. . R - e i e e S G it g e e s s om— - > g s e e - - e e it et
- Iy . b} ~ ‘V . - “A ,
R . o ) 4 ;.
. L J
: . ) ' DESIGN AND IMPLEMENTATION OF AN
. " EXPERIMENTAL NETWORK DBMS . ‘ .
. | (ENDBMS) . ‘ /. .
y - R ’ | | . :
. . ] | . } -, < . ‘ '> .. . )
‘ - . * . ’ -
‘ o - Eyangelos Liopiris !
! & B ‘ i‘ ' <
§ ) ' \ ;
. - \:
1
- S . T , . . & ' . . -
) ’ A Thesis o . ,
. .
.ot 4 N * . ~ ' 1n !
4 . . , . - . } ) L Lo
; . The Department > ' ]
¢ A . ~ - ‘
/ . . J '.L Of « ° .
| ' ' 7 ‘Computer Scienge o '

. T 4
3 ' ’
_Presented in Partial Fulfillment of the Requirement , ° .
for the degree of Master of Computer Science’ ) S
, at Concordia University B
. N Moqtreal, Quebec, Canada
P . © September 1981 N
: Coa i
i i . ' ) .
5 - o @ Evangelos Liopiris, 1981 : e
‘{ - A It a . -
) . 3 <\\
P .
) L4
- S
-
M ) ) -



P it

ety s ..

e T "

e e pnsiar v

g s e————h——

f ABSTRACT

L

DESIGN AND IMPLEMENTATION OF AN
EXPERIMENTAL NETWORK DBMS
N (ENDBMS)

il

e Evangelos Liopiris

This thesis describes the development _of an

Experimental Data Base Management System (ENDBMS) based on

" the Network approach. All the major features of a modern

DBMS are considered and most of them such as schema,

subschema, security, concurrency and retovery have been

included in ENDBMS. Many concepts are  borrowed f£from the

well known CODASYL DBTG .proposals.

[

«

During the 'installation' of ENDBMS the identity of a

A
special user, the Data Base Administrator (DBA) is defined.

All other users are installed by the DBA and are assigned a
unique user number .along with a password and a USER PROFILE.

The later . determines the/ zuser's data base access
J ) ¢ . ‘ ,
capabilitie§," A user accesses the stored data through his

SUBSCHEMA, vwhich is a 'disciplined' subset of the scheja. A

i

proper and -consistent use of both™ subschemas and ‘\user

profiles constitute the cornerstone of the overall securd

enforcement in ENDBMS.

L}
i




A ——— o e o et s A

e A

e i A 37
i

. 11 A .
. v LT

The ENDBMS provides a Data Manipulation I.anguaEe,~

which includes retrieve and update utilit‘:ihes for both recprd

and set type data base operations. The ENDBMS .can opérate

in “a ' concurrent multiuser enviromment. The design of the

Wt

concurrency and recovery scheme is affected by the file

system supported by the host computer syétem.

An interactive editor facility is provided for error

"

‘corrections during the translation period of any ENDQMS

.command.




! . - ¢ h
| . e
| . .
I . . ' i ' I / - .
.. ros . . ) -
. s - . =
- 2 pv ) . - - .
: R R o,. , o -
. & - ) um - - - ‘-
. .4 . ..
- N A Wt .
- . - o A .
~ m s
N , ke
) 5 < .
’ - - ~
. :.i/ Q " ¢
At ..m '
! . L)
G, . N
- . ”~ -y R
. . = ‘ . . N
K N i O . B '
; . . B
f - . _ ' .
I ~ .
i . . . e i
M n | A\ v ) N
i S

ﬂ . . .
X “ ey
+ . - - =
.

i : i
Lo *
l N = h ~
H -

- .
i .
3 . s
’ . B -

. A )
.
s v 7
- . . .
. s
. Al '
¢ NN )
3 N . . A
i . 3
{
: \ ~ .
&
- . *

H . A

o T dees U et s A et o AWt RN Gt v ST T

je




.
A3l

- Chapter 2 ENDBMS DESIGN PHILOSOPHY

"iv

TABLE OF CONTENTS

Title Page ' (
Signature Page S
Abstract |, /
Dedication Page e
Aknowledgement Page S
Table ‘of Contents ' y
List of Figures

List of Tdbles

e

. i : i / ) T
_ P at "- . , /
Chapter 1 DATA BASE MANAGEMENT SYSTEMS
) .
INTRODUCTION'.....'.O’.I'.. ’I'..l.‘.'.ﬂlt..........
DATA MODE‘LS...’....'..........‘...‘0...\......:.

Relational model....... ..t eirerrnccrnnns

1

2 "Hierarchical model..eeee e eereesooacsoonconssnn
3 Network Mmodel..ceeeeeeeeeceeeecoooeocsononnsane
4
5

Comparisons between the three models....eeicesn
Why use a- Network model 2. ..ivveeccsssveoontbosee

1

1
1
1
1
1

DBTG Set conCEPt...o---.o.....o‘-.-.-.....-.--.
CODASYL SChemaDQQOQQDQDOQQo.-co--’.lowcuno-.noono
, CODASYL Subschemas...oo‘?...o...o'.cl'i-.-..ol..

SCOPE OF THIS THEBIS.....cecneussn.

® 4 ss0 00 4 sene0
»

2.1 DATA MODEL . « «seeee e aeeesneeeennnnanmennesnenes
2.2° SCHEMA:. A SIMPLIFIED DBTG SCHEMA. . .oooeonoens

SUBS CHEMAS . « v v eve e cerrernneneennns taeee e eenes
1 Introduction..ceeeeceeieteaciaccnnchesensonnnna
2 Subschema: a disciplined subset of schema......
2

Real subschema field and record types..coeeaces
Virtual subschema field and record types.......

CODASYI; DBTG PROPOSALS..-....-....-o.----'.caaoo"

DBTG DML. . . ..y euuescsvecsensssioeasdonsoioonennn

32

32

36

39

39

40

41

4]




R ‘ /\ e
Subschema set LYypPeS. cesrteeconcecscssssarssonsen 42
Subschems .construction and use..ccoeetvevccnans 43 -
Subschema consistenCyY.seeue s ncesctoocescesoass 44
-Subschema and multiuser concurrent / ‘e
ENVIZONMANE e e cossrvee svscesoosasesssnsmeantosealssss 45

ENDBMS INTERFACES (USER INTERFACES).. .'. cse e e 46 %

.l DBAGQ"I..O..‘l‘l.lll“l...lﬂ:l‘.l".O‘.Ol'l.l... 47
. 2 NON_DBA users LI B RN B I B I Y R B R I 2 I B B I I IR I I I I IR TR B BN 48
.3 - Interface mode = EQitOr.eeeseaasisecasasanonsos 49

(.4
: ) 2,5 SECURITY IN ENDBMS..................;........... 50

€ 9 0670 4 0 0 08490 e 00 e s 50

5.1 Introduction. . .™"
\5.2 User acce I.O...Q...l.ll'."....b"...J 52
5.3 A fivgﬁe Curity SySteM..ciieceeveesonsana 54

2.6 LANGUAGE FACILITIES Ne ceescoescsdsosontossoensone 55

P NN

= [ .
SML: Schema Manipiylation Language......oeeeeeee | 56
SSML: Subschema Manipulation Lanquage......«... |'57
SL: Security Langudge .. ..cvieeeeeriscocccsonssnson 58
DML: Data Manipul#tion Language........veeee... | 58
Fetch command: ,
Retrieve command: LIST...eeeeeeeeoecocnaceosons 62
" Conditional jump command: IF..c.civiensssncensooe 62
Unconditional jump command: GOTOueveessnesnasae
Setting command: SET. .eiiresmacerssnaacssccocnsns éB
Update COMMANAS..iceenceitiooatoncncccnrosnnsas

NN N
. v

B o0 B B e B B WN

A AN AN

ETQ.J.ct.-o-ooola--t-col-oan--. 61

AU W N

|7 DATA INDEPENDENCEQCOI.QIQOC.‘I‘IO’...‘0..'.0-... 64

2,8 DATA BASE INTEGRITY. . s eivufioccorsrccecancnonnns 65

ENDBMS CONCURRENCY--..-.:o--a_-o-o-.--o.u:o.-0'. 66 '<\.

9
2,9.1 Concurrency at physical unit level.iieeseaceeans 66 B
9.2 Concurrency at logical unit level........ce..... | 68 ’

e 2410 ENDBMS RECOVERY: A DBA CENTRALIZED SéHEME. ce v e 69

2111 USER-ENDBMS~0.S~DATA BASE COMMUNICATIONS......»#| 71

*

P
Chapter, 3 IMlLEMENTATION ENVIRONMENT 76 ¢

W
[

NOS FILE SYSTEMZ.eeveeoeesoioecnnsoonocssnnanne 716
. , - ]
1 Files assighed to user JjobS.uieeeveevocsccannans “76 «
2 Permanent files-..'....'.l'...'."'.'...l"... 80
3 File structures......................w....\»ﬂ' 80
3.1 NOS file StruCtuUr@..ececveveewecsesae™dolonaaas 80

* | |

i

al ta .




e TSR £ g e 4 4
‘

A A P oY W b

>
oo [-3
.

N, WU -

W W W WWWwWw W w

3.1.3.2 Physical file structur'..'...........'....A.......
. y L. . \/

.
A
N (

”

K4

; E vi
¢ 4 f 4

A~

3.1.3.3 Cyber Record‘.‘Manaqer fille struEture.:.’.......
v 4 14 v .

(-9

L - N N N o> [ -
[}

>

)
B

L] . . * . * »

]

.,

L] . . » » L[] L]

W Wi w

w o~

[o IR & ¢ BERY N

0 NNNS AN N o) v

. L

¢ 8 & & & s e 2 s

R

B RO b

N

B W RN NNN N

« & o6 o =

1
2

Ut W N -

CYBER, RECORD MANAG

x

® & & 800 s 00 0 s e e

oy

AAM: ADVANCED ACCESS METHODS. e s0vse e

File organizations..<...
Direct access fil
Record types....
‘AAM routines fo

NQOS FILE CATEG

PERMANENT FIL

SIMULATION

4-IMPLEMENTATION OF THE' ' ENDBMS

pod e o a0 LR R )

organ:;tion. teeeo s

.......'.4\‘!....‘..‘..‘

FORTRAN 4 \lﬁsers.... .

b

IESOQQO‘.OOIO‘.QO.'Q..

PERMISSION MODES... ... »

DEL FOR CONCURRENCY.,....

3'

ENDBMS INSTALLATION. ... eeesoesoossocas

-

s s e v e

o0 0 s &

s 008 0 ®

s a0

THREE LEVEL STRUCTURE DESCRIPTION OF ENDBMS..

LL(l) PARSING...OQ.'.O;..llc...lll....'.dn"l‘

INPUT SESSIONS e’e vveenvsovnresnnnnesses

VAL;D INPUT TOKENSII..;...lII..O...I...

-

SCHEMA SUBSYSTEM..!...Q‘ull.l'o.olultoh

Schema internal representation.i.......

Schema command group.......

1

.

SECURITY SUBSYSTEMiieeeoesnesnconansna

Se8urity implementatioN...iseeeesessns
Structure of system file five....vvvee

structure of system file six..caioiesea ™

Security enforcement.c.ceeeieseccncans
Identification and Authentication Level.......

System Availability Level......
Record Type Level....iiccivirsa
Set Type Level....iieveecvicees
Record Occurrence Level...ivsen

Security command group..........

¢ co 000

Explicit and ImplLigit access rights...

SUBSCHEMA SUBSYSTEM.....asvicieavsaaans

p

-

o s 04000

* s a0

® s 0 000

® 004 a0

e 00
¢ e s e
-

* ¢t o0 e

LR B

s et s’as e

\

-
-
.

)/

81
81

82
82
83
86
87

92
92

93
98

‘100
102
105
110
113
115
116

122°

127

127
129
132
135
138
138
139
140
141
142
149

151

PR S




n?

[ ] L ] E [ 2 )
N
[ ) [ ) .
(W ¥ -+

OO WO WY

U s W NN
L]

i\‘

-

4.10 » THE LOG-IN AND LOG-OFF COMMANDS, ..

4.11 CONCURRENCY.'.Q...-."..'..s."....

Physical CONCUITENCY cersencossosan

.1 Subschema melementation..:....................
.2 Structure of system file two. ...7/...,......,..._
3 Subschema command grouP..seseeecs’ o

a 6 PP OO & B L2

*® st dae e

e s s o0 e

® e 0 s o @

-

® e s re e e

DML SUBSYSTEM....-....I.--cotl!.'..D\ocaotcuv'o
'4

Record Type File..u.iiseeeocersescsassassomsnsns
Set type implementation at
Record Type Occurrence (RTO)
RTO-S5.0.L:
RTO-S .M. L:
SOM~list:

1eve1.l.l‘.¢"‘ll..‘ ‘
Set Ownership List at RTO level.....
Set Membership List at RTO level,...
Set Occurrence Membership listo......
Record and set type local tableS...ceiveocacnas
DML command groUP.c eesiescocsssssean ’
Limitations of ENDBMS DML. . ...«

e s s s

* s 900

Y

. s 86,

4.11.2 Logical concurrenCyeesesssfecececsacecessosas
4.12 RECOVERY..‘.Q‘.....l.lll.l.~.I.ll'l.“'ll'...
4,12.1 Recovery—needed and recovery-free commands.....
4.12.2 Execution of ;ecovery—needed commands,....
4.12.3 Insertions and deletions in ENDBMS files..
4.12.4 Recovery from insert/delete type interruypt
4.12.5 Recovery fieldsS...veeeeesescnccsceoncesans
4'12'6 DBA recovery..lQ.C...“OOUOO‘...l'l..‘lll..*
4.12.7 A NON-DBA user recoverY¢o‘opo-o--oo.ooacno-‘o

=

.Chapter 5 SAMPLE DATA BASE APPLICATION

Chapter 5 CONCLUSION

REFERENCES

L L R N

%

e

5.1 INTRODUCTION. c cevecesosssessssscsoocnanene
5.2 DESCRIPTION OF THE HYPOTHETICAL COMPANY C.
5.3 A NETWOR!S DATA MODEL FOR COMPANY C.. ...:...
5.4 TYPE OF USERS WITHIN COMPANY <C..... .‘?’.....
5.% 'SAMPLE DATA BASE..:ceescesaacssnsnnsocasosns

. ¢ 00

. ¥ e 00y

® o e

i e
151

153
157

163
163
167

168
170

172

174

176
186

189

191

192
193

197

197
198
201
202
207
209
209

211 |

211
211

213

218

222

226

233

RS




’AEPENDIX
APPENDIX

APPENDIX

APPENDIX D.

U © 0

\ 7

- ' N VI

SAMPLE
SAMPLE
SAMPLE

SAMPLE

. 236
237
247

258

INTERFACE OF DBA.O..‘....'......Il..‘.“. 259

INTERFACE OF .THE DM102—USER... «evevenn o - 306

INTERFACE OF THE DS102=USER...........w. 310

INTERFACE OF THE PDA-USER...eu-esesive«. 315




Figure 1.1
2

Fiéure 1.

o Figure &3

Figure 1.4

»

Fidure 1.5

Figure 2.1

Figure 2.2
v ¢
Figufe 2.3
Figure~2.4
Figure 2.5
Figure 2.6
+ Figure. 2.7
,Figure 2.8
Figure 3.1

Py

Figurea4;l

Figure 4.2

Figure 4.3
Figure 4.4
Figure 4.5
' Figure 4.6
Figure 4.7

Figure 4.8

a

ix

y LIST OF FIGURES .

. A user's .general impression of a DBMS......

Set type structure with oné member.,....%..
Set type structure with two members;.......
Representation of Figure 1. 3 using two

set types with one member...............,..
'

!

Set type representation of an N:M

association..eeciecvecerccasriinncannonaaan
.o

Data model for department-employees

BSSO0CLAtiON. e et venccecsaetrsccncsnscsons

Datg model for depaitment—empiayees 8
department—projects and project-employees
associations...l..l‘“.lhi."l‘l...“.lll...

Data model for suppliers-pérts aZséciation.'

Logical representation of set occurfence...

-

fndependent DBH facility of PHOLAS . v ves aie s
.

Pseudo denttal DBH facility of PHOLAS..‘...Q

Multitaskinq DBH facility of PHOLAS........

Full central DBH fac;llty of PHOLAS....c0-®

Logical structure of a Direct Access File..
. - o ;

Extern&l and Internal ENDBMS interface.....

Simple architecture of ENDBMS..............

S

Subsystem structure........,...............

Schema internal representdtion.......vw.ce..

103
. 103

Representation

Representqt@on

Representatfbna

Representation
‘ ¢

bf USER LIST..eeescinncsssnns

of, USER ACCESS PROFILE......

of USER ‘SUBSCHEMA,..........

e
a

Of RT—file..-,o,o-.../....-....

152

H

S R s Ban b & oh e =

72« ° ’ 1
73 -1
73

a5

104
117
128
129

164




e

Famniny AT St s At s e S e sy i

Figure
Figure
Figure
Figu;e
Figure
Figure

lPigure

A

X

4 g ¢
I .

4.9‘ Repre§EHtati°n of RTO-S(OOL‘..IQOQ."..'.‘I

4.10 Representation of RTO-S.M.L:....:...:,....i
4.11 Represeﬂtatfonﬁof SOM=-1i8fectsesvcassnssans
4.12 An iqsyance of supp}iers-pqrts association.
S.i A Network data model for company & ........
5.2 Detailed representation of }igure §.1iuenn.

r A ,
5.3 Detlailed represenhtation of Figure 5.1l......

v . /,f
3
»
~
—
-2
]
-
: 4l
ot
-~
{ ‘
-9 &
]
. )
@
E ¢
I
e
’
3
>
~ 9 v,
P
o -~
‘ . ,
»
I
;
.
Fid Kl -
©
o
u
4
-2
-t

3

+169

170
172
188
214

215

216




von A TN BTt ey g o

S TS 5 ety AN, P o A Tt g

]

o by -
- - 1 .
Table 3.1 Combinations of multiple acCeSS.veveesseesa. 94
Table 5.1 Sample of department-employees associaéion.. 223
‘\ ) ’ P
. ¥ . (9
Table 5.2 Sample of department-groups and ’
16 R
group—-employees associati NSecevvrlboceeanees 223
“ ‘ \ N
S | tation -
Table 5.3  Sample of supplier-parts association...s..... 224 -
/\‘ \ ‘ | N \‘ ‘
Table 5.4 Sample of currently issued orders........... 224
. S L. LIRS
| A g
Table 5.5 Sample bf group-parts assdciation.aﬁ....i... 225
. i -
- Table 5,6 Sample of emplo&ee-med—histo€§‘association.. 225
2 N - ’
-~ - ‘f
‘ 7
P ‘- , ' . }
A \ A \ -
A i ‘ :
¥ : |
/// | \ N
r - / { ' * o'
\ ( . / / . ) Loe .
o ‘
v .’;\”,‘ N '
s s ¢ H. 1‘ -
- N : |
- ¢ i

PREYEN RPN

- xi.

LIST OF TABLES ° . a

-




» 1 .
2 —
. ~ B .' \
c ! CHAPTER 1 ' >
N . . .
b ¢+ DATA-BASE MANAGEMENT SYSTEMS ‘ ; ¢
N : ' & ‘
l.le INTRODUCTION < : !
One of the most-important topics toda¥ in computing is
data-base technology. It seems %o be a very disoriented :

+«field; Jdifferences in términology, médelingy and in
implemeﬁtation . confuse the pétential usernwho is faced wiﬁh
almost unanswérable gquestions such as whether ~to use the
cugrent data~base technoiogy or walt for,new deveiopments.

If he chooses to use a data base system, he is faced with

the question of which type of system to choose. Such

. »
problems are found in any evolving technology, especially
when it is associated with a fast developing industry such \\<
as computing., Data-base systems have evolved from nothing i
. . ~ . ' !
to becoming major to of current interest. Top l
'management of major operations have ‘:Zz:'to ag;reciate the
. ! . 2
importénce of" their data~bases. GoVernment regulatory ,
agencles are already worrying about the implementation
privacy and Erée?om of information laws and their relation
& ' |
to data-banks. ' ) >
. , ‘ b

« During the fifties and the sixties the first data

- -

processing’ systems, using duplication of computerized data
¢ »

and procedures, managed to reduce the overall cost. But the

]

iproblem of tavailability! of the"data to different

application programs$ or users gave rise to,questions like:
. 5N

’

‘ 4,;*"”




g e g

2 :
" B
. ~Why not integrate the data? '
. Can we access this data’ throﬁgh the current :

computer languages?

i

’

C. Why not allew-a high level language for ad hoc — C\
use of the 1ntegrated data?

The first question gave rise to the concept of generalized
data base mqnaqément systems, the second resulted in
modifications to the existing conventional proarampinq
languageé, and the third lead to the development of special
query 1anguagesﬁfs'an interface. ‘ ! T
-“/%he inéuétry congratulated i;self E%r reducing Ldafa
redundancy and improQing its availability, but it als

introduced the pofentiallfq;“disaster. The first preblem

e st

with integrationf that arose was that the data now became

Py

more vulnerable to destruction through machine malfunction,

Cximia

personal errors or deliberate human tampering. The loss of .

e

quality in the integrated data (includinq total destruction)
by any of these means may be considered a threat to thelﬂﬁ\
organjizations, because data is one of 1its most valuable
assets. Integrity and securi;y techniques were therefore a

v

necessity. [FRY-76] deals with the definitions common to

data base technologfﬂand traces the evolution of data base

management systems.

1 - ’ «
I‘ r
More and more prospective users of DBMS, even.?though

they may not have studied the subject formally, have already

formed a general impression -~ from articles iz(} data
e

ilar~ \\

processing magazines, news items, advertisements and?
("




[T PR

R LT T

v e s R Y

R IR
)

- luser lh, 1 Integrated Database
________ N . ‘ '
v N .
\\ L ML S 1N Y
\ : . ﬁ‘u-__a“
' VN mmmmm———— - | - ‘
¢ . \ | | |

¥

L2 : ¢
| ‘(D . !1 '
sources - ,as.to what constitufes a data base management

system. Their impression probaSly “looks something like

—— — — s — ot e

l
&4 .
L T Y

-y ot e s

.\/ ¢
. N 4 [N
Figure 1.1 A user's general impression of a DBMS.

-
~

First of all there is the data base itself - a collection of
' )
data stored on disks, drums or 'other secondary storage

media. Second ther? is wf@vﬁetl of ordinary appliqation
programs which use this data base for retrieval or updates
4 ; -

(update is used to mean Insérting, Delgting or Replacing).:

‘ Additionall? there could be a set of on-line users who

interact with - the “data .base from remote terminals and
performe the aBove operations. Third ‘there is 'something'

' .
which controls any kind of interaction with the \data .base,
protects it /;;d"responds to all prograh or user reduests,
provides Efch application wgth its own view of Ithe common
data, implements various operators for retrieval and
updating of data, and resdlves interference among concurrent
useré. The term 'integrated’ data base means that the data

\

Vd




ko e e pene

base cohtains the data for many users. Every user is
. .
concefned only with just av§ma11]portion of it. 1Individual

. piécesl f data may be shared by many different wusers. The

term dat e has been.deﬁinéd variously; two definitions
by Date and Martin are given below:
(l). o data base/is a. collection of‘étoreé operational
\$ \ data useé by the ication systems of éome .
parficulér entrérise. Enterpfiéé is simply any
o " reasonably large~scale commercial, scientific,
technical or other operation" ... "some examples
are: manufacturing company, bank; hospital,
university, governﬁent depdrtment". _Any enterprise
must neceésariiy' maintain 4 lot of data about Tts
opera;iongT' This isl its opérational daga. The
operationg}E data for the enterprises listed above
would probably include the following: Product data,
Account data, Patient data, S!ipdent~ data or.
Pianning data respectively. "Operational data does
not ifclude input o{xbutput data or any transient
’;informatioh. Input data refers to information

. entering\ the systeﬁ_ from the outside world (froma

+ ~cards or’ terminals) and output data refers to

¥ ' messages and reports emanating from the system"
. %
-
[DATE-77]. : -
el ’ .
(2). A data base hay be defined as a "collection of

interrelated data stored ‘together without ha#mful

‘or, unnecessary redundancy to = serve ~.multiple\

h) ’ ’




B A PR LR

qwatr

b e % v >

™,

applications”. The data are stored so th;t they -

are independent of prog}ams which use the data; "a

common and controlled abproach is uséd in adding
‘new‘data, modifying and retrieving existing data

within the data base. The data is structured so as

. to proviée alhfoepgation for future application
dévelopment‘. One system 1is said to contain a

collection of data bases if they are entirely

-
'

separate in structure [MART-77].

[

Martin in' '~ (MART-77] "discusses the primary and
secondary objectives of data base organization in«Chapte? 4
and - Fry in [FRY-76] ‘discusses the data évailability, data

quality, privacy and security, management control and data
¢
independence as major objectives of a DBMS and their

relation to the overall functional architecture of the DBMS.
Another thorough discussion on the objectives of a DBMS is

given in fEYER-74].

1.2 DATA MODELS .

» , -
/ "A data model is a pattern’according to which data are

B %

logicdlly organized. It consists of named logical units of

v
S

'data and expresses the relationships among the data as

determined by the interpretation of a model of the world"
[TSIC-77] One of several data. models can be wused to

represent \the interpretation of a model of the world. _ The

main differehce among them is the manner” in which they

2N

A




N

NP
e

-

- 4
‘,r..,,.,,‘«/‘e“

——

represent certain relationships 'amgng the data., _The data
model constitutes the heart of a DBMS. The range “of data
structures supported in the data model,critical}y affects
all the other components of the system. In particular it
dictetes the design of the corresponding data manipulation
lénguag SDML). gegh-DML operatioﬁ must be defined in terms
‘of its epffect on these data’structures g#plici;ly«in case of
/gthé Data BaseﬂAdministrator (DBA)~where each refegs to‘ t;e
data gédelh(conceptual model) itself and implkci:ly in case
o% oth;r users, where he refers to his own external modgl
(derived fr;m the conceptual m;del) ~ provided that external
models are supported by the DBMS. For example, if a
RELA&IO&AL system does not provide facilities for a 'join'
operation ovér two relaéions then its DML cannot include
goqpands related ti//lhis operation; similarly the way a
NETWORK system implements the 1logical association ‘between
some record types greatly affects the capacity.of its DML.

There are three approaches to desién of the data model and

its accompanying data manipulation language:

\ 1, Relational model

\ 2. Hierarchical model .
\ ’ 3. Network model
\\ y ’
1,2.1 RELATIONAL MODEL i |

\ : . g . 4

\ In this. model the - data is organized in a number of
tables. Each table resembles a triditiona; sequential file,
with roﬁs of the table corresponding tdligcords of the file

and columns dorresponding tO'fields'of‘the records. Each of

}

\ ~ ) " ) - -

R Y




—— g e e e
»

these tables 1is actually a special case of the construct
. \ . .

. The relational appro&ch

£

known in mathematics as.a relation.

»

to data 1is based on the realization that files Ehat obéy

certéin constraints may be considered as mathematical .

relations and ﬁéncewthat elementary relation theory can be
a. 4 ‘
used to handle problems dealing with data i&.such files.

€

E.F Codd [CODD-70] was the first to give a rigorous

definition for n-ary. relations in the data base context and

to emphasize their advantages for data independeng® and ’

symmetry of access. Codd's paper introduced concepts which

set the direction for research in relational data base

management for several wyears to come. The paper %gfined a,

data sublanguage as a set of facilities suitgble for
embedding in a host/pgogramming languagg. gazsuggested that
a standard logical notation . (namely t?él first  order
predicate calculus),fs appropriate as a’data sublanguage for
h-ary relations. The paper also exploréd the properties of
redundancy and(.consistency of relations.” ' An excellent
introduction to relational concepts can be found in Date;s

text book [DATE~77]. An importént aspect of the relational

Sir - ,
Model is the normalization theory; it is based on a series

of normal forms - first, second and third - which provide
successive improvements in thé update properties of a data
base. A tho;odgh treatment Sf normalization is given in
fcopp-~71} , [DATE-77)* and [vAss-80]. Chamberlin in

[CHAM-76] defines the essential concepts .of the relational

e

Ew

LB

e




ot s o v = A S o S St GRS A ek rroe w4 < —a

<

daég model and  also discusses normalization,; relational
languages based on_this,model as well as the advantages and
impleméntations dé relational systems. At this point we can
mention Tymshare's’/ MAGNUM [MAGNUM] and IéM's APL [APL] as
commercially available systéms; A large number of
experiméntalf systems havé been and continue tc be developed

at universities and similar institutiéns. 1In particular we

mention System R [SYST-R] and INGRES [INGR-?%T. A survey of

currently available relational database systems and their

highlights has been reported in [KIM-79].
1.2.2 HIERARCHICAL MODEL

In this model the data is‘represented by a simple tree
structure. Every nbde of the tree stands for a recordltype.
The record type at the top of the tree is usually known as
the 'root'. In geneq;l tje root may have any number of
depenéent record types, each of thege may have any number of
lowef level dependents, and so on, to any number of levels.
Every node in the tree, Qith Ehe exception of the root, -has
one node related to it at a higher levelvand this is called

its pareft. No node can have more than one parent and each

node can have one or more nodes related to it at a lower

level. The dependent nodes, of the parent node, are called

children; no chigg can exist without a parent node. Nodes
at the end of the branches are called leaves. Such trees
are used in both logical and physical desgiiptions. In the

logical data descriptions they are used to describe

it e s T et




- - v

- o

© vt s TR B ) T

relations (associétions) between record types. In the
physipal'data organization they are used to describe sets of

pointers and associations between entries. In [TSLO-7A] it

is stated that a hierarchical system is a DBMS which

pres&ﬁts to the users of the system certain' explicit views

of the data base that are characteristic 'of the hierarchical

e

data model and the characteristics of the data model are:

0

(1). There is a set of record types {R1,R2,...,Rn}

(2). There is a set of relationships connecting all
record types, in one data structure diagram,

i3

{3). There is no more than one relatonship betweeff
- any two record types Ri and Rj. Hence,
relationships need not be labeled.

(4). The felationship expressed in the data
structure diagram, form a tree with all arcs
pointing towards the leaves,

(5). Each relationship is‘ 1:M and it is total -~
\ ~ that is for every Rj record occurrence there

1s yexactly one Ri record occurrence connected-

to it, if Ri is the parent* of Rj in the

definition tree.
Date 1in [DQTE-77] states that the asymmetry of the data
modél (some record types are treated as superiors ancfg oter
as dépendents), is a major drawback of the hierarchical
approach; he also disqusses the undesirable propertieé of
the hierarchical model as far as the storage operations are
concerned, for a many-to-manyarelationship.  For example the

PARTS and . SUPPLIERS, N:M relationship, in a hierarchical

data. base (with parent type PARTS) is represented by.

introducing redundancy, 1i.e., copies of the same SUPLIERS

occurrences are stored as leave-occurrences to all- PARTS

S

[T i

—

-




T ton

™

10

P

occurrences supplied by the same supplier. First, it is not

possible to insert a néw SUPPLIERS 6%gurrence without
introducing a séecia& dummy  PARTS occurr;;cé until ‘that
supplier suppifés some part. Second, if a PARTS occurrence
is to be.delet;d we loose all information for all supliers
who supplyvoqu this part beoausé of the hierarchical pdture
of the physical organization. Thitd,' in case we want to
éhange some information about a partiéular supplier, e.qg.,
hié ‘a%dresé, we must search all PKhTS occurrences to find
aﬁl occurrences of the supplier conée.ned; otherwise we may

end -yp with a situation where the same supplier is located

in Montreal, Vancuver and New York at ithe same time.

Hierarchical sysgems @ave been available and Qell
accepted for a long time._ Examples are ([BLEI-76},
[MARSFVI], and IBM's Infbrma@ion Man&gemgnt Systgm [IMS],
which is one of the most widely used of commercially
available systems and is at least.partially responsible for
the importance of the hierarchicgl data model,. on which it
is based. ‘3-'\9"\”11"‘“‘ (ULLM-80] in -Chapter 8 of his

R

textbook examines the\featdrts of the IMS system,

"
7
3 ~
\

1.,2.3 NETWORK MODEL . _—
In the Network model the data (as in hierarchical) is

represented by records and links, Howe&er, a network is a
. .

more general structure than a hierarchy because a given

record occurrence may have any number: off superiors,-as well

- - b
. - P
s RN . " : 1
N . .

Y

o




EX YN

B N e

11

1

as 'any number of immediate dependents, as opposed to a
/ ' ’

maximum of one in the hierarchical model. The network

1}:.
‘approach  thus allows ‘dus to model a many to many

.correspondence more directly than does the *hieré}chicai

approaéﬁ% An N:M association between two record types Ri

PR .

and Ri is implemented as two 1:M associations by introducing

a new record type Rc so that Ri:'to Rc and Rj to Rc are 1:M

;ssociatidng. We may liken the data model to files of
v

records and links. The. internpal structure of this file

"

\(ﬁéintaining the declared associations between different

record types) is more complex than in the hierarchical case.

.Date in [DATE-77) discusses the symme&ry of the model
by using two inverse questions using a PARTS-SUPPLIERS
neEwork data base. He also examineé/the_ambiguity which
;xists in an N:M assoc¢iation betweennRi and Rj, as to .which
occurrence will be used as the.entry point (an'Ri occurrenée
or an‘Rj,occurrence).for some querfzs such as: "find out |if
the part P2 1is suppl;ed by.thé supglzer S3". One waylto
answer this question is to locate the S3 record occurrenge
and then follow its chain (path)'to find out if there is any
P2 record occurrenceriﬁ it, but an alternate way, is to

¢

locate the P2 record occurrence and then follow its own

chain to search for the S3 record occurrence. Pate also
examines\ the storage Opera;iQns Insert , Délete and Update.

A deletion of a record ‘occurrence of network data base does

i

not- cause any /triggeered deletions of other Trecord




e s g s et AR Y e T Temeen -

12

Y

occurrences, but imélies destruction of its 1logical tand
phySicalf association with other fecord occurrences. An
insertion of a new record occurrenée might require manual or

~automatic _physical association. The most important example

of a network system is pro&ided by the proposals of the

i

CODASYL Data Base Task Group (DBTG), (DBTG-69] . and

[DBTG-71]. Several commercially available systems are based

-

and Honeywell's Integrated Data Store-IDS [IDS]. CODASYL

< )

proposals -are discussed in section 1.3.

+.2.4 COMPARISONS BETWEEN THE THREE MODELS - ;

t / &a .
-In—this section'we will attempt to point out the most

i * S ) . . ’ -
important features, ' as well as - the advantages and

S - e e

( .
- disadvantages of the Relab{onal, Hierarchical and Network

AY

approach to data base design.
. ’ @’
A crucial feature of the relational data structure is

[+

: N o
that associations’ betWween types (rows) are represented

golely by data values in columns drawn.-from a common domaifii

°

It 1is a characteristic of th relational approach, in fact,

‘that all information in the data base (both ,'entities!' and
i A s . .
‘associations') 1is represented in a single uniform manner,

namely, in the form of tables. This charateristic is not
shared by the hierarchical and network approach. - The

C"Z";.“,‘:“ o e,
relational model seems to bé& the simplest but simplicity is

not the end of the story. In any DBMS the data manipulation:
. :

on these proposals, among them UNIVAC's DMS 1100 [DMS-1100].

~4,




Y 13

¢ v

© ¥ o
e

lenguage is more impor¥ant thing from the wuser's point of

~

view ‘rather than the data representation. At the user
interface lewvel, no patticular access path 1s ‘preferred’®

" over any other. However the DBMS must choose a path which

-
- ©

may or may not be. the best.’ The user interfaceée is

do
-

indépendent of the means by which data is physically stored.

The Lnifdrmity of the data . representation leads to

3

uniformity in the operator set where one operator is needed

for each fuhétionﬁ This contrasts with the situation, with
_mo;e complex “structures, where., information may be
represented in several ways and hence several sets of
operators. are reﬁuired. In- the relational mo§el the basic
retrieval operator is "get next where" which wil%\fetqh the
“zxt row of .a table (relétion) satisfying'éome'specified
condit;oﬁ. ,'ﬁext' is interpreted relative to the gurrent
position. The 'where' part of the operator may be a boolean

o

combination of co§diticns that the figld wvalues of the
. N ‘
requested record (row) must satisfy. Hoz

ever this retrieval

operator {s not unique to the relational model since the

4

iy .
same oper@géx can be implemented in ‘the network model by

considering only the path which links all the occurrences of
3 .
a record type/ Let us consider the storage operations and

then we -will look at the data manipulation language based on

t » ‘'

relational aldebra. . '

{

L

. There are three basic storage operations, namely the

- Insert, Deléete and Replace (our terhinoloQY); to 'insert a

-« >




e ey e . mmr . miin < g e e
- -2

14 ' 0 “
W .

3 - ,
new row (record occurrence) in a relation (record type), to

By
-
. delete one row (occurrence) or to replace (change) a portion

row !with something new. These operations, however,

!
i

of a
need speciaf. consideration in case the relational DBMS
supports any kina of 'wvituality' at either schema (DBA's
view of the data base) or subschema (user's view of theddata

base) level. A virtual row of a relation is one that it is

not actually stored in the data base 'the way it s viewed

Y

(but it is generated, probably, from more than one other

'stored' row. For example let us assume a relation which is
a projection of a dJjoin of two relat%@ns; obviously the

partially filled
{

insert operation will attempt to <create

stored row(s) when it operates upon such a virtual relation,

while the delete operation will attempt to delete more

‘ S ;"
information by deleting entire stored row(s); therefore the

operators of Insert and Delete are to be prohibited for

o

‘virtual' relations.

The same considerations will apply to

network models that allow any-virtuality. The quéstion o
f ‘ \

not we will eration upon ax

whether or allow a Replace

'virtual® relation, has to be examined too.

delete’ operations are straightforward a far as' the

relational. model is concerned with gddﬁtional

tequirements, e.g., creéation or :rdestructiqn 'of chains

(links). In the hierarchical model an insertio of a new

record occurrence requires immediate storage /of any bearing
information  (e.g., being dependent of - some superior

occurrence).

For insertion in ﬁhﬁ\zftwo k model a record
\

3

The insert and’




15

occurrence can bg stored in the data base and 1if the
corresponding record , type belongs to some sets the bearing

'association' is 'stored' (automatically or manually). " The

removal of a record occurrence causes the following: In the

hierarchical model an occurrence. deletion triggéeérs the

} ¢

\ deletion of all of its dependents (related information). In

> the network model an occurrence deletion implies deletion of
., ~the corresponding bearind information, but does not require
he deletion of any other record occurrence. Thus

a§sociation among relord occurrences is removed without any

.

+

Qe etion of the record occurrences.

\\Some specific advantages of the hierarchical approach

{

are: It is a simple data model and the user needs relatively

few commands to master it. Bzfause of the «constraints on
. 5 .
the types of relationships allowed, it can allow an easier

implementation than other, more complex structures.

*

The following are some specific disadvantages

[TSI-LOC] related to héerarchfcal systems. '
‘ (1). The imposed restrictions sometimes force an unnatural
organization of the data. As an example consider <the N:M

\\\\ ‘ relationship STATE -~ COMPANY in a single hierarchical

definition with root the STATE, then the COMPANY record

which the companies are registeﬁﬁdf . This might 1lead to

A
considerable duplication and hence ko a storage space

roblem. Again one can‘ imagine the results of the deletion

occurrences would have to be repeated under each &tate in -

AN

PP T T




- o

“

of a COMPANY occurrence. The')N:M telationshig does not
create sqch problems in the netWork model, ‘
(2). The strict hjierarchical ordering make operh@ions such
l,as insertion and delétion quite complex. Usegs must be very
caé@ful with the deleFe operation because.of the, 'loss' of
information. ’
(3). Symmetrical queries sometimes cannot be answered
eaéily in a hierarchiéal system. Therefore the structure of
he data base may tend to reflect t%p needs of the
ﬂWprlication. Finally we can say that the hierarchical model
fits Setter to naturally hierarchically structured

v

information.

Let us now consider the relational ’algeSraic
operat}&ns, SELECT, PROJECT and JOIN, The SELECT operation
selects all rows of a relation which satisfy some Ispecified
condition, The same can be implemented in a hierarchical

and network model, too. PROJECT: is an operator - which

constructs a ‘vertical'..subset of a relation {one or more-

entire columng). Again this can be. implemented in the
network 'modeI‘ by . using the. stored record types; this is
easier in a network ﬁoéel which supports susschemas. A
\hser, for example, can define such & 'subset' in yig

subschema 'provided that he  has, appropriate access

¢
domain (field) of two relatiofs (record types). Such an

y 'operation can be performed in a network model if a set

M

T

capabllities. The JOIN is based on at least one common



e

c QP e s wmmae .l - - v e

17

"exists between the record types to be 'joined',

The term 'compatible' record types is used in ENDBMS

v

&o provide a user view with aﬁ‘ability similar to the join
operation of the relational model; a defintion for the term
is given . in éeqtion' 2.3.4. We prove that such 'join'
operation is implemented in our subschema and we also claim
that this can be a feature of any network system which

supports subschemas. An extenssive fomparison of relational

Y

and nefwork approaches is given in [MICH-761}.

1.2.5 WHY USE A NETWORK MODEL ? . .
. ‘ * . N
We do recognize the complexity of the network approach

at the data base defintion level, +the 'link' or data-set
» . : :
implementation at the physical structure level and at the

user interface level. Obviously the wuser in order to’

8 )
retrieve information based on some complicated gqueries oust

be aware of the declared 'links'. We believe that only the
defféltion of a user subschema might require professional or
semiiprofeééioﬁal experience. Once thgﬁ is done a network
DML becomes very simple, with commands executed either
against the schepa or (some)(subschema definiton. Also most

of the network querieé are simplified, Anotheriadavntage is

speed with respect to the relational model, since the

'joins' are already made and the 'projections’ are

predefined. The network model also provides the flexibility

and freedom of inserting and deleting 'associations' using




sets. This makes the network model capable of reglectingﬂg
dynamic mdgel of the rea1~world. In an environmentréhere
new entities or<ass§ciaticns are inserted gquite frequently
'it’is better to uSe(;he network &odel. A proper recoerd type
design méy avoid a lot of data 'redundaﬁcy which may be
required in a relational model. On the other hand, there is
a price to pay for the flexibility of the data bage which is
"in the form of the stdrage needed to implement 'links' of a
network model.
1.3 CODASYL DBTG PROPOSALS A
‘ \ ; | ¥
The acronym DBTG refers to the Data Base Task Group of
the CODASYL Programming Language Commitee (PLC). The PLC is
the body respopsible for development of the COBOL language;
its activities are documented in the COBOL journal, of
Development which is published évery two or three years and
a

which serves as the COBOL language specification,

] .

In this éggtion we will summarize the main features qf
the CODASYL proposals. A complete description of CODASYL
specifications is glven in. [DBTG-69] and [DBTG-71]. Martin,
Date ;nd Tsichritzis describe the DBTG proposals in their
text books: ([MART-77], [DATE-77] and "[TSIC-77]. The DBTG
proposals, though co;trovw}sial - to some extent, are

extremely important. THe DRIG report-has been the basis of

several commercial systems and t

ENDBMS philosophy borrows

many concepts from the DBTG propdsals.

~

)




o

l1.3.1 DBTG SET CONCEPT,

The set concept constitutes the mosé impprtant single
aspect of the DBTG data model. Therset concept can be u:ed
to construct the ﬁierarchical and the nétwork data modelsi
First wé-define séme DBTG terminology and then we look at
the set structure for the netwogk model. A record iype is a
named collectidh of some data items related to  some
attributes of an entity set of the worid and expresses an

associatioq among those attributes. A data item can be a

single data item or a data aggregate. An instance of a

record type is called record occurrence. A CODASYL set type

is in essed%e, a named two level! tree where the upper level
consists of only one node and is called the owWner type and
the lower lé&el consists of one or more nodes (Eecord types)

which aré called the megper type(s). ' \

In general a CODASYL set type can have one record type
declared - as its owner type and one or more other record
types declared as its member types. There is a one to* maPy

(1:M) association’between the owner record type and each of

4 s
the member record type(s).,Figure 1.2, Figure 1.3 and Fiqure -

1.4 show 'set fype strucures with one and two member types,
and how a set type with multiple member types can be
represented by set’' types -with: oﬁly one member type (the
directed lines show the member‘tyﬁe(s)). It seems to be

very practical to consider set types with only one member

type and from now on, the term set type will refer only to

&




B s T

S S S
20
. A
§ | o
....... e
| . y
? | s
|
B - I
__________ Yoo

——— o — - —— 0 - W

) ‘o
f

Figure 1.2 Set type structure with one member. “
A -
1 . |
| 8 .
. * .
T T
B * c *
| | | {
Figure 1.3 Set type structure wi‘f?th two. members.
A
| A
o s T - T - —
< < | [
. l §1 -] 82
i (T i
B c,
S « AR, 2N
I | I |

Figure 1.4 Representation of Figure 1.3 using two set
types with one member. . .

3




types with one member re&otd type. Because a set type 'is a

R e Tt ]

1:M association, an N:M association between record types
cannot be fepresehted as such directly. Thi’s, however, is
not a CODASYL dissadvantage because an N:M association can

be represented implicitly using types. Let us illustrate

this by using N:M association between the entity sets parts
. 2 '

and suppliers. One supplieru can supply many parts and one
part can be supplied by more than one supplier. First of
all'we are going to have ‘two record types PART and SUPPLIER.
Now we introduce a rlmew record type é-P which would -.contain
meaningful data items -~ as part number, supplier number,

part's price, part's quantity or a proper combination of

tbem.
G
Y ’,N :M.s - hd
),I \\1- .
| SUPPLIERS | | PARTS b,
—-T~- D —— —-— ol s _--T --------- /‘ A S Y W W P et S )
SUPPLIES | SUPPLIED-BY
‘ .
1

Figure 1.5 Set type representation of an N:M
association. - :

t

'i'he Figure 1.5 shows the new record type and the two set

types (two l:M assocliations) used to express the parts =

[4

suppliers N:M association. 1In general a well defined schema

should not contain N:M associations between record types or

1

AN



A e ppae o«

Y gl w1

[ R sk T
1} - a

| .
‘groups of data items - instead only 1l:M associations should

be used. A set occurrence is.an instance of a set type; it
consists of , precisely one occurrence ‘of the owner type and
Zero or more occurrences of the member 'record type. Each
set occurrence represents a hiexlrarchical relationship N
between the owner occurrence and the corresponding member
occurrences. This facéé‘} imposes the foliowing restriction:
an occurrence of the member type should not bel;mg to more

than one set occurrence of a given set type at any given

time. . . . :

o i

1.3.2 CODASYL SCHEMA

A (ODASYL schema defintion describes the 1logical

organization of the data base as a network structured data
. .

model; however it also includes features concerned more with
- . v \
the storage 1level of a data base system. These features

raised a lot of criticism and caused a lot qf debate. In

-

generai a schema definition c¢onsists of four: types of -

ehtries:

o

1. One schema entry, which identifies the schema.

2 6ne or more area entries which define the groupping of

) records (record occurrences) into areas.

3. Record enfries, which define record types and specify
details of their data items and data aggregates.
. .
4. Set entries which define the grouping of record types
‘into CODASYL set types.

For the schema definition a Data Description Language (DDL)

is provided. In the rest of this section we discuss briefly:

.0

AT, e RARLE (g Fon A 7 2 LU M KSR T RS Yarche S o = -



P T T

oy

v

B e NG
.

|

23

the most important features of the DDL.
PRY * “ £

AREAS \ '

'3

The total storage space of a DBTG data base is divided
into a number of named subdivisions calléd areas. For each
record type the schema specifies the area or areas into

which occurrences of that record type.are to be blaced when

7’

they are entered into the data base. In the case where a

t

record type ls assigned to mor2 than one area a decision has

L4

‘to be made, at the time a new occurrence is to be entered in

the data b‘ase, as to which area should be selected. This

. A

decision may be made by the appllication program concerned.
The exact ”meaning of the drea %n physical terms is
determined by the implementation of a particular system. It
can be for example, a disk pack, a cylinder or simply a
stored file. The introduct“ion of the area concept iives the
DBA the ability to subdivide a data base in ways that may be
used to enhance system eff'icienéﬂr without introducing any
statements w‘hich are device or technique dependent. 1In tlis
sense storage volumes or devices can be 3allocated by DBA
procedures to store portions of ‘the data base ahd help
optimiie the data base access by placing infrequent‘ly\
referenced or archival portions of the data suitably. ‘The
concept of area’ is one of the most’ controversial of the
current DDL. There is a strong anti-area feeling that all

physical positioning and data optimization 'should be carried

out -quite separa_;ely from the data description by people who

{

r -

— - N et mes b,

<

’




MR e o

X U, W I el g e 5 e A e A g

.
e N . . e -~ . [T
’ .
i g s
B .
)

J‘ -
“ know how the. data is _employed. A fregquent change of ‘data
o employement should notéffect the -logical description of the

‘data. ’ e
.
1 N 1

"

A singulér set type may be thought of as a set type

where owner is not another record type,but is the SYSTEM,
Member type can be an\y of the schema record types, In fact
i}; constitutes only one set occurrence with owner occ'urr_enc\:e ]
being the system and member o¢currences being all the

occurrences of the member type. R ‘ | i

e

. ' - ; 3
DATA BASE KEYS ) ' 5‘*

’

o

The data base keys are' internally generated unigue
record. o;:cp-rrence identifiers; when a new record oceurr ence
is generated it is assigned a unigque value 1that identifies
the record occurrence and distinguishes it from all other
(reord ocCurrences. It can be a logi&al or a virtual
address. During " the execution of a DML command, the DBMS
finds the data ba.se key {in a known position within the

\ record occu-rrenc‘e), of the reguired feéord occu'rz&ence and
the system éan ,d.irectly access ﬁhat occurrence by{? quoting”
the data basbe key. ' An extended notion of the aata- bgse keys _ \
was to a'llow the programmer to control the placement of a
new record occurrence or let him ' save' a dat;a base key for

later use. This expansion caused a- good deal of ‘eriticism.

In”g;‘neral it is, impossible for a DBTG system to exixst )




\

f

lSE’I’ SELE CTION

‘the means of identi fying .and locating

-~

without the data base keys, since it does nctw réequire the
existence of a primary key. in any record occurrence (and nor
would it be reasonable to do so, provid&:-d the - existence of
the ’/set‘ type construct with its own navigation paths). A
user deflned pr imary key is used to generate the address: of
its correspond ing joccurrence, which also 19 used to create

-

various 'chains ' for sequential search.. In the case vwhere

no primary key is supPIied, the#data base keys are required,

to create the search 'chains', which in this case will be

only sequential .

\ '\.
A set'type, in general, may have many sSet occur.rences.

The set selection clause in the schema set e?riy provides
the

equ ired set

occurrence whén it is to be retrieved, and determining where

to place | when it is tQ be stored. The set selection

~clause of ajschema set entry defines an access strategy for

all of ity set occurrences. For example, when a new record

K

. 4
occurrence is created and it has to be member occurrente in

i

some t occu;rencés~ (within different set types)

au%omatically, the system uses the set selection clause of

the. member subentry, of the concerned set types, to select.

\o
o At

appropriate set occurrences.

e



/ - |
LOCATION MODE ' : ' )

‘The. location mode clause is patt of any schena lkecordx .

type entry. Its primary purpose is to contro}gthe placement -
' of new occurrences of this record type, wheg Epey’are first

stored in the data base. There are four location modes:

DIRECT, CALC, VIA SET and SYSTEM. This clause specifies the .
means of assigning keys to record occurrences whicﬁ will pe

used by the DEMS for retrieval and storage purposég.
Particularly the CALC mode defines a - hashing procedure *
named in this clause); this procedure caa operate on “a L8

speyified Eéy data item to generate the data base key for a

record occurrence (it actually locates the record

»
9
occurrence) .

N

MEMBERSHIP CLASS

s
i

The member subentry of a schema set type entry must ’ <

-

include a membership class speéification for the member - o

record type in the set type concerned. The membership class

g& specified by means of the INSERTION oi RETENTION clause, o
Insertion refers to membership durin§ storage and retent1on, >
refers to membershiepdurlng removal of a member occurrence i 32
from a set occurrence. The membership class specifiedt in

o

the insertion clause can be AUTOMATIC or MANUAL; the’

"membership class specified in the retention cla can be:
FIXED, MANDATORY or OPTIONAL. ?ﬁgegl speaking, the - 4

4
" . N

/




POV

membership class of ~a record type (which can be different
~ within different 'set types), affects the maintenance of the
‘ ¢ " ' :

set occurrences of these set types. By maintenance is meant

the creation, modification,or deletion of instances of the

hierafchical relationships, represented by a concerned set
typ;. Examples for each medbershig class can be found in

(DATE-77], Chapter 20. .
) .
. SOURCE ANQ RESULT DATA ITEMS
The source clause is used to specify that the value of
a data item is to be the same as the value of another
sﬁecified data item. A wirtual solurce means it does not
exist physicalfy, although to the user it appears as if it
does" The\BBMSmis requnsibfe for handling this; an ACTUAL
source means that the data 1item value >exists, in the
particular occurre&ée, physicall&l An' ACTUAL or VIRTUAL
‘.result data ltem value is a valué wh%ch is generated ‘by
g

special procedures by using data Neem values of specifiad
A

data item(s), of specified record occurrences. Regafdless

of “whether it i& ACTUAL or VIRTUAL, such a data item cannot

be the object of a DML MODIFY statement. . v
¢ [
,1.3.3 CODASYL SUBSCHEMAS
" A Subschema represents. the user's yiew of the data

base; it is drawn from the schema and it must be consistent
with it as well as disciplined. The subschema specifies the

fecord types that the user is interested in. The data items

’

—~

Ve

PRI

e o n b g




e . ] o e i i g - R

' ) E 28

of a subgcpema record type are exaﬁ?ly those the usgr wishes

to see, The subschema also includes specifications of set

Q S

types that the user wants to consider in his\ view. The -
'subscheﬁa is defined u;ing "the subschema DDL. It is hot

pqsgible to define a new record type which spans more than
¢ ' ’

one schema record type or to define’ a new set type

relationship which does not exist in the schema.

N

1.3.4 DBTG DML

The DBTG DBMS, in order to handle most of the DML

commands, employs the concept of cqfrency. For ‘every
. 3 ,

program the DBMS‘ maintains a table of currency status

indicators which indeed are data base key values, There are .
N 3

four currency ‘indicators; for area, each record type, each

set\type, and latest record type. , o
g

(1). Current. of area A refers to the most recently
accessed occurrence within A, ‘ !

=4

. ' 1 : .
(2). Current of record ‘type R refers ﬂko the most ;gk
recently accessed record occurrence of record type
R. ’ -

& ho—
‘(j). Current of set type S refers to the - most récently
accessed occurrence - owner or member - within-set
. type S.

-
.

(4). Current of run unit refers to the most recently
accessed record .occurrence, regardless to its
recdftd type.

" The following {s a very brief summary of the DML .commands

and show why the currency indicators are important. . -

[ !
k=3




e = o A S ARR L A S

e S v N 61

For retrieval. :
. re
FIND : existing record occurrence and
as the current of run- unit and also
updates the other three indicators appropriately,
GET : Retrieves he -current o run unit; fetches data
' from a record occurrence. -

. T »
For update functions :

MODIFY ~ Updates the curreht of run unit; changes data in
‘ * this record occurrence.

STORE - Creates a new record occurrence (stbres it in the
data base); it becomes the current of run unit and
updates other indicators. ' ‘

DELETE - Deletes the current of run unit from the ‘data base.

INSERT - The current of run unit is inserted into some set
' occurrence(s).
REMOVE - Removes the current of run unit from one or more
set occurrences. .

For control functions

OPEN - Prepares parts of 'the data base for processing.

CLOSE - Makes parts .of the data base availab™ for
processing. " ’ .

An extensive bibliography related to DBTG propo§als,

literature, criticism and implementation is given by R.

Taylor ggd R. .Frank in [TAY-FRA].
1.4 SCOPE OF THIS THESIS

The structure of this thesis depicts the- natural

sequence of events ‘that topk place for its completion. The
- , .

first step was to consider the background of the subject and -

make décisions}as to what 5gatures had to be included in the




R S

Jre——"

30 ~

design of our experimental system. The ;est.of thi; thesis
is ded%&pted to the next steps of this ;esearch which were
the desan of the developed system along with the
consideration of the computer system which was to be used
for its implementation, the detailed implementation data
structures and techniques, and final;y a sample application

on tﬁe developed sysfem. ~

Chapter 2 deals with-the overall design philosophy of

ENDBMS. It explains the supported data model afd then
! . .
introduces all the components and features of ENDBMS.

Emphasis is given on the proposed disciplineé subschema and_

access profile concepts, because it is beleived that their
proper use for overall‘security enforcement in ENDBMS (and
as it is suggested to 'any DBMS) is the most important aspect

of this research work, Chapter 3 deals with the host

implementation environment. It first, explains the file

f .

»

systém supported by the host Operating System (0.S.), then

describes all the features of the Cyber Record Managér - a
major component of the host 0.S. - used by the'ENDBMS, and
then describes a® simulation model for 'physical'

concurrency. Chapter 4 provides all the details, about the
H
data structures and techniques used to implement all the

ENDBMS features described in Chapter 2.

Ay
P»

Chapter 5 provides the desription of a hypothetical

company C, the design of a da?@ model for its data base, the

dﬂfcriptioq of the authorized role of some employeés of C as

o 2

+




v R BTG My e e i
»

31

‘prospective users of its data base. Then the company's data

-

kﬁ\\base is implemented on ENDEMS and actual interface sessions

from its DBA and various users are to verify some of the
~ =

’ system's capabilities with focus on security enforcement.

Finally in the conclusion Chapter G-the QQDBMS is briefly

reviewed and possible expansions or_modifications for future

r

work are discussed.

o

Al

n m——




e

R, s e A oA = Ty S0
=

A

CHAPTER 2

ENDBMS' DESIGN PHILOSOPHY

In this Chapter the overall design of the ENDBMS |is
described and -“the feature-facilities supported by it are

explained; these features match lthose suggested 7?
|

’Tsichritzis in Chaptef 4 of fTSIC-77].

t
———

2.1 DATA MODEL - ' v \

The data model of ENDBMS is based upon the Network
model's record type ‘and éet type concepts. A record t&pelis:
a némed collection of 'field' names, where the record type
name corresponds tégan ‘entity’ ;f the f;al world, and the
field names correspond to some of the attributes %f this
entity. An  instance of a record type is a collection of the
corresponding field slvalues and it is called a record
occurrence. All record types are declared in the schema. A
set type is a nameé relationshibI(association), beéweeﬂ two
record types. This'associatiOn has an order, that is,\ one
of the two record types is declared as owner ;nd the other
as membe;. ’ﬁgﬁarbi;rary number of set types may be declared
in the schema. A set type declaration requiges both owner
and member record typ; declagations. Any record type may be

declared 1in the schema -as the “owner of one or more set

-types. 'Any record type may be declared in - the schema, as

the member of one or more set types. A given record type

can partiéipate as both owner and member in the same set

32




33
type. A set occurrence is an -‘instance of a set type
association. It consists of exactly one occurrence of the

owner record type - owner occurrence - and zero or more
occurrences of the member f;;E\- member occurrences. Each
set occurrence is a hierarchy with the owner occurrence as
superior and fll the . member occurrences  being the
dependants. A record occurrence cannot participate, as
member, in more than one set‘occu{rence of'a.given set t&pe
at any given time. A set occurrence may have an arbitrary
number of member occurrences. ' A number of set occurrences =-

within different set types - may have common owner

occurrence. An occurrence of the member type may belong to

_different set occurrences - within different set types. We

N

e

mentioned above, that a set type is a named ‘and ordered
relationship of two record types; it must also be a 1:M

relationship. An N:M (many to many) relationship cannot be

declared explicitly 1in the schema. However by using a new

record tybe as a connector, an N:M association 1is declared
as two set types each being a l:M association and wherein

the connector record type is the common member.

A graphical representation of a set type is a directed

graph where the owner and member are connected with a named

+

directed arc (direction is from owner to memberL, The nami

o
2

of the arc is the naﬁe~pf the set type.

EXAMPLE 1

Figure 2.1 1is a representation of the set  type declaration

§ ’ -

,\\\ . \;l‘\

o e




C T A e e a

£
7

R T P, .

ol

£

<

——

34 ' X

.

Figure 2.1 Data model for department-employees

! association..

L4

DEP-EMP with owner and member record types, DEPT and EMPL

gzgibctively.

This sef type declaration corresponds"to the

1:M association between the department and employee entities

of a company.

-

| DEPT !
- > < —
7 ~

. s N -

_“~ DEP-EMP ~  DEP-PROJ
7’ ~
I : ~
7 -
S PR N

o | PROJ |

= PROJ~EMP ~=—ewmemm———————————

Figure 2.2 Data model for department-employees

EXAMPLE 2

~

2

-department-project and project-employees

associations..
L

S

This example is a more'complex structure than example 1. We

[ -
it

¥
3
.
9 }
,

¥

v

Y

.




by Db AN W, s

E

-

¢

B i aaa vt T

35

‘ consider an environment of departments, employees and

projects, and their 1:M associations between department and
employees, department and projects, projects and employees.

The names for the corresponding record types ana\set types,

are shown in Figure 2,2 /
| SUPPLIERS l ‘ | PARTS |
""""<‘:"‘\" ““““““““ ) /"/"’l’ ““““ FEmmSmm———
; o s-C / P-C
~ 7/
~ . e
~ ~ 7’
- __ X o
| CONNECTOR |

- S . . D D P D - .

‘Figure 2.3 Data model for suppliers-parts association.

S
h

EXAMPLE 3,

In this example we consider an N:M assoéiatiodﬁ A company
uses some parts for its pperation, and each part is supplied
by some suppliers. We say some to include %he possibility
that different suppliers méy supply the same part. We have
the record types SUPPLIERS and PARTS and we introduce thg
new record type CONNECTOR., /N?u we can declare two set
types; the set type S~C between §UPPLIERS énd CONNECTOR, and
the set type P-C between PARTS and CONNECTOR. These two set

types represent two 1l:M associations. The CONNECTOR record

type will  have as fields the part number, PNO, supplier

» _




SR

et s s s P e 7 ¥
’
"

b a8 TAY S Y SRR R T 12 g e EE . - . PRV s e ”

number, SNO, and probably the price and quantity. For any
SUPPLIER owner occurrence, in a set occurrence wﬂghin S;C,
there aréués many CONNECTOR member ocurrenes as tth number
of different parts supplied by this supplier. For any PARTS
ownerloccurrencé, in a set ogcurrénce within P-C, there ére’

as maﬂy CONNECTOR member occurrences as the number of

&

\\giffen@nt suppliers who supply this part. Figure 2.3/'shows
\

the datla model for example 3,

SET OCCURRENCE REPRESENTATION

The means by which the owner occurrence is connected
to the corresponding member occurrences is irreievant as far
as the user 1is concerned. One way of makiné these
connections is to use a chain of pointers that originates at
the owner occurrence .and runs throﬁgh all the meéber
occurrences, but the owner Scéurrence can be reached from
any member occurregdg. lThis is shown in Eigure 2.4. The

actual‘ph§§1cal connections used in ENDBMS are described

Jdater in section 4.9.2.

2.2 SCHEMA :. A SIMPLIFIED DBTG SCHEMA

The ENDBMS stores the data required by all

applications in one data base. 1In section 2.1 we described

the generalized model, available to déscribé the data base.

The description %f the overall view of the data (i?e., the

data base administrator's view of the data) is called the

SCHEMA. It names ail logical units of data in 'the data
_jrbﬁﬁ

o

£




© 37
| D2, I
O0-occurrence = = ——-=—————- T ———
. I +
l '.
\QA * !
yan  meemmememed e ——— 3
| E10 -

¢
; _______ fmm—————
o
. |

M-&:W! E15 beod
b T .
f * ' { . . * e
) | \
1

: i .
Figure 2.4 Logical representation of set occurrence. .
e

base, e.g., record types and set types; it also names the

fields of each record type and defines their type  -

s

character or numeric - and their maximum length in

characters. »}he schema expresses all possible 1logical

assoc;ations of the records by means of the set types. The

ENDBMS schema does not describe any aspects of the mapping

of logical wunits of data to a physical storage structure.
It also does not specify any access restrictions to. certain
'logical units of data (security or;"integrity measures)
because security in ENDBMS is impleﬁented iﬁ~ a separate

integrated subsystem. !

The ENDBMS schema supports the CODASYL concepts such

as: area, singular sets, set selection, location mode,

membership class and result data items, but in a different,

fashion,

(1). The ENDBMS data base (at the storage level) consists

e




. » 38

of éubdivisions (physical and 1logical) but they are not
defined in the schema, and as such the user sees a virtual

unified data base.

(2). The ENDBMS uses the idea of the 'singular Set' by

considering all record occurrences of a given record type éé
member occurrences of a set occurrence, where owner
occurrence is a system denerated head~occﬁrrence, but no
such specification is required to be made in the schema.

. (3). The ENDBMS selects a séé 3ccurrence, by selecting the
owner ‘“occurrence explicitly  (set selection). This
occurrence is selected either directly by using the DML
command 'get the owner of' or indirectly by using a ‘record

type DML command to 1locate a record occurrence, which

furthermore Kpéﬁomes the owner occurrence of some set

upr¥rence by using the 'currency indicators' command (see

4 section 4.9.4). Snce the ENDBMS has selectd% a et
& :

-

- occurrence any- set type command can be used. The ENDBMS

schema does not include any of the SET SELECTiON clauses of .

the DBTG proposais.
(4). The DBTG schema includes the LOCATION MODE clause. to
specify how a new record occurrence is going to be placed in
~ the data base when it is first created. The ENDBMS schgma
| has no such specification, because'annew record occurrence
is placed in its own 1logical unit, corresponding to its
$ record type, and can exist independently. 'iater it can
manually participate in any set type occurrences which have

. 2
a. been declared for the record type in the schenma. Thus in

D




SN N

I ek L i

different record occurrences.

39

ENDBMS a manual membership ggr any fecord occurrence,
whithin permissible set occurrences, is imposed as well as a
manual or automatic dis-association. Manual refers to the
explicit 'remove' DML command and automatic, refers to the
*delete' DML commapd,‘where a record occurrence is deletgd
from the data base along with all existing associations to
(5). All data defined in the ENDBMS schemé'are real. A
complete picture of the 'virtuality' supported by EQDBMS is
given in 2.3.4.

(6). The ENDBMS uses the idea of the data base key. When a
new record occurrence is stored in the data‘rbase, it is
associated with a unique key; this key is gene;iged‘by the
system,; and it not on;y.identiﬁiégm?ﬁé*record occurrence but
it also identifies ih; logical and phységal unit of the data
base where it will be stored. The fact that the key of a
record occurrence identifies the logica} and physical unit-
of the data  base, has to do with pos§ib1e future

modification of ENDBMS using associative storage (see

\\

conclusion). - ‘ o~

2.3 SUBSCHEMAS

2.3.1 INTRODUCTION

A subschema is defined by almost all authors of text
books on data base systems as being one of the following

~ a s
(1) Us%t's (interactive or application groqtammer) view of

the data base. :

-

«
N

[NPETTEE.S




ts

" 40

>'(2) Subset or loéical subset of the data base.

Date in [DATE-77], Chapter 21, makes a ' 'precise' statement -

‘*—//}that 'subschema is a subset of the schema' and specifies

_what entries of the schema may: be omitted 1ih' a given
subschema. Tsicﬁritz;s in [TSIC-77], Chaptgr 4, says that
the subschema is'a logical subset of the schema and thus a
view ;f the data base. He also indicates that the subséhemq

'selects' relevant parts of the schema and *adds necessary

modifications' to form an application's view. Martin in

(MART-77], Chapter 6, gives the following defintion: - 'The -

B o

term subschema refers to an applicationhz;jziigmef's view of
‘Ehe data he uses. Manyldifferent subsc as can be derived

from one scheﬁa'. We consider all of the above definitions”

as incomplete. The concepts ‘user view', 'subset of 'the
schema' or 'logical subset of the spheha' are not
sufficiently clear without a. precise schema to subschema

p—

mapping function. J

2.3.2 SUBSCHEMA : A DISCI;iINED SUBSET OF SCHEMA’

We define the subchema as a di;ciplinéd suQset‘of-thg
schema.‘ It consists of a collection of record types and set
types defined over the schema and copstructed using a given
'access profile' (see, section 2.5.2) and a set of rulss&

~ The access ptofilé specifigs'whfch'schema record types can
be accessed with probable restrictions on some fields and/or
occurrences of the record type - as far as read and update

operations are concérned; it also specifieé which schema set

- e ————




BT ST R i T S roe s |

[V

41

types can be accessed with probable restr}ctions - as far as

read, in¢lude, remove openations are concerned. The set of

‘rules are’ the subschema's record:and set type construction

}ules. Thus when a user retrifﬁes a subschema record
occurrence, it may result inv retrieval of€more'than one
schema record occqirences. The information retrieved from
thé data base, based upon a user's subschéma and profile, is
divided into two categories: real and virtual. The set of
rules 'géverns the method of deri@ing this information from

the information stored in the data base. ' o

v ’ \

B
2‘3.3 REAL SUBSCHEMA FIELD ANP RECORD TYPES ' -

A field or record type, defined in a user's subschema, '\\
is said to be real if it is defined in the same way as in

‘the schema. A real record ter is composed of~ reml &ields

)
* “and ,is associated with one schema record type, which is

cv

.the same as in the schema. -

Ay

4called the schema 'base' . record type. The wuser d&efined

subschems names may ‘or may not be the same as their

; .
corresponding schema names, however their attributes must be

2.3.4 VIRTUAL SUBSCHEMA FIELD AND RECORD TYPES : ﬂjﬂ

/ . . s .

v

’ "Any field or record type, defined in a subschema, in
any form different from the corresponding schema definition,

is said to be virtual. A virtual field is'defined over one

-

schema record type and it is a traqsformation of the one or

more 'f;elds of this schema record type. At present, éNDBMS
p ‘ | .

-




P

¢

(=}

allows a number of numeric and string type transformations
gi.e., the RESULT-OF, SUM-OF, AVERAGE-OF and MERGE-FROM
procedure types). The fields of a virtual.subschema record

type can be defined over one or more COMPATIBLE (defined 4

«

below) schema record types. Every subschema record type
must specify a schema base record 'type; every real or

RN

virtual field is taken or generated from i

the base record
type or a reco;d« type which is compatible with the base
fecord type. 'One important requirement in defining a
virtual record gype is that, at least one of ‘its figgés must
be real and defined over the base. A COMPATIBLE record type -
-is defined as follows : let B be the base record type of the
subschema record type R and let A be ;nother schema recorq
type over which some field(s) of R is(are) defined. We say
that A is compatible with B if and only;if A is the same as
B or there exists a schemg set type S, with A being its

owner and B being its merber type. R

—,
~,

2.3.5 SUBSCHEMA SET TYPES. N

a

A subschema set type S is defined over two subschema
record types 0‘ and M, where O is the owner and M is the
méyber record type.- O and M can "be _feal or virtual
subschema record types. Every subschema set .type S is
considered to be real and there is a corresponding schema
set type SS which must be declared in the subschema seﬁntyp;
definition as‘tﬁé 'base; set type for s.” Thgﬁ the ruie for. -

defining a subschema set type is as follows : let OB be tﬁe M
‘ » ;

"1




ar R Y T S b, ¥ e T TRy

\

43 ) '
base of the subschema owner record type O, anq MB be the
base of the subschema member record type M; OB and MB must
be the owner and member types of the schema set t9pe 8s.  We

do not have virtual set types in the subschema, because the

- user is not allow?d to declare new associations, different

from- the ones declared in the schema.. This rule does not
reduce the'potential of the system. If an application needs
a new set type, the DBA could define (add) the new set type
and giverapptopriaté access ;ighks; f;r this set type, to
all concerned users. - _
& - , . o L Ve

2.3.6 SUBSCHEMA CONSTRUCT¥ON AND USE
5 / ' {‘

The -construction .of a user subschema can begin after
™ ’ ’ v
the usgrﬂhé; been 'installed' in the system and his profile

has - been defined. As the subschema is defined, the
definition is £:£cked for l;xical, syntactic and  semantic
errors with respect to the.schems definition and the user's
profile. An error free defin;tion is stored in the sysfem's
subschema file. Once the subschema is stored, the user's
DML commands are checked agains£ his subschema for Qalidity
of set, record and,fieid names used'by the commands. The
check also includes a look-up Af the wuser's profile for

record occurrence restrictions (ROR's); if there are any,

these are considered during the execution of the command.

¢

vk .~

it




iy s s e e %

2.3.7 SUBSCHEMA CONSISTENCY

The use of subschemas for security enforcement * in

ENDBMS, requires the maintainance of consistency of 3 user's

\§ubschema with respect to his access profile. We had three.

&

féptions to implement this consistency : (1) permit no

updates to the user's profile, (2) permit updates, but only J

in a positive direction, which would allow expansion and' (3)

-«

permit any _type of updates to a user's ‘profile. The
4

subschema mustﬂ at any time, reflect the access capabilities

defined in the user's profile. With the first option, the

~user's profile is defined once and no updates are permitted;

The user's subschema definition and any further sSubschema
updates must bg}pohsistent with this profile. The only way
the DBA can change the user's profile, is to deléte the old
profile and the user's subschema. (if any) and redefine a new
iprofile from which the user has’to recreate a new subschema.
The second option doésuhot create any consistency problem
with an existing subschem;. In the third optién, which was
adapted and implemented in ENDBMS, additions and deletions
» to user's access profile are permitted ‘with 'the system

automatically checking the consistency of the user's

subschema with his updated profile. I

-

4

LR




~e
s

2.3.8 SUBSCHEMA AND MULTIUSER CONCURRENT ENVIRONMENT

The ENDBMS can operate in 'batch' or in an -"'on-line’
concurrent multiuser envircnment. Any time a user execufes
a/retrieval command he gets what is available to him,“ in
view of his access profile, at the 'stored' data base level
at that time. . We believe there arg three nmechanisms for
storing the subschema i
FIRST: When the subschema defintion is stored, in one ofw

the system's files, the.definition is used to derive
a 'logical' subset df the data base which is stored
separately? This mechanism does not  propagate
{KIM-79] the effects o} DML commands against the
subschema, down to source data base level. Instead
all DML commands are egecuted against the stored
data base subset. It is obvious that extra storage
is required ' for storing \the 'data base subset'.
When éhanqes are made to the sourcé data base, tﬁe
stored result-subset for a given subschLma has to be
destroyed and has to be reevaluated in order to

reflect the recent changes. Any update command,

diredted fo a subschemas, changes only the

corresponding base subset!'. The hazardus here

is the foll wing: when the é%p;ed subset is

destroyed, 11 the effects of the update DML°*

.

commands against the subschema which have been




SECOND:

T /

46

. /

recorded in the stored SUbiFt are lost too.

The . subschema definition v as well as the
corresponding '1ogical'\$ébset of tﬂe data base -is
stored. Only retrieval %ommands are directed to the
stored subset of the daté base, without the ove;head
ﬁecessary for evaluating the subschema definition
évery time.. In case of an upd&;e statement the

subset 1is destroyed, the DML command is executed

againéf”the stored data base, and the subschema

" definition is reevaluated.

THIRD:

This mechanism requires only the Storage of the
subschema definition. This is the one adaﬁﬁed and
implemented in ENDBMS. (The user executes all his
DML coﬁmands, against his subschema and down to the
source, stsred, data base. It reflects all changes
made at the data base -level by any other user and
can support any cohcurtency_ control, like shared
read Qlocks and exclusive " update locks, One
advantage obviously 1is the storage efficiency.

Storing only the "subschema definition |is very

efficient for maintaining consistency'between user:
- Car®

profiles and user subschemas.

2.4 ENDBMS INTERFACES (USER INTERFACES)

The ENDBMS provides facilities for two type of users,

the Data Base Administrator or DBA, and the non<DBA users,

who wish to ,access the data base according to their

L




I L

g T L R W

—p e,

47

L

application's view of the stored data.

NOTE: "
Through out this thesis we use the term 'user' to
indicate abnon—DBA user, and the term 'system user'
or ENDBMS user to indicate both the DBA and non-DBA

~ yser. However, some times, wve will use ¢the term
'non-DBA user' to avoid ‘confusion.
A
2.4.1 DBA

As far as tr;e ENDBMS is concerned the DBA is-a special
user or an ind‘ividual who has to perform a certaid role.
This role can be played by a single person or' by a number of
persons within an ip_t_ex:prise. The DBA, primarily, s,
responsible fo‘f/s’§/s;:em installation. For ENDBMS there is a
separate compo.nent which installs the \"@pgtem. At  the
system's ins’tall:ation, an ent;y is generated which among
other things incl'udes,(t’:he DBA/s-(identity. Generally the DBA
is responsible for the data base operation of an
organiiation and his major . function is to determine the

information requirements of the various applications and to’

provide the views they require, In the ENDBMS the DBA has
the following duties :

l1. To install the system.
2. To define and administer the schema,
3. To install users.

4. To define and administer every user's profile.




48

5. To help users in constructing théir subschemas‘and
) explaining all information included in the schema
definitiqn. _ ) J

6. T¢ establish consistency in the data bas/a?ter a’
crash, namely, to Tecover al} users which were
using the system, at _the time the failure occurred.

7. To recover specific users who logged-of £
abnormally, either intentionally or because of some
system - host or ENDBMS - bug.

ENDBMS provides him with all the utilities needed to perform
these actions. He optionally, may use any of the DML

commands and he is assumed to have no restrictions as far-as

.data base'retri‘gvfal and update {s concerned. Some of his

utilities require a special environment for execution and

for this reason he may have to do some monitoring; e.g., 1in
4 . -

' order to delete a ;'ecor'd or set type entry from a user's

profile, the DBA must make syre that the user is not =-using

the syétem.
2.4.2 NON-DBA USERS

The domain of interaction of a non-Dﬁi\ user with the
data’ base, is' deternined by a subschema. A user presents"
his 'datg" requirements to the DBA and\the DBA defines an
app‘ropriate ac‘cess profile for him and helps, if nécessary,
the user | to define ‘the subschema that desribes and
implements éhe view." Different users will have different

<

views of the data base, and the access capabilities of every

' \
user are contained in his access profile.

Before a user can 3ccess t;hg data base, the following

¢

steps must have been performed :




\

a. User installation; this is done by generating a
user entry in the 'user list'; this is a . list of
all validated users of the ENDBMS. This entry

S~ among other information contains the user's

identity: user number and user password.

b. The user has been given an access profile, where
all access capabilities, as far the data base is
concerned, are clearly defined.

c. The user must have defined his subschema, which

reflects his view of the data base and which is
consistent with his profile. '

N
L
2,4.3 INTERFACE MODE - EDITOR

Every system user must use the ENDBMS in either the

'batch' or in the 'interactive' mode. The system can be — § |
’ / '3

accessed either through a card deck or through,a/tﬁm/inal.

In case of a terminal any of _these two modes can be

——

/‘
selected. As we already mentioned the interactive, or I,

/n_\ﬁode’ad'ﬂ;ézés the special feature of the ENDBMS, the editor
facility, which is used to correct errors during) the parsing
of'any command. The parsing or translation of any ENDBMS
command uses a parsing stack to check for lexical and/or

¥

syntactic errors, The command's handler verifies all the

.se/mantics of the command, i.e., whether the specified

record, fiel@ and/or set type names are used properly from
the author‘jlzaizion point of view. Every time a new input
line is placed in an internal buf{fer - for analysi@ the
contents .of the'parsing stack as well as the stack pointer

7
(a pointer which points to the current top of the stack), is

saved ~ 1f the ‘Ifmode was selected. 1In case of an gyror.

d ;d'uring translation time, the line containing the error |is

& \

R
“ L\\ ,




- A

50

displayed and below the line, an error indication character,
‘i.e., '"", indicates the position of the error within: the ‘
line, followed by an ini_férmative error message. At this
point the interactive user can correct the errot by entering
‘a new =~ error free - line, orr‘drop the parsing of the
current command, and move to the next command - if any, in
the same input session. If a new line is entered, the saved.
contents of the parsing st:.kack, are ’loaded‘ égain and the
sta;k pointer 1is set ‘to the value of the saved stack
pointer. In other words the parsing status goes back to the .
‘status, which existed before the analysis of the erroneous |

/

line had started; and then parsing continues from the'
I

begining of the new line, as if nothing had ever happened.l’
If the system is used with 'B' mode "the editor facility can';
not be used to correct any error. If the error is such\that“

. ' .
the parsing of the corresponding command can not continug,

\
\

the system displays an error message, stops the parsing of |
the current command and advances to the next command of the
same input session; if “there 1s no other command, a new

input session is initiated by displaiyin‘g (printing) "READY".
2.5 SECURITY IN ENDBMS o '

2.5.1 INTRODUCTION

We use the term ‘security' to mean the protection of
" the access to 'ENDBM‘S via a log-in, the protection of the
data kept by the system itself (this involves information

kept in system directories 1like schema and subsche:ma

.

(S




e

51

definitions), and finally the protection of the stored ' data
in the- c;ata base, from both authorized and unauthoﬂized
users of ENDBMS. This definition does not correspond to the
one usually given in the literature. It is not enocugh to
say that security includes only protection of the data in
t_he% data bjase, against unauthor?zed disclosure, alteration
or detruction [DATE-77]'. In this section we are not

concerned with the social aspects of the problem; Martin and

Norman discuss this aspect in [MAR-NOR]. The ENDBMS is

designed so that it can support: 1. Log-in security 2.
System?’lirectories security and 3. Data base security, by
ass'igning each of its users 2 unique user number, a password
and an adccess profile. Any one who-~ attempts to | use th;e

system must identify and authenticate himself. .Identifyi/’rig

" a user consists of entering a code that is recognized by the

systenm; this code is a unique‘ user account number.
Authenticating. a 'user means verifying that the_ use'r is
actually the person who is allowed to use the identificaytion
code. The use o.f,passwords, known only by the authorized
users,“is employed for authentication. More sog?histicated
and costly methods of,;authentication do exist - e.g., badge

readers, ‘ 'formula' passwords and built=in terminal

{dentification. An extensive discussion of various

“authentication procedures is given by Hoffman in [HOF-69).

-

A o ik i

PR TR

i




P T ot

52

2.5.2 USER ACCESS PROFILE -

A user access profile consists of a number of record
and set type entries. A record type entry refers to a
schema rec;ord type entry and defines the access capabilities
- i-ead‘., insert, modify, delete - for a particular user, at
the type and occurrence level. Using an integer code, the
DBA indicates the permissibl.‘e combinatigns of retrieve and

update operations.

——

The'kDB\A uses five sets to define the gestrictions at

_record type and ocuurrence level:

l. RFR: Read Field Restrictions,
2. MFR: Modify Field Restrictions.
3. ROR: Read Occurrence Rest‘rictions. o -
4, “ MOR: Modify Occurrence Restrictions,

5. DOR: Delete Occurrence Restrictions.

which may be em'pty, to indicate respectively:

1. Which fields of a schema record type can not be
seen by by a user (are not available).

2. Which fields of the accessable ones can not be
modified by a user. This implies that the RFR and
, MFR sets have to refer to different fields,
[
3. Which record occurrences, of a schema reéecord type,
are not accessable. To do this, the DBA uses a
restriction criterion - i.e., one field name,. one

relational operator and ‘'a key wvalue kB for ' the

selected field. In the current version, the ENDBMS
supports only one criterion and not a boolean
expression of different criteria.

4. Which accessable record occurrences " are not

=3

f;,’}

pop————y




' 53
a . ! -

.available for modification ~ i,e., to ’change some
field wvalues. Same as in (3), only gne criterioff
can be specified, T '

5.. Which accessable record occurrences cannot be
deleted. Same as in (3), only one criterion can be

| . ) sp‘ecified. : [\i .
: The field name used in ROR, MOR<and DOR

specified in RFR set, and cases (4) and (5) have an

only t£ the recofd type access code permits Modify or Delete

w "in the Eirst place.

A set type entry of a user access profile refers to a

[}

/‘ . schema set type. fvery set typg entry is associatea wﬁ a

set access code, to indicate the three set type operatlens:

eag, Include and Remave. Include and Remove access rights

\‘éresume Read with no field restrictions - i.e,; RFR —.en\pty -

over the member schema record ;:ype. A user can include— or

- - remove é record occurrence from some set occurrence, only if
he can access the entire record. As a congsequence a
subschema set definiton must have a REAL member record type

in the case of include and remove operationcs. In the case
where, a pro;.ile set type entry defines read access rights,
the set type's owner énd/or member type may have read field
-restrictions. Thus !\a subsch;ma definition based &R a such
.pro‘file set type entry ca;n have VIRTUAL owner and/or, membe;‘
subs;hema Nrecord“types. More specifically, a virtual owner

, or member occurrence can  be retrieveq using set type

i 4 operations.

myst not be one.

e .




A

54 | .

G

2.5.3 A FIVE LEVEL SECURITY SYSTEM

After a proper log-in the system imposes user
identification - .user number check <~ for every -system
éommand, ﬁo make sure ﬁhat every user enters ;he coﬁmands
that he is supposed to. A5¥Aeletéﬁ 5ML command normally can
be wused (submittéd)~by any user, but if the user happens to
hav; restrictions, as far the data basé is concerned, "the
command will never be executed. 1In order to protect the

data base we make use of the user subschema and user access

profile. Date [DATE-77] - in his Chapter 23.3, 'states that a

user profile alene is not sufficient to determine ~§hether‘

: I )
the - yser -should be allowed to perform a given operation;

without exblaininé his perception o% the user profile. We

strongly dissagree because our profile structure with its

access code - record or set Eype access code -~ clearly
détermines ‘yhich oéerations (e.g., Read, Insert, Modify,
Delete, Include, Remove) or legal combinatioés of these, cgn*
be used by a particular user. Furthermore e;ch of these
opérations is associated with a schema record or set type

definition and its corresponding entry in the user’'s profi%e

clearly specifies what ggrt(s) of- a record type is

accessable, by its RFR set.X¥ It can also specify what fields
are restricted from modification, and at the. record

occurrence level can _impose restrictions for read, modify

L
A

“bo“

i : ' o

e N n T

-




ey aree L

.;g\_

T T 7 S e oy b ¢ gy e

s e e,

o

NN

*

B \
" languages is given in Appendix A.

55 ;-

e

’ Q
and ‘'delete respectively. The ENDBMS monitors any data

manipulation operatiqn -~ submitted by a user - and permits

H

‘only the authorized operations on the authorized portion of
. \ i e
the data base. The ENDBMS security subsystem is designed as

a five feve? hierarchy, the levels being:’

’ (1) ‘Identification and Authentication Level
(2) System Availability Level
(3) Record Type Level @
(4) Set Type Level
(5) Record Occurrence Level

LN

. The securiiy system is divided into two categories; the data -

-y

independent and data dependent security [CONW-72]. More

details ang"itstimplementation is given in chapter 4.

b
-

1

2.6 LANGUAGE FACILITIES o

The ENDBMS has four independent -subsystems; these

being the schemag the subschema, the data manipulation and .

the security subsystems. The last also includes dnhother
subsystem, namély the recovery Subsystem.‘ The  user
communicates with them and uses their fac}iities, via four
1ndepéndené' languages. In 'this:section we 'consider thesé

>

four languagéé " and agstribe\ their primary ~features,

Implementation details are given inm Chapter 4. The formal /

/
description of. the LL(1l) -grammars used by these four,

+ ¢ , ° ,
. ] I ' ' . - /

e




g T o

T

et TS

56

!

' - s g 1
©

2.6;;//SML: SCHEMA MANIPULATION LANGUAGE
/ ) . 1

V//<///i; This language has been designed ‘so that it can be used a

by the DBA to: fl) define the date base; (2) expand the
schema by inserting new record or set typeheqttfes;_(3)
modify the schema by remsving one or more req§%dkor set type
declarations,' thus freeing thelir allocatek storage at the

data base level; (4) display at any time the' schema - the

- ; Y
data base descriptidﬂ% k - A J///

It is dgfthwhile mentioning that removal of a record
hi'fype or set type\ﬁg‘aavery powerful operation “and requi{e t
~ special considerétions with reséectuto their effects on the
data base and with respéctﬂto their execution -environment.
For example, re@dval of a schem; record type would cause
%emovai of all i';c:hema set types which use’ it, and
,furtbermore would appropriatly update all user access
"‘brofiles; this 'would lead to an update of the ‘user
subschemas. It is .for these reasons thét the DBA should
consider carefullyosuch an operation. He shoulde also make
sure that there 1is no user aétivity on the ENDRMS Lefore o
executing the operatio% ;o remove the record type; special
utilities are provided in , ENDBMS~ to " perform these !a

B

operations.
¥




_‘LL}

Noh
g

-4

e e ey

57

\
L]
2.6.2 SSML: SUBSCHEMA MANIPULATION LANGUAGE

This .sublanguage has been designed to helb all

Mauthorized users to -define their view of the data base or
'S

-

subscgemas. The structuring of a subschema ‘represents the
user“st‘ data needs; it might requite .proféssional or
Qemi—professional knowledge of gthe stored data. The
suggested procedure i§;the following: Phe user contacts the
DBA and explains his application's information,‘needs; then
the‘ DBA' defines the access ca;abilities for that user,
through an’ access profile which is stored‘\in the ENDBMS,
Having . done this, the user can define ‘the entries - record
and set types - of his'vgew.‘ The SSML contains commands = to
perform phe following operations; (1) subschema definition;
(2) insertion of a new subschema record or set type ehtry;
(3) deletion of one subschema:record or set type entry;’(d)
destruction of the entire suqéchema; (S)l lisfinq of the
subschema definition. i user subschema, once Qefined, can
remain in fhe ENDBMS As long as required by the ~u§gr -
unless the DBA decides to revoke all or a portion of his
acce;s capabili;jes. In the current version of the ENDBMS
no subschema sharing is allowed.

teut)

%




B e o T

T e e oy

o

2.6.3 SL: SECURITY LANGUAGE PR

The security language includes commands especialy
designed for the DBA, so that they provide him with ihe
means to exercise "centralized control over the ENDBMS,
First there is a2 .group of commands to 'manipulate' the
non-DBA users, e.g., to install, remove,-list ;hem, as well
astto suspend and restore .t ir access righés. Second there
is the  profile manipulation group of~commgnds, in ordef to
define, remove and update user- access profiles.  In add&tion
there are two more commands to lock and unlock the entire
ENDBMS, one command to éhange_a user's ppssword (available
to non-DBA users as well) and §in$11y one récovefy command
iﬁ order to recover specific (interrupted) users upoﬁ their
request, Details about each of these commands are given in

section 4,7.3. : ’ - ' .

: 5 ¢
2,6.4 DML: DATA MANIPULATION LANGUAGE- .
' 4

The DML has been d;signed so0 ‘that it éan be used
effectively by the DBA or ;ny other‘user. The ENDBMS keeps
track of the identity of all system users who are using it,
andw ‘pe;forms appropriate actidns (e.g., seéurity

enforcementf,'at both translation and execution time df any
4

4
DML command. As we explained before, a record type is

assigned to a data.base logical unMt whidh contains all of

its record occurrences; this logical unit exists .
\




o e e e L

e ey by e

JOP

B T

o//

59 .

idependently in the data base and every occurrence of the '

logical wunit can be accessed throug?a ‘record type' path. |

The logical association between two schema record types -1is

expressed by a schema set type definition. This logical

association, at the data base level, between the recgfd'

occurrences of the two cqtrespondinq logical wunits, fs
implemen?ed/by means.of 'set type' paths (see section 4,9.,2)
and they exist fndependently from the 'record type' paths.
These set type paths are used to retrieve information ‘from

the data base, using the seé type DML commands. Every

logical unit must be 'locked' appfopriately in order to be

/
processed. In addition if the logical unit is no 'longer

needed, it must be 'unlockgd'. Both the 1lock and unlock
operations, must be done with efglicit user éommands.
However the system, during a normal log-off, checks for
'forgotten' locked logical units and unlocks them.

h |

¥ t

The ENDBMS uses the DBTG concept of currency statls
indicators, but the number of currency ind{;ators, As well

as their dée, is quite different. 1In fact the ENDBMS .uses

}

" the following three currency indicators: :

'

1. ‘culrent,of record type R' refers to the most
recently accessed record occurrence within R.

2. 'current ‘owner of set type S' refers to the most

© . recent owner occurrence within set type §; it
“identifies the most - recently accessed set
occurrence of S, ,

3. 'current member of set type S' refers to ' the most
recently accessed member occurrence of an already
selected set occurrence;.it is set to zero in the
case where no member occurrerce exists.

«

© e

A S B R n e+ o k=




Lr < ' ) A0 .

J \
Default system settings are explained in‘section 4.9.4. The

!

difference in use from the DBTGuﬁurrency indicators, is that
the user has full control 4f

e first two. There are two

" kind of settings, the system and user settings. °

K]
4

SYSTEM SETTINGS. Every time a record occurrence is accessed

through a 'record type' DML command, the ;;stem updates the
e currency lndicator for this record type. Every time a set
occurrence is selected - by accessing its owner occurrence -
the system updates the®’'current owner' indicator fog this
set type, and sets the 'current member’ -indicator to the
first member occurrence, for the sélected set occurrence -
if the set occurrence is not empty. This for example

y

happens when the 'get first owner' or 'get next owner' |is

executed. The command 'get the owner in S, of the current

of R' sets the 'current member' not to the first member in

. ~8, but to the member R itsgelf.

USER SETTINGS. The user explicitly can make a selected
record occurrence of some %%ecprd type, become the owner

occurrence of some set occurrence and in this way select a

S

e

z updates of the 'current owner' and 'current member' currency
, ' indicators of this set type. The 'current owner' indicator

' of a set

type S with owner type R is different, and set
L) - " ”~

independently, from the 'current of R'. The user, also, can

" make the ‘'current owner' of some set type, become the

. ‘ /

{

|

! _

‘ ‘ 'current of the owner record type'.

.~ Set occurrence. Within a specific set type, with consequent




Ao pe -

TR e AN AT e Kkhm e s % Pty £

Lrr,

61 “

Another important difference from the DBTG DML is the

" presence of conditional and unconditional jumps - IF-GOTO

. and GOTO.commands ~ included in the ENDBMS DML, which allow

a 'loop' structure.

¢

A recofd occurrence.is FETCHED first - i.e., selected
by means of ‘a record or a set type path - without enforcing
security, wusing the GET DML command. A fetched record
oécurrence is retrieved through another’\DML command, the
LIST. Before the occurrence is retrieved, the EMDBMS checks/
if theausér is the DBA or not, and if not then checks for

Read Record Occurrence Restrictions. 1In the rest of this

section we give a summary of the DML commands.

2.6.4.1 FETCH C%MMAND: GET

Ed

There 1is a record type and a set type GET. The record
type GET is used to fetch the 'first', tﬁz"next', and tpe
'next where' recoré occurrence within a record type file
(schema or . subschema, see section 4.9.1) R, The set type
GET is used to feﬁch: the 'first' owner, the ' 'next' owner
(of some set type S), the 'first"membgr (of the current set

&

occurrence) , the' 'next' member (of . the current set

!

occurrence) , . and the owner of the ‘current of a record type

R' (within a set type S).

»

4

U —— Y




B s

e a2 oA~

S TR A—— = T, T e T e s e e

~qw

. oot e e e
H
i

Y '

2.6.4,.2 RETRIEVE COMMAND: LIST

L

¥

"There are different formets of LIST, for record type
and set type retrieval. The record type LIST is used to
retrieve the 'current' of a selected record type R, .and to

retrieve all accessable occurrences of R starting from the

'current' of R. It can, 2lso, be used with an optional

‘where-clause' to select occurrences from R, and/or with,an
optional“'sort—clause( to sort in ‘ASCENDING -or DESCENDING
order the retrieveé occurrences from R, by specifyiné ONE
field. name. The set type LIST |is usgd to retrieve the
'current member' of a selected set occurrence S, or retrieve
all member occurrences of S, starting from the 'cﬁrrent

member', with an optional 'where' and/or 'sort' clause.

" NOTE: all owner occurrences ¢an be retrisved by°using the

record type LIST format, by considering the- owner record

5

type alone.
2.6.4.3 CONDITIONAL JUMP COMMAND: IF

The IF DML commaﬁd tests if the 'current' of a record
tgpe is last and, if it is, the next DML command .indf;ated
by the specified 'label"is—ekecuted% ‘It also tests ié the
'current member' of the current set occurrence (within a set

type S) 1is 1last, and,. if it is, the next DML command

indicated by the specified Glabel'.is exécutgd.

3

S
2]




T

R 2

T PR

63

A

2.6,4.4 UNCONDITIONAL.JUMP COMMAND : GOTO
’ ‘ ) .
It alters the flow of DML command execution.  The

'label' associated with it specifies the DML command wich is
going to be executed next. The 'label' refers to the
turrent input session and it can cause a forward or backward

jump, o v .

2.6,4.5 SETTING .COMMAND : SET

2.6.4.6 UPDATE COMMANDS

N

The SET DML command is used to set explicitly the
three currency indicators and the length of an ‘output line’
pr?nted by ENDBMS. It Ean set the current of’recofd type R,
to current owner of set type S - where S ﬁas R as owner
type, the current of record type R to current member of set
type S ~ where S has R as member type, and it can'also set

the current owner of set type S - with owner ¢type R -~ to

cﬁrrent of record type R.

(1) INSERT: it enters one or more record occurrences (of the
same record lype) to a logical unit.

(2) DpLETE: it éeletes a selected, the ‘'current', record
occurrence from a specified ‘logical unit.

(3) REPLACE: it changes 2 selected field ~value of -the

_'durrent' occurrence, of a specified logicai unit, with a

(4
new one.

R e d




AUy e o . L

o T R e g oA TRl

v e

a

(4) INCLUDE: - it enters a selected record occurrence as
member occurrence to some selected set occurrence.

(5) REMOVE: it does exactly the reverse of INCLUDE.

AN
N\,

- A
2.7 DATA INDEPENDENCE ' ‘ )

Fundamentally, ‘ data 'ipdependence implies the
separation of the wuser's view of the data base, from
everything else - from the data access mechanism, from the
storagé media, from the stored éata base, and from the views
of othér users. There are two points oé view of Data
Independénce; logical ‘data independence and physicqlldata
independence. Physical data independence implies program
immunity 'to changes in the storag? structure,\while logical
data independence implies progrem 1mﬁunity to cbanges,in the
data model definiéion. Physical data independence allows

application prdfyrams or user quéties to contiﬁug to execute
corréctly ‘;fter the storage stéuéture has been changed to
maximize overall performance, to implement néw standards in
the storage structﬁrg or to htake advantage of éome new
hardware technology. , Logical data independence allows
application programs or user queries to continue to executé
correctly afte; the schema has&Leen changed. . Schema chaﬁqes
may involve adding or deleting data structure elements of

record and/or set types. New record types imply new data in

the data base and new set types imply new associations .

bettween old and/or new data - new access paths. Deletion

P~

A

of schema record and/or set éypes require, of course, - ,,)

ARy




»

e T

- - 3, - e TS T e e e T

»
1

tuning (update to retain consistency) of all existing
subschemas; a subschema by conven®ion must be a consistent
subset of the schema. Updates to ui’! subschemas does not

\
affect the logical independence. For example‘a query which

use;\to use a certain subschéma record type, 1is executed
against. an updated subschema, with the record type being
deleted; either it is executed correctly or it 1is not
executed at all. The - ENDBMS schema, QLbschemas and DML

provide both logicalwand physical data independence. N

2.8 DATA BASE INTEGRITY

-

Data base integrity refers to the problem of ensuring
that the data which is stored in the data base, is accurate
at any given time. The smallest logical unit Rccessable in
the éNDBMS is a record occurrence. A :field' :ZEEned'in the
schema has two "characteristics; the type (character or
numeric) and its length (in number of characters).
Similarly a record type cgnsists of some such fields, and
thus has a certain_ toﬁal length too. The degree of
integrity providgd in the ENDBMS is as follows: at the time
a new record occurfence is stored in the data base, the
system checks the submitted data for number of fields, their
type and their 1length. The number of fields must be the
same as the one declared in the schema record type
definftipn; the same applies for the type of a field, that
is a field declared of type numeric must: have as value' a

. R , s A
string of characters representing an integer or a real

T vt M e e ot




Lo

66

number. Finally the length of a particular field value must

be less than or&équal to the specified length in its field

definition in the schema. A field velue having "2 1length’

sﬁaller than its declared one is padded with blanks to the
right. The current vegsion of ENDBMS does not support
inteérfty constraints; a user authorized to update the
SALARY field of an EMPLOYEE record type with declared field
length 6, can submit a\?ALARY value of '500000', which may
be 'unreasonable', but the current version of ENDBMS does
not detect this as  an eiyor. Similarly a user who has
update rights over a PARTS record type with a field- COLOR of
type CHAR and lgngth 8, can submit the 'xzxzxzxzf as COLOR

value, even if the possible colours for a particular part

. -
.are black, brown and red. However this won't be detected as

-

an error and will be stored as a/COLOR value.

2.9 ENDBMS CONCURRENCY | | .

2,9.1 CONCURRENCY AT PHYSICAL UNIT LEVEL

o

The ENDBMS is designed so that it can’ operate in a

EY

concurrent multiuser environment. As we explain in Chapter,

3, the ENDBMS uses 19 NOS direct accéés files - the so
qalled physical units - 10 of them are used for the data
b;se, 8 are used to ;%ore the system directories, and one is
used to store the error\messages. The numbe£ of files is 19

because we decided so. Using 9 as system files is the best

choice as far as 'physical] sharing' is concerned. On the . :

‘- other hand, every 'stored record type file' (see section

A~



4.9.1) must be entirely (one only NOS file is required for
accéssing) placed on one NOS file. For our environment the
ultimate case will be to have one NOS file assigned\to each
schema record type. Consider for example the delay timg
involved in a2 situation where.two users require concurrently
two different '‘logical units' with 'D-lock', (see section
2.9.2x and both of them reside on the ssme NOS file., In
this particular c¢ase a 'D-lock' over & 1logical pnit
aﬁtomatically makes unavailable, for a D-lock, all the other
logical units which happened to be on the s;me NOS file; a
D=-lock requires the corresponding 'NOS file agtéched with
M-mode and only one can have at a time. An R-lock does . not

affect the distribution of the logical units over the NOS

files. Every user performs ‘read’ and/or 'update’

opgrations on these physical units. As it is_explained in v

Chapter 3, the 'availability' of . some of these units is
controlled either by the host operating system or by the
ENDBMS itself. In Chapter 4 we explain how NOS or the
ENDBMS controls the 'availability' of thesé physical units.
All of them are availabie on 2 'many read' fhu'one updates'
basis. As é consequence reading does not cause . any
consistency broblem_in a concurtént environment, For an
update. aoper;tion, on a physical unit, the ENDBMS |is
responsible for providing that unit with the appropriate

,mode - i.e., attach the unit with M-mode.




f s e e ek mm e

Most of t?e ENDBMS update commands, require more than

" one physical unit in 'uédate' mode, for theisy complete
'

execution. To avoid deadlock situations the. ENDBMS makes .

sure that all required physical units are available, before

O
starting execution of an update operation.

S~

2.9.2 CONCURRENCY AT LOGICAL UNIT LEVEL

The user .is not aware - and is not supposed to - of
the physical units used by the data base. He thinks of the
data base, as a b;g pool where all the data is stogea, and
the system can get it from there for~h1m. Our data base is
divided in 1logical units, that is the stored schema record
type files, which are distributed uniformly over the
physical units. For the DBA, a logical unit is a collection
of record occurrences of some schema record type, and they
;re stored in the way he }ooks at them. For any other user,
a record type file is a collection of fecord pccurrences of
his “subscheﬂa‘tecord tyﬁe. Those recorduoccurrencgs may be
either real or virtual. In any case these subschema ,record
type files are not really storéd separately, but they are
generated from the stored ;chema ones, based on the
corresponding subschema record type defin;tion.- Before a
record occurrence, either real or virtual,ris accessed the
correspondiné schema or subschema record type file must be
;xplicitly 'prepared}x fo;. appropriate processing. by’
'opening' or 'ﬁocking"itc ,Explicit oéening of a subschenia

record type file might result in opening of more than one




P a o 0
. 591 )

schema record type file, i.q{, 1691cal units. ﬁp opened

5

record type file, must be ‘explicitly "qlos<d', "in other

words -its processing must be terminated. 1In rder to make
the ENDEMS™

sure that a record type file is ngt left opened,
L o

- ~ : \
closes all open record type files ina partial action of the '_

W
normal log-off procedure. . ' \
¢ . . « L R \
To implement logical concurrency, 1{.e., concurrency

¥ . + PR

over data’ base logical . units, we used a method of mutual
ekciusioh‘with Yshafed' resd locks and ‘'exclusive' délete
- 'ldckS. Details a;é'givqn in the #mplehentalion éhap;er'é,

in section 4.11.2. D. Potisr and b, Leblanc in réow-yzpf’

*‘ \ 4 ‘discuSS'differenh,iocking'scﬁe&e# géivigion'of the datavbasé'

ingo locking units or granules) ‘foi::m data base access

Y “control, as weil as locking polici&s't; ensure integrity of

i ! ' ¢ information, and finélly ° they pregent a~“framewo}k for
¢ ] r. 1 . » . ]
) , quantitative analysis of the impact of these factors on the
?»/ . .} - ’ C
DBMS's .performance. . .

@ ‘ ' .
! ‘ L 2.10 ENDBMS RECOVERY:- A DBA CENTRALIZED SCHEMFE
. ]

! 3 4 '
i ~\*\ ' ’ ) H

. D

' Récovery techni&ues cah’be use&fto restore data‘-in“ a
E Voo syste? to a uéablé state. ‘'Such teéhntques are widely used
é ~ in data base systems, in order toﬁ‘cope with failures. A
‘ S faiiuge\ IVERH-78] . is an’event at which the system does not
(perfétm accor&ing to specif?cations. . Some ¢allures ' are
causeé by &pardwaré Eaults (e.g., a power fainr; ér a disk

feilurg),‘software ;aﬁits (e.g., bugs in program ob invalid

-

""




[

~~
-

70

data), or human errors (e.g., the operator mounts a wronq
tape on a drive, or a user does something unintentionally)

Aiiiailu;e occurs when an erroneous state of the system iz‘
processed by some algorfthm'df the system. 1In the ENDBMS we

consider only two cases for recovery. The first deals with
! .

the case where ell running ENDBMS processes are interrupted,
. & ’

because of{ some fallure of the host system. The second

deals with the case where a user logged-off abnormally

(e.g., he did not terminate his. interface with ENDBMS

properly). ° - 4

-

The ENDBMS keeps track of any user actibity (actual or

apparent; ;by apparent we mean(that a user is 'markeﬂi\gctive
because he never’ logqed--off\i

monitors every command which requires recovery (see sdction,

1 11
4.12.). At any given time, a user |is éither idle or

executes a recovery-free or recovery-needed ENDBMQ command. .
i
recovery-free ENDBMS commands are harmless heceuse they

G

™

nly 'read' operations ané they do not reuuire reeovery.
The recqvery-needed commands require special treatment and/

they are divided into two-categories: the INSERT-tyge and’

t the DELETE’type commands., The insert-type conmands require

'UNDOING of their partial execztion, "%0. that a system”™

&)

directory or the data base 1is brought back to its 1last

3

‘ consistent status. The delete-type commandsf’require

mandatory completion of their execution, no metter where,

their éxecution - is interrupted. Our scheme is éeﬂff@&iied

(1 . ! / ¢ ‘
4
’ -

properly) and « additic 11y ©

A



i

&

A5

71

to’ the DBA; he recovers himself and all interrupted users
after "2 system crash.. A user who intentionally 1ntefrupts '

himself can no longer re-enter the sxstem; he should ‘hform

-

the DBA and the DBA can recover him‘with‘the 'RECOVBR'

security utility.

9 L

.2.11 USER;ENDBMS~0.S.-DATA BASE COMMUNICATION

’ ‘ r

. { ’ - a
Douque in [DOUQ-74] describes the four "levels of

£ <

access control” which have been implemented in PHOLAS, ‘They

PR

establish communication paths between the user and the ‘DBMS
on .one hand and, ‘between tﬁe DBMS and tﬁe host Operating
System on the other. Each of thexfour hethods is depicted
by Figure 2.5, Figure 2.6, Figure 2,7 and Figure 2.8

respectively. 1In Figure 2.5 every user has hi% own copy of

\ )
the Data Base “Handler (DBH) and he interfaces with it by

4]

t

means of his own User Work Area (UWA). The' DBH interfaces
, o : % o

‘with the host O0.S. by of a local buffer pool. The

difference between Figure 2 ang 2. 6 is thét in Figure 2.6 .
the DBH ‘'is a ,shared egmeni. - The O.S. provides ‘the

segmenting and there is only onef DBH colle in core. -

JLogioally it -appears ae two data base handl’rs ;nd this

version cannot be considered as a central DBH facility.“ﬁhe
full central DBH version of PHOLAS is ‘shown in Figure 2 8, -

where several users} each with his own UwA, 1nterface with - ’

‘the DBH which ownslone buffer pool and access the- data hase

‘via“the 0. S. In Fiéure 2 7 "the 'multitasking DBH faciliﬁy

~

"of PHOLAS is shown, however this multitaeking ls implemented




I 7 VN

. 72
- ~-- UWA: User ———— .

| user program | ! Work | user program |

1- ] Area | s 2 ]
[ UwA | | UWA ]
I DBH ‘| DBH: Data l DBH |
-= Base Vo -,
| °~ BUFFERS I Handler .| BUFFERS |
T W . . P, 4 -

~ ”
o ( e
. N ”’
B ~ b ) Vd - '
- . N Ao
| OPERATING SYSTEM |
|
» I .

A i ETTTR

v DATA BASE i

‘i : —— -

Figure ?.5 Independent DéH facility of PHOLAS. |

T

.

| &ser program I’ K o } user program |
I 1 | . 2 |
. . et
l jUWA b o UWA |
| ° BUPFERS. | o ‘ § BUFFERS |
IS N _ w9
~ f 4 . ’ ~”
~ -
~ -
’ ok AZ
0‘/ T
' i DBH | .
-
| OPERATING SYSTEM S
P
L -
"\ . 1}
- DATA BASE.: '
(v - -

Figure 2.6 Pseudo central DBH facility of PHOLAS.

* t
+ 4 N ¥ N !

(<

b




B i - -

s

APM Main Task 1

- o e

. pafallel subtasks' | %

]
1
: | UWA UWA UWA UWA UWA | ~
|
|

- Sa— ,
¢+ DBEH | ,

—-—— - -—

BUFFERS I

’ |

. A——— —-—

- -——
~

I ) OPERATING SYSTEM |

r, .
Y DATA BASE \
< -/

3

Figure 2.7 Multitasking DBH facility of PHOLAS.

»

/ fe

N

-

. !
| user”program | | user»ﬁrogrém |-
| 1 | 2 1
| uwA - ) uiA |
D S D R A D S -.K-‘--‘- , . -—-—--—y—‘.-_—‘-
~ -~
~ -~
. . ” 4
LS //’. ‘
-~ .
, e e A—-—--L—--_—.———.—--
. ! DB H ' |
i 3 - BUFFERS P '
- ‘ " ‘ . ) 1 ' - ‘
« —-— b e - v — 3 - T L'i
t\ OPERATING- SYSTEM - R - ‘
/’—-———\ ' ﬁ—r\ ? ) . .
Fa X = "\ . . .
Ly DATA BASE - Yo,
™ J ‘ 4
Ful{,cantfaI‘DBH facility of PHOLAS.-

Figure 2.

\
'

/




s e b

74

o
L} . . ~

J

at the wuser interface level and not at the 0.S. level,:

"Every subtask of a user program is performed by a special

package, called the Asynchronous Process Monitor (APM). The
subtaéﬁs al_'e’invisible to the 0.S., but because the DBH code
\\:: ‘ ~, 4 -
is dinked to evﬁry ‘user program, the COBOL compiler
J J ,

automatically assi%/ns -a .Separate UWA\to every subtask.
. - // o w )
The first 'apprdach was used',for the ENDBMS; it seems

to \be simple in the 'way that it is‘implemented as a user

program.- in a high 1level l'angua‘ge, without 'special’
} M . )
treatment of the 0.S. Secondly we were not permitted to“use

o

the 0.S. in such a way, that would have allowed, one of the

——

othevr approaches to be used. Note also that use of one of

these alternate approsches would have had great impact, on

the overall désign of the ENDBYE. The ENDBMS has been

compiled and then stored as an NOS object nodule. Every one
1

who wants . to use the ENDBMS, must submit the following Noy’ :

control statements - provided that he has proper NOf

permi'ssipn' 'ﬂmdesp’cgver "the specified NOS files, as well as
L] .
. 'S
over the 19 systegm and data pase files used by the ENDBMS..:

L

DBA: ‘ »
/ATTACH,DBALIB. ~ :
P /SLIBRARY,AAMLIB,DBLIB, . '
s * /ATTACH,ENDBMS. &
' 7ENDBMS. . :

[




B e T S

-
s = i o ot e M R ' st b e

'NON-DBA:

75

v
el

/ATTACH,USERLIB/UN=KEGFES2,
/SLIBRARY,AAMLIB,USERLIB,

s. /ATTACH, ENDEMS/UN=KEGFE62.
/ENDBMS, h : b

t

©

The first NOS statement attaches to NOS user's job a library
which contains 19 object modules corresponding té 19 COMPASS

routines used by the ENDBMS.” The second statement specifies

all the required libraries - AAMLIB is. a NOS library used by
the CRM - the third 'loads' the ENDBMS's object modulec and
the fourth executes it.
. \

* I} \

. |

; |
e




R S T A
.

A A e

the file,resides, the file type and its cuqrrént position and

CHAPTER 3 -

IMPLEMENTATION ENVIRONMENT -

’

The ENDBMS was impemented on “a (DC CYBER 172 which i‘s
running under the NOS .1 operating system. This Chapter
presents ';he relevant features of t:he]FILi\B'QYS‘TEM ;uppofted
by NOS as well as the salient NOS component the Wbe;" Récord
Manager (CRM). It also presents the method of providing

concurrency in the ENDBMS system. ] '
3.1 NOS FILE SYSTEM

The file system supported by NOSH is di\,{ided into two
categories: (1) files assigned to 2 ‘use'r job #nd (2) files
permanently residing on mass storage (see [NOS~-lo0f2] section .
1-2-8 )., A . file assigned to a job isé'known to the NOS
system by its entry in the file name table/file status table

(FNT/FST), which contains the file name, the device on which

status. A permanent mass stdrage file is known to the NOS

system by its entry in a permanent file catalog associated
with a user number. The catalog entry'contains the file's

name, location, 'length, permission modes, and_ = access

history.

3.1.1 FILES ASSIGNED TO USER JOBS - S
NOS wuses t_:“he -folowing mnemonics for file

clagsification.

®

+
. .
N * [
f .




- - e e e .J':_ﬁ.-..wn- . ‘ e
- .

@ . .

77

|4

INPT: Input file o \
PRFT: Print file

PHFT: Punch file .
LOFT: Local _filef :
. - . PTFT: Primary terfainal file - '
F\ PMFT: Direct access file .
LIFT: Library €file
ROFT: Rollout file
TEFT: Timed/event rollout file
The input, nt, punch, rollout‘and timed/event files
are queued fliles A qyeue file waits on mass storage until
the 'system resource or peripheral equipment it requires

becomes .available and its priorit;y is the highest of the

, files in the queue.

O i T

An input file - also called . job file because it
. ) contains user supplied control éégtements and data for a job
- exists in mass storége in the input queue. . It enters

(e.g., it i's‘y,creatéd) the input queue Jdirectly when a local

&>,

or ;emot'e job enters. the system or indirectly whén a . user’
job ‘submits' another Yob via some NOS gpntrol statemnent,
Tt;'e'input " file og a time—sharing job eonsist‘s‘of all.
j:ermi'nal input; directed "to thensy'stem‘r during a :time-sharihg
seésioﬁ{ A user’job refers to itsiné;.xt file py’ the file "
- ' ,ﬁame INPUT. A print file contasins data ta be printed and ‘it
:“ ' is crea‘ted and yplaéed in the print queue as a. ‘result of a
job terminatién, when the syst?ém "char}gesfthe iocal file

. ' OUTE-';JT ‘(1f -present) into a print fi‘le', or ’asf a ‘result of
excution of an \o:y/l ROUTE, PRINT, .or DIS'POSE,L;}-coi‘}t:ol

©  statement nami:}g.:a ocal file to be printed. The: system
assigns to e\(’éry print. fil‘e;:aq fdentification coc;e which

- « ©

-~




P

T o B

o

e Y

~

NN b e ke WA A0 a4 mesevens e e J N T T .

‘identifies its origin and by default they are printed at the
place of oriqin.d The user can overide the default routing
Uand speci%y r;is own printer or printer type. ﬁ_sl a print
¢+ file waits in the'print queue ‘its ?rivity increases and the
file is printeh when its printer becomes available and ,wh’en
its 'priority is higher than all other files destined for
-that printer.. A punch file cbntains data-to be punched on
cards and it is routec} from’the mass storage punch queue
according to the n;me the user'aésigns to it or according to

’ parameters specified on a ‘punch' control statement.

\

Local files are temporary 'files; this file type
includes all scratch and working files except the primary

4

file which is also a temporary file and it is designated so
by the \P_RIMARY,A NE;:W or OLD, NOS. ;:pr}trol statements, A user
/;Qignsva difé’di:/acc’essc permanent file to his job by issuing
) an ATTACH or DEFINE control statement and if the file is

attached with a moée permitting file modification, he can

write on the permanent file. The Iibrary file type includes

# - 4

the USER-NUMBER LIBRARY, the PROGRAM LIBRARY a% the USER
X - . v ' - .

- LIBRARIES.) A library file is a read only file that several

users can 2access éimulﬁaneously. USER LIBRARIES are”the

files named in the LIBRARY 1loader contfol statement and

[

searched by "CYBER LOMADER ‘ to .satisfy externsl references

within the program it is ioadinq; they contain compiled or
\ .

}

assembled routines. S »

&




et om it i s o

PR

'slice and it is a system parameter. . When this M time slice

,‘l_';w

79

¥

'If during job processing, the system or the user

determinﬂes that a job must be 'TEMPORARILY removed from '

central memory, the system writes all information concerning

~the job on a system-defined rollout file. The file is read

back into the central memory (CM) when the job is reassigned
to, a -control point, [NOS lof2, section 1-3-8]. The
timed/event rollout file is similar to & rollout file in

that it contains.  all the information concerning 2 job

v ~——

temporarily removed from the central memory. However it is

rolled backﬂinto the €M only when a specified event has‘

3

occu(rred,, e.g., a file required by the job is no lQonger
busy, or a specified time period has expired. >

A .
Nor‘mally, each executing program is allowed to reside .
! ]
in the M for a certain pe\rmd of time before rellnqu1shing |

its space to another program, The amount of time that a job

is allowed to -.occupy M is called the central nemory time

-

L]

is exceeded the prigram concerned may be rolled out. A NOS

Y

user can explicitly or implicitly submit a request to the

system to roll out his Jjob by using the ROLLOUT cont‘r#ol ]
1 ]
statement or the ROLLOUT macro respectively and he can also-

o . ' v -
specify his own event or time period. In case the user

\ -

doesn't specify any event Sr ti‘mﬂe period the %' roll in' is - .

>

controled by the NOS system. “ o

/4




e s o ———— o L

80 : e

3.1.2 PERMANENT FILES

Permanent files are retained on mass storage urt{l
’ ‘they‘ are purged. There are two types of permanent firés,
th‘é Indirect Access Permanent F?les (IAPF) and the Direct
Access Permanent Files (DAPF). The IAPF at:e acceésed_ by
cc;pyihg ‘the permanent file to a tempbrary file (local or
'primary‘). A user can retrieve a tempdrary copy of, an
indirect access file using the OLD and éET NOS contrél l
statements, he cen create),a new one using the SAVE control
statement and he can q]te;.' an existing one using the REPLACE
control statement. The u;ér accegses 3 ~direct access
permanent file directly without using a temgorary copy. The

user can create a new DAPF with the Df:E-‘INE control statement

. . .
and he accesses the file with an ATTACH control statement.

3.1.3 FILE STRUCTURES . Y

3.1.3.1 NOS FILE STRUCTURE ‘ .

A NOS file may contain more tlhan- one logical file; if .
it does, it is calle_d 2 multiple file. A multiple file’
begins with a Begining Of 'Ir;forma'tion‘(BOI) and ends wix’an '
End Of Information (FOI). The end of a singvle file is
indicated by 1its own End Of File (EOF). A file within a
multiple file begins either ,at BOI or after an 'EOF of the
preceeding £ile. Each file consists of ene or morye records
" of -ir.'xf\vo‘rmation and a record is made up of 60 bit ™ words.

The  following {is ¢an example of a single file with one



81

record: ) }
{BO1) data (EOR) (EOF) (EOI)

7

©3.1.3.2 PHYSICAL FILE STRUCTURE - ' A .

é

When NOS stores a file it converts it to a2 structure.

that conforms to the physical char§cterist1cs of the storége
medium (Jdisk, tape,' cards). The file and record ‘marks are
converted to physical BOI, EOR, EOF, EOI indicators. The
basisﬁ of all ph‘ysical file structures is the physical record
}Jnit (PRU); this being the amount of data that can be read

or written in 2 single device access. ‘ °
3.1.3.3 CYBER RE CORD MANAGER FILE STl\?UC‘I‘URE

C}bér‘ Record Manager i(‘RM) handles.I/O for several CDC.:
program products “includ ing FORTRAN EXTENDED 4, FORTRAN 5 and
COBOL 5}. CQM superimposes its file struca;ure on the NOS
file structpre.\ Through. CRM t'hit.a user can spec‘ify:

a. File Organization

b. Blocking Type ‘

c. Record Type ' /
#

for his data, The file organi zation d%ternines how records

are accessed. The blocking type determines how CRM records

' are grouped :on their storage nmedia ond the record type

o

determines the smallest unit of data that can  be retrieved

“~

by the CRM.

'\

e




= e e i e Kwese v v wws we e Lo

MR s i T U

82

3.2 CYBER RECORD MANAGER e .

'CRM is a generic term relating to both Bffic Access
Methods (BAM) and Advanced Access Methods (AAM) as they run
under the NOS and NOS/BE operating systems. BAM is a f;I;
manager tﬁa: processes sequential and word 2ddressable file
organizations. AAM |is anlintenface { CRM-AAM] between user
programs and sygtem I/0 routines; . it also provides
consistent error processing and ,maintenance of differenéb
file organizations. AAM routines are used by some compilers
such p2s FORTRAN and (OBOL, aéd they recognize calls to AAM
routines. Use of AAM by compilersland user programs extends
1/0 coépatibili;y to both the system and applicatioﬁ levels.
The primary task of AAM is to provide reco}d input/output
fbt files on supported devices. The various Lyp;g of
reco?ﬁsﬁgyd file organizations must—ﬁe identifiedo for AAM,’
These and other file characteristics must be set by the usef
in the File Information T;ble (FIT). The FIT n(ah user

defined array of at least 35 words) is divided intg a number

of fields that describe certain aspects of the file.

&

-~

3.3 AAM: ADVANCED ACCESS METHQDS
.3.3. 1FILE ORGANIZATIONS

s

A user, usiné the KAM file manager, can specify the
following file organizattbns: 1

>N

54




o Y ;o

. a, INDEXED SEQUENTIAL . o BT

& 3.3.2 DIRECT ACd%SS FILE ORGANIZATION

, ' b. DIRECT A%CESS |
C * ¢.. ACTUAL KEY "~} ,
‘ 2 \ * .
: ‘ \ A '
In Indexed Sequential files, Rfcords' are in order of a’
* » ’

~

. \ v
< primary key and can be accessed se\quenl:ially @or randomly.
In' Diréct Access filesttdhicﬁ shéuld pot be confused with
the direct access permdnent files), records EfV/EQt in . any

B4 .
recognlﬁed order and Bre acceSsed by key mamipulation. 1In =

“Ectual Key files records ‘%te accessed by a primary key .
containing the Block and record number wifhin the file. In

the nexy section we consider only the DIRECT ACCESS file
s\

organfzation because this is the one used by the ENDBMS.

A direct access file contains = file statistics table,

a number of home’ blocks and. under «certain conditions,

/ "
overflow blocks; all blocks being of fixed length, specified.
-~ -

*by the user or by the system..(-The following terms have
[ ., L] .
specific meaning in relation tpo direct oaccess files:

-

[CRM-AAM pages 2-5 anG\JZ—G] . ‘ e

PRIMARY KEY A ‘
. A primary key is a contiguous bit string that
// . always appears in a direct access record. It
_is" hashed tb ‘producé the location of the home
data block containing the record. :

- ‘HASHING. ’ ' SR .
4 . Hashing denotes the method of using primary
o keys to search for .relative home ~block
addresses, of ¢ 1rect access records. The CRM

: » uses 1its own hashing routine but it is
possible for a user to define a new hashing

r

N
. ‘ L))

skl




o

l’\

L)

~

. ‘ . - —
. . routind? 2 B ,
l S . K ~ ’
SYNONYMS o T -
e Synpnyms are .records whose key .hash to the
é/ \ same home block. y ° ‘ . .
4 L . T . A
-] ' - vy \
HOME BLOCKS _ ‘ . . L
= A ,home block is a block whose relative address

is compuged by hashing primary” keys; it
contains synonym record keys hashed to that

relative address.  The . number of records
P - within[’a home block is determineéd by the size
of the/block and the type of the recqrds.g,

-

OVERFLOW RECORD ' . ’
An overflow’;::::i‘is a record whose ey has

been hashed to a home block which is already
filled.' * ’ '

OVERFLOW BLOCK - _
Ant overflow black is the second or subsequent

. b%g§k in a chain that starts at a home block;
+ i¥ contains overflow records and can contain

. records belonging to more than one overflow
L chain. ‘

- . ‘ 13

A chain consists of blocks that are logically
connected by forward and/or .backward p¥inters.
v Home blocks and. overflow blocks are chained in
both forward and backward directions.

Id

" x
The relative position of records within & direct

access file is not important. A record 1is stored and
4 .

retrieved by hashing its primary key to produce the relative

address of a home block. when a2 home block is’ filled, the

record can be pbaqed'in another home block or in a system

‘e

generated overflow block! The placement of the overflow
. L

record depends ,on the -overflow record storage option

selected by the user. The logical z:::cture of a direct
N ~ ‘. - ) ’

-

(N

PP

[N

s £ rama W e




' “ B 154
85

T - » ‘
. ‘ Y

N acce'ss file is

2

shown in. Figuret 3.1.

-

W

FSTT is the file

. statistics table, H1 to H6 are the home data .blocks and OVl

to OV} are thé overflow blocks.'

:/

J <
/ K ' -
' BPI. §> e ¢ E?I
v ) 'y :‘ r' - ”" ——————— —1 l
- R A i
_:;-...._...I. .......... Y._-_Y......f._-_.._l*'!-......!--....i..‘;*.
I.FSTT ] H1 ] H3 | H4 | H5 | H6 | oVl | OovV2 | oOV3 |
< }. S [ ‘;r:r'
1 e e e o e e e -4 ,:
Lo e o — e ey = - = o e - ’

- .

FILE STORAGE ALLOCATION v

| /J
r Mass storage spéce is wpreallocated

access file is opened for the first time.

i determined by, the home

‘block sizeé and t
blocks both of which can be défined by
records are grouped in fixed-size home or

The user can supply his own

hashing rout
record distribution. ENDBMS uses tné
supplied- by the CRM. N
. EILE BLOCKING L
, ~ Each direct access block (hgme or
o integral number of PRU's less one central m

. . ~
Figure 3.1 Logical structure of a Direct Access File.

]

when a direct
The sizelof it is
he number of homea
the user. T?é
overflow blocl;s.
ine for optimum
\hashihd routine

3

overflow) is an ..

» ’
emory word and is

»
' ,
<

\A_ﬁ'"



e LI® :

[ G 3

7
:
| \
-~ N - -
l 4 ‘

86

'
.

‘treated a% a system logical rec 2 2 Each block has a header

and records @are stored in the remaining words as they are

'2

receivédt begining with the word followifig the last wotd of

the header. Each stored record has ité own record header

(one M word) which contains the record'sfdelgtion flag, the

- t .oy d “
record's 1length, the number of unused bits of the last word

- . '( ‘
of the record and some other information used by the CRM.

3.2.3 RECORD TYPES

LY

¥  AAM sgppﬁrts eight record types; here we are going to

consider only.the F and Z type records.

FIXED LENGTH, F TYPE'?ECORDS
In 4a‘ file with F type records, al} records are of
the samelléngth. The number of characters in the F

e t&pe records-is specified by the.fixéd lenghth (FL)

1e£;\in the FIT. From all NOS  permenent files,'

°
, v
4
sed by the ENDBMS, only .the 'message' file has F
type ‘records. ,
H , ‘ v/ .
ZERO BYTE, Z TYPE RECORDS - %0

A zero byte or Z type record 1is terminated by a
12-bit byte of ;e}os, in the ldwlog&grzposition of
the last word in the record.. In contrast with thé
F type, the Z,type records arg not fixed ané'they
can have different. record Igﬁééh. . Maximum record
size 15 indicated by the FL field of the FIT and it

can be set when the file is c;gated. When‘a record

» S

L3

» o . . N

-



87
is written, the value of the record length (RL)
field determines the processing that takes place.

If the RL field is set to a value greater than

. zero, the end of the Trecord is® determined by

searching backwards from the character pgsition

specffied by the value of thé RL field a2nd removing

i

all full words of blanks. If the RL field is set -

%0 zero when a record is being witten (PUT routine)
the end of the record is determined by & backwards

search. for the last noh-blank character in the

7

g working storage area (i.e., a user defined array

\

-.which contains the actual data to be stored). The

‘search begins from the character position indicated
«\h’ '

by the FL field in the FIT and all fuJl words of

blanks.are removed.

* L}
*

3.3.4 AAM ROUTINES FOR FORTRAN 4 USERS

In this, section we describe briefly the AAM routines;
detailed descriptions are given in the following (DC

reference manuals: [CRM=-AAM] and [ CRM-F-GUIDE].

i

FILE “ J o oo

+#

This ro&tine is used to establish ;he structure of the

file and it a1§o“specifies a file name.. If a file,

§

ith this
name is not ATTACHED to the u§Z}'s job the CRM cr@

tes a
local file with the specified name. If such a fil is

attached as a local file Ehe CRM creates and associates with

»

R




8¢9
it 2 FIT. The user specifies the name of the FIT, the name
of the file and other file parapeters, by setting
appropriate FIT fields, such as record type, ma¥ and mi?
record lengtb; position and length of the key, number of

home blocks, size of home blocks, etc.

“a

N

~

OPENM,

A file can be processed if it has beén defined by ' the
FILE routine and has been opened with an OPENM, The very
f;rst OPENM is used with processing direction equal NEW,
' This ‘indicates file creation. The values of the mandatory
paramétgrs (because there are some parameters which can be
"set later) specified - in the FILE AAM function, determine
some characteristics of the file which cannot be changed
later (e.g., once the block size is defined it cannot be
redefined) . In fact the first OPENM constitutes the
creation of the file structure and a file which has been
created can be -opened for read’or update purposes, depending
upon the value of the pfocessing direction field specified

in the OPENM call.

CLOSEM .

. . »
An opened file must be explicitly closed with ' the .

CLOSEM' AAM gynction. If a job is terminated and a file is

v

left opened there is a possibility that tﬁe contents of the -

file's buffer, kept by the CRM, Wwere not updated at the disk
lévei. The user” should at least specify the file to ‘be

\

sy . .
VA : * \
) ‘ ' 3 . »
.

i Sicsaniiatoaki




¥ o o~
N

PR

o

£

89

closed, by supplying the name of the fil

parameter and in this,case the file is closed an Cah later

.be reopened without issqing‘ the FILE call. If the user

wants to get rid of the file a2t the same time, 1i.e.,
rel%aéinq it, he should supply a second parameter too. Both

of Ehesg formats are used by the ENDBMS.

voa

IFETCH 4

with this AAM function the user <c¢an 'inspect' ~ the
value of some FIT fields, for example an error may occur as
f result of a réad request. (note: for any error <condition
the error status field of the file's FIT is set to an octal
Error code. If the error is FATAL or the number of trivial
errors matches the‘specified number the user job 1is aborted,
otherwise execution continués and the ne;t successful CRM
operation clears “off the error status field. For details

see error processing in [CRM-AAM]). 1If FIT]l is an array of

35 elementg, :one word eachy, and ES is the name of error

status field of the FIT1l table and 1If the .statement,

N=IFETCH(FIT1, 2LES) is executed gfter,the read request then

the value of N can give the result of the read reguest. In

1 »

the cese where the N 1is set to zero then the requested

. . )
record was found, but if N is sgt to & non zero value,  then

t ’

an error occurred and the octal value of N is a code for 2n

M ¢

Cﬁfdrmative error message.

as first

R

T AR I i e 2T

ot

A

kb ik e

Y PN

e

<P




90

) |
GET t

-

The GET AAM function is used

ordsl from R )

file which has been opened previo sly. The user should/at . L

least, supply the first three parameters in the GET cpall ’ ‘\
S . which are: athe name of the f11e s FIT; the file's work e
Lo ' s{::e, an array deflned by the user with appropriate length,
wherein the requested ‘record is returned; and the key of the £
requested record wfﬁch is used. internally - by the hashing E
‘routine. The ENDBME uses the following GET~ format:

v '

|
CALL GET(FIT, WS, KEY) 3 1
. !
FIT: name of the file's FIT {

/ " WS : file's work space ¥ ‘

.. . KEY: key of the requested record , L;

GET, as well as the following functions PUT, REPLC and DLTE, ‘ ‘
‘require i;he file they operate on to be opened.

k - ¥ ()' .l "
PUT" ‘ v o.

'
. e v
. .
w S . - N
!
RN

-,

V"Rhis AAM function is used to write a record on a file.
tow

. ) Its call must specify, at least, the name of the file's FIT
q" ' and the name . of the file'$ work space (arrey with 3
9’ 4 " . ’ * ) -

'i- apprtopriate length and which contains the actual data of the B

X record to be written). The user can,alsq specify how many
: words - in characters - are to \be’ written as a third
! . . . . ; .

parameter in the PUT format and ‘optionally some other

| parameters. The ENDBMS , uses only the First three. The
’ E v . ¥ q
| ‘ .




i

Y

g . 91 ' /}

£ , . . -

format used is: . . .
. : /‘

CALL PUT(FIT, WS, RL)
FIT: FIT name o ' o S
WS : work space name

RL

e

lervth of record to be written, in character's.

REPLC
o

%
The REPLC function is wused to replace , a specific

" record wi;:h a2 new record, with or without' the same lem';th.
The user should at least supply the first four parameters in
the following order: the nat;\e of the file's FIT, .the name of
the file's wor:k .q.'c,pac:e - which contains the new record - the
length of the new record and finally the _’;ey of the record
to be replaced. Thg format used by t};e ENDBMS is: ‘

-

. CALL REPLC(FIT, WS, RL, "KEY),

DLTE -
A o o

A S

The DLTE function is used to delete » specified record

from a gi{len file. The CRM 'flags' the record as deleted .

‘and its space becomes free so that ican be used again, The

{
user should at least specify the first two parameters: the

name of the file's FIT and the key of the fecor;;l to Dbe
deleted. , The format used by ENDBMS is:
CALL DLTE (FIT, KEY) I

v

S oo




e r mAE mml e

) - " ) " -
’ b 92 ’ \
' l . ¥ .

¢ ) o \ .

¢ . -~
- ]
. . LS ’ S . T . L !
3.4 NOS FILE CATEGORIES f o “ a N

L g

) Permanent'?iles fall into three categories’ which -

specify the accessabj iitry\\:f the file, see section 1-8-2 in
(NOS-10f2]. -
The categories are:.
‘ a. P or\PRIVATE (for pnivate)
o -b. 8 or SPRIV (for semi-private)
- ¢c. PU or BLIC (for public)
Private files are avallable for access" only by the
originator or %those to whom the originator hes exbli;':itly T
th-e.PERMIT NOS control statement.. = |

)
" Semi-private files are, Zvailable for access by all users who

grantea‘ permission with

know the file q‘name, the originator's user number and the

‘file's password -"vi,f any. Public files can be accessed the

same way as the'l semi-private l;ut NOS records different

information for S'and PU files. The kind of operations a

. user can perform on S or PU file depends upon the value of

‘ the file's permission mode parametef (see next section).
One of the three options :can be used when the file 'is‘

definéd“:," changed or saved with the 'CT' parameter; if this

parameter is not selected the system's default value of P is

assumed .

o

3.5 PERMANENT FILE PERMISSION MODES . ‘ ‘ .

N

There are eight permission modes for a NOS permanent’

file: St

.
. «
\
. . v
' . s
. .

T O AR e

e
-




~ 4
) I q 4 { . ‘ . ‘« =
> ~ . . .
S e )-
' o, 93 S | ‘
e : T
v . - A
"l. E execute . o - e
. _2. R read “ . o "
e ’ 3. RA read8i-append ] e
4. RM read-modify ® . ]
¥ S5, A append ‘ .
h. M modify K N )
b x 7. Wuwrite - L
o " 8., N null

¥
here we consider only the RM and M modes ‘for direct access
files, more details are given in [NOS-1lof2] _section 178-3.
RM: for direct access files it " allows the |wuser to’ réad

I'd

and/or execute the file while another user is concurrently
. .

accessing the file in M or A'mode.

M:' for direct access files MOQI;}?Y'permiSSion means that the

file can .be ’changed, i‘l'vs:ngthe?'\e\d but not shortened. Table

3.1 shows all combinations of multiple access to a permanent

file.. . The® indication A/R means that one user has attached

.

the file with A mode and one or more other users Have ?

attached it in R mode; the indication M?R'mea’ns that one

. -

user has attached the file with M mode and one or more other
F.]
users have attached it in R mode. The table also shows that

if the file is free any request is granted. All response&

indicators except BUSY mean a grant of the access request,

»

3.6 SIMULATION MODEL FOR CONCURRENCY -
. l/
In order to write/read on a,NOS, file, the user must
have the right to access the file (unless he owns the file),

second he mnust have been gfven proper permission modes and

third he must have attached ,2he file appropriately to his
y r

job. For example if a uset has an M permission mode on some

i



4 . - . \
, > 94 :
- e . o
ALY
1 . a .
‘ ) 13
e —————— - - e e e e e e e v
CURRENT | ' N l
A CCESS | . REQUESTED ACCESS . II
o e o o s e e s e e e e e e i b i e e 8 4 e
I | w | M | A& | R | RM | RA | E l|
| - _— e e e et e e e e e e e e e e e e e o e e e o 8 o o
|} FREE l W ] M ] A | R | RM | RA | E ll
| e e e e e e e e - ——— e ————
| W | busy | busy | busy | busy | busy | busy | busy {
| o e e e e e e e e e e e o et e e e e o ==
f+ M | busy | busy | busy | busy | M/R | busy | busy | .
| == e m e e e e e e e —_— o
| A | busy | busy | busy | busy | A/R| A/R | busy :
| e e e e e e e e
| R | busy | busy | busy | R | R | R | - R l‘
O - e e
| BRM | busy | M/R | A/R | R | R | R | R :
} e o o e e i e o o e e i e
| . RA | busy | bus’y,l A/R | R | R | R | R |
| e e e e e e e e e e !
! E | busy | busy | busy | R | R | R | R |

—— —— — — — S S D T . S S A A ] D IS D A W VD o D ) W Sy s s B LD D TS D S W

Table 3:1 Combinations of multiplg access.

o

file_'and he attaches the file with R mode’, he cannot update
the £ile. ’ ‘

7
7

e

s

A permanent direct access file becomes known to a user

job using the ATTACH control sf’;at‘emept [NOS-1o0f2, 1-8-71., =

As a conseque'nce from gh‘e access table 3.l and M, RM mode

definition, we can have one user who writes on .4 file
: . K\\_)

{({attached with M-mode) and man'y other users who read from
. . l

the same file simul taneously (they have attached the file

wiph RM-mode). The problem arises from ti}e moment where

some other user wants to write on a file which is already:

attached with M-mode. What we did in ENDBMS is the

y

o




v . .
>95‘ [N
Ny » 4

following. 911 the fi&es, uéed by the ENDBR% ,. can be sh9re6

by all wvalidated users. In other words, everyguser can

attach an ENDBMS file with either RM or M-mode. g ‘ N

oo . P

T

Every user attaches all files with RM-mode.” If a user

2 . . st .
wantf to write on a file, as a result of an ENDBMS command,

" . -

he must attach ai; required files with M-mode. This

Y

\fequires ;he following procedure: first if thg files are

opened they must be closed, second they must be releasedrand

&
reattached with M—mode, and third they must be opened again

fp - —

for processing. "All the M—attached files are kept so as

long as the command needsl them.\ After the command is

executed the M-attached lfiles aré closed, released,
reattached with RM—mode and reopened for read proéessing(
It is understood that all thls must be do;e 'at execution
time of a user's job. To handlé this problém Jé de51gned 19
CO@PASS routines, nine for the ENDBMS system files' and ten
for the EﬁDBMS data base filés. The purpose of these 19
COMPASS routines is to attach 19 direct access files, at
execution time, with M or RM-mode. Each routiqe is calied
from the ENDBMS with one parameter. When-. éu routine 1is
called with 2zero, the associated direct access file is

attached with RM-mode and when it is called with oﬁe the

corresponding file (if free) is attached with M-mode. -

Ll

Each COMPASS - routine uses the NOS ' macros RFILEB,

ATTACH and ROLLOUT [NOS-20f2]. The ROLLOUT macro uses the’

'COMCMAC' NOS COMMON DECK and it is‘used only for those

J L3




”

i)

v e em s

T
¢

96

. s -

o .
- o

files whose aveilability is‘ controlled by the-NOS operating
system, i.e., ~where NOS determines iflthe files conpern;d
are free or not. QThe ATTACH and IRFILEB macros use the
COMCSYS, C(OMCPFM and COMSPFM NOS common decks. Each file is
attached with the'local f’ile name being the same as the
permanent file name. The macro RFILFB defines the FET for
each file attached to a ﬁﬂs\e\r's job (‘i.e., an ENDBMS running
brogess)» When the %erating system processes an ATTACH
reques; and the file is not available, i.e., the file 1is
busy, the normal action of the 0.S. is to abort t‘?:e \;ser‘s
job. In .the ATTACH maci'o fg‘:mat it is possible to set the

) >
error, processing bit (bit 44 of the second word, of the

&

file's FET). When the 0.S. progesses an ATTACH macro - for

some file with ‘its error processing bit.Set - and the file
- v
o4 . . .
isyfound busy the wuser's Jjob is not aborted but the
. e . T

0.S. returns control to it, i.e., the next statement of the
< " . N b

E

user's running program will be executed. .

- N \ '
I; In the case where the 0.S. attempts to gﬁ‘ch a file

with M-mode and the file is busy, it returns an error code 1
An the "AT' field of the first yord, ‘of the file's FET
table. Because )be bit 44 is set, the  job is" not
terminateda. At ;his time the user can @se the‘ROLLOU’I‘ macro

y
to rollout his Jjob' until a2 system default time period has

.

elapsed or the file becomes available. This is implemented

I'ed

as followé: in the COMPASS routines we test the file's 'AT'

field and if it is.zero the routine returns with the file
iy - '

B | 3

«

L .

B

e o h e b s b 4 W S @




L . C 97 , N

T

Z@itached, otherwise {'AT'=l). we issue the ROLLQYT macro and

then the ATTACH macro is executed again until the 'AT'

.

becomes zero. -

v ”

. .

-~

. . processing bit in an ATTACH macro call, because their -

M—attaghment is controlled by the ENDBMS itself, i.e., the

S IR Do

.- - ATTACH macro (fo} M=-modé) is .executed after the ENDBMS

. i ' . oo :
! determines that the file needed is free. More about this in
the concyrrency ‘implementation in Chaptef 4,) ) '

N \_.\ . . -
R . . .
. a
' ' ' ‘
. ‘ . \
R LY
+ [ fa ’ .
. [ . |
-
(O , .
. - . b
- o p
v .~ ! ’ 4
\ & ’ L N
= —— o l «l ) ‘.
s -

- o . - For ,some ENDBMS files we do not have to set the error




5

EXTE

-

g CHAPTER 4 =

1 \
IMPLEMENTATION OF THE ENBBMS’

. L&)
-~

¢

( The language chosen for implementation of the ENDBMS

FORTRAN 4;- the specific. version being the (DC FORTRAN
s

NDED VERSION 4 [FORT-4]. The choice had to be .made

between COBOL and FORTRAN, because only their (DC compilers

supp

&

‘user
flex

soft
g incl

l.

ort direct access with the C?ber Record Manager, through

‘written ptogrgps.{ we believe that FORTRAN\is«mo:e
ible and convenieht with respéct to the structure of a
ware unit of this size. The impleéentation of ENDBMS

udes the following modules:

Y

A NOS 'procedure file' INSTALL of 268 lines; the name of

the procedure being GEN. This file consists of. a number

of NOS control statements and a FORTRAN p}ogram. The -~

Noé statements create 19 direct access NOS files, and
the FORTRAN program implements ghe ‘creatiqn' run of
these files' [CRM-AAM] which 1ncludeT‘the definition of
the fiie's ‘organizg;ion‘ and’ the generation of some
initiay entries for ;he ENDBMS system files such as the
'file head entries' and the DBA'sv'security entry’', > as
they are expkained in this Chapter. The file

organization of a direct access file specifies vald’s

for some vital ~fields of its FIT [CRM-AAM]. These

fields are: the FO which determines the type of file

sorganization, the RT which determines the record type,

‘the MNR and MRL which determine/the min and max record

'R

¢

N



99 ¢ {

- length for Z-type re;ords, FL which determines the field
length used for accesézng, the KL whic¢h determines the
length :of the ke? (the defau;t position of the key is
Ehe first field of tke, record if the -user wants to
specify another field, he can do so by setting the Rm&—-(x<
fiqid of the FIT), the MB} which determines the size of
a home block, and finally the HMB which determines the
nuwber of home made blocks or the initial sizé of the
filﬁ- © All other FIT kficrelds are assumed to have the
CRM's default values. /

2L¢)A collection of 19 COMPASé routines (537 1lines) stored
on NOS :file DBACOM. E;ch%of these routines. is used/to
perform the task of attaching and releasimg a particul3d

,file (one of the 19 ENDBMS files) while the ENDBMS run
copy is executing. The DBACbM, is used (see LIBGEN
control stgfemént in [NOS-10f2)) to'produ;e the DBALIB
library which must be attached to the DBA's NOS ijob
which executes the ENDBMS's NOS object module (see ‘
section 2.11). . | : -\ v

3. A collection of 19° COMPASS routinés (556 lines), ‘similar
to the ones in DBACOM, storeq on'a NOS file USERCOM, t .
The USERCOM is gsed to produce the "USERLIB 1library,

\which must be attached to every non-DBA user's NOS job,

which executes ‘the ENDBMS's NOS object module (sée

- —

sectioq 2.11). ‘ i 2 . r

el mmtr

dborta s &t

4. A FORTRAN program (50 lines) saved in a NOS file WMFILE,

which is used to write 311 ENDBMS error messaz;t/on the

/

‘ .
18 * ’ ( {

~ o«

o

o e e - o wk




100 »

&

. . ,
ENDBM§ file SF7. This ENDBMS ‘file has fixed length -

records with length of 6 CDC words; the first word is

'y reserved .for the record's key which is an integer code

"

of " the cogrgsponding error message stored: in that

. B

record. The next five words are used to $toré,ép error
message of up to 50 char¥cters. The execution of the

WMFILE uses the MFILE (245 lines) as a data file. Every

integer error code. “ ¥
5. A NOS 'procedure £fle' DELFILE (8 lines), with procedure
-

name DELPROC, Qgich isuded to destroy the 19 FNDBMS
: N ' .

files; “this will be doneoby the 'DBA when he wants to
! -

1\ destroy an existfing dataz base and later re-install the
ENDBMS for further use. This procedure file makes use

of the PURGE NOS control statement to purge the 19 NOS

: o 4
, diréct access files:

. ;6. A"ﬁ£§TRAN program of- 16,556 lines, whose compilation

produces an object m&&q&e which will be the 'run copy'

of ENDBMS. ‘ B .
a . . N

»

4.1 ENDBMS INSTALLATION

a

The: ENDBMS is installed with a completely separate
procedure‘ﬁgfch has.to be carried out first, in order to
- wareate and organize all ﬁhe NOS direct access files used by
the ENDBMS.\ The‘installétion is exclussively a function of
the DBA, As mentioned earlier the FNbBMS uses 19 direct

access NOS files which are also called physical units. This

-4

PR =

line of the MFILE contains an erprror me@sage ‘with. i!s

L]




3 : 101 , u

. . . r R
A

groub4 of files is subdivided into the system files and the

gdata base files; with the first being ‘storage for system

information (i.e., internal'.directories) and the Eatter
Zeing storage ,for the d;ta base infdrmatign. " The
installation process_consisté of. the following steps:

1. File creatioh and orgenization

2. Loading of the DBA's library

3. Writindg of all ENDBMS error messages
The first step is completed by executing the procedure file
INSTALL., The DBA <can decide ;t this point (or 1later)
whether the files will be private or not =~ sée Chapter 3.
If they are-to be private the‘DBA\musf give to every user

explicit permission modes, for every f@ae. As we explained

in Chapter 3 'permission modes' refers to the NOS operatiﬁg
y .

system and not to the ENDBMS security contrpl} the ENDBMS

security is enforced on top of this NOS sécurity. The
secqnd step loads the DBA's libréry DBALIB’which will be
neéded for the step 3 (note: all ENDBMS files arés‘unloaded'
after . the f%fstl‘step and ‘;he system file SF7 must: be
attached with M-mode at execution time of the third stepf,
?pe reason we are usinqlfwo libraries is that every user
should specify the 'alterna:é‘ NOS account number (i.e., the
DBA's NOS account) in each of the COMPASS rout#nes - see
ATTACH macro %p [NOS-20f2]." The owper of the physié%l
units, the DBA, is not required to specify an alternate NOS
account. _The third séep reads all‘érror messages frgm, the

- o

_jilé MFILE, and writes them on the ENDBMS system file SF7
1N .

T A R PR < DY e

P

bt ot e R,




102, ' .
W
(which is attached with M-m@de by referencing the DBALIB) by

L

executing the FORTRAN program kept in WMFILE.

If for any reason the DBA wants to destroy the 19 NOS

files, the procedire file — kept in file DELFILE and with

i procedure name DELPROC - whigh deletes all ENDBMS files must

{
be executed and the installatlon process can start a2ll over

again.- 1In appendil»h 1siphown the sequence and type of NOS

control statements that have to be used in order to 1install

.
v

the ENDBMS or destroy all the ENDBMS files. .

. 4.2 A THREE LEVEL STRUCTURE DESCRIPTION OF ENDRBMS

~

Figure 4.1 shows the exterR%] and internal interface

-

of ENDBMS, Both interfaces are handled by. the host

Operating System,” NOS. The ENDBMS is running on top of fhe

‘host Operating System and. ENDBMS's system data as well as

data bese +is built on top of and supported by the hodt

0.8. file systeé. As explained in Chapter 2 the user has
his own copy of the ENDBMS with his own work space. The
ENDBMS's data - system directories - and data base are

-

common' to all users. Figure 4.2 shows a simple architecture

» -
¢f the ENDBMS. The user submits input (usually commends) to
/ ]

the ENDBMS, which 1is waccepted and stored by the external

interface handler. The input is passed to the interpreter

which analyzes and recognizes wvalid ENDBMS commands, and

accordingly calls the command's handler, which uses one of.

the four subsystems for further translation and - after ’

A

rvsion b i v ST e e g e oy g 23R oh® AR A TS ¥ e

A

PP O e

:
Aot Syl i W




e 1 i o

-

3 .
] -
[ P —— - »
| USER | 1
____________ | .
User Work Area f IExternal
* :Interface
——————————————— f
| UWA | ’ >
- [mom—————————————— I .
| ENDBMS | i
| = e | [
+ /" . BUFFERs | |
— . > i —— -y —— * ——--'— —————————— +J
) . M 't ‘1'
e TN mmemmmee L t!Internal
.|  SHARED - 3¢ '4 _.{ SHARED |lInterface
| SYSTEM DATA | \ DATA BASE]|!
--------------- \ e S |
~ / ~
. A P
|
A e Y :

Figure 4.1 External and Internal ENDBMS interface.

'

4.5 /
/5“

\

| , EXTERNAL |
! INTERFACE HANDLER | -
. A D GNP U ANS UG D G S AT G ‘ —————————————
{ !
|
oe-tn | /T T"'E"‘E"“T 1% | LOG-OFF|
- \ INTERPRETER cc LOG-OFF
| unit [T\ 4] SO Tunrr |
_'_ _______ M P e e om e e o ey e e e e S T o o 4 o tme
| /I\
| L cc |
:\ . ‘\ / CC: Consistency
i : S . Control
. U N L - 2RETeL -
_.....i........._'.'_ _______________ . SR, b, S . 2
| RECOVERY| | SCHEMA | |SUBSCHEMA| |-SECURITY | DML - |
|SUBSYSTEM| ISUBS’!STEMI ISUBSYSTEM| |SUBSYSTEM| |SUBSYSTEM|
bty “wuiendnatauly duhed S D D D D D R D S i ) AN S S s O i P amee . e - o o e -

R S |

Figure 4.2 Simpi;a architecture of ENDBMS.



TN A 4 Y v m

' recovery subsystem is called only by /the. DBA),

' : 104

3 - .
a?
] ’ '

successful translation - for further execution. The two
log-in and 'log-off ENDBMS commands are handled by separate

units., The re%over§ subsystem i's called either ‘at log-in

)

“time dr by a security command to recover specific users (the
. . ’ Y

t

a .

———————————————— € -— - - -

I GLOBAL lg=——- ' A COMMAND |
: |LEX. ANALYZER | | . HANDLER |
——————a e e ——— L. / ——
ot »
: 7 /
' { . . 5 ¢/./ //7 ' N
_____ P . . /’,,f
| . suBsYSTEM F---=—<" .
o T T \ -
1 . \ ‘. .
P . \ @
| \
---------------- I ‘ I\ TTmmmrmmessees
| LOCALN- | __ | . @  COMMAND |
| PARSER k : - |  HANDLEK |
Figure 4.3 Subsystem structure, .

N

Figurev4.3 sbows thé structure of eacﬁ subéyétem. A global
lexical analyzer,# used by all subsystems, scans thé input
and recoqnizeg'tokeﬁs (words, numbers and_'special\ symbols -
accepteé by the ENDBMS). fhe subsystem consists of a num?er
of commgﬁd handlers - one for each command that belongs to
the subsystém. A iocél parser is used\tg check the syntax”®

of each command.

s

—— e b




fmutually

105

A

4.3 LL(1) PARSING

fh >~ LL(lY pearsing. technique [AHO-ULM] is - used
eernsivel?din the/implementation of ENDBMS; in th}s section
we explain how the LL(l) parsing 1is employed in ENDBMS,
Each subsystem of ENDBMS was désjgned and implemented in a
logical seqﬁence so that we could te%ﬁithem. For - example}
first we designed the basic framework (i.e.,,intgrface,
interpreter, lexical analyzer), second the schema, third the
gecur%ty, fourth the sgbschema and fikth the DML subsystem.

The reason for this is that the security subsystem requires

the ‘'schema subsystem, the subschema subsystem requires the

secu;iéy subsystem, and finally the DML subsystem ;eduires
the subschema subsystem. For example execuﬁion of a DML
command, let us say: ‘'list all occurrences of some subschema
record type ffleg, submitted by a user, would requiré the
existence of his _subschema, which would ‘require the
exiséence "of his. access profif%,_and which finally would
require the existence of the schema. All tﬁe commands of
. .

eath subsystem constitute a sublanguage expresséd by an

LL(l) grammar. A grammar is written in LL(l) format if all

. the first terminals, of all productions.derived from the

same nonterminal, either g;plicitly or implicitly, are
Nh?exclusive. Each of the four LL(l) grammars
formally describe all the cémmands belonging to the

corresponding subsystem. All formal grammars are given in

3y




e~

b ALY ek e rehi W A f. HAm o

L .- 106 S b

apﬁendix~8. Each grammar is.described as a production set,

a. set of nonterminals (one fof them will be the 'start'

-

nonterminal) and 2 set of terminals (word terminals and

special tetminals). Word terminals are the reserved keyy -

,woids and user defined 'names', both of them start with an

alphabetic character, while special terminals are the (',
vy, Y3, '=', '<', etc). Details are given in the souch

code.

Y

The N nontérminals of a grammar are assigned to an

integer code from 1 jo N and the M terminals to an .integer
code from 1 to M, Each grammar is implemented by three
tables, that is the production table; the word terminal

table and the parsing table. The production table is a two

dimensiogal array and each of its rows is used to store one’

o

‘'production rule as a string of positive and/or negative

»

integers. For example, if a and b are terminals -with codes

‘5 and 10 respecti&ely, and S, A, B are nonterminals with

1

codes 1, 3, 5, then, the production rule of gpme grammar:

S8 ==> AaBb .
can be stored as: -3 , 5 , =5 ,110
There is a one to one correspondence between the . production
rulés of an LL(l1) grammar and the ‘rows of the‘production
table. The word ;ermiﬁalvtablé is a one dimensional array
and is used to store the word terminals of a grammar in

ascending order. The position of a word terminal within( the

word terminal taBle indicates its. code. The parsing Ble. - -




"

- L 167

L

is é two diménsioqa; array, with number .of ;ows\\équal to
npmber of.’ nonterﬁinals, aﬁd number ~of’_polg@ns equal to
.numbégﬁof terminals of a grammar. éach entry of thiélehablé
is 'either =zero, or negative intgger; or non—-zero positive

inreger; ,

- / .
T LIf durfgq the;parsiné of a'command a zero entry is

)

selected, " an error situation |is considered to have been

" encountered, while if a negative entry is selétted then an

‘empty" proddctiop rule is to be used. Finally ?f a
possitive entry is selecteé, then the positive integer
indicates“tﬂe prodﬁction rule which is t Be uﬁedynext;Athe
iﬁtéger is'used as row index in the prodgétion taéle to

access the corresponding production rule. A stack, common

to alllsugfystems, is used for parsing of any command. The

top of the stack is either & terminal or a nonterminal.
Te}minals are rbgégéthed—on the stacé with their integer
codes, while th;\ nonterminals are represented by ‘the
negative of their respective codes. Thé start nonterminfl
of any g;Emmarihas code 1 and because any command is derived
directly frém the start ~nonterminal, the stack top is
initialized -to minus \qne before the command's syntax
analysig‘starts. " A global lexical analyzef is used to geg
the -next token with a global code (see section 4.5). This

token is looked up in the local word terminal table using .a

|
binary search and a local code is assigned to it. The focal

"code will be zero if the token is not a valid one for a

{ daisiasl P8 A e TR " oy AN AT A x st e o




108

particular subsystem.

The parsing, or syntactic analysis, of any command is

carried out by using (1) the parsing table, (2) the parsing

‘stack and (3) +the current ,input token, which was returned

J

“upon request to the lexical <analyzer. The current fnbut

token and the "top of the stack determine the next action.

If the top of the stack 'is a positive integer, &.q,, a

t%rminal, the current input token should match with it, that
A4 1

is its code must be the same as ‘the the top of the stack,

otherwise®an error situstion is found. In case of an error,

a message is generated indicating whit caused the error, and

3 global error condition flag is-set to 'ON', However, if:

the ENDBMS is wused in I-mode (interactive), the editor
facility 1is <called to correct or drop the command under

examination, and if the ENDBMS is used with B-mode q(batch),
' . &
the error flag remains on, but the. current input token is

*

checked if it matches thedexpected next token; if it does
the parsing of the command continues, otherwise it is

terminated and the parsing of the next, if any, command is

initiated. !

Let us now examine the case where the top of the stack

'
'

is a negative integer, i.e., a nonterminal. Let I be the

v )

-absolute value of the top of the stack and J be the local
code of the input‘ token., The " local parsing table is..

consulted and its entry - with row index I and column index,’

J - _is considered. 'If:the selectéd entry value is zero, 'the

-
‘

J * 0
'

B PR

Lot




2@

109

parsing is terminated in cafi/pf the B-mode; or-in the case

of I-mode the editor is6ii;}éd to ailow the user to correct

the error, A pop-off operation is performed on the parsing
. - r o,
stack ~in. the case where\ the selected entry value . is
‘ > J Lo
negative.‘//xﬁg;e:a this action 1is taken for an 'empty'

-

production.) Finally there is _the case where the entry

?

value is a positive integer, indicating the uniqﬁe‘

production number of the production rule which must be used

next. This production rule is takeh from the production ~

tablé End it is transferred onto the parsing stacgk. The
transfer is accomplished with a2 POP and some PUSH operations

on the parsing stack,, bringing the abégining " of the

Bl

" production rule on top of.the stack. The new top is.tested-

¥

with the current input token and’ the above process is-

Fa

repeated.’ The léx@cal analyier is called any time the

v

current input token matches the top of the stack. All the

I

above described actions take place within the local par¥er

itself”, and only if there is a match between the top of the

stack and the current input token, 'trol is returned to

o

the command handler. At this poin

ecessary, and

performs all the semantic actions,

Once the end of the
handler checks the error condition flag, and if°it is 'off"

then the execution of the command can start, otherwise

1y
@

- S




\t

e

'} . . -
“handler, before the ‘pqrsing or execution starts, performs

errdr messages during the extensive semantic analysis and

_b& dispaying the message 'READY' and immediately after the

errors

. way to

" onde with the first being the "USER' and the last being the

140 °

a ¢
o v ~-a

control is returned to the interpreter. Each command

a

sqme-consistenqy checks, namely, user identificetion and

. : _
execution . requirements for the command. It also generates

4

uses the editor for possible error correction. After the

execution phase is finished, control is returned again to

the ihtefpreter which checks if there are any more input
- - ' - ! * o
commands if ther® are none the system asks for more., input

'input rompt character': '?°'.
promp

\

The user can eithér start a

new 'input session', (see next section),\or terminate his

4 v

interface with ENDBMS by issuing the Tout! mmand .

~

4.4 INPUT SESSIONS ' ,

The ENDBMS can be accessed either through a terminal

or through a card deck, in either B-mode (batch) or I-mode
-~ . .

kY
i
1

(interactive).\ The difference betwe;p B-access and I-access
b N~ -

1

is that B-access cannot wuse the/ editor facility which

‘ <
protides the terminal wuser with the -ability  to correct
without having to fewrite the entire command. Obwviously
when accessf;g the "ENDBMS through a card deck, the specified
proéessing mode must be the ijode, because the user has no
intervene and correct possible errors. A card deck

user should submit 21l the ENDBMS commands to be executed at

-

-~ A}

¢ >

in a commnd's format, during its translation period, ’




111
. i ’ w
'OUT'. 1In addition to thgeditor option, a terminal wuser
has the opt}on to organize his commands in groups and submit
one group at a time. The EyDBMS processes all the ?ommands
R | of a group and then asks for more,‘if,last processed command

v

was not the '0UT'.

r

N
The entering of such & group of commands is called an
’ input sessien. An input ‘session 1is initiated aftér the
/( system displays the prompt word 'READY', and it is
terminated by the dollar sign ('S') charactgr. The input .
submitted ddring an input session, may include one or- more
ENDBMS commands; a command separatgr - the semicolon/';' -
. l should always separate two cqmmands. The first command of

t
the first input session must be 'USER', and the last:command

of the last input session must be the 'OUT' command, because
every ENDBMS command, except 'OUT', requires proper log-in,
..i.e., execution of the 'USER' command. Every input line

e

could , have any number of leading blanks, after the host’
system's proﬁﬁf character '?', arfd every command shoéuld
start on a new line. Th% maximam length of an input line ié

80 characters, with all the rest ignored. The body of a

t

command can be spread over many lines, with only one

restriction which gurantees that the command's\ semantic
analysis will be successful after an error has been found,.
‘If a command includes no etrrors: the restriction can be

overwritten. Here follows the restriction and its

-
‘

explanation.

el - ’ \ o

P T R A N A AR R B A TN S e T e e 4

-

A PS4l gt N A erit |t e AT TR« e et

I T




T S

112

If an ENDBMS command containg a .'name' (e.g ;ecord,
set or fielé name) , the 'name' with its preéeding reserved
word must be on the same line. The 'reason 1is that the
resérved word is used to set 'ON' an intiernal flag, kept by
the concerned command handler. If the name is on another
line aﬁd an.error occurs later on‘this line, the line will
be replaced by the editor either by a 'DROP' indication or
by a éorfected line. Here is a possibility for a problem.
Some times the flag which was set by the preceding reserved
word s reset immediately af;ef the expgcted 'name’' is

found. . Suppose a°'name' exists on a certain 1line and its

preceding key word exists(on the previous line., The flag

" which was set‘by the key word is reset 4after the name |is
\ .
found in the next 1line. Let us now assume that an error

occurs later on the same line with the 'name', and a new.

line is submitted with a new 'name'. The new 'name' will
I . N P
never be stored (i.e., will not reflect the change), because

the flag is stil reset and the new 'name' will be ignored).
This is an extreme case which can happen during a schema or

subschema field definition, for example. A user is expected

to submit the same correct portion of an erroneous 1line,

-while he inserts a new corrected line.

EXAMPLE: ‘ ' <

1. (safe) FIELD: SALARY OF NUMERIC ( 3.55 )

, corrected line //A \w \

FIELD: SALARY OF NUMERIC (5)

or

o W s 8 B PR STER sen Tln a  S S i A

O

i
3
1
L4




At i, e et v e i

R

113

FIELD: EMP-SAL OF NUMERIC (5)

Both of the corrnected lines.will cause no problem, and the

‘changed field name will be stored as such.

- .

-

2. .(not safe) FIELD: "\ '

SALARY OF NUMERIC (abc) \\,

) corrected line

§§ EMP-SAL OF NUMERIC ( 6 ) '
The corrected line will not cause any translation problem,
and the wuser will beleive that he changed the field name
SALARY to EMP-SAL., However the ENDBMS will not record this
change; because the key word F{ELD is :ot on the same line
aﬁd because the field name flag is reset (from the initial
scan of the line with the error); the new field,ﬁame‘yill be

ignored. . i

4,5 VALID INPUT TOKENS

(4

The user submitted input consists of a number of

tokens - rec6gnfzable unité by the global lexical analyzer.

‘A token can be one of the following:

-

1. Reserved word.

2.  Name. ;A name should start with 3 letter and can be
following by 'some' ‘numeric énd/or a¥Yphabetic
characters, including the '-'., The max fgigth can

- be 80 characters, ‘equal to ‘the max inbut'line
léngth. Only the first 20 ébaracters of a 'name'

are stored and pniy the first 10 are-dignificant
h ﬁn . ~

“d

rd




] . ' ‘ ‘
2
- 7 114 |

(used for comparisons)’.

‘

v 3, Number. A number can bﬂ\an integer or a real with"
f

a maximum of 14 significant digits. The accepted

o

~

formats for a2 real are: n.m, n., .M |

- v

4. Special Tokens.
! seﬁicolon (iommand separator).
t$! dollar'sigﬂ (input terminator). ‘ .
', ' period. - :
quote.
v+ aritﬁmetic plus.
- ' arithmetic minus.
' * ' arithmetic times. | . ' s
/! arithmetic~d%vide.
Y left parenthesis.
') ' right perenthesis.
voa equal. “
(; - ' ¢ ' less than. ' . s

' <= ' less than or equal.

Je ' > ' greater than.

' >= ! greater than dr equal.

' & ' not equal.

i

Blanks, colons and commas are valid characters and they‘ are

)

not tokens. Thay can be uysed for ‘readability' purposes and .

they are s:ipped during line scanning. Howe?er’they cannot
' be ipclﬁded withiﬁ the above tokens. A reserved woré; a

name and a number must be preceded and followed by either at

least one blank, or a comma, or a colon, or a2 special token.




e e e e RN g L s S R S M St b Noaoop oz 8 e i e

’

115
\
. <&
~The first token on a line can start immediately fram the
first character. Each- of the above tokens is asgigned an

global ‘intqeger code, which will be changed to a 1local one,
/ -

" by each subsystem,

4.6 SCHEMA SUBSYSTEM

~

Tﬁe schgma subsystem consist's.,of six command handlers
related to the schema concept supported by the ENDBMS. This
group of command-utilities has been designed to be used,
soJ:ely by the DBA, as 'tool to describe the logical
oFganization of the data base and furthermore to hanc;le its
administration - i.e., making changes toﬁschema definition.
An LL(l1) schema sublanguage describes formaily the schems -
group of commands and it is given in appendix B. In this
,sect'ion, we first explain the data struc\tures u§ed to
represent the schema internally, and then we Jdesribe the
sctﬂ'xe\ma commands. In order to describe a command in BNF

(Bacus Norm Form) form we make use of the following symbols:

A
B’ A or Bor C - (one of A,B,C)
C J .

-
™
\—.(Q

A is repeated ZERO or MORE times.

: nones or one, or both.

A ———r b ST RNV AN | g RN, A\ ¢ iy e e a * ot e e E wum - - L.

e e



Y oo -

Lo

116

¢

4.6.1 SCHEMA INTERNAL REPRESENTATION
Q.

For the internal representation of the schema
definition one system file ('SFl') is used. In this file

the ENDBMS keeps all the infdrmation about the schema and it

uses five s'ingly linked lists, as shown in ‘Figure 4.4; with

the lists being: (1) the schema record type list (schema

RT-1list) to> link all record type entries, one for every

_record definition; (2) the field name list, for every record

type, to link all field name entries, corresponding to each
field definition; (3) the” schemz set type 1list (schema
ST-list) teo 1link all set type entries, one for every set
type definition; (4) the RT-S.0.L., record type - set
ownership 1list, for | every record type; (5‘) the RT‘jS.'hﬂ,.L-,

. / .
record gp{a_- set membership list, for every record type.

Each entry of the RT-S.0.L. indicates the set type where the

corresponainq record type i; owner and it also indil:ates the
associated member reco]rd typ#. The number of entries in a
RT-S.0.L. is equal to the number of se‘t types where the
correspondiné record type is owner. Similarly, an entry of
the RT-S.M.L. indicates the set type, as well as its .owner,
where the corresponding record type is the member type and
again, the number of entries in & RT-S.M.L. Indicates the
set types where the corresponding record t?pe is a member.
The RT-5.0.L. and RT-S.M.L. are the ownership and membership

lists at the 'type-level' associated with a schema record

type. We will find 1later . (see section 4,9.2) the

o 17




v B ) 117

- . ) ' file ‘};e"ad entry of SF1

| bl el |
7 B e S
) '

schema RT-1ist ,: ' schema Sf-1list

- m e AR M
f"—- ! -Q‘\ i
Y N Y
H schema RT-entry \ schema ST-entry
| R | ) I |
e — — - [
g > y
B “ \ "-
N ~ . | S
S -’: ' .
\(x( ¢ - »
I 101 | I 1o |

— —— —— ————
"_.-. ——-’

) . o1l
¢ eees s eeainccos o e -
' o)
' ="
] ‘~p. o]
! ! I . 3
1 []
/ - —— -
V4 » E.
e . 101 :
7 : R == - - ;
schema RT-entry .-~ . ‘ : i
‘ —————— __-;--.1::-___ ..... ——————— ' ¢
: ([ B fele] of " . :
| i e b e e e
f ! gmas LN " 4
; ‘: ‘ ." RT"S. O'L“““““ AT—S:MCL 4 ) -

- * A

_________ ———— -
; X | o lel ! |
-t e b o et e . e — D o o e e e e e e e e e -
r""" f (f""l
\“'-h: . "")‘. .
~ . » [ ]

Q
o

t

: . /' ‘ ) | ' O




118

2
RTO-S.0.L. and RTO-S.M.L. for the ownership and mémbership /

lists at the 'occurrence-level', associated with a record
) a

e

. occurrence of a record type file,

» In the rest of this section we describe the exact !

- o format of every entry, which is stored in *SF1°'.

!

(1) FILE HEAD ENTRY.
This entry is used b’y! the ENDBMS to genera'te unique keys for
[N

every new entry written -on this file and to generate a

unique 'record type number'  for any new record type

definition stored in the schema definition. Both keys and
! 'record type- numbers' are integer numbers which are
generated by increasing their 'installation' values. The

unique keys are required by the (RM functions which create

and retrieve entries of this file. It also contains some

other information as it is shown below and it . .is generated
: ]

©

at installation time with initial ‘field values: 1, 1, 0, O,

b

0, 0.
<
' R R—— - o m——— o ———— o bt f
| KEY | KGEN | RTLH | STLR { RTNG | RF |
+- S — rm—— Fm et ——— ot

1 2 3 4 5 6
field dgscription: | ’
1 : key field; it is used by (RM for accessing.
2 ¢ key generator; it generates unique keys for every
" entry written in this file. Every time a key is -

P : ‘ needed the value of this field is incremented by one.

3 ¢ record type list head point;r; it is set to zero when
the list is empty.

4 : set type list head pointer; it is set to zero when

. | ]
. . .
b ”




-t i e 5 % e

ke

field description:

- 119

~

(2) PHYSICAL UNIT DISTRIBUTION ENTRY

4

‘"This -entry is generated during the execution of the schema’

definition command, " with initial field values

T
2,0,0,0,0,0,0,0,G?0,0. It is a known entry, because its key

".is the integer 2. The last ten fields correspond to the 10.
<

data base NOS files.

1 : key field. .

2,11: ten flags corresponding to ten data base physical

units; 1if the n-th flag is set to 1, then the (n-1)
physical unit (PU) is allocated for ’'the current
'rotation'. A uniform distribution algorithm is used
for the allocation of the data base PU's to the

. schema record type files. The first 10 record type
files are assigned to PU from 1 to 10, one at time. by
setting the corresponding flag. The 11-th record
type file is assigned to PU-1 and causes reseting of
all flags except the first. The same happens for the
2l-st record type file. The 12-th record type file,
is assigned to PU-2, the 13-th to PU-3, etc.

i‘
(3) RECORD TYPE ENTRY .
This type of entry is used to save all information about 2
schema record type definition; it is generated by the ENDBMS

after a successful translation of a record type definition.

. . &
?this list is empty.
5 : record type number generator.
© 6 : recovery field; it is used for recovery purposes.
I g .

e aal gt inke & AR A TR A v e By g b



R B e e e Rttt L e e i £

| KEY | LINK | r-name | FLH | OLH | MLH | RT# | PU# | RTL |

tom——— o e e s ettt Fo———— o ——— te———— e e S et
1 2 14 5 6 7 8 9 Fo
field descrip/tion:

1 : key field. '

2 : 1link pointer for the schema RT-list; it points to the .
next record type entry if it is not zero. 3 :

3,4 : schema record type name (s-r—name),

S : field list head pointer; it points to the first entry
of the field name list.

¢
6 : head pointer for the RT-S.0.L.; it is zero if the . __
' list is empty.

7 - : head poiriter for the RT-S.M,L.y it 1is zero 1if the
list is empty.

-, '

8 record type number.

9 ¢ physical unit number; it is an integer from 1 to 10
and indicates the NOS file allocated for the storage
of 'the corresponding scheme record type file. It is
generated during the execution of _ a record type
definition by a ‘rotating' algorithm. )

10 : record type length; it 'is the sum of all field
lengths and it is updated any time a field definition

, is stored. - :
2 \ ]
{4) FIELD NAME ENTRY
This entry is generated by the ENDBMS, durifig the execution

120

of a schema record type defintion, and corresponds to a

schema field definition; it 1is used to store all‘the

informaticon for a schema fiéld definition.

R S RS- Sy . tome o ——— +
| REY | LINK | f-name | TYPE | LENGTH | PRTL |
S A R S A o ———— dmmmm e n +
2 3 4 5 6 7
» .




ag - 121

field-description:
1 1 key field.

2 : link field; it points to the next field name entry.if:
it is not zero. ’

-

,4 : schema field name. o
1

field type: 1 for CHAR and 2 for NUMERIC. !

field length; it must be an integer.

~ N W

previous total field- length; it indicates the total
length of all previous fields and thus it is zero for
» the first field. S

,} (5) SET TYPE ENTRY . . e
\ . This entry is generated by the ENDBMS,'after a successful
translation of a schema set type definition, and it is used

to store all the information needed for a  schema set type

definition. N :
oo i
DR W —- R S et ] ' j
| KEY | LINK | s-name | OPTR | MPTR | i
KU — b ——— fo o e ——— . R — +

1 2 3 4 5 6

field descripgion: .

ot

; | B | : key field. , . o

2 : link pointer used by the schema ST-list; if it is notf
{ R zero, it points to the next schem2 set type entry,

?

3,4 : schema set type name (s—s-name) -
5

: pointer to the OWNER record type entry.

>

: pointer to the MEMBER record type entry.

K=

(6) RT-S .O.L. or RT"S.M.L. ENTRY‘

"Such entries are generated as part of the execgtio'n of a set

N

.

H “

:

i‘ ‘ / g
-I' &
|




o ag

) o . 122 ' | F ool

-~ v

“

type defi,nition. rThé set type definition indicates . the
’ OWNER and MEMBER schema recor(g types. An entry is inserted

o //in the owner's RT-S5.0.L. and another in the member's

/ RT‘S.M.L. f,
o — e ——— frmm————— tom——— + '
| KEY | LINK | s-name | PTR |
. T m——— fom———— Fom e ——— fom - + .
' 1 2 3 4
field description: ’
ool : key field. ' . s
o ,— ' :
Coy 2 :+ link pointer; ‘if it is not zero, it points to the -
T ‘next entry of the same list. ‘ :
| 3 : set type name (only the Tirst 10 significant char's),
i 4 : it points to the member record ty’péé‘éntry “(in  the \
| .schema RT-1list) for a RT-S.0.L. éntry, and it points
| to the owner record type try (in the schema
RT-1ist) for a RT-S.M.L. lentry‘;%
Note: T o .
’ Insertions to 2l1 mentioned lists take placé at the top of
{ ' each 1ist. . :
4,6.2 SCHEMA COMMAND GROUP .
% In this ,secti;:m all the schema commands are described
§ )
g, & and their syntax in BNF form is given,
‘? ) . ‘ » -
. ' . k\ \
DEFINE-SCHEMA 0
The DEFINE—SCHEMA command is the schema definition command.
-‘ ‘0
It may include at least one record type definition,. and
P ‘ optionally set type definitions. It is intented tq be used
4 . only to define the -logical organization of the data base.

i
1
| : | -

3 -

-1



R Y

et S e A prrr 4

~

P R L I .y

Once the command has been used to defin

schema contains at least one record type\\dafinipion} then,

it CAN NOT be executed‘again; therk 'are other dommands to

update the schema (see below).

‘Usé: for DBA only.

Requirements:
1.

.2.

6'

Syntax: DEFINE-SCHEMA (schema-definition> ;

-

DBA ‘identification. ' ;

E i 2

the ENDBMS must be 'locked', see security.

the schema record type list must be empty
(which implies an empty-set type list).
unique record and set type names, and unique
field names within a record type. P

the owner and member type specified in a 'set -

type - definition, must 'have been defined
before.

the length of a field must be ,a positive

integer.

<schema-definition>:= (record-type~definition>

o
o

<record-type-definition>:s RECORD <s~-r-name> ' t

1

<field-definition>:= FIELD <field-name>

<record-type-definition>
4

i<§et-type-defin;tion>
‘(} -

.o <field-definition>
» <field-definition>
END

CHAR

OF NUMERIC ( <integer> )

123 . ’ ‘ ‘

VN

TR, ST




4

- < - . ’ bl
) L . 124 . Y -
o A .
k . Sset-type-definition>:= SET <s-s-name) ‘
) . ¢ . " OWNER' <s-r-name>
o \ . o MEMBER <{s-r-name>
. - END ”
? W .
o . |
INSERT-SRT

This schema command can be used :to 'expand'\the schema; it

“can insert OﬁEYregord type definition at a time.

i A

~ Requirements: | | . ~ .
//) ) . 1., DBA identification. N ‘

‘

Z'Qse: for DBA only.

. 2.~unique record type name and unique field
names within the corresponding record type.

// Syntax: IN§ERT—SRTJ§record—type-definition) ;

Note: the <record-type-definition> is given in  the
description of the DEFINE~SCHEMA.

- , I

INSERT-SST

i

P -

S The 'insert a schema set type' command it can be used to add
a new set type in the .existing schema definition. It adds

~Only one set type at a time, .
L P . . @

R Use: for DBA only. R - ¥
. ) . ’ e '
Requirements: ' .
; 1. DBA identification. )
i ) 4 ’ , ) )
i 2. the set type name must be a new  one;
1 duplicate set type names, in the schema
; ST-1list, are not allowed. . ‘ —

3i the set typé must be defined over two Schema

) record types, e.g., owner and member, which
s ' must have been predefined. ' ‘ °

.




) 125 .

' Syntax: INSERT-SST <set—type¢definitto$§@ ;

NOTE fhe <set- type—def1n1tlon?¢d§‘g1ven in the. description
of the DEFINE-SCHEMA.

%

DELETE-SRT .

~

The 'deletec a schema record type' command can be used to
N

delete a schema record type deffnition {one at a time).. Its

‘ deletion causes triggered deletion of all schema set type.*

definitions, which include it as an owner or as. 3 member,
f -
and furthermore in order to maintain consistency in

schema-profiles-subschemas, it updates the affected profiles

2

and their corresponding supschemas. _;?g‘ corresponding

stored record type file is deleted and its data base space

o

is freed.
Use: for DBA only.

Requirements:

1%

}, DBA identification.

2. the ENDBMS must be 'locked'.

“

3. no user 'activity' at all. ' °

1]

4. the specified record»tyg? na§§ must be va?id.gﬁ&l
Syntax: DELETE-~SRT <s-r-name> ;
- T~
DELETE:SST
The ‘'delete schemi set type' command can be used to delete 2 -
écwfma se% type ' definition (one at a time), without
+offecting the involved owner and Mmember types. The

independent implementation of the set type association

)
s = 1

i k- D

WENEE RS




-‘-—b‘

»

> 126

allows its independent destrucgion. A deletion of a schema
set type updates,.as in the case of the DELFTE-SRT .command,
a11 © necessary user profiles and their cofresponding
subschemas. An impértant action which takes place during
the exeeutgéh of this commgnd is the updéte of” the
RT-S.0.L. and all RTO-S.0.L. for the owner record type, as
well aé the update of the RT-S.M,L. andaall RTO-S.M.L. fof
the membér record type.
Use: for DBA only.
Requirements:

1. - DBA identification. LI .

2. the ENDBMS must be 'locked'. .

4 N

3. no user 'activity' at all.

4. wvalid set type name.

Syntax: DELETE-SST <s-s-name> ;

Note: both the DELETE-SRT and DELETE-SST schema commands are

c considered to be powerful operations and they have to be

given a lot of. thought, before using them.
»,
LIST-S CHEMA
This schema command is désigned to give, at any time, a list

of the schema definition. It first lists all!'the record

type definitions and then, if any, all the set type.

definitions.

3

Use: for. DBA and any authorized user.
, .

Requirements:
1. DBA or user identification. 7

Syntax: LIST-SCHEMA ; _ N
&

i e TR S




127 ‘

g

5}7 SECURITY SUBSYSTEM
v

The security subsystem constitutes a group of 15

commands, carefully selected and designéd to hahdle1all the
secur,ity needs in ENDBMS. The DBA is resgonsible for the
overall security enforcement; he 'makes all the decisions
abgut which wusers will have the right to access the ENDBMS
and what exactly each of them should be allowed to do. The
15 security commands can be divided into three subgroups.
wifh the first the DBA"'iiggglls' the users - 1i.e., gives
them the right to, acc%ss tHé\E?DBMS, 'rsmoves} installed

users from the system,'g§ts a list of all installed users at
! \

N,

any time, ‘suspends‘ épme users from_accessing the syétem
for certain period of tiﬁe, ana‘"ﬁinaly 'restores' their
access to the system. Wwith the second subgroup the DBA
defines, updates and lists user access profiles of users
that have been installed; with the third subgroup the DBA

exercizes some system control by locking and unlocking ,the

ENDBMS and explicitly requesting recovery action for

A4
‘specific users. - »

4,7.1° SECURITY IMPLEMENTATION
) &

3 : » e
Security in ENDBMS is implemented by means of:--a USER
L

* 4 , )
LIST and the USER ACCESS PROFILE; two of.the system files’
. . 3 #,

4

SFS and SF6 respectively, are -used to store thep user list
[
and the user access profil;;. The user list is represented

v o ‘ | \

’




v N

v 128 h
P
DBA security entry
bolel _ ___l
it intatndndeded bttt it .
I
—..-”" USER LIST b
. e 4 .

{ NON-DBA security entry ¢ ptr to user's
Y e -+~—- access profile
For e el R
.-—..._._l _________ s o . . e P . e i e e . o . el S o A . o o B i

=3 : .

! \a.Ptr to user's .

Y ’subschema ' am

[] . r

: N 'f-} I
| 10 | | ol | 41,
—————————————— —— e S —— — - — ————— T — —— ——— —— — " — — > —

“>

" Figure 4.5 Representation of USER LIST.

as a singly linked list (see Figure 4.5) with a ead entry
(the DBA entry) which is geperated at installation T1 e and
it is used by the ENDBMS to record the 'status' of the DBA,
A\'user is considered 'installed' if an entry - i.e., a user
security entry - has been‘cfeated for him in Ehé7USER LIST.
THis user security entry is used by the ENDBMS to%record the
'status’ of the user at any given time and along with the
user access profile, is used to enforce all the system
provided protection for. the ‘particular user. One fie{d
valﬁe of tﬁe user security entry is used as a pointer to the
user's access profile. The latter is represented by a null
head entry and two singly linked lists (see Figure 4.6),
e.g., the profile record type list and the profile set type
l1is¢t., Every entry of the profile record type list has five
branch 1lists, namely the RFR—liét, MFR-1ist, ROR-list,

MOR-1ist and the DOR-list. These lists implement the FIELD'

and OCCYRRENCE RESTRICTIONS with respect to a schema record

(S



3

|

——— e o e —— — v

| l . ‘ e !
‘--—--—_"—_—'--- .

H 1 .

I' ! [
profile RT list i \ profile ST list
'-n------”.—.--—-‘—"’ M mman

. Z - - L

boled CARRRIRRRY AN !

———————————————————— o-_.'-‘:_.:.—q-_ o 1 o e e s e s e e R v ot 2
) ., : '

—

1 1

! [

\ ‘ . R \->DOR entry !

4 ottt to tr tos, ““-PMOR entry - v

. RFR 1ist MFR 1ist —MROR entry :
]

- . - R S W s S Ul D B (D St T G e

Figure 4,6 Representation of USER ACCESS PROFILE.

type entry. Given ‘below is 4 format description, of all
T
entries of the system file five and system flle six, used to

create the user list and the user access profile.

4.7.1.1 STRUCTURE QF SYSTEM FILE FIVE

FILE HEAD ENTRY ‘ | Y
¢ -

’

Th;s is generated at installation time and has the following

format:
ettt S A tm————— ~tm——— Fm———+ '
| KEY | KGEN | SLOCK | SRF | RF |
Tl TR e ———— Fmm——— s T

1 2 3 4 ) '
fiezﬁﬂaescription.

1 : - key field.
2

.o

key generator, it is used to generaté unique keys for
every new entry createdion this file. Every time a

key is required the field value 1is incremented by
one.

3 : system's lock-flag; when it is set to 1 no one except
"the DBA can use the ENDBMS. Y

4 : system's recovery-field; it 1is not used by the

it




T

PR U

N\

130

LRy 1
current version of ENDBMS (see sectiop 4,12.5). °

w

ﬁ.
recovery field; used by the recovery subsystem.

The values stored at installation time in the three fields
are: 1 , 2 ,0 , 0, O respectively. The key 2 is used for
the DBA security entry.k\\\ '

DBA SECURITY ENTRY 0

It is geﬁsrated at installation time and has the following

format

fm——— o — to————— o ————— o o e e i e dm———
| KEY | ULH | DBA#% | DBAPW | ACTIV | STATUS | RFl | RF2 |
tm——— N R — o ———— Foim o e e o ——— fom————— Fom—— Fem——— +
o1 2 3 4 5 6 7 g -

1

field description:'
1 : key field.

2 : pointer to the first user security entry in the user
list; & zero value indicates that the user list is
empty.

v .

3 : DBA user number.

R

4 : DBA user password.

-

S : DBA activity flag.

PRURPIRCRE W P Y

6 : DBA status field; a non-zero value is a commgad
recovery code and it indicates the recovery-needed
command being executed by the DBA at a given time.

7,8 : recovery fields; used for DBA recovery.

a
e o Pt ting!

[\

The values stored at installation time are:
2, dbano, dbapw, 0, 0, 0, O re;pectively, where the dbano

and dbapw‘stand for the DBA's user number and password.

USER SECURITY ENTRY

It is generated when the DBA installs a new user, with- the

7 -




g o S

following format:

131

‘q.

. Fm———— o —— R et D B tmm e —— B S L T -+
| KEY | LINK | USER# | USERPW | SSHEAD | ACTIV | SusP |
tm———— o m——— e e Fm—m————— Fomm fom e b +

1 2 3 4 5 6 7
S O R, R —— + s
] STATUS | RF1l | RF2 | PRHEAD |
b ———— fm———— Fm———— Fmm e ——— +
8 9 10 11..
"field description: ‘ .
1 : key field. K
QJA\E\\ : link field;.if it is not zero, it points to the next
: user security entry in the user list.
3 : user's-user number.

5
6
7
8 *
9,10:
11

user's user password.

pointerlto user's subschema null head entry, if it is

not ‘zero. -~
¥

user suspension flag; if it is set to 1 the

corresponding user is considered suspended.

user activity flag; it is set to 1 when the wuser
logs-in and it 1is reset to zero when the user
logs-off. ‘

user status field; a non-zero value is a recovery
needed command code and it indicates the type of
command*being executed by the corresponding- user.

user recovery fields; are used to store the
pointer(s) of the 'logical start' of any 'insert' or
'delete' type recovery needed command (see recovery
subsystem 4in this Chapter). :

if it is not zero, points to the null head entry of

the user's access profile,
-4

& e Lt Tt AT & 3 SR S b D B e

|
4




. B -

132

4.7.1.2 - STRUCTURE OF SYSTEM FILE SIX

FILE HEAD ENTRY

field descriptidn:

1 : key field.

2 : key generator field; same as before.

Y

3 =+ file's recovery field.

It is generated at installation time with field values 1, 1,

)

0 respectively.

1 * Ay

PROFILE NULL HEAD ENTRY

" This ent}y is generated when the 'DBA defines the access

\ .
profile of the corresponding user, agﬁ it is destroyed when

the user's access profile is deleted. 1Its format is the

following: . , -
R S ¥ S — + :
| KEY | PRRTLH | PRSTLH | -
pm—— o $omm e +

1 2 3

field description:
1 : key field.
2

it points to the Efist entry of the profile record
type 1list; a zero value indicates that this list is
empty. o .

3 : it points to the first entry of the profile set type

list; a zero value indicates that this list is empty.

PROFILE RECORD TYPE ENTRY

-

This entry |is 'generated when the user's access profile is



TR o gt £ s e me

‘133
o /

1

. defined, or access rights to an additional record typk are

’

added to the user's profile.

[ N fommeem RSO fom——e N S +

| KEY | LINK | r-name | CODE | RFR | MFR |

Fomm e e R e Fo———— Fommm— +
1 2 3 4 5 6 7

fommm o - tom——— tomr +

| ROR | MOR | DOR | PTR |

e Fm———— tmm——— +

- 9 10 11
field description:

1 : key field.

2 : link field; if it is not zero it points to the next

profile record type entry.

3,4 : schema record type name corresponding to this profile
record type entry. The reason we are using two words
for the name is that a max of 20 characters can be
used for any user defined name and with only the
first 10 being significant. o

.
&

\ i

5 : record type access code (see section 4.7.2.3).

6,7,8,9,10: if they are not zero, they point to the tops of
the RFR, MFR, ROR, MOR and DOR lists respectively.

11 : pointer to the corresponding schema record type entry

of the schema RT-list.

v

PROFILE SET TYPE ENTRY
This entrf is generated either when the user's=.access

profile 1is defined - ©provided that it includes set type
defintitions ~ or access rights to an additional schema set
type are added'to the user's access profile. It is deleted
either éxplicitly.by deleting a'profile set type entry or
implicitly as a triggered actién of a deletion of‘a schema

record or set %ype entry.




[ -

RFR or MFR ENTRY

fomm——— e et Sttt S e +

| KEY | LINK | s-name .| CODE | SPTR |

e Foe———— it Bttt L R +
1 2 3 4 5 6

field description:

1 : key field. |

"2 : 1link field; used by the profile set type list.

3,4 !5.,tﬁ—~ﬁame~a§\sﬂf set type (same comments as before) .

5§ : set type access code ({see sectlon 4.7.2.4).

6 : pointer to, corresponding schema set type entry of the
schema ST-1ist.

4

These entries are generated along with a profile record type
entry and each of them is used for one read or modify 'field
restariction’. They are deleted-along with their parental

1
profile record type entry.

Fom——— T

| KEY | LINK | f-neme |

N - o ——— e :
1 2 3 4

field description:

1 : key field,
2 :+ link field;.if it is not zero it points to the next
(read or modify) field restriction entry in its own

list.
. M sA\
3,4 : the restricted field name. ’ GO
ROR or MOR or DOR ENTRY D

»

These entries are generated and deleted along with their
parental profile record typev entry. They are used to
implement the: Read, Modify and Delete Occurrence

Restrictions respectively.

4




O

e < et e M, ot

o~ 135 .
m———— S e AP S SUS W
| KEY | f#nhame | REL-OP | QUALIFICATION |
O Fommbm e e e s
1 2 3 4q - 6 7 8 9

field description: - S

1 : key field.

2,3 : field name used to define the restriction criterion.

L -3 . ' «

4 : relational operator used in the rgstrictiop criterion

5,.0.,9 : these five fields (5 CDC words) are reserved to
store the value specified in" the Ror M or D, "ROR
clause of a profile record type definition.

4.7.2 SECURITY ENFORCEMENT

: >/
Security in ENDBMS 1is enforced thfough a five level

hierarchy given below:
&/x 1. Identificationiand Authentication Level.
2, System Availability Level. , ) -
3., Record Type.Level.
. 4. ‘Set fypq Level,

.5. Record Occurrence Level, .
Access rights at level (1<i<5) require access righ%s at . all
its 1lower levels, Access rights at the record occurrence
level require access rights at levels 1-3 for record type
operations. However, }f a record occurrepce is to bé
rgtrieved using set type operations, accéss rights -over the
corresponding set type are required. For example let us
consider two record types, EMPL ané D;PT and the set type
ﬁEf-EMP. Let wusers X and Y/'have access rights for all

occurrerices of the two record types and let user Y hawve, in

addition, the acqgess rights over the set type DEP—EM?.‘ Both

*

s

7

dislinatiiin®




CL mhnen e Wi - e e e e

A

P

) 136

|

YR
users can access any occurrence of the two record types but
only wuser Y can make use of the logical association between
them, by using set type operations, or define a virpEal

subschema record type by selecting fields from EMPL and DEPT

L

record types. Before we describe each level we. make an

important observation: secu;ity enforcement at the first
four levels does not require any 'search' operations at the
'étored"data base level, however to enforce security at the
fifth level, i.e.:ﬁ%o decide whether to allow access to a
given— record occurrence, we must first access that record

occurrence. According to this obsérvation the security

enforcement  is divided into two categories: the data

. independent security enforcement -and the data dependent

security enforcement. The word 'data' refers to the stored

information in the data base.

¢

Once 2 user has been installed and his/her access
profile has bééﬁ defined,. he/she gan create and administer

)

his/her own subschema. In ‘the .data independent seéurity
enforcement, a user's reﬁuest°can be granted or'denied by
consulting the user's subschema and access brofile. " Any
ENDBMS command issued “by a user is analyzed for lexical,
syntactic or semantic errors during the first pass over the
command’'s text or the so called 'translétion; period. If
the conand is efror free then the second !phase (execution

phase) of the command starts. Some times it is impossible

to keep the information, needed for the execution phase,

485

v

PR,

CHSCPE L WS

e




o o

o 137

2
v ?

from the fifst pass and a second pass over the command's

text will' be required. The second pass does not\fequire any -

error .cheékinq. The error analysis of any of the DBA's

| . . . ..
commands is done, at translatiom period, against the schema. g

. .
For only retrieval DML commands,.the execution«ghase might

. 1 . .
be interrupted because of security enforcement with an .

yinformative message, which explains why the internﬁit took ¢
T . . {‘ il

place. The rule to enforce security for retrieval 'of a
subschema virtual revord occurrence is the following: if any °

subschema record occurrence is constructed from more than

o

one, schema record occurrence, and jf7any one of these is not
accessable, because of soffe restrictions, the entire -
- -f‘

'subschema record occurrence is not available.

0

Generally access to. a data base record occurrence ¢

a

requires security enforcement at the record occurrence - ]

level, except for the DBA, that is the user's access profile
¥ ' /

is searched to see if any record occurrence restrictions
A . L
exist, and if it does then it is determined if the current

record occurrence satisfies thé restriction criterion. This

determination requires the contents of the cprreﬂt record 4

occurrence, which requires 'fetching' and 'reading' of ‘this
record occurrence from the data base. Let us considar the
follcwing(;xample: a user is permitted to reagwthe 'SALARQ;‘
field of the record type 'EMPLOYEE' but for only'ﬁome
EMPLOYEE occurrences. 'Thislusem’s request, such as "list

all EMRLOYEE records” canrot be denied nor granted




—

B

138 ¢

<
e

quuestionably. If a 1loock-up of the wuser's subschema

~indicates that the. requested -recor? type belongs to his

view, and if there are ;ﬁo errors during the tfanslation
phase, / the execution .phase Qill be initiated. Security
enforced up to this point cons{itutes the data independent
security enforcement. At execution pﬁase, before an
EM?LOYSE occurrknce is listed, a chéck is made’ to see if the
record , satisfies any restriction criterion, and if it does
it is not listed, otherwise it i@alisted; this operation is

repeated for each EMPLOYEE recdrd occurrence.

4.7.2.1 IDENTIFICATION AND AUTHENTICATION LEVEL 1
. \ 1

Every user who wants to use the ENDBMS, incIudinqvthe'
DBA, must iéentify himself using the 'USER' command. The
DBA, who 1is installed at system installation time, can
perform  any gpefation in the system , after his
identification. All other 'users musf have been imstalled éy

the DBA with appropriate access profiles.

- "y

4.7.2.2 SYSTEM AVAILABILITY LEVEL

ﬁg%er the: identification and authehticition' is
completed, the ENDBMS checks the status of the system. The
entire system may not be available because it is 'locked’ bﬁ
‘the DBA' for system maintenance, ér the systeh may not be
available to a particular user. .The latter caﬁr happen
because the user has been suspended by ‘the DBA, for

maintenance of his profile, or because the user's activity

“

’Tﬂ

e e N R rnin D o ¥



Uy e

¥
flag “of his security entry in the USER LIST is set. The

setting of the activity flag means either the user attempts °

to wuse the ENDBMS from another terminal, which is not
permitted, or the user in his last session with the ENDBMS

did not clear-off his status by a normal log-off operation -

o
1

i.e., 'OUT' command; in any case a message for reEovery is
displayed, the -user is not allowed to proceed further, and

the ENDBMS is discongected from the user,

4,7.2,3 RECORD TYPE LEVEL

If a schema record type 1is included in?a  user's
L

profilg, the ‘user has access to the record type.‘The ”access‘

rights can be any combination of Read, Insert; Modify and
Delete operations. Each combination is associated with a
record type access code and this code 1is stored in Eﬁe
user's access profile. As indicated earlier, the access
rights of a record fype may involvé field restriqtioﬁs fotr
reéd and/or modify, 35 wel? as restrictions on éccurrences
of the record type. We have two groups of legal combination
of the above operations, because of the read field
restpictions. If the 'RFR' set is not empty the user
automatically - should not have Insert' and Delete access

rights for the corresponding record type. Given below is a

-4
1ist of 211 access codes and legal combinations:

L AW TR C b LR e




access code legal combination
1 READ : 3
2 READ + INSERT ,
3 READ + MODIFY : .
- 4 READ + DELETE
5 ¢ READ + INSERT + MODIFY
6 READ + INSERT + DELETE . . .
‘ 7. READ + MODIFY + DELETE. ‘
i . 8 READ + INSERT + MODIFY + DELETE (ALL)
9 READ* X
10 READ* + MODIFY

-

\

@ In. the first 8 cases, Read is granted with no rA“s/trictions ;

at all, and the the‘enti record occurrence fs. accessable,

\d}é. not restricted - y{th the. ROR set. ¢ In the last two '
combinations, the asterisk refers to R€ad with read field
restrictions, in,which case only a portion of 2 record type l i

can be accessable. ROR,. MOR and DOR can be used

appropriately - 1i.e., with. approﬁriate access codes - to 3

define ocdcurrence réstrlcgioné; ROR and MOR can be used with 1
’ [ »

A
access codes 9 and 10 to restrict occurrences from reading

and/or modifying.

4.7.2.4 SET TYPE LEVEL

; _ Security at this level is enforced by means of a set

- > ~

type access code, stored in a profile set éype énttY. whfch
is associated with a legal combination of all set type

operations: Read, Include and Remove. Given below is a list

of ‘all legal cgmbinétiong with their associated set type

e
° Y e ‘ ' L ' >
' - .

'u\\
1 - ” ') )




access codes:

access code legal combination
4 n [

READ or READ* .

READ or READ* + INCLUDE (see note)

READ or READ* + REMOVE (see note)

READ or READ* + INCLUDE + REMOQOVE

B W N

If a set type is not included in the user's profile set type

list, the user has no access at all to this set type.

<

!
/

Note: . the READ or READ* set tybe access rights is assumed éﬂ
both Lthe OWNER and MEMBER record types, but not necessarily
to be the same. It is very important to emphasize here that
the set type access codes 2 , 3 , and 4 should be given with
only READ (no réad fig}d restrictions) for -the MEMBER type,
and wit@aREAD or READ* for the OWNER type. This restriction
is obvious because a user cannot associate logically, only a

part of a record occurrence (or delete the 1logical

association for only a part of a record occurrence).

4,7.2,5 RECORD OCCURRENCE LEVEL

L}

\

Security at this 1level 1is data dependent and 1is’

enforced at the execution phase of any ENDBMS DML command by

making use of the ROR, MOR and DOR sets. It is also

5 - L]
important to note here that the MOR and DOR refer to the
! ’ L]
accessible record occurrences, because a record occurrénce
which is not accessible - because of ROR -~ cannot be further

L

modified or deleted in any way.

e e



¥ : .
.
'
’ P )

)

4.7.3 SECURITY COMMAND GROUP

‘a

1

The following commands are available to implement

security in ENDBMS: -

INSTALL-USER

The command can be used .to install one or more users in the

ENDBN;S. For every user itﬂcreates a security entry in the

USER LIST, where the supplied user number and password are

stored. Both user number and pass'owrd must start with an
. -

alphabetic and <can be followed by numeric or alphabetic

characterg; the maximum number allowed is 10.

" Use: for DBA only.

Requirements:

1. DBA identification. .

2, the specified user numbers must be unique.

Syntax: INSTALL-USER : v

( <user~number> , <user-password> ) .

{( Cuser-number> , <user-password> )} :

"
ot
-

REMOVE~USER

This command is used to remove one or more installed users
‘From the, ENDBMS,, It deletes the corresponding user secutit?
entries from the s\;(qstem's USER LIST.| The command |is
executed oﬁly {i£f the " spécified use_r;? have‘theqfr access

profiles removed. In other words if a user is to be removed
‘ !




" execution phase. ' 7

.indicates which of the users were suspended, at the time the

~ corresponding user number(s).

. 143 /
from the system the DBA must:fi7st remove his access profile
da

and then use this command to elete the user's security

"entry. The reasqon we did thig was to simplify the command's
7/ o

[

Use: for DBA only. a , |

L3

Requirements:

1. DBA identification.

ot e vt Mk TR e

k] ¢ ‘?‘ . MY
2. valid user numbers.

.’

3. user's access profilg must be removed.

PO I,

®

Syntax: REMOVE-USER <user-number>

{(user—number)}"j : y
- . 1
LIST-USERS
[ . .
This command can be used by the DBA to get a list of all . : ]
installed users; both the user's user number and password

are displayed. The generated list of installed users also

command is executed, by putting an asterisk in front of the

Uke: for DBA only. , o
Requirements: : -
1. DBA identification.

Syntax: LIST-USERS ;

DEFINE~-PROFILE -

The command can be used by the DBA to aefineqthe access
. hd a—y .




144

profile of one or more dlready installed users; at least one.

profile definition must be supplied. A profile definition

»

should include at least one record type definition and,.
. ‘L

optionally set type definitions.

Use: for DBA o-nly.°

Requirements: y .
1. DBA identificatisn. - w,
. a
2. indicated user(s) must be installed. ’
3. -all names used must be vali'd schema names.,
4, wvalid record and/or set ‘type access code(s).
5. wvalidity of RFR, MFR, ROR, MOR and DOR with
’ respect to each other, on one hand, and with
respect to the corresponding record type
: access code on the other. - )
Syntax: DEFINE-PROFILE <profile-definition> ®
: \ ,
{(profile-definition)} ; ‘ ;
<profile:—defintion>:= USER ,<user-number“
S Ny
<record-definition> i to o~
‘ oy
‘ {<record-definition>} ' ]
4 ‘ ‘ i
<set-definition> + o

<record-—definii:ion>:= RECORD: <s~-r-name>

CODE: <rec<~access—code>

RFR : <f-name> <f-name>

MFR : <f-name> <f-name>

ROR: <f-name><rel—-op><{quot-value> |

*

. MOR: <(f-name><{rel-—op><{quot-value>




¥ ¥

Mam m e JTRREIMTY TR A ke mer beas cremae b o e et L et s m—————

145

- ' - DOR: <f-name><rel-op><quot—value>

{set-definition>:= SET: {set-name> /J s
?
CODE: <set-access-code> /

P
i

L

: REMOVE-PROF ILE o LT
/" This command is used by the DBA to remove an access pirbfile :

i " from ' one or more installed users; at; least one uéer number

k must be specified in the command.

'Use: for DRA only.

Requirements:

1. pBA identification.

2. every indicated wuser must be installed,
s . suspended and NOT active.
<o

Syntax: REMOVE-PROFILE <user-number>

; {<user-number>} : ’

LIST-PROFILE

This command can be used by either the DBA to get a Iist of

user . access profiie(s) , corresponding to specified user

_number(s) in the command (the DBA must specify at least one

user nqmber)} or by any other installed user to-get a 1list

of his \?wn profile (if he has one).

Use: for DBA and any other install ed user;
Requirements:
1. ‘DBA or user identification.
2. the indicated user(s) must Ee installed and

in case the user is not the DBA, pe must
provide his own user number. . g




° "146

{

Syntax for DBA: LIST-PROFILE - <user-number>

L4 .
{(user-—number)};

for any other
installed user: LIST-PROFILE <user-number>

e

ADD-RIGHTS
This command is used to expand the defined -access profile of
some user by adding ONE récord type or set type entry to the
correspending prdfi.le reéord .type or set type list
;espectively.
Use: for DBA only.
| Requirements;
l. DBA identification.
2. indicated user must be installed and have a
defined s%cess profile, which can-also be

empty.

3. duplicate record or set names are not allowed
in an access profile.

F]
1

Syntax: ADD-RIGHTS , USER: <user-number> i '

<record-definition>
— ' {set-definition> ;

REMO\}E-RIGHTS

This command is used by the DBA to update an access profile,
of sdme specified user, by ret;\)ovihg one profile record type
or one set. type definition from t‘he corresponding acces's

profile. It does the opposite of ADDLI‘RIGHTS. During its

execution the c¢orresponding subschema (if any) isgchecked

&

o




s e mm ko eme ot e ey % wr wesma— 4 o - -

147

for probable consistent update.
Use: for DBA only.. '
Requirements: :
1. DBA identifitation. - "

2. 4indicated user must be installed, suspended,
not active and with a profile defined.

3. wvalidity of specified record or set name.

) € L4

Syntax: REMOVE-RIGHTS , USER: <user-number)

-

RECORD: <rec-name>
SET: <set-name> ;

/
li

SUSPEND-ACCESS .= > : /
This command is used by the DBA to suspend one or more Jsers
for\some period of time; a us\er's access to the ENDBMSE‘ is
'restored' later \explicitly' by the DBA, The command gets
the suspension flag of the corresponding user(s) and if ‘\‘the
user(s) is(are) already using the ENDB;AS, he ( they) is(asm\a)
not kicked out but he(they)* continue his(their) interface
.and next . time his(ﬁﬁeir) sécu{rity entry islaccessed, a

message to prepare’ for log-off is displayed.

B s S o

Use: for DBA only\_

1 4

Requirements: ; ‘ L

1, DBA-identification.

2. indicated user(s) must be installed.

Syntax: SUSPEND-A CCESS: <user-number>

{(user—numb'er>} ;- v




P

o M TN o TPNLT W

Syntax: LOCK—-SYSTEM ; and -UNLOCK-SYSTEM

RESTORE-ACCESS

-

This command is used to restore one or more suqﬁended,users;

it resets the suspension flag(s) of the indicated user(s).

Use: for DBA only.

™

Requirements:

1. DBA identification.

K]

2. every indicated user must be installed.

Syntax: RESTORE-ACCESS: <{user-number>

{<user~number>} :

-z

This command is used by the DBA to check what

-

LIST-ACTIVITY

using the ENDBMS at any given time.
Use: f£or DBA only.

Requirements: DBA identification.
Syntax: LIST-ACTIVITY ; -

LOCK~S YSTEM and UNLOCK-SYSTEM

4

users are

These commands are used by the DBA to lock and unlock the

ENDBMS. All the. active wusers at the time the ENDBMS is

locked, still remain on the system, but no one else can

enter the system from that point on.
Use: for DBA only.

Requirements: DBA identification.

-e

4
LY



e T

-
.

PR,

Np—

[c.d

. Syntax: PASSWORD <old~pass> <new-pass> ;

a  department is authorized to access the data base as

149

RECOVER
This command is used by the DBA to recover one or more
interrupted users. y ' PO

Use: for DBA only.

Requirements:

l. DBA identification. \ -
2. all indicated users must be installed and
interrrupted.

Syntax: RECOVER: <user-number® {(user-number)}; : s ‘ ”

PASSWORD Q'

This mmand is used by either the DBA 4r any other user. to

»

‘change their password.

Use: for DBA and any other installed- user.

Requirements: . - 5

1, DBA‘of user identification. ) ‘ i

. 2. walidity of specified old password. "

4.7.4 EXPLICIT AND IMPLICIT ACCESS RIGHTS

Let us consider a data base whose schema definition
: ' s *

consists of two récord types, the DEPARTMENT and EMP'LOYEE,l

and one set type, the DEP-EMP, Suppose that the manager of-

follows: he is permitted to read and update all the " fields .

‘of his own DEPARTMENT occurrence and read and modify all the
> ¢ . . . -

)

R T B T L, em———




|

W

120

'EMPLOYEE occurrences which 'belong' to his department (we
could also spe¢ify which flelds are restricted from read

and/or modi fy access),

To enforce this s%curity for the .manager-user, using
our implemented security scheme, we 'have t;.o introduce an
extra DNO — department numper of name - field, This field
can be used in the ROR clause of the EMPLOYEE profile recgrd
type entry (of the manager's access profile) to exclude all
EM?LOYE‘E oc‘currences wvhich do not belong to the.manager's

t

department. This leads'us t¢ a 'relational tyge' of record

type. The difference between/such a network data base and a
similar ,reiational one, ois
member occurrences of a DERPARTMENT owner occurrence can be +
found directly in the netyork data base', using the

impl emented 'set occcurrence path' (as a2 pay=-off to the extra

DNO field!).

hH'ow.ever it is possibvle to avoid the inclusion of such
requi“red fields by introducing another type of 'accesg
riéhts' for any schema record type. An additional IMPLICIT
access clause in a pr;file record type (X) *d’efinition,'could
gpecify some set: types to be used as follows: occu::rences of

X can be accessed only as member occurrences of some owner

occdrrence of the specified set types. This IMPLICIT access

can be associated with the Iimplemented EXPLICIT one to

enforce further restrictions at the 'type' and ‘occurrence’

level (i,e., with & proper combination of the explicit
: .

t

e fact that a1l the EMPLOYEE.

N,




ol 151

Digas
: .

record type access éode and the RFR, MFR, §0R, MOR and DOR

i

sets) .

A possible expansion to the occurrence ;estriction
specification 'makes the proposed EXPLICIT aﬁd IMPLICIT
authorization scheme a powerful combinationriwhich could
implement very complex data base access rights.

r
AN

4.8 SUBSCHEMA SUBSYSTEM -

s

¥

The suybschema subsystem consists of seven command
handlers, one for each of the seven subschema commands
available in ENDBMS. With these commands, every installgd
user with a non-empty access profile, can defihe (store) his
view = in accordance with his profile -~ and Ffurthermore
édminister it. Subschema administration includes commands
'Eo (1) éotally de§troy a ggbschema definition, (2) list the
gfored subschema definition, (3) expand the definition by
adding a new-'subschema record type or 2 new subschema set
type, (4) remove from the subschema definition a subschema
record or set "tyge. In sectiond 2.3, we explained the
subschema concept supported by the ENDBMS along with its

consistency with respect to changes to either schema

-defiﬁftion or user access profile definition. 1

\ -~

4.8.1 SUBSCHEMA ggPLEMENTATION

All subschema definitions are stored:in one system

file, the system file .two ('SFé')., ' Each  subschema

i
e

JPLTL




N

152

definition s implemented with one null head -entry, which is
pointed to by the 'susbchema head-field' value of the user's
security in the USER LIST, and two singly linked lists as

i + L.
*branch' lists of the null head entry (see Figure 4.7);
' . \

a
- subschema header
| | . ] . |
----l.———-.r ..... A e e :
' '
subschema RT list j | subschema ST list
o mmmmm - e mmrcam———- -7 Yoos
h -

3 ’f! - -b@ -*—‘ ——————————————
P gl | I 1el |
——————— —_ e R e

! ss RT entry 1 Ss ST entry
v v -
e [
_____ CE S S
I 170 | ! I 1o | |
- s S - - i e e e o S o e o S
k] v
Figure 4.7 Reﬁresenta;ioﬁ of USER SUBSCHEMA. 3

the two lists being the subschema record type and set type
, list. Bach entry of the subschema RT-lisE'ha§ one branch

¥
list - the field name list for the corresponding _subschema

" record type. In the case where the record type entry

corresponds to a virtual subschemé record type, each field
definition is implemented as one 'main'fen;ry; which belongs
to the field name list, and exactly one ‘auxiliary' entry'
for 'the real fielé definition, or one or more 'auxiliary' -
entries for the viftual~fie1d definition; if a virtual field
is ‘constructed by using the procedures SUM-OFy AVERAGE-OF or
.HERQE-EROML\one 'auiiliary' enfry willjbe rﬁqulred for each
sSchema field namé specifieé ‘in ‘those clauses., Every '

<

o <




.,

. sy

1 : _ key field.

153 ‘

subschems set type definition is implemented as& one entry,

so thé entries of the subschema ST-list do not«have any

'branéhesh., \

4.8.2 “STRUCTURE OF SYSTEM FILE TWO

Given below is the format descriptioh of all entries

used to store a subschema definition.' .

FILE HEAD ENTRY \ 7 T

It 1is generated at system installation tSme and its format

o RS
is similat®™to other file head entriess: .

+ "
| REY | KGEN | RF | ' o
pmm——— R bm———t ) )

field description: = e
1 : key field.
2 : key generator; it is used to generate unique keys
"~ (integers numbers) every time a, new entry is written
in SF2. ‘

3 : recovery{field; it is used by the recovery .subsystem
to store the key of every entry, before its deletion.

SUBSCHEMA NULL -HEAD ENTRY.
R .
It is generated when a user's subschemd definition is stored

and it has the following format: N

o e ot  frem

field description:

o R T

7

AR Aem 25 b b L) e e 1l

<




154
\ . - ) A
2 : 1if it is'not zero it points to the top of the
subschema RT-list. .

3 :. if it is ‘not zero it points to6 the top of the
subschema ST-list. '

v

SUBSCHEMA RECORD TYPE ENTRY
It is generated\either when a subschema defintion is stored

or when a new subschema rqsord type is inserted to a stored

subschemas definition. Its format is the following:

bm——— +--L-—3+—--—+;--+--——+-7-+ ------ Fm———— N S o +

| KEY | LINK" | r-name | b-name | BPTR | R/V | FLH | TOTL |

b - T T SRR R Fo———— fmm——— +
1 2 3 4 5 6 7 8 9 10

field description:

1 : key field.

2 i 1link field; if it is not zero it points to the next
subschema record type entry.

3,4 subschema record type name (ss-r—-name).
the name of the schema record Eype, used as 'base'
type in the subschema record type definition.
o .

7 '+ pointer to 'base' record type in the schema RT-list,

! »
8 : type of the subschema record type; 1 is used for REAL
" and 2 is used for VIRTUAL. ‘

9 : it points to the top of the corresponding -field name
‘ list. '

10 : 1length of the subschema record type; it is calculate

implic{tly - during, storage of the record type :
definition, from all field definitions. . - i

FIELD ENTRY FOR REAL RECORD TYPE . ' - o ! -
" This type of field eﬁtry‘is used only for storage éf a REAL
subschema record type. This distinction.can be justified by
the formal definition of.,a REAL subschema reggyd type, see

seétion 4.8.3, where only .the subschema field names are
“& o
\

= [ e o opormnistusax s B dn




b o Rempn

b e ok

1% 4

MAIN FIELD ENTRY FOR VIRTUAL RECORD TgPE
. . .

{/ : 155 T

specified; the field names of a REAL subschema record type
must be in one to one correspondence with the- field names of
its specified 'base'. The subschema field ‘names may or may

4 v

not be the same as their corresponding schema ones.

field description: ‘ .
1 : key field.

2 : link field; it points to the next field name entry,
’ of the same fieli{;ame list - if it is not zero.

3,4 : subschema field nime.

wn
.

the specified .'base' record type.,

o

This type of field entry is used by the field Hame list of a

VIRTUAL subschema record type for partial storage of either.

a REAL or VIRTUAL field definition.

R R R FR— N S T eeeyt
| KEY | LINK | ss-f-name | R/V | c-r-name | CRPTR | ALH |
tom——— tom———— R Y o e fomo— trm b ———— b +

1 2 3 4 5 6 7 « 8 ‘9

| CSN | FL | PREVTL |

tovcm b ———————+ .
10 11 12 . -

field description: ' ‘

1 : key field. ° | C -

~:+ link field.

,4 : subschema field name.,

pointer to corresponding schema field name entry, of




5 .
6,7 :
8

9 :
}0 :
11

12

AUXILIARY FIELD ENTRIES

156 :

type of the field; 1 for REAL and in case where. the
field is VIRTUAL -1, -2, =3, -4 are used respectively
for the procedures RESULT-OF, SUM-OF, AVERAGE-OF,

"MERGE~FROM.

field is to be taken from o

" name of' the compatible scbeﬂf record type, where thiis

r calculatednfrom.

pointer to schema compatible record type entry in the
schema RT-1list.

points to first auxifiary field entry, assoc&at d
with this main field entry.

name of the schems. set type which defines the
compatibility. 5

length of the figld, REAL or VIRTUAL. . ‘

total length of all previous fields.

7
[ s
3

There are two kinds of auxiliary entries, TYPE-A ' for the

procedure RESULT-OF, and TYPE-B for the procedures SUM-OF,

AVERAGE-OF, MERGE-FROM.

TYPE-A

N\

/ -

B et Rttt o ——— e o +
| KEY | LINK | c-f-name | CFPTR | AR-OP | num-value |
Fm———— s Sttt S E S tmmm $mm——— tm———— +

1 2 3 4 5 6 7 8
field description: > e ’
1l : key field.
2 link field.
3,4 : néhe of the compatible schema field.
5 pointer to corresponding compatible “schema field.
6 : arithmetic operator; is stored in character form.
7,8 : two (DC words for the numeric value; it is stored as

a character string of numeric digits.

Lo Kot S e 0




<

»

TYPE-B ; v

e m o o e e e o o o e s e e e

| KEY | LINK | c-f-name | CFPTR |

field description:
1,5 : same as -in TYPE-A. ’

lSET TYPE ENTRY

This entry is used by the subschema set type list to store
the informa;ion,needed for a subschema set type definition,
and it is stored either when a sstchema definition is“
stored or when a new set type definition 1is added to a

stored subschema defintion.

- o m o o T ST— o o ——— +

| KEY | LINK | ss-s-name | s-b-name | ss-OPTR | ss-MPTR | .
o R fomm—— S fom——— F R S —— o ————— +
1 2 3 4 5 6 7 8

field description:
1 : key fileld. -\
2 : link field.

1y

3,4

subschema set type name. \

5,6 : name of the schema 'base' set type.

Y

pointer to the subschema owner in the subschema
record type “list.

8 ¢ pointer to the subschema member in the subschema’ set
type list. :

€

[y

 4.8.3 'SUBSCHEMA COMMAND GROUP

1 > -
) ‘ » 5
:

E]

In this section all the subschema commands are

described and their syntax is given in.BNF form.
1y




£

158

'DEFINE~-SUBS CHEMA
This command can be wused by any installed user with a
defined profile to store his subschema definition. It

i

should include at least one subschema record type definition

and” optional subschema set Eype definitions. 1In a REAL "~

record type definition the field definitions are simple, but
a schema 'base' record type must be supplied. The field
names must be distinct and they should be 1in a one-to-one

correspondence with the field names—of the specified schema

" 'base', A REAL or VIRTUAL field definition in a VIRTUAL

record type 1is a bit more complexl In a VIRTUAL/field
definition the schema record type name - and the
corresponding schema field name(s) - where the subschema
field ié taken or palcuiated from, must be specified; ;
aVIRTUAL field definition uses one of the four implemented
procedure ty;es. -~

Use: by any installed user with a defined proflle.

Requirements:

1. user identification.

T
e

G'. 2. a defined access profile.

3. wvalidity of all specified schema nbmes.

Syntax: DEFINE-SUBSCHEMA <subschema-definition>

.
’

<subschema—defin1;ion>:= <ss—record—definition>
{:<ss—record-definitjon;}
{<ss-set-definition> }

H
y
¢
i
:
:;E
i
i
¢
4
a




159

§ = \ ~
‘ <ss-record-definition>:= RECORD: "<s~r-name> . ,
A
: REAL, . l
VIRTUAL] WITH-BASE <{s-r-name> »
"
C g <field-definition>
v k {(field-definition) } .
' END
: . . . /
Lol ] ‘field definition for REAL sibschema RT.
: ' <field-definition>:= FIELD <ss-f-name> ,
B . /
- \ field definition for VIRTUAL subschema RT. ' - //
| <field-definitiond>:= FIELD <ss~f-name> <field-option>
<field-option>:= |REAL FROM <comp-r-name> . <comp-f-name>
. VIRTUAL <procedure~type>
. . <{procedure-type>:= {RESULT-OF {comp-r-name> .. <comp-f-name>
‘ . . . <ar-op><number>
K SUM-QF <{comp-r-name> (<comp~f-list>)
AVERAGE-OF >> , >> >>
MERGE~FROM >> >> C
% <ar-op>:= '*' or '/!' . ¢
. . ‘ .
H {comp-f-list>:= <comp-f-name> {<comp-f-name>}
N . Q°
- @ nOte

; <{s-r-name>
<{s-f-name>
{s-s~name>

schema record name
schema field name
. schema set name
. <ss~-r-name> subschema .record name
i . <ss-f-name> subschema field name
P {ss=s-name> : subschema set name
; . <comp~r-name> compatible record name
, <comp-f-name> : compatible field name.
<comp-f-1list> : compatible field (name) list

o

q*

e se _as»

..

N ek

DELETE-~-SUBSCHEMA

This command can be used by the owner of a subschema to

e oo et e

remove his subschema definition from system file two. It

: o

'y v s sm = mm




160

deletes the two subschema record type and set type lists,
" the null head entry,. and it _sets to ?5r0 the subschema

pointer field of the correspondiné user securiﬁy entry in
“ the USER LIST. o v ‘

Use: by any installed user. =«

Requirements:

l, user identification.

2., a defined (even empty) subschema.
* .

Syntax: DELETE-SUBSCHEMA ;

LIST-SUBSCHEMA .
This subschema command can be used by any owner of a stored
ySubschema to get a list of its definition. This will happen
either because the user wants to verify his view or he wants
to £ind out if his view definition has been modified gecause
‘of some 'change' to schema or tb his access profile. ({Note:
deletion of a schema RT or ST entry causes consistent update
of all profiie definitions and their associated subschemas;
deletion of a profile RT ;r ST entry causes  consistent
update to its associated subschema.)
Use: by any installed user.

’ ’ Requirements:

l. user identification.

-2, a defined subschema.

P . TRt

. Syntax: LIST-SUBSCHEMA ; ’ , ‘

&

P

P

INSERT=~SSRT




TS R TR T R A

—

161

S

THis command is used by the owner of a stored subschema to"

'expand' its deffnition by adding a new subschema record
type (SSRT). "The new subschema record type name must be

unique, e.g., not already used in the same subschema, and

Y

the overall record type construction must be consistent with

the user's access profile. It enters a new entry in the
subschema record typé’list.

Use: by an§ installed.

'Requirements:,

1. user identification.
2., a defined (even empty) subschema.

3. unique ss-r-name and consistent use of all
specified schema names. 0

Vad

Syntax: INSERT-SSRT <ss~record-definition> ;

INSERT-SSST

This subschema command is similar to INSERT-SSRT, but it is

used instead to add a new subscheTa set type definition, in

a stored subschema. The spec{fieddsubschema tecord types as
owner and member types, should already havé been defined.
Use: by any installed user.
Requirements:
l. wuser identification.
2. a defined (not empty) subschema.

3. valid owner and member subschema names and
consistent schema set 'base' name.

Syntax: INSERT-SSST <ss-set-definition> ;

’

A%




I

I ¥ ol ST U

‘ types.

Syntax: DELETE-SSRT <ss-r-name> ;

' namely removes one subschema set type -definition from the

162 ) \

N’O te‘ i \
the ¢ss-record-definition> of the INSERT=-SSRT and °

the <ss-set~+definition> of the INSERT-SSST are the
same 'as those of the DEFINE-#UBSCHEMA.

' 4 :

This subschema command reverses the INSERT-SSRT; it can be

DELETE-SSRT

used by the owner of a subschema to remove a record type
definition from the subschema RT-list. If the specified.

subschema record type 1is owner or member to any subschema

~

‘set type, the command deletes also these subschema set

~

Use: by any installed user.
Requirements:

1. wuser identification. ' -~

2. a defined (not empty) subschema.

s 3. wvalidity of the supplied n;kwi\

.

DELETE-SSST ¢

This subschema command does the\oppos{te of tHe INSERT-SSST,
correspondindﬂsubschema ST-list. ’
Use: by any installed user.

Requirements: |

1. user identification.

é. a defined (not empty) éubschema.

‘31 vblidity of the supplied name.



e o = —————— > LSSt

l

163
Syntax: DELETE-SSST <ss-$-name)> .;
4.9 DML SUBSYSTEM

"The DML subsystem consists”gffIE commnd handlers and
it implements the 15 DML comﬁandé sﬁpported by the ENDBMS,
The DML includes: record ‘tgpe commands to retrieve and
update record type fi;es,-sét type comm?nds to retrieve and
update informaﬁiéﬂ based on the implementation of the set
tyﬁe relationship (e.g., following set type paﬁhs), commands
for simple controi'loqpé using conditional and unconditional
jumps, coﬁmands for currency ipdicator manipulation and two
commands to . pfepare and terminate. the processing of any
record type file. Before we look at the DML commands we
éxpiain the implementation of a record type file and the
'implementatio& of a set type association -at the RECORD
OCCURRENCE  LEVEL; the implementation of a ‘set type
association at the RECORD TYPE LEVEL was explained in

Chapter 2, schema section. ‘ -
4.9.1 RECORD TYPE FILE

It s import?nt to note at this point that the %erm
'record type file' refers, to‘ both® schema and subschema
record types. A schema record type file cdnsists of a
collection of occurrences of its Eype and becauseieverything
defined in~the schema is real, a schema record type file is

stored in the data base, where each record occurrence |is

L]

"étored exactly the way it is defined in the schema. All the

\ )
~ .

N

il

L LT LY S gy



164 . T

stored schema record type files divide the- data base into

logical divisions (the so called data base logical units or

simply logical units). Let us now consider the subschema
record typé file; it again' consists of a collectidn of
record occurrences of a subschema record type file, however,
a subschema record type file can be REAL Qr VIRTUAL. A REAL
subschema record type matches a schema record type ‘which
qgnstitutes its schena BASF, while a VIRTUAL subschena
record type is defiped OVER one or more schema record types

with“ one being 1its schema BASE. Thus a virtual subschema

record occurrence is not stored the way it is defined but isd

constructed from the 'base-occurrence' and additionally from
some 'compatible' record type occurrences. Therefore it |is

clear that a subschema record type file is associated with

one or more stored schema record type files and hence to one _

or more logical units. A logical unit is implemented as a

doubly linked list, as shown in Figure 4.8,

record type file header

olel 1 |
i
1
[
1
P :a’l 3
[
,*‘ record occurrence entry
R TR PO I B S n
4 b -
1 . ! :
/> ¥ ! ‘\
Y © 1 ‘spptr ta RTO-S.M.L
: A -..pptr to RT0-5.0.L
X
b ~
b 1o e | | l
- — L -

[\

’Figure 4.8 Representation of RT-file.

PSR,




7

165
| | B S
with a uniquely identified head entry. The .head ‘entry is
generated when the sc@ema record type is defined and its ke§
is the‘record's record type number. ” Insertions in \the
doubly linked list élways take place at the top. Each entry
of the record typ% file corresponds to a record occurrence
of this type and consists of two parts, where the first
contains the kéy, forward and backward pointers (to
implement the record type paths), and two pointers to
RTO~S.0.L. and RTO-S.M.L. respectively (we recall  that
S.0.L, and S.M.L. are the set Ownership and Membership lists
at the Record Type Occurrence (RTO) level); the §econd part
contains the 'actual' information of the record occurrence.
fhé total length of each entry in the cbrrent'impleﬁentation
can be up Fo 250 characters or 25 CDC words. The leng;h of :
the entry depends on the defined length of the record type
'in the schema. Fiqure~di8 shows that the implementation of -

\the record type file uses two.kind of entries: the head and’

main entry; given below is the fqrmat of .these two entries.

©




_MMAIN ENTRY' FORMAT

ht

HEAD ENTRY FORMAT ° : \

. . 2 , . ¥

+ —r— e TP Y o

| KEY | RTPH | KGEN | NULL |

- ———— SOOIN LSS P NE— . !
T -+ "

1 2 3 C 4 ‘ A ‘
¢ » .
§ i
.field description: . - . \\ .

. f

1 : key field; {t 1is equal to théorcord type number of
the corresponding sdfema - record” type and because the

. RTNUM is unique every such ‘entry is uniquely
.identified in*the data base.

"2 & 1if {t is not"Zzero it points to the first main entry
of the associated logical unit,

3 . key generator fLeld, its initial value is set to:

(FNUMBER % 100 + RTNUM) * 10**6 where FNUMBER :is an

* . 1integer from 1 to 10 and stands for the index of the

' physical data base unit which 1is allocated to- ‘the

" -~ corresponding logical unit, and RTNUM stands. for the

record type”numbgr of thé corresponding schema record

type. - This - combination as. a key of a main entry of

the corresponding logical unf®. not only identifies

the entfy itself {in the data base but a proper

*decomposition identifies: the 1logical .and physical
data base unit as well (see conclusion Chapter).

*

J

4 T not used.

4
)

A o
bommmm b et ST R ‘
| KEY | FLP | BLP | .OLH | MLH ‘| occurrence dats | - ..
I S s i ot L., Aemme——t
1 2. "3 4 ‘5 - n ' '

P
field description:
: !

key of the main entry; it identifies the main entry

1

A in the data base, the logical and physical- data base
unit where it is stored s .

2‘ s forward pointer, zero indicatesﬁthe last entty.

3 : backward pointer, zero indicates thevtép entry.

4' pqints to the head entry of the RTO0-S.0.L.

N : N

T

4o

[




167 ~

S ¢ points to the head entry of the RTO-S.M.L.
. 9 ' . Mo
6,n : this part is used to stdore the information of a ' = ¢
record occurrence. The number of words of this part
depends on the length of the corresponding schema
record type. : N

¥4.9.2 SET TYPE IMPLEMENTATION AT

RECORD TYPE OCCURRENCE LEVEL e

In Chapter 2 we talked E&out associations between
A

record types as they are defined in the schema by means of (
‘ - /
set type Jdefinitions, and how these are implemented using

.the RT-S.0.L., and RT-S.M.L. At the occurrence level we are

intérested in the  representation of assoclations between

\.r . )
record occurrences; such associations are based upon//ihe

already defined concept of set occurrence. The following

si% points give the justification for’ this imple?eqxation:
E R ; SRR

1 i

(1) a record occurrence of record type X which is Xﬁgy ownef)‘ .
, t?pe of a number of set';ypes can be an owner oécurgence. : ;i“‘
in different set occurrences within these set types; we | "
allow it to be the owner zf at most one set occurrgh;e d

. within 2 given set €yp%.

O
Ax,

i X2) a record occurrence of reécord type Y which is a member -

.\ type of 'a number of set types, can be a member

i

‘ . . I .
occurrence in different set occurrerices within these set

types; we allow the record occurrence to be a member of

f *
ny

only one 5et»otcurrence of' a2 given set type.

? 3

(3) a2 set occurrence’ can have zero or ‘more member.

3

occurrences. o C e

s

[

(4). the ability‘to answer the question: 'find all'members of R




v .

v AT Sty e o e e [

| SOV

.168

some owner in a2 given set occurrence'.
(5) the ability to answer the question: 'find the owner of

some member in a given set occurrence'. ) "

< ’ /

(6) the need to have the record type file ifiplemented

]

separately from the get type ‘implementation’ at the

occurrence level and to implement the associations
. {

N L s :
. between record -occurrences by using existing stored.

océurne:ces and not introducing anyldata redundancy.

4

The ENDBMS implements~the set type association at the record

occurrence level by means of three lists: the Record Type

N

Occurrence Set ,Ownership Rist (RTO—é.O.L.), the Record Type
Occurrence Set Membership List (RTO-S.M.L.), and the Set

Occurrence Membership List (SOM-list). Two system filés are
l L4

used to store these lists; system file three (SF3) for the

first two lists and system file fouh (SF4) for the third
4‘«’3 - i

‘one., . ‘

4.9.2,1 RTO-S.0.L.

4

This is stored as a singly linked list with a2 null

head entry pointed to by a reserved field of the record
- )

occurrence entry. The head entry is created when the record

occurrence is created. Each main entry corresponds to a set

.type where the type of the current record occurrence .is

owner and one field of this entry points to the head entfy

of the ceqrésponaingASOM-list as it:ls shown in“Fiéuée a9,

A  main entry of the RT0-S.0.L. - albrg with the head entry

. . . .
3 N = 4

<

o

et cot Tohanaime n




types where the X is owner,

169 (;
RT0~S.0.L header '

- G D G e e s - = — =
1

' J
1 L
4 K . ," RTO—SQOQL entry

Lo -———=—  ptr to
I | o | 'l 1. RTO-SOM
e ———————————— header
]
M 2
______ P, LY
I I 0 | b . ,
o ' ——— o o o s o S = e > v = —— ‘ i
? . EY ( . ' - -

. Figure 4.9 Representation of RTO-S5.0.L

of its corréspond%nq SOM-list - 1is generated when the

'owner' record ‘occpréence is created (in this case its
record type is declared'as owner. of some set types jin; the
schema) , or during the definitipn of a new set type in the
schema which includes the record gype of the cuégedt fecord,
occrrence, as . owner. ‘The RTO-S5.0.L. of any record
occurrence of type @ must indicate at any time all the set

DATA' STRULTURES FOR RTO-S.0.L. " .

Head entry:

field description: -

1 : key fleld. S E
2 : link field; if-it is not zé}o, it poinﬁs to the firsp

*

set ogwnership node of the RT0O-S.0.L.
A .

¢

| : ;




170

Main entry:

o m—— e e et Fom———— +
| KEY | LINK | s-name | SOMH |
fmm——— Fomm e T +
.1, 2 3 4 ,
field description: : W%w. .
1 : key field. ' A

2 : link field; if it is not zero, it points to the next
entry of the RTO-6.0.L. o

3 : name of the set type.

4 : pointer to the head' entry of the corresponding
SoM~1list. ) ,

4.9.,72.2 RTO-S.M.L.

2

This list is stored as a singly linked list as shown

inVFigure 4,10,

RTO~S.,M.L header

o T T B S S e e S D s A S S S P G ) S b )

Y |1

Figure 4.10< Representation of RTO-S.M.L

-

with a null head entiy pointed to Sy a reserved field of they

4

corresponding record occurrence. The head entry is created

when " the ord occﬁ%;eﬁce is Ereated. Each main entry

cgrre§ponds to a set type where the record type of the

current recprd occurrence is member type. A main entry is’
ar \ I s -

1
’ - ,, L , - . —




171
generated either when the record occurrence is stgped or
‘\uhén a new set type definition is deéclared in the schema and
the record ty?e of thé current record éccurrenée happens Ato
bg its member type. At all times the RTO-S.M.L.‘of a record
oc%grrence of » record type X must indfcate- allh the set
typew where the X is their member type. ‘

. w

DATA STRUCTURES FOR RTO-S.M.L.

» b
- < . »
.
A
.
'

-

Head entry:

o = T +
.1 KEY }" LINK |
tomm— et ————— +
1 2 :

field descriptioa:

1 key field.

2

link field;if it is not zero it points to the first
set membership node of the RTO-S.M.L. :

_ Main eg}try: B ;j

o R p—— o — A —— +
| KEY | LINK | s~name | MIND |

fo—— o Fmm—————— om———— + , ] %
1 2, 3 4 ) . , Jff
, )

fielé,deféripsgfn:\ : : s
. g )
- 4
1 : key f}eld. . s

2 .k link field; ifkit is qgﬁ zero, it points to the next
set membership node of the RTO-S.M.L.
&4 ¥

set tyRe name, &

“se

c : 1
N .

4 : if Y the record occurrence - where .* the

z

t



172 ”

RTO-S.M.L. belongs to - is a member occurrence of a

set occurrence, of the set type indicated by tﬁe

its owner record occurrence within the owner record .

type file, otherwise is set to zero, i.e., the
current record occurrence it is not a member of any
set occurrence within the set type indicated by the

third £ield.

v

This 1list is stored as a doubly linked list, as is

shown in Fiqure 4.11.

SOM header ' \
l I
N Y
i .
' . :
, SOM entry JURIE <
" - -+ ptr to
! l o 101”4 | actual .
- S m-occurrence
v .
. f g -
- - + _—T-- ‘Y e
‘ Il 1o lsl ]

figure 4.11 Representatioﬁ of SOM-list

It has two types of entries: the head entry and the main-
; .
. entry. Let us call: (l) S the set type indicated in the

main entry of the RT0-S.0.L. from where the head entry of’

this SOM-list is pointed to, (2) X the corresponding record
occurrence and Rl its record type, and (3) R2 the member

record type of S. A main entry of the SOM-list is created

¢

”

>

- N —

third field, then the value of this fielé points to




4 173

\
t

when an R2 occurrence becomes a member of the set occurrence’

whose owner s X; the same main entry is deleted érom this
SOM-1ist when the R2:occurtéqce \is removed fromi the set
occurrence - in S - with X as the.owner occurrence. By
creating and destroying SOM main ghtries without touching
the 1involved owner and member occurrences; Qé implement the’
idependeﬁce of'the set occurrence association at the .record

occurrence level.

DATA STRUCTURES FOR SOM-LIST “ -
Head entry: »
fommme bt
| KEY | HEAD | .
PRI fom———— +

1 2

field descriptioﬁ:

1 : key field. ’ £

P

2 : link field; 1if it is not zero it points to the top
main entry of the SOM-list. : '

Main entry:

pmmm e m Fmmmae et
| KEY | FLP | BLP | APTR |

field description:

1 : key field.

2 1 -forward link field; zero for last main entry. .

3 : Dbackward link fileld; zero for top main entry.

<

4 : pointer to actual member occurrence.




¥

3 AR DI R RN s, S 73 1

v

R

-

b 3

*j 174

- ‘
4.9.3 RECORD AND SET TYPE LOCAL TABLES
Every ENDBMS user hai/(tG/A;pecify the logicg} unit

(record type file) of the data base that he wants to access;

v

furthermore before the access attempt is made - the logical -

unit mgst be opened appropriately (i.e., either with R-mode
or D-mqée). After completion of the access, the user has to
expliéitly close. the cofrespénding ﬁnit - see the RELEASE
DML command: in section 4.9.4. ' In Chapter 2 we talked about
the' 'cdrrencg indicators' and we indicated that there are
three such indicators in EﬁDBMS: (1) CI: the current ¥f a
record type (current of 'bése' record type, for a subschema

record type), (2) OCI: curreﬁt.owner of a2 set type .(current
)

of the owner type of the 'base' set type, for a subschema ,

set type)7 and (3) MCI: the current membér of a set type
(current member refers to , member- type of the 'base' set
type, in the case of alsub;chema set tyﬁé). The €£first two
are pointeré to actual record occqrrenées, while' the third

is a pointer to a main entry of the SOM-list, which

_corresponds to the current set occurrence; .This SOM main

entry holds the pointer to the actual member occurrence.

r

. 1)
The ENDBMS keeps track of the logical units and

"

currency 'iﬁdicators via two local tables; these tables are

R g .
set up for every user during the execution of the ‘USER'

N ~

command . The first table 1is the record preltablé{ each

entry correspond to a record type- definition (schema or

-

' '




(A Y R | o T MR T [T

.
s i v e N T

subsche‘ma) and it ‘has the following structure:

tm——————— + Bt i et Tt et +

|rec-name| CI | PM | PTR | ss=-RPTR |

Fmmm o e e ot e -+

1, 2 3 4 5 - o~
field description: .
1 record type name (schema o’subschema).
" v

2 : currency indicator for the record type file
corresponding to schema record type file or to the
'base’ record type file of a subschema record type
file. By default the system makes ‘current' the
first occurrence of the associated logical unit; this
can be changed explicitly by either the GET or SET
DML commands. B

3 : processing mode; 1 for Read, -l for Delete and 0
otherwise.

4 :" points to corresponding entry of the schema or
subschema record type list.

5 : it 1is wused only-in the case of a subschéma RT name

" 175

and it points to its schema :'base' entry, in the
schema RT-1list.

H

.

The second 'table is the set type (schema or subschema)

table; each entry of this table corresponds ‘to a schema or

N * ’
, subschema set type definition, and it has the following

1

structure:

PO S N — b e PUS—
|set=name! 0CI | MCI | ORTI | MRTI | PTR | . O

e e - '-"'-+"‘-‘-+-‘---'.’-b_-f-"'_.---—".*"---""'-+ . o

2 3 4 5 6

field description:

1
2

name of the schema/subschema set: type.

Ownership Currency Indicator for the set type
indicated in field 1; it is set explicitly by DML
commands and every time a current owner is s§elected
(i.e., a set occurrence) the MCI field is set to the
first main entry of the corresponding SOM-list of the

Es
¥




HaR gy ps s men =

PR

4 e en

R
[N

176

~
e

current set occurrence (i.e., implicitly to first
member occurrence). ‘

3, : Membership Currendy Indicator; it is set by default
© (see description of field 2) and explicitly by DML
commands. :

4 : points to an entry of the record type table, which
corresponds to the owner type.

5 : points to an entry of the record type table, which
corresponds to the member type.

6 : points to the corresponding set type entry of the
schema or subschema 'ST-list. .

4,9.4 DML COMMAND GROUP L

-

In this section we describe, in detail, each of the -

@

DML commands and we give the format and execution
requirements for each of them, ?he given BNF fiormat does
not specify the optional 'label', which can be put at the
bgbining of any DML command. A label is a positive integer
numbér and must be unique within an input session. The
label used in an IF or GOTé command must refer to a forward
or backward label, but within the same input session as the

IF or GPTO,command.

GET - A . A .

In order to retrieve a record occurrence from the data
base, it has to be located first within its logical unit and
one of thHe three currency indicators has to he set to point
to it. This operation is called GET. ~We do not enforce

data dependent security for any GET format without the

WHERE-clause sfhce no actual data is made availééle(,to the

—




ra ot - ——— TS S YA

177 o

user by the GET commé}xd. All GET formats set the currency
indicators (except the GET-NEXT-WHERE w‘hich some times does
not, see below) ‘unless there are no occurrences at all, or
there is no next occubrence within &;.he selected 'path', ‘in
which case the currency indicstors do not change. The
GET-NEXT-WHERE  format searches to find the next AVAILABLE
‘ocurrence which satisfies the WHERE-clause and then sets the
correspondir}q currency indicator. If no such occurrence is
found the corresponding currency indicator does not chqnge.
Use:-by any installed user.

Requirements:

1. user or DBA identifica.tion.\

2, for record type formats, the specified record

type file must be opened, at least with
R—mode for processing.

-

3. for the set type formats, both the owner and
member record type files must be opened with
at least R-mode for processing.

a8

-~

4. each specified regord or set type name must
match one of the naMes stored in the  user's
local record or set type tables respectively.

Syntax:

RECORD TYPE FORMATS

1. GET FIRST OF <rec-name> ; \
2. GET NEXT QF <rec~name> ; - :

3. .GET NEXT OF <rec-name> ,
" _WHERE <field-name> <rel-op> "value" ; ¢

the <rel-op> can be one of: =, > , <, <> only.

-




Cem

v T . ™ D e e

e e e et K ity R

178

SET TYPE FORMATS

1. GET FIRST OWNER IN <set—name>

2. GET FIRST MEMBER IN <set-name>

t

.3, GET NEXT OWNER IN <set—name> ;

-

'. 4, GET NEXT MEMBER IN <set—name>
S. GET OWNER OF CURRENT OF <rec-name>
IN <set-—namg> ;

The name which follows the reserved word OF, is the name of

o

the referenced schema or subschema record type, and the name

which follows the reserved word IN, is.the referenced schema

© or subschema set t?pe. Al1l GET-MEMBER Formats refer to

currently selected set occurrence, within the specified set

[

type..
LIST -

THe LIST command is used to retrieve (if it is
available, i.e., no ROR restrictions) the current occurrence
of a record type file, or to gét a list bf all retrievable
occurrences - with optional WHERE and/or SORT cl’aus.e - §f a
record type file or the SOM-1iSt of Zh‘e current set

occurrence. The'listing,' within the indicated record or set

type path, starts from the occurrence which is pointed to by‘
L4 * .

either the CI or MCI indicators. -We did not implement the

LIST CURRENT OWNER and LIST CU,RRENT\ MEMBER commands, but

';:hey can be easily implementéd by adding- two more production

rules in the DML LL(l) grammar and modifying asppropriately

L e
o




>

179 )
the LIST command handler.- “However it 1is possible to

retrieve the currént owner or curreht member Qyi making it

the? use the LIST current format for this record type. The

first two LIST formats are record tﬁbe,commands‘and the

a

third one is a set type command.
Use: by DBA and any installed user.
Requirements: !

1. wuser or DBA identification.

2, the user must have a defined subschema, v

3. the LIST CURRENT OF and LIST ALL OF format
require
opened "properly.

4, the LIST ALL MEMBERS format requires. owner
. : and member record type files of the specified
set type, to be opened properly (at:  least

with R"mOde) . L

‘S, the field name specified in the WHERE and/or
SORT clause must be a REAL one if it belongs
to a subschema record type.

o
4

' ‘ N . |

Q . .
.current -of 1its record type usiﬁ§ the SET DML command, and

the specified record type-file to be:

|

l. LIST CURRENT OF <rec-name> ; \ ' f

= : o

2. LIST ALL OF <rec-name>
o : l(where-clause)l - T X
'|<sotﬁ-c1ausé> ' I
;. '

3. ;IST ALL MEMBERS IN <set~-name>

w

-

- [<where—clayse# - )

I<§ort-glause>l ' ) \

Covan




G £ I - B v e 4

7 S

A-,“‘

4

\ ‘V*fi\‘bﬁ}%ﬁmreﬂjL\e>- WHEREEéfield-name> <re1-©p> 'vazue

- e g
N . — N % N
M 180 D N, Tt
4 - [} ! \:\ £ N
N ¢ B, - - S
+ .

/

<sbrn~¢1ause,>;_sqam\:u ASCENDING | usING' <s-frname>. /

DESCENDING

-
'~

’<ré1-op>:= = or < or > r

- N ! N
»\ - - B T B o -
o ' , - - . ;
f
1F é\ \ -/' . . .

The IF DML command'is'avaflaple in threé fefﬁats which .

‘allow condltional jumps' fhree‘ sgﬁcific con@itiops arg§

tested: (a) 1if the current of a record type. File 1% last;

file hés a
‘ "

\field value whlch satisfies a rela ionspip with a supplied

test value and (¢)- 1 the current member within a\\seg

D +

occurrence 1is last. i{.theetested condition is true then
) indicated

speqified 1abe1, otherwise the command folloWlng Ebe

(b) if the current of a record type Specified

the command that will be executed next is ﬁhe one

by the/

IF cemmand will be executed.

The second type of IF may be
// :

used to construct a complex 'search' criteriog. The first
two types are record type commands and- the third type is f
- - . - , B -
'set gype command . {\ ‘B

N |

Use. by DBA and any installed %ser. .
Requirements P 0

1 4
user or DBA idéné?fication.'

v 1.
‘ 2. a user must héxe a defined subschema.
\\\\§<- validity of all\specified name:r
R 4. all involved record type files must be opened
. v ' properly (at least with R-mode) . .
~ el 5. the label must an integer defined in the same
“ Qinput<§ession, either forward or backward.
‘ D .

S
v

»




W

[UR———

.
S
e T e Sy et e 7y

AN . ey R =
. , 181 . . S ;-
P . \, ! )
” » l\,‘ o . s
* o L r % T2 ~
. \ i e L ~_ N
Syntax:, + ' . T
S 1. IF CYRRENT OF Krec-nsme> LAST oo .o
i - GOTQ <label> . ; - ) . ' \‘
x Nees ~ .o p
»2. " IP CURRENT OF <rec-name> KT S ,
X HAS <field-name> <relﬁop> value" v
GOTO <label> ; (‘ . .
3. IF CURRENT MEMBER IN <sethamé> LAST
- - GOTO <label> ; P
~ : S
. - s . v , '
'GOTO ‘ \\ - # a v

A8

This cémmaﬁz is used to change the sequence of command

execution unconditdonally. : .

Use: ‘by DBA_and any installed user. -

Requirements:x
1.
: 2‘I L d

Syntax:

v

SET

user or DBA idquificatiogi ¢ _ .

N

' 2

valid label.

GOTO <label>

~

.,
!

“

v . %

The SET DML is available in four formats. Let us

assume a set

type

7

¢ .
5 Witg\ owner type O and member M to

explafn.thc 'currency’ SET formats. These can be used to

set - the CI of O to OCI of S, the GI of M to MCI of § or to

' set the OCI of S to .CI of O.

~

"Independent settings of the cI

\of.o or M do not agfect the OCI or MCI 6E(S. The fourth SET

; ¢ ’ : ,
format is used to define the length of the

which‘ by default ' is

'output ‘line'

equal to B0, A user or the DBA con

- change this deféhlt length in the case where d schema or

subschema record occurrence is bigger tﬁan 80 chaéacters.

-

]

P




‘RerireRents: \7

\\\\7\?\\\ . 1, wuser or DBA identification. >> oW

The maximum output .length- is 13f. THe same- command can e -
v v . -~

.- useéd many times in one or more ingut sessions. ‘ .

3

Use: by DBA and any,installed'uéer. .

\ ¢
2. valid and consistent recotd and

[ 3. all involved recgrd type files, must be opened
before, with at least R-mod
4. wvalid length for 'output line'.
N .
Syntax:
1. SET CI OF <rec-fiame>
TO OCI IN <set-name> ;
-

’

: 2. SET (I OF <rec-name>
‘ TO MCI IN <set-named> ;
' 3.\ SET/SEi IN <set-name> J
Y TO CI OF <rec~name> ;
. \ o

4. SET LINELIMIT TO <integer> ;

LOCK  and RELEASE

These two DML commands are deéignoﬂ to prepare a
reécord type file for processing and Eerminate.the processing
4 T
by expgicit user or DBA control. 'If the user 1is the DQA,

one data base logical unit,; for every schema record type, is

opened or released‘ w1th other user things are different.

In order to open one subschema record type file, it might be

required to open more than one data base 1logical units,

because in the case where the. subschema record type is

«

defined over more than one sohgpa record types,, all

a

. . ._ \ B

;N
A

or set namese)




- .z S W 3 - — - -

. Tegr ' - a
: ] . \ , I . @ . o,
o e : ‘ ‘ T 183 . : *
4 N » T q

- - Lt . -

T : corresponding data, base logical units' must. be opene
- N ‘“ ppened with Drmode.). As/we explain in logical céncurrency
T later iqﬁ section 4.%1.2,“ opening a loqical unit, means

creation of- a . 'user stamp' in the data base logiéél unit

> .
R A

monitor file (SF8), and termination of Iogical unit's
.- -y ‘
. - processing means deletién of this user stamp. In both LOCK
and RELEASE commands at least one‘schema or subschema record

§type ﬁame must ‘be ‘supplied. - ) .

Lo - .—;.-M«"w':‘j'w"“ ;...,\. S e

Uses by DBA and any other instéHed user.
’ Requiremengs: A . . R

L oa N - N

A 1. yser identification.

v

N ' 2. a2 non-DBA’ user mqst,ﬁave a defined subschena.

1

, . TR 3. val@dityucf sapplied reéord type names., .

4, ‘the specified, fecord type files must be
closed for %the LOCK, and_ opened for - the

. RELEASE. .
i a : P N . .
' ~ syntax: . ’
{ - ' - .
{ ' y .
i READ .,
%‘ ;. LOCK FOR DELETE {ret-name) . {(rec-nam‘e) :

A - o \
- " RELEASE <re$—name>{<rec-hame>}: ! \‘

o » -,

T

S rah et s
-

INSEKT
4

The INSERT DML command is a record type command and is
. : : A .
used to store new occurrences  in a specified data base

.

/%K‘logical unit. (Note: a non-DBA.user can insert only in a

-

REAL subschema. record type and with appropriate record type

-

//' g (Note' a VIRTUAL subchema record type file will never be

MW




AT S i Kt ware

et s oy

S g

-

A T oty A o T e o

e et i o B A i AT A ™ D

o ame e e tOHE

I PRI O B, ot it b

¥

M e e s

1 - e e ——— & -

184
v . ‘ o ) f

access. code.) ' A new occurrence must be  quoted and all its

fields (as many declared in the gcheméi must be separated-

. with '/'. . The supplied field values must match their

-

déclgred4type, and their length Qust be equal or " less than
their decléred ones., '

Use: by DBA and any non;DBA:instal}ed user.

Requirements: o

1. DBA or non-DBA user identification. '

« 2. the specified record type file must be opened
with at least R-mode.

Syntax:

INSERT IN <rec-dame>

"record~-occurrence"

} »
{"record*occurrence"} ; .

DELETE

-
- N

. The DELETE DML command is a record type command and is
C . )

+

used to delete the 'current' of some logical unit, which

~

D-mode forbids  even reading from this logical unit, it

" should be released as soon,

record occurrence causes automatic remdval from all set

&

occurrences that it belongs to and :dest;uction of both
' - e

as possible. Deletion.cf a

RTO-§.0.L. and RTO-S.M.L.
dse:‘§y DBA and any non-DBA installed user.
Requireménts: ’

l. wuser identification.

l
»
N ; —
’
M .

i must be lockéd(\i.e., opened, with D-mode. Hecause the

i ‘ -

®

t

—




“,

H
£
)
x
H
4

o

R v s e m e e 1o
it & W
5

) . - 285 ' . L

L3 , ‘ -~ ) L -
- ) “
X . 2. "validity of the supplfed name. !
- ' 3. the specified record type file must be opéL
( ‘ with D-mode, ~
o P, .
Syﬁtax: ’ !

+ .DELETE CURRENT OF <rec—~name> -
REPLACE

§§he REPLACE DML command is a record type command and

T

is used to change, i.exfé;zﬁiice, a field vaiue (one‘at a
time) of the rcv'.lrrent' oécurrence of a logical unit. The
type %f the new.field value ﬁuséimatch its declateé type,
‘and its length must not exceed its declared léngth. The
logical wunit must béuopéned.with at least R-mode - it does

ot have to be with D-mode.

Use: by DBA and ahy non~DBA installed user.

""Requirements:

¢

1. - user identification.
2. - validity of supplied f1e1d and record names.

3. consistent new field valde in guotes, -

o A. the specified logical unit must be opened :

<

Syntai: -

REPLACE <field-name> IN CURRENTaOF {rec—name>
WITH "value" ; L ‘

a

INCLUDE ( and - REMOVE

- '

These two DML commands are set type.commnds and are

v

used to perfofm the set type uédate;opetations include and

o

with at least R~-mode. R




v e R —————

<

remove. EaCh.of them. reverses -the othér. The INCLUDE

includes the ‘'cuyrrent' occurrence of some record type B,

which is a member type in some set type X, into the

. 'current' set occurrence of X-and at the same  time becomes ‘

‘s

the ‘'current' member within X.

1

The REMOVE command, removes

.

.the ‘current’ ‘member of the current set occurrgpce of some

M

eet type. ,Both of them update the corresp@nding SOM-list of

.occurrence and RTO-S.M.L. of the member

-,

the | owner
occur/{'ence.' These two operations require the member type of

the specified set ~type, to be opened with D-mode.
. Use: by DBA and any non-DBA installed user_\ | ‘ =
Requirements: ' S |

' 1. user identificat-ion.-]

“ 2., wvalidity of supplied name§ | e.g., the
specified record type name must be the member
type name of the specified set type.

3. member must be opened with D-mode.

4. owner must be opened with at 1east,R7mode. .

Syntax: ) ‘ (

PYTSRI .

] S e S

. INCLUDE CURRENT OF <rec-name>
' IN <set~name> -; ' ’

REMOVE CURRENT MEMBER FROM <set-name> ;
4.9.5 LIMITATIONS OF ENDBMS DML

. In this secfion we will attempt to expore the capacity-'
of the ENDEMS DML ‘sublanguage.- For this we consider two

[ : R \

loqicel associations of the ‘real v'votld; one l:M_and one M:M,

The 1:M association being the association of departments and

)

. N ;
b frﬁ‘ » . ’ \




.
n o e SRR TN anl e

. ,
g )Q\s LRV 1 ST e ) AT 8 R T I

.

-

187

employees of an enterprise and the M:M being the associatfion.

-

" between parts and suppliers of the same enterprise. The

. . ) . oo
creation of-a data base in which we will store information-
about those entities and the associations between them, will

require a schema definition witﬁ ﬁive record types: DEPT, '

EE;L, PARTS, SUPPLIERS and ., PRIQUA, as well as three set

types: DEP-EMP waner DEPT iﬂw' member EMPh), 'PART-PRLQUA )

(owner PARTS and member PRIQUA) and SUP-bR;QUA {owner

- SUPPLIERS and member PRI-QUA) . The record type PRIQUA .1is

used to implement the M:M parts supplie;s assoc{gtion, and
it would ha§e two fields PRICEWandeUAnélTY, to iﬁdicate the
priée and jquantity of a' part suPblied by a:parbicular
supplier.. fhe:DML sublanguage is capablé of aﬁsweriﬁg a;y‘
question as fat the departmeht employees association is

concerned but this is not the case for the parts suppliers

association; In fact quéstions which will require UNION.or

P

INTERSECTION of the 'information set®' cannot _be answered.
. , \Q . * -
We define the notion of 'information set' as follows: it is

ay;izgaf occurrences Qbf'tﬁe same. type) which |is geneiated

b cessiﬁg a single set -occurrence and probably visftzng

‘ wptheﬁ single set occurrences within other set typées. To

make afl ;hid cljgr let @s:consider Figure 4,14 which shoﬁs
2 data base instance of the SUPPLIERS - PARTS. association.
éiquré 4f13 indicates shat: ,
- supplier S1 supplies parté Pl , P§
. supplier S2 supplies parts Pl , P§

. supplier Sq\suppiies parts -P2

P

S

i




B T

Sren

4 ‘ 3 s - - e
| ( ‘. S {
| .188 '
3 f
\‘ - .
! : [N A —— P - - .
| | s1 1 1s2- 1 183 , !
; Ty i i s e e o s - R - d—\-m———- .
| , :
p ” \ A” \\ ‘ N
! P \ - ) l N o \
¢ L4 ~ . N .
* W \ : r - C N
’/ \\ l’ ' l\ ~ h .
. o . . \ .
1:--:-—.3 / ----- '—::\-1.‘-.-"-‘ —d--t-——-- ———l --4 n —:
| cl I 1-c2 I 13 . | | c4 1T 1 ¢ |
s <tee gy - - — -y o -—— v - g v W b e W - v v gl v - 2 - - SR W > o
; )y\ TV /i . TR //»’
. ~ - - %
. C W \)‘/ \ - ’\—,f/
TN Pt P
A PR S Ple - \
¢ __\_ e ——N \_L —— - ‘
’ | pi " 1 P2 . O l j

Figure 4,12 An "instance of suppliers-—parts association.
” lo

!

QUESTION l: requi res UNION

C

Gist all the parts supplied hy suppliers 51 and S3". This 3

ery cannot be’ answered at ence, because |t requites the ) !
’foilowing: find alr{ the parts supplied by supplier S1 and
save them 1nternally {in a .local file A), then £ind all the ¥
parts supplied by supplier 53 and save them in a local file
B. , The answer to above query can be found by performing a
UNION opegation on files A“and B; the answer can be stored

on a separate file.C, or on one of A or B,

QUESTION 2: requires m'rnss:c'rrou
*list all common parts supplied by Sl and 82" (or another
| sexi;e t:ype ‘question could be- *list all suppliers who supply

parts Pl and P3). This query will require the generation of

,l,:he, information get A and B separately;'information set A yf
; |

’/beiing the parts s’gplied by. 81, and information set B being

1 s h ‘ S .'

{

I

| - o
| .

|

!

|




e g
B
(V=) u
=
e
»
.
-

1 . , N ! , ,
the parts supplied by S2. An INTERSECTION operation an
,’; N ' ‘ .
2 and which can be stored in a local file. PAqain question
; . types as question 1 and 2 cannot be answeted by the ENDBMS

" DML sublang&age ‘as implemented currently. Of cqurse a UNION

informatidn sets, Howeve'r it i-s possible. to expand the

current DML by introducing: (1) two more local files in the

e R P T Sy e

user's work space, (2) a SAVE command which wi'11' create the
LS

X .
information sets, (3) two operators UNION and INTRSECT which
-~ .

wil always operate on two information sets A and B and

e

. leawing the result, let us say, always to A; moreover the

set A can be operated with a new information set kept

' ' again in B, and so on.

o 4.10 THE LOG=IN and LOG-OFF COMMANDS

\\ ) N “ ’}\‘kn \(
‘ ‘ - A uger can log-in and log-off using the USER and OUT

commands respeotively. These two commands do not belong te

any subsysterh. and therefore are implemented as \ separate

ENDBMS command handlers.

o . USER J .
This command implements the security at the Identif"ication
and Authe tication Level;  the supplied user  number

identifies the user as .either DBA or any non-DBA

T

Lo valid/installed user, and the supplied . user \-p‘aeswdrd.l

authenticates the user, the specified prhcessing mode tells

L

) s
« . !
» '

]

° these two information 'sets, will give the answer to question .

or INTERSECTION type question may include more than two




gt .

o S e o Mk o b gt § e st W s 4 oW b m

kgl

-

- 190 b
R .

4 . ! [y

- the system in which Ht is gbing to be accessedd \Both

user number and password| must - start with a le!fter which can

Tbe followed by a maximum of 9 I\etters or qigits, including

the character '-', They should match either the DBA's user ‘

-

number and password, or the ones of + some other installed

usSe

r.

Proper log=in prepares the ENDBMS for further

+ &authorized i‘ccess. Duri’nq the execution of the. USER command

the ENDBMS performs the following actions:

for DBA

1.

. 2.

for non-DBA u'ser"

o~

§

v
4

checks the actlvity field in his'security entry 1:‘1

the USER LIST; if it set to 1 then DBA recovery is \

called, see section 4.12.6, ——

sets up the RECORD and SET TYPE LOCAL TABLES as they
were descrcgbed in section 4 9.3.

4

-

&

checks the system re'cove‘rf field (section 4.12.5).

checks if “the ENDBMS is 1ocked. .
. ®

checks 1£ the user is suspended.

checks the user's activity field; if it is set to 1
the user is logged-off immediately, otherwise the
system sets up his RECORD and SET TYPE LOCAL TABLES

and’ the ENDBMS becomes available for "authorized

access,

g

Succeséful execut jon of the USER'command causes sétting of a

global

flag which is checked as a requirement for any other

ENDBMS "‘command except the OUT. A successful " execution is

indicated by displaying the message READY,

Use: by any user who whishes to use the ENDBMS.

Req_uiremehts:

O




e £ e i e

4 oo L e T
L . . - - < > o . ’
. s Il ol . N .
- . #
- /o 191 ] L
’ ) //‘ ) . ‘
N .

1. the user must have NOS permissions for all NoOS 4‘

files used by ENDBMS. -

modec " /

Syntax: - o o

USER <user-number> <user-password> <proc-mode> ;
/% - ‘ . L

{proc—mode>: B or I
— ] ' L]
ouT '

S

This * command causes the -norn\_al - termination of the

'system's interface. Its execution consists of-the followinq

operations: (1) the ENDBMS checks the two tecdrd and set
type local tables to find out if any record type fille has
been left inadvertéd,ly unlocked and- releases it, (2) sets to

zero the activity field for the user logging-off .and (3)

displays the log-aff time. W ]
Syntax: s . 5
our or ours - - \ Y
t - .

4.11 CONCURRENCY , .

This section deals with the implementation of the

concurrency mechanism, which lis supported by ‘i:he ENDBMS,

The mechanism is implemented as two concurrency levels, with

—~

one — the logical level - build up on top of the other - the

T .
physical level.? .The logical concurrency level handles the

accessability of the data base logical units, which requires

accessability of the corresponding data base physical unit.
o Y

This is handled by the physical concurrency - level. (Note: |

-

2.valid user number, passwé,rd'énd proqessin}k



. | | o
<. 192 - R : -
o v L SR
ot )Y - < - - o
. S R N . Py R -
1currency level also  handles. the
the system phyeical units.)
L 4 ) :‘)- ~, / ‘ i . i
PHYSICAL CONCURRENCY . .
. . . ) , . 7—/ e . g :
The attachment of any of ‘the 19 NOS files used by the <
ENDBMS, in RM-mode does’ not cause any sharing problem. .
HoweVer there are some ENDBMS‘bbmmands (see section 4, 12 2), °
which will requite ore than one of these ENDBMS physical , %

units attached in M—mode.' As mentioned in section 3. 6., the
-attachment—ef—eystem files 2 to 6 is controiied*by“thE”NUij“”
'Operating System.“ To favoid 'deadlock'“ situations we
imtroduce a 'dispatcher' file: the system file nine (SF9),
whlch w111 be used by the ENDBMS to monitor. the ‘'activity'
of am.L system files from 1 to 6;' This file consists of a
?ingle entry with 7 fields; the first 6 .for the system
. physical units 1 to 6 and the ?he last for the entru's ke?.
If the-execution phase of a commahd requires some physic;l -
units, the dispatcher file must be attached with M-mode and
then the activity.status of all required units must be
inspected If a11 of them' are .free, i.e., Vtheir
) corresprnding fie}d vartes are zero, then they are reserved
for the command - -whidh needs them - by markinq them as
busy, i,e., their corresponding field values are set to
usex's |- who 'is ‘executing the command - user number and’
,finally the dispatcher file is reieased.: The < reserved
system physical units, are closed, released and then attached

with M=mode. The ENDBMS uses;similarly the,dispatcher file‘.

A

A




e

i

e e e S e o RO ke e gy P e

193 . ‘
' \'N‘ . ’ ~—
K to free the units after the commard- s executed. . This ‘
process. inéluées:_ reléasing of M-attached units and
' attaching them, with RM-mode, ‘then . reseting - their
- \

corresponding field values in the dispatcher file entry, and

P%inally teleasing the dispatcher file itself. This. kYDd af

simulation uses the specially designed COMPASS routines to

achieve the RM and M attachments. In.addition evefzﬂfime we

SWitch from oﬁe mode to another, the files must be closed

'f and reopened again with the, proper mode. These operations,

.impbsed by’ the host Operating, System, cigse a great {

4

v . programming overhead and 'qdé:*a considerable delay in the

system's 'response time' ., No been

cwoov N

‘é;aluate the delay time‘inyolved;

attempt has made to ~

the number of active users

- and the number of concurrent QQmmands requiring extensive

use of the files, will gffect degradation of the\responsé N , |

1

time. o

) . .- 3

4.11.2 JLOGICAL CONCURRENCY

-

The logical cqncutfency is blild on top of the ENDBMS

L] 3.

- physidal concurrency and it is controlled exclusively by the “iv

. ENDBMS; it refers to data base logical units, i.e., stored

schema record files,

type We mentioned in section 4.9.1

! that eve}y schema or subschema record type Ffile must, be
. 3 b . ! . i ,
.opened- properly in order to be processed. We have seen two

types of locks, the R and D lock, i.e., the R and D opening

e

modes, However it is possible, that aniR-léck on a subschema

record tybe fiIe,ﬂmight require R~locks on more  than one :




[

e

A

U U RISITIPRIP SUP NN
R N

data base logical units-(recall that'a D-lock on a subschema
record typé' file will always be aﬁpli'e'd to ; REAL oﬁne)i < The
rﬁn-‘f;:opy of ENDBMS,. ,f'or every '~ user, keeps track of what
schema/subschéma record .type.files ‘aré& R or D-locked by
using the RECORD TYPE LOCAL TABLE, see section 4.9.3. In

order to p‘revent .dead,lock situat‘ions jétv the data -base

A

S 1ogical' unit 1level, we employed a locking mechanism-with
. e . £ .

»

':"shated' read locks and “exclusive' delete locks; the locked
unit being a data base logical~unit itself. Suppose that a
user executes a command which has "to delete A record

occurrence from some data base logical unit, and some other
. !

\d : ' !
users are allowed to read the same unit at ?he same time; it

*

is péssible that one vommand C gets the key of the

oc®urrence R, then the user U deletes R and i;pien command €

attempts to access the occurrence R. This situation woufd

Ve . f K
cause unpredictable problems and for this reason deletion of

some record occurrence will require D~lock on its record

type file, which forbids concurrent reading from the
corrésponding logical unit. | : ' \ .
oo - P

The'" impleme'ntation of logical concurrency 'is achieved

by using the system £f1e eight, which will also be called:

x

logical -unit monitor file. This file has three types of\_

1o /
entries, the file head entry, the logical}r{it entry and the

read stamp entry. Gi{yen below is,/a des’F’fption»of the

y /\ “’

o

structure of each of them. (e

.
© ;
e

' FILE HEAD ENTRY L o ' .




N T

Y 195

. - . - ’ A \
It is generated at system installation time and it is

similar to other file head entrief;\its structure is:

W 5

to——— L ot {
| KEY | KGEN | RF | \ , .
$om——— et et + 3 .

1 2 3 C \ -

. . \ e
field description: ' |
s \ . )

1 : key field. ' oo “

2 : key generator field; it generates unique keys! for any
new entry written on SF8. ,r~\\\

3

recovery field.

“

LOGICAL UNIT ENTRY
This entry is asspciated wglﬁ a schema tecofd type and it is
generated at the timé éhe record .type definition‘iswétored.
Every schema'é%cord type has its own logical unit entgy, in
the logical' unit monitor file, uniquely identified Sy its
record type numbér. In fagt the kéy of a such: eg;ry is

calculated from the corresponding record type number as

A

fo%lows: k s . " | ff’

key = RTNUM * 10%%9 : o

theustructure of the lbéf:al unit entry. is:

fielg description:

1 :  key field. _

2 : read lock'ﬁg;f\?‘if'it is not zero it points to the .
' " top entry of thq‘r¥ad,stamp list.’ . ‘;
3 % delete 1oc¢; it can be zero.or one. =

\ .

e 1
., S ‘ :




4.
"‘\

READ STAMP ENTRY
This entry 1is used by the readAstamp list of every logical‘
. unit entry, The read stamp list is created to indicggf all
the users concurrently readlng from the corresponding
logical ﬁnit. The ENDBMS creates or deletes such an entry
when the correspon@}nq logical wunit |is iocked—Withh ér
‘réléaéed-frog a%§$-1°Ck respectively., Its structure is:

‘ §

tomm——— +- -t +
| KEY | LINK | USER# |
+

s a0 e i o e s o ot W e e s o 2 o o

1 2 3

fleld descriptlon° *’/i

]
1 : key field; its value is.generated by the KGEN xfield
of thd file's f£ile head -entry.

2 . : 1link field; if it as not zero, it p01nts to {ﬁ; next,
entry within its read stamp list. \

i : -

3 : user number field; every time a user wants to place.
\\\.“,4 an R-lock on a logical unit (and he can do so) a read
stamp~entry is created and his unique user number |is
stored on this fileld, so that the system can
determine to whom such an entry belongs. - Insertions
on the read stamp list take place at the top of thé
list.

RULE: a ;lacement of a D-lock requires both valﬁsf‘/of the
read and delete lock field of “the corresponding
ldgical unit entry; to be zero, while aaplacement of
;n;R-lock requirés the value of the delete lock field

to be zero.

‘ , ' o JE&//'
: . 196 : e

* -

T




o

"either completed or not.

e - e e e
. ﬁ 107

P |

4.12 RECOVERY | “ | - g

We have seen that every ENDBMS command requires £8r
its execution, some of qu ENDBMS physical units tqkpem

attached in either RM or M mode. The -smallest addressable

. . 8
unit of information which can be accessed at 2 time by the

CRM, from a physical unit, is a <record occurrence. 'There

are four 'kind of operations performed on ,a record

.

occurrence: the Read, Write, Replace 'and Delete
.'q

corresponding to CRM functions GET, PUT, REPLC and DLTE
reséectiv ly. e‘:I‘her:e is a small lpfpbability \ that  any ofa
these operations may be in?erruﬁted, but in this ENDBMS
Qersion we do not consider'th@s cdse and we assume all these

four CRM functions ,as ATOMIC obperations, i.e., they are

E-N

-4 N

4,12.1 RECOVERY-NEEDED ANB RECOVERY—FRE? COMMgNDSr ﬁh
v (.-
" Y
The entire ENDBMS set of commands is divided intd two

groups: the Read group and the Update group. The Read group
[ 4 s '

includes all those ‘commands whose execution requires only

the use of the GET CRM function and we call them Read Type
Pl d '

commands; the Update group includes those commandé whose

(éxecution requires, in addition to GET, the use of .the POT

and/or REPLC and/or.DLTE-CRM functions. The Update group is

fartier subdivided into: Insert Type commands using only the
- \ i . .

GET, PUT and REPLC, Replace Type commands using only the GET,

o ‘

. ’ “ . i ' .



[T

o h e w o e cmmiren v

198

A

o

" and REPLC, and the Delete Type commands using only the GET,

. L4
REPLC and DLTE CRM functions. . Now,rﬁgased upon  the four

types of commands, we divide the ENDBMS command set into two

categories: the RECOVERY—FREE and RECOVERY—NEEDED category.
€ ) ’
The tccovcry-free category ‘includes the, Read and Replace

i

Typc commands. Interruption of these commands does not
causewaqx problem as far as the consistency of the system or
data base files is concérned; they are not assigned to any
recovét? code ,and the STATUS field of the user'g’security
entty in the USER LIST is not set for this category, ano
they - can be repeated safely later. The remaining two tyggs
belong to the recovery-needed ' category. Each command of
this cafjegory has a onique rgcovery code,‘whfch iélstored in
the STATUS field of th; user's security entry,, at "the

begining of the execution phase of the corresponding

t

N

command.
4.12.2 EXECUTIO§ OF RECOVERY-NEEDED COMMANDS.

THe Pollowing steps must be performed - in the qayen
order,_ during the execution‘phase of every recovery-needed
command, and this sequence is used to retrace executio{&_of

an intrruptéd comgand.
§ ,
step 1. attach all necessary physical unigs (files) with

M-mode, uégng the dispatcher file, and mark them as
]
‘busy' by settinq their corresponding fields in the

dispatchér file entry, to wuser's/ user number.
l\ .




.

step 4.

199 '

(Note: ' not all M-attachments requiré the dispatcher
file.) . | S

J%t or find the start or root pointer(s) needed to
trgce the interrupted Lnéert‘or delete ﬁrocess o€ an
In§ert or Delete Type command.‘ JNotﬁ? fthi ro?t
pointer is broyided implicitly by the éoﬁmand 1€;e1f

and ps determined during the translation phase of

‘5;*
the gommand; for example tée name supplied~g§"6he

delete a subschena gecordy$ype command, corresponds

to an e'ntry in &he associ*ated subschema @T—list and

-t

its key is the root poinier which will be saved for

recovery.)

set the STATUS and reébvery fields RF1l and RF2 (see
¢
section 4.12.5) of the corresponding -user security

-

entry.

t

4
start and complete the Insert or Delete process of

the Insert or Delete Type command.

»

step 5.%¢ the command is a;multigtep commané, then repeat
T : 1.

A'cno,A";

: ‘ .
steps* 2, 3, 4 and 5, otherwise contipue. A

multiﬁtep c mmipd has the format: <com-key-word>, A,

where. the A's represent identical stebs

with samé¢ insert or delete process. In these cases

insertign or .deletion 1is done step by step and
recovery 1s‘applied to the~interrupted step and not

L4

to 'the ©previously completed ones. .Every step has

%




i 200

its own start pointer for recovery.

-

step 6. mark free all files used by the command, release

theg | from M-hode. pfbperly “and~reattach them with

RM-mode. . '
1\ ' /r
- \I\
step 7. Reset STATUS and recovery fields RF1l and RF2.
. . i ! \../ .
(. S ’

1t is\important to note that-all files are marked.busy

or free (st‘ps 1 and 6) by atomic operations; steps 3 and 7

a

are performed'also with . atomic operations. Qur recovery

*

scheme is cohcerned with 1nterrupt§ between any two steps

and within any step. The ENDBMS initiates"sﬁmmand recovery

action', see seeyion 4.12.6, only if the user's STATUS field’

vo®
is not zero, and ‘for that reason an interrupt upto step 3 is

handled’ witﬁout ‘calling  command recovery. Every command-
’ ’ o , : y) .
recovery routine, é%rst checks if the 1nsert/delete process

(step -Z) was startpd or not; if it did then starts an UNDO

or CONTINUE recovery process is started follow 3 by the
- '
execution of steps 6 and 7, otherwise steps 6\ and 7 are
\ \

performed. The UNDO \recovery process must rehove all

results of the partiel@y executed insert process and bring

the ENDBMS back to the \stat'us‘ which it had before the

\ . N :
interrupted command had \started. The CONTINUE recovery
\ .

process refers to anﬁﬁgterr pted delete proceds of a Delete

]

Type command, and its ' goel is(t% complete the execution
.

N

phase of the interrupted com£§nd. ;Before we deseribe the

L3

-

recovery scheme for Insert \:n& - Delete Type commands we




ey R

201 a .

explain how an entry is ‘inserted (written) or deleted

£ NDBM SR o
o/from an E s filf ///‘ | & .
‘ 4.12.3 INSERTIONS AND DELETIONS IN ENDBMS .FILES y
j c ) Everf Insert Type command crgptes (generates) an
. ¥ 'insert tree'. The insert tree can be: (1) a single enéry N

Af/ with or without'branches, (2) a singlyJBr doubly linked . list

"of single entr}es with or without branches. A branch itself

e ——— . L

can be a single entry or a linked list of'singig entries
’ Xithx°; without g?anches. If an Insert Type command {is ¢t
dinter (add)‘ a new entry in a linked 1lis L‘tk@ new entry is

" always entered at the top of the list, Thé ENDBMS uses .twd,

]
.

. &
insertion rules:

; for single list

l. get the key of the new éntry by incremeﬁting the ’

KGEN field of the head entry of the corresponding

file- = )‘ ) 1 “
. . 2. write the new entry. ‘
. ;o / { ‘
i 3. link it to its 'parent' entry. '
oL . 4, create all required btanche;L,_,
: . ¢
P | " |

‘ for double list ’ ’

1. get the key for the new entry. L

2. write the néw entry.

L7

3. update the forward pointer of the previous entry -
(update PREV), )

4, update the backward. pointer of the next entry
{update NEXT). -

5. create all required branches. ,
. \




by

S .
Dk vt e ARy o B

: 202" ' Co
) ¢ s
Every Delete Typé command helgtes a.'delé;e treé', which c;n
be: (1) 2 single entry with or without branches, (2) a
s{ngly ‘or doubly linked 1list of single entries with or
without branches. If a single entry has to be , deleted all
of its branches, if any, are deleted first and then the
enffy itself is deleted. The ENDBMS uses two rules to
delete 2 single\quiz\yith no branches: |

for single list

‘ )
N 1, save the Kkey ”;} the under deletion entry 'in the
recovery field of the concerned file's head ent(x.

2. remove the entry from its own list by updating the
previous entry.

AN

3. delete thé LFtry.

, forbdouele list
1. save the key (as before).

2. update backward pointer of next ‘entry. ,r
3. wupdate forward pointer of previous enéry.

4, delete the entry.

Extreme caseL, such as .insertion in an. empty list, or
deletion of the top or bottom entry of a 1list, are taken
into consideration, by simply not executing all the steps of

the above rules.
P LS

»

4.12.4 RECOVERY FROM INSERT/DELETE TYPE INTERRUPT .

Step 4, see section 4.12.2, of the éxecution phase of

every recovery needed command, i.e., the insert/delete
41 )
process, has a‘'logical start and end; a logical action which

%, -
\iza

S
N

.




P ACELZ IS A e,

B A I I R

cmeg g o v S i & A Sy e 1 e,

B I T I e upp— - —

203

+

pe ,
indicates _the start/end of the insert/delete process and is

.
htom

known fbr evenx Insert ‘or Delete Type cbmmand.“’ Let wus
consider, three ENDBMS commands to clarifi the logical
start/end concept. : . / o

EXAMPLE 1: consider the seéurié? command ADD-RIGHTS which

~adds a new profilé record . type defiqitﬁon in some user's.

access profile. The logical star of the insert process “of

tmis command-wou{?/be‘the writing of the profile Fecord type
entry and the logica;’end would be thﬁ linking of this entry

in its own list. o

EXAMPLE 2: consider the security command REMQVE;RIGHTS which
femoves an entry, i.e., a profile ' record type definigion,

from. some profile's rego}d type list. The logical stort of
the delete process of this/command would be the removal “of
the DOR branch entry corresponding to under remov;l Eecord
type entry, and the :logical end would be the removal of the
record type entry itself from its own list.

EXAMPLE 3: consiéer the schema command INSERT-SRT which
inserts a new record type defintion * in the” schems
definition. The logical starf of the insert process of Ehis.
command wéuid be the writing of the schema record type entry
and the logical.end would be the linkifig of this éntry into
the: schema's RT-iist (other  steps of the insert process
would be the creation of the‘gorresponding field name list
and the ;néé;ﬁion of the correspondin ‘loqical unit/éntry in_

the logical unit monitor file SFB).

»r




P SR PR

-
=

204" ,

\

d ~

.When a recovery routine. is called to recover from an

Insert or Delete Type {interrupted command , yg' know
definitely that step 7 of its execution phase was never
completédi There is a possibility to continue y&he
interrupted execution phife if the interrupt'toog Slace
after completion of the logical end'action‘ Therefore what
every recovery command handler, has tJ‘do as Qery first
thing, is to test for the légical ehd action; if it was
éerformed we complete\step 6 (if it is required) and finally
éteb 7, otherwise the ENDBMS is virtually unable Eb Locate
the exact interrupt point within the insert/delete process,

but it is an indication that all M-attached files - .for some

user Ul -'were ;éft,marked busy and they can be reattached-

h g -
with M-mode with no problem, ‘when recovery 1is called for

user Ul, Suppose anoqger“ user U2 was interrupted and he
left busy another set of files, which will be mutually
exclusive with the set of wuser Ul, If another user U3

attempts to execute a command which requires some files from

the yl“s set and some from the U2's set he will never get

those files unless the Ul and U2 are recovered. Beé%gse thg
exact interrupt pojnt, mentioned above, cannoi\ be
determined, all the recovery routines must be'able to handle
this fact;*apd act as if the interrupt happened just ;t the

begining of the insert/delete process of the corresponding

execution phase. All recovery routines employ most of the

. |
subroutines used by a normal (not recovery) ENDBMS run, in

> order to reduce the size and complexity of the recovery

"




205 © -

»

8 ]

subsystem. Each . of these subroutines perform shgcific
simple tasks =~ i,e., delete a single entry with or without
branches - and they are designed s¢ that they do not cause

b

any probfem in * the case they are called to perform their

: subtask, which has already .been performed. Imagine for

example a subroutine which deletes the RTO-S.M.L. of some
record occurrencé, after all ﬁecessary precautionsthéve bgen
tAken, and assume that the RTO-S.M.L.‘wés deleted‘dur}né the
ormal run and that a recovery réutine calls upon executién

of this subroutine. We- know that the head entry of the

RTO-S.M.L. is.pointed to from some _ reserved’ field of the

H

~corresponding record occurrence, and previous deletion of

the RTO-S.M.L. would have made that field éero, so we can
test for this zero before the‘sub;ask is started. Generally
all these delete subroutines cheék first if an entry is a

member of a list and then delete it. Both UNDO and CONTINUE

processes of every recovery needed command, make use of ,the

/
same delete subroutines.

JIf an interrupt took place during an insert process,
one of the following happened:

1. a key.for a new entry was generated,

2. the new entry was written but never linked.

3. the new entry was written but ‘never linked

' completely in the case of a double 1list (the
partial linking means that the new entry can be
found in the forward path of the double 1list).

.
4. the new entry wgsBZ:itten and properly linked.

In any case the value of th KéEN field of the physical unit

N
N
.

N\




E 206

§
A .}

, concérned stands for the entry which was written last or was

®

to be written. Some times it might be necessary to increase

the KGEN fields of 'some' files, before the insert- pkocess

AN

starts, if it is not possible to determine whether or not at
least one entry was written on an ENDBMS file (during the

- “'

insert process of some command's execution phase).

If the interrupt took place during a delete precess'

(or even during an UNQO or‘CONTINUE precess) we have to look
for the following possib@litiesw

1. the key of an\ ‘under deletion entry,.'with no
branches, was only 'saved in the RF field of the
corresponding file's" head entry.

s

2. the under defetlon entry was unlinked entirely but
never deleted. AN

from a doubly/ linked list (the partiel, unlinking
means that the /entry still ‘belongs to _the forward
path of the doubly linked list)

3. the under delejfon entry was partially unlinked

4, the entry was unlinked and déleted.

It is obvious that the problem causing cases, are the ones

-where an entry was written but never linked at a&l, ~or an,

. -

.entry was completely unlinked but never deleted. These kind

of entries do.- not belonq to any path and therefore cannot be

.

detected by the delete subroutines, but they cah be found
h

because thetr keys are saved 1n the KGEN or RF fields of the

corresponding file(s). In order to takle these two cases

the ENDBMS does thid: (1) each UNDO process saves the values

of KGEN apd RF fields of the involved  M-attached files at"

the begining, and then takes all the UNDO®actions (deleting

~




v

il
b
P

.,.
e,
ey ]

———cy Akt A W%&om-%rm* TR B Ry e e % v
R .

— ; \ The'seburity entry in the USER LIST, f

the partially generated ingert tree), (2) sach CONTINUE
pfocess saves at. the begining the values of the RF - field(s)
- ’ .

of ~the"1nvolved M-aqtached files and then takes all the

&,

CONTINUE actions to delete entirely the delete tree. At the i

end OExthe UNDO or CONTINUE process, ‘the saved keys are used
L

" to delete the corresponding entries- the DLTE " CRM function

does not cause any problem in the pase where they were never
’ . . . ..

‘written. . o N

-

4.12.5 RECOVERY FIELDS

every user,

" has four fields: ACTIVITY, STATUS, RFl/ RF2 used by the

recovery subsystem. In -addition, wp have seen ,ehothet ' /

-

N . security' field  in -the &ad entry of.sysﬁem file five, the

System Recovery Field ‘(SRF). Given below is a description
s D s 4 . ‘
of eagh recovery field. )

" ACTIVITY FIELD

<
o This field is set to 1 after a user; logs~in properly.‘ //

A proper log-off resets thid fiéld to zero. If ot ‘:log=-in
L .

time the ACTIVITY field is found to be'l, the system allows

the DBA’to procede and forbids any other user 3(see details

'in DBA and "NON-DBA tecovery in the next éections)

s

STATUS FIELD P .

b : This fiePd 'is used to ‘store the recovery code of any

recovery peeded ﬁmmmand,' see section 4.12.1. At the
begining of the execution phase of every command requiring

Y




Ay Y S

PR p—"

e P A B AVTRN R i, i NI ot AN g

e e o e e e ,,«A\ . . . S

‘208
! ' s

A
t . N
-

recovery, its recovery code is stored in the STATUS field of

the wuser's security entry, and after the execution phase is

completed the STATUS field is set to zero. In this way the

ENDBMS knows what every active user is doing or what any
interrupted user was doing when the interrupt occurfed.

RF1l and RF2.FIELDS

|-

One or both ?éjﬁhg§e~fields are set at the same time =
as the STATUS field and they determihe the logical start. for

the UNDO, and the logical end .for the CONTINUE recovery

TS .
processes of an Insert or Delete Type command respectively.

‘The command handler routines in the source code 1indicate

recovery fields. The root

which routines make u

e insert or delete tree is saved in RF1 field;
a ,

er, some times 'zan additionalrpointer is required™for

pointer of

how
- . L1 I A

recovery, and this is stored in the RF2 field (e.g., in

INCLUDE . or REMOV; DML commands both pointers of the owner
, \ )

0

and member occurrence are saved).

SRF FIELD

s % -
¥ . ' This field is not 'used by the current version of

ENDBMS, but it can he, used as follows:'in the case of a
'qrasﬁf of the host computer all active users Qi]l be
interrupted; it is bggsibl% to instruct the host 0.S to set
this‘field when the system comes back, and ‘once this is set
only“the DBA can log-in and -activate thé recovery routines
in order, tél recover all interrupted' users, Furéﬁer
modificatio:s to tﬁé. host 0.8 to allow'automatié recovery

-

v

,/// \




may also'Be introduced.

4.12.6 DBA RECOVERY u,,ﬁ//

[l

When the ENDBMS executes the USER command and it finds

4

the ACTIVITY field of the ‘DBA security entry in the USER
. kIST set to 1, then: (1) it closes all ‘the data base logical
units ‘that the DBA may have left open, in order to establish
consistency at- the logical level (see section 4.11.2), (2)
) it looks at the DBA STATUS field®and if it is not, zero then

the command recovery handler indicated by the value of the

-

STATUS field i?\ called; if it is zero the dispatcher file

. entry is checked to see if there are any files held busy and

~ N

frees them. If the DBA logs—in after a syst hardware(
lure, which left a number of users interrupt d, he q%ould

procede follows: (a) the ENDBMS must ge locked, (b) the
g

A

security command LI
\ \-\4\’ .

what users were recorded as active, (c) make sure that these

IVITY must be executed to find out

¢

users are not actually using the systenm, and_Jkd) use the

security comhand RECOVER, to recover all the interrupted
users. ’

4,12.7 USER RECOVERY —
- ,F-“_%

When a non-DBA user executes the USER command and the
ENDBMS ~ finds that the vilue of the ACTIVITY field in his
security entry is set to 1, it stops the log-in process and_f\)
sends a meesagel saying that the DBA should be’ informed so

re

< k | / ‘ /‘/




o e e

A

—

mrspt S s Vs g

rermmpecysconge don = e i R v Yo S $ NS 1Y

b210
that explicit call for recovery could take place. Thus }it

. is impossible for the same user to access the ENDBMS" from

more than one terminal  (or by‘more than one card deck) at

-

the same time. When the DBA requests recévery . for a

specific user the ENDBMS r§§fats the two steps of the DBA

. recovery, and additionally clears-off the ACTIVITY and

STATUS fields of the user concerned.
”» / N \

A3




~,

, PN "‘“‘QY“"'“”/" .m.m,ww«‘ﬁ.,..m B SRR
. ; .

’

. . CHAPTER 5 .
. SAMPLE DATA BASE APPLICATION ON ENDBMS

-

/M’ . *

‘5.1 INTRODUCTION , '

(LS4

In this Chapter we explain how a sample data'bése for
a hypothetical .cqmpany C, is implemented on ENDBMS, and’ in
Appendix D we provide actﬁal interface sessions with FNDBMS,
which show hqd‘ features of ENDBMS can.be used to define,

retrieve and update the data base of company C in a secure

. environment. First. we describe the information environment
I . ~

of comé@ny C; second we design a Network data "model yhich
reflecxs‘ phe logical' org;nization of the comapany's data
base; third we describe the specific functions 6; some of
the company;s employeeé ~as ,useﬁs 5; its data baée, and

finaly we show the 'original' data stored in the data base

" gby the DBA before they become 'accessible'.

" 5.2 DESCRIPTION OF THé HYPOTﬁETICAL COMPANY C

Our compan§ C consists of a number of departments and

“is administered by ‘a chief executive officer. Every

v

department hif a unique name, a number of egployees and its
. &~ -

own manager who is. responsible for its, operation.< An

employee: can belong to .one department only, The company

? R
keeps information about its employees but in addition s

Vs

interested in keeping _track of the medical history of its

émployees. Each department is functioning in groups and a

21~ - /

v




ey

group has a unique name, its own group leader and a number

of emplq&ees taken from the'departmigt it belongs to. An
e L

employee can be assigned to only one group of his/her

department. o '
. « :

A
B " The company négds for its operation & number of parts
which may be suppiied' by different suppliers. Since
different suppliérs may supply a part at a different prices
and lead times - a period of time a supplier needé to supply
# part after he has received an order for it - the company
wants té know who supplies what; at what-érice and at Qhat
lead time. -,If a part is required then -its available prices
and lead tfmeé ‘are considered and one or ma;y orders ;re
issued. to, its (seleqﬁed) ‘'supplier. The company musi be
always in a position to check the total quantity, which has
been ordered, for any part; namely all :the issued orders

must be available.

] \ N

Finally the parts .are used by gpe company's various
groups and it {s possible that different groups use the same
parts. The company wants to r;cord the total quantity of a
part, fece?ved by a group, at any time for inspecéion

purposes. For example if part Pl is used by groups Gl and

G3 then the total quantity of Pl received by Gl and G3 plus

'-the quantity in stock, must be equal to the total [quantity

of Pl bought by the company. , This inspectio

requires all the past orders of Pl.




R

~associations such as groups-parts i&d parts-suppliers are

D A Y R P S g R e

213

(\_ h
5.3 A NETWORK DATA MODEL FOR COMPANY C

4
\

Figuré 5.1 shows the various .record types and set
types required by the data base of the above described
compan& C. Figure 5.2 and 5.5 show not only the names of
the record and ée; types but the field names oﬁ each record
type. In order to " keep a ;evel~ of/abstraction in our
company we are going to use unique symbolic names instead of

real names for: entities such as departments, employees,

groups, parts and supplier; the symbolic names will start

with the first lYetter of the corresponding entity, following
by an integer, e.g., ES5 and 5S4 for some -employee and
supplier respectively. It can be seen that natural N:M

not shown  directly but fhey are implied by existing set

types over these record types and some carefully introduced

'connector' record types.

| Let us now make some observations about seme record

and set types shown in Figure 5.2 and Figure 5.3, First of

-all we see’ &Bme 'redundant' fields such as DNO and GNO in

EMPLOYEES record type and DNO in GROUPS; the inclusion of
these fieldé ig necessary in order to impose Read Occurrence
Restrictions ovef these recérd types for some users. We
mentioned in section 4.7;4 the use of ;impiicit' access
righté as an alternative to avoid this redundancy. However
this feature is not implemented in this ENDBMS version. The

RPARTS (received) and GPARTS (given) indicate what parts are




] * i
. 1 214 )
|
; .
{ 1
\ |
| DEPARTMENTS I
v | i
: i !
i . |
{ [ e — - and e -
) - *
{ S L S S, S
‘ ) |  GROUPS T e L Y EMPLOYEES l
H ) Y - - -t —— -
| ]
| ]
| |-
] b
i N 1!
B AT \ . S
- GRQ l |, MED-HISTORY |
- ——
A
]
|
-
I .
\ X ,oe —-—a-l----—-—-.‘ ————— -— L e e o et o ood o o o o 0 i el s ot o s -——;'
| PARTS | . | ) SUPPLIERS |
- T - —— _-—-&r—' ——————————————
1 DT
N 1 R S
P g 1 :
- i
t < : ! { {
4 ' 1 - [ { l
e ) i 1 .
a » ! e ——— ™ SUPINFO PR S
£ —————— - S S Al S e S > - o ,]
(. ‘1 1,
. | I
s i | L
; {
: | —_—— | {
. | L___-__ }
! == ORDERS -~
3 { ¢ ————
f
¥
{ . : ) \ ‘
§ Figure 5.1 A Network model for company C. !
X " - : N .
s .
4 l:\ ' - )
, -




o o St v oty v G

- -k P £ PSRBT G PR AR S et ettt + v s

215
|
DEPARTMENTS
P ¥ DNO | MANAGER |-SALARY | BUDGET | PERFO |
J R
t : | ;
| A ‘
i~ DEP-EMP

l("\oap—caoup | ~
~.

{
|
|
l
i EMPLOYEES

|
{
|
: o b —_— _— e — —
' ; | ENO.| TEL | CITY | SALARY | DNO | GNO | HRS | PEFO |
T S mmem——— = meemseseseee———
n |
I } r‘EMH . . N
o i
| l l
|1 | —mmm e - —————
] =-=—~==---% ENO | DNO | DIAGNOSIS.| DATE |
Py l l --------------------------------
: :“P GROUP—EMP \
5 | : ,
' i ) ol
‘ I ' GROUPS i
| codesem -
‘ - Ly GNO | DNO | LEADER | BUDGET | “
, Figure 5.2 Detailed representation of Figure 5.1
|
\ ‘ .




P T 2 D

R e e, -

anpad e

EWRN Bl A S o S,

MNP

i o . 216

GROUPS

- o e

lr -
| RPARTS
! : .
|
' !  GRQ
o ~=~=-M GNO | PNO | QUANT |
-y ETmTmTmEmEmTTo T T
. I‘{ N
1* _  GPARTS
!
i
: ,
‘| PARTS i L et SUPPLIERS
| PNO | OOLOUR | 'WEIGHT - | | sNO | CITY |
1 - 1 -= -r- =T
¥, | . ‘ ] 1
I | PSINFO SPINFO  \\! !
I H I !
! ! : o
P | SUPINFO !
| e e e e o e o e e i o o e 2 e e e o 1‘-_.. lh
\ ! | PNO | SNO | PRICE | LEAD-TIME | : SORDER
‘ ! ————— - ————— ,
~ |
[ PORDER . |
S i P :
I
' ORDERE _ o ]
| -

=====~ PNO | PRICE |'QUANT | DEL=TIME | SNO |

L 3

o 3

[

4

Figure 5.3 Detailed’ representation of Figure 5.1.

L]
-

or




NS

B e e mge o,

R o,y . s

e A s vy -

o o s~ a g e e

217
used by eac\h group and what groups ,recei;re a particular
part. The recend\\\type GRQ is the connector type required
for the set type representation of thev groups—-parts
associatbicn. ~ The fact that part P3 is Used by group G2 is
'stored’ by. creating a GRQ occurrence which will be 2 member
of G2 within RPARTS and member of P3 within GPARTS. This
‘membershfp' can be 'removed' wheni the group G2 _no longer
needs the part'pP3,’ bqt no user can delete GRQ occurrences.
The GNO and PNO .fiélds i)elp‘ to ‘'identify' the stored
quantity the case a part 1Is not -used oany m'ore by a
particuiar group, ‘Tl';e record \type SUPTIINI;:“O and set types
PSINFO gnd SPINFO a;t'e intended to-be used for answering
question§ relat{ed to "supplies® and "supplied—by"
associations between parts ‘and suppliers. Similarly the
record type ORDERé and the set types PORDER anci SORDER will
be used for answering queries such as what and how many

orders -have been issued for a particular part or what orders

have been issued to é particular supplier. thorized users

will create ORDERS occurrences and include )(femove) them in
(from) set occurt\ences of PORDER or SORDHERget typés, but
. of > N -
they will be deleted by the DBA only, for ‘inspection'
reasons we mentioned before. Finally the H set type will
employee. The ENO’ field of the MED-HISTORY record type is

used to enforce ocuurrence restrictions.

‘P'&

-

"be used to £ind the ‘'medical history recsrds' of some,




R Tk T

AN o g

5.4 TYPES OF USERS WITHIN COMPANY C /
i \

In this section” we describe the rold and
N~

responsibilitﬂies of some of the chpany's employees as far
its\data base is'concerned. The DBA will assign a unique
user-number and user password to each of these'employees,
and based | upon the descrption of the role of each
prbspective user he will assigﬁ an access profile to each of
them. The definition of the access profile will prowvide the
ENDBMS the ability to determine if its users access the data

4

base in the'way they are supposed to.

"'n
c Ty

A. DBA

K3

. According to the description of ENDBMS the DBA has
no restrictions at all, as ’faz" as the system or
data baée access is comferned'. ‘He 1is responsible
‘for the overall admirﬁstration of the dompany"s

data base.
B. C(HIEF_EXECUTIVE OFFICER

The company's administrator will' have any access
rights, with no restrictions, to all department
information, i.e., read, insert, replace ahd delete
wi;h no field restrictions (FR) - or oc‘cur.rence
restriét;ion,s {OR}, over the DEPARTMENT record type.

In addition he cyccess in read only mode (with




e e

ettt B s e et ey e gt bt 184

e C e hd A Samaps b 1 b

219
< - - ‘ - ‘ A . -~

no FR or OR) the rest of the company's data base,.

/ C. DEPARTMENT MANAGER

A manager of a department will have the right ¢t
access his department e.n‘try in the DEARTMENT record
type file in read only mode except its PERFO field;

the value of this field is a code used by the chief '

officer to classify the perfomance of all
e " department managers.’ He can insert new EMPLOYEE
e occurrences ir? the data (base {e.q., hiring new )
employees in his departx;wnt) but he can read,"
modify or delete EMMPLOYEE -occurrences
‘corresponding to his department, with no FR or OR
S ‘restrictions. A manager can read only all of }?115

employees medical informetion and he -can read,
moé’ify or delete ‘the GROUPS occurrence'; belong ing
to  his departn;entr‘ and-i’xe can insert a new GROUPS
occurrence when he \forms' a new group in |his
department. Finally a manager will have read,

include and remove access rights over the set types ’ ‘J

' DEP~EMP, DEP-~GROUP anlil GROUP—EMP,: namely he will be
responsible for  hiring (firilng) employees  for
(from) . hi§ department, for the group org‘.’anizationi
of his department and for the- assignment of bis

employees into his departmentgroups, P
) > b f

S « R ]
‘

e sy




N

D.

E.

GROUP LEADER

v
!
H
P

” 220 bl

DEPARTMENT SECRETARY

The secretary of a deﬁartment yill have access to
all EMPLOYEES occurrences, cotrespon@ing :éo her
department, but she 'wen't be able to see their
salary and performance fields or change their ENO,

DNQ, GNO and HRS fields. She can 2lso read ohly

13

her DEPARTMENT occurrence except the manager's

salary and performance, and she will have read only
access over the set type DEP-EMP, . s

<

|

The leader of a 'group will have read access with no

FR ‘over his GROUPS,occurrenée and he will be able-
< L

. ~
to see all the EMPLOYEES occurrences corresponding

to the empioyees of his group exéept theié SALARY

and PERFO fields; the group leader will have the
right to modify the HRS field of his employees, the
right to read only with no FR or OR, the PARTS
occu;rences,'and read with ne FR or OR, and insert
GRQ occurre;ces. Finally a leader of a group will
have read, include and remove access riqh£s¢ovef

the set typee;RPARTéland GPARTS, and read only over

the set type dROUP«E\P. He will be responsible -for:

keeping up to date the association between his

group and the parts it uses.

“ Lo -

.- nr et

f 2




[}

F., PURCHASING DIRECTOR
A ] ’

G. MEDICKL PERSONNEL DIRECTOR

= ‘ , ' ’/ {
‘He will have the following access rights: (1) read

with no FR or OR and insert over the PARTS record

type, (2) read, insert and modify with MFR=SNO

(i.e., the supplier number cannot be changed) over

the SUPPthRS record type (3) no restrictions at

" all err the SUPINFO record type (4) read with no

¢

_FR or OR and ’insert over ORDERS record i&pe; he

cannot modify or delete an ORDERS occurrence (5)
read Qi;h no Fg or OR, insert and modify with
MFR-(G&O, PNO) over the'GﬁQ record type - (6) .reaﬁ
only  with RFR=BUDGET over GROUPS record type ' (7)

Vi )

read, ifAclude and remdve over the set types PORDER,

PSINFO, SPINFO and SORDER (8) read only over the

i

A
set types RPARTS and GPARTS. l

Fey
’

-~

He will be responsible for storing Qf the data base
\,

aAy new medical infotmation about apy employee but

after that, he will not be able to change ot delete
stored information. This’ wiil require access to
isiqpﬂngirsﬂss and ﬁnneaxsrogy L‘r'ecgrd type and EMH set
type, which Qill be: réadronly with RFR=(SALARY,
DNd;‘GNO,‘BR;, PERFO) over EMPLOYEES, read with no

FR .or OR and insert over MED-HISTORY and read and
, T

\
i

. - D

°




O M s

PN e
LY

A e o

~ L e .
- 222
include over the EMH. e
5.5 SAMPLE DATA BASE -
° n,

In this section we use six tables top show the éample -

data stored in the company's data base by the DBA at its
*creation time'; the tables do not show ali- the fields of
the corresponding record occurrences but they indicat—e their
logicayl associations, Table 5.1 shows the grouplng' .0f the
company's employees in its three depértments. A name with
two stars indicate the manager of  the corresponding.
department .and a name with one star indicates the secretary
of the department. Table 5.2 shows the group organization

of two departments and the emlployees assigned to each of
f LY X rd

X*

-them. A name with a star indicates the group leader of the

corresponding group. Ta\:le 5.3 shows the company's
N . .

suppliers and the parts supplied each of them (price‘ and
lead time not shown). Table 5.4 shows some orders issued to
some suppliers. Table 5.5 shows the kind of parts tequired

\ . )
by every group an Table 5.6 shows the medical history of

some empl oyeeg\'\ g . v\":\

|

* These tablles will help -to understand and compare ‘the
answers gix}en by the ENDBMS to some user-queries, as it is

Ay oot
sho\g in the ‘Appendix D.

o o~ <tk el it e

Tl B it S oA . o By Sl




’

wagpn gy n -

Y o et

' D101

El
E2
E3

. ‘E8
E15
E21

e

E22 .

‘ESO

T ERTYL G e e A e o oty

Stz grmcimpns

[
223 ,
¢ I
-
D100 _ D102
o 1
- o
i -
\| ll
! g
| i
L2 2 ES ** EQ *%
* _ E10 * Ell *
E20 El4
E25° E17
E35 E23
£36 . * £26
E40 . E29

‘ E32

Table S.1 Sample of department-employees association.

Table

)

LT~
. < ! o~
G2l G2 G22
! | |
} 1 |
E21 * X El4 *.
E22 E32
ESO
//ﬂ 4

5.2 Sample of deparunent-groups and
group—employees agssociations.




g e gt s iy g s A o Rk B

224 ’
\ 1
‘ X
'
sl ( 52 s3 s4 s5
| \ ) i i 1 -
[ 1 t l )
HEY I | y ‘
! | 1 l !
{ : | ] 1
{ ' ] = '\ l
P1 . . Pl P2 P3 . P4
P5 P6 P10 P7 ‘ P8
P4 P9 P9 P2
v 310‘

\

Table 5.3 Sample of supplier-parts association.

)
’

part supplier , g
‘ Pl from 52 ‘
P2 Yo s3 - Co ,
P2 B S5 '
P7 > sS4
P9 > s2
Pg > : S4 . * o
) P10 >> s3 ,
P10 >y . 52 . . '
| ' { )
Table 5.4, Sample of currently issued orders. .
. I , '
‘ \
L 3
o . : . ' +
he ¥
B4 R R




i
< e o o e e Tov e . oot e oo ool
N , . !’
225 \ i
- ’ |
|
!
- vl
' i
!
3 . " ;
! & ’
‘ /
G11 G21 622 - G'32 DT
o i ] 1 . Jd K ‘
i‘ Y | I | |
; | | l (I
: | - | i
: | l K| {
. { ! i
Pl Pl P4 - P7
- P3 P2 P5 P8
PS5 - P10 P6 P9
: P10 . P8 P10 .
\ , P9 :
P10
1 _ / Table 5.5 Sample of group-parts association.
: ‘ ' \
ﬁ ¢ ’
: ]
] o
E5 - EL10 E1l5 . E20
SRRSO A B
, &~ | | | ‘ |
: . ! | I I ‘
’ broken leg cold eye operation heart attack
i ' alergy cold
; | . P
P . Table' 5.6 Sample of employee~med-history association.
i il ’ ) g .
{
Ly ﬁ
’ 2y
- : (W N
i
3
: g

o A i e A e 7




ok . 4 O

CHAPTER 6
CONCLUSION

The goal of the current.research was to design and

implement an experimental data base management system, The

Network approach - one of the three wideiy known approaches ’

to DBMS - was chosen for the design of tbe ENDBMS, which is

w
e 4

an acronym for Experimental Network Data Base Management
System. The ENDBMS suﬁporte most ?f the suggested que{n
features oF a DBMS and everything described at the deeign
ievel has been implemented.  The facility supported by
SCHEMA is designed so .that it can be ueed only by a
‘declared' DBA to define the logicai organization of the
data base, using the Record and Set Type Ne twork concepts.
P I

The ENDBMS also supports SUBSCHEMA§ or user—v1ews of the

data base, providing a disciplined model for subschema

'construction and clearly determines the REAL(and VIRTUAL

subschema elements.' The 'virtual' field-generation employes

only four procedure types, but the subschema languﬁqe can be '

changed to include more. Every user of ENDBMS must have his
own subschema and his..own access profile. In a real

!
environment, even in our’ hypothetical company C, many users

will require the sade access profile. It is therefore

efficient to have a co%mon access, profile ' for some users

' which. may have different subschemas (derived from the common

access profile). Another modification to ENDBMS subschema//

/
design wouﬂé be the 'sharlng of a subschema by d{/ﬁetent
/

"
P

.’\

\ ‘ | 226




\
227 : ) /////

1nstallg§ users with the same authorization. ENDBMS can
operate in a_ 'read' and/or 'update' concurrent, multiuser

environmez}, byfusimywé\ two level concurrency mechanism.

_The lower - physical - level simulates the 'évailabili&xl of °

the used NOS files based on the fact that every file can Ee '

read by many users at the same time but can be updated by

1

oBly one user; moreover updatingqof a NOS“ile requires that
the file is attached to a NOS user job with a NOS exclusive
'writé, interlock'. The concurrency mechanism at the
physical 1evel provides all é%e required NOS files with the
apprbpriate attach modes and at the same time avoids

deadlock situations. The upper ~ logical - level determines

. which parts.of the data base can be .shared by some -DML

appropriate access mode. The EN

‘commands and which can be accessed only in a 'one at a time!

{
basis. It- employés shared 1locks for read, 1insert and -
replace DML type dommandé and exclusive locks for delete
type DML commands. The data base 'lock-unit'’ is a stored
schema record type file,whiéh must be 'opened' and 'closed’
with explié}t DML commands. A schéma record type
be accessed only after it has' be opened with an

S supports a five 1level

|
security system which rantees that only authorized users
a~

can use the ENDBMS and furthermore access only the

authorized vportion of the data base. The most important

aspects of the security enforcement are the subschema and

he USER ACCESS PROFILE. An. authorized user is given an

access profile which defines the schema elements (record and '

I \ 1




228

set types) which can be accessed and determines . the
permitted operations on them; the access profile specifies
restrictions on itypg' and 'occurrence' 1evél. .The read and
modify‘field restrictions can- be multiple (i.e., specify
more than one field name), but- fhe record occurrence
~restrictions must be'siﬁgle. In other words occurrences of
a record type can be restricted from acceésing, uéing only
on; figld/n;me to ’specify the restriction criterion. A
future version of ENDBMS can expand this feature by allowing
a combination of such single restriction criteria by using
AND and/or OR operators. We already discussed the possible

s

addition of the IMPLICIT access rights to an access profi}e,

in (or not) association to all provided restrictions
clauses. This would allow occurrences of a record type to
be accessed only éhrough their 'owner' within a specified ™

set type. A subschema can be defined  after. the
‘ ‘ ined

corresponding user access profile has’been'defined; it must

be consistent at aﬁy time with respect to . schema and.
assoclated profile definition. The subschema and the uset
access profile are used to enforce data independent security
o at the translation phase of any EﬁDBMS DML command; while

the user profile is further used to. enforce data dependent

A%
security » at the execution phase. For the execution of any

s

‘other ENDBM§ command, the 'system checks their specific

a s execution requirements to ensure consistency at all times.
— . 1

~,";%e‘cornerstone of the supported RECOVERY &echanifm is the

fact that the host 0.S. does not allow more than one NOS

. P .
( % ' I
- .




s s

) [ - uams \rxrvt"m 4y e Sy s, IR R OS  ZUE Reag  P N  RERDTID ME R % S e et e S e wmas .

229

‘
&

&
user to 'write' on a file at the§ same time., The ENDBMS

}

assigns a wunique ‘'recovery code' to those of its commands
which require recovery in the case of an ‘interrupt. This

code 1is stored ' in thg user's SECURITY ENTRY - in the

/

system's USER LIST - when the command starts executinqq/ and
. N r 1

is used after an interrupt to .identlfy the interrupted
command and call the appropriate recovery routine to

'recover' the corresponding user.

The DML command set suppotted by ENDBMS is divided
1nto‘t§o types of coﬁmands: the rﬁfgrd type énd the set tybe,
commands. The former uses the pa;ﬁ implemented for a 'schema
record type file and its record type currency indicator to

retrieve information based on the stored occurrences of a

Particular record type. The later type uses the path

"§1e@ggggd for the schema set 9ccurrence and the two set
type cdtrency indicators to retrievg information based on
occurrences of the owner and member record type files as
well as on their 'stored' logical association. ’Botﬁkwlypes
include -update c¢ommands to update a record type file or a)
set dccurrence of some set type. Finally the ENDPMS
provides an EDITbR facility to Iinteractively cérrect
lexical, syntactic or semantic errors in a  user submitted

command, by replacing only the .line which contains the

error.

H

" The overall design of the ENDBMS was not. affected by

- any pariicﬁlar'application and thus any applicdation that can
] L .

=




230 ! -~

¥

be described with the system's network data modgl, can be

hand}ed. It is evident from the schema definition'that

there is no 'primary' key specificéiion in any record type' '

definition. \As a consequence there is no need of

'searching' techniques and no overhead of keeping indexes
and inverted file lists and as.w? indicated the 'seérching'
for the ;GET_ NEXT WHERE" is[ done sequentially. It is
obvious that such  a' search mechanism to locate a record
occurrence,:Sased.on some search criterion, in a medium or
}arge data Base is neither the best nor Ehe suggested one.
However Eﬁe design of the ENDBMS:schema was not éccidental;
the dewnign startéd with the -assumption that a Content
Y~

Addressable Memory (CAM) will be used for the data base

storage at some future time. In such a memory a record

[l

occurrence, of some record type, can be. retrieved by"

specifying only a field _vafué, It i{s also believed that

when such memory becomes cheap, the design of a DBMS will be

oriented to this directjon and a great deal of addressing
and searching programming as well as processing overhead
, ¢

will be e;iminated.

qpe present implementation of the ENDBMS cannot be

considered as host computer system independent or

-

'portable’., It relies upon the Cyber Record Manager (CRM);

a component of the host’ NOS operating system. The FORTRAN 4
1mpl§mentation of ENDBMS uses some (RMfunctions to: (1)

define the file organization of the ENDBMS system and data

[}

s St e e 4




o —

-~ \
\

’

B R S rEn Y JE P

231 .

base ' files (2) preﬁare a file for processing and (3) read

s + and update a file. If these CRM ' functioen 'calls' can be

excluded and instead FORTRAN 4 code be used, to perform the

saqe'actions the ENDBMS can be implemented in any computer

sYstem which supports a FORTRAN 4 compiler. It is also

possible that these 'CRM functiGES’/E;;—'SE~‘Ehanged by

equivalent ones in another computer system in order to make

, -
possible the ENDBMS implementation on this system. In the

current version the CRM is used to carry out all the I/&;
operations; howeverlthe (RM functions could be assigned io a
number of microprocessors. ~.0ne of them could serve as aV
supervi§or and ;eceive any I/0 transfer~request from the
ENDBMS. Each of the other microprocessors could be assignéd?
to the dis? unit to add intelligence to the secondary
storage. When the supefvisor reégives a request to retrieve
6£ st&ré a.record ochrrence,.it looks at its 'data base’
key', - derives  the 'logical' and ‘physical' unit number and
then assigné) the necessary operation to the disk
microprocessor of the known 'physical' unit. Another future
modificapion would/Be the expan;ion of the DML, We have
explainéd the libitations of the current DML design and we

suggested that inclusion of three more operators ‘such as:

« UNION, INTRESECT and SAVE would provide the ability to

answer 'unioﬁ-type' and(’in;ersect-type' queries related to

7 ¥

a many to many logicél.association between two record types.

Queries whose answer is a group of occurrences which is

logically a wunion or intersection ,of some groups of

!




W RSN T R e g g 4T

- -t iy atn e sa—

2327 )

/
’

occurrences generatéd by 'visiking different 'set

«

' -6ccurrences'’ within the same set type, can not be answered.

An example for this would be: "find the parts used by the

assemblies 'Al, A3 and A5" related to ASSEMBLY-PARTS m:m
W o .

association where a part may be used by different

éssemblies. It seems that the answer group, is the union of

the answer groups of the simple ‘queries - which can be

answered, by the current DML - "find all parts used by Ai',

“find all parts used by A3" and “find all parts used by AS5".

L]




oo

R

’

{APL]

{AHO-ULL}

[$£31-671
/

s

Cop .

[ CHAM-76 )
[ CODD-.7’0 ]

(CODD-71]}
!

[ CONW-T72]
(DATE~-77]
(DBTG-69]
(DBTG-71]

;

{DMS]

P e L R T o [

REFERENCES

el S

IBM Corporation. APL Data nguage / Program
Description/Operations Ma ual? ‘ Pofm No.

Aho A.V., Ullman J.D. "Principles of Compiler
Design®, Addison-Wesley Publishing| Company, 1977.

Bleier R.E.
structures in the SDC TimerShared -Data Management
System (TDMS) ™, Proceedings of' ACM National
conference 1967, ACM, New York 1967, pp 41-49.

Systems"™, Computing Surveys,| Vol. 8, No. 1,

March 197§. ..

Chamberlin D.D. “Relatioﬂal Dita—aase Managément'

-~ 124

Codd—E F.* "A Rel&tioﬁgl model\gf data for’ large‘

shared data banks‘, Communicatipns ACM, June 1970,
pp 377~397. |

\
Codd E.F. “Further normalization of the data-base
relational model®, ' Courant \Computer Science
Symbosia 6, "data bade .systems™, New York, May
1971, Prentice-Hall, pp 33-64. \ ~ ~

B i :
Conway R.W., et /al. "0on the Implementation of
Security Measur@g,in Information\ Systems", CAMM
15-4, April 1972, pp 211-220. \
Date C.J. ™*An Introduction to Database Systems",
Second Edition, Addison-Wesley Publishing Cbmpany,
Inc. 1977.

Data Base Task Group 'of CODASYL Programming

Language Committe Report, October 1969. Available
frqm AMM, BCS, IAG.

Data Base’ Task Group of CODASYL Programming
®Kanquage mmittee Report, April 1971. Available
from AQM, BCS, IAG.

Sperry-Univac. Univac, 1100 Series Data Management
System (DMS-1100): 1. Schema Definition. Order

-+ 233

'Tfeating hierarchical data .




N

[DOUQUE]
[EVER-74]

[FRY-76]

[HOF-69]

{IDS]

e e L € T A TR SRR WA Vo S1ep s B ke "‘WMI""‘M’(.»M e i i e s

234

»

No.  UP-7907, 2. sData Manipulation Language
Programmer Rgf?rence Manual. Order No. UP-7908.

Douque B.C.M. ’"PHOLAS: A modular implementation
of the DBTG proposals®, Infotech, State of the art
report on Database Systems, Infotech Int. Ltd.,
Maidenhead, Uk, 1975, pp 331-348. y

Everest G.C. "The Objectives of Data 'Base

Management®, Information Systems COINS IV (Tou),
Plenum Press, New York, 1974, pp, 1-35, also

MISRC-WP-71-04.

Pry C.J., Sibley E.H. "Bvolution of Data Base
Management Systems”, Computing Surveys, v.8 No.l,.
March 1976, .

Hoffman L.J. "Computers and Privacy: A .Survey",
Computing Surveys, Vol.l, No.2, June 1969,

Honeywell Information Systems. ~Series 600/6000
Integrated Data Store Reference Manual. Order No.

*CPB~1565.

[INGRES-76] Stonebraker M., thg E., Kreps P. *The Design

\ [KIM-79]

[MAGNUM]

" [MARS-VI]

[MAR-NOR]
(MART-77]

" [MARTIN]

[MICH-76]

and Implementation of INGRES", ACM Transactions ¢n
Database Systems, Vol. 1, No. 3, September 1976,
pp 189-222. - .

Kim Won. "Relational Database Systems", Computing
Surveys, Vol.ll, No.3, September 1979,

Tymshare Inc. MAGNUM Reference Manual, Nov, 1975.

Control Data Oorporation, "MARS VI multi-access
retrieval system reference manual®, 44625500,1970.

t

Martin J., Norman A.R.D. "The computerized

Society”, Englewood Cliffs,’ N.J, Prentice-Hall ~

(1970) . L
Martin J. 'coé;uter Data-Base Organfzaéion',
Second Edition; Prentice-Hall, . Inc., Englewood
aiffs'/NOJ' 19770 ' h !

‘Martin J, "Security, Accuracy and Privacy in

computer systems", Pfentice—ﬁg}l Inc., Englewood
Cliffs, N.J. \ '

Michaels A.S,, Mittman B., Carlson '¢.R. "A
Compdrison of the Relational and  CODASYL
Approaches to Data Base Managemerit®, Computing
Surveys, Vol.8, No.l, March 1976. .

]




+ [por-nasl

.. . " .~ ‘ \
[SYST-R]

s
[T5LO-76]

v AY
[ N -

(TSLO=77]

N e g Lo 8 e w4 e e -

(TAY~FRA]
o ’

o ¥

1

[ULLM-80]

~
)

[VASS-80]
- )

[VERH-78 }

BN & FIOC SRS o g o e o
-
>
~—

/-

. [NOS-V1]
T
- [NOS-V2]

FCRMfAAMl

i I [c;m‘-r—c]
. J

- R Ce
- .[!ORT—4]

'No;zg June 1978.. .,

. o : 235 . (

)

Potier D., Leblanc " P. 'Analysis of Locking
Policies in Database Systems' Communications . of
AQM, Ogtober 1980, Vol.23, Wo.l0. ]

Astrahan M.M.,, et al, "System R: A re;ptional
approach to data base management”, AOM
Transactions on Database Systens, No.6, June 1976.°

)
Tsichritzis +D.C., Lochovsky F.H. "Hierarchical
‘Data Base Mapagement: A  Survey", Computing .
Surveys, Vol.8, No.l, March 1976. )

Tsicgﬁ}xzis D.C., Lochovsky F.H. “Data Base
Mana ent Systems”, Accademic Press, New. York,

‘N.Y, 1977.

« . -

Taylor R.W., F}ank R.L. " CODASYL Data-Base
Management Systems”, Computing ,Surveys, Vol.8,
No.1l, March 1976. : /

Ullman J.D. "principles of Database Systems®,
Cbmputer Science Press, Inc., 1980. '

LA L)

Vassiliou Y. \\.'Functional dependencies and
incomplete inforggtion , Proceedings on VLDB, 6th
International Conference on “Very Large Data Bases,
Montreal, October 1980, .

Verhofstad ~J.S.M. "Recovery Techniques For
Database Systems®, Computing Surveys, Vol.l0,

\

oc. REFERENCE uANUALS L o } /

Control Data Cbrporation. NOS VERSION 1 REFBRENCE

Control Data Corporation. NOS VERSION 1. nsrsﬁzucs {
MANUAL. Volume 2 8f 2, Revision J. . .

Control Data . Corporation. CYBER RECORD MANAGER
ADVANCED ACCESS METHODS VERSION 2 REPERENCE
MANUAL, Revision A, A . .

Control Data ' Corporation. CYBER RECORD MANAGER |
VERSION 1 GUIDE FOR USERS OF FORTRAN EXTENDED’
VERSION 4, "Revision B.

Cbntrol Data Cbrporation. FORTRAN EXTENDED
YFRSION 4‘REPERENCE _MANUAL,/ Revision D.

=

“

b

——



e N ST S i S v KT

-

,
ARG T T A S i 4 o

aep e,

" AT

e

, .
‘ e et wore e *

\ -
. APPENDIX A

\
\

\ Asl INSTALLATION PROCEDURE

/get,install *
/begin,gen,install
REVERT. NQ ERROR{S) OCCURED
-/get,wmfile
/attach,dbalib
/$library,aamlib,dbalib
SLIBRARY,AAMLIB,DBALIB,
/ftn, iawmfile,1=0
.054 CP SECONDS COMPILATION TIME

/lgo,mfile ' >

.544 CP SECONDS EXECUTION TIME.

p A.2. DBA ACCESS PROCEDURE

~

. /attach,dbalib .
./attach,endbms - “,
/$library,aamlib,dbalib g

SLIBRARY,AAMLIB, DBALIB.
/endbms . -
£ ’ E %

kj?B ,USER ACCESE PRQCEDURE

/ /attach,userlib/un=kegfe62
/attach,endbms/un=kegfe62
/$library,aamlib,userlib
SLIBRARY AAMLIB,USERLIB,
/endbms '

A.4 ENDBMS DELETION PROCEDURE

- /get /delfile . "
/begin,delproc,delfile

el

236




K ' APPENDIX B

-/

LIST OF THE.SCHEMA-SECURITY-SUBSCHEMA-DML LL (1) GRAMMARS

NOTE

R ' . the integer in front of an'y roduction is. the production

/ number which " uniquely entifies

o / production within each.grammar.

L]

N . ABREVIATIONS ,
i’«‘ schema record
s-£f schema field
. S-S schema set
o ss-r: subschema record-
\ , ss-f: susbchema field
ss—-s: subschema set

s-r'

! N »

237

ti'xe correspondg ng

1




—

oo\la\m.a.)uw

10
11

12
13
14
15
16
17
18
19
20

21

¢

LL(1) SCHEMA GRAMMAR
<command>:= DEFINE-SCHEMA <schema-definition> ;
:= INSERT-SRT  s-r-definition> ;
:= INSERT-SST <s-s-definition> ;
:= DELETE-SRT <s-r-name> ;
1= DELETE-SéT <§;s-name> ;
:='LIST-SCHEMA ;
<scbema-definition>:=‘<s-r-list> (s~-s=-list>’
{s~-r-list> : := <s-r-definition>,<s-;wtail>
<s-r-1list> t= <s-r-definition> <s~r-tail>
’ := <{empty>
Xs-r-definition>:= RECORD <s-r-name>
| <s-foNst> \ .
<s-fjlis;> \ 1= ds-f-defipition> <s-f-tail> )
<s-£-tail> t= <s-f-definlyion> <s-f-tall> .
= {embpty> \ ' ‘
<s-f—deEﬁnition>:; FIELD .{s~f~name> OF <type>
<typed 1= NUMERIC, ( <integer> )
- | := CHAR ( §1nteger> ) .
{g=-s-list> . 1= <empty> |
~ 1= <§-s-definiéion> <S—s—1is£> B

. v ,
<s-s-definition>:a SET <s-s-name>
<set-part>
END

{set-part> oLt OWNER <s-r-name>




10

11
12
13
14
15
16
17
18
19
20
21
22

B i R L Py SR —‘ WA B o g e Ay oo

é b ' 239
. ' #

MEMBER <s~-r-name>

LL(1) SECURITY GRAMMAR

<command>:= INSTALL-USERS <user-list>, ;
:= REMOVE-USERS <user-number-1ist> ;
1= LIST-USERS ;
= DEFINE-PROFILES <profile-1ist> ;

:= REMOVE-PROFILES <user-number-list>

..

:= LIST~PROFILES <user~-number-list>

-

: . ¢= ADD-RIGHTS <add-spec> ;

:= REMOVE-RIGHTS <remove-spec> ;

s

:= SUSPEND~ACCESS <user~number-list>

:= RESTORE-ACCESS <user-number-list>

‘~e

:= LWIST-ACTIVITY ;
t= LOCK-SYSTEM. ;
:3 UNLOCK-SYSTEM ; ,

3= RECOVER <user-number-list> 3

:= PASSWORD <old-pasw>w€nQW-passw>~ H \

. R N . ) .
<uger-list)> := ( <user#> <iser-passw> ) <user-taild

<user-~tail> := ( <user#> <user-passw> » <user-tail>

Al

) 1= <empty> .

4 '

<#éef-numbe;-list>:- <userd> <user-nqmber-tail> .

'<user—numger~tail>:- <user#> <user-number-tail>
:= <emfty>, ‘ \

<profile-list> := <profiled <prof113-ta11>

A}

. 1
. -
. \ .

—t




R ey

e
b

+

s R LRG|

AR PENTIAL]

S 2 1N

R R T

T T R TR e N ER R SR e PSR S SATEE

23
24

.25

.26
27

28

30

i1

32
33
34
35
36
37
38
39
40
41

42
43

<profile-tail>

<profile>

N

240

t= <profile> <profile-tail> . }
1= <empty> N ‘ /
1= USER <user#> <rec-rights-list> §

| <set-rights-list> /4
, | - /

<rec¥rights-l@st> := {rec-rights> <rec-rights-tail>

<rec-rights-tail> := <rec-rights> <rec-rights-tail>

<rec~-rights>

<restrictions>
<tail-1>

<tail-2> o

<op£ion-l>

{

<option-2>-

{rel-op>

:= DROR <option-2>

1= <emptyd

s= {empty>
1= Rgco D <s~r-name>, 3 :
CODE  <rt-access-code>
<néstr;ctiqns> |
¢= RFR <option-1>
MFR <option~l> <tail-1>
:= RROR <option-2>

14

:= MROR <option—2> <tail¢ﬂi o

:= NIL \
:= (g~f-name> <{s-f-name-tail>
:= NIL ! -

:= <s=f-name> <srel-op> <quoted-value>

= =

1w < , .

s= 0> ‘ =
1= <O

<s-f-name-tail>:1/<s-f-npme> <g-f-name~-taild

4

<set-rights-1list>:= <empty>




't

s o2 Sg MW SN Wby M Eert aatn e 90 S s ore:

44
45

46
47
48
49
50
51

-3 w N -

S - T

10

11

12
13

Kss<rec~<list>

T VU

241

|

1= <set-rightsd <set-rights-list}

¢

<set-rights> := SET <{s~-s-name>

. » CODE <st-access-¢ode>o"
<addZspec> := USER <user#> <add-tail>
{add-tail> := {record~rights> )

1= <sét-rights> N

<removq;spec> := USER <cuser#> <remove-taild

|

(remove-tail> = RECORD <S—-r-name>

:= SET <{s~s-named>

e

LL(1) SUBSCHEMA GRAMMAR
¢commandd>:= DEFINE-SUBSCHEMA <subsch-definitiond ;
:= DELETE-SUBSCHEMA ; .

:= LIST-SUBSCHEMA ;.

-

:= INSERT-SSRT <ss~ rT‘-defin ition>

:= INSERT-SSST <ss-s+de£inition>

LYY

|
:= DELETE-SSRT <ss—rf-name> ;
.= DELETE-SSST <SS-S=~named> - ;

¢subsch-definition>:= <ss-rec-list> <ss-seét-list>
!

§

{ss~rec-tail 4 s = <és~r-—Jefin1tion> {sg~rec~taild>

x='<empty}\ o /

:= RECORD <ss-r-named> <r~option>

<s{rec—def>

<r-option> := REAL <WITH-BASE <(s-r-named>
‘Fileld-1ist~-1>
END . i

| .
12 (ss~-r-definitiond <ss-rec-tail> .

o i ATN

«9




242

14 S 1= YéRTUAL WITH-BASE <s-r-rame>
<field-list-9>

END

15 <field-1list-1> := <ss-f-def-1> <field-tail-1>

16 <fie\ld-tail-]}f’:/= <ss-f-def-1> <field—~tail-1>

17

- R
18 <field-1list-2> := <ss-f-def-2> <field-tail-2>

<empty>

19  <field-tail-2> := <ss~f-def-2> <field-tail-2>

20 ' := {emptyd>

3y

21 <ss=-f-def-l) :=) FIELD <ss-f-name>
. i d '
22 <ss-f-def-2> := FIELD '<ss-f—name> <f-option>

23 <f-option> := REAL FROM <s—r-name> .<{s-f-name>

24 := WIRTUAL <pfocedure-—type>

[y E

' . / * '
25 <procedure-type>:= RESULT-OF <s-r-name>.<s-f-name>

<ar-oper> <number>

P

26/ := SUM-OF <{s~-r-name> (
. ‘Kg=f-name-list>

) .

27 := AVERAGE~OF <s-r-name> (
: £s-f-name-list>
c)
28 .= MERGE-FROM <\s-r~na‘me>‘(
. ‘ - j<s=f-name-list>
- )
29~ <ar-oper> * _

3l <s~f—name—1}13t> g« <s~f-name> <s-f-taild>

32 <s-f-tail> 1 <s~f-name> <s-f-tail>




g TR .. .
T ‘ 243
y . \
33 : t= <empty>.
/‘) 34 (<¢ss-set~list> := {ss~s—-definition> <ss-s-tail>
} . o
% 35 <ss-s-tail> = := <(ss~s~definition> <ss-s-tail>
! 36 <ss--s-definition>:= SET <ss-s-name> |
Y REAL WITH-BASE <s-r-name>
1 {ss-s~-part>
b i . ' . .
3 .37 <Kss-s-part> #= OWNER <ss~r-name>.
g ~ \ MEMBER <(ss—r=-name>
S END '
i N ,
f D. ‘LL(1) DML GRAMMAR \
"1 <command> := <label-field> <command-type> ;
: 4 <command-type>:= GET <{get-part>
. . R '
3 5 := LIST <list-part> ’
" -
6 ' ;= IF CURRENT <if-part> bl
. s ,/'/
7 := GOTO <label> ' N ‘
‘,\/
- 8 := SET <sét-part>
‘ N 9 :4 LOCK FOR <lock-part> !
10 : := RELEASE <rec-name-1list>
11 := INSERT I;}\.(‘rec—néme) {occurrence—list>
12 1= DELETE/CURRENT OF <rec-name> ' .
S 13  := REPLACE <field-name> <r'ep1ace~par't_>' —
! \ - ,
14 , :% INCLUDE CURRENT OF <rec-name>
4 "IN <set~name> . K
15 : := REMOVE CURRENT MEMBER FROM <set-name> .
" 16 <get-part> t= PIRST <first—option>'2 -
‘ 17 := NEXT <next-option>
. : i "
. , ‘ ‘
“ A\




18
19
20
21
22
23
24

25

26
7
" 28

- 29

30
31

32
33
34

35

36
37

138

39

~ 244 ™'

:= OWNER OF, CURRENT OF <get-owner-part> = .

<first-option>:= OF <rec=-name>
:= OWNER IN.<set-name> _ /

:= MEMBER IN <set-name>

<next-option> := OF <rec-name> <where~clause>’

:= OWNER IN‘<éet-name>

: #MEMBER IN <set—-name>

.

<where-clause>:= WHERE <field-name> <relop> "value"

:= <empty>

<relop> 1= = t.
\ 1= < |
Lem D ' \
s O

jr—

<ge;—owner—part>:;'frec—name> IN <{set—name>

<list-part> := CURRENT OF <rec-name)>
= ALL <(list-option> |
<list-option> := OF <rec-name>
’ <where-clause>
{sort-~clause>
:= MEMBERS IN <set-name>
{where~clause>’
{sort—clause>
<sort-clause> := IN <sort-option> USING <¢field-name>
1= <empty>
<label-field> := <empty> ,
1= {label>
<sort-option> := ASCENDING

:= DESCENDING




>

byt 1 nﬁf-ﬁmyf'“;,:‘.:r;v; RERA PN

e PRI SR KB <

R BT

S R Wi 1R -l SR A

PR

AT NG MR IR SRR T TS TR Y

IR
3

NI RTY eown v

e e e e U S

/Y

245 )
40 <if~§art> 1= OF <recdnéme> <if—option>
41 , © 1= MEMBER IN <set—name> LAST
GOTO <label>
42 -<{f-3ption> := LAST GOTO <label> | N ‘¢4
43 ' :a.HAS éfieié—name) {relop> "value"
. GOTO <label>
44 ‘<set-part>  := LINELIMIT T0 <integer>
45 - = CI OF <rec-name> TO <set-option> f
a6 t= OCI IN <set-name> TO <set-tail>

47 <set-option> = OCI IN <set-name>

48 i= MCI IN <set-name>

49 <lock-part§ :='READ <rec-naﬁ;-1ist>

50  °  i= DELETE <rec-name-list>

51 <rec-namé—list>:;f<rec—name> {rec-name—-tail> ' .
52 <rec-name-tail>:= <rec-name> <rec-name-taild>

53 . := <empty>

54 <occurrence-list>:= "occurrence” <occurrence-tail>
55 <occurrence-taild>:= "occurrence" <occurrence-tail>
56 t= {empty>

57 <replace-part> := IN CURRENT OF <rec-name>
' WITH "value"”

58 <set-tail> := CI OF <rec~named

%
-+
1
il
'
A
§
A

NOTE‘

1. The <lebel> must be an integeg.k

2. The "value® must be a string of characters
. or dig;ts'within quotes.

. ¢ \ o
3. A record occurrence must be within quotes »
; ' ) -2 . .

'

as




. wrmpea w

- . 246

and its field values must be separated with
the character '/'. ) , L e

4. The LINELIMIT must be < 136 and > 8d.

{
1

T S R SR T S IR gy PR ot P 7 12 P> VRO

\

T I (e T WP
-
Ay
v
o

-

B
5
-

"

o
Y

%

I

B T ity e FLCH

'Y

‘,
e

.
.
4 ~
n a
hd ¢
« AT !
3 / 7

S




X T P A e = g wie

-t

£ e e S e L

W i

TR

s

APPENDIX C

LIST OF THE ENDBMS ERROR MESSAGES

NOTE: the ENDBMS er‘ror messages are divid‘ed in five groups.
The first group contain.s the error messag\es with error codes
from 1 to 118, 'I‘hese messages are. generated during Athe
translation or executlon phase of any ENDBMS command by all
the 'command handlers'. The next four groups contain the,
error meésag_es with err’o;r codes 151 to 170, 201 to é35, 301
to 329 and 401 to 444 and correspond to SWL, SL, SSML and
DML respectiv'ely. These error messages are generated by the
four automatic LL(1) -p)ats‘ers during the parsing of a command
which belongs' to their subsystem. Each pai'ser uses the‘
stack and its local parsing table to test the syn;:ax of 2
command and in the case of an error situation uses the error
codes to generate' error messages withouf testing separately
for each case. The repetition of some error messages in

different groups is due to the fact that all subsystems have

been implemented ind ependently.

247




e v gy

R

R BT

pre

B TR M VRS DT el G i o T kees] Moyt far e e ey e =

ST

N

248

00l ENDBMS NOT AVAILABLE. 0
002 COMMAND KEY-WORD EXPECTED.
003~iFVALID CQMMAND KEY-WORD.
005 USER NUMBER EXPECTEDC;QACCESS IMPOSSIBLE.
006 USER NUMBER .AND PASSW START WITH ALPHABETIC.
007~INVALIDnUSBR»NbﬁBE§. \
008 USER PASSWORD EXPECTED.
009 INVALID USER PASSWORD.
010 PROCESSING MODE EXPE CTED (1ORB y. .
011 INVALID PROCESSING MODE. . .
/012 ACCESS IMPOSSIBLE WITHOUT IpENTIFICAfION.
013 ONLY DBA CAN EXECUTE THIS |COMMAND.
. 014 USER NUMBER MUST BE UNIQUE.
015 USER LIST IS EMPTY. - ,
016 TEMPORARILY -SUSPENDED. | . '
017 TRY AGAIN AND CHECK YOU% PROFILE.
018 ébﬂMAND REQUIRES ENDBMS TO BE LOCKED.
019 COMMAND REQUIRES NO USER ACTIVITY. - o
020 RUN ONLY ONE JOB AT A/TIME. '
021 RECOVERY MUST BE CALLED-INFORM DBA. y
022 .SCHEMA RECORD-TYPE LIST EMPTY. | |
023 SCHEMA SET-TYPE LIST EMPTY. o "
024 INVALID SCHEMA RECQRD-TYPE NAME. g
. 025 INVALID SCHEMA SET{TYPE NAME .
026 INVALID SCHEMA FIELD ugué. |

I .
027 DESTROY, ENDBMS AND START 'INSTALLATION OVER.

~N

028 SCHEMA IS ALREADY DEFINED,

’

o




e g S R

2 Rl MEAIAT I TR S

e

28 O L

e T TR T TR e e

SCHEMA OWNER TYPE NOT DEFINED BEFORE. = .

| 'RFR' AND 'MFR' SETS 'WUST BE EXCLUSSIVE. o v

{ A LABEL MUST BE AN INTEGER

CODEﬂCONFLICT‘BETWFEN;SET AND OWNER (OR MEMBER) .

"INVALID LABEL--NOT FOUND IN THIS NduT SESSION.

’WARNING % USER IS NOT SUSPENDED. U
‘PLEASB LOG OFF AS SOON AS PDSSIBLE.

B 249

~
!

FIBLD r.am;'m MUST BE INTEGER. . T
DUPLICATE SCHEMA RECORD-TYPE NAME.
DUPLICATE scasm sn'r-'ryps NAME.

e I

DUPLICATE scamm FIELD NAME. Y

SCHEMA MEMBER TYPE,NOT DEFINED BEFORE.

USER-PROFILE MUST BE REMOVED FIRST. .. - ’
uszn-pnorn.s ALREAD‘Y DEFINED., . . \ | |
ACCESS 'CODE MUST BE INTEGER NUMBER. . - » i
myuzp ACCESS CODE. - . _ |

CONFLICT BETWEEN 'ROR'~FIELD NAME AND 'RFR'~SET.

T Al I hcelalhY ubbouhe  h mate oam

TYPE 'CONFLICT IN 'RECORD OCCURRENCE RESTRICTION.
SET 'I'YPE Hnouxnss\Aéqsss OVER GWNER AND M‘EMBER. j

’
» .
N ] .
' [N

USER'MUST BE SUSPENDED AND NOT Ac'r'xv"r:. . “ .

USER'S paorns 18 no'r DEFINED. ( ' x\
courucr IN Accfss cons. L T e,
WARNING % USER IS ALaEany SUSPENDED.

DBA cANOT sxa,cu-rn THIS COMMAND. - |
SUBS CHEMA 1s ALREADY DEFINED. - .
DUPLICATE /suascuam RECORD NAME: !

| N "
DUPLICA’I‘E 'SUBSCHENA FIELD NAMB * IR :

)
£ . . R
- ﬁ Ay ' . R »
5 e « . . .
: N i
. R . .




-

‘m i i~

(ﬁ\ 250

0%6 DUPLICATE susscaamx sz'r NAME

057 RECORD BASE-NAME OUT OF USER'S PROFILE.
058 SET BASE-NAME. OUT OF USER'S PROFILE.
059 CONFLICT WITH READ FIELD RESTRICTIONS.
060 CONFLICT IN NUMBER OF FIELD NAMES.

061 INVALID QOMPATIBL'B R-NAME m.p-nspmrrouﬂ.
062 INVALID COMPATIBLE F-NAME IN F-DEFINTION. .
'063 TYPE CONFLICT IN VIRTUAL F-DEFINITION.

064 s’usscaéni_owuaa NOT DEFINED BEFORE.

.~ 065 SUBSCHEMA MEMBER NOT DEFINED BEFORE.

N

066 INVALID SET DBFIZITION-iNCOMPNI‘IBLE BASES.

067 R.T-FILE HAS A READ LOCK.

’ 068 SUBSCHEMA HAS NOT BEEN DEFINED.

-

069 AT LEAST ONE F-DEFINTION Mth BE FROM BASE.
070 INVALID SUBSCHEMA RECORD NAME. '

071 INVALID SUBSCHEMA® SET NAME.

072 INVALID SUBSCHEMA FIELD NAME..

“073 A REAL SUSBSCHEMA RECORD CANOT BE EXPANDED.

075‘su'ascasm I8 _zngn. ‘
076 FIELD VALUE CANOT BE EMPTY. -
077 INVALID RECORD TYPE ua&%s.

078 RECORD TYPE FILE MUST BE LOCKED PROPERLY.

‘ ¢
079 INVALID SET TYPE NAME. ,

080 OWNER AND MEMBER TYPE MUST BE LOCKED PROPERLY.

081 INVALID FIELD NAME IN: SEARCH CLAUSE.
082 FIELD NAME MUST BE REAL. -

w

e

P TP P




‘ “ f
Nt s Ao ce e o . Jp———-_

i o oA R 1 Py RNy OB TR L R AP G, T ek

251 1 " K
/7/‘/. '

A} e /

083 MATCHING QUOTE MISSING.-

084 RECORD TYPE FILE IS EMPTY.

085 OWNER TYPE FILE IS EMPTY.

086 OWNER'S MEMBERSHIP LIST IS EMPTY. \
087 END OF RECORD TYPE FILE REACHED.

y 088 gub‘oé‘nsnssnsﬁxp LIS REACHED.

-

089 INCOMPATIBILITY Iﬂ,éET AND RECORD TYPE NAMES.
i o o
090 MEMBER RECORD ?YPE\FILE 1S EMPTY. '

T
L et e

091 CURRENT IS NOT MEMBER OFtANY SET OCCURRENCE. ‘ :
092 ERROR IN NUMERIC VALUE. &
a o \ 093 CURRENT OCCURRENCE IS ALREADY IN?LBDED . .
| 094 INVALID FIELD NAME IN SORT CLAUSE.
_ A////Ugs A LABEL MUST BE UNIQUE.(IN EACH SESSION).

' 096 'ROR' SECURITY ENFORCED.
, 097 'MOR' SECURITY ENFORCED.
v 098 'DOR' SECURITY ENFORCED. |

099 OUTPUT LINE LIMIT MUST BE >80 AND < 136

100 COMMAND DOES NOT ACCEP%rLABEL.

R A RSP

%

101 ATTEMPT TO VIOLAT&\THE GIVEN ACCESS RIGHTS.

102 RECORD TYPE FILE IS ALREADY RELEASED.

v

lOB‘ﬂECORD TYPE FILE MUST BE LOCKED FOR 'DELETE'.

’

104 PREVIOUS FIELD NAME WAS INVALID. v .

B A TR MRty AT Il P Ot e

o - 105 'MFR' SECURITY ENFORCED. ' E .

e fitkiree woF

106 LABEL OR \
107 OWNER AND MEMBER OCCURRENCE MUST BE 'ROR' FREE.

" 108 'REMOVE' COMMAND REQUIRES REAL - MEMBER.
‘ 109 'INCLUDE' COMMAND REQUIRES REAL“MEMBBR.

. . \/ . #
N w .




o e o e e et b ey Mk e meas memen s

252 \

110 RECORD.TYPE MUST BE REAL.

111 ILLEGAL OCCURRENCE FORMAT FOR "INSERT' COM.

i

112 FIELD VALUE MISSING.
113 R,T-FILE HAS A DELETE LOCK.
114 PIELD TERMINATOR MISSING.
115 VALUE LENGTH EXCEEDS FIELD LENGTH.
116 NO SET OCCURRENCE IS SELECTED.
118 NOT FOUND. = - ‘ -
151 'CHAR' EXPECTED. S
152 'DEFINE-SCHEMA' EXPECTED.
153 ' 'DELETE-SRT' EXPECTED.
154 DELETE-SST'. EXPECTED.
155 'END' EXPECTED. IR
156 'FIELD' EXPECREH. ——
157 'INSERT-SRT' EXPECTED.
158 'INSERT-SST' EXPECTED,
159 'LIST-SCHE@A' EXPECTED.
160 'MEMBER' EXPECTED. |
161 'NUMERIC' EXPECTED. = . !
162 'OF' EXPECTED.
163 'OWNER' EXPECTED.
164 'RECORD" EX?EFTED.'
" 165 'SET' EXPECTED.
1166 'IDENTIFIER' EXPECTED.
167 'NUMBER' EXPECTED.
168 ' (" éxpncrep.

169 ')' EXPECTED. ’
< 1




[ERRN

RT3 2 Tag,

VS T R

170

201
202
203

© 204

205
206
207
208
209

210

211

212
' 213

214
215
216
217
218
219
220
221

253

i

' COMMAND TER”IN‘ATOR,’ EXPECTED.

'ADD-RIGHTS ' EXPECTED.
'CODE' EXPECTED.
\DEFINE-PROFILE (S) ' EXPECEED.
'DROR' EXPECTED. ’
'INSTALL~USER (S)' EXPECTED.
'LIST-ACTIVITY' EXPECTED.
'Lxsw;pnoprE(S)"sxpscwsﬁ.
'LIST-USERS' EXPECTED.
'LOCK-SYSTEM' EXPECTED.
'MFR' EXPECTED. ‘
'MROR' EXPE CTED,

'NIL' EXPECTED.

'PASSWORD' EXPECTED.
'RECORD' EXPECTED.
'RECOVER' EXPECTED.
'REMOVE-PROFILE(S)' EXPECTED.
'REMOVE-RIGHTS ' - EXPE CTED.
'REMOVE-USER (S)' 'EXPECETED.
'RESTORE=-ACCESS ' 'EXPECTED.
'RFR' EXPECTED.

A4

'RROR' EXPECTED. }

222 'SET' EXPECTED.

d

223 ’SUSPEND-AC‘CESS.' EXPEC’I‘ED.'? h

224

'"UNLOCK~-SYSTEM' -EXPECTED.

225 'USER' EXPECTED.

226

¢

'IDENTIFIER' EXPECTED.

[}




© g SER

wa .

G LR iy g

WA (e R e

R e

T

"y
H

e e

§

227
228
229
230
231
232
233
234
235
301
302
303
304
305
306
307
308
309
310
311
312

313

314
315

315
317

318

254
<4 ﬂ
'NUMBER' EXPECTED.
'm' EXPECTED. e
'<' EXPECTED.
"> EXPECTED.
<>' EXPECTED. .
' (* EXPECTED.
')' EXPECTED.
'QUOTED VALUE' EXPECTED.
' COMMAND TERMINATOR' EXPECTED.
'AVERAGE-OF' EXPECTED.

'DEFINE-SUBSCHEMA' EXPECTED,

'DELETE-SSRT' EXPECTED.

'DELETE-SSST' EXPECTED.
'DELETE-SUBSCHEMA " EXPECTED.
'END' EXPECTED.

'FIELD' EXPECTED.

'FROM' EXPECTED. -

' INSERT-SSRT' EXPECETD.
'INSERT-SSST' EXRECTED.
'LIST~SUBSCHEMA' EXPECTED,
‘MEMBER' EXPECTED.
'MERGE-FROM '—EXPE CTED.

§

'"OWNER' EXPECTED.

'REAL' EXPECTED.

"RECORD' EXPECTED.
'RESULT-OF' EXPECTED.
'SET® EXPECTED.




A i S R oy 2T S e

~—,

- 319

320
321
322
323
324
325
326

:3\#0/

328

*329
401
402
403
404
405
406
407
408
409
410
411
412

413
414
415
416

25¢

.

'SUM-OF' EXPECTED.

'VIRTUAL' EXPECTED.

'WITH-BASE' EXPECTED. |

'NUMBER' EXPECTED.
' (' EXPECTED.
')' EXPECTED..
'*' EXPECTED.
'/' EXPECTED.

4

'.' EXPECTED.

"COMMAND TERMINATOR'

'ALL' EXPECTED,

"ASCENDING' EXPECTED.

'Cl' EXPECTED.
'CURRENT' EXPECTED.

‘DELETE' EXPECTED.

"IDENTIFIER' EXPECTED.

4
E%PECTED.

'DESCENDING' EXPECTED.

'"FIRST' EXPECTED.

'FOR' EXPECTED,

TFROM' ExPQETED;

'"GET' EXPECTED.
'GOTO' EXPECTED.
'aas; EXPECTED.
*IF' EXPECTED."
"INCLUDE' EXPECTED.
'INSERT' EXPECTED. ’
'IN' EXPECTED.

j
|
|

|
I
i
i

PR

1
i
\

§
/

w




P

e e,

T ST

417

418
y

a19
420
421
422
423

T 424

425
426

\
427

428

- 429

430
431
43"2
433
434
435

436

437
438
439
440

441
442

443

256

'LIST' EXPECTED.
1£0CK' EXPECT
'"MCI' EXPECETD.
"MEMBERS' EXP%CTED,
'MEMBER' EXPECTED.
'NEXT' Expscwsq.

'ocI! ExPECTED.ﬁ

'OF EXPECTED.‘\
'OWNER' Expscraol
'READ" EXPECTED.
'RELEASE' EXPECTED.
'REMOVE! EXPECTED. .
'REPLACE' EXPECTED.
'SET' EXPECTED.

"o’ éxpscrbn.

'USING' EXPECTED.
'WHERE' EXPECTED.
'WITH' EXPECTED.
'IDENTIFIER' EXPECTED.
'NUMBER' EXPECTED.

'=' EXPECTED

'<' EXPECTED.

'>* EXPECTED.

'<>' EXPECTED.

' ™ ' EXPECTED.

s, SR,




£ NP AN ki 2 ke e

'$' EXPECTED.

OR

1,
14

444

%4

.~ * B
e .
)
. i N » .
- s
B . .
. °
-
- . NS -
r \. '
’
. R
. “ -
. -
£ . )
he 1 - «..
. . ) -
B
. . .
- N i3
- " - N
.. .
.
B -
N .
~ a
-
Al

[—




~ APPENDIX D

>

NOTE: ' v - 3

-,

i

The following 1list shows the user number and passwords of
\\ 3 - A , 0
all users that will be installed on ENDBMS and authorized to

access the data base of the hypothetical company C.

TYPE OF USER USER # USER PW
~ DBA \ 201 . 202
E— ‘CHKEF“EXECUTIVETUEfICER ' ~ CEO CEO1
| MANAGER OF DEPARTMENT 102 . DM102  , DMD2
SECRETARY OF DEPARTMENT 102 DS102 ‘f\ DSD2
LEADER OF GROUP G22 , D2GL22 GRL22
LEADER OF GROUP G32 D2GL32 GRL32

ADMINISTRATOR OF ]
MEDICAL PERSONNEL - MPA MPAOO

ADMINISTRATOR OF "
PURCHASING DEPARTMENT ~ ) PDA -, PDAOO

;
;
3
!
1
4
i
B
4
:
%
#
2
|

A

" The next pages of this oappendix- show samples of actual

interface sessions with the ENDBMS,

4
]

258




e e v

o 1 AR ST L] RS e ey am

Pl

PR

» PR

»

Bk e WL

>

'>
|

4

D.l SAMPLE INTERFACE OF DBA

The interface samples of the DBA's interaction with ENDBMS

are digided into three groups as follows :

-y y

./(1). the first group shows how security is enforced'by

ENDBMS at log-in time when the DBA or any other user
attempts to access the ENDBMS. This group also shows
how the ENDBMS records the 'user activity' by kgeping

\

track of any log-in and log-off activity.

in the second group the DBA defines the schema for the
data base of the hypothetical qompany‘ C, 1lists ‘“the

'stored" schema definition and finaly using verious

DML commands shows the contents of the 'data base as

they are exactly shown in chapter 5. The actual
insertion of record occurrences into different record
N ) : \ . .
type files and their inclusion into different set
& h 4

qé?urrences is not shown, but it has been done.

-~

the tQ}fd group‘shoWS how the .access profiles of the

authorized wusers, described in chaptgr‘S, are defined

" by the.DBA so that they define exactly their given

access capabilities.

- “

el - -

P

Aoy,




e

LA

g

ST ettt e i - o aw

gy el O S A e g ke et ey 3
.

/attachrdbalib

L /%librargvaamlibedbalib
$LIBRARY »yAAMLIBy DBALIB.
/attachrendbms
/endbms

CONCORDIA UNIVERSITY ======= ENDBMS =
. DATE ¢ 81/08/17. °
. TIME ¢ 16.44,20.,

+

iy

"RREADYX

? user vy 4abc v =02 yi%
USER » 4ABC » Z02 I8

¢

XUSER NUMBER EXPECTED $ ACCESS IMPOSSIELE.
XUSER NUMBER AND PASSW START WITH ALFHARETIC.

LOG OFF TIME 16.44.47;

s 233 CP SECONDS EXECUTION TIME.
/ \\ , -
/ endbms
.= CONCORDIA UNIVERSITY ======= ENDBMS =
= DATE ¢ 81/08/17.,
= TIME ¢ 16.,45.25, °
KREADYX ' ‘ )
i 7 user » 204 5y z02 ris . 7
USER » Z04 » ZO2 +1% - -
KINVALID USER NUMBER. :
L ~
- LOG OFF TIME 14.46.03, '
. . N a‘ *
) . ".217 CP SECONDS EXECUTION TIME.
/ - . -



I A T B L s e TSR L e

- e IR AT I,

-

R TV

R T b

261

endbms . .
S

\ :
CONCORDIA UNIVERSITY ======= ENDBMS =
DATE ¢ 81/08%7. ‘
TIME ! 16.46.37.

[ 1}

*READY% ' ’ a

? igser » 201 » zZabo v i3
USER s Z01 s ZARC . 1%

XINVALID USER PASSWORD.
LOG OFF TIME 16.49,59,°

.

"+«220 CP SECONDS EXECUTION TIME.
] ’

/

endbms \

'= CONCORDIA UNIVERSITY =mm=m=== ENDBMS =
= DATE ¢ 81/08/17. '

= TIME ! 16.48.08,

XREADYX

i

T uger ¢ 201 .9y 202 ¢ Mxx $

USER s Z01 s Z02 v XXX %
" XINVALID PROCESSING MODE,
LOG OFF TIME 1M.48.35.

,209 CP SECONDS EXECUTION TIME.

-

e
s




&
% RS
A
] . ’ : .
262 ¥ ‘ e -
- ) . (\
: endbms . .
= CUNCORDIA UNIVERSITY R ENDBHS =
= DATE : 81/08/17, ,
= TI”E : 0130070550 :.9 :
1 AREADYX o o
- _ ? 11st-schema$
*ACEEBS IMPOSSIBLE WITHOUT IDENTIFICATIO
.. XREADYX . ‘
- T user ;01 202 is’ - !
XREADYX
f 3
T list~-ugercs
*USER LIST ENMPTY.
_ ¥READYX ) "
7 install-users ¢ ¢ rda » »da00 ) ° *
. ¢ mpa3 » mpa0o0 ) ’
T ( .ceo v ceol )
- . . (48102 dsd2 )’
: - . (dm102 ¢ dmd2 ) . .
- (d24122,dr122)y (d28132:47r132 )8 o C . ' L
XREADYX T - e S

? ‘'suspend-access { ceo 3

*READY X
- ? list-activitus , . :
3 XACTIVITY LIST EMPTY.\ L : . o
v . XREADYX oo, i o
N i . p o » - . \ TR -




s
. ' |« P e . : o
e S ————- , ,
’ " - PP
4 n . [} 7 - o
% " [ o 11 - *
o " . s ¢ .
g -
: L 4
. . . (
& , Ve “ s A
3 " .
. [ ) » 263 « f N ,
2 N .
’ { ’ . : o oo " “ - a *
g . . v, ) . o2 Y ) ; i . . .
» 0 b - . . . .
3 ligt-userss ' ‘ . . , J )
3 e ~ , ; .
i ’ - . ¢ 5 . ¢
L - . I
' < - ’ ' 2 “qv i . -

. M ‘v 3
g ( o "_ 0000\000Lt‘o.&.oo\oo0:000000009490000(009000 " L ’

. 7 :
, ‘ LIST OF INST&LLED USERS o : L L .
£ o e g ‘000000000DOOOOGQOOQOOOODOJ‘QODOOOOQOO-OO ’ - ) o
{/ ‘ . - N ] ’ . " -
i \’pw o, >

SRR . UBER-NUM ' USER-PW - . - T

s
v ,
- -—d—-“--‘ '“'—-—u-g--n ' “. \ ‘ n d
5 \ S o L 1. i :
¥ . . . ~ .
£ : . . . N . . -
. . D26L,32 - GRL32 ~ .- o | .
e T TR T e,
v P - . .
\

R . p26L22 - GRL22 . A - S

S  pM102° - pHp2 - . . . Coe

' ! c
)
- - 4 '
& Lo I

. ' -ps102  psm2 y ."”73 . SN

WCEO - emer o L i

" : [T ", L N
' N é " . s ) PR N
-3 x . MWPA Je T MPAOO 5 ‘ : . R
5 < oy . - ( L ‘ . . i
R R 3 i ’ N o . .
s " < Y
* . . n :
b ) ,PDA 1 PDA v a
'+ . \

. - . “ ’ . . . . ’ i LR A . ‘
- . .. END OF USER LIST . : o £
. g . ooéootoolooo;oiﬁcdoooo‘quo000004,...P‘.” . . -

» Tt e o
¥ Z - . -
% PR i
i . ,
iy ot

. N . ‘g " ;
o *asanvx R | . S

: ',"! sussEnd-access z,cab! - e Coee P .
s \\:SUAPEND-ACCESB 1 CEOS . S Lo e : S

i

R XWARNING X UBER. 1§ ALREAnv SUSPENDED.: . . _ . .

, . MENTER & NEW LINE'-- OR TYPE. «qnepf ST ¢« o
\'.' . : » . . s . , - s > g - B )
NN “’"§ N 4 dpop L R . -"f<,,'i~ ,‘.‘*, ‘ s x . ‘ ' ‘
’ b ’i“I I ’ ' ‘ ' “' eown + ,‘ ’ ~l a ,‘ N :'l i 1L ‘.6{ : .
R *Rsanv* LT T ey L BTN &
3 e‘,‘ . PLIERY K . ‘ \“‘_, - »v , ‘- T, ”," K SR ‘ L‘l' L . . . ,‘" ’
y v‘"l:._‘, ¥ 1(; ? remove-users mﬂoz dsioz - L R T N
Y ~Rsﬁovs-usaas x D102 nszoz s o SN e
B 5, RUSER MUST BE SUSPENDED  ANDNDT ACTIVE, . caleo .

2 ;" \‘*QYTER A NEN LINE - BR Typg.ongapf E ‘ B v;"\::”“f : -‘\\

.
KA




¢ FHATIG S S R DR

g -
. V,‘
- . S ! \
8 .
~ [ . "’
- * ? dror . ’ ,,1i‘“,.
N 4 £ . ~ "
. XREADYX . ) I
h ) : ' Y
\? suseend-access ! dmi02 » ds102 ¢ = -
- i '\‘.\.,' ©
. *REQDY* ) o ,
2 ,
.7 remove-usere’ | dsl102 » dml02 3 ;
o ' XREADYX o _ B ,
' > \\‘ ¥
) ? list-userss ) .
I "
w 1 X 000‘000000\'000007000000000,00'-;”0000‘-!00"0
"t ‘LIST OF INSTALLED USERS e, ’
. N N N N R N N N N N N N NN RN AR )
N USER~NUM USER~PW . P
‘i::‘ ! * ' . . - \ 1
: D26L.32 GRL32 , . —
A . . . N N
. © Dp2BL22 - . GRL22. L
. “’ . “v-" o )J .
, & "' > . "0' ’-. “ oy ‘\J
.. . MPA ., MPAQO - .
Sy , ) -7 ' .
.o B ¢ e
Lt - DA . . - PDA ) :
Py '535 ‘ v S
;\- t , . R i 5 N
) » ” °»'. * ' ‘\A . ‘ ) ' v
: END OF USER LIST - K -
i 'AOOOQ00.00‘06000«00000“‘00'00%0‘00”.(.00'0‘0)0000‘0‘.
oo oareADYX D “ ' |
,}‘\ v ) ,‘ A . _ L4 - L
-‘ ' i U N
~ .’ . t
s . B . ‘-. .
i ."‘ _'.‘( P ‘a*' \ ‘ , - ) £y
- 3 v ' wd . .
- ¥ " -
’ . ¢ 14 . \
...‘ : . ] ‘ c, -

N oy b ‘ ’264 . ; .‘
- ’ l\ j ”1 f




Yo ‘ . : < 265

[4

7 installll-users ! (dsi02ydsd2) » (dm102rdmd2) X
? A« ceo

. 7 ‘ceol $ S ‘
INST}LLLL USERS (USioz,nsnz) » (DM102yDMD2)

XINVALID COMMAND KEY-WORD. = v S
XENTER A NEW LINE —- OR TYPE ‘DROP’.

T N RTTLOTRERS kN e g e ¢ a8
,

, 7 install-usérs 3 (ds1Q2sdsd2) .» (dm102s dmd2) ‘
: "CEDL ' :
- . ‘ ~ o
%‘® EXFECTED.
*ENTERnA NEW LINE -- OR TYPE *DROP*

Co \\
7 - CED1 )% |

f @

AREADYX |
‘o 7 lis'l",-userss .. SR ,"’
N g - , N,

000.00000000.000000‘00000060.00600000000

. LIST OF INSTALLED USERS

f\'\ 0'00$00'00000000000000"0'0’9000000'10'000

. ‘\,USER-NUM USER-PW

- 2t e it S0 o 10 g - o o o

.‘\ o o, ~ .. » :

Iy .
“ DH102 . oMD2 . o

DS102 . pSD2

Co D26L32 GRL32

ERE— e
L 4 ’&

o7, p2sL22  BRL22




R PN

- F g

ey

ey

i SO S My g s

-

SwAar

BT

¢
Py

T e BT e s e

Do 2, p8102

XREADYX
: ? list-activitus ‘M‘ . .
: y XACTIVITY LIST EMPTY. b

XREADY % '

K 7 list-activitus .

Al o .
b -
4
000000000000-’00000000000000000000‘0000000

LIST OF ACTIVE USERS

00000\'0000000000000(0‘0‘0000000'00'0.'000000’

1. IM102 DHD2 - .

.

f

N .
LA B R R A N T N O B A BN SR S ST ST I I SR S Y
d ,
; s N .

READY % '

/ ? 1§5t~activits$

000'00000'000.0000‘0000000000000000!00000
LIST OF ACTIVE USERS '

LA AL A N A 2R 2 20 2R 2R B 2R B BN K B BY I 3K RN Y B N N N N N N N N N N N SO S

: 1. DM102 DMD2

33

;
2, MP4 HPAOO.
:I i ) ]
000.00‘000000'0000'6.000‘000’00‘00000000000
N K ' . & .
KREADY X o |

? list-activitus

- ‘ A
N

N . 00000'0000.00“0"'00’00.'QQ’,OO'.’OO.Q.O.
.o . LIST QF ACTIVE USERS

00000'000’.;‘00‘000’0'0"”'00'0000"00000
F | L
1, DM102 DHD2

8n2 -

1

5

";oooo(.o;oot‘oeooo.;ooiooQ.ﬁooo.Qbon‘uco

XREADYX ' -

- . o v

i




T E oy Few mre,w

-

ﬁi{?gt—activitgt o ' '

L A A R IR A B N I N A A R R R
LIST OF ACTIVE USERS

.0"‘0000"000000000000‘0000000000'.0000‘
<

— .1, DM102 DMD2

-

)— IR AN B R AR AN A AN A R R 2N AN AR IR 2 B B A NE NE K BN BRI RUAE N YRR K A A I I

>
3

KREADYX
7?7 outs
LOG OFF TIME 18.44.47,

. ,406 CP SECONDS EXECUTION TIME.
/endbms .

= CONCORD'IA UNIVERSITY ==banz= ENDEMS =
= DATE : 81/08/17, ER
5 TIME ! 18.45.04.

~
XREADYX .

? user ¢ dmi02 » dmd2 , is ¢
'XRECOVERY MUST BE CALLED-INFORM DBA.

LOG OFF TIME 18.45.23,

o ' ,208 CP SECONDS EXECUTION TIME.
- k‘; ’
t - - '§‘ .

e Ak e =




[P U

WL

R

L

—_ . | * 268
. . . »
. ) ( | . i
= CONCORDIA UNIVERSITY ====‘-Z, ENDBMS =
= DATE § 81/08/17. :
= TIME ¢ 18.46,29. ‘
‘ﬁ '
LN
KREADYX o _ &x
¢ \3.\\,
? user z01 202 i% .
KREADYX \ f
T list-activitu$
: <

“\"5

?I »
| : e

A}

'00'}000000000000000000000&‘0&,0‘60&00‘00‘00
LIST OF ACTIVE USERS

\
0'09000'00000'0000.00000000000QOOQQOQQOOQ

1. DM102 oMoz

»

..g...k..a‘...y..\....u.....u.}..o.u
*READY*:M

? recoVer ! dml02 $ \
XREADY ¥,

? user ¢! dml02 ¢ dmd2 » i %

KREADYX - )
? ugser ¢ 201 202 i % ,\;;\ .
s . . 1
XREADYX :
T .

7 list~activitus .
‘ *ACT{vITY L!gT‘EHPTY.-

KREADYX L )




nig AP AL sy B e ep 2% — —-——-—ﬂ—‘""?
.: ‘ . -
: 1‘n ' -
A A 269 .
j b | . ‘
é ~ N - \ -
L e - \ ‘ ' |
: = CONCORDIA UNIVERSITY =s=s=== ENDEMS = - ‘
: ‘= DATE $ 81/08/24, K -
b R = TIME $ 10.41.03., : i . ' ) ,
KREADY X ’ :
i é
: %
; ? user ! dnl02 s dmd2 » i$ f
1 KENDBMS NOT AVAILABLE., {
¢ . !
5 106 OFF TIME 10.,42,43, ’ - 3
b ‘ | :
. 4227 CP SECONDS EXECUTION TIME. )
: /endbms ¢ g
4
i ! Co. . <o _
'= CONCORDIA UNIVERSITY ===z=== ENDBMS = : \
: /= DATE % B81/08/24, L ,
[ ‘= TIME $.10,43.19. -
/ .
/ : .
' XREADYX _ o .
/}72' t A * . - ) ‘
/ 7 user §.201.202 i}
f ? unhlock-swstemi T outs
' LOGMOFF TINE 10.44.02, . ‘
5 . ‘ ] -
. 1607 CP SECONDS EXECUTION TIME,
/ ) ) -
/‘( ’
“::: . ' ) u\." »
‘ 6 Coe s : ST T
A ‘ ’ § * \‘m . "‘ -




CONCORDIA UNIVERSITY ======2 ENDBMS
DATE ¢ 81/08/24,
TIME ¢ 10.44,32, -

unu

KREADYX

§ -

7T user ¢ dm102 » dmd2 i$
XTEMPORARILY SUSPENDED.

LOG OFF TIME 10.45.28.

24 CP SECONDS EXECUTION TIME.
/endbms

CONCORDIA UNIVERSITY ====s== ENDBMS
DATE ¢ B81/08/24,
TIME § 1046409, ' "

H o n

¢ .
¢ w

XREADYX

? uséf ' z01 202 i$ :
? restore~access ¢ dmi02 -
? outs ‘

LUB OFF TIME 10. 47 04,

631 CP SECONDS EXECUTIGN TIME.

]



endbms : - ‘ ' . ./(fj,/*\’
) - ' ) % |
CONCORDIA UNIVERSITY ====== ENDEMS = . e

DATE ¢ 81/08s18. ¢ S
TIME ! 08.51.34., . ' ,

Huon

BT Y SR b0 L RO 35 1o 15 im0 37 gyt s v 2 A% 8
3

AREADYX . ' S i

? user » =01 » =02 5 i$ ﬂ 0 L.
*READYX . .

s

g . )

% ., ? list-schema$ -

? . XDATA BASE IS EMPTY.

define—~schema
recard, ! orders .
field! #no of char(3) ) /
field! errice of numeric (3) . S :
field?: euant of rumeric (3) ’ ‘ . ; :
field! del-date of char (8)
field! sno of charss (3
end :
record ¢ surinfo -
‘field! sno.of char (3)
field?! sno of char (3) . = .
field?: rrice- of numeric (3) ( !
field: lead~time of numerie -(2) - o
[N i
' o .- |

1

|

|

!

- . ! : !
1 . XREADYX : . 3
. R . :

i

1
l
{
. [
Y
i
i

i

end - ,
recond { Parts .
field:-rno of char (3)
fielti: colour of char (6) ‘
field! weight of numeric (3) , ’ T .
end - I oL
record ! suprliers’ -
field! sno of char ¢3)
tfield?! city of char (100 - ' ~ -
field! tel of chdr (8), A

’

end

R L E L L E E L E EE R E R

S
LR
3




R e e R el I I T JE e IR0 R QR G S 0 R O RN SRS QO RS NS, SO O O OO QRO g

'XENTER A NEW LINE —-- OR TYFE “DROP‘, -

il

— ] 272
record ! Era ]
field: =no of char (3)
field? rno of char (3)
field?! auant of numeric (3)
end | .
record ! med-history
field? eno of char (3) i
field? dno of char (4)
field: diadnosis of char (15)
~ field?! date of char (8)
end
record ¢ gSrours ] |
field?! dno of char (3)
field: dno of~ char (4)
field! leadrer of char* (3).
field: buddet of char (3)
end . ‘ S
set ! rorder ‘ o
owner ¢ partis member ! orders
end . 1t
set | rsinfo : T
owmer: ¢ rarts member | surinfo
erd T )
set { sorder . .
owner 3 suwpligys member ! .orderss
an - :
get ¢ sFinfo. . Co
owner ! surrliers member ! surinfo
end :
set | rparts
owner 3§ drouss member ! dra
end o - '
set ! drarts - ]

.. owner I parts member § Hra
end -
$ .

' FIELD! SNO OF CHARSS (3)
.. . n — .
X’ CHAR* EXPECTED. .o e

+

X/NUMERIC/ EXPECTED,

i

. i

< |
’ N

{

- o
“ \

N -i

S
i

t




? field! smo of char (3 , .
OWMER ¢ FARTS MEMBER ! SUFINFO

¥’OWNER’ EXFECTED. ) T
’ XENTER A NEW LINE -- OR TYPE ‘DROP’.

‘7 .owner: rarts member 3 supinfo
OWNER ¢ SUFFLIERS MEMBER ¢ ORDERSS

¥SCHEMA MEMEBER TYPE»NOT‘DEFINED BEFORE,
XENTER A NEW LINE -— OR TYPE ‘DROF‘.

P pwher %yﬂpliers - member | aorders

.
3 v .
. \ . .

© XREADY X

o TR AT L S A% ;i‘ e i o 5
-

insert-srt
record ! emplodees
field: eno of char (3),
field: tel of char (8)
field! citw of char (10) 2
.field! salary of rumericc (5).
field!'dno of char (4) ‘
field! dgno of char (3)
field! hrs of char (5
. field! city of char (1)
?- end? y :
insert-srt .
record ¢ derartments’ ,
field! drno of char (4)
field! manader of cah
fields budsdet of nu
. field! merfo of ch
endi :
? insert-sst
7 set ! emh
?  owner ! emrlodees
., P/  member! med-histor
P end) :
? insert-sst ,
? set ! drour-émp : : . *
? owner ! grours , ]
? nember! emeloy : et
? _endd ’ T o . '
?-insert—sst - Lo \ “ - &
/o P set | dems~drour ! '
? . owrer ! derartments member ! drours
T end# . S o

-4

e il
—~

LR E L

S PR R R R

~
-

N >




T e TR IR TR R 0 ¢ 1 gty

N
L~
f -3
AN

7 insert-sst .
? set ! derp-~anrcd
? owrier ! departments  member | emsldvees
? end % ~ —
FIELD: SALARY OF NUMERICO (5)

-

X‘CHAR’ EXPECTED. !

% 'NUMERIC‘ EXFECTED. , o

XENTER A NEW LINE -- OR TYFE ‘DROP’, - L ,

" \ ! A N

? - figld? salarw of numeric (5)
FIELD?: CITY .OF CHAR (1)

XDUPLICATE SCHEMA FIELD NAME.
XENTER A NEW LINE -- OR TYPE ‘DROP’.

? field! serfo of char (1) .
’ FIELD! MANAGER OF CQHR (3)

. _X’CHAR‘ EXFECTED.
# X ‘NUMERIC’ EXPECTED, , .
KENTER A NEW LINE.-- OR TYPE ‘DROP’.

? field: manager of char. (3) i .
MEMBER! EMPLOY . : | : ;

XSCHEMA HEI}BER TYPEYNOT DEFINED BEFDRE./ ‘ = :
XENTER A NEW'LINE -- OR TYPE ‘DIROP‘.

7 owner ¢ drours mamber emploueés
SET ¢ DEP-ENFP#

X OWNER’ EXFECTED.. | . -
XENTER A NEW LINE -- OR TYPE ‘DROP’. :

? get ! ';iep—emp

KREADYX




L RO

R dand

list—schema$

+ SCHEMA

DEFINIT ION.

RECORD nEPARmEN?s

FIELD ¢

DNO

FIELD ¢ AANAGER "

FIELD 1

BUDGET

FIELD ! PERFOD

END

RECORD ! EMPLOYEES

FIELD §

FIELD ¢

ENO

TEL

FIELD ¢ CITY

FIELD ¢
FIELD ¢

FIELD- ¢

FIELD ¢

END

FIELD @

SA{.ARY
DNO

GNO ‘
HRS

PERFO

RECORD 4 GROUPS

FIELD
L BF'IELD\‘ 3
FIELD &
FIELD 3

END

»-e

GND
DND v

LEADER
BUDGET

~

275

i

(‘{F,
oF
OF
~OF

OF
. OF
OF

oF
oF

. OF

+
L4

-e

-

-

v

- e

-

1\g

4

CHAR oo o o4

c“aR.QO. CQ(

NUMERV ool
CHARM » 6‘0‘0‘(

CHARY v es o ol

'c;iink... vaal
CHARutv o o ol
NUMERIC, « o ¢
CHAR.;..; o
CHAR: v vy o o't
NUIMERIC, o « ¢
CHAR vy o

CHAR.vsvs » €

'CHﬁRt o‘o Yo @ (
CHAR itve e ¢
NUM"gmc.; ot

w (2] & %}
~
]

o
[ EE N RN I SRR NS NN I E RS R I ENERE NI I SRR I RN RN 2 I

N RN N A R R A NN RN N I NI AL N RN RN A SN RN S EEEN R B RN NN N

10 >,




. 276 ' b Ly

lg . I Lt A Bl '
. RECORD : MED-HISTORY S

G R e Y S L AL 2 ]
=
~
~
o

FIELD ¢ ENO L OF I CHARieees (3 R

FIELD ¢ DNO L ol CHARYvevesl 4 ),

IR ¢ DmaoNgSIS OF ¢ CHAR.voouo( 15 ),
~ .- - FIELD : DATE. . L LOF % CHAReewe. RN |
" END - . T

i - cu RECORD ! GRQ | |
b : FIELD ¢ GNO ©OF CHAR....;’;:(,' f”‘f ;o
1 | \ FIELD & PNO .. COF cﬁag,...g.t 3.
,5 . FIELD t GQUANT . . ‘e OF 1 NUMERIC... 3 )i
¢ . END o | R
- RECORD ™ 3" SUPPL.IERS ,
2 S FIELD ! SN . C OF 1t CHARY+vve el 3 ),
N FIELD § GITY  °  .OF t CHARbverrs 10 00
% - FIELD ¢ TEL ~ OF $CHAR s0eeet - 8 ), |
Cme | - S
C R.Ecqm:‘,':‘ PARTSj T R - »

o ' s o
FIELD { PNO CCf LOF P CHAR..w e ia 3 g
Voo FIELD ! ‘f:pwun - . OF Y CHAR.4ev i l( 6 )y o

- eran /HEIGHT o ?” OF 3 NUMERIC. . .\1(‘ :i", a |
| RECORD ¢ SUPTNFO . S " o '
R RE . R CHARS + v s € 3 5 B
' - . - R . . - v . .

o U FIELDESNOC - OF

L2

CHAEQ;’ n,gf ‘ 3 ")o .
_ TN Tt FIELD EPRICE . . nRe wmmenes



R e Sl T T

bt e« = e

[ v
RN AN '
R N -
J . 7‘ 277 ¢ ‘-
,l p S N .
. - ' A /;
* RECORD : ORDERS. .+ >
. 1 . ’ /,/ - .
‘¢ ' -FIELD ¢ PNO , - OF
- < LI 7
e FIELD ! PRICE 3 \QF
\ 8 : -
RN 3 ’ ’ - . \
\ FIELD ¢ QUANT . -PE\
L “FIELD ¢ DEL-DATE . OF
\l . g ‘. v g 4
L. FIELD ¢ SNO, - - - .OF
v ° - v n
0 e N :
. . ] ,.%
" ieves SET. TYPEMEFINITION(SY ovoo.
© L8 ~w '
A SET . DEP-EMP
‘ OWMER ¢ BEFARTHENTS .
‘ MEMBER ! EMPLUYFES )
& END ,
\ ;
) SET.! DEF-GROUP ,
N - . 1
OWNER : DEPARTMENTS
. 1) & .
_—~  MEMBER ! GROUFS - }
T END o ke
SET : GROUP-EMP p T
? © OMNER, § GROUPS
‘s‘ . .
MEMBER ! EMFLOYEES .
e END-
.
SET ¢ EMH .
OWNER -¢ EMPLOYEES Lo
- , MEMBER ! METCHISTORY
’ END roon S
<+ S :
SET. ¢ PORDER o

OWNER : PARTS
£
MEMBER : ORDERS

CHA’RTO. L 2N 4 .(

%

NUMEREC . «0 €

NUMERIC...(

~ &

CHﬁg.....}(

~

CHARQ L] '0 0’0 L] (

»
»

*

@t

3 ).
S, )
3.
[
8 ).
37
*
R}
\ e’.‘
7
» ¢
!
&
.
-
A
-, L))
& .
¢ '
o~
s

Conmidtms M SNt




’ ~ \/"
P % wr mn v b e e by g e e by et ke ae fan . z P
& -» ¥
. ” . N - - ? /a 1\4
- - » - 7’
*
—

‘ N ‘ 4
: 278 ,
'\ ‘_“ P \ i P \
t . , R ‘ ] ‘ . v R &\‘\) v
Y . " - e . . *
oy \!‘ '
) . . ) Tt If ¥ t <
- \ UL, seTe: pébFo o : T 4

; . _OWNER : FARTS - ' e o
N a » Q . ' o

oo T MEMBER ! SUFINFOs - o e :

b : AR

: ~Enn -t . - | T

; ) . / - ‘o ? s

; SET ¢ SORDER :." N . W

P ) T uNeR @ SibeL R A
B : OWNER : SHFP)LIERS

§ . - ‘.; s . s

S | MEMBER : ORDERS S * N

AN END S ‘ o D ' :

3 N 'k . .

S SET. SFINFO - . L .
N - e OWNER ¢ SUPPLIERS ' .

i - , - . " ‘

' MEMBER §  SUFINFO X .

e - N . - .
S - " ., END : . : -

R v . i I -

SET i RPARTS # ‘ 3 .

| ’ R R . v ‘ - o

! QWNER ! GROUFS - ’ ’ »

. . . . e " . -» N

, + MEMBER ! GRQ - Lo . ‘
» - ) . B [ . ’

; ' Coe o - - .
END .
i, ’ SET ! GFARTS

! : : -

; - OWNER ! PARTS

' *

MEMBER ! GRQ L

. ENII ) .

L 8

. . . .
‘0’0.‘0..000.00‘.‘..0.‘.00‘.0....'.u.Q..’..”.'QOO’.0'.‘.0."."
- - » ,
KREADYX ) - - |
| N - ¢

v

RS YR TR TS I, S unfre st o
.

-

’




S R ST R - Vo At ﬁm.... P O - [ Caid

R R R R

T,
v

B R A N i T e TR

R

' . . » . \ R
- , . ’ ,
b »
v 279 ‘ Y -
] - o -~ . -
lock‘fpﬁ resd ¢ derantments - : L ‘ «
k . emrlovees ¢ // ‘
/ med-history g § ‘
drouss ‘ L. hd : .
) gra . ° “
' _’ rarts , -
\ surpliers I ¢
coo ortfers
1 ' supiqfo $ _ !
' ¥
3 LS !
XREADYX ~ . ° :
? list all of derartmentss E ;
D100 ES5 35600 'C e : ;
1101° E1 « 50000 A " - s
nio2 E<9 65000 E ’ . : - % 5
XREADY X o ) o T T e .
? list all of derartments - o . ' Lo
7 in descending usind buddet$ . ‘ . c
0102 EY 65000 E I
CO101 E1l d000Qs A ) - . 1
D100 ES 35000 C . o . , |
XREADYX - C &
? list 3ll of drours$ . ) -
/
632 D102 E17, 2000 ) o )
G22 D102 E14 1800 } Co.
612 D102 XXX . 0000 ' !
G21 D101 E21 1500 . ' o
Git D101 E8 ° 1200 - } '
* XREADYX . , SN \\ RN
7 list 211 af sgrouss S {
?oin ascending usindg sno$
Gil1 D101 EB 1200 . , S
612 D102 XXX 0000 . . <
G21 D101 E21 13500
G22 D102 E14 1800 v
632 Dio2 E17 2000 -~ .
’ , “ , -
KREADY% ‘ . . .
¥ ' -
o o n Lo x P o ‘




R

-

[

list

El  872-8233
E10 933-5555
ELl  277-44%6
E14 877-3367
E1S “476-3355
E17 568-4577
«E2  931-2235
£40  478-7788
E21  676-4455
22 474-1235
E2Z  944-5566
EZS  273-4466
E26 476-3388
ER9 9356679
E3  788-9933
E32 273-4576¢
E35 277-4456
£36 272-7789
EA0  935-3636
£S5 935-3344
ES0  933-5478
B8 272-4545
EYy  931-3131
XREADIY X

*

all of emrloveess$

list
E32 27324574
E29 935-6479
E26 476-3388
E23  944-5566
E17 568-4577
E14 877~3347
E11 277-4466
E9  931-3131
ES0 933-5678
E22 674-1235
E21  674-4455
E1S 476-3355
ES ' 272-4545
E3  788-9933
E2  931-2235
E1™ 872-2233
E4Q 935-3636
E36 272-7789
E35  277-4456
CE2S 273-4466
E20 478-7788
E10 933-5555
ES  935-3344
* XREADYX

]

all eﬁ/emflouees in ascending using

QUTREMONT
MONTREAL.
LAVAL
ROSEMOUNT
LONGEIL
N.D.G

Y MR-
MONTREAL 4
MONTREAL
LONGETIL
.RROSSARD
LAavAL
OUTREMONT
ROSEMOUNT
MONTREAL
MONTREAL
’UONTREAL
MONTREAL
TeM.R
QUTREMONT
ST-HURERT
MONTREL
MONTREAL

MONTREAL
MONTREL
JToM.R
N.D.G
LAVAL
LONGEIL
MONTREAL ~

ST-HUBERT .

BROSSARD
LONGEIL
ROSEMOUNT
OUTREMONT
LAVAL
MONTREAL
ROSEMOUNT
QUTREMAONT
TOMOR
MONTREAL
MONTREAL
MONTREAL
MONTREAL
OQUTREMONT
MONTREAL

144600
17000
17300
18500
17800
16700
17500

15600

15500
16700
16400

12800

17000
1650

17000
18000
18900
19700
16500
3000

15000
18000
28000

18000.
18000
17500

16700

12800
17800
17000
15000
16400
16700
18500
3000

17500
17000
1650

16600

. 16500
19700

18900
28000
15500
17000
15600

-t

.
RPN

o2 22 860
0102 632 2450
0102 G632 3400
0102 G632 3400
D102 G632 2450
n102 - G22 850
0102 X 1100
o2 X 15600
niotr G621 1350
0101 G621 450
101 621 3120
101 611 2400
0101 G611 3400
nior X 1250
0101 X 650
nior X 3500
D100 X 1680
n1o00® X 12500
0100 X 2450 °
0100 X 0
0100 X 1200
nioo X 800
100 X 0

eno %
p1o1r X 3500 ¢
0100 X 800
D102 X 1100
pioz2 G222 850
0io1 Gii 2600
nD1oe 63%» 2450
p1o1 X 650
pioo X 1200
niot G210 33120
niol G211 450
0102 G632 3400
0100 X 0
0102 G632. 3400
nio2 G32 2450
0101 X 1250
D102 622 840
0100 j? 2450
nioo 12500
0100 1480
0100 X 0
nio1 G621 1350
0101 G611t 3400

15600

D12 #X

CMI>IO>PT>MXT>2o>MIOIXIAaogiwm

X2 COCM>o>2oxcOOI>2I>I>D>2MMDIDI>MK

-




ST pasr

W s s .

e R T

\281 f . . » 1

/

list 3ll of emrlovees in descendinslusinﬁ salary$

Y T

ES ?35~3344 MONTREAL 28000 D100 X 0 U

E36 272-7789 MONTREAL 9700 10100 X s 12500 A

E40 935-3636 MONTREAL 18900 D100 X 14680 E

E23 944-5566 ROSEMOUNT 18500 - 0102 G632 3400 -A

E1Q0 933-5555 MONTREL 18000 D100 X 800 E

El 8722-2233 MONTREAL 18000 D101 X "3500 X

E17 56B-4577 LONGEIL 178060 D102 G632 2450 E

E1l  277-4466 T.M.R 17500 D102 X 1100 A ¢

E26 476-3388 LAVAL 17500 D102 G3Z 3400 E

E2 - 931—2235 MONTREAL 17000 D101 X 4650 A

E29 935-6679 MONTREAL 17000 D102 G32 2450 e

E8 272-4545 OQUTREMONT 17000 D101 G611 3400 A

E22 674-1235 LONGEIL 16700 D101 G21 450 B

E14 877-3347 N.IL.G 16700 D102 22 850 A

E32 273-4576 OQUTREMONT 16600 D102 G222 860 B

E3S 277-4456 T.M.R 16500 D100 X 2450 A

E21 676-4455 BROSSARD 164400 .m101 G621 3120 . A

E? 931~-3131 MONTREAL 15600 1102 X 15600 X

ES0 933-5678 - MONTREAL 15500 D101 G221 1350 o

E20 478-7788 ST-HURERT 15000 D100 X 1200 Al

E1S5 476-3355 LAVAL 12800 D101 G11 2600 E

E25 273-44466 OUTREMONT 3000 0n10o X 0 c

E3 788-9933 ROSEMOUNT 1650 0101 'X 1230 E

XREADYX ~ (
list 311 of emrlovees

where rerfo = "a" = :
in ascending using erno $ \ !
E1l 277-4466 T.M.R 17500 D102 X. 1100 A 3
E14 '877-3367 N.D.G 16700 0102 622 850 A :
E2 931-2235 MONTREAL" 17000 D101 X 430 A )
E20 478-7788 ST-HUBERT 15000 0100 X 1200 A ]
E21  474-4455 RROSSARD - 16400 D101l G21 3120 A

E23 944-5544 ROSEMOUNT 18500 D102 G32 3400 A

E3S 277-44%56 T.M.R 16500 D100 + X 2450, A

E36 272-7789 MONTREAL - 192700 0100 X 2500 A

ESQ 272-4545 QUTREMONT 17000 101 G611 3400/,\A

XREADYX * s




LT T e | e -

AT

TSR

i

‘ %2
:—“::'r
- ~ ;
1ist all of med-histors$
E10 D100 COLD 20-3-80
E20 D100 HEART ATTACK , 19-8-80
E15 D101 COLD 12-10-80
E1s D101 EYE OFERATION- 10-7-80
¢ ES 0100 RROKEN LEG : 15-5-80
ES D100 ALERGY 22-4-80
 KREADYX
-7 list 21l of rartss
7 BROWN - 70
F6  BLACK 249
FS O WHITE S0 ‘
) P4 RED 100
¥ F3 BLACK 20
Fe RED 65
F2 NHITE 80
F9 EROWN 25
. F1 ELACK 45
. F10 RED\\J 40
KREADY* '
? ligt 311 of parts where weight » *"30"
F7  BROWN 70
F4  RED 100 .- _
-8 RED &G
F2 WHITE 80
: Fi1 BLACKN 55 o
XREADYX
? list 811 of susrplierss g
S3  QUEREC 375-77088
$4 QUEERBEC |375~5599
S1 ﬁONTREAL 373-8899 d
52 MONTREAL 856-4433 .
S5 OTTAWA 3456655
KREADY X
. ., i
R 4
LY i.».
¥ N

s




§

Lo P Lo B e e T

»

283 o,
’

list 3ll of surrliers where city :P;mbntreal' $

si  MONTREAL  273-8899 .  ° D
. §2  MONTREAL B56-4433 :
KREADYX

list 8l1 of surinfos$

F10 83 700

5
F10 82 . 480 2 .
F? S84 400 5 .
F9 82 350 4 ’
F8 85 1100 4 -
F7. S4 450 2
F6  §2 50 5
FS 81 3500 10
F4 85 600 3
. F4 81 450 3

F3 84 500 b
P2 85 1800 14
F2 83 2000 10
Fl 82 300 25

F1 51 1200 15

XREADYX
list 211 of orders$

F10 700 15 10~10-80 82
F10 480 . 20 5-9-30 53
Fo 400 8 20-3-81. 54
F® 350 30. . 18-6~8t 82
F2 1800 10 12-5-82 55

F7 450Q. T 20 25*9~80( 54 - -
P2 2000 . 3 G-2-82 53
Fi 500 5 12-5-82 82
XREALYX
- “ ‘ .
list 211 of orders where rno = "gl0" r
ir sscending using grice$ of
" &

F10 480 20  5-9-80 53
F10 700 15 10-10-80 ' 87

3

XKREADY X ‘ . -

A e s S BV o M



g e s

. CNEENRY (NIt e e

- »
[ aid

PR

._‘
e T I
N -

LA

v

W

284

4 -

Qet-first gwner in.der-emrs
? list .31l members in der—enmy$

ES  935-3344

~ E10
% E20
E2S
E35
E36

" E40

XREALD

? get mext owner in der-eme’
C % list all members in der-eme®

E1l
E2
E3.
E8
E1S
E21
E22

ESO

. KREAD

? dat next owner in der-emr?

T list -
£E9  931-3131
E11  277-4466
E14 877-3367
E17 “548-4577

T E23 944-5566
Ené  476-3398
ED9  935-6479
E32 273-4576
XREADYH

7

\

' ~.

933-5599
478-7788
2734446
277-4456
272-7789
935-3636

YX

872-2233
931-2235
788-9933
272-4545
4746-3385
676-44355
674-1235
?P33-5678

Yx -

MONTREAL
MONTREL
ST-HUBERT
OUTREMONT
T.M.R
MONTREAL
MONTREAL

MONTREAL
MONTREAL
ROSEMOUNT

VUTREMONT

LAVAL
BROSSARD
LONGEIL
MONTREAL

28000
18000
15000
3000

16500
19700
187900

.18000

17000
{650

17000
12800
16400
16700
15500

all members in der-eme$

;]
MONTREAL
TfoMoF\'
NoDLG -
LONGEIL
ROSEMOUNT

" LAVAL

MONTR gL
OUTREMONT

13600
17500
14700
17800
18500
17500

© 17000

16400

Icd

n10¢0
0100
0100
100
160
1100
100

0ol
niol
101
101,
niot.
0101
L1001
niel

nio2
0102
nio2
nioz

D102

nioz2
o2
o2

HoA XXX KX

X .

Gi1
G1l
G21
G21
G21

G22
G632
G322
G32
G3Z

G22

1350

420

800
1200

2450
12500,
1680

3500
650"
1250
3400
2600
3120 °
450

134600
1100
350
2450
3400
3400
2450
860

oD MDD X

"M OmD MDD X

S S WD S

e

st




LI

BTy W L TR T

A g B

TRt e p ey e
-
.e

-

get first owrner in group-ems?

- ?_1list all members in drour—eme$

”

. . - .

E17 568-4577 LONGEIL 17800 D102 (32
E23 944-55466 ROSEMOUNT 18500 D102 632 .
E2¢6 476-3388 LAvalL 17500 D102 G32
E29 ‘B5*6679 MONTREAL T 17000 1102 632
*READY*

T det next owner im grour-—ems

7 list all members in drour-emr$ *
El4 8773367 N.U.G 16700 D102 G622

E32 273-4574 OUTREMUNT 1660% pioz2 G622

XREADYX

7T det next owner in drous-emss
7T list 3ll members in drour~emed

XOWNER’S MEMBERSHIF LIST IS EMFTY.

XREADY X
. J

? det next owrer in grour—emri

*? list 3ll members in drour-eme$

E21 676~4455 BRUSSARD 14644004 D101 G21
E22 ,674~1235 LONGEIL 16700 D101 'G21
ES0 '933~5678 MONTREAL 15500 D101 G21

<

XREADYX

? det mext owner in drour-emr §
P list 311l members in grour—emrt

N
. ES  272-4545 OUTREMONT 17000 0101 G611

E15 476~3355 . LAVAL 12800 ' D101 611

KREADYX '

? /
\ )
‘
// 4 -
» \
f

Cnm e amr T A e AP R R AN (W‘“"‘“’WW&'*T‘#:""‘Q‘V‘-{W, Fa TRy e—— . N
! »
. L3 *
s , 285

3120

450

" 1350

3400
2600

I

-



arges ¥
[FENEY &8

T T R A AT ok g D T

§ HREADYX

e menee y ! reans oo - [T
( .
Q‘; ‘ T e r & e
5 286 . ' .
P R ) . \‘
P s ’ ! .
. ¢
det first ouwmer in srinfol
? list all members in srarfo$ { -

_g2 83 2000 .10
F10 83 700 / 2

XREADYX .

? det next owmer i srinfor
7 list 3l1 members in sminfo$

F3 54 900
F7 54 450
F? 54 400

(U AR

XREADYX

? Sét rnext owger in seinfos
T list 3ll members irm serinfot
- .
Fl S1 1200 15
F4 51 450 3
FS s1 3500 10

XREADYX

? det rext dwrer in srinfo’

? list all members in srinfo$

¥

F1. 82 300 25

F6 - g2 S0 S

4 82 350 4
M

F10. &2 680
LS
KREATIYX

3

? get rext owmer in seinfol
T list ayl mwmbers im srinfo$

LIST ALL MWMERERS IN SPINFO%

¥'MEMBERS’ EXFECTEI.
X’/0F* EXFECTED.

XENTER A NEW LINE -— QR TYPFE

T list 231l members in srinfo

3

F2 89 1800 14
F4 83 6090 3
P8 55 1100 4

§

‘DROF *




; - . -y
U RS 2 ‘\.,_ - _ - ~ -
t \ 7
~ A *
b‘ « L‘ -
.« 287 >N .
iow *
. s . A v ’
det first owner in sorder; . i . ¢
. ?rilist a1l memberel in sorder$ 5 o oy
F2 2000 3 5-2-82 53 D I
10 680 20 5-9-80 e SN : . .
XREALY %X . ,
7 get next owner in sorderd
T ligt 311 members in-sorderd : o~
F7 450 20 25-9-830 54
F?. 400 8 20~-3-31 54
SKREALY %
? dget rext owrer ET':,' so‘rderi : . .
? list 311l members 'in sorder$ . . —
*ONNiEF\"S MEMBERGHIF LIST IS EMF‘{‘Y.
KREALYX
? dget rnext owrer Tim sorder i
?‘-15.'5’0 all members in sorder$ - )
FL 500 & 12-5-82 82 - A
fF’10 700 15 . 10~-10-80 82 ‘ - ' !
. O 3
. ¥READYX o
? get rnext owner in sorderi b
? list 311 members in sorders$
F2 1800 10  12-5-82 &85 S L
XREADYX
? det r.e;~:t owrner in sorder ¢ K
Lo ‘ i
¥ENII OF RECORD TYFE FILE REACHED, §
, XREADY*
g
.‘\ L]




T Y R TP

R o Te—

., “

*
4 f d
- “
e .

o asrarmmt oS

0 "‘ - . -
~am . ) 4
-, N * .

get first owner irm esinfo? -~ - o o
? list all hembars irm rsinfo$ . ‘y

F7 54 450 2 ’

KREADYX |
? det next owner in msinfoi "\
? ligt all members in rsinfo$

) 82 S0 S

KREADYX ‘
7 get next ownér inb rsinfoy ?
T ligt 311 members .inm rsinfas

GET NEXT--OWNER INE FSINFO¥ ST

X IN’ EXFPECTED. ’ ! .

XENTER A NEW LINE ~- OR TYFE ‘LROF ‘.,
T det mext owner in esinfo ) ,

FS 51 3500 10 N

XREALDYX 3

' ¢

? det mext owner in ssinfof s ]
T list all members imn rsinfod A

* ,

F4 S1 650 3 ®

Fa 5% 800 3 .

¥REATIYX ;/N ;
? got mext owner in Fsinfod - !
T list all members irn msinfo$

3 S4 00 , 9 i

XREADYX

) o

7 det mext owner in Fsinfos . K\/‘
7 list all members in Fsinfob \ ‘ '

F8 85 1100 4 . T

¥REALIY X ’ ,

* \?' -~ 1 ° .
/
3




‘ ’ v‘/
N . ' . ,
- +
. . . ) .
: . 289 ¢ - S K
' ' ° . . i
| , ( - ‘
get next ‘owner in Psinfol s N
7 list 8ll members in rsinfo$ S
P2 83 . 2000 10 (- e
p2' 85 1800 14 | . >
— v ~ T
KREADYX -7 .
? dgt rant owner in rsinfosd . ‘
? list all membersi in p;info$ < .
LIST ALL MEMEBERSI IN FSINFO$% _ - RV R
N X/MEMBERS’ EXFPECTEL. ot 7 "
X’ 0F © EXFECTED, . -
~  XENTER A NEW LINE -~ QR TYFE ‘TROP, e
? list =1l members in rsinfos q
P® 52 350 4 - o )
F9 84 400 L5 . ‘ .
[ \ . * v
KREADYX ) , .
. . !
™~ '? > /
. ’ >
! ° - ® » ”
det first owner in rorders -
, 7 list 3ll members in rorder$
F7 450 © 20 25-9-80 84 =
' <
*  XREADYX A - i
7 det next owner in rorders . ~
? list 31l members in rorder$ . ) e .
XOWNER’S MEMBERSHIF LIST IS EMFTY. ~~ " | a
AREADYX ‘
élget next owner in rorders
7 list 311 memhers irl rorderd’ ’ . ’
XOWNER’S MEMBERSHIF LIST IS EMFTY. "
AREADYX 0 "

? det pextu
o 7 list all

KOWNER’ S

¥READY X

t

, s -
owrner in rorders . ‘o ;
members in rorders$ . ",

' .
MEMBERSHIF LIST IS EMETY. .




N e O - N b’
e e e e s e e L. %‘ - J
R .
. . . ,
.

[°d
y . - » ~
Vda . < \ “ﬂ ) B .
. - . ' 290 "
b} . X ’ B
det next owner 1in rorderi : : N .
- "? list all members in rorder$ . 7
- KOWNER ‘S HEMBERSHTF LIST IS EMFRTY, -
5 ¢ h . 4
) , "XREADY X - ’ . . ‘
‘ ) .t get next owrer in F«ordegi/»« . ° .
" . ? list 311 members in rorders$ ’ : /
~ B : . .
\ Lv - o . % r—T/
~ XOWNER’S MEMBERSHIF LIST IS EMPTY. » 7 N
- » N K
AREADY % q A » e =
. ? get rnext owher in Pordens ; - )
) ? list a3ll members in rorvder$ ’ -
. % P2 2000 3  s-2-82 53 . | -
o 2 1800 10 *12-5-82 83 - ‘ , N .
’ ' i s e ¥ . ~ l .
¢ XREADYX , ¥ - ,
s/ . ’ » \W\ ’ *
? det next owner in rorder; . . '
s ' ? list 2811 members in rorders$ w

\. : . B9 350 30 ,18-6-81 , 52 A\ L

. F9' 400 . 8 ;’Qf:;/«m ."54 : ' o
) ' & K ’ ) . .
. ) i N
‘ XREADY % i . CIN C e
.t , ARAN ) ? det /net owﬁer‘ irn . rovrders . . . ’ .
' -7 lisg all mémbers in rorderd . ‘ '
N ' M .or ! oi ‘
Q rk N ) B LY ~ )
' FI \&00 & 12-5-82  S2 o
o "~ XREADYX 2 SN o
% ‘ . ). © %7 get next owner in orders Ve - ) ' h L
. 7 list all mepbers in rorder$ , ' , TR ‘ :
‘ \__/ w» o
T PLO 680 20 5-9-80 33 : LN ;
: ; F10 700 15 10-10-80 G2 ' - - :
. a . ¢
. N -7
' # AR '
i |, AREADYK - . \/P .
:~ w '? \ ' L, ) 3
T S~
> e >
é’_r - >b ° \/ ".‘ i

TR R
%
t
4 .
~N
-
4

N

e R e il o

4

B



B e e AT a S
. «

291

-det first owner in rearts?
7 list 311 members in Jorarlsi
-

7?3

o ‘ LIST ALL MEMEERS IN RFARTSY
. . -

¥ WHERE /

i ‘ ' */;1
)

) XENTER A
- ] 7 list =11
: s e
| N | . G632 F7
3 . . 632 F8
\; . ° 532, F"?_
! - G32 P10
' — .
. 5 XREADY X
T det mext
, . P list all
s ‘ ‘
) ' : G22 P4
B' . G22 RS
: ) G22- F&
. " 622 F8
: 622 F9
\_ ’ G22 F10
XREADY X
7 det ne:xt
# T list 3@l
KOWNER * §
IR ku XREADY X
) ? det next
P list all
G21 P1
G211 P2
G214 P10

~

%/ IN’ EXPECTED.,
CEXFECTED]
OR “$’ EXPECTED.

NEW LINE ~- OR TYFE

N . e
members in rrarts

It 1

own&r in reartsi
members in reartss

- -

ol U] = O3 LR O

owner in rrartss
membars in rrarts$

S~

-

“DROF .

. I '

MEMBEE?HIP LIST IS EMPTY;

ﬂ!

»

' . T .
owner in rratrtss
members(in reartsé

-
'.v‘ »
_ " L 4
//;\i\\ L e
;
¢ 1

3

-

.



»

e P e £ oy,

R

pumww@g%mm
;

fl

) n

fe

8
~

ALY

et
:

o

R

o

Pvr e A e e

]

202
,4

»
det next owner in rrartss”

7 list 8ll members im rrarts$

614 F1 2 , ,
61} F3° 1
611l F5 2
611 F10 3
N
. XREADYX
1

det first owrer i drartss |

? list all members in drarts$

632 F7 2
"XREADYX

K] w

? det next owner in dpartss
?-list all members in grartss

’

G22 F& 3 '//’

KREADYX ' '
det next owner in grarts;i r’f

list all members in grants$
, RS
Gil1 FS 2
5]

: E
22 FS

¥READY X \

a \

get mext owner in grartss
list all members im drarts$®

622 P4 3

"AREADYX

e o i g k. (s . Ao



. . | .. 293 ) ‘
‘ “ , . . .
det next owner in drartsi . ~ A
7 list all members in drartss . [
M‘/(’-—f/\\ ‘ G11 F3 1 ' 4 ¢ o R /, " ’
G ) KREADYX e C ‘ ;o 0\
RN . . / -~
R N ' ? det next owner in grartsi ,
" T list 3ll1 members in drartss ‘
® ¥ 4
’ G22 F8 1
XREADY X
. gé . : , . N
# B © 7 det next owner in dgrartsi
! ? list all members ir dgrarts$ / -
, ) 621 F2 2 ‘
) . ] N - LY
XREADYX ' .
. - ? det next owner in drartsi R
' ' ? list all members in grartss . ,
rd
L
G22 F9 5 7 ’ .
“ 632 F9? 3 N
- ‘ - Y
- 'KREADYX ; .o
- ? det next ouner in drartsd ' .
< 7 list 23ll members imn grarted . =T
Gi1 F1 2 . \ L7 ' .
f EIES v -‘(321 'F’l 4 ! - > ’ l:o - ’ ' l v 1 A !
; \d A N . £ . 0 .
, XREADYX - \ L
' ? det rext owner inm drartsi ° P \ 2
¥ list 811 members in  grartss ' A é
e . 611 F10 3 . .
Yooe ‘ G21 F10 5 » ‘ -
3 - G22 F10 3 )
; 632 F10 2 .
i -~ L .
& . KREADY ¥ | . ' Y
: - #
I3 7 det rext owner in derarts$
% XEND OF RECORD TYFE FILE REACHED,
! A .
L AREADYX ¢ .
* -
. . {
1




RSy .::qf-\:‘;;»‘rgw P

20
=

;.
i,
- "t
.
{
i
Fal
;
o
:‘l
#
3
x
%L
ha
g
,
‘%
R
#.

#

X

294

define-rrofile user: 4102

code ¢ 25 - .

rfrr ¢ rerfor '
mfrr ! budget .

rror - dnum <> *102° L .

mror ¢ nnl ‘“,

drro ! zza8%

%FFINE—PROFILE ! USER! D102

¥INVALID USER NUMEBER. -
XENTER A NEW LINE -- OR TYFE ‘DROF‘,
a ; *

define-rrofile userg dml02
CODE : 25

¥X/RECORD’ EXFECTELD, 1
XENTER A NEW LINE ™ OR TYFE ‘LROF‘.
récartd derartm codey 25 ¢
RECORD DEFARTM CODE!2S

f

XINVALID SCHEMA RECORD-TYFE NAME. *

" XENTER. A NEW-LINE -= OR TYPE ‘OROF‘,

derartments code 23
DEFARTMENTS °~ CODE$235

v

record
RECORI

.. .

ACCESS CODE. -, . ,
EW LINE -~ OR TYFE ‘DROF’. e
4 -
'ARTMENTS ~ COLE!: 9 @
K.

X INVAL
XENTER

RECOR
RFRR ¢
X’RFR’ EXFECTED, % _
XENTER A NEW\LINE -- OR TYFE ‘DROP/ ¢

rfr 3 rerfor
RFR ¢ FERFOR 3

KINVALID SCHEMA FIELD NAME,
XENTER A NEW LINE -- DR TYFE ‘DROF’,

t

Wy

LU YAPT P




) - g Q
. R ao Y e s e v i 7y SRS Y R I TR0 1 s Yoy 2T S e I 1 he NS e e o o e s : \

\ e ’ fl‘" o \?}.
. 295 . o r
& - - I
o rfr’l rerfo ' - ¢
MFRR $ BUDGET
N ~ \ .. ,
’ . XINVALIL'SCHEMA FIELD NAME, .
2o _KENTER A NEW LINE -- OR TYFE ‘DROF’..
:( ! .
. ?omfr ! budset " w
% \ MFR ! BULGET , . (
ag KXCONFLICT-IN ACCESS CODE.
£ ) XENTER A NEW LINE -- OR TYFE ‘DROF‘,
“-' s "
3 ? mfr ! nil N
RORR ¢ DNUM <3 *102*
' . X/ROR’ EXFECTED., . -
XENTER A NEW LINE -- OR TYFE ‘DROF‘,
? orar ! drum <r "d102° . l‘ ‘ {
ROR ! DNUM > "D102°
XINVALID SCHEMA FIELD NAME,
XENTER A NEW LINE -- OR TYPE ‘DIROP’, ,
MROR § NUL , o, S
b X‘MOR‘ EXFECTED. , x
XENTER A NEW LINE -- OR TYFE ‘DROF‘, - Y :
i ro ? for ¢ nil
X v "IDRRO ! AAAS. !
o " X‘DOR’ EXPECTEQ. .’ J ' §
4 g>r « KENTER ‘A NEW LINE -= ORTYFE ;ﬁﬁop'. %
: _ ] ;
‘7’ ? dor ! asa's ¢ ) e ‘ :
DOR : AAA $ 4; i
) XCONFLICT IN.ACCESS CODE. .. A e T
. s .- XENTER A NEW LINE -- OR TYPE ‘DROF’. ) ) _
\K ' *
2 ?dor.nlli S . w . LS
o, . ’ \
A ¥READYX < .
g * ,
i v P ‘ .
;?. . : } ' ¥
% . |

‘
\ - . ~ 0
- . - ‘ ~
. . B
,

~
-

SR SR TR

&ehm
T
i
§




— v :} e PR AL o T T s kR PR VR A e P W e s ——— e

: | .

. P ¢ * * L4 #

/ 296 ’
1
* |

.‘ 4 T

. list-profile ! dm102 % ' ,
i ‘ '

7 /7 M

e '

j" AN 2R 20 BN BN 2N } .Q (SR EE Y B B R N 2E 2R B IS L N BN B B DR K IR N A 2R 2 2R 2N 2k 2% N BN 2 N "

; FROFILE DEFINITION ‘ . -

; USER.. DM102 ) ° .
%‘;l 0000000‘000000000000‘0&000000?0 00’“00000000 4
% ) Lo S
& RECORD 3 WEFARTMENTS
Foa CODE ¢ 9 J
3 RFR ¢ FERFD : *

5. S MFR ¢ NIL - !

- .t ROR ! INO v - vo i 002 P

\\\ MOR ¢ NIL .
. ) DOR ¢ NIL )

[ IR K K SN K BN R BN 2R B 2 20 0 B B B B B 2 BN B K R N 20 2 2 BT SR N A BN 2 2N 2R 2R AN J

, » KREADYX S . . .-
‘\f . . ’ S \". /

? restore-access | dml02$

- ¢ 4 ~
‘ FREADYX o~ ' |
1. 7 remaove-rrofile ! dml102¢$ . *
5 REMOVE-FROFILE : DIM102% : %
3 ’ el
’ KUSER MUST BE SUSFENDED AND NOT ACTIVE. oL
? KENTER A NEW LINE -~ OR TYFE ‘DROF‘. ;
'S f
A ? droe B , : .o
1 KREADYX ' - ‘o,
5 ', ' oo . ¢ .
] ? fusrepd-access $ dml02; ) ,
: '? remove-profile ¢ dml02F . . , v
‘ ¥ list-rrofile ¢ dwl02%
P LIST-PROFILE" $ IIM1OZ% ' o ’
. B : ” -
XUSER’S FROFILE IS_NOT DEFINEL.
ZENTER A NEW LI zf OR TYFE ‘DROF‘.- ©
? OoF ) , ' [ N ’ N ’ ’
) KREADYX- \
? restore-access § dmlO2% e ' . : ‘ QQV
‘ ¥ . A




. -
. 4 “ :
1 rm mant e am A S Yy SN PR R, LTI LT o1 e, SRR A At s s

«

s E . . 297 i ' .
H ! A
i ’
: : AN
. 1
KREADYX - o |
? ' T \
? defime-rrofile’ _\
; T user ! dsl02 /[ '
4 N
: ? record ! emrlovees . I,‘
? code : 10 ! .- )
? rfr ! sglary sy rerfo e’ .
. g ? mfr ¢ dno v droseFfrs p
w ? ror ! dro wx *d102* . '
! ? mor ¢ nil ‘ » ' R ’
i 7 dor $°'mil . P - .
." ? . . . a ‘H t ,
\, 7?7 record! derartments 5
7 codet! 9 - .. i N o
St \ ? rfr ! budget’'s rerfo ‘ " a 1
o~ ? ror/ Vdno (i td102% . ~ ) k
} ] T mop d mil dor § nil ‘ “0\
P T ’ u :
P , . o
' ? set ! der-emr o ' T \
. T code -1 % ‘ ,
\ - ’ \
\ ., XREADYX \
? define-rrofile user! mra : ’ b
\ » . : S
: e ! Tecord ! emrloveds . . : :
"? code ¢ 9 . ’ -
? rfr ? salary » drno + gno ¢ hrs v rerfo ) S
‘ : T afr ¢ nil ‘ ‘ b
\ ? ror ! nil mor § nil  dor ¢ mil Y - .
' A r? ' ’ r ! %
- H . : . -
, ? record ! med-history ’ . . %
, ' ? code § 2 . ; .t
Vo P orPrinil mfrinil ’ )
VP rorinil - . ¥
\ % mortril . . ;
. ? dorinil
{ ‘P v
. ' % set ! emh : ‘
g s codp § 3 ‘ )
Ll -
i +$ . » -
1; “\ , . . . ) R 1]
- o READYX - . : . "
s'_. E - ) 4
Y\; s . e
L] -
. € v 4 *
A v ’ T4 R
. ~ 3
Yoo . - L
\\w e el :
. - :




e Ml

o
LAy
EE

TR ROV R NILATS &

yal

define-erofile
? usger § -d24132

S 2

? record ! grours
? code ¢ 1 .

“? rfrinil

T mfrinil
T rorinil
T morinil
? dorinil
7

™ record ! emrlovees
T code + 10

? rfr! salary » rerfo
P eity

? mfr! eno » tel
7 ror?! d€no *432"
T mor: nil

? dor! nil

T record | gra

T code § 2
? rfr! nil
? rorinmil
? morirl
T dorinmil
? Lo
? set | drour-emr
? code | 1

mfr! nil

? set {3 rrarts
T code!’'4 .
7 set § drarts °
7?7 code! 4 o
$
. XKREADYX
¥ ’

;.

S

14

298

aro

4

v

.o s e L

= {uTn)

st




v s e mn wee fe ppehen

define-s¢

Y

Tt e M P T A 97 M A IR F o e

: ™ 29

<

rofile ' user: rda

SRt SAFICE i )

5 ? record! rart
5 ? codel?2 ‘ﬁ/s . /
: T rfrinil frimil '
3 , ? rorinil  morzinil’ dorinil
. ? ' Y
“i * 7 recaord'! dra ‘
;. ? code ! 3 ‘ '
i ? rfrinil —
3 “? mfr ¢ gno r FRO ‘
? Z ror: nil morinilé dor? nil, .
5« . ~? record ! drours
% : ? code ! 9 . .
i i .7 rfr ! buddet mfrinil
. . ? rorzinil  morimil  darinil
N - . ? ‘
’ ? record ! orders -
, ? code ¢ 2, :
. T rfrinil mfrimil
» ,,////////?/;ﬁi:hil morinil dortnmil
: ? S
. 7 -record ! surinfo .
S . T code ¥ 8
N T rfrinil mfrinil .
{ ? roriril morinil dorinil
' ? recaord ! ‘surpliers
< ?
g ? code § 5 4
, H r d
. ? rfrimil  mfr ¢ sno -
: ? ror:nil morinil dor:nil, ¥
. T get ! drarts .
B ? code ¢ 1 ,
. " 7 get ¢ rearts
, ? code 1§ 1 - S
? set ¢ rorder
7T code 't 4
? set | rsinfo .
. 7 code §¢ 4 )
g ! ? set ! sorer ' .
' ? code! 4 Ky )
T set | srinfo 2
7 code § 4
$ . 3 )
RORINIL MORZINIL DORINIL
¥‘MOR’ EXFECTED,
- XENTER A NEW LINE -~ OR TYPE ’'DROF‘. °©
. ,
- A - »
) ' ,
’ —




? rorinmil

-
4 T SR S RTS Y h 1 V e 4 Y e A e o % bt

-

morinil dorinil
ROR: NIL MORINIL) DOR: NIL

X‘DOR’ EXFECTED.

KENTEHp A NEW LINE -- OR TYFE
‘rorinil  morinil  dorinil
RORZINIL  MORINIL  DORINIL

%/ROR’ EXPECTED.

XENTER A NEW LINE -- QR TYFE
! ]

rorinil morinil dorinil

SET ¢ SOFER

-7—56% ¥ zorder

XREADY %

1

.+ 300

‘DROP

"TIROF 7

" KINVALID SCHEMA SET-TYFE NAME.
XENTER A NEW LINE ---OR TYFE ‘DROF” ..

N

e ot T i S RL . S &



PR}
<

301

by
.

‘lisg-rrofiles ¢ dmlO2 -

? ds102 | .
? - d2¢132]
? * me3

? rda $

B
AR R A A A A R N A N N N N Y I ]

: PROFILE DEFINITION
USER., DM102

¢
4
0.‘0040‘00.000.0000000.‘0006‘._‘00

OQQ‘QQQOD

RECORD ! GROUPS ’ \

CODE ! 8
RFR ¢ NIL
MFR § NIL
ROR ¢ IND &3 D102
HOR -t NIL
DOR ¢ NIL
RECORD § MED-HISTORY
CODE 3 1

CRFR t NIL
MFR ¢ NIL
ROR  DNO £3 D102
MOR ! NIL ;
DOR : NIL - ‘

4 ‘
RECORD ¢ EMPLOYEES
. CODE ¢ 8

RFR ¢ NIL - -
MFR ¢ NIL
ROR ¢ DNO £ D102
MOR  NIL .
DOR § NIL

& |
I’\'ECORD\a ¢ DEPARTMENTS
CORE L ‘

RFR ¢ PERFO- A
MFR ¢ NIL

ROR ¢ DNO °
MOR ¢ NIL ~
DOR & NIL

SET ¢ DEP-GROUP

CODRE : 4

SET :. DEP~EMF

COUE ¢ 4 ’

SET ! GROUP-ENP
CODE & 4

42 4 428040080025 EEIYE

"

<r D102

L N L N 2R 2N 4

e ve e ml - Parcm e Bl W Ry AT NS YRS Y AN R e e T e R T L R

.
(]
2
, .
/ .




]

N DNO

\ . e A T e s PSR AR S 4N L) b e U

302

v

)

»

"@ihoovovﬁvoov'.ooooo'000000600'400009000000'
h PROFILE~DEFINITION
USER.. DS102. -~ AN

n
q’ LRI A I A N R I AR S B BN S BB B IR 2N X 2R B RE BE B SN B B 2N K B K IR IR X I ] -
~N

RECORD $ DEPARTMENTS
CODE ¢ 9
RFR ¢ FERFD
© BUDGET -
NIL : ¢
Mo ok 102
NIL \ :

" MER
ROR
MOR

e oo 0w

CORE "¢ 10
RER ¢ PERFD
SALARY
MFIR HRS , ‘.
GNO . o

DNO - <x D102
NIL Y
NIL

ROR
MOR
DOR

.. ®e oo

SET ! DEP-EMF
CODE ! 1 .

0000000OOOQO'QQQOOQL‘O000006&0.00'0000000

Led IRY

005/4LN1L S ) N
RECORD ¢ EMFLOYEES A o

Foazine wls weae

e ELri il




- e e \-{—«x wPparete e g - e it
F
’ - 303 )
. ) )
000000000000'00'000!00'0000’0!000000000OO
PROFILE DEFINITION .
USER., D2GL32 , . g ’ . -
00'00‘0000000"0000'00\';000"OQQOOOOOhQ;O . - ‘}o »
. RECORD ! GRQ <
CODE ¢ 2
) RFR : NIL. ‘
MFR ¢ NIL -
ROR ¢ NI C
MOR NBL = ' : g
DOR ¢ NIL - g
RECORD ! PARTS : o S
) CODE : 1 . s : -
. RFR ! NIL / '
Y o MFR ! NIL . - e it
« ROR ¢ NIL g‘
. MOR NIL S
‘DOR ¢ NIL -
o ’ - ) .
RECORD ¢ EMPLOYEES . ‘ ‘ :
CODE ¢ 10 ] . i -
RFR : FERED . ' L ) :
‘ ! “ SALARY S :
MFR 3 GNO q - ;
. : "DNO \
, ‘ CITY : v o
¢ ' TEL (E % ‘ )
ENO . < °
~ ROR GNO T w» 632 -
Je . , MOR 3 NIL : g e
*  DOR i NIL
-~ 7 :
- RECORD ! GROUFS . . ‘ ' y
— CODE ¢ 1. o
R RFR : NIL e .
MFR  NIL . ‘ - ° ;
: ROR ¢ NIL . -
‘ MOR ¢

DOR

NIL - . ' r . L

NIL ...

4

o

4

R
A}

- .
00000000'000006000000.000000000.000000.1

SET

- "CODE

SET
CODE

SET
CODE

. 4 ' .
! GPARTS ) ) ’ - ;
' o4 : . L '
n’\), . 2
¢ RFARTS ) .
P 4 ) - 2 N

GROUP~EMFP ) )

+
4
] - 3

. | s TN

’

) ~ ' °
‘
< .



- - - SR " -~ . e rauia
o °
~
. g 304
# \N LI
o o —2
- .
‘ S v -~ - %
: QQO0.0'OQ!'00040’00'0:0000'0"'0000}'0000%
, ¢ PROFILE DEP\’INITION
= B
‘ X < UpER.. MPA" . -
. R RN R R R N R R R R R R R ‘ -
. .

. RECORD ¢ MED-HISTORY o . N
K . ‘CODE ¢ 2 . ' . ‘
) , - RFR  NIL )

. MFR § NIL
. ¢ ROR ta.NIL
" MOR $ NIL
,  DOR NIL
RECORD : EMPLOYEES | ‘ * .
. .°CODE ¢t 9 ' om
" " RFR PERFO- _
' -HRS
oo Co . BNO ,
' ' ONO - e
SALARY ~ //-xx/y
. MFR ¢ NIL : ‘ ¥

ROR ¢ NIL ' ‘

MOR ¢ NIL °

DOR  NIL . s

SET ! EMH

CODE ¢ 2

000‘0000060000'0‘00'00'600‘“,00'00000"0000 "‘} : .

- / . ' o
W ] . - ¢
' . 0000'0000000000;060000000000000‘0000‘000 ."14 )

PROFILE DEFINITIO _ ‘ o

o N .

g o

' USER.. PDA ‘ : ~ S ' ‘

;\i' ’ 404 ; LI 2N BN -0 LR K B N AR B A AR AN IR P RN B A IR IR A A A N N N A S I 1 * ’

e N Y

1 . .
. - \ .

E

.

RECORD ! SUPPLIERS
CODRE 15 5 -

 RFR ¢ NIL g

L MFR ¢ SNO o ﬂ i

e ROR ¢ NIL ‘ : : §

, MOR $ NIL . 4 : :

DOR ¢ NIL - _ , K X

, \ A 5

. RECORD | SUFINFO . E ' 3
CODE ¢ 8 . : ‘ 3

RFR ¢ NIL : T ///A ‘ i

"MFR -¢ NIL o ’ , o "

NIL ’ - o X . ‘
‘NIL ’_‘ M o ' 2
NIL . ‘ ‘ .

(’ | " ’ m ( |

| ROR
U MOR
L DOR

"o oo 24 ae o»

. p— i i = =




N I A I R R I R A R I )

-
RECORD ¢! ORDERS
CODE .: 2
RFR ¢ NjL
MFR ¢ WIL
ROR ¢ NIL
NIL
DOR ¢ ?}L
RECORD ¢ GROUFS
CODE -: 9
RFR ¢ BUDGET
MFR ¢ NIL
ROR &' NIL
MOR $ NIL
DOR ¢ NIL
RECORD ¢ GRQ
CODE ¢ 3
.RFR : NIL
MFR ¢ GNO
. FNO
ROR ¢ NIL
MOR $ NIL
DOR ¢ NIL
RECORD ! FARTS
CODE ¢ 2
RFR : NIL
MFR  NIL
ROR ! NIL
MOR ¢ NIL
DOR . NIL
* SET ! SFINFO
~ CODE t 4
SET =~ ! SORDER
CODE ! 4
SET t FSINFO
CODE ¢ 4
SET ! PORDER
CODE ! 4
6ET © ¢ RPARTS
CODE ¢ 1
SET. ! GPARTS
Cope ¢ 1 -

 XREADYX

®

/

'

o



.

b4

W
”
%
3
M
§
i
o,
5
b3

&

DML commands to 'see' some of the

B AT

306 o o

b

(/b.2 SAMPLE INTERFACE' OF THE DM102-USER - %

M '
.
~ -
'

N .

This user is the manager of the department with symbolic

name 'dl02'. . His shown subschema does not have to be

thefview‘specified by his acess profile. It may be

. |

a subset of;the view defined by his access profile.

»

exactly

If the

user wants to change or de}ete and redefine his subschema,
\ .

he can do so by using the available ENDBMS subschema

commands. After his subschema is defined he is using some

ey
view defined
' ),

]

by his
subschema. It can be seert clear from the results the

enforcement of the 'occurtence' restrictions.

>

B aasnid

.~

:
i

!
4
g



Sipo e S e S R A T R e ST A I S S O SR

[ 307

user » dmiQ2 » dﬁBE y 18
XREADY X

? list-subschemas ‘ \\

-

LA AR B AR R A A A A A A A N A A I I I N N I N N I I N N I I I )

SUBSCHEMA DEFINITIDN
USER [M102

N
* 4 0'000000000000000000000000000000000000000'0000‘

f

RECORDIN! DEPARTMENTS
VIRTUAL WITH-BASE: DEPARTMENTS

FIELD? DNAME

» REAL FROM! DEFARTMENTS 4 +DNO
—\;g FIELDS BUDGET ,

REAL FROM! DEFARTMENTS +BUDGET

END

RECORD': EMPLOYEES

VIRTUAL WITH-BASE: EMFLOYEES ~ o

. FIELD!: ENO | ,
REAL FROM! EMFLOYEES +ENO
FIELD! DNO ’
REAL FROM: EMPLOYEES +DNO
'FIELD: PERFO , —

L REAL FROM: EMPLOYEES ~_ ‘FERFO

END ! .

~

RECORD! GROUPS

REAL WITH-RASE! GROUPS
"FIELD?! GNAME
FIELDS DNAME

o FIELD! LEADER S
] ' FIELD: BUDGET
[«’%\‘ ) END\ ) ' )
7 ‘ , : [

END OF SURSCHEMA DEFINITION®

(AR N LA K B I R R 2R A BT R B R R N I I N A I O A N N I I AN I I I}

v

- HREADYX £

A%

P



_ MﬂﬂﬂmmﬂﬁmwwwLﬁ,wmwwpw“mwmwwmwwvwﬂww“- s . —

308
; lock for read ¢ derartm . . ‘ ' ;-
? ' emrlovees \
T -grouprs $

LOCK FOR REAﬂ i DEFARTM | v

- ¥XINVALID RECORD TYFPE NAME. '
*¥ENTER—A NEW LINE -- OR TYFE ‘DROP‘, ¥

? lock for read $ derartments

XREADYX . ] : .
" ? list all of derartmentss ,
D102 45000 , “ a ‘ ’
“KREADYX
+ ¢
P list a3ll of emrlovwees$ “
E32 D102 R 4
E29 D102 C "k
E26 D102 B ~
E23 D102 A
E17 D102, E -
E14 D102 A
Eil D102 A
E? hio2 X ‘
AREADYX ' ' : ;
D ' ™Nist all of drours$ . §
- 1
. #
2) D102 E17 2000 4
G22 D102 El4 1800 :
612 D102 XXX 0000 ,
XREADY X % ¥y
. ,
R ; ? list all of drours in ascending , .
v 7 usind gnames - )
. 612 moz2 %xx oooo * _
G22 D102 E14 ,1800 T
.. 632 D102 EL7 2000 ‘ )
7 XREADYX
; 'P ¥ Q
N ) \
\ [ !




:
. . . .

© I St TR M e bt e

: .
. ' —
C 309 |
'~ -
' - !
. list all of drours ( @
? in descending using bydgets$ - o ('/
i _ s32 Hhoz E17 2000 -
: G22 0102 E14 1800 . <
¢ ) G12 D102 oXXX 0000 | )
T XREADYX . y e
§ ) ? list 3all of emolodees
2 , ? in ascending using rerfo % / ~ - |
LIST ALL OF EMOLOYEES
i XINVALID RECORD TYFE NAME. ,
XENTER A NEW LINE -~ OR TYFE "DROF’,
? list all o‘f/‘ emrlovees - A , -
, E23° o2 A
R E14 D102 A ¥
u Ei11 D102 A «
: { E26 P02 B . ) ;
i E3? D102 K . i
; E29 D102 € > :
K E17 [102 E. , ;
y ) 3
3‘ E9 DIOK X %
: XREADYX .
; . s ' . ]
4’: /’ ? list all emrlovees 3
5 ? whére Fperfo = *a3° 3
& - 7 in sscending using eno % %
¥ LIST ALL EMPLOYEES ' ' »
i X‘MEMBERS' EXFPECTED.,
"~ " ¥%’/0F’ EXFECTED. 3
& ' XENTER A NEW LINE —-- OR TYPE ‘DROP‘. y .
7 list all of‘CA\wlosees
2 E1l D102 -
_ N E14 D102 A
. 1 E23 D102 A | —
¥READYX
' © P
? outs .

: LOG OFF TIME 21.51.48.
\ o~ 9 ]
3.116 CP SECONDS EXECUTION TIME. . '

'




PRl

e e T T

-
.

Ay

YTIPIIR PING S TirrE AR

g
{

.D.3 SAMPLE INTERFACE OF THE DNSlOZ-USER.'

!

This user is the secretary of the department with s'ymbolic\

name 'dl02'., She defines her subschema and uses some DML

A\ S
 commands to 'see' the data she is -‘authorized ~ to.

Interesting is the new émployees record fype file . The

~listing of ﬁll occurrences of this record typé' file shows

//the *security enforcement at the occurrence level al‘\d the

v

7

appearance of\a“l'COmpatible' field.

i 4

—




O T e ey ey

7

PR

TR INEIR ) v e e SR REE ST Wil R e
A

user y ds102 » dsdl » i%

oo, ’ ‘ 2
XREADYX ‘
? define~sjbschema . y
? record ! desm .
? virtual with-base ! derartments .
7 field! dname resl from derartments.dno
? field! mname real from derartments.manager
7 field!: buddet real from derartments.buddet
? end : ) .
? record emF
? virtual with-base : emplovees
? field! ename real from emrlodees.eno
? field! dname real from ° emprlovees.dno
? fiel! gname real from emrlovees . dgno |
? field! mname real from derart.manader ~
? end ’
? ,
? set ¢ d-e ‘ d
? real with-base ! der-emprl
7T\ . owner & .der 4 .
7 member 2 emp .
? end$ - -

&

FIELD! RUDGET _REAL FROM DEFARTMENTS . BUDGET

;kCONFLICT WITH READ FIELDN RESTRICTIONS.,
XENTER A NEW LINE —-— OR TYFE ‘DROF ‘.

‘m

?l
FIELD?: MNAME  REAL FROM DEPART,, MANAGER-

XINVALID COMPATIBLE R-NAME IN F-DEFINTION.,
XENTER A NEW LINE -— OR TYPE ‘DROF ‘.,

? field! man# - -
FIELIt: MAN#¥ \

*'REAL’ EXPECTED,
X’VIRTUAL’ EXFECTED.
. XENTER A NEW LINE —— 0R TYFE ‘IROP’, ,

. ? field?! mname real from derartmerts.manager

- .
REAL  WITH-BASE ! DEP-EMPPL

XSET BASE~NAME OUT OF USER‘S PROFILE, :
XENTER A NEW LINE —— OR TYPE ‘DROF ‘.,

7 real with-base ! der-eme T
fREADYX - ' .

? v ) [" ’ . L

4 e eem———aiTe

—



[N

L mes mtemeaa e e bz L ot -
- ey e

N

312 : ST
list-gsubschemas

[

8
AL IR 2R 20 IR R IR 22N 2R B N B AN BN A AR B R I A AR B BN IS N BN S N N I S S R I N SN S

- , " SUBSCHEMA DEFINITION
¢ USER DS5102

\ LA L AR O 2 O B BUIE AN B AN R A R I 2R B B I A A B A N A B I A N S A IR N AP S S SR N 'Y

~ 3 RECORD: EMF .
VIRTUAL WITH-BASE:! EMFLOYEES

FIELD: ENAME \
REAL  FROM: EMPLOYEES JENO

 FIELDN: DNAME , '
REAL FROM: EMPLOYEES. . »DINO

AT DT AR R  R  pom
o &

z FIELD: GNAME ,
o " REAL FROM! EMFLOVEES +GNO

FIELD:  MNAME
- " REAL FROM: DEFARTMENTS MANAGER

« END

-
* B

v

RECORD! DEP _
: : VIRTUAL WITH-BASE: DEPARTMENTS

i | . " FIELD: DNAME 7
’ REAL FROM! DEFARTMENTS JINQ,

e

FIELD? MNAME )
+  REAL FROM! DEPARTNENTS s MANAGER

. END : ‘ 1.

< SET: D-E :

t REAL WITH-EASE: LEP-EMF
(OUNER: [DEP

MEMBER ¢ EMP

T R T T el T A T SR

END

o

END' OF SUBSCHEMA DEFINITION

R N R R N R R T Y

XREADYX




L FERI A et

e ey

o
e 4 Rem e AR T v mp am e 1O AL I g mt 8 o s S £ Ry bp 6 praimat ot e o

313

lock for resd des r eme §
LOCK FOR READ DEF , EMP §

XINVALID RECORD TYFE NAME,
*ENTERﬁA NEW LINE -- OR TYPE ‘DROP‘,

outs‘
ouTs

XLABEL OR
X/L0OCK” EXPECTED.,

XENTER A NEW LINE -- OR TYFE ‘DROP‘,

? drop . £3

XREADYX

P user ds102 s dsd2 y i$

P

KREADY#
lock for read der 1y eme §
XKREADYX

list 311 of der $

pi02 E9 .-

XREADYX

. list all of. emr$

E32 D102 G22 E9 :
E29 Di02 G632 E9 .
E26 D102 G32 E9

E23 D102 632 E9

E17 D102. G32 E9

E14 D102 G22 E9

E11 D102 X  E9

JE9 D102 X E9

XREADYX

list current of der$

" X’ROR‘ SECURITY ENFORCED.

¥READYX

? det next of der where dnameé'd102'5

list current of'dep$
D102‘ E?

XREADY X ' -




. -

KM,

IR

e v A

k4
T

s
B e S )

it

s AR 0 ek 8 e eyt e ol oo 5T A

a o

set oci-in d-~e to ci.of der$

{/L{f‘

EXECUTE
stor
¥TERMINATEDX
/riylfl
/endbms
- . \ ‘
= CONCORDIA UNIVERSITY ====== ENDBMS =
= DATE ¢ 81/08/24, .
= TIME ¢+ 19,21,23. - ’
KREADYX ;/ T
? user z01 =02 i}
? 'recover ds102i -
? outs , K

' /

LOG OFF TIME 19.22.16

+977 CFP SECONDS EXECUTION TIME.

/endbms

AY

ENDEMS =

= CONCORDIA UNIVERSITY ======
= DATE ¢ 81/08/24.,
= TIME ¢ 19.22,49.
XREADYX X
? user d5102 ,dsd2 »i%
XREADYX
7?7 outs

LOG OFF ‘TIME 19.23.16,

-

+352 CP SECONDS EXECUTION TIME.

S —— oA S s g 17

ST




S L

P e

—

A A N2 PR P

3

4

©

§ P e S TR AT S RYATLE 7 L el WA NS A a P b g pher b e v e

v s

i1s

-

a
1

D.4 SAMPLE INTERFACE OF THE PDA-USER, 4

~
~

This “user 1is the direct-tér. of the pdrchasing\

department, First he defines his subschema thgh
incluades only the parts and suppliers - record type

files and  their 'supplies' and 'supplied-by'

- associations. The used DML commands show how well

-

information can be retieved based on these record typé
files and their implemented légi,cal associations.
More complicated queries can be defined using the DML

'if' and 'goto' commands.

4

e i) WS




R o = e I e R PR

etk IR AP - — PR

| 316

user, _Pdé s, pda00 i$

XREADYX . o g
? define-supschems . .
? record ! surl ‘ S
T virtual  with-base | suprliers -

77 fiekd? sname resl from sureliers . sno .
2 field?! citw real from saslier ., city

? end

? record ¢ perinfo

? real with—base ! surinfo r N
R » field ! rriame .

? field ! sname

? field ! rrice

? field ! lead—tiae

7 end . \

7 récord rarts ,

? resl with—base ! rarts

7 field ¢ rname . 5
7L field ¢, colour ” -
? field ¢ weight

T end g 3

? set ¢ rart—rerinfo’ -

? real with-base ! ssinfo ‘

? owner ! rarts r von

? member ! rerinfo .

7 end

7 set ¢ sur-perinfo \

? real  with—-base $ info : 7

7 owner: suel BN o _

? memnber ? rerinfo . "

? end C =

74 . ' ‘ -

FIEKD?: SNAME REAL FROM SUPPLIERS . SNO )

X'FIELD’ EXPECTED, ‘
¥ENTER A NEW LINE —— OR TYPE ‘DROFP ‘.
. e, .
? field! sname real from suppl\fg‘rs ¢ MO
-'FIELD:  CITY REAL FROM SUPLIER . -CITY

»

XKINVALID COMPATIBLE R-NAME IN F-DEFINTION.
XENTER A NEW LINE -~ OR TYFE ‘DROP~“ .

? Pield! city real from suppliers.lcits o Ly
REAL WITH-BASE ¢ INFO )

XSET BASE-NAME QUT OF USER’S PROFILE.
KENTER A NEW LINE -— OR TYPE ;DRDF" .
, 3 v

7.real with-base | srinfo
)

¥READ Y X




e

[

e Al W AR A T

»

it

AT A 0y B

e G A P AT A RS B S N T T

VI PSP

,

et o et TN R ST RS LSS e AP A S g ey 0

R ‘ 317 "
‘stom
- ) XTERMINATEDX >
/rtalfl s
/endbms
(s - - . * . -
. b ; )
= CONCORDIA UNIVERSITY ====== ENDBMS =
@ = DATE ¢ 81/08/24, ' :
= TIME ! 21.28.36, '
-
XREADYX
? user Fda ,CPdaOO y 1%,
XRECOVERY MUST BE CALLED-INFORM DIEA.
L ‘LOG OFF TIME 21.28.53, Fy
B ] P AT
v222 (P SECONDS EXECUTION TIME.
/endbms ’ s
= CONCORDIA UNIVERSITY ====== ENDBMS =
= DATE ! 81/08/24,
= TIME . 21.29.14.
XREADYX
Jy 7 user » z01 5 =02 i% )
L) ‘ XREADYX_ ;

? recaver {-rpdas
XREADYX
? user pda s 4300 5 i$
¥READYX
? outs$
LOG GFF-TIME 21.30.30,

1,183 CP SECONDS EXECUTION FIME.

. ! " . '

%

o




O R A v ey g

P

A

-

RTINS e, AR A A LU B - v

5

o

RO S St

3

v

)

"8

318.

4

. list~subschema$

14

o
e e AR o I o S g PRI A e vy =

[

00000;000!"00'000'00"00000000'00000.000'0'.000000

SUBRSCHEMA DEH@NITIUN -

USER

FPDA

T

R R R R N N N v S N SR S S NN N S N S N N NN N N A )
‘ [

RECORD?

FARTS

REAL WITH~RASE: FARTS

END

FIELD?
FIELD:
FIELD

" RECORD! PERI

PNAFE
COLOUR
WEIGHT

NFOD

REAL WITH-BASE: SUPINFO

END

: RECORg: SUPL.
L

VIRTU

FIELD:
FIELD:
FIELDS
FIELD:

AN

WIT

- FIELD?

END
SET!?
REAL

END

¢ SET?
:REAL'

END

REAL F

FIELD
REAL “F

SUP-FER
WITH-R
QUNER ¢

MEMEER "

»

FART-FE
WITH~B
QUNER ¢

MEMBER 3

P

FNAME
SNAME
PRICE
LEAD-TIME

H~BASE: SUPPLIERS

SNAME
ROMY SUPFLIERS

CITY
ROM?! SUFFLIERS

INFO N\
ASE! SFINFO

SUFL

PERINFO

RINFO .
ASE} FPSINFO

FARTS
PERINFO

ENDN OF SURSCHEMA DEFINITION

PR S NI B I I S B A B A AR A AR AR I A IR R S BRI IR N AR AR I B N A A A N X 2

XREADYX

2y

+8NO

CITY




o

- T ™™

319 ,

list allg of rartss. . .

LIST ALL
re

OF PARTSS s

XRECORD- TYFE FIL\EdHUST RE ‘LOCKED FROFERLY. '

g"“\,

1 et

XREADYX .
T lock for read 38 rarts ’
7 surl P
? lock for delete ! rerinfo -
? ¢ . t Y
LOCK FOR DELETE ¢ FERINFO
XATTEMPT TO VIOLATE THE GIVEN ACCESS RIGHTS.
XENTER A NEW LINE -- OR TYFE ‘DROFP’.
]
7 lock for read ¢ rerinfo
XREADYX , P ’
. - . oy
? 1list 2ll of rartss$ . -
P7  BROWN 70 : : | o
P&  BLACK 25 & :
. PS5  WHITE 50 ? . .
F4a RED | 100 ' ~ .
P3  BLACK 20 . )
P8  RED 65
P2 WHITE 80
P9  EROWN  25.
P1 BLACK 55
P10 RED 40
T N
XREADYX (\ .
? list all of suel$ " R
S3  QUEBED -
* 84  QUEBEC g . ‘ .
S1 MONTREAL - ' : “
S2  MONTREAL o |
S5  DOTTAWA R ,)
XREADYX e
s .
l’ <

S e

o

S et wbw oan e

it o s o

b




e e PP ey SRR res
Tine LARSIT T« gy

R R

. .
b e memmssie e e ww SR WN AT 5] Wit —y o er—— o
“
.

320

list 3ll of Parts t—//y
? in ascending wusind rrame

, P1  BLACK 55 .
P10 RED 40 !
P2 © WHITE 80 ) ~
p3  Bmfack 20
F4 RED 100 '
' PS  WHITE 50 t° ‘
" P6 BLACK 25 t{
F7 EROWN 70 . ©
P8 RED 65 — .
P9  BROWN 25 |
 XREADY*

? list all of esarts

? where colour = "black" '
? in degcendind using rreamed

g

TIPS RS i o i pe 4 2

&g

P6 BLACK 25 o, e
P3 BLACK 20 .
P1 BLACK .5% .
s ¢ L
" XREAD'YX
? list 3l1l:of rarts
? where colour = "red" -
-P in ascending usindg rnames
P10 RED 40 a S .
P4 RED 100 |
B8° RED 65
. YREADY X , »,
? list all of surl ’ .
? where | citw = "montreal" ¢ ‘ .
S1 MONTREAL -
82 MONTREAL
. .
T XREADYX

"/

c



R SN

R Y m% R

B o e

’

P A T - o e e P R R RIS E 3, S ST

321 ~—
i
list all of rerinfo $ ’
. g ) ‘
Y10 s3 700 2 k
P10 S2 480 2
P 84 400 5
P9 S22 350 4
F8 85 1100 4
P7 64 450 2
F6 82 S50 - .S
,PS 81 3500 . 10 .
P4 S5 600 3.
P4  S1 650 3
P3 54, 500 5
P2 85 1800 14
F2  §3, 2000 10 : .
o~ P1 82 500 25
PL 81 1200 15
KREADYX "
] -
? list all of rerinfo’ )
? in ascendind using rerice$ ‘
) P6 82 50 g - j
P9 82 350 4 ,
FO G54 400 5 ;
P7 54 450 2 . v o ;
P3 54 500 5 ; j
P1  S2 500, 25 |
v P4 85 600 3 R & ;
P4 51 450 3 L 4
P10 S2 480 2 . i
F10 S3 700 2 . :
PB 8% 1100 4 .o
P1 81 1200 15 , ’,"
P2 S5 1800 14 . ]
P2 3 2000 10
PS S1 3500 10 .
KREADYX ) ) *)
7 list a1l of rerinfo where sname=*s2"$
PLO 'S2 480 2 ' )
- - P® s2 350 4 . s
. P4 S2 50 5 . ‘
P1 82 500 25 ! - ‘
KREADYX A '
% L
i o ‘\‘
. ) ,
i &
L) - k K




' ~ 322
% a
t ‘ ;
: , det next of rartg where rrame="s10'; ‘j ’ \
. \\\ ? list current of eartss ~ \
| P10  RED 40
}
R XREADYX | .
j ? get oci in rart-~rerinfo to ci of eartsi
P 7 list 211 members in rerinfo$ Ll ¢
i ' ‘ ‘
f LIST ALK MEMEBERS IN PERINFO$ / .
3 ~
E XINVALIL SET TYFE NAME.
% XENTER A NEW LINE -- DR TYFE ‘DROFP’.
g; v . ji
# ? list 311 members in rart-rerinfo$ E
¥ : . i
: P10 52 680 2 ;
P10 S3 700 2 ’ i
KREADY X ) ' ‘
' . get next of parts where ename="p2%i E
oci in rpart-rerinfo to ci of rartsi
: 2l1l members in rart-rerinfo$
\ ' A
\ . N .
i ! i « XEND OF RECORD TYPE FILE REACHED. ) R 3
t P10 S2 480 2 | ,
' P10 83 700 2 5
3 ,
ks KREADA X
3
£ ? det first of rdrts;
b ? get next of raris where rrname="r2"}
? set oci in part-eerinfo to ci of rartsi
1 f 7 list all membe¥s im rart-rerinfot g
: ' ™
% .
i . P2 83 2000 10
ﬁ P2 85 1800 14
*¥READYX
. " . &'? outs
LOL OFF TIME 20.,16.41.
* X . $r” /
v "1,214 CP SECONDS EXECUTION TIME. o




e grem -
R s o,

E———

Y, EERAT, i Pgbe e 2 A T g 4y

. LIST ALL MEMBERS IN SUF-FRINFO$
S

T e e crpa e AT W A st e & e e o — N mtm 4 man e e ———

R a . . R »
det first owner in -sup-Perlnf05

. list  3ll of surls . L

/

§3  QUEREC

S4  QUEBEC " |

81  MONTREAL : .

§2  MONTREAL .

85 OTTAWA . ¥

XREADYX ‘ , ' (
’

set oci in sur-rerinfo to ci of suri 7

? list all members in sur—prinfo$ . . ‘“"\\ﬁ

SET OCI IN SUF~PERINFO TO CI OF SUF;

¥INVALID RECORD TY?E NAME ,
XENTER, A NEW LINE -- OR TYFE ‘DROF’.

set oci in surs-rerinfo to ci of surl

"

- XINVALID SET TYPE NAME.

XENTER A NEW LINE —-- OR TYFE ‘DROF‘.,

list a3ll members in sur-rerinfo$ - K
-]
P2 83 2000 10 . ) , T
"P10 S3 700 2 ‘ / !
XREADY X

det rnext owner in sur-rerinfos
list all members in . sur—rerinfo$

F3 S4 500 5
P7 5S4 450 2 ' ‘
F? S4 400 5

o . \

XREADYX

get next owrer in sup~-perinfos
list all members im sup-rerinfo$
PL  S1 1200 15 ' ? o,
) S1 650 3 y

PS S1 33500 10 '

AREADIYX . " ' &

? out$ ﬁ///’ ' ‘

LOG OFF TIME 21,38.13. :

- - ™~ e L I Tt Tl ko TR L R AP s



