which may or may not be equally spaced and are chosen on the basis of ¢,(t) and
q,(t). At each time r =1, , the values of the desired position and velocity vectors are

given by Q,(r;) and Q'd(t‘.) and are represented by the operating point
P, = [Qd( 60,0 )]. At each P, , a unique linear model with parameters [A,. B, .C,.]

describes the behavior of the manipulator and for each linear model, a particular feedfor-

ward controller is required for trajectory tracking.

Although the feedback controller can also be updated as the operating point P
changes with time, this is not necessary for moderate excursions of P especially if it has
been designed such that the poles are well inside the left half plane. This is justified by
the fact that the feedback controller only determines the stability and transient response
of the tracking error. As long as stability is ensured by proper placement of the poles, the
error transient will eventually tend to zero as desired. However, when excessive excur-
sions of the operating point P occurs, it is advisable to update the feedback controller

gains to ensure stability and acceptable transient response.

The above control scheme is now developed for a single link and a two link flexible

joint manipulator.

Example 1 Single link Manipulator

The reduced order slow subsystem is given by (2.20) as a,8, + a,8, + a3 =-T,,’ where

mi® B, mgl .
a,=|-—+n, | a,= |nB, + — | and a; = —sin6,. The problem we are addressing

3n n 2n

can be stated as follows: given the load desired position 8,( ) and 6 ,(t ) design a con-
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trol law such that the load position 8, ( ¢ ) and load velocity 6 (¢ ) track 6,(¢ ) and 8 ,( ¢ )
respectively.
There is only one nonlinear term present in the above equation. The feedforward

controller T, then is given by

-T, = a,éd + a2Qd +C0Q, (3.16)

da
where C = [3—1] and P is the operating point on the trajectory about which the model
9d
P

is linearized. The feedback controller is given by

—be=er(t)+Kvé(t) (3.17)
where K, and K, are feedback gains. The total control law is given by

T, =K,e (1) +K,é(t)+a,0, +a,0, +CQ, (3.18)

The fast subsystem is given by (2.21). The fast subsystem torque is chosen as

1) =K,m +K,m, (3.19)
where 1, and n, are the new fast variables defined by (2.10) and K, and K, are feed-

back gain constants. The composite controller used to control the full order system

(2.19) takes the form T, =T, + Tmf with 1, and 1, expressed in terms of the slow vari-

ables ¢, and 6, and the original fast variables Z and Z.

Example 2 Two link Manipulator

The reduced order slow subsystem is given by (2.26) as

M, (q)§+h(q.4)=U’ (3.20)
where M, = m”+ "12-’1 " 2 ] and , = {(mlld + malseoslay) The feedfor-
Mo My + 1y T, myl, 28 cos(q,)
ward controller T, is given by
Ty = AQ, +CQ, (3.21)
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where 4 = [M, (q, )]P ,C,= 5— and P is the operating point on the trajectory
9
)
P

about which the model is linearized. The feedback controller is given by

Ty, =K,e (1)+K,é(1) (3.22)
where K, and K, are 2 x 2 feedback gain matrices. The total control law is given by
U =K,e (1)+K,é(1)+AQ, +CO, (3.23)

The fast subsystem is given by (2.27)-(2.28). The fast subsystem torque is chosen as

n n
v =k, “] +va[ ‘2} (3.24)
N2 '.“22

where 1, and 1, are the fast variables and en;, =0, , &0 =ny, and K, and K, are 2

2 constant matrices. The composite controller used to control the full order system
(2.24)-(2.25) is given by U = U° + U’ with Ty » Mgy » Ny, and Ny, expressed in terms of

the slow variables ¢, and ¢, and the original fast variables Z,, and Z,,.

Two positicn trajectories were tried in both the examples- a slowly time varying tra-

t !

. n "o, o, . . .
jectory B,d=-- [l+6e 93 _ge 4} which attains a constant value after some time and a
4

continuously time varying trajectory 6," =Sin(t)-Cos (2t). The algorithm performs satisfac-
torily for the slow and fast subsystems considered separately. In some of the simulations,
parameters were varied from their nominal values. The composite ~ontroller was applied

to the full order system. The results of the simulations are discussed in Chapter 5.

3.b PD Adaptive Control Scheme for the Reduced Order System

The controller designed in the previous section is effective for motion of the mani-
pulator in the neighborhood of the operating point P and when there is no mismatch

between the robot model and the feedforward controller. However, during gross motion

PR T
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of the manipulator, the operating point P and consequently the linearized model vary
substantially wiil: time. This will lead to steady state errors or even instability. To over-
come this drawback the gains of the feedforward and feedback controllers are updated
and an auxiliary signal is used to enhance closed loop stability and to achieve faster
adaptation [16].
We have the reduced order rigid body equations of the manipulator as
M,(q,)§, +h, (q, .4, )=U". Thiscan be writeen as
A'(4,.4,)4, +B'(q,.4,)4,+C (q,.4,)q,=U". (3.25)
In order to cope with changes of the operating point, the gains of the feedbac! and feed-
forward controllers in (3.1, are varied with time and a time varying auxiliary signal F(t)
corresponding to the operating point term T(t) is included in the control law. The adap-
tive control law, the coefficients of which are updated by adastive laws derived later in
this chapter, is then given bv
U = F()+ K, (e(t) + K, (1)e@t) + A1), () + B(t)g, (1)+ C(t)g,(1).  (3.26)
Application of the adaptive control law (3.26) to the robot model (3.25) as shown in
figure 5 yields
ATE(1)+(B' +K,)E (1)+(CT+K,)E(1)= —F(t)+(A =4 )jy(s)
+(B" =B )gy(1)+(C" =C)qu(1). (327)

E.(')] , (3.27) can be
E(t)

Defining the 2n x 1 position- velocity error vector as E,(1)=

written as

0 01l. 0.
+ [As] g, + [AJ g, + [As] g, (3.28a)

3 10 n 0
E (1)= [-A: _Aq]Epv(:)»f [Ao

-

where

A =AY (C +K,) L 8= (B +K,) A= -V (F)
A=AYCT-C) A=Y (B -B) A=Ay (A" -4).  (3.28b)
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-31-

We now define a "reference model” which reflects the desired performance ( in
terms of the tracking error E(t) ). It is desired that each tracking error

E/(t)=q,(t)-q,(1)satisfy the second order differential equation

E.(1)+2,0,E(1)+ 0 E(1)=0, i=1...n (3.29)

where £, and o, are the damping ratio and natural frequency to be chosen by the

designer. Equation (3.29) can be written as

. 1,
E =
(1) D, -D,

- Eppy(1) = DE,,(1) (3.30)

where D, = diag ((0.'2 ) and D, = diag (2;0;) are n X n constant diagonal matrices.

E

E"'an(t)= [E

m

] is a 2n x 1 vector of desired position and velocity errors and the sub-

script m denotes the reference model. The solution of the homogeneous model (3.30) is
E_(1)=¢"E_(0) (3.31)
mpv mpv
where E,,.(0) is the initial state of the reference model. Since the initial values of the
reference model and the actual trajectories are often the same, the initial error is actually
2e10; 1.8, E, . 0) = 0. Hence from (3.31), E,,,(1)=0.

The problem is to adjust the controller terms (K, K, .A.B,C] so that for any ¢,(¢)

-

Epp (1) asymptotically i.e.

the system states E, (1) approaches the model state
E, (t)-E,,(1)as t—e. Defining the adaptation error ¢, = E,, (1 )}-E,, () and from

(3.28) and (3.30) we obtain the error differential equation as

€, = 0 . e, + 0 0 E, 6 + 0 + 0
0 |. 0 1.
SN AJ s (3:32)

The controller adaptation laws are derived by ensuring the stability of error dynamics

(3.32). The Lyapunov function candidate is chosen as




T . T . « T .

tr

« T -

Ay —8) 04(8,-4, )] +

tr

A=A, ) 0B - A{)] +1r [(A5 ~A ) 0 A~ A )] (3.33)

P, P
1 T2, . .. . .
where tr denotes the trace, P = [ ] is a symmetric positive definite solution of the

Py Py
Lyapunov equation

PD+D'P==0 (3.34)
for a given symmetric positive definite 2n x 2n constant matrix. Q... .04 are arbi-

3 L. - - . »
trary symmetric positive definite constant n x n matrices. [4, ,... ,As'] are functions

of time which will be specified later.

The elements of P are found by substituting D and Q in (3.34), where

-20
Q=[ t 0 ],toyicld

0o -2,
P,=0,0," +0,0,"'D,+0,0,7'D, (3.352)
P,=0,D," (3.35b)
Py= QzDz_l +0,D 1_102‘1- (3.35¢)

Different choices of @, and @, will result in different solutions for P. Letting
0,=G D,zD2 and 0, =(H ~G )D,D, where G =diag (g;)and H = diag (h, ) with

0<g; <h; fori=1,..n we have

GD,’p,+ HD,® GD D,

P= GDD, HD, (3.36)
For D | = diag (w; 2) and D, = diag (2§; w,), we obtain
P,=ldiag(2%,0,°g)) , Py=Idiag(w,’h,)). (3.37)

Differentiating V along the error trajectory (3.32), we have
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V=—clge, +20, [R +QOAO-Q0AO']-2A0"Q0(A0-Ao')+
]+

21 [(Az -py) [-RE’T + 0.0, - QA ] -4, 70,4, -Az‘r)} +

T

{ , AT T
21r (A,-D,)T[-RET+Q,A,-Q,A, ]-A, T0,4,-8,")

Ty, [As _A; ] ‘
( -

T T . . *T .
2triA, [qu + Q40,-0,A, ]—A4 Q4[A4—A4 ]j +

1‘ 7‘ . . ®

\

J +

. T . .. sT . . oe ]
2tr[A5T [qu + QA - QA ]—As Qs [As—As ]

where R is a n x 1 weighted error vector defined as

R=—[P2 P3]ea= [Pz Pa]Epv

=P,E(t)+P,E(1).

must be negative definite. Letting

Q2 [Az‘Az‘] =R ET
. . % 1‘

Q4 [Aa‘Aa ] ==-R q,
. » 1‘

0, [A4"A4 ] =~-R g,
. . W T
Qs [As"As ] =-Rdq, .

V then reduces to

V=celge +20,  R-21r [A,'TR ET] ~21r [AZ'TR E'T]

+21r [A,‘T R da] +21r [A,," R éf] +21r [AS‘TR ide].

(3.38)

(3.39)

AsE,, =0and e, = ~E,,. For the adaptation error e,(t) to vanish asymptotically v

(3.40a)
(3.40b)
(3.40c)
(3.40d)
(3.40e)
(3.40f)

(3.41)
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Choosing
A, =-Qp R (3.42a)
A =0, RE' (3.42b)
A, =0, RET (3.42¢)
A, =—-Q, Raq," (3.42d)
A =-0, R4, (3.42¢)
A =-0, R, (3.42f)

L] *
where [Qo Qs ] are symmetric positive semi definite constant n x n matrices, (3.41)

simplifies to

=-ege, -2R" 0, R-2R"RE" 0," E-2R" R)E" @, E
T . . T ., . T L
-2R"R)q," 0y 4,-2R" RY4, 0 4u-2RT RV, Q5 Gy (343)
which is a negative definite function of e,. Consequently the error differential equation

(3.32) is asymptotically stable; ie. e, (t )0 or E, (t)-E_,, (t) as t—e. From (3.40a)-

(3.40f) and (3.42a)-(3.42f) the adaptation laws are found to be

Ag==0g R -Qq R (3.44a)
A =0, [RET] +Q,°—4-(RET) (3.44b)
dt
A,=0," [RET] +Q, f—(RET) (3.44c)
(4
, _ . d
by=-0;" [qur] -0, ;(qu) (3.44d)
. 2 0,. «d .
A=-0," [qur] -0, ;(qu) (3.44e)
. Gl ed
bs=-0; [Risz] -0s —d;(Rq,,T). (3.441)

It is assumed that the change of the robot model matrices A ,B" and C " in each
sampling interval is much smaller than that of the controller gains which implies that A °,

B" and C" can be treated as unknown and slowly time varying compared with the con-

. . . dA dA . L . .
troller gains. That is for instance —— <« —. This assumption is justified in practice
dt dt
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since the robot model changes significantly in the 1/10 sec. time scale whereas significant
changes in the controller gains occur in the 1/1000 sec. time scale of sampling int.rval.

Using these assumptions on differentiating (3.28b) yields,

-1
Ag=- [A‘] F (3.45a)
A= [A‘]—lkp (3.45b)
A= [A‘]—lkv (3.45¢)
Ay=- :A'.-l(:' (3.45d)
Aj=- :A' -lé (3.45¢)
Ag=- 4 -IA'. (3.45f)

[ o o
In order to make the adaptation laws independent of the robot matrix A the matrices in

(3.44a)-(3.44f) are chosen as

1 [ ] * [ *
Qo="4, @ =5 A ]
} .
Q1=_A.' Q, =0y |A
oy
-1
1 . »
Q,=—A, @, =H, |4
B ;
1 L] [ ] [ [ ]
Q,=—A", 0, =1, |A (3.46)
Ky ) '1
1 . -
QA:TY—A 1 Q4 =Y [A ]
1
1« [.]"
Qs=;‘f" Qs =X, |A
1

where [8, R TR A ,1,] and [82 0Byl Ys s 7\2] are positive scalars. From
(3.44a)-(3.44f) and (3.46) the controller adaptation laws are obtained as

F=8R +8R (3.47a)
. d
K, =0 [RET] + 0y ;(RET) (3.47b)




-36-

K, =B, [RE‘T] +B, 2 wE") (3.47c)
dt
1 d

C=u [qu +Hy ;-(qu) (3.47d)
- t
1. .4d

B = [Réf +1 ;—(Ré,,’) (3.47¢)
- t
] d

A=} [R('if +h ;—(Rc‘if). (3.479)
- t

Substituting for P, and P, from (3.37) in (3.39) we obtain

R(t)=W,D D, E(t)+W, D E(1) (3.48)
where W, = diag (w, ) and W, = diag (w, ) are chosen to reflect the significance of the

position and velocity errors E and E.

From (3.47) the required auxiliary signal and controller gains are

I

F(1)=F(0)+8,R(t)+8,JR(t)dt (3.492)
0
K,(1)=K,(0)+ 0, R(1)E (1) + o, JR(t)E (1)t (3.49b)
]
‘
K,(1)=K,(0)+B,R(tYE (1) +BJR(tYE (¢ ) (3.49¢)
‘0
C(t)=C(0)+mR(1)q, () +mJR(1)q, (2)dr (3.494)
b
B(1)=B(0)+nR(1)4, () +nIRC1)4, (1)de (3.49)
r
ACt)=A) + MR(1)G, () +MJR(1)E, (1)Har (3.499)
0

and the control law is given by (3.26). The reference model (3.30) is reflected only on

the weighted error R(t).
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Example 1 Single link Manipulator

The reduced order slow subsystem is given as a6, +a,0, +a;=-T," where

B,
nB, +—
n

2
ml
a,=|—+nl,

mgl
and a, = —g;sine,. The parameters of the refer-
3n

2n

1Ay =

ence model which reflect the desired performance of the joint angles are chosen to be
o, = 10 rad/sec and &, =1 which yield a reference model D, =100 and D, =20 and
R(1)=0.6D,D,E(t)+32D E(t). The feedforward and feedback controllers are as
given in (3.16) and (3.17) respectively. The total control law in addition to T,, and Ty,
has an auxiliary signal F(t) that is given by

T =F(t1)+Ke (t)+K,é(t)+a,0, +6,0, +C0Q,
where F(t) and the controller gains are given by (3.49a)-(3.49f).

The fast subsystem control law was unchanged from (3.19). The composite con-

woller is given as T, =7,° +T,”.

Example 2 Two link Manipulator

The reduced order slow subsystem is given in (2.26) as M,(q)g +h,(q .4 )=U*. For
sake of simplicity, we assume that n, , n, ,J, and J, are known and nlzJ = n2212 =1L
The parameters of the reference model which reflect the desired performance of the joint
angles are chosen to be w, = w, = 10 rad/sec and §; =&, = 1 which yield a reference
model D, = 100/, and D, =201, and R(t)=0.6D,D,E(t)+3.2D,E(t). The feed-
forward and feedback controllers are as given in (3.21) and (3.22), respectively. The total
control law in addition to T, and T, hasan auxiliary signal F(t) that is given by

U= F(1)+K,e (1) +K,E(1) +AQ, +CQ,
where F(t) and the controller gains are given by (3.49a-3.49f).
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The fast subsystem control law was unchanged from (3.24). The composite con-
trolleris given as U" =U" + U .

The two position trajectories that were tried in the previous (Single link and Two
link Manipulators) section were used in this instance too. The algorithm performs satis-
factorily for the slow and fast subsystems considered separately. When the composite
controller was applied to the full order system the adaptation gains had to be reduced by
nearly ten fold from their corresponding values for the reduced order slow subsystem. In
some of the simulations, parameters were varied from their nominal values. The resuits

of the simulations are discussed in Chapter 5.

In the next chapter, we present the basic concepts of nonlinear and adaptive control
methods. Feedback linearization, passivity based adaptive control method (Slotine and
Li) and adaptive inverse dynamics method (Craig, Hsu and Sastry) are discussed. Con-
trollers for a single link and a two link flexible joint manipulator are developed based on

these schemes.




Chapter 4

Nonlinear Control Methods

In the preceding chapter, we dealt with linear control methods. In this chapter, we
will deal with the nonlinear equations of motion directly and will not try to linearize in
deriving the controller. Essentiaily the nonlinear term in the control law in some sense
would cancel the nonlinearity present in the system such that the overall closed loop sys-

tem is linear.

As in the preceding chapter a fast control law is designed to damp out the lightly
damped oscillations due to joint elasticity. The chosen fast control law is a state feedback

controller and is given as in (3.1).

A composite controller based on the reduced order slow and fast subsystem control
laws is used to control the full order flexible system (2.5)-(2.6), defined by
vt =U"+u”
where the fast variables 1, and 1, are expressed in terms of the slow variables and origi-

nal fast variables when implementing the fast controller U 7,

4.a Feedback Linearization for the Reduced Order System

The controller will reduce the system to a purely inertial system with unit mass.
The controller has two parts. The first part is model based and it makes use of the param-
eters of the system to be controlled. The second part is error driven. It forms error signals
based on the desired and actual trajectories. Since the model based portion of the control
law has the effect of making the system appear as a unit mass inertial system, servo por-

tion is designed as if the system is purely inertial (i.e no friction).




The reduced order rigid body equations of the fiexible joint manipulator are given
by (2.2) as

M,(4,)§, +h, (4,.4,)=U" @D
where M, ( g, ) represents the inertia matrix and 4, (g, , ¢, ) represents Coriolis, centripe-

tal and gravitational forces. The model based portion of the controller takes the form
U” =aU,” +p 42)
where a and p are functions so chosen that when U,,‘.’ is taken as the new input to the
system the closed loop system appears to be an inertial system with unit mass. Letting
o=M,(q,)andP =h, (q,.4,) and applying (4.2) to (4.1) we have the system equations

as

i =0 (4.3)

Equation (4.3) is similar in form to a double integrator system as it represents n
decoupled double integrators. The nonlinear control law (4.2) is called the inverse
dynamics control or computed torque and makes the new system linear and decoupled.

Each input U, ™ can be designed to control a second order linear system. Assuming that
3

. . + » 3 . . . I3
UM. * is a function only of q, and its derivatives, then U, * will affect the 4, indepen-

dently of the motion of the other links. U, " is a function of errors as

.

s .. . ,
U, =G, +K, é+K, e (4.4)

m

where e =g, -4, , K, and K, are the feedback gains. From (4.3) and (4.4), we have the
error dynamics as

e+K, é+K,e=0 4.5)
Figure 6 shows the block diagram of the decoupling and linearizing control system. An
obvious choice for the gain matrices X, and K, are

K, = diage,....0,"] , K, = diag[20,,...20, ] (4.6)
which results in a closed loop system with each joint response equal to the response of a
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Figure 6. Model Based Control Scheme.
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critically damped second order linear system with natural frequency o, .

In a sense, the linearizing control law is an inverse model of the system being con-
trolled. The nonlinearities in the system cancel those in the inverse medci and ihis

together with the servo control law results in a linear closed loop system.

The control law (4.2) requires that the parameters in the dynamic model b= known
precisely. However, in any physical system there is a degree of uncertainty regarding the
values of various parameters, more so in the case of a robot carrying unknown loads.
Therefore it is more reasonable to assume thar the nonlinear controller is of the form

US=0U, " +f 4.7)
where .=M,(q,), B =#,(q,.4,) and M, and 4 represent the nominal or computed
versions of M, and h, respectively. The uncertainty in the modeling is given by

AM =M, (q,)-M,(q,) ,8h=h (q,.4)-h(q .4) (4.8)
With the nonlinear control law (4.7) the system reduces to

M G +h =MU," +F

r

that can be expressed as

* - Py . -1
MM -nU,” + M A, (4.9)
* - - * .
DefiningM =M I,M, —1)and letting U,, * =4, +K, é + K, e as in (4.4), we have the

g, =1

error dynamics as

E+K,é+K e =-M U, " ~M Ak (4.10)
Equation (4.10) is a coupled nonlinear system and therefore it is not obvious that the sys-
tem is stable. Changing the gains is not one of the options as the right hand side of the
error dynamic equation (4.10) is a nonlinear function of U, . By adapting the controller
gains the mismatch in modeling can be overcome, thus reducing equation (4.10) to a
homogeneous one. Two adaptive nonlinear control schemes are discussed in the next two
sections to remedy these difficulties. First we apply the results so far to a single link and

a two link flexible joint manipulator.

. 8 e ety AEEI AN PO s A= NP a g SR ey
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Example 1 Single link Manipulator

The reduced order slow subsystem is given by (2.20) as

a.‘(.)', + azé, +a3=—Tm" 4.11)
mi* r B, mgl
wherea, = |— +nJ, |,a,= lan + — | and @, = —sin6,. The controller is chosen
3n n 2n
as
-1,°=aT,, '+ (4.12)

wherea=a, ,p=a0, +a;,T,, =0, +K, é +K,eande=0,-6,.X andK, are the
feedback gains.
The fast subsystem is given by (2.21). The fast subsystem torque is chosen as
1,0 =Kn +K,m, (4.13)
where 1, and n, are the new fast variables defined by (2.10) and K, and K, are constant
gains. The composite controller used to control the full order system is given by
T =T, +T,’ with the necessary substitutions made for n, and n, in terms of 6, and 6,

as described in the previous chapter.

Example 2 Two link Manipulator

The reduced order slow subsystem is given by (3.20). The controller is chosen as

U'=aU,” +B (4.14)
where a=M, ,B=h ,U, =g, +K,é +K,eande =g, -q.K, and K, are 2x 2 feed-

back gain matrices.

The fast subsystem is given by (2.27)-(2.28). The fast subsystem torque is chosen as

. n
U =k [n

+K
pr n21

an]
g (4.15)
7




where 1, and n,, are the fast variables and e1,, = n;,, 7, =1n,,and K, and K, are 2 x
2 constant matrices. The composite controller used to control the full order system is
givenbyU = U’ + U’

Two position trajectories were tried in both examples- a slowly time varying

) ¢ ¢

a_¥ 03 , 04 . . . .
0,=— ll+6e -8e ] which attains a constant value after some time and a continu-

ously time varying trajectory Gf' =Sin(t)—Cos (2t). The algorithm performs satisfactorily
for the slow and fast subsystems considered separately. In some of the simulations,
parameters were varied from their nominal values. The composite controller was then

applied to the full order flexible system and the results are discussed in chapter 5.
4.b Passivity Based Control Methods for the Reduced Order System

In this section we present, the algorithm of Slotine and Li [1,2] that exploits the skew
symmetry property of the robot equations of motion matrices and vectors. Unlike the
feedback linearization scheme discussed in the previous section, this algorithm does not
lead to a closed loop linear system even in the ideal case when all parameters are known
exactly. The main motivation for this scheme as will be shown is that it does not require
measurement of the manipulator acceleration nor does it require inversion of the inertia

matrix.

The dynamics of the reduced order rigid manipulator is given by (2.2) as

M. (q,)q, +h (4.4 )=U"
where A, represents the Coriolis, centripetal and gravitational torques. We write A, as

hr(qr‘qr)zcr(qr'ér)ér+gr(qr) (416)
where C, (q,.4,)q, represents the Coriolis and centripetal torques and g (¢, )

represents gravitational torques. Hence the reduced order model is now given by
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Mr(qy)q-y +Cy(qr 'q'r)q.r +gr(qr )= U"‘l (4'17)
It is possible to define C, (though the centripetal and Coriolis vector is uniquely defined)

such that the matrix M, — 2 C is skew symmetric [1,2).

Let P, be a constant m dimensional vector containing the unknown parameters and
P, be its time varying estimate. Let M, , C, and £, be the estimates of M, , C, and g, .
Because of the linear parametrizability of the nonlinear fuactions characterizing the
robot equations of motion, we have
M, (4,4, +C (4,.4,),+&(4)=Y(4,.4, .4, .G )P, (4.18)
where P, = P, - P, is the parameter estimation error and Y is a n x m matrix independent
of the parameters called the regressor. (},' is defined in terms of the desired velocity and
is introduced to guarantee the convergence of the tracking errors to zero and is given by

q'” = q’d _A; qr (4.19)
with A, being a positive definite matrix, and ¢, , the position tracking error is defined by

g =q, -9, (4.20)
The control law for (4.17) is now chosen as

U =M,§ +C ¢ +8 -K,5, d21)
where K, is a positive definite matrix and S, is a measure of tracking accuracy defined
by

S, =4, -4, . (4.22)
Figure 7 shows the structure of the controller. Substituting (4.21) in (4.17) and cal-
culating §, in terms of S, we have
M, S, +C,S, +K, S, =(M,~M)j+(.-C)qg, +(& —g) (4.23)
which on using (4.18) reduces to
M, S, +C,S, +KyS, =YP,. (4.24)
The update law for adjusting the parameters may now be obtained by selecting the

Lyapunov function candidate as
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1 1 -1 -
v(t)=—S"M, s, +=P 1,7, (4.25)
2 2
Differentiating V (1) along the trajectories of (4.17) yields
. . 1 . - -]
V(1)=SM,S, +—s'm, s, +P T, P (4.26)
2
Substituting for M, S, from (4.24), we have
. . 1 . - -1z
V(1)=S] [Y P,-C,S, -K, s,] +—5'm,s,+ 1,"P,. 4.27)
2
Rearranging and using the skew symmetry property M, — 2C, =0, we get
V(t)=-8Tk, S, +B" [r," P +Y" s,] (4.28)
where T, is a constant positive definite matrix. Letting

P,=-T,Y"s, (4.29)
(4.28) reduces to

V(1) = =Sk, §,. (4.30)

V(1) is lower bounded by zero and V(¢ )<0. Equation (4.30) implies that S, is bounded
and converges to zero as t—e. Therefore, as long as the desired trajectories g, , 4, and

g, are bounded, the tracking errors must converge to zero.

Example 1 Single link Manipulator

The reduced order slow subsystem is given by (4.11). Since the coefficients of (4.11) are
all constants, skew symmetry property cannot be used to prove stability. Hence the con-

trol law for (4.11) is chosen as

T, =46, + 8, + dy5ing, ~K,,S, | @431)

instead of

TS =- [d,é, +d,0, + d,sin6, -Kd,s,] (4.32)

m
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T
as suggested by (4.21), where F,:= [d‘ d, d, ] is the estimate of the parameter vec-

T
tor P := [al a, a, ] » K, is a positive constant gain and S, is a measure of tracking

accuracy defined by

S, =6,-6,. (4.33)
0, is defined in terms of the reference velocity and is introduced to guarantee the con-
vergence of the tracking errors to zero and is given by

6, =6,-A,0,. (4.34)
with A, a positive constant and the position tracking error is defined by

Substituting (4.31) in (4.11) and calculating 0 ; in terms of S‘, we have
d-a,

“153 +K, S, = [ ) é, sing, ] d,-a, (4.35)

r
d4-a,

The update law for adjusting the parameters may now be obtained by selecting the

Lyapunov function candidate as
d\—a,
3

1 1
V(t)=—S§,a,5, +—[d,—a, d,-a, d,-a, ] T, |d,—a, (4.36)
2 2

dy-a,
where T, is a constant positive definite matrix.  Differentiating V along the trajectories

of (4.11) yields
d\—a,
V=as,s, + [&, 4, ég] r, |4,-a,

dya,
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By substituting for a,S, from (4.35) and selecting

él = r”"s:é"

dy=-T,;"'5,6,

dy=-T,,”'s,sing,
we have V =S, K, §, <0. V(t) is lower bounded by zero, and V(t)<0. Proceeding in a
similar manner as in the previous section it can be shown that as long as the desired tra-
jectories 8,8 , and 6, are bounded, tracking errors must converge to zero.

As in the preceding chapter a fast controller is designed to damp out the lightly
damped oscillations due to the joint elasticity. Instead of a state feedback controller, an
adaptive fast controller is designed for the fast subsystem identical in approach to the

slow subsystem. The Lyapunov function candidate for the fast subsystem is chosen as

I 1r. . iag
w<:>=;s,b,sf+;[b,-b, byb, | T . 437)
where b, =ezn.lm y by = ——3; + ]n.lm and T, is a constant positive definite
ml nJ,
matrix. Choosing the control as
T = [b‘,ﬂ,, +b‘2n,—1<dfs,] (4.38)

and the adaptation laws to be

Sy =TS, i,

by==T,;'S, 0,
we have W =-S, (K,)S, <0 where K, is a positive constant gain, S, =1, -1,,
M,y =Ngy = A M) and 1l =1, -n,,. Since W(t) is lower bounded by zero, and W (1)<0 and
as long as the desired trajectories n,,.1,, and 1i,, are bounded, using the same arguments

as earlier it can be shown that tracking error measures must converge to zero.
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The composite controller used to control the full order system is in the form of
T, =T, + Tmf with the required substitutions made for n, and 7, in terms of the slow

variables and fast variables.

Example 2 Two link Manipulator

The reduced order slow subsysten ic given by (2.26) as M,(q )j +k.(q .4 )=U’. This

can be rewritten as

M, (q)§+C,(q.4)4+8,(q)=U’ (4.39)
where
ey + n m
M = ntnydy szz ].C,=0,
L M myu+nyJ,
F(mllc, + m,l,)gcos(qg,) 4, (4.40)
&= mzlczgcos(‘h) 4= q3 '

The skew symmetry property M, ~2C, =0 holds in this case. We assume for the sake of

simplicity that n,, n, , J, and J, are known and n,z.l 1 = nzz.lz = 1. Substituting these

values in (4.40), we have M, and ¢ which are the estimated values of M, and g, as

1+P, P,
d
P, 1+p,| P&

M - P, cos(q,)

r

~ |P4cos(gy)

estimated parameters. The controller is now chosen as

1+P, P, ,  |Paqcos(qy)
q + -K,S, (4.41)
P, 1+P, P cos(q,)

s Uls
U =

5

where §' =g, -A, (§~4,)and S, = ¢ -4, + A, (g —q,)- K, is a positive definite matrix
and A, =diag (), ,2,)>0. The parameters are adjusted according to the adaptation law

(4.29) which is given by

P=-TY'S§ (4.42)
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owroLr

49y 45 o cs(q) 9 ,
= i ] itive definite

where Y 0 4/ g’ O os(gy) with T, a symmetric positiv

matrix.

In the control of a single link flexible joint manipulator, numerical simulations sug-
gest that a feedback fast controller is less susceptible to changes in € when compared to
an adaptive fast controller. Hence for the two link flexible manipulator we chose a feed-
back fast controller instead of an adaptive fast controller. The fast subsystem is given by

(2.27)-(2.28). The fast subsystem torque is chosen as

n M
v =k, “} +K, [ '2] (4.43)
M2 N»

where 1;, and n,, are the fast variables and en,, = 1, , €,, =N, and K, and K, are 2x

2 constant matrices. The composite controller used to control the full order system is
. s f
givenbyU =U +U’".

The two position trajectories that were used to simulate the system using feedback
linearization controller were tried here too. The algorithm was found to perform satis-
factorily for the slow and fast subsystems considered separately. In some of the simula-
tions, parameters were varied from their nominal values. Then the composite controller
was applied to the full order flexible system. The simulation results are discussed in

Chapter 5.

4.c Inverse Dynamics Method for the Reduced Order System

In this section we present, the algorithm of Craig, Hsu and Sastry [3,4]. Unlike the
algorithm of Slotine and Li discussed in the previous section, this method requires the
measurement of the manipulator acceleration and inversion of the inertia matrix. The

acceleration can be usually estimated from the velocity.




-52-

The reduced order rigid body equations of the flexible joint manipulator are given

by (4.1). To control the manipulator, the fellowing control law is chosen

. U‘3=Mr(qr)li, +If,§q,.¢),) (4.44)
where P,:= [M, A, ] is estimate of P,:= [M, h, ] and §, is defined as

dr‘ = q.d + KVE + KpE (4°45)
where E is the position error defined as E=¢, ¢, and K, and K, are positive diagonal

gain matrices that are chosen to give desired transient characteristics. Figure 8 shows the
structure of the controller. This control strategy requires (as does the feedback lineariza-
tion and Slotine and Li’s control methods) that the desired trajectory be twice continu-
ously differentiable. Substituting (4.44)-(4.45) in (4.1) and after simple algebraic mani-

pulation yields

E+KE+KE =M, |4, +, ] (4.46)
where M, =M_—M, and h, = h, ~h_ represent the errors in the parameters estimates of
(4.1). Equation (4.46) may be written as

E+KE+KE=M,YP, (4.47)
where Y is a matrix of functions known as regressor and P, = P, — P, is a vector contain-
ing the parameter estimation error. From the right hand side of (4.47) it follows that M,
must remain nonzero during the adaptation interval. The adaptive law will essentially
compute the appropriate changes in parameter estimates as a function of a filtered servo

error which is given by E,| = E +0E where ¢ = diag (¢,..... ¢,) and is chosen such that the

5+0
transfer function ——2————1—-———- is strictly positive real. The filtered error equation for
s+K, S + K,
] 4

the entire system in state space can be obtained as

X=AX+BM'YP
E,=C'x (4.48)
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Figure 8. Inverse Dynamics Adaptive Control Scheme.
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where

E
X:"f L A=
E

i) o] e ]

We now choose the Lyapunov function candidate as
5 T s T -l <
V(X,P)=X pX+P, TP, (4.49)

with I" = diag (T ,...I, ), T; >0and where p = diag (p, .....p, ),p, >0 is the positive
definite solution of the Lyapunov equation

ATp+pA=-0 (4.50)
for a given positive definite matrix Q =diag(Q, ,....Q, ). Differentiating V with respect to
time along the trajectories of (4.46) gives

V=X"px+x pX +B, 1P + P 17P,. 4.51)
Substituting for)__? from (4.47), we have

Vex"(ATp+pd)X +25, 176 +285"Y" M, E, (4.52)

Substituting for ( ATp + pA) from (4.50), we have
Vv=-x"0x+257{r'P, +Y' M E, ] (4.53)

Letting
: T ~ -1

P, =-TYM, E, (4.54)
Equation (4.53) reduces to V =-XTQX which is negative semi definite. Since V(t) is
lower bounded by zero and V(1) €0, both the position and velocity tracking errors must
converge to zero. Since P, = P, - F_, we now have P", = -l;’, , and so the adaptation law

may be expressed as

P,=TY"M,E,. (4.55)




Example 1 Single link Manipulator

The reduced order slow subsystem is given by (4.11). The controller is chosen as
. ~T, =48, +d8,+ dying (4.56)
where P:= [d, d, d, ] is estimate of P:= [a, a, a,] and 6, isdefined as

L d L4

6, =0, +KE+K,E.
E is the position error defined as E=6, -6, and K, and K, are constants that are chosen

to give desired transient characteristics. The adaptation laws are given by

P =1r"a'E, (4.57a)
where
6,
v={ 8, | (4.57b)
sin(8,)

E, is the filtered servo error defined as

E =E +¢E (4.57¢)

. . 5+ . . .
where ¢ is so chosen such that the transfer function S is strictly positive

2
s7+K, S +K,
real.
An adaptive fast subsystem torque is designed based on this scheme as was done for

the passivity based scheme. The composite controller ased to control the full order sys-

tem isgivenby T, =T,  +T,7.

Example 2 Two link Manipulator

The reduced order slow subsystem is given by (4.39). As in the previous section, we

assume for the sake of simplicity that n,, n, ,J, and J, are known and n, J 12 =ny,J 22 =1




and substituting these values in (4.40), we have M, and §, which are the estimated values

1+P, P, ] and ¢ = [P4COS(¢I|)
r

of M and g asM = =

} where P, = [P,,...P,)is
the vector of estimated parameters. The controller is now chosen as

v’ ]
u )

W . . 9
where§ =g, +K, E +K, E with g = [q3

s

Uu = (4.58)

1+P Py | . [|Pycosiqy)
P, 1+P, q* P g cos(q,)

] and position error E is given by E =g, - ¢ .

The adaptation law is given by

.
A -1

=TY'M,"E, (4.59)

ql ‘13 0 cos(g 1)
where Y = with T, a symmetric positive definite matrix
0 G, G4 cos( q3)

and E, is given by (4.57c).

The fast subsystem is given by (2.27)-(2.28). The fast subsystem torque is chosen as

n n
v’ -K,[ ”] +K, ”} (4.60)
n 22

where 1, and n,, are the fast variables and e, =n,;, , Ny, =Ny, M;, and Ny, are their
derivatives respectively and K, and K, are 2 x 2 constant matrices. The composite con-

troller used to control the full order system is given by U = U* + U’

In the simulation the same trajectories as in the previous instances were tried here.
After verifying that the algorithms performed satisfactorily for the reduced order systems
considered separately, the composite controller was applied to the full order flexible sys-

tem. The simulation results are discussed in Chapter 5.

In the next chapter, we present the simulation results for a single link and a two link

flexible joint manipulator controlled by the algorithms presented in Chapters 3 and 4.




Chapter 5

Numerical Simulation

Two position trajectories were used in our simulations. The first one being an

—1/03 _ —3/0.4]

T
exponential slowly time varying trajectory 9,4 =— [ 1+6e 8e which
4

attains a constant value after some time. The second is a continuously time varying fas-

ter trajectory Bld = sin(t) — cos(2¢ ) when compared with the first one.

The nominal values used in the simulation of the single link flexible joint manipula-
tor are: m = 10 kg, | = 3 meter, B,, = 0.015 N.m/rad. sec”’, B, =36 N.mirad. sec”’,
J, = 0.04 kg-m”,n=100, p = €* = 0.01 and g = 9.8m/sec’.

The nominal values used in the simulation of the two link flexible joint nanipulator

2

are: my=my=lkg, I, =1, = 1kg=m’, n 2l = n2l, = lkg-m®, I, = I, = 1 meter

1, =1,=05meter,K, =K,=100and g = 9.8m/sec”.
5.a Reduced Order Model

Linear Control Methods

PD Nonadaptive Control Scheme

This scheme was discussed in Section 3.a. Though the equations of motion describ-
ing the robot motion are nonlinear and coupled, this local linearization scheme provides
an approximate and simple solution to the robot control problem that can be easily imple-
meniad in practice.

The reduced order models of a single link manipulator given by (2.20) and a two
link manipulator given by (2.26) were simulated using the nominal values given earlier

with control laws given by (3.18) and (3.23) respectively. The steady state position and
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velocity errors were reduced to zero, the position response of which is as shown in figure
9. However when the parameters of the system were changed from their nominal values
by 20% (that is the uncertainty in the system parameters were assumed to be 20%), the
steady state position error did not converge to zero though the system remained stable as
shown in figure 10. This ervor is due to the mismatch in the controller and system param-

eters.

PD Adaptive Control Scheme

This scheme was discussed in Section 3.b. In this case though the same controller is
used as in the previous case, the coefficients of the controller are updated by the adaptive

laws given by (3.49a)-(3.49f).

On simulating the reduced order models of a single link and a two link flexible joint
manipulator using the nominal values, the steady state position and velocity errors were
reduced to zero as shown in figures 11 and 12. The difference in performance between
the adaptive and the nonadaptive schemes is that when the parameters of the system were
changed from their nominal values by 20% the steady state position and velocity errors

are reduced to zero for the adaptive scheme as shown in figures 13 and 14.

Nonlinear Control Methods

Feedback Linearization Scheme

As was described in Section 4.a, this nonlinear feedback linearization scheme glo-
bally linearizes the nonlinear equations of motion by cancelling the nonlinearities such

that the overall closed loop system is linear.

The reduced order models of the single link flexible joint manipulator given by
(2.20) and the two link flexible joint manipulator given by (2.26) were simulated using

the nominal values given earlier with control laws given by (4.12) and (4.14) respec-
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Figure 9. The position response of the reduced order slow subsystem (single link flexible
manipulator) using linear non-adaptive control of Seraji. — denotes the desired

trajectory and - - denotes the actual trajectory.
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Figure 11. The position response of the reduced order slow subsystem (two link flexible
manipulator) using linear non-adaptive control of Seraji. — denotes the desired
trajectory, - - denotes the response of the first link and ... denotes that of the second link.

1 b 3

p
(]

d
y—t
-
o —
X
i

q'lvq.3a“dd

o
o

o o
- o
—— e T T e ‘JJ-:..;L..'_'

1 - 3 435 ;
i ) time in sec.
Figure 12. The velocity response of the reduced order slow subsystemn (two link flexible
manipulator) using linear non-adaptive conwol of Seraji. — denotes the desired
trajectory, - - denotes the response of the first link and ... denotes that of the second link.
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Figure 13. The position response of the reduced order slow subsystem (two link flexible

manipulator) using linear adaptive control of Seraji. The uncertainty in the parameters is

20%. — denotes the desired trajectory, - - denotes the response of the first link and ...
denotes that of the second link.
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Figure 14. The velocity response of the reduced order slow subsystem (two link flexible
manipulator) using linear adaptive control of Seraji. The uncertainty in the parameters is

20%. — denotes the desired trajectory, - - denotes the response of the first link and ...
denotes that of the second link.
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tively. The steady state position and velocity errors were reduced to zero as shown in
figures 15 and 16. However when the uncertainty in the parameters of the system were
assumed to be 20%, the steady state position error did not converge to zero though the
system remained stable as shown in figures 17 and 18. This error is due to the mismatch

in the controller and system parameters.

Passivity Based Control Methods

This scheme described in section 4.b, exploits the skew symmetry property of the
robot dynamics and does not lead to a closed loop linear system. The main advantage of
this scheme over other schemes is that it does not require measurement of manipulator

acceleration or inversion of inertia matrix.

The control laws for the reduced order single link and two link flexible joint mani-
pulators are given by (4.32) and (4.41) respectively. On application of these control laws
to the reduced order models obtained with nominal values the steady state position and
velocity errors were reduced to zero as shown in figures 19 and 20. When the control
laws were applied to the models whose parameter uncertainty was assumed to be 20%,
the steady state position and velocity errors were reduced to zero due to the adaptation

process as shown in figures 21 and 22.

Inverse Dynamics Method

Unlike the nonlinear passivity based adaptive control scheme, this method requires

the measurement of the manipulator acceleration and inversion of inertia matrix.

The control laws for the reduced order single link and two link flexible joint mani-
pulators are given by (4.56) and (4.58). When these control laws were applied to the
“nominal” reduced order models, the steady state position and velocity errors were
reduced to zero as shown in figures 23 and 24. They were equally effective when applied

to models with 20% parameter uncertainty as can be seen from figures 25 and 26.




-63 -

0 1 - 3 4 3 6 7 8 5 10

time in sec.
Figure 15. The position response of the reduced order slow subsystem (two link flexible
manipulator) using non-linear non-adaptive controller (feedback linearization). —
denotes the desired trajectory. - - denotes the response of the first link and ... denotes that
of the second link.

(V¥)

"

s 6 7 8 5 w0
Figure 16. The velocity response of thgx?:diur:::;cbrdcr slow subsystem (two link flexi
manipulator) using non-linear non-adaptive controller (feedback lim.aarization;:.)u lﬂf
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Figure 17. The position response of the reduced order slow subsystem (two link flexible
manipulator) using non-linear non-adaptive controller (feedback linearization). The
uncertainty in the parameters is 20%. — denotes the desired trajectory, - - denotes the
response of the first link and ... denotes that of the second link.
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Figure 18. The veloci e remes
. . velocity response of the reduced order slow subsystem (two link flexi
manipulator) using non-linear non-adaptive controller (fecdba)c’:k lincarization).cxx'lt')li:

uncertainty in the parameters is 20%. — denotes the desired trajectory, - - d
response of the first link and ... denotes that of the second link. jecion. enotes the




-65 -

0.8

2 3 4 b 6 n 3 9 10
time in sec.

Figure 19. The position response of the reduced order slow subsystem (two link flexible

manipulator) using non-inear passive adaptive control of Slotine and Li. — denotes the

desired trajectory, - - denotes the response of the first link and ... denotes that of the

second link.
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Figure 20. The velocity response of the reduced order slow subsystem (two link flexible
manipulator) using non-linear passive adaptive control of Slotine and Li. — denotes the

desired trajectory, - - denotes the response of the first link and ... denotes that of the
second link.
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Figure 21. The position response of the reduced order slow subsystem (two link flexible
mznipulator) using non-linear passive adaptive control of Slotine and Li. The uncertainty
in the parameters is 20%. ~— denotes the desired trajectory, - - denotes the respunse of
the first link and ... denotes that of the second link.
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Figure 22. The velocity response of the reduced order slow subsystem (two link flexible
manipulator) using non-linear passive adaptive control of Slotine and L.i. The uncertainty
in the parameters is 20%. — denotes the desired trajectory, - - denotes the responsc of
the first link and ... denotes that of the second link.
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Figure 23. The position response of the reduced order slow subsystem (two link flexible
manipulator) using non-linear adaptive control of Craig et al. — denotes the desired

trajectory, - - denotes the response of the first link and ... denotes that of the second link.
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Figure 24. The velocity response of the reduced order slow subsystem (two link flexible
manipulator) using non-linear adaptive control of Craig et al. — denotes the desired
trajectory, - - denotes the response of the first link and ... denotes that of the second link.
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Figure 25. The position response of the reduced order slow subsystem (two link flexible
manipulator) using non-linear adaptive control of Craig et al. The uncertainty in the
parameters is 20%. — denotes the desired trajectory, - - denotes the response of the first
link and ... denotes that of the second link.
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Figure 26. The velocity response of the reduced order slow subsystem (two link flexible
manipulator) using non-linear adaptive control of Craig et al. The uncertainty in the
parameters is 20%. - denotes the desired trajectory, - - denotes the response of the first
link and ... denotes that of the second link.




-69-

The fast subsystem was simulated and found to be stable as shown in figure 27. In
all simulations involving the two link flexible joint manipulator, we assumed for the sake
of simplicity that the gear ratio and actuator inertia are known and n ,21 = n22.l =L

5.b  Full Order Model

When the rigid control laws (linear/ nonlinear, nonadaptive/ adaptive) that were
developed in Chapters 3 and 4 based on the reduced order model were applied to the full
order system, it resulted in instability. As can be seen from figures 28 and 29, the flexible
system is unstable. Therefore a fast controller is added to the rigid controller to ensure
asymptotic stability of the full order system. A state feedback fast controller was used to
damp out the oscillations due to joint flexibility. The motivation for using a state feed-
back controller instead of an adaptive control is that as the perturbation parameter £ was
increased from the nominal value of € = 0.1, it was found that with a state feedback fast
controller stability of the full order system was possible at a higher value of € whereas
stability was not possible with an adaptive fast controller. A composite controller is
designed based on the reduced order slow and fast subsystem control laws to control the

full order flexible system (2.5)-(2.6) that takes the form

U=U(g.9)+ U my.
The rigid body dynamics were easily simulated using MATLAB. However the full

order system dynamics could not be simulated on MATLAB because they were too stiff.

Hence the simulations were carried out on VAX/VMS computer using IMSL subroutines.

Linear Control Methods

PD Nonadaptive Control Scheme

The full order models of single link manipulator given by (2.19a)-(2.19d) and a two

link flexible joint manipulator given by (2.24)-(2.25) were simulated with composite con-
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Figure 27. The response of the fast variabl:s (single link manipulator).
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Figure 28. The position response of the full order system (two link flexible manipulator)
using only the slow controller. The perturbation parameter is 0.1.
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Figure 29. The velocity response of the full order system (two link flexible manipulator)
using only the slow controller. The perturbation parameter is 0.1.




7.

trol laws using the nominal values given earlier. The slow component of the composite
controller for the single link manipulator is given by (3.18) and the fast component by
(3.19). For the two link manipulator the slow component is given by (3.23) and the fast
component by (3.24). Figures 30 and 31 show the unstable position and velocity
response for the two link flexible joint manipulator. However when the single link flexi-
ble joint manipulator was simulated using the same control laws, the steady state position
and velocity errors were reduced to zero as shown in figures 32 and 33. The explanation
for this behavior is that the dynamics of the two link manipulator is more nonlinear when
compared to that of the single link manipulator. Figures 34 and 35 show the response of
the single link flexible joint manipulator when € was increased to 0.2 from its nominal
value of 0.1. When the parameters of the system (single link manipulator) were changed
from their nominal values by 20% the steady state position error did not converge to zero
though the system remained stable as shown in figures 36 and 37. This error is due to the

mismatch in the controller and system parameters.

PD Adaptive Control Scheme

In order to overcome the drawback due to the mismatch between the controller and
system parameters, keeping the controiler the same as in the previous case, we update the
coefficients of the controller by the adaptive laws given by (3.49a)-(3.49f). The gains
associated with the adaptive laws had to be reduced by nearly ten fold from their
corresponding values for the reduced order model for successful tracking. On simulating
the "nominal” fuli order models of the single link and two link flexible joint manipulators,
the steady state position and velocity errors were reduced to zero as shown in figures 38
and 39. Figure 40 and 41 show the response of the two link flexible joint manipulator
when € was increased to 0.2 from its nominal value of 0.1. Due to the adaptation pro-
cess, the system responds equally well when the parameters of the system have been

changed by 20% as shown in figures 42 and 43.
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Figure 30. The position response of the full order system (two link flexible manipulator)
using linear non-adaptve control of Seraji. The perturbation parameter is 0.1. — denotes
the de;ilr.ii trajectory, - - denotes the response of the first link and ... denotes that of the
second link.
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Figure 31. The velocity response of the full order system (two link flexible manipulator)
using linear non-adaptive control of Seraji. The perturbation parameter is 0.1. — denotes
the desired trajectory, - - denotes the response of the first link and ... denotes that of the
second link.
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Figure 32. The position response of the full order system (single link flexible

manipulator) using linear non-adaptive control of Seraji. The perturbation parameter is
0.1. — denotes the desired trajectory and - - denotes the actual trajectory.
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Figure 33. The velocity response of the full order system (single link flexible
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manipulator) using linear non-adaptive control of Seraji. The perturbation parameter is

0.1. — denotes the desired trajectory and - - denotes the actual trajectory.
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Figure 34. The position response of the full order system (single link flexible
manipulator) using linear non-adaptive control of Seraji. The perturbation parameter is
0.2. — denotes the desired trajectory and - - denotes the actual trajectory.
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Figure 35. The velocity response of the full order system (single link flexible
manipulator) using linear non-adaptive control of Seraji. The perturbation parameter is

0.2. — denotes the desired trajectory and - - denotes the actual trajectory
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Figure 36. The position response of the full order system (single link flexible
manipulator) using linear non-adaptive conwol of Seraji. The uncertainty in the
parameters is 20%. The perturbation parameter is 0.1. — denotes the desired trajectory

and - - denotes the actual trajectory.
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Figure 37. The position response of the full order system (single link flexible
manipulator) using linear non-adaptive control of Seraji. The uncertainty in the
parameters is 20%. The perturbation parameter is 0.1. — denotes the desired trajectory
and - - denotes the actual trajectory.
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Figure 38. The position response of the full order system (two link flexible manipulator)
using linear adaptive control of Seraji. The perturbation parameter is 0.1. — denotes the
desired trajectory, - - denotes the response of the first link and .. denotes that of the
second link.

-

N
I.JI'- '\(’ 4
i A '{/‘
Yoo 15 )
o ! :
] i i
sosili i \ ]
- f\f e
0.5 A o

0 1 2 3 4 5 6 7 8 9 10
_ time in sec.
Figure 39. The velocity response of the full order system (two link fiexible manipulator)
using linear adaptive control of Seraji. The perturbation parameter is 0.2. -— denotes the
desxreéi li:;gectory, - - denotes the response of the first link and ... denotes that of the
second link.
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Figure 40. The position response of the full order system (two link flexible manipulator)
using linear adaptive control of Seraji. The perturbation parameter is 0.2. — denotes the
desired trajectory, - - denotes the response of the first link and ... denotes that of the

second link.
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Figure 41. The velocity response of the full order system (two link flexible manipulator)
using linear adaptive control of Seraji. The perturbation parameter is 0.2. — denotes the
desueg l;rrfgectory, - - denotes the response of the first link and ... denotes that of the
secon .
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Figure 42. The position response of the full order system (two link flexible manipulator)
using linear adaptive control of Seraji. The uncertainty in the parameters is 20%. The

perturbation parameter is 0.1. — denotes the desired trajectory, - - denotes the response
of the first link and ... denotes that of the second link.
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Figure 43. The velocity response of the full order system (two link flexible manipulator)
using linear adaptive control of Seraji. The uncertainty in the parameters is 20%. The
perturbation parameter is 0.1. — denotes the desived trajectory, - - denotes the response
of the first link and ... denotes that of the second link.
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S.c  Comparison of Linear Control Methods

The main feature of the nonadaptive linear control scheme described in Section 3.a
is its simplicity in heing implemented in practice. However, when there is a mismatch
between the robot model and the feedforward controller, particularly when all physical
parameters of the manipulator cannot be measured accurately, the nonadaptive controller
leads to a steady state error as shown in figure 13. This drawback is overcome by adapt-
ing the controller gains as described in Section 3.b and as shown in figure 16. With the
update laws there are now additional differential equations to be solved, increasing the
complexity of the system. As a direct consequence the time taken for numerical simula-

tion is also increased.

Norlinear Control Methods

Feedback Linearization Scheme

The "nominal” full order models of the single link flexible joint manipulator given
by (2.19a)-(2.19d) and the two link flexible joint manipulator given by (2.24)-(2.25) were
simulated with composite control laws. In the case of the single link flexible joint mani-
pulator the slow component of the composite controller is given by (4.12) and the fast
component by (4.13). For the two link flexible joint manipulator the slow comporent is
given by (4.14) and the fast component by (4.15). On simulating the "nominal” full order
models, the steady state position and velocity errors were reduced to zero as shown in
figures 44 and 45. However when the uncertainty in the parameters of the system was
assumed to be 20%, due to the mismatch in the controller and system parameters, the
steady state position error did not converge to zero though the system remained stable as
shown in figures 46 and 47. Figures 48 and 49 show the response of the two link Hexible

joint manipulator when € was increased from its nominal value of 0.1.




"
<o
—

2 3 4 3 6 7 3 9 10

time in sec.
Figure 44. The position response of the full order system (two link flexible manipulator)
using non-linear non-adaptive controller (feedback linearization). The perturbation

parameter is 0.1. — denotes the desired trajectory, - - denotes the response of the first
link and ... denotes that of the second link.
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Figure 46. The position response of the full order system (two link flexible manipulator)
using non-linear non-adaptive controller (feedback linearization). The perturbation
parameter is 0.1. The uncertainty in the parameters is 20%. — denotes the desired
mrajectory, - - denotes the response of the first link and ... denotes that of the second link.
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Figure 47. The velocity response of the full order system (two link flexible manipulator)
using non-linear non-adaptive controller (feedback linearization). The perturbation
parameter is 0.1. The uncertainty in the parameters is 20%. — denotes the desired

trajectory, - - denotes the response of the first link and ... denotes that of the second link.
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Figure 48. The position response of the full order system (two link flexible manipulator)

using non-linear non-adaptive controller (feedback linearization). The perturbation

parameter is 0.2. — denotes the desired trajectory, - - denotes the response of the first

link and ... denotes that of the second link.
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Figure 49. The velocity response of the full order system (two link flexible manipulator)
using non-linear non-adaptive controller (feedback linearization). The perturbation
parameter is 0.2. -— denotes the desired trajectory, - - denotes the response of the first
link and ... denotes that of the second link.



Passivity Based Control Methody

The composite control laws for the full order single link flexible manipulator are
given by (4.32) (slow component) and (4.38) (fast component). For the two link flexible
joint manipulator the slow component is given by (4.41) and the fast component by
(4.43). The adaptive gains had to be reduced by nearly ten fold from their corresponding
values for the reduced order model to ensure successful tracking. On application of these
control laws to the "nominal” full crder models, the steady state position and velocity
errors were reduced to zero as shown in figures 50 and 51. Due to the adaptation pro-
cess, even when the compesite controller was applied to models whose parameter uncer-
tainty was assumed to be 20%, the steady state position and velocity errors were reduced
to zero as shown in figures 52 and 53. Figwes 54 and 55 show the response of the two

link flexible joint manipulator when € was increased from its nominal value of 0.1.

Inverse Dynamics Method

In the case of the single link flexible joint manipulator, the slow component of the
composite controller is given by (4.56) and the adaptive fast component was similarly
obtained. For the two link flexible joint manipulatcr, the slow component of the compo-
site controller is given by (4.58) and the fast component by (4.60). The adaptive gains
had to be reduced by nearly ten fold from their corresponding values for the reduced
order model to ensure successful tracking. As shown in figures 56 and 57, application of
these control laws to the "nominal” full order models, resulted in very good tracking of
the desired trajectory with zero steady state position and velocity errors. When the con-
trol laws were applied to full order models with 20% parameter uncertainty, the steady
state position and velocity errors were still reduced to zero as shown in figures 58 and 59.
Figures 60 and 61 show the resnonse of the two link flexible joint manipulator when €

was increased from its nominal value of (.1.
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Figure 50. The position response of the full order system (two link flexible manipulator)

using non-linear passive adaptive control of Slotine and Li. The perturbation parameter

is 0.1. — denotes the desired trajectory, - - denotes the response of the first link and ...
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Figure 51. The velocity response of the full order system (two link flexible manipulator)
using non-linear passive adaptive control of Slotine and Li. The perturbation parameter
is 0.1. — denotes the desired trajectory, - - denotes the response of the first link and ...

denotes that of the second link.
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Figure 53. The velocity response of the full order s
e and Li.

using non-linear passive adaptive control of Slotin
1s 0.1. The uncertainty in the parameters is 20%. — denote
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Figure 54. The position response of the full order system (two link flexible manipulator)
using non-linear passive adaptive control of Slotine and Li. The perturbaton parameter
is 0.2. — denotes the desired trajectory, - - denotes the response of the first link and ...

denotes that of the second link.
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Figure 55. The velocity response of the full order system (two link flexible manipulator)
using non-linear passive adaptive control of Slotine and Li. The perturbation parameter
is 0.2. — denotes the desired trajectory, - - denotes the response of the first link and ...

denotes that of the second link.
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Figure 56. The position response of the full order system (two link flexible manipulator)
using non-linear adaptive control of Craig et al. The perturbation parameter is 0.1. —
denotes the desired trajectory, - - denotes the response of the first link and ... denotes that
of the second link.
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Figure 57. The velocity response of the full order system (two link flexible manipulator)
using non-linear adaptive control of Craig et al. The perturbaton parameter is 0.1. —
denotes the desired trajectory, - - denotes the response of the first link and ... denotes that
of the second link.
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Figure 58. The position response of the full order system (two link flexible manipulator)
using non-linear adaptive control of Craig et al. The uncertainty in the parameters is
20%. — denotes the desired trajectory, - - denotes the response of the first link and ...
denotes that of the second link.
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Figure 59. The velocity response of the full order system (two link flexible manipulator)
using non-linear adaptive control of Craig et al. The uncerainty in the parameters is
20%. — denotes the desired trajectory, - - denotes the response of the first link and ...

denotes that of the second link.
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Figure 60. The position response of the full order system (two link flexible manipulator)
using non-linear adaptive control of Craig et al. The perturbation parameter is 0.2. —
denotes the desired trajectory, - - denotes the response of the first link and ... denotes that

of the second link.
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Figure 61. The velocity response of the full order system (two link flexible manipulator)
using non-linear adaptive control of Craig et al. The perturbation parameter is 0.2. —
denotes the desired trajectory, - - denotes the response of the first link and ... denotes that
of the second link.
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On application of either linear/ nonlinear, or nonadaptive/ adaptive control laws, the
steady state error in the case of the exponential trajectory was reduced to zero after an
initial transient period during which the fast variables converge to their quasi steady state
values. However, in the case of the time varying sinusoidal trajectory the system tracked
the desired trajectory during the linear portion but the error did not converge to zero
when there was a change in sign of the slope. This error is more apparent in the case of

nonadaptive control laws. The explanation for this behavior is dealt with in Chapter 6.

As € was increased from its nominal value of 0.1 the systern became unstable at a
certain value ot €. This value of € varied for the different control laws considered. Figure
62 shows the position response of the single link manipulator being controlled by Slotine
and Li’s scheme. At the same value of g, the same system being controlied by Craig et
al’s scheme remains stable as showr in figure 63. Figure 55 shows the presence of oscil-

lations at higher values of €

Overall on the face of changes in € and parameters, the nonlinear adaptive control
techniques were found to perform better than nonlinear / linear nonadaptive and linear
adaptive control schemes. Among the two nonlinear adaptive controi techniques con-
sidered, Craig et al’s scheme proved to be more robust to changes in € and parameters

than Slotine and Li’s scheme.

The estimates of the parameters converged to constant values though not neces-
sarily to their true values as shown in figure 64. This is due to the desired trajectory not

being sufficiently rich enough to excite all the modcs of the system[18].

5.d Comparison of Nonlinear Control Methods

Feedback linearization control schemes described in Section 4.a globally linearizes
the nonlinear robot dynamics by employing nonlinear feedback thereby cancelling the

nonlinearities and decoupling the robot dynamics whereas the linear control schemes
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Figure 62. The position response of the full order system (single link flexible
manipulator) using non-linear passive adaptive control of Slotine and Li. The

perturbation parameter is 0.29.
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Figure 63. The posiuon response of the full order system (single link flexible
manipulator) using non-linear adaptive control of Craig et al. The perturbation parameter
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described in Chapter 3 locally linearize the robot model about an operating point.

When the parameters are not known accurately, the controller leads to a steady state
crror in the nonadaptive feedback linearization scheme described in Section 4.a and as
shown in figure 17. However, when an adaptive controller as described in Section 4.b or

4.c is used the steady state error is absent as shown in figures 21 and 25.

The update laws of the adaptive control scheme increase the complexity of the sys-
tem and the amount of computation tirne required to implement the controller. However

these do not make the methods impractical.

The passivity based control schemes described in Section 4.b does not lead to a
linear system in the closed loop. The main advantage of this scheme over that of the
adaptive inverse dynamics method described in Section 4.c is that it dnes not require

measurement of acceleration or inversion of the inertia matrix.

It was found that when € was increased from its nominal value, (in the case of the
single link manipulator) the control law of Slotine and Li using a state feedback fast
controller resulted in an unstable system at £=0.29 whereas Craig, Hsu and Sastry’s at
the same value of € producad a stable system using the same feedback controller as
shown in figures 62 and 63. This suggests that the adaptive inverse dynamics scheme of
Craig, Hsu and Sastry is more robust to changes in elasticity than the passivity based

scheme of Slotine and Li.

In the next chapter, we analyze the stability of the two nonlinear adaptive control

schemes developed in Chapter 4.



Chapter 6

Stability Analysis of Adaptive Systems

In proving the stability of the reduced order system and deriving the adaptive laws,
we made use of different Lyapunov functions. However, in most cases a state feedback
controller was used to damp out the oscillations due to the fast dynamics. Since the fast
subsystem and its controller is common to all the control schemes, the stability properties

of the fast subsystem is first investigated.

The fast subsystem expressed in the slow time scale is given by (2.13a)-(2.13b) as

E‘fh =M, (6.1a)

€N, = (-H +H,+H,-H )M, + (H,—HY U™ (n,my) (6.1b)
where U™ is the torque applied to the fast subsystem in order to stabilize the fast

dynamics. With a state fezdback fast control torque

vl =k, + KM, (6.2)
the fast subsystem expressed in the fast time scale 1=t/¢, is given by

dan,
dt 2
dn,
-d—-— =(-H,+H,+H-H )W, + (H,-H ) Ky + K, myp)
T
or equivalently
d n
4n , [ ’] (6.3)
dt 7
where A, = 0 is a constant matrix, since
P77 |GH +H v Hy-H )+ (H~H DK, (H,-H K, ’

H; ’s are functions of the slow variables that are kept "frozen” in the fast time scale. We
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choose the Lyapunov function candidate for the fast subsystem as
W =n"R 1 (6.4)

n :
where 1) = [’ﬂl] and R, is a positive definite matrix that satisfies the Lyapuno' equation
2

for a given positive definite matrix F. The derivative of W (n) along the trajectories of the

fast subsystem is
Substituting for [A,TRI + R,A,] from (6.5) we get

W=-n Fn<O0. 6.7)
As long as the desired trajectories for the fast variables are bounded, the tracking error

must converge to zero, i.e N 0 as ¢ =, Now let us consider the Lyapunov function of
the slow subsystem. Since the non linear adaptive controi methods considered in Chapter
4, makes use of different Lyapunov functions to prove stability of the reduced order

models, we will consider each scheme separately.

6.a Siotine and Li’s Scheme

The Lyapunov function of the slow subsystem is given by (4.25). It can be rewritten

as

V(q.P, )=i—[]’; Ss] [T‘;l 0 ]

or equivalently as

1
V(H,)=—HQ,H, (6.8)
2
h P, L™ o
where H, = s, and Q, = oM
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Hence

V,V(H,)= % [H,’Qs + Q,H,]

= % [Q_'T +0, ]Hs. 69
Equation (6.9) will be used later when evaluating the interconnection conditions.

Now, we consider the stability of the full order system. Since both the reduced
order slow and fast subsystems have been stabilized by design, intuitively it follows
from the results in {11] and [12] that for sufficiently small perturbation pirameter ¢, the
full order systemn remains stable too. To prove this, the quadratic-type Lyapunov func-
tion candidate proposed in [12] is considered here.

vg. P n)=(-d)V (g ,P)+dW (@)
where V is the Lyapunov function for the slow subsystem (4.25), W is the Lyapunov
function for the fast subsystem (6.4), P, represents the time varying estimation error of

the parameters in the slow subsystem, and d is a positive number chosen as 0 <d < 1.

Computing v along the trajectory of the full order system we have

d
¥ (H, M) = -V VE) F(gne) + —19, Wl g(gme).
€

d
Adding and subtracting (1-d){V,, V(H, )]Tf ,(gm=0,e=0)and —[V“W (n)]Tg,(T\.e ) we get
’ €

V= (l-d)qu,V(H,)]Tf,( qn=0£=0) + (l—d)an,V(H,)JT [f (gme)-f,( q.n=0.£=0)]

d d
+ SV, Wal'g, (ne)+ ~ (VW [s@nerg, (ne)).
€ €

The above algebraic manipulation makes it easier to determine v, since the first
term is computed over the trajectories of the reduced order rigid model with the slow
adaptation law and the third term is computed over the trajectories of the fast subsystem.

Consequently, the first term is reduced to —(1 —d)SxTK 45, and the third term is reduced



-98 -

d
to ——nTFn. To simplify the second and fourth terms in v we need to assume the follow-
£

ing interconnection conditions.

Interconnection Conditions

The first interconnection condition involves the relationship between the full order
system and the reduced order slow subsystem. We have the full order system given by

*gss

(2.5). Using the wransformation Z =Z;, © and substituting for Z,' in terms of n, and

%gss

Z, " we get
G =—H h +H h.)
+(Hy-H,) [n,+(-H,+H2+H3-H S [((H,—H,)h (H(H ~H Dh)y<H—H YU ] ]+HZU'
which on rearrangement yields
fqne =g = [_(H2 — H )(~H +H,+H—H 4)"(112-1714)“72] U™
+ [(H2—Hl)(—Hl+H2+H3—H4)_1(H,—H3)—Hl]h,

+ [(H2—H,)(-H,+H2+H3—H4)"(H2-H4)-H2]h2 +(Hy-H )M, +H, U7 . (6.10)

The reduced order slow subsystem f, is given by (2.8b). From the expressions of

f(gme) and f, (¢ n=0,e=0), we get

f-f = HyH ) n + ", Al 6.11)
Combining (6.9) and ( 6.11) we obtain
v 1= @ + 0, | ¢-s
=S,M, [(Hz—Hl)n, +HU” ] (6.12)

The second interconnection condition involves the relationship between the fast

part of the full order system and the fast subsystem. We have the full order system given




5 A =

by (2.6) or equivalently in the configuration space by (2.9c)-(2.9d). Substituting for Z ,‘

and Z, from (2.11)in (2.9c)-(2.9d) we have

e(1'11-|~z'1 q") =Z ,

€y = ~(H=H)hy + (Hy-H )ny) + (-H (+H y+H 1-H ) (Th‘*zl.w) +(Hy-Hy) Ue(6‘1 3)

Substituting for Z,"* in (6.13) and on algebraic manipulation we get

en, =“2”5i1 =
ey = (-H \+H tHy-H ), + (Hy-H ) U™
or equivalently
. 0 1 0 of [’l;] 2 *gss
) = e = NP
8@M=en= |y iHeH-HY) of N H2—H4]U !

The fast subsystem is given by (2.13a)-(2.13b). This can be rewritten as

et = 0 1., [ 0 ],
EVEEN= N bl 1) o NV |HpH, |
From (6.15) and (6.16) we get
2, "
glgm)—-g,mm)= 0

L)
We have 2, * as

2, = (<H +H+H~H )" [((H,-Hg)h (+(Hy=H h,)+(Hp=H DU ™ ]

=Zl q‘“(q- 'S.T IP-_‘- 9qd .éd véd)

and theref -2
. ez ez, ez*
gss - =
zZ, = = q+ S, + : P+
dt og as, op,
az,"* 3z, * az, "
a; + q + 94

(6.14)

(.15)

(6.16)

(6.17)

(6.18)

6.19)
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Let
9z, ¥ az,“'” az,“’”
pt)= Gy + gy + Gy (6.20)
Then
s azloqu ] aZqusJ . azltq;.r §
Z, % =pt)+ g+ S, + —P,. (6.21)
o as, 0P,
From (4.19), (4.21) and (4.22) we have
g =5-Ad (6.22)
Substituting for ¢ , .§, and P, from (6.22), (4.24) and (4.29) respectively, we get
azl‘qss az“q.r.r
gss T
YA =p(t) + (S,-A,q-)"' (—F_‘.Y_‘ ss)+
oq oP,
3z, [YP, (C,+K,)S
’ [ - = } (623)
as, Lm M,
On rearranging we get,
5 *qss BZI.W T oz l.‘m C, + Ky) 9z “qs:
Z,% =p)+ -T.Y, - S, +
o4 0P, M, as,
az,* az,"* vp,
A §)+ —. (6.24)
9§ as, M,
Let
l IP(t) l I sKy(@) (6.25)
az,"* L9Z,* (C, +Ky) 3z, az,"* az,"* vp,
-T.Y, - ]S, + (-A,q) + -
af op, M, as, o s, M,
< [K A0S, + K4(0)F + K ()P, ] (6.26)
From (6.17), (6.24), (6.25) and (6.26) it follows that
—€(K (1) + K,(1)S, + K4(t)d + K (t)P,)
8-8, = 0 . (6.27)

-«
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Combining (6.6) and (6.27) we obtain
VaW(n N'(g-g,)= -21R, € [K,(r) + K5(1)S, +K,(0)F + K ()P, ] (6.28)

We now make the following assumptions:

1) The Lyapunov function of the slow subsystem is such that

IV, VH)IS, ==8,TK,,S, < -0, ¥%(q), 0,50
where ¥(g) is a scalar-valued function of q that vanishes at q=0 and is non zero for all

other q in the domain of interest.

2) The Lyapunov function of the fast subsystem is such that
[V,,W m) ]g, =-n'Fn<-a0’m). >0

where d(n) is a scalar-valued function that vanishes at =0 and is non zero for all other

1 in the domain of interest.

3) The following inequalities hold

a) [VH.V(H,)]T [f( gne)—f,( q,n=o,e=0)] =5,M, [(Hz-H,)nl +HUY ]

< B,'¥(@)om)

b VW [g@merg, (ne)] = ~2nR, & [Ky0) + K0S, + Ko + K 0P, |

<K 3¥(9) () + £0(M) [K )+ (0P, |
where the constants B,, B, and K 5 are non negative.
With the above assumptions v is reduced to

V= —(1-d)o, ¥ - i‘—ozzm2 +(1-d)B, PO+ 4 [aKs‘P @+ e<b(K,(:)+x4(z)F,)]
€ €

T
“~lom] 7 Lo 70
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where
- d)Bl L
(1-d), Ty g _
T= L W) =d @ [K,(0) + K )P, |. (629)
b o K0 =d © [K,@)+ K@,
(1-d)——  d—
2 2 €

The expression for v consists of a quadratic term and pu(¢ ). For d < 1 and an upper

bound for €, such that e, > €, T is positive definite where

o0
epd(d) = 5

[B,(l —d)+ sz]

4d(1-d)
The maximum value €,q(d) is obtained by differentiating €,0(d) with respect to d.

o, o,
and found to be g, = .
Ks+B, Ks+B,

Figure 65 shows the upper bounds of €. Since p(r) is a function of the desired trajectory

The maximum value epd(d) occurs at dg =

ax

and its derivatives, the following scenario arises:

The desired trajectory is three times coriinuously differentiable with bounded deriva-
tives. This follows from (6.20) where p (1) is a function of al! the first three derivatives of
the desired trajectory. It implies that K ,(r) and hence u(r) is a bounded function of time.

Let us assume that the maximum value p(¢) is p,,. Therefore p(r)<u,.Let B = B, x B,

n+m

xB, CR"xR™ xR",ie.B cR™'™. Define the setb =[(¢q ,P, M)(¢q.P, m) € Bl

2

R™™™ . b is a prism containing the origin and extending along I |q| |, l lP's and

| ln l | Let us also define the following regions withe<e_,. :

(q)]T T 9)

<
(n) <b(n)] P

@ R, =[P, € b; [::

and
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€pd )

Crf == - =-ssessssso--=x

Figure 65. Upper bounds of ¢
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(b) R,?_ =[(g.P,m) € b; [:E:;]T T [:)2:;]>u,,].

The first set R, is a subset of b with an elliptic cross section defined by

(1-d)o, ¥’ - [(1 ~d)f, + dKS] YO +d 2 0Py .
€

Figures 66 and 67 show the regions b, Ru,,o and R, - It is obvious that in ano ,v<0
whereas in R, » v can either be positive or negative. Let us define a region I where
v(g.M.P,) has maximum value C, ie. v(gnP,) = (1-d) V(¢ P,) + d Wm)<C . If initially
(q=0)n(1=0),P,(t=0) e I N Rp_o where v<0, subsequently as long as (g (£)n(t).P, (1))

lies inside R, ®, it either moves to a lower level such that v < C, <C or remains at the

same level. Therefore the full order system is stable in the sense of Lyapunov. However,

if it converges to R, ,where v has unknown sign, two possible situations can arise. It is
quite possible that P_ could grow such that (g (¢)M().P, () is still in R, , however P,

leaves the domain b to infinity leading to instability due to parameter drift. It is also pos-

sible that once in Rp. , (g (t),n(t),ﬁ,(t)) are such that they cross the boundary of region
R, and reach the boundary of region Rp-o , where v is negative semi definite. Once in
Rp_o, v could move to a lower level, during the course of which (g (t),n(t),P;(t)) could
converge to R, . This process could occur many times leading to a phenomenon similar

to limit cycles. This shows that tracking of time varying desired trajectories could be non
robust in the sense that certain desired signals are not guaranteed to result in error free
tracking.

If instead of a state feedback fast controller, an adaptive fast controller had been
used to damp out the fast oscillations a parameter estimation error term P'f will appear in

j(r) affecting the stability.
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. . 0
Figure 66. Region b.Ru‘ and Ru..

, 0
Figure 67. Cross secton ot figure 66 showing Region b, R, “and R, .
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Now let us consider the stability of the full order system, controlled by Craig, Hsu

and Sastry’s scheme.

6.b Craig, Hsu & Sastry’s Scheme

Proceeding similarly, the stability of the full order system controlled by Craig et al’s
control law can alse be proved. The Lyapunov function of the slow subsystem is given by

(4.49). It can be rewritten as

1 7
V (HSC ) = ;HSC QJC HJC
P-s I‘“ 0
where H, = L_( 0 ol

J and Qsc =
Hence

1
VH V( Hsc )= [QscT + Qsc ]Hsc (6'30)
" 2
Equation (6.30) will be used later when evaluating the interconnection conditions.

The Lyapunov function candidate of the fast subsystem is unchanged from (6.4).
The first interconnection condition involving the relationship between the slow part of
the full order system and the reduced order slow subsystem is unchanged from (6.11).

Combining (6.30) and (6.11) we obtain

1 T
Vi VCH OIS =)=~ [@.” +0H.| ¢ -5 (631)

=Xp [(HZ—H,)'q, +H,UY ] (6.32)

The second interconnection condition involving the relationship between the fast
part of the full order system and the reduced order fast subsystem is unchanged from
(6.17). However in 2,’* the term U™ is given by (444). Hence

2,"% =2,"% (B, 4,4+, E) and therefore



g, + Ga+ 4, (6.33)
Letting

az,"* az,'* z,""
p@)= g+ 9+ — 44

as in (6.20), Z ,‘q“ reduces to

2% < p)+ ——P, + E+ ——E (6.34)
oF oE OE

Substituting for E , £ and P, from (4.54) and (4.48) respectively, we get

s - azl'lm aZl'st o ) azl"m
Z,% =piy+ [-ry M, +A X+BM YP, (6.35)
3P, aX aX
Let
I |p(!) l I SK,\@) (6.36)
and
. . aZl‘qs: azl‘qs.r L ] azl‘qs.r
I [—I‘Y M X +A X+BM, YP, ‘
) oX oX
SK )X +K,)P, (6.37)
From (6.17), (6.35), (6.36) and (6.37) it follows that
—e(K (1) + K, (X + K (P,)
8-, = 0 . (6.38)
Combining (6.6) and (6.38) we obtain
(V,W(n)) g —g,) =-2nRe [K,(z) + K ()X + K ()P, ] (6.39)

We now make the following assumptions:



1)

2)

3)

a)

b)

The Lyapunov function of the slow subsystem is such that

(Vy VHS, ==X 0X S—0,¥’X), @,>0
where ‘¥(X) is a scalar-valued function of x that vanishes at x=0 and is non zero for

all other x in the domain of interest.

The Lyapunov function of the fast subsystem is such that
[ le, =-n"Frs-ad’m.  ap0

where ®(n) is a scalar-valued function that vanishes at n=0 and is non zero for all

other n in the domain of interest.

The following inequalities hold

V, V@, [F(gn€)-1,(a.n=0£=0)] = Xp(H~H n, < B, ¥
VI (@ nerg,(ne))] = ~2nR; & [K,0)+ K0 X +K 0P, ]

< K ¥(x) (M) + ed(n) [K,(:)+K4(z)15, ]

where the constants B, B, and X ; are non negative.
With the above assumptions v is reduced to

V= —(1-d)e, ¥ - 5‘—0:2@2 +(1-d)B,Y O+ 4 [exsq' 4+ e¢(K1(z)+K4(:)F,)]
£ €

o M ) P
where

1 d)E‘ EK__S
T 1=y o 2 2 ) dd)[K() K()P']
= L) = 1) + K (1)P,
B, dK; ) " ! s
(-d—-— 42
2 2 [4



Ford < 1, and an upper bound for €,4 Such that €y > &, T is positive definite where

0
€y (d) = : 2

[ﬁ,(l —d)+ sz]

4d(1 - d)
Since both Craig et al’s scheme and Slotine and Li’s scheme make use of similar

Lyapunov functions, both the methods result in similar T and p(r) with the constants K |,
taking different values. Hence following in identical fashion as in the case of Slotine and

Li, the regions R, and R, could be defined and stability analyzed.

The error in tracking is a measure of the distance from the origin to the farthest
point on the boundary of R " and R :. . Hence the stability to a certain extent is associated
with the size of region R, where v has unknown sign. Numerical simulations suggest
that the region R, in the case of the full order system being controlled by Craig et al’s

scheme is smaller in size than that obtained with Slotine and Li’s algorithm.



Chapter 7

Conclusions and Directions for Future Work

7.a Conclusions

This thesis deals with the problem of controlling flexible joint robot manipulators.
The main contribution of the research described in this thesis have been to provide u reli-
able technique to maintain closed loop stability and achieve tracking of a desired trajec-

tory in the presence of unmodeled dynamics and parameter variations.

The concept of a singular perturbation has been utilized to construct control
schemes for flexible manipulators. The control scheme takes the form of a composite
controller, consisting of a fast control designed to damp the fast elastic oscillations and
the rigid control designed by neglecting the elasticity. Once the fast elastic oscillations
have been cancelled by the fast controller, the resulting slow part of the system is close to

the dynamics of the rigid robot, which can be controlled by any technique.

Comparisons between linear/ nonlinear, adaptive/ nonadaptive control schemes
were made. Simulations were carried out in the case of a single link and two link fiexible
joint manipulators. The gains of the adaptive controller have to be tuned in order to

achieve error free tracking and stability.

Initially the fast controller was designed using adaptive control as the slow con-
troller. Simulations carried out in the case of a single link flexible joint manipulator sug-
gest that a composite controller employing a simple feedback fast controller is less sus-
ceptible to changes in the perturbation parameter than a composite controller with an
adaptive fast controller. Hence, for the two link flexible joint robot manipulator, a feed-
back fast controller was used to damp out the fast oscillations. In order to make the

damping more efficient, both position and velocity feedback were utilized.
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The simulations suggest that the nonlinear control schemes performed better than
the linear control schemes. This can be explained by the fact that the nonlinear control
methods achieves global linearization whereas the linear control methods achieve local
linearization. Among the nonlinear control schemes Craig et al’s algorithm was found to

be more robust to changes in the perturbation parameter than that of Slotine and Li.

In chapter 6, sufficient conditions for the stability of flexible joint robot manipula-
tors controlled by composite adaptive controller have been given. In analyzing the stabil-

ity of the full order system, we define two regions, viz. R " ® and R, .InR, 0 v<0

whereas in R "

, V has unknown sign. If the values of ¢ , 1 and P's are such that
(g (t),n(t),ﬁs (1)) lies inside Ru 0 where v is negative semi definite, the full order systeni
is stable in the sens¢ of Lyapunov. However, if it converges to R, where v has

unknown sign, it is quite possible that P; could grow such that (g (t),n(t),P—s (£)) is still in

Ru ,and P's leaves the domain b to infinity leading to instability due to parameter drift.
It is also possible that (g (t),n(t),ﬁs (¢)) are such, they cross the boundary of regions R "
and R ,_l_o , a process that could occur several times giving rise to a phenomenon similar

to limit cycles. Thus the tracking of time varying desired trajectories could be non

robust.

7.b Suggestions for Future Work
The ideas in this thesis can be extended in the following directions:

(1) The composite controller can be implemented on a practical robot.

{2) Craig et al's scheme requires the measurement of joint acceleration. The accelera-
tion could be estimated from the velocity information already available. This is

bound to add noise to the system. Hence the scheme has to be made robust to noise



and external disturbances.
(3) Stability analysis could be extended to prove why the control scheme of Craig et al

is more robust to changes in the perturbation parameter than that of Slotine and Li.

(4) It could be investigated under what conditions a feedback fast controller is more

effective in damping out the fast oscillations than an adaptive fast controller.
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