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ABSTRACT

Multi-Variable Optimal Numerical Control Using Adaptive Model for identification of
Thermally Induced Deformation in High-Speed Machine Tools

Steven Fraser, Ph.D.
Concordia University, 1997

Thermally induced deformation in machining has been accorded an equal place with
other sources of error, namely tool wear and mechanical deflection. The demand of the
manufacturing sector to control the residual thermal errors below +10 um in the whole working
range of the machine tool has not yet been achieved. Since it is impossible to design machine
tools that are thermally stable within this range, a feedback control system emerges as a logical
and practical solution.

The major problem in implementing real-time control systems for thermal deflection is
that it is not possible to directly measure the relative thermal displacement between the tool and
the workpiece during machining, prohibiting the use of true feedback control. Process models
relating the thermal deformation to the temperature rise at some points on the structure are
frequently used, but since complicated models are not practical in a real-time control
environment, simplified empirical models of the structure are employed. Based on the results
reported in the literature, one can conclude that this will lead to poor predictions.

In order to improve the accuracy and reliability of thermal deflection estimation, a new
concept of generalized modelling is expanded in this thesis to develop accurate real-time
process models relating practical measured temperature points to the net thermal deflection of
a machine tool structure. The first of these models deals with the identification of the generation
of heat sources from the delayed temperature time response of measured points on the structure.
The second model deals with the identification of the nonlinear effects that are introduced by
contact interfaces within the machine tool structure. It has been shown that the accuracy of these
models is within +4 microns for typical configurations of a multi-component machine tool.

The estimated thermal deflection error is compensated by means of a feedback/
feedforward control system, using NC position control and electronically-controlled resistance
heating pads as a micro-positioning actuation mechanism. The feedforward controller was
designed using the method of model inversion, and the feedback controller was optimized using
the LQR error minimization technique. The procedure was validated on linear and nonlinear
machine tool models. It has been shown that the estimation and control system reduces the
thermal deflection error to within 10 microns, a reduction of 96%, for multi-component
machine tool structures of typical geometry, using economical hardware and data acquisition
techniques.
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CHAPTER 1: INTRODUCTION

1.1 Objectives

A review of the research pertaining to thermally induced error in machine tools reveals
that at the present time thermal deformation may contribute more than 50% of the machining
error in high speed, high precision applications [1]. Since residual errors cannot be fully
avoided at the design stage, compensation of the thermal deformation of machine tool structures
emerges as a viable and practical solution. An industrial on-line correcting system for the
thermal deformation of machine tools, guaranteeing residual errors of < £10 um is urgently

needed but it does not exist today [2].

The objective of this thesis is to develop an on-line deflection control system that is
capable of maintaining the structural thermal deflection of a machine tool within a range of 10
um. The system must estimate the state of thermal deflection indirectly, using a small number
of measured temperature points, and it must be able to accommodate the situation where the
measured temperature points cannot be located on or very near to the sources of heat generation.
In order to meet the 10 pm range objective on all machine tools, the system must also be able
to predict and compensate for nonlinear joint effects, which have been shown to exist in a

machine tool structure [3].

Although the nonlinear joint interaction problem has been studied by Attia [3], the
quantitative effects are not as yet well understood. The second objective of this thesis is to study
the problem of joint interaction by means of accurate finite-element modelling of the contact
interface and how it interrelates with the temperature and stress distributions in the machine tool
structure. A good understanding of the nature and of the effects of the contact problem is
essential, particularly with regard to the conditions which would create and accentuate contact

induced nonlinearity, and the effect that electric heater actuators might have on this. The second



part of this objective is to develop a generalized model which can be used in real-time to
accurately predict joint induced deflection in a machine tool so that it may be compensated by

the control system.

In order to gain a realistic impression of the measurement and power actuation problems
that would be encountered on a real machine tool, the validation of the compensation system
must be performed on a physical model of a machine tool structure. The measurement and
actuation systems that will be used on the model should be identical to those which would be
used on a real machine tool. The measurement and actuation hardware should be standard off

the shelf equipment that will be chosen with economy as well as performance in mind.

1.2 The Control System Method of Compensating for Thermal Deflection

The method for dealing with thermal deflection that will be implemented in this thesis
entails the identification and compensation of the thermal deflection by means of a control
system. The simplest representation of a feedback control system is shown in figure 1.1. Apart
from the physical system, there are three important operations involved in a feedback control
system: (1) the measurement of the controlled variable d, (2) the generation of a control signal
u,, and (3) the actuation of the compensation by means of a physical element. The choice of the
best actuation element depends on the type of machine tool which is being considered. The
position control system of an NC machine tool presents an attractive option to effect the desired
compensation [4], but it may not be adequate to compensate for the bending mode of
deformation, depending on the configuration of the machine. For non-NC machines there is no
position controller to effect compensation so another actuation method must be employed. In
this investigation, control systems based on two different types of actuation element shall be
developed, using (1) the position controller of an NC machine tool, and (2) an array of artificial
electric heaters that shall be attached to the surface of the structure to produce a controlled

thermal deflection. The first actuation method is the most convenient and effective method for
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NC machines with three axis position control. The second actuation method can be used to
retrofit existing conventional machine tools and has been used by others [5] [6]. In general, an
appropriate combination of these two actuation methods is adequate for most machine tools.
This thesis will demonstrate both NC position control, and the possibility of using artificial
heating elements as the sole means of effecting compensation, which represents the most severe

test to the proposed control system in terms of the response time and dynamic characteristics.

1.3 Estimating the Thermal Deflection

The control system shown in figure 1.1 cannot be implemented in an industrial
environment because it is not possible to directly measure the relative thermal displacement
between the tool and workpiece 8(x,y,z,t) while the machine is in operation. Figure 1.2 shows
that an additional element is required, which is a variable representing the estimated thermal
deflection &’. The implication of using an estimated controlled variable in the feedback is that
the control system does not then form a closed loop. Any deviation in the estimated thermal
deflection from the actual thermal deflection translates directly to a control system error, since
the control system is not capable of minimizing this type of error. The main difficulty in
implementing a successful control system in industrial environment is the process of estimating
the thermal deflection accurately. The bulk of this thesis shall be concerned with the problem

of estimating the thermal deflection in a real time environment.

The process of estimating the thermal deflection requires a process model relating the
thermal deflection to another system variable that is more easily measured. The only variable
that is really suitable for this purpose is the temperature distribution in the structure, or some
part of it. The inadequacy of conventional process models for estimating the thermal deflection
of the structure from discrete temperature measurement Ti(x,y,z,t), 1<j<n, is due to the fact that
the models are either too complex and slow, or too simple and inaccurate. From the principles

of thermoelasticity, one can argue that the thermal deformation of a structure is uniquely defined



by the whole temperature field T(x,y,z,t), and therefore, a subset of the information contained

in Tj(x,y,z,t) is not adequate. This fact has been emphasized by Spur et al [7]. and Weck et al.
(8].

For a given thermal system, the complete temperature field T(x,y,z.t) and the heat input
to the system Q,(t) are equivalent and are thermodynamically interchangeable. Therefore, the
main thrust of the proposed approach is not to correlate thermal displacements to discrete
temperature measurements, but to use the latter to estimate the heat input to the structure, and
then proceed with the solution of the direct thermal and deformation problems. The
mathematical sequence, as shown in Figure 1.3, involves the following three processes: First,
solving the inverse heat conduction problem IHCP in which the heat input to the structure is
determined in real-time from the measurement of temperature at points on the surface of the
structure. Once the heat inputs have been identified, the thermal process model will then
produce the entire temperature distribution, in effect filling in the gaps of the incomplete
temperature measurements. Finally, the thermal deformation process model acts on the

temperature distribution to estimate the components of the thermally-induced error vector d.

The success of this modelling approach depends upon the accuracy and reliability of the
process models in figure 1.3. Purely analytical models are not possible in a complicated machine
structure, and purely empirical models also must be rejected because they are too inaccurate,
even with an unmanageably large number of calibration parameters. Furthermore, it will be
shown that for nonlinear machine tool systems the measurable system variables do not contain
sufficient information to uniquely define the thermal deflection system, with the implication that
the extrapolation of the calibration inputs is extremely unreliable. The approach that will be
taken here is to develop a model that takes the approximate mathematical form of the solution
and refines it by empirical calibration of the analytical parameters. Such a model is neither

empirical nor analytical, but rather a hybrid between the two. The hybrid model is accurate
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because it is calibrated from empirical data, however since its mathematical form simulates the
real system, it is able to extrapolate the calibration inputs in ways not possible with an empirical

model.

1.4 The Method of Solution for the Inverse Model

The block in figure 1.3 labelled ‘inverse thermal model’ defines the relationship between
the measured temperatures and the heat generation. This is an inverse problem, as discussed in
chapter 2, and so it suffers from three special problems of (1) the difficulty of expressing the
solution in explicit form, (2) non-uniqueness of the solution, and (3) instability. The third
special problem is inherent to the nature of the system and so it must be dealt with by the
regularization of the model. The first two special problems are not inherent to the system, and
so can be avoided by the type of solution method. For linear systems, the first two special
problems can be avoided by a solution method based on the Laplace transform. The method of
deriving the solution is as follows: (1) transform the model of the temperature step response to
the Laplace domain, (2) Determine the direct transfer function in the Laplace domain by
dividing the transformed step response by the Laplace transform of the step input, (3) determine
the inverse transfer function by taking the reciprocal of the direct transfer function, and (4)
transform the inverse transfer function to the time domain. The solution is then obtained by a
convolution of the measured temperature corresponding to an arbitrary heat input with the
inverse transfer function in the time domain. It will be shown that even nonlinear machine tool
systems can be dealt with by a variation of this procedure, by taking advantage of the linearity

of the thermal aspects of the system.

1.5 Overview of the Thesis

Chapter 2 contains a literature review of the present state of the art in the fields of
thermal deflection modelling and estimation, real-time identification of structural heat

generation, control of thermal deflection, and small temperature measurement. The methods and



conclusions from each of these reviews will be significant for the development of the thermal

deflection control system which will be built upon in subsequent chapters.

The original work of this thesis begins in chapter 3 with a thorough development and
evaluation of a hybrid form of modelling which shall be called the Fundamental Generalized
Method. The objective of the chapter is to introduce the concept, develop the thermal model of
a machine tool structure, and demonstrate the capabilities of this form of modelling of a
machine structure. Particular attention shall be given to investigating the accuracy of the
representation and the ability of the model to extrapolate limited calibration data by emulating
the mathematical behaviour of the real system. The physical systems which will be presented
in the chapter are for the purpose of verification only and will not be used in the subsequent

chapters.

In chapter 4 two models shall be developed for the purpose of verification of the
methods that will be developed in subsequent chapters. The first of these models is a physical
structure which shall be designed to simulate the thermal deflection behaviour of a real machine
tool in operation. This model will not contain any joint nonlinearity, and will be used to verify
the method of controlling thermal deflection for a machine tool with negligible joint
nonlinearity. The second model that will be developed is a finite-element model of a machine
tool structure which exhibits a considerable nonlinear effect due to the nonlinear joint
interaction. Considerable attention will be given to the problem of modelling the contact

interface from a thermal and mechanical stress perspective.

In chapter 5, the mathematical solution to the inverse problem of estimating heat
generation from discrete temperature measurements will be derived, accommodating the
situation where the measured points are located relatively far from the source of heat generation.

The methods that shall be employed include the analytical transformation of the direct thermal



model to the Laplace domain, the manipulation of the inverse transfer function in the Laplace
domain, and the numerical transformation of the inverse transfer function to the time domain.
The procedure for using the inverse transfer function to estimate the heat generation in real time

will also be developed.

In chapter 6 the complete algorithm for estimating the thermal deflection of a linear
machine tool structure will be developed. The algorithm will also be implemented on the linear
machine tool model that was derived in chapter 4, and the performance of the system will be

investigated.

In chapter 7, a new concept will be developed for estimating the thermal deflection in
a machine tool with considerable joint nonlinearity and will be implemented on the nonlinear
machine tool model that was derived in chapter 4. The model of the nonlinear contact joint will

be derived using the generalized modelling approach.

In chapter 8 a combinational feedforward/feedback control system for minimizing
thermal deflection will be developed and tested for both the linear and nonlinear systems. Two
methods of control actuation shall be investigated, which are NC position control and artificial
electric heater compensation. The possibility of using electric heater compensation alone shall
be investigated, which represents the most severe test in terms of response time and dynamic

characteristics.



CHAPTER 2: LITERATURE REVIEW
2.1 Introduction

This chapter begins with a brief discussion of the sources of inaccuracy in machine tools,
and the relative significance of thermal deflection error. This is followed by a discussion of the
design procedures which have been shown to improve the thermal stability of the machine tools,
and the residual thermal error that cannot be reduced further at the design stage. The state of the
current research into measurement and real-time compensation of thermal deflection error is
then reviewed, focusing primarily on the issue of real-time modelling for estimating the thermal
deflection error while the machine tool is in operation. The method of generalized modelling
for maximizing the accuracy and numerical efficiency of the real-time estimation process will
be reviewed, followed by a review of the inverse heat conduction probiem (IHCP), which forms
an integral part of the generalized modelling approach. The chapter will conclude with a review
of compensation mechanisms and the control system architecture that is appropriate for the

micro-position compensation of thermal error in machine tools.

2.2 Accuracy in Machine Tools
2.2.1 The Sources of Inaccuracy

The accuracy of a machine tool is described by its ability to correctly position a cutting
tool relative to the work piece, and maintain the correct position during the cutting operation.
The sources of inaccuracy derive from i) structural imperfections, ii) measurement effects, 1il)
mechanical effects, and iv) thermal effects:

i) Structural imperfections include deviations in the uniformity of guide ways, and the
imperfect alignment of the spindles, chucks, and bearings. This is often called kinematic
inaccuracy, because it derives from positioning errors that occur in the absence of any thermal
or mechanical loading. The accuracy of the machining can be no greater than the accuracy of

the machine itself, so much depends on the production capability of the manufacturer.
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ii) Measurement effects are the uncertainty in the measured positions of the cutting tool
and workpiece. The accuracy of the machine is limited by the ability of the operator to correctly
position the cutting tool. This is especially true for numerically controlled machine tools, where
the cutting path is programmed from a computer model, and the tool is positioned automatically
with respect to a reference point.

iii) Mechanical effects include the static and dynamic compliance of the machine
structure and cutting tool, and the wear of the cutting tool. Mechanical effects have received a
considerable amount of attention over the past twenty years, as industry has demanded greater
and greater accuracy from the machine tools.

iv) Thermal effects are the changes in the relative position between the cutting tool and
work piece that derive from the thermal loading of the machine tool. Thermal effects are an
inevitable consequence of the machining process because of the thermal loading and large
physical dimensions of the structure. The sources of thermal loading include changes in the
ambient temperature, and steady and quasi-static temperature gradients due to internal sources
of heat generation. In contrast to the problem of mechanical loading, thermal loading has not
been extensively studied, for a number of reasons, primarily [8] :

- A general lack of interest due to inadequate understanding of the problem by the general user.
- The need for no load tests.
- The need for a described 'duty cycle’ appropriate tc each test.

- The requirement for instrumentation not normally found on the shop floor.

Only one part of the inaccuracy problem will be dealt with in this thesis, which is the

deformation due to the thermal loading of the machine tool.

2.2.2 The Sources and Nature of the Thermal Deflection Error
There are two principal sources of thermal deflection error: uniform changes in the

ambient temperature, and temperature gradients from internal sources of heat generation. There
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are three predominant places where the deformation occurs: the structural frame of the machine
tool, the cutting tool, and the workpiece. The deformation of the cutting tool and the work piece
is due to the high intensity heat generation at the tip of the cutting tool, and from the chips and
cutting fluid [9]. The deformation of the structure is primarily due to internal sources of heat
generation, such as bearings, motor, and gearbox [10]. Changes in the ambient temperature can
also have a strong effect on structural thermal deformation, but environmental conditions are
relatively easier to control by air conditioning or air showering, sometimes within a sealed

cubicle [11].

2.2.3 The Relative Significance of Thermal Deformation

The significance of thermal deformation as compared to other sources of inaccuracy
depends on a number of factors, including the size of the machine tool and the work piece, and
the co-efficients of thermal expansion. From an examination of available test data, Attia [12]
was unable to find any conventional machine tool with a coefficient of expansion of less than
0.01 mm/m for a temperature change of +1°C. Thus, thermal deformation can be a significant
problem even in relatively small machine tools, and it is usually a very serious problem in large

machine tools [13].

Opitz (cited in [14]) states that the errors caused by thermal deformations have, in many
cases, the same order of magnitude or higher than the errors due to kinematic inaccuracy and
the static and dynamic compliance. Mottu [15] states that from his experience, 50 to 60% of the
errors in precision parts result from thermal errors. As a rule of thumb, Weck (cited in [14])
stated that thermal effects in steel parts become significant at a tolerance of about 2.5 um. For
pieces over 25 cm long the threshold is about 25 um, and for aluminum pieces it can be as high
as 125 pm. Weck is referring to the problem of thermal deformation of the workpiece, but in

most conventional operations the structural deformation of the machine tool is a greater source

12



of thermal error. For most machine tools of conventional size, thermal deformation is a

significant source of error for tolerances below 16 um [14].

The area of machining where thermal error is a principal concern even for normal
tolerances is in automated and NC machine tools. From a historical perspective it has been the
human machine tool operator that has been the principal mechanism for controlling thermal
deformation [15]. It is common practice for operators to leave a machine running overnight or
even for days at a time so that it will be ‘warmed up’, which has the effect of reducing the
thermal error from load-independent heat sources [16]. In an automated machining environment
the machine operator is often not as experienced and does not have as much time to devote to
any one machine tool. For one normal sized drill press machine, the thermal deflection
displacement between the cold start and warmed up condition was found to be in excess of 120

pm, and even more deflection would be expected from a larger machine of the same design.

2.3 Reducing the Thermally Induced Error at the Design Stage

The internal heat sources of a machine tool are the various elements of the drive and
power transmission system, including motors, gears, bearings, pumps, hydraulic oil, and the
machining process itself. It has been indicated in [16] that 60% of the power input to a machine
tool is dissipated in the drive and power transmission system, inducing machining error by the
thermal deformation of the structural frame. The remaining 40% finds its way into the cutting
tool and work piece, and into the chips and cutting fluid. The local deformation of the cutting
tool is higher than the deformation of the frame because of the extremely high temperature of
the cutting tool, but the total deformation is usually less because of the small dimensions [9].
Much of the heat from the cutting process flows back into the structural frame of the machine

tool, resulting in additional deformation of the structure.
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Much of the thermally induced deformation can be eliminated at the design stage, by
methods as simple as proper chip disposal, and cooling the cutting fluid [14]. Other techniques

include:

-External location of the major heat sources, like the motor and bearings [17].

-The utilization of thermal symmetry, so that the thermal deformation is symmetric about some
point or axis, and the net deflection of the point or axis is zero [18].

-The appropriate positioning and attachment of heat sources, so that the deformation in critical
directions is minimized [19] [20].

-The use of structural materials which are capable of rapid and uniform distribution of heat to
minimize temperature gradients.

-Using insulation to control the flow of heat, and direct it away from critical areas [21].

-Direct temperature control of the structure by a shower or bath of cooling fluid [22] [23].

Although the problem of thermally induced error can be reduced at the design stage, it is
inevitable that there will be some residual thermal error because of the sources of heat
generation external to the machine structure [12]. Compensation of the thermal deformation of
machine tool structures emerges, therefore, as a viable and practical solution. An industrial on-
line correcting system for the thermal deformation of machine tools, guaranteeing residual errors

of < £10 pm is urgently needed but it does not exist today [2].

2.4 Measurement and Compensation in Real Time

2.4.1 Direct Measurement

One of the main problems with implementing real-time control systems to regulate
thermal deformation of the machine tools is the difficulty of measuring the relative thermal
displacement vector [8] between the tool and the workpiece during machining [12] [24] [25].

Tonshoff et al. [25] studied the problem of direct deflection measurement. They looked at a
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number of displacement sensors with a resolution less than 1 pm, including touching gauge
fingers (resolution 0.5 um), and non-touching optical sensors (resolution 1 um). The sensors
were applied directly to the machine tool, and used to intermittently sample the relative

deflection between the cutting tool and work piece.

Direct measurement establishes the real position of the tool. This allows for the
compensation of all sources of inaccuracy, whether or not they are thermally induced. It also
eliminates the need to model the structure, as is required for indirect measurement. The
disadvantage of direct measurement is that the delicate sensors are easily damaged during the
operation of the tool. Also, their presence is intrusive, interfering with the smooth operation of
the machine tool. Finally, the presence of chips and cutting fluid in the working environment
makes the readings unreliable, especially for optical type sensors. After thoroughly studying the
problem, Tonshoff concludes that “The direct and continuous detection of thermally induced
displacements in most machine tools is not possible, because direct working sensors cannot be
used during the machining process”. Tonshoff et al. [25] tested another direct measurement
technique using integrating expansion sensors. The sensors are placed at strategic locations on
the machine tool structure between the machining table and the cutting tool. The sensors are
tightly fixed to the machine structure, and directly measure the thermal expansion. The
expansion is integrated in a line from the work to the tool, giving a direct estimation of the
thermal deflection in the structure. The weakness in this method is the relatively low resolution

of the expansion sensors.

2.4.2 Indirect Measurement

Because of the difficulties associated with direct measurement, most compensation
schemes utilize an alternate physical property to indirectly measure the thermal deflection,
namely, displacement [25] [26] [27] [28] and temperature [8] [29] [30] [31], that are easily

measured at some points on the structure. For the case of displacement measured systems, the
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displacement measurement was used to drive error maps, that were collected off-line [5]
[251[27][28] [32] For temperature measured systems the relationship between the measured
temperature and the thermal deflection is not so easily defined. Sartori, Balsamo, and Marques
[33] use a thermal deflection model that divides the structure into a number of simpler
components, and use a combination of finite-element equations and polynomial curve-fitting
to represent the components. The model expresses the structural thermal deformation as a
function of the temperature distribution. The measurement scheme requires more than 100
thermocouples, and the thermal model consists of some 1400 equations. The authors believe that
the large number of thermocouples is a minor problem, because of the low cost of sensors and
data acquisition cards. The results showed that 80 to 85 % of the deformation could be
explained by the model. The obvious problem with this method is the large number of
thermocouples and the complexity of the deflection model. Many of the thermocouples are
located in difficult positions, around internal bearings and spindles, and the positioning must

be accurate if the model is to yield good results.

In order to avoid the problems associated with exact modelling of the machine tool
structure, some researchers have attempted to define an empirical relationship between the
thermal deflection and a smaller number of measured temperature points, using an empirical
model in the form of a calibrated polynomial expression [8] [34] [35] [36] Chiappulini et al.
[2] use five measured temperatures at five points on the structure, one close to each of the major
internal sources of heat in the machine tool. The transfer function relating the measured
temperatures to the thermal deformation is based on a polynomial equation, where the empirical
parameters are found by optimizing the fit between the empirical model and the response of the
test structure for a variety of operating conditions. The displacement response of the structure
was measured by three displacement transducers mounted on the mandrill nose of the test
milling machine. Ichimya et al. [37] used an empirical transfer function to relate discrete

temperatures to the thermal deformation of a milling machine structure. The empirical constants
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are determined separately for each input load condition, so the parameters must be changed each
time the loading conditions change. With a continuously variable load, the accuracy of the

results deteriorates rapidly.

The principal reason why methods of measurement and compensation have not yet led
to an acceptable solution to the problem is that the process models which have been developed
thus far are not adequate for estimating thermal deflection in areal time environment [2]. The
simple polynomial expressions that are most often used to relate discrete temperature
measurements to thermal deflection [34][35]{37] [38] are not accurate enough, and are
unreliable for untested inputs. While the accuracy of the models is essential to the performance
of the control system, the effect of a long processing time can be equally detrimental. When the
controller cycling period is large, a lot of uncompensated deformation occurs between changes
in the controller output, and the control system is always behind the present state of
deformation. The complex empirical process models used by Balsamo [33] to compensate for
the thermal deformation of the CMM structure introduced a 5-10 minute delay into the control
cycle. Despite the accuracy of the model, the low sampling frequency of the control system

prevents its use in machine tools.

Recently, an empirically-based modelling approach was used to define a multiple
variable thermal error model and to integrate it in a single volumetric error function [29] [39].
To modify the coefficients of the error model periodically, an adaptive methodology [26][32]
and artificial neural networks [1][25] are used. The inherent weakness of the indirect
measurement approach stems from the fact that the empirical base function bears no physical
similarity to the actual phenomena. This makes the solution unreliable outside of the range of
tested inputs. In addition, the information contained in the discrete measurements is incomplete
[8][19], and therefore the problem is not uniquely defined. To capture the appropriate

temperature sensor locations, and thus improving the accuracy of predictions, as many as 100
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temperature sensors were used, resulting in a very slow control cycle of the order of 5-10

minutes [33].

Recently, Mou et al. [26][32] [40] developed an adaptive methodology to modify the
error model coefficients periodically. Although this technology is being used by the US
automotive industry, there are a number of issues that need to be resolved; the economical
aspect of applying thermal mapping and compensation algorithms in a shop environment, as
well as the generalization of this approach and the resulting software package to all classes of
machine tools [41]. Artificial neural network models were also used [42] [43] [44] to identify
and to update periodically the coefficients of the process model. Indirect displacement
measurements at some locations on the structure have also been used to generate off-line error
maps [5][12]{25][27]1[28]. Ferreira, and Liu [27] estimated the parameters in the geometric
error model as functions of the thermal state and history of those localized regions. The limited
repeatability of the probes and the time needed to collect sufficient data may present a serious

challenge for industrial implementation of this system.

2.4.3 Numerical Approaches to Estimating the Thermal Deflection

Finite difference and finite element models have been used for real-time estimation of
the temperature field in the structure, and thus to fully describe the state of the system [30] [45]
[46]. This approach has a number of drawbacks as well. First, the magnitudes of the internal
heat sources were predetermined from off-line calibrations, and thus leading to erroneous
predictions. Second, numerical models are either too simple and inaccurate or too complex and
slow to be used in real-time control applications. Some efforts were made to compromise
between the conflicting requirements of speed and accuracy of predictions. This was achieved
either by using the temperature field only as the feedback signal to the control system [30] or
by considering the problem to be two-dimensional and analysing the thermoelastic behaviour

of a single component of the structure [45]. Obviously, the reliability of these solutions is also
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compromised in this process, and the approach cannot be generalized or extended to all machine

tool types and structures.

2.4.4 The Generalized Modelling Approach and the IHCP

In response to the problems associated with both the empirical and numerical
approaches, the author of this thesis and Attia have recently proposed a new control system [47],
which is based on the following two principles. First, the complete temperature field and the
heat input q(t) to a given system are thermodynamically equivalent and interchangeable.
Therefore, instead of correlating [8] to discrete temperature measurements, the temperature
difference between two points located near the heat source AT(t) is used to estimate the heat
input to the structure (as an inverse heat conduction problem IHCP), and then proceed with the
solution of the direct thermal and deformation problems. This approach solves the problem of
non-uniqueness resulting from using incomplete measurement information. Second, by
following the generalized modelling method [47], the analytical description of the thermal and
deformation processes are established and used to construct simple dynamic models that are
calibrated from the step response of the real structure [6]. The generalized modelling method
is based on a semi-empirical modelling approach, and has been used to predict the temperature
field in a machine tool structure. This method is more accurate and reliable than conventional
empirical methods, and preserves the approximate mathematical form of the solution by pre-
defining a mathematical base expression through an analytical solution to a simplified model.
This method was extensively tested using finite-element computer simulation models of
complicated machine tool structures, and it was shown to reproduce the accuracy of a finite-

element model but two orders of magnitude faster.

A number of problems are solved by adopting this methodology. First, the empirical
calibration is limited to finding the constants in a physically meaningful base function, thus

improving the accuracy of the prediction for the full range of operation. Second, the thermal
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transfer function can be inversed to determine the heat input to the structure in real time [48].
without resorting to off-line calibration. With the s-domain representation of the dynamic
models of the thermal and deformation processes, the design and performance of the control
system can be optimized in terms of its transient response, stability and steady state errors. In
addition, this approach ensures that the requirements of accuracy, stability, and computational
efficiency of the IHCP solution and control algorithms are not in conflict, and can be achieved
simultaneously. The other main advantage of this methodology is that the formulation of the
problem given in [6][48] is generalized in such a way that it can directly be applied to any
machine tool structure without further analytical development or modelling by the end user.
The need of the industry to have a generalized approach and software compensation package

that can be applied to all classes of machine tools has been recognized for some time [41].

The major potential weakness of this approach is that it is based on the assumption of
linear thermal and thermal deformation systems in a machine tool structure. It has been shown
that a machine tool structure can exhibit significant nonlinear thermal deformation behaviour
because of the contact joint phenomenon [3]. The nonlinearity derives from a variable contact
resistance of surface contact joints, where the contact resistance is related to the contact pressure
distribution in the joint. Thus, variations in the mechanical loading of the structure create
changes in the contact resistance which in turn affect the temperature distribution and the
thermal deformation. Since thermal loading can itself produce significant contact stress, the
thermal and thermal deformation systems are coupled, and a thermal input by itself can exhibit
a nonlinear thermal deformation response. Although the reported accuracy of the deflection
estimation using this approach was high, the verification was done on a linear finite-element
model of a single component machine structure. No investigation of how the nonlinearity of a
real, multi-component machine tool would affect these results has yet been published by the

authors.

20



To obtain acceptable levels of stability, accuracy and dynamic performance, an inverse
heat conduction solver is incorporated in the control system in reference [47] to estimate the
heat input q(t) to the structure in real time. A critical review of the available inverse heat
conduction problem IHCP solutions shall now be presented, with a special emphasis placed on

applications involving real-time execution and multi-dimensional structures.

2.5 The Inverse Heat Conduction Problem
2.5.1 The Nature of the IHCP

When the heat input to a system is estimated from the temperature measurement at some
points distant from the source, this is known as an inverse heat conduction problem IHCP. The
[HCP is an ill-posed problem due to the nature of the input function (the measured
temperatures), which is discrete in time, lagged, and damped and contains random errors. As
a result, the solution of the IHCP is characterized by its instability and non-uniqueness [49] [50].
To solve practical IHCP’s, finite difference, finite element and boundary element methods are
used [51][52] [53] [54]. The techniques used to stabilize inverse analyses can be classified

into three main categories; function specifications, regularization, and space marching methods.

2.5.2 Available Solutions

In the function specification methods FSM, the final form of the heat flux variation with
time, q(t), is assumed. The unknown parameters in the assumed form are estimated by forcing
the inverse solution to agree with the measured temperatures in a least square sense. If exact
matching between the measured and estimated temperatures is sought, the solver will have no
capability to control the inherent instability of the problem [51]. To overcome the instability and
non-uniqueness problems, the system of equations is rendered ‘over-determined’ by either using
more sensor locations (spatial smoothing) or incorporating additional future measurements

(temporal smoothing). The second approach, which ‘produces better results, was proposed by
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Beck in the form of a sequential FS solution [55]. Future time temperatures were also used by

others, e.g., [56] [57].

Regularization methods RM developed by Miller et al. [58], Tikhanov et al. [59], and
Alifanov et al. [60] were introduced to reduce excursions in the unknown function, q(t), by
adding regularization coefficients to the least squares criterion. Another useful regularization
method is the iterative regularization /R [61], which uses two solutions besides the direct
problem; the sensitivity, the adjoint problems. Regularization methods are based on a whole-
domain analysis, in which all the heat flux components are simultaneously estimated for all
times and positions. The exception to that are the mollification method [62], which is
formulated in a sequential form, and Beck et al.’s procedure [63], which combines the
sequential features of the FSM and the special function that is minimized in the regularization
method. In comparison with sequential algorithms, regularization methods require large storage
capacity and computation time, but they are less sensitive to measurement random errors [64].
Unfortunately, in both global and sequential procedures, greater stability is only achieved with
a loss of accuracy [65]. Also, the two requirements of unbiased and minimum variance heat
flux estimates cannot be satisfied simultaneously, since they are interrelated [49]. The selection
of the optimum value of the regularization parameter, or the number of future times in the FSM,
presents an area of great difficulty, since it depends on a global bound factor, which is unknown

in advance [63].

The space marching method SMM is similar to the finite difference method, but instead
of solving explicitly for the temperature distribution from known boundary conditions, it works
by extrapolating interior temperature data to the boundary. This method is difficult to apply to
multi-dimensional problems, and requires a large number of well-positioned temperature
sensors in order to be accurate. Various versions of this method include the work published in

[55] [66]. Other general procedures for solving the IHCP include Hills et al.’s method [67],
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the integral method [68], the neural network and expert system approaches [69], and Monte

Carlo method {70].

2.5.3 Solution of the IHCP for Real-time Feedback Control Applications

To integrate an IHCP solution algorithm in a real-time control system, the following
requirements must be satisfied: stability of the solution without future data, computational
efficiency, accuracy, and the possibility of representing the solution in the s-domain for design

of the control system.

The stability of the IHCP solution presents a dilemma. On the one hand, the un-
regularized method is fast but inherently unstable [51]. On the other hand, methods which
provide acceptable level of stability require either partial (as in FSM) or full (as in regularization
and Monte Carlo methods) future information, which are not available in real-time control
environment. As pointed out by Hensel [50], a real-time state inverse estimator will be
noncausal by design if it uses future time data. When a multi-dimensional IHCP is solved, the
computation time becomes unacceptably large for real-time applications. The computationally
efficient method of Monte Carlo, for example, requires approximately 30 minutes, on a 436-25
PC processor to solve an IHCP involving a simple cylinder with six embedded sensors [70].
The accuracy of the IHCP solution is another important factor, since the prediction will be used
to generate the feedback control signal to the controller. Relative errors of more than 50% have

been reported in various IHCP solution schemes [71] [72].

From the analysis presented above, it is evident that available IHCP solutions were not
motivated by applications involving multi-dimensional structures and real-time execution.
These limitations were recognized by Hensel [50], who recommended future work to develop

algorithms that can be applied in real-time for feedback control applications. The need for better
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techniques and new algorithms to solve effectively complex multi-dimensional [HCP’s and to

include heuristic information in the type of inverse analyses has also been recognized [50}.

2.5.4 The Convolution Integral Approach

In response to these problems, a new method has been developed by the Author and
Attia to estimate the transient heat input to machine tool structures in real time [48)]. The method
is based on the convolution integral approach using the generalized inverse thermal transfer
function G™'(s). An expression for G'(s) has been developed to describe the thermal response
behaviour of machine tool structures. The mathematical form of G(s) was determined from an
analytical solution to the linear heat conduction equation with appropriate boundary conditions.
The calibration of the model was done using the temperature time response for a step input in
heat generation. The singularity functions in G™'(s) were identified and an analytical solution of
its inverse Laplace transformation was derived. The analytical part of the transfer function G~
'(s) was transformed using numerical transformation techniques that were developed by the
authors specifically for this application. The convolution integral of G!(s) which defines the
solution to the IHCP is computed numerically in real time. Computer-simulated test cases were
presented to demonstrate the proposed method, incorporating simulated discontinuities and
random errors in the discrete measured temperatures. The results showed that the computational
time has been improved by one to two orders of magnitude over available methods to achieve
a control cycle of less than 1 second, without compromising the accuracy and stability
requirements. The authors concluded that the performance could not have been achieved using

any of the other available inverse analysis solutions.

The principal weakness of the convolution approach proposed in [48] is that the
mathematical form of the generalized temperature model which defines the inverse transfer

function solution cannot accommodate an initial delay to a step response in heat generation,
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where such a delay is inherent to all thermal systems. By defining the mathematical form of the
generalized model without an initial delay, the inverse transfer function G''(s) is stable and well-
posed in its mathematical form. The authors admit however, that for measured temperatures
located relatively far from the heat source, the discrepancy between the mathematical forms of
the model and the real system becomes significant. Thus, the reported accuracy of this method
may only be achieved if the measured temperatures on the machine structure can be located

relatively close to the source of the heat generation.

2.4.5 Measurement of Small temperatures

The method of estimating thermal deflection from temperature measurements requires
an accurate temperature measurement probe, and digital acquisition equipment. The accuracy
and repeatability that is required of the temperature measurement apparatus depends on such
factors as the range of the measured temperature, and the sensitivity of the estimation algorithm
to random and systematic temperature measurement error. Since it will become necessary to
measure small temperatures for estimating the thermal deflection of the machine tool structure,

available methods of temperature measurement shall now be reviewed.

There are three types of temperature measurement device that are suitable for real-time
control: Thermocouples, RTDs, and thermistors. Thermocouples are characterized by a very
large operating temperature range and good thermal stability over time, however the accuracy
and repeatability are normally larger than 1.0 °C unless very special precautions are taken [73].
RTDs are characterized by a generally lower operating temperature range than thermocouples,
but with easily obtainable accuracy and repeatability better than 0.01 °C [73]. The obtainable
repeatability of RTDs has been reported below 0.001°C without particularly expensive
instrumentation, although the accuracy can only approach the repeatability when precision
calibration equipment is available [74]. Thermistor type devices are characterized by a very low

operating temperature less than 250 °C, and by a highly nonlinear behaviour. The temperature
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range is not a negative factor for temperature measurement on a machine tool structure since the
surface temperature should never exceed 100 °C. The nonlinear behaviour of the probe is not
a disadvantage either when the raw data can be processed in real time by a digital computer that

has been programmed with the calibration curve.

For the measurement of temperature below 150 °C, thermistor probes are characterized
by extremely high accuracy and repeatability. Thermistor based thermometers with a standard
deviation of 14 n°C accuracy have been reported in the literature [75]. More recently, a
thermistor based thermometer with an accuracy of 2 u°C at room temperature was reported
[76]. The main practical considerations for such a precise measurement are the Johnson noise,
caused by random activity at the molecular level, and resistance changes in the leads and wires
connecting the thermistor probe to the source of data acquisition. For less precise applications,
accuracy and repeatability better than 0.01 °C can be achieved easily using standard off the shelf
thermistors [77]. Although the standard thermistors have a hysteresis repeatability less than 100
1 °C, there is a tendency for them to drift when operated at elevated temperatures for a period
of months or years[73]. For off the shelf thermistors and ordinary applications, the accuracy and
repeatability will most often be governed by the accuracy of the data acquisition system, rather

than by the thermistor itself.

2.6 Actuation Mechanism for the Compensation of Thermal Deflection

Assuming that an accurate method of estimating the thermal deflection is available, there
still remains the problem of actuating compensation in real time. Position control systems of
NC machine tools [2][30] [78], micro-positioning piezoelectric actuator attached to the tool post
[45], and artificial electric heaters [4][S][7][31] have been used to compensate for the thermal
deformation of machine tool structures. Although the NC controller is an attractive option to
effect the desired compensation, it may not be adequate to compensate for the bending mode

of deformation, especially when the degrees of freedom available to the cutting tool and
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workpiece cannot accommodate this effect, e.g., turning processes. The addition of piezoelectric
actuators offers micro-position control of the non-NC axes, however the process is expensive,
it suffers from a limited stroke, and it introduces additional mechanical compliance into the

machine tool structure.

In reference [79], artificial heating elements attached to the surface of the structure were
used by the author and Attia as the actuation mechanism of the simulated control system. In the
simulated test cases, the authors demonstrated that electric heating elements could be used
effectively to compensate for thermal deflection in a multiple-axis coupled environment, as
would be expected in a real machine structure. The advantage of this type of actuation is that
it provides an economical solution for retrofitting existing conventional machine tools. It can
also be combined with numerical position controllers for NC machine tools. The disadvantage
is that the dynamics of the actuators introduce additional displacement error. Furthermore, the
authors did not deal with the problems of actuator saturation and actuator control in a real time
environment on a physical structure. In the simulated test cases the power required and the

power delivered were assumed to be equal.

2.7 The Control System Strategy

In general, a machine tool requires a three-axis position control system for the three co-
ordinate displacement axes. In the case of NC or piezoelectric position actuation there is no
coupling between axes and so the control system may be broken down into three independent
controllers. The use of heating elements as an actuation mechanism presents a more difficult
control system design problem for the following reasons:
i- It provides a one-directional actuation (only heating, with no cooling capacity).
ii- It has a low speed of response, in comparison with NC controllers, due to large time

constant.

iii- Strong coupledness of various control heaters is inevitable.
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The axes are coupled because it is generally not possible to position a heater such that it
produces deflection along only one co-ordinate axis. The strategy of the authors in reference
[79] was to position the heaters such that each one produces positive or negative deflection
principally on one co-ordinate axis. The fact that the heaters produce positive heating only
means that the control system will be inherently nonlinear. The nonlinearity is aggravated
further because there is always a maximum heating capacity which can produce saturation
effects. The effect of the large time constant that is associated with heater actuators is to reduce
the bandwidth of the closed loop feedback system, which has the effect of reducing the tracking

accuracy of the control system.

The control system that was used in reference [79] is based on PID compensation of each
axis with constant feedforward elements. Although this system was shown to give acceptable
results for the simulated test cases, the control system parameters were not optimized for any
particular operating conditions, and the design was done largely by trial and error. Furthermore,
there was no provision to minimize actuation error, and the design did not take advantage of the

more powerful state feedback architecture.

28



CHAPTER 3: THE CONCEPT OF GENERALIZED MODELLING
3.1 Introduction

This chapter begins with a discussion of the theoretical foundation of the generalized
modelling concept, which combines an analytical model of the system with empirical
calibration. An analytical expression which is suitable for modelling the temperature distribution
in a three dimensional machine tool structure will be presented, and calibrated for a finite-
element model of a large machine structure. The performance of the generalized model for
predicting the temperature distribution in the finite-element model will be investigated, using
experimental data obtained from various thermal inputs to the system model. The validation
procedure will demonstrate the inherent strengths and weaknesses of the generalized modelling

concept, as applied to a thermal model of a machine structure.

3.2 The Types of Process Models

The three basic types of process modelling are (a) analytical, (b) numerical, and (c)
empirical models. Analytical solutions to the thermal deformation problem of real machine tool
structures, which are characterized by their complicated geometry, as well as the position- and
time-dependence of thermal loading and boundary conditions, are not readily available.
Numerical models such as finite-element and finite-difference are generally too slow for real-
time applications. Therefore, dynamic models based on empirical calibration seem to be the
most appropriate approach to the problem under consideration. However, because of the
stringent requirements of accuracy and speed from the process models, the simple polynomial
empirical models which have previously been tested by Spur et al. [37], Ichimaya [34][35] [80]
and others are too simple and inaccurate to be effective. Their inherent weaknesses can be
attributed to the fact that the empirical base function bears no physical similarity to the actual
mathematical form of the solution. This makes the solution unreliable outside of the range of

tested inputs, and a large amount of test data is needed to calibrate the model. Moreover, the



solution does not reveal the internal relationship and interactions between the process variables.

3.3 The Fundamental Generalized Solution

It is evident that the accuracy of an empirical model of a real dynamic process can be
improved significantly by paying careful attention to the selection of the base function. A
complex process that has no analytical description, can adequately be approximated by the
analytical solution to a similar, but yet simpler, phenomenon which is physically related. The
solution to the latter problem will be referred to as the fundamental generalized solution FGS,
which was first proposed by the author in {86}. By examining the structure of this analytical
solution, FGS, it is possible to identify the mathematical features of and attributes of the real
process and to construct a physically meaningful empirical model by grouping the analytical
parameters into empirical constants. In this process, the analytical parameters will lose their

strict physical significance that they held in the analytical model.

With the satisfaction of the mathematical similarity between the real process and the
empirical model, one obtains a more accurate solution with less calibration data and fewer
empirical parameters. Furthermore, the calibrated model is more reliable with untested inputs
and it can even be used reliably to extrapolate data, since it forces the data to conform to the
same mathematical form as the real process. For on-line modelling and control of the thermal
deformation process in machine tool structures, the identification of the mathematical
relationship between the process parameters ensures the stability of the solution of the IHCP and
allows the control system to be optimally designed to take advantage of the physical dynamics

of the process.

The theoretical foundation for the premise that problems which are physically related tend
to be mathematically related as well, on which the generalized modelling concept is based, can

be established from the observations made by Boussinesq [81], and Kondratiev [82]. They
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showed that the solutions of the heat conduction equation for bodies of different geometries and
different boundary conditions are mathematically similar in their structure, which takes the form
of the sum of infinite series whose terms are rapidly decreasing exponential functions:
- -m(2)
T-T,= XA F(m, x) exp ' (3.1
n=1

where, T, is the ambient temperature, A is a constant coefficient which depends on the initial
conditions, F(m,,x;) is the eigenfunction, which depends on the geometric features of the body
and the space coordinates x;, and mn are the eigenvalues (the roots of the characteristic
equation). The symbols « and { represent the material thermal diffusivity and the characteristic

length of the body, respectively.

In order to correctly choose the form of the alternate model, i.e., the FGS, it is necessary
to satisfy the condition of mathematical similarity between the fundamental and the real
problems. While there are no definite similarity laws to follow, the two problems should be
physically similar in nature, formulation, boundary conditions, and initial conditions. The
simplified fundamental generalized problem should also be capabie of yielding at least a partial

analytical solution.

To illustrate the concept of mathematical similarity, Figures 3.1(a) and 3.1(b) show finite-
element models of a circular plate (r=127 mm) with a central circular heat source (r,=8.47 mm,
Q=370 W), and a square plate (12.7x12.7 mm) with a central square heat source (8.47x8.47
mm, Q=115 W), respectively. The plates are made of Cast Iron (¢=17.19 mm?/s) and have the
same thickness (25.4 mm), but their characteristic dimensions and heat source intensities are
quite different. Figure 3.2(a) shows the transient temperature profiles in each plate at a specific
nodal point 'A’ for a unit step heat input. In the case of the circular plate, node A is located at

r=76.2 mm from the centre, and in the case of the square plate, node A is located at 77.82 mm
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from the centre in the diagonal direction. Although the profiles of the temperature rise appear
quite different in Figure 3.2(a), the similarity in the mathematical nature of the solutions can be
seen when the scale of the temperature and time axes are changed on the square heater profile.
Through a trial and error procedure, the two curves were made to have a perfect match (within
the accuracy of the FEM), as shown in Figure 3.2(b). The complexity of the mathematical
structure of the solution can, however, be judged from the observation that the ratio between
the two time scales, which results in a single graph, was neither related to the time constants nor
to the duration of the transient stage. In this example, if no analytical representation were
available for a plate with a square heat source, the mathematical form could be approximately
determined from a consideration of the plate with the circular source, assuming that the solution

of that problem is available.

3.4 The Generalized Solution for the Temperature Field in the Machine Teol Structure

The formulation of the proposed generalized modelling method consists of three stages:
(a) the determination of the approximate mathematical form of the general solution to the real
process FGS, (b) the construction of an empirical base expression which is mathematically
related to the real process, and (c) calibration of the empirical base expression with experimental
data from the real process. The flow chart presented in figure 3.3 shows how the proposed
method would be implemented to model a real process. Block 1 represents the selection of the
alternate fundamental generalized model which is physically similar to the real process but in
simplified form. In block 2, the general solution for the simplified model is derived, and in
block 5 the step solution is obtained. In blocks 3 and 6 the analytical expressions representing
the general and step solutions for the simplified model are transformed into empirical base
functions by lumping the analytical parameters into empirical constants. In block 7 the step
solution is curve-fit to the step response of the actual process by calibrating the parameters with

experimental (or computer simulation) data. The expression derived in block 3, combined with
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the empirical parameters derived in block 7, define the general solution for the real process

(block 4).

For a linear problem, the response of the system to any input is fully defined by the step
response. It is therefore possible to calibrate the empirical solution from the measured transient
response to a single input, which is usually the step response. If a step input cannot be generated
in the real process, one may use a ramp or other known function. For a non-linear model,
several responses would be required for calibration, covering the entire useable range of the
output variable. This approach is more convenient than conventional empirical methods where
a large number of experimental responses are required to calibrate the model. If the parameter
variation is small, as is often the case, a non-linear model could also be adequately calibrated
from a single input. In what follows, the generalized modelling method will be applied to obtain

a model for the thermal response behaviour of a machine structure.

3.4.1 Stage 1: Selection of the simplified analytical model describing the thermal
response of the machine tool structure

A machine tool structural component is a large hollow shell with external slideways,
internal ribs and brackets, and various sources of heat sources. In order to implement the
generalized modelling concept, the analytical solution to a mathematically related problem is
required. Figure 3.4 shows a thin infinite plate with a convective boundary condition on the face
and a central ring of heat generation. This simplified model is analogous to the problem of one
heat generating source in a machine structure, since the bends and folds in the real structure do
not introduce any thermal resistance. In other words, the machine tool structure can be
visualized as if its walls are bent out flat into a large thin plate of uniform thickness. The
internal ribs and brackets are not included in the simplified model because they do not greatly
alter the mathematical structure of the solution. Heat sources take a variety of shapes and sizes,

but they can be adequately represented in the simplified model as a circular ring of heat
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generation. This statement will be confirmed in section 3.4. Since the problem is assumed to

be linear, multiple sources are accommodated by superposition of the individual models.

The plate in figure 3.4 is thin and the source is radially symmetric, so the govemning
differential equation is the one-dimensional heat conduction equation with convection and
internal heat generation:

- (32)

Q_Zl‘ . 1 T g(r,p)
k t

— = -aT +
orf r or

where:

h

kw

convection co-efficient of heat transfer

thermal conductivity (3.3)
thickness of the plate

thermal diffusivity

internal heat generation per unit volume

a
h
k
w
o

wnononon

g(r.1)
The internal heat generation is zero everywhere in the plate except for the thin ring at r=r,. I the
thickness of the heat generating ring approaches zero, Ar—0, then the internal heat generation

per unit volume is expressed as:

g(r) = ‘2—3?(’%);5("‘%) 3.4)

Where 6(r-1p) is the space impulse function. If the plate is at ambient temperature at t=0, then
the boundary and initial conditions are: T =0, when t =0, and T= 0, when r = . The analytical
solution to this problem has previously been derived by the author [83], using the methods of

Hankel and Laplace transformations [47]. The general solution is:

T(rp) = 2n°;cw { B J,(Br)J,(Bry)e @ PI= {q(t)e(ﬁz*“)‘”d‘rdﬁ (3.5)

If the heat generation is function q(t) is taken to be a step function of magnitude q at t=0, then

the temperature step response simplifies to:
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It = 21:]kw { B-’ia Jo(Br) Jo(Bro) [1 -e —(a*pz)w]dﬁ (3.6)

34.2 Stage 2: Transforming the Analytical Thermal Solution into an Empirical Base
Function

There are four groups of analytical parameters in equations (3.5) and (3.6) which are:
1/(2mkw), 1,, a, c.. These parameters are replaced by four empirical constants: K= 1/(2rkw),

I, &, o, to yield the following empirical base equation for the step solution:

BZ

The two independent variables in the equations are time t, and radial distance from the source

T(rp) = Kq f : Jo(Br)Jo(Bry) I —e @bl 4g (3.7)
o P *a

r.

3.4.3 Stage 3: Calibrating the Thermal Base Equation
There are a variety of methods to curve-fit the parameters of the base equation but the most

common is the least squares method. If the error residual is defined by the equation:

S = _ZI(Y(I,.)—T(t,.,a,,az,..am))z (3.8)

Where Y (t,) is the measured data and T(t,) is the analytical base, and a,, a,,...a,, are the empirical
parameters of the analytical base, the least square solution is found by solving the following

system of equations:

(1,a,.a,..4a,)

7
Q)

QO

N

T(t.a,.a,,.-.a,) -

........ : 3.9)

oT(t.a,.a,,.a_) - 0T(t.a,.a,...a_)
— L2 " Ta.a,.-a,) - ) —

m i=1 m
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There are 'm’ empirical parameters and 'm' simultaneous equations in the form of equation (3.9).
The equations are non-linear, so the solution requires a method of solving a system of 'm' non-
linear equations for 'm’' unknown parameters. This was done using a non-linear least-square

parameter calibration algorithm, that was developed for this purpose.

3.5. Computer Simulation Test Case

In this section, the concept of generalized modelling for the thermal response in a machine
tool structure will be validated on a computer simulated model. The purpose of this test is to
verify the accuracy of the model and its capability to determine the temperature distribution in
real-time. In the test case, the transient temperature field in the whole structure was predicted
to verify the capacity of the calibrated model to interpolate data reliably for a range of input

functions unrelated to the calibration data.

The test case is a finite element model of a large complex structure (550x 1000x 1500 mm)
with internal ribs, representing a part of a machine tool, as shown in figure 3.5. The square heat
source 1s applied near the centre of the box face. This finite-element model was created using
the general purpose finite-element package ALGOR [84]. The procedure for calibrating the
model is as follows:

(1) Determine the optimal parameter values by matching the response of equation (3.7) to the
temperature step response at different values of radius r, using a non-linear least-square
pararmneter calibration algorithm. The algorithm involves the solution of a system of non-
linear simultaneous equations because of the non-linearity of the governing equations
(Equation 3.9).

(2) The optimal parameter values have some random variation from point to point because of
statistical considerations in the calibration algorithm and errors in the finite-element

solution. This random variation is reduced by smoothing the variation of one of the
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Figure 3.5 Finite Element Model of Test Structure 1
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parameters and recalibrating the others. After several iterations a smooth parameter

variation curve is determined.

Figure 3.6 shows two temperature profiles at two points on the structure (see inset, figure 3.5),
along with the generalized solution, obtained by calibrating the parameters a, o and K. Figure
3.7 is a plot of the parameter values for different radial distances from the source. The parameter
variation curves are independent of the angular position with respect to the source because the
model is large and, therefore, the end effects do not become a factor. There is significant
parameter variation with r in the vicinity of the source, but the curve becomes flat as r/r,>10.
The reason for the variation in the vicinity of the source is that there is greater mathematical
discrepancy between the forms of the generalized and finite-element models in this region. At
larger distances from the source, the difference in the assumed profile of thermal input becomes
less significant. In order to accurately represent the temperature distribution in the vicinity of
the source it is necessary to vary the parameters with r, as indicated in figure 3.7. The
temperature distribution was found to be very insensitive to the parameter r, except where r=r,,

so the value was held constant at r;=15.2 mm.

Figure 3.8 shows how the generalized model can be used to accurately estimate the
temperature profile at an uncalibrated node by interpolating the parameter data in figure 3.7.
The calibrated model will determine the temperature at any point on the structure at any instant
of time, t, for any input. In this test case, seven measured nodes provided sufficient data to

calibrate the generalized model because the dimensions of the box are relatively large.

3.6 Conclusions from the Evaluation of the Generalized Modelling Method
The evaluation of the generalized modelling method on the finite-element test case has
demonstrated several important advantages over finite-element models and traditional empirical

models. The advantages of the generalized model over a finite-element model are:

40



70 Tempersature (degrees C)

50

40

0

10

Fig. 3.6:

. s R R L
100 200 300 400 sco 600
Time (seconds)

=" Generalized Solution = Finite—Element

(@) r=50.8 mm, (b) =157 mm

Parameters a, alpha

Temperature (Degrees C)

700 [} 100 200 300 400 500 800

Time (seconds)

—= Generalized Solution =~ =™ Finite~Element

Temperature profiles at two points on the test structure 1:

Parameter K

0.12 200
o.1f
4150
0.08 -
0.06 | 4 100
0.04 |
450
0.02 |-
o 1 1 . 1 L o
0 5 10 15 20 25 a0
r/R

R=0.6 inches

—+ alpha %K

Figure 3.7: Paramater Variation in Structure

41

700



Temperature (degrees C)

10
8
6
4
2
0 [ i 1 i [

0 100 200 300 400 500 600
Time (seconds)
— Generalized Solution = Finite—Element
Fig. 3.8: Prediction of the thermal response of uncalibrated point on the test

structure 1, using the generalized model

700



(1)

(2)

(3)

(1

(2)

(3)

the generalized model is computationally fast enough to be used in an on-line environment
(an improvement of two orders of magnitude),

it is possible to determine the temperature profiles of a limited number of points,
independently of the other points in the structure, and

the intricate modelling of complicated geometry and boundary conditions is not required.
The advantages over traditional empirical models are:

the generalized model typically contains a much smaller number of parameters than a
traditional empirical model to achieve the same level of accuracy,

the generalized model forces the calibration data to conform to the correct mathematical
form of the system, and

the generalized model can extrapolate the response of the system well beyond the range of
the calibrated inputs, which makes it possible to determine a complete solution from

limited measurement data.

Because of these characteristics, the generalized modelling method is the best method of

modelling processes in real time where the relationship between the input and output system

variables is only partially known. The mathematical basis of the generalized method allows the

system model to go beyond the raw calibration data to identify the actual physical relationship

between the input and output system variables, even when this relationship is not completely

defined by the calibration data. It does all of this with enough speed to be used in a real time

environment. All of these characteristics are essential to the development that follows in

subsequent chapters.
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CHAPTER 4: DESIGN OF PHYSICAL AND COMPUTER SIMULATION
MODELS OF LINEAR AND NONLINEAR MACHINE TOOL
STRUCTURES
4.1 Introduction
In this chapter, two models of a machine tool structure will be designed and constructed.
The first is a physical model with temperature and displacement measurement equipment, and
electric heating elements on the surface of the structure. This model is designed so as to be
similar to a real machine tool in its thermal and thermal deformation properties. The model
will be designed to minimize the nonlinear effects that are produced by fixed and sliding
joints. The second model is a finite-element model, representing a thick walled machine tool
structure exhibiting significant joint induced nonlinearity in its thermal deformation behaviour.
In order to accurately simulate the behaviour of the contact joints within the structure, a new
contact element will be developed, which will accurately simulate the contact pressure induced
changes in the thermal properties of the element. An iterative solution algorithm will be
developed, utilizing a commercial finite-element package to solve the linear system matrix
during each iteration. These models will be utilized in later chapters to validate the thermal

deflection estimation and control method that will be developed.

4.2 The Requirements of the Models

The method of controlling thermal deflection that will be developed in this thesis is
intended for application with real machine tools. The verification of the method will be done
however, using models of simulated machine structures rather than operational machine tools.
There are several reasons why a custom built model is preferable to a real machine for the
validation of the procedure that will be developed:

1. A model can be made to include certain features which are not commonly found in

most machine tools, but which pose special problems that will be dealt with in this thesis.



2. A model can be designed so as to exclude additional sources of error which are not
dealt with in this procedure, but which may obscure the validation process.

3. A model can be designed so as to accentuate the thermal deflection, and to introduce
extreme stimuli which might occur randomly or very infrequently in a real machine tool.
4. A model allows better control over input and environmental variables so as to better

identify potential problems and weaknesses with the procedure.

It will be shown that there are two distinct cases which may be encountered in practice.
In the first case, the thermal deflection response of the machine tool structure is essentially
linear, and in the second case there is a significant non-linearity which arises because of joint
interaction. For the first of these cases a physical scale model of a machine structure will be
designed. For the second of these cases it was found that a physical model is impractical
because of the large dimensions of the structure which would be required. Furthermore, the
behaviour of the nonlinear machine structure is less well understood, and a thorough analysis
would require the measurement of variables which are not easily accessible in a physical
model. For example, it will be shown that an understanding the behaviour of the contact
pressure distribution at a joint in the seconds following a thermal input is an important
consideration. The contact pressure distribution cannot be easily measured on a physical
model, but it can be easily determined on a finite-element model. Thus, the second verification

model is a nonlinear thermal deflection finite element model of a machine structure.

In order for the validation of the method for controlling thermal deflection to be
convincing, the models that are used must be authentic in the sense that they behave in the
same way as would real machine tool systems. This is of particular concern in the case of the
nonlinear finite-element model, because of the difficulty associated with accurately
representing the contact interface between two components in the form of a finite-element

model. Since it will be shown that this contact interface is the source of the system
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nonlinearity, particularly careful attention must be paid to the modelling of the interface, so
as to simulate the actual nonlinearity that is encountered in real machine tool systems. Several
commercial finite-element modelling packages were investigated, including ALGOR, ANSYS,
CATIA, and ABACUS, however none of these commercial packages provide a satisfactory
combination of elements to simulate the thermal and mechanical properties of the contact for
the requirements of the verification model. In this chapter, a custom designed contact element

will be developed, along with a nonlinear solution algorithm.

4.3 The Linear Physical Model
4.3.1 Estimating the Requirements for the System Variables

The experimental model to be used for the verification of the method without joint non-
linearity is a scale model of a machine tool structure. The model must have thermal and
thermal deflection characteristics which are similar to a real vertical milling machine. Figure
4.1 shows the temperature distribution in a real vertical milling machine running at maximum
speed with zero load. The image was generated by an infrared thermal imaging camera. The
figure shows two major heat sources in the structure, the motor assembly near the rear of the
overarm, and the spindle bearing near the front of the overarm. The maximum temperature rise
is 58 degrees Celsius near the top of the spindle bearing heat source. The steady state thermal
deflection of the cutting tool assembly relative to the table for this machine is 3.5 thou or 89
microns in the horizontal direction and -1.9 thou or -48 microns in the vertical direction. The
experimental model should have a general shape and configuration which is consistent with
the vertical milling machine. The one aspect where there must be a considerable dissimilarity
is in the wall thickness of the structure, which cannot be more than 6.4mm for economic

reasons. The average wall thickness of most machine tools exceeds 25mm.

It is an important consideration that the maximum temperature and the temperature

distribution in the model be similar to that of the real machine tool. The derivation of the
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(a) Front of Overarm (b) Rear of Overarm

Figure 4.1 Temperature Distribution in Real Milling Machine Structure

Figure 4.2: Finite Element Model of Linear Test Structure
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procedure that follows in later chapters is based on the assumption of a linear thermal model,
and the validity of this assumption can only be properly tested if the operating temperature of

the experimental model is consistent with the operational temperature of a real machine tool.

Another important consideration is the maximum thermal deflection of the model
compared to that of a real machine tool. The real milling machine produced a maximum
thermal deflection of 89 microns. This order of deflection is typical for small machine tools,
but higher thermal deflection would be expected from larger machines. While the thermal
deflection of the experimental model should not be too much greater than 89 microns, it is
desirable to obtain a greater maximum deflection from the model so as to accentuate the
phenomenon which is being studied. The location of the main heat source in the model will
be moved slightly from those shown in figure 4.1, so as to increase the maximum deflection

somewhat.

Prior to constructing the experimental model, extensive finite-element modelling was
done to ensure that the model, when built, would have the desired characteristics. Figure 4.2
shows a solid model of the finite-element mesh representing the experimental model. Figure
4.3 shows the dimensions of the actual model assembly. The structure is constructed out of a
quarter inch (6 mm) square section column which was cut and welded at the edges indicated.
All of the joints are seam welded so as to make one continuous thermal structure. The finite-
element analysis done prior to the construction of the model revealed that no significant joint
non-linearity could be introduced without significantly increasing the wall thickness of the
model. Since this is impractical, the experimental model was designed as a mono-component

structure without any joint interaction whatsoever.
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4.3.2 Configuration of the Model and Measurement Apparatus

Figure 4.4 shows the machine drawings for the displacement transducer holder, and figure
4.5 shows the machine drawings for the transducer clamping mechanism. The clamps hold the
LVDT transducers, as shown in the figure, and attach to the holder by means of the slots
shown in figure 4.4. The clamps can be adjusted into position by moving them in the sliding
slots, and then fixed into position by the set screws shown in figure 4.5. The LVDT
transducers have a hardened ball tip that is spring loaded to maintain contact with the probe.
The linear stroke is 1.0 mm, with a repeatability of 0.15 pm and a nominal accuracy of 2.0 uym
within a range of 250 pm. The assembly has two LVDT transducers oriented mutually
perpendicular to measure the displacement along two co-ordinate axes. The third co-ordinate,
which is the direction into the vertical plane in figure 4.3 is not measured. The deflection in
this direction will be negligible because of the symmetry of the model and the symmetry of the

heat sources.

Temperature on the surface of the structure is measured using thermistors that are glued
onto the structure with high conductivity adhesive. Thermistors have a higher resolution than
thermocouples, they also have greater repeatability and do not require calibration by the user.
However they are nonlinear devices which require a calibrated conversion equation. This is
not really a disadvantage in this case because the controller is implemented by a computer

which will perform the conversion.

The data acquisition system employs a Microstar Laboratories DAP 2400 data acquisition
card. The card includes analog data acquisition hardware and a 16-bit microprocessor. The
card operates on a real time multitasking operating system called DAPL. It employs 12 bit
analog to digital conversion and has a nominal maximum sampling rate of 50 kHz. Most of
the data processing is performed by a Pentium 60 MHZ computer running C++ through DOS,

although some input signal processing is done in parallel by the data acquisition processor.
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The system has a maximum of 15 single ended inputs and two controlled outputs. The
controlled output voltage signals connect to voltage controlled power supplies which drive the
resistance heating pads. The heating pads are glued onto the structure with high conductivity
adhesive, and are used both to simulate the disturbance heat sources of a real machine tool,

and also as artificial heat sources for control.

Figure 4.6 shows a schematic drawing of the structure showing the measured x and y
axes, the configuration of the test structure, the location of the heat sources, and the points of
measured temperature. Notice that the location of the sources has been moved slightly from
the locations shown in the real structure in figure 4.1. The heat source at the base of the
overarm was moved about a third of the way down the column. This has the effect of
accentuating the thermal deflection resulting from the same heat input. A heat source in that
location is fairly common in some milling machine tools, either for a bearing or for the motor
assembly. Another difference is that there is only one independent heat source, since both of
the sources shown in the figure and the two placed symmetrically on the other side are
connected to the same power source. Because the temperature and thermal deflection are
completely linear, as will be shown shortly, additional sources can be dealt with by the

superposition principle.

4.3.3 Comparison of the Model System Variables with a Real Machine Tool System
Figure 4.7 shows the temperature distribution in the test structure for a dimensionless heat
input of Q=1.0. The maximum temperature is 82.5 degrees Celsius, which is a temperature
increase of 58 degrees above room temperature. Figure 4.8 shows the temperature distribution
on the finite-element model of the structure for the same input Q=1.0. The maximum
temperature and the temperature distribution is in agreement with the test structure, which is
consistent with the temperature distribution of the real machine tool in figure 4.1. The

maximum temperature is somewhat higher in the experimental model than in the real machine,
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but this is due to the fact that the heater in the experimental model is on the surface, while the
heat source on the real machine is buried within the structure, producing a more distributed
temperature distribution at the surface. The maximum thermal deflection of the structure,
which is the steady-state thermal deflection for the maximum heat input Q=1.0, is 78 microns
in the x-direction and 242 microns in the y-direction. This is somewhat higher than the
maximum thermal deflection for the real structure in figure 4.1, but it is in the same order of

magnitude and comparable to the thermal deflection of many machine tools.

4.3.4 The Control Heat Sources

Figure 4.9 shows the temperature distribution of the finite-element model of the structure
with three operating heat sources. The additional two sources are used to simulate the effect
of the control heat sources in the real test model. The locations shown were found to be
suitable locations for generating thermal deflection along the X and Y axes with minimum
heating power and temperature rise. An analysis of various finite-element models suggested
the design shown in the figures above, with the control heaters placed in the locations
indicated by the hot zones in figure 4.9. However, the locations of the heat sources on the real
model will differ somewhat from that shown in the figure. A photograph of the complete

physical setup is shown in figure 4.10.

4.4 The Non-Linear Computer Simulation Model with Joint Interaction

4.4.1 Nonlinear Thermoelastic Behaviour of Machine Tool Structures due to Contact
Joints
The main source of thermal deflection nonlinearity in a machine tool structure is the

interaction between thermal stress and thermal resistance at the interface between machine
components. The effect of fixed and sliding joints on the static, dynamic and thermal
behaviour of machine tools, and consequently machining accuracy, has been well recognized
for some time. In recent years, the development of the theory on non-linear thermoelastic

behaviour of structural joints [85] revealed the importance of the distribution of the thermal
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Figure 4.9:  Temperature Distribution in Finite-Element Model of
Linear Test Structure for three Simulated Heat
Sources

Figure 4.10: Photograph of Physical Model
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contact resistance and stresses on the thermal deformation of the whole structure [86]. Proper
design of the joint to control the contact pressure presents a conflict of requirements between
the static stiffness and the damping capacity [87] [88]. Friction damping is determined by the
friction force and the relative slip amplitude. This mechanism is again associated with another
conflict of requirement; the increase in contact pressure results in an increase in the friction
force and a decrease in the micro-slip amplitude. Micro-slip results also in fretting wear at the
joint which may affect the long-term performance of the machine tool [89].

Therefore, a proper modelling of the machine tool structure and its joints requires an
understanding of the physical phenomena and interaction that take place at the joint. It also
requires accurate description and idealization of the boundary conditions. Specifically, the
modelling should recognize the nonlinear nature of the thermoelastic behaviour of the
structure and the importance of predicting the distributions of the contact stresses and the

thermal contact resistance, as well as micro-slip and separation.

4.4.2 The Nature of the Thermal and Stiffness Characteristics of the Contact Joint
4.4.2.1 Surface compliance in the normal and shear directions

The extensive experimental and theoretical work carried out on the stiffness of flat joints
[90] [91] [92] [93] [94] [95] [96] showed that upon normal loading the surface asperities
deflect both elastically and plastically. During unloading, however, the normal deflection curve
is purely elastic as long as the initial maximum load is not exceeded. The elastic recovery of

the deformed asperities was found to be non-linear due to the increase in the bearing area.

The empirical nonlinear compliance of contacting surfaces, which relates the approach

of contacting surface asperities A, to the applied pressure p_, was found to follow this form
[90]1[91]:

A =cpr” (4.1)
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The constants ¢, and m in Equation (4.1) depend on the material of contacting solids and the
roughness and waviness of contacting surfaces. From Equation (4.1), the dependance of the
normal stiffness of the interface k, on the contact pressure is described by the following

relation:

_dp, p, "

"-dln mc,

“4.2)

When repeated tangential stress p, is applied to contacting surfaces, the elastic shear deflection
A is governed by the following linear relationship [92][96]:

Ay = P (4.3)
where, c, is the interface shear compliance. Therefore, the shear stiffness of the interface k,
is:

d
k=05 -

Ty (44)

1
CS
When the shear stress p, reaches a liming value p, ;.. it overcomes the frictional resistance
resulting in a relative micro-slip between contacting bodies. The shear compliance is not only

dependent on the materials of the solids and surface finish, but also dependent on the normal

pressure p, [92]{96]:
€ - (4.5)

where, R and s are again parameters dependent on the pair of materials and surface finish. The
analysis carried out by Back et al. [93] showed that the relationship between elastic surface
deflection and contact pressure p, takes the form given by equation (4.1), when the probability
function of the asperity heights is described by the following relation:

Y(z) =bi ™m (4.6)
In this case, the constants c, and m in equation (4.1) are: m = m and c, = (p,.n.A; ) (b.m),
where, p,, is the flow stress of the softer material, n is the density of the micro contacts, and

A, is the area of a single micro-contact. Tsukada et al. [94][95] confirmed the validity of the
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empirical relationship A,{p,} described by equation (4.1) when the density probability function

Y(z) of the surface asperity heights is a normal distribution.

4.4.2.2 Thermal contact resistance

Micro-contacts are usually clustered within a smaller number of bounded zones known
as the contour areas or the macro-contacts. As the heat flow lines approach the contact zone,
they tend to converge towards the least resistance paths, giving rise to the known "thermal
constriction resistance”. Therefore, the total heat flow will be divided into a number n, of
separate channels which correspond to the macroscopic constriction resistance Ryac in the
contact region, and the gap resistance R in the non-contact region. Microscopic constriction
resistances Ry, and interstitial fluid resistances R, are subsequently created as each of the heat
flow channels is subdivided again into a number n, of microscopic heat flow channels, each
correspond to a single micro-contact and its surrounding interstitial fluid. Microscopic and
macroscopic constriction resistances can be added together [97] to determine the overall
thermal contact resistance R

-1

RC=E

i=1

L, 1 ] @
Re Rypc*Ryuc ;

where the total microscopic contact resistance Ry within one contour area is defined as
follows:

-1

(11 ]
Ryc = 2| o+ 4.8)
e ( Rt’ Rmic

j=1

J

assuming that the n, isothermal micro-contact areas are identical (radius = a) and are thermally
connected. For normally distributed surface asperities, the total microscopic constriction
resistance R, ;. (without the contribution of the interstitial fluid) can be estimated from the

following equation [98]:
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) b 098s| !
R, . = c(‘_n.) kh( ] (4.9)
t,mic c H,

where, Cis a constant, k, is the harmonic thermal conductivity of the contacting solids; k,=2k,
k, /( ky+ k;), mis the mean of absolute slope of surface asperities, p, is the normal contact
pressure, and Hy, is the hardness of the softer material. To account for the contribution of the
oxide film to the contact resistance, Schankula et al. [99] developed a model to modify the
microscopic thermal constriction. This model was expressed in terms of the thermal

conductivity and the thickness of the oxide layer.

To estimate the macroscopic constriction resistance component R,,,c, the thermal
boundary condition over the contour area can be assumed as: isothermal, constant heat flux,
or that the heat flux at any point is proportional to the local contact pressure p,. Mikic [100]
followed the third assumption, which represents an upper bound, and obtained the following

relation:

)

@ 1 ped

Rypc- 22} 2 f(&J cos (nTx) d% (4.10)
k =nig

where, p, is the average contact pressure along the joint, X = x/L, X is the position of any point

o]

along the joint, and L is the length of the joint along which the pressure p,(x) is distributed.

A statistical model for predicting the interstitial fluid resistance R, between isotropic
conforming rough surfaces was developed by Yovanovich et al. [101]. The model accounts
for the change from free molecular to transition, slip and eventually to continuum regimes as
the gap thickness increases. The gas conductivity model developed by Turyk and Yovanovich

[102] can be used here to estimate the gap resistance Rg between two rough wavy surfaces.
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4.4.3 Modelling and Idealization of the Thermoelastic Characteristics of the Joint
4.4.3.1 Stiffness matrix of the three-dimensional interface element

The three-dimensional interface element, which models the normal and shear compliance
of the interface, has different properties in each of the three principal directions. It should be
noted that in measuring the surface deflections A, and A, (equations (4.1) and(4.3)), the
elasticity of the subsurface layer and the bulk of the material were not included. Therefore,
when equations (4.2) and (4.4) are used as the constitutive laws of the interface element, we
are able to model the joint at a microscopic level. By connecting the interface element directly
onto the nodes of the linear substructure, the non-linear elastic behaviour of the contact

interface is physically distinct from the linear substructure.

Definition of the local coordinate system

Figure 4.11 shows how the normal direction for a pair of nodes is defined by the
imaginary line in three-dimensional space connecting the designated node pair. The tangential
surface is the plane that is perpendicular to the normal line, at the midpoint between the two
nodes. The initial locations of the nodes may be chosen so as to create a smooth surface as in
figure 4.11(a), or an irregular surface as in figure 4.11(b). In either case, the surface nodes

must be placed so as to properly define the normal to the surface at the given point.

Figure 4.12 shows the normal line connecting two nodes, I and j, in the global co-ordinate
system, labelled the X, Y, and Z axes. The orientation of the vector P, P, is defined by two
angles, ¢ and 8, where ¢ represents the angle between P, P, and the global Z axis and 6

represents the angle between the projection of P, P, into the X-Y plane and the global x-axis.
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Transformation of coordinates

Numerical treatment of thermal and mechanical contact problems require the
transformation of the displacement vector solution from the global coordinate system to the
local system ({d}yy,—{d }ry2) to obtain the normal and shear stiffness of the contacting
surfaces. To determine whether separation and/or micro-slip take (s) place the calculation of
the local normal and shear stresses are required. This will be followed by the transformation
of the local nodal force vector to the global coordinates system ({fhyz —{f }xy2). to define
the boundary conditions for the linear stress problem. It should be noted that the
displacements dy, dy and d , represent the differences between the nodal deflection u, v, and

w, in the X, Y, and Z directions, respectively:

dy = u -y,
dy = v-v, (4.11)
d, = w-w,

] 1

where I and j are the indices of the two nodes connected by the element.

A vector in the direction of P, P, with magnitude f, transforms to the global co-ordinate

system as follows:

£y = f, sind cosO
f, = f, sind sinb (4.12)
f, = f, cosd

If we assume that the contacting surfaces are isotropic, then the local zx-axis may be arbitrarily
assigned the orientation angles 6, = 6 and ¢= ¢+90, so that the local #x and global X axes
coincide when both 6,= 0 and ¢,= 0. With the rx-axis defined in this way, ¢ represents the
angle by which the local co-ordinate system is rotated about the local ty-axis and 0 represents
the angle of rotation about the local normal n- (or z) axis. Thus, the local ry-axis will always

be found in the global XY plane, with orientation angles 6,=6+90 and ¢.,= 90. Vectors
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f and f, may be expressed in terms of the normal directional angles by substituting into

equations (4.12) as follows:

and

The transformation of the nodal

fy = f, cosd cos
f, = f, cosdsinb (4.13)
f, = -f.sind
f, = -f, sin@
fy = -f, cos ¢ (4.14)
f,=0

force and displacement vectors form the local to the global

coordinates systems is given by the following matrix notation:

{t} = [T] () (4.15)
and
{d} = [T] {d} (4.16)
where
fzx fX
{11 = {f5(, and {f} = {fy (4.17)
Ja fz
and
dtx dX
{d} =1dy(, and {d} = {dy (4.18)
dn dZ
The transformation matrix [T] is defined as:
cos(dp)cos(0) -sin(0) sin(P) cos(O)
[T]=|cos(d)sin(®) -cos(B) sin(d)sin(0) (4.19)
-sin(¢) 0 cos(d)

The inverse transformations are:



U} =11 {f}, and
{d} =[T]7" {d}

(4.20)

Stiffness and force matrices in the global coordinate system
The local stiffness matrix of the three-dimensional contact element [k] defines the relation

between the local force and displacement vectors:

{f} = [K] {d} = [k] [T]"" [d] (4.21)

where,
k., 0 O
[k] = |0 k,), 0] 4.22)
0 0 k,

The element &, k, and k,, of the local stiffness matrix [k ] are defined by equations (4.2) and
(4.4). For isotropic surfaces, k, =k, =k,. The local stiffness components k, = k,=k,=0,
when separation or micro-slip takes place at a given location. In the case of slipping, opposite
nodal friction forces are applied to the corresponding nodes; f, = uf,. From equations (4.15)
and (4.21), the force vector in the global coordinate system is:

{f} = [T] (k] [T (4} (4.23)
Given the 3x3 Thus local stiffness matrix [k] (equation (4.22)), the 6x6 global stiffness matrix

[k] is 4 is the assembled as follows:

rf)i‘ n
fy k % v
i i
< fZ. - « ; » (4.24)
fx u
] & -k yi
2 J v
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4.4.3.2 Thermal contact conductivity matrix of the interface element

The thermal interface elements are three dimensional brick elements with variable
conductivity that is a function of the contact pressure, material properties and surface
topography. Since equation (4.9) was found to produce lower values than those obtained
experimentally [98], the coefficient and the exponent in equation (4.9) can be made equal to
unity for simplicity and to agree with experimental observations. It can also be argued that
the contact spots under higher local contact pressure will experience a higher contribution of
the macroscopic constriction resistance as a result of the convergence of the heat flow lines
at these locations. Therefore, to obtain the distribution of the macroscopic constriction
resistance along the joint, Attia and Kops [85] assumed that the local value of R, is directly

proportional to the local contact pressure.

Equating the thermal contact resistance of the interface R, with the thermal resistance of
the interface element Ry, Ry, =Al/(k.), yields an expression for the equivalent conductivity of

the thermal brick contact element, k, ,;:

1
ke =[A] [ 4.25)
[ e.rnic,+Re,lnac (
where:
R, ( ° |2
N m kh Pq
” 4.26)
ALV 1|f.P I\
R =—3) =l ()cos (nmx)dx| x
eomac k n=1 £( o) ( ) pnnz:l n,i

where Al is the thickness of the contact element, and the other parameters are defined as in
equation (4.9). The contact pressure in equation (4.25), is the average pressure over the eight
nodes of the brick element. It should also be noted that equation (4.25) represents the
additional resistance introduced by the interface, excluding the thermal resistance of the

subsurface layer and the bulk material.

66



4.4.4 Algorithm for Predicting the Thermoelastic Response Behaviour of Nonlinear
Machine Tool Structures

Figure 4.13 shows the flowchart for the algorithm used to predict the thermal response
of machine tool structures. There are three modules and three program utilities that are
integrated for automated execution of the analysis. The first interface element module, uses
the global displacements of the interface nodes and to define the global thermal contact
conductivity [C] and stiffness [k] matrices, as well as the nodal force vector {f;} to be applied
to the interface elements if micro-slip was detected. Given the matrix [C], the temperature
field in the structure is obtained using the second thermal processor module. The thermal
deformation {d}and thermal contact stresses are determined using the third stress processor

module. The program modules are connected by the following three utilities:

1. The interface stiffness and contact conductivity matrices utility, which reads the latest
[C]} and [k] and {f,} generated by the interface element module and updates the thermal
and stress finite element models.

2. The second utility reads the nodal temperatures {t} generated by the thermal processor
and writes {t} into the stress model.

3. The third utility reads the output of the stress processor to feed the interface element

module with {d}.

If the difference between the initial and final deflections of the contact elements are
greater than a predetermined tolerance then the updated deflections replace the initial
deflections and the cycle begins again. A separate routine has also been developed and

- implemented to accelerate the convergence of the solution to the state of equilibrium.

In what follows, the first module which generates the stiffness and conductivity matrices

will be briefly discussed.
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Figure 4.13: Flow Chart of the Contact Element Algorithm
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Generation of the stiffness and conductivity matrices module

This program module proceeds in the following sequence:

- Establish the nodes to be connected by interface elements and read nodal positions
and deflections from the output of the latest linear stress analysis iteration.

- Define the orientation angles 0 and y for each interface element.

-  Transform the global displacement matrix into the local domain and calculate [k].

- Calculate the local force vector {f} in the interface elements and test if the resultant shear
nodal force f>uf,. If this condition is satisfied, then k, =k, = 0 a force equal to uf, is
applied in the direction of f, on node I and opposite to f, on node j.

- Calculate the global stiffness matrix [k] and the global friction force vector {f,} applied
to the interface nodes as a result of micro-slip.

- Update the interface elements connectivity data.

The information obtained in the last two steps are to be input into the thermal and stress

processors through the interface element utility, as discussed earlier.

4.4.5 The Complete Computer Model of the Nonlinear Machine Tool Structure

Figure 4.14 shows a three-dimensional box-shaped model of a horizontal milling
machine. There are two heat sources (Q = 90 W) that are symmetrically placed in the column
wall to represent bearings. The dimensions of the envelope containing the structure are 145
x 115 x 50 cm. The structure wall thickness of is 5 cm. The contact between the column and
the table is assumed to take place over two strips 40 x 7.5 cm. A colour enhanced solid model

of the column and contact strips with the table removed is shown in figure 4.15.

The physical and thermal properties of the material are those of gray cast iron: the thermal
conductivity k=40 Kcal/mh°C, the coefficient of thermal expansion a=13.7x10"® mm/mm°C,
the modulus of elasticity E= 1.06x10° kg/cm?, and Brinell hardness Hy = 200. All external
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surfaces are exposed to convection, h = 6 kW/cm’. In this model, the rigidity of the support
screw is simulated by using a material of E = 3x10” kg/cm?®. The initial mechanical pressure

is assumed to be uniformly distributed over the contact interface, p_ ..., = 45 kg/cm>.

The characteristics of the contacting surfaces, which determine their stiffness and thermal
contact resistance are: standard deviation of surface roughness = 1.25 pm, and the average of
the absolute slope of surface asperities= 0.14. The parameters which define the normal and
shear compliance of the contact interface (equations (4.1) and (4.5)), using the kg/cm? and pm

units are: ¢, = 0.65, m = 0.5, s = 0.5 and R=0.75.

71



CHAPTER 5: DERIVATION OF THE INVERSE TRANSFER FUNCTION
FOR ESTIMATING HEAT GENERATION

5.1 Introduction

In this chapter, a procedure will be developed for calculating the magnitude of heat
generation in a machine tool structure in real time, from temperature measurements in the
vicinity of the heat sources. The development will begin with the determination of a
generalized model of the temperature response to a heat source in the machine tool structure.
The analytical form of the generalized model will be derived in such a way that it can
accommodate an initial delay in the temperature step response, allowing for an accurate
representation of a machine tool system where temperature must be measured relatively far
from the source. The generalized model will then be transformed to the Laplace domain in the
form of an analytical expression, which shall be inverted to define the Laplace transfer
function of the inverse thermal system. Numerical methods will be developed to transform the
transfer function to the time domain in the form of a convolution integral transfer function,
suitable for real time computation. Stabilization of the inverse transfer function, called

regularization, will be dealt with by a systematic approach.

5.2 The Derivation of the Inverse Transfer Function in The Laplace Domain
The general solution for the temperature distribution in a large plate with a circular heat
generating ring of radius r, was derived in [83] and presented as equation (3.5). The equation
is repeated here as follows:
:

- o T -(a+PAar B3+a)ar
(i) = o—— { B J,(BN I Brye 0qcc)e dtdp (5.1)

If the heat generation is function q(t) is taken to be a step function of magnitude q at t=0, then

the temperature step response simplifies to:
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1o = ﬁ{ 5zﬁ+a IoBr)IyBro) [t - =] ap (5.2)

After lumping the parameters 2nkw into an empirical parameter K, the generalized equation

for a heat source in a large plate is obtained as follows:

Tr) = Kq [—F—JBIoBro)1 -e @ #]dp (5.3)
0

B*+a
The above equation is the generalized step response, presented in chapter 4. The Generalized
step response shall now be transformed analytically to the Laplace domain by means of the

transformation equation:

o

F(s) = [e™finydt (5.4)

0

where f(t) is the function in the time domain, F(s) is the transformed function in the Laplace
domain, and s is the Laplacian operator. Substituting equation (5.3) into equation (5.4) and

reversing the order of integration yields:

IBIyBro)| [e 11 - e e g1 | g (5.5)

0

I(rs) = K
r,s Q{B2+a

The part of the equation inside the brackets evaluates to:

}‘e -st (1 -e "(a*ﬂz)a!)dt = __a_(&sz)_ (56)
) s(s+[a+B*a)

Thus the transformed equation is given by:

" BJ
T(r,s) _ Kaqu o(Br)JoSBro)dB
o S(s+[a+p%]a)

6.7

Since the input corresponding to the step response is Q(s)=q/s, the transfer function

H.(s)=T(r,s)/Q(s) is obtained by multiplying equation (5.7) by s/q, to yield:
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Hyr = Ko [ B Jo(B) Jo(Bro)
0

e (5.8)

In the Laplace domain, finding the inverse transfer function from the direct transfer function

is trivial since it is found simply by taking the reciprocal of the direct transfer function. Thus:

G(r,s) = 1 = !
Hp (r.5) Ka} B Jo(Br) Jy(Bry J (5.9)
5 s+la+pHa

If the three parameters K, a, «, and r, are calibrated from experimental data, equation (5.9)
gives the inverse transfer function in the Laplace domain, as a function of the Laplacian

variable s.

In a later section of this chapter, the Laplace domain transfer function G(r,s) shall be
transformed into the time domain transfer function G(r,t) by means of the inverse Laplace

transform equation:

g~jo
G(rp) = f e G(r,s)ds (5.10)

G~j=
where o is a real number that is larger than the largest pole of G(r,s). Taking s=R+]j, and

assuming that R meets the conditions imposed on ¢ and that G(r,t) is a causal function,

equation (5.10) becomes the real integral {46} {86}:
Rt
Girp) = £— f SUG(r.R+Ij)} cos(tl) - HG(r,R+Ij)} sin(]) dI (5.11)
13
0

where from equation (5.9):

R{H +IN}
R{G(r,R+Ij)} = r (R
RUH . (r R+INP+JH . (r,R+I))P
{H.. (r,R+I)} -12)
(G R+ = “SH R

RUH (r.R+[)P+SH . (r.R+[)P
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In order to successfully solve equation (5.11) numerically for different values of t, the
expression for H(r,s) in equation (5.8) will have to be evaluated over a wide range of complex
values, extending from s=0+0j to s—~o+<j. It will be shown that for a given time value t, the
real component of s will be constant, and so H.(r,s) will have to be evaluated incrementally

in the range s=R+0j to s—~R-+xj.

The improper integral in equation (5.8) has no closed form solution and is difficult to
evaluate numerically. The numerical problem arises because the decaying oscillatory integrand
is coupled with an infinite limit on the integration. In order to preserve the accuracy of the
approximation, the numerical integration must incorporate a certain minimum number of
samples for each oscillation, and it must include the contributions from all oscillations with
magnitudes above a certain threshold level. For slowly decaying functions with high
oscillating frequencies, the number of samples for the numerical integration becomes very
large. The number of samples affects the computation time of the numerical integration
algorithm, but more importantly there is a practical limit on the number of samples that can
be used for a given numerical resolution of the compiler. Since each addition and subtraction
performed by the computer in executing the numerical integration algorithm introduces some
round off error, the accumulated truncation error becomes larger as the number of samples
increases. This implies a practical limit on the number of samples, and hence on the usable
range of the numerical solution. The usable range is severely limited for this equation because
of the Bessel functions in the integrand. The two numerical estimates for Jo(x) are the

bottleneck, both in terms of computation time and truncation error.

In general, the larger the value of s, the greater is the number of samples required for the
numerical evaluation of equation (5.8). Equation (5.8) was integrated directly on the VAX
7600 mainframe computer in double precision (12 significant digits) and in quadruple

precision (24 significant digits), for various sample point distributions. The conclusion of this
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effort was that direct integration of equation (5.8) cannot result in a transfer function which
is accurately invertible to the time domain by equations (5.11) (5.12) because of truncation
error. The extremely long computation time also makes it impractical to consider using higher

numerical precision with greater numbers of sample points.

5.3 The Numerical Calculation of the Inverse Transfer Function in the Laplace Domain
5.3.1 The Convergence Problem
In order to consider the convergence properties of equation (5.8) in more detail the

integrand function is considered separately from equation (5.8) as follows:

B

Integrand(r,s) = o B J,(Br) J,(Bry)
s+la+p*e

(5.13)

If s is a complex variable in the form R+lj, where R is the real component and I is the

imaginary component, then the integrand can be expressed by its real and imaginary

components:
R+a(a+B?)
R{ Integrand(r,s); = J(Br) J (Br,) o
{Integr } = JoBr) Jy(Br, B(R+a[a+[32])2+12
(5.14)
I
{ Integrand(r,s)} = ~J,(Br) Jo(Bry) ef (R+afa+p2)2+I2

Each of the above equations will be considered in two parts, with the first part containing the
Bessel functions:

P, = Jy(Br) Jo(Bry) ap (5.15)
and the second part being the balance of the equation. Now it can be shown that as x~, the

Bessel equation converges to a purely harmonic function:

cos(x) +sin(x)

Vx

Lim Jo(x) = (5.16)

Thus, as -, equation (5.15) approaches the function:
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i (cos(Br) +sin(Br))(cos(Bro) +sin(ﬁro))

1
T (5.17)
—Jrr
Vo

which is a harmonic function with frequencies defined by r and r, that neither decays nor
grows as [3—ec. Therefore, in order for the integral in equation (5.8) to converge to a finite
result, the second part of the real and imaginary parts of the integrand in equation (5.14) must
decay to zero as $— for all real values of R and I This requirement would not appear to pose
any problem since the denominator in equation (5.14) is two orders higher than the numerator
for the real component and four orders higher in the imaginary component. A problem does
arise however, because in order to calculate G(r,t) for a particular value of t, equation (5.8)
must be evaluated in increments of I from 0-«. Letting B~ and I~ in equation (5.14) results

in the following limits:

Lim ®{Integrand(r,s)} = —,#E:—

B-m [~= a—B4 +IZ
(5.18)

Lim {Integrand(r,s)} = ;17

frx - a2B4 +J2

For small values of B, the B* term in the denominator is negligible compared to I>. It is only
after the * term exceeds I* that it can carry the function toward zero. This means that as I
becomes larger, the limit for the integration in B must be increased also, in proportion to \/I.
Since the integral will have to be evaluated for very large values of I, the limit on the

integration will be very large also.

Another problem concerns the numerical evaluation of equations (5.11) and (5.12). The
transfer function G(r,s) does not actually converge to a finite value, it is only the Euler
transformation of G(r,s) that is convergent, as will be discussed shortly. In order to numerically
determine the Euler transform of G(r,s) it is necessary to first calculate G(r,s), the numerical

values of which quickly become unmanageably large for large values of s=R+Ij. In order to
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minimize round off error, the integrals in equation (5.8) must be calculated with high

precision, further pushing out the limit of f in the integration.

5.3.2 Improving the Convergence Properties of the Numerical Calculation
As previously discussed, it is not possible to numerically evaluate equation (5.8) directly
because round-off error corrupts the numerical summation before the integral in 3 has
converged with sufficient accuracy, for large values of L. The problem is the integrand, which
oscillates and decays more slowly for large I. Now this problem would not exist if the first part
of the integrand, the part in equation (5.15), could be made to decay to zero by itself,
independently of the second part of the integrand which contains variable L. If this could be
accomplished then the convergence of integral (5.8) would not depend on I, and convergence
of the integral would be assured even as I-=. Consider again equation (5.8), rearranged
slightly to separate the oscillatory part of the integrand:
Hy(r5) = K [Jo(Br) Jo(Bry) p————dB (5.19)
5 s+[a+p]a

Now consider the oscillatory part of the integrand as a function of f:

D) = Jy(Br) Jo(Bry) (5.20)

As B~o, Da(PB) is found using equation (5.16):
(cos(Br) +sin(ﬁr))(cos([3ro) +sin(Br0))

TEB‘/;I‘—O

which decays as a first order power of B. The first order power of f in the denominator is just

D,B) = Iaim D) = (5.21)

enough to cancel the B term in the numerator of the integrand, but not enough to guarantee
convergence. Now define a new function D(B) by subtracting Da(B) function from D(B):
(cos(Br) +sin(Br))(cos(Bro) +sin(Br0))

nB‘/r_rO

D) = J(Br)J,(Bry) - (5.22)
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This new function is also oscillatory at the same frequency as D(8), however it decays with
a higher order of 3. Figure 5.1 shows a plot of D(B) for r=3.0 and ry=1.0, which is oscillatory
and decaying as a first order inverse as expected. Figure 5.2 shows a plot of D(f) for p=0-8
indicating a rapid initial decay, and figure 5.3 shows D(B) for B=10-50, indicating that the rate
of decay moderates for large f. The actual order of decay of D(P) is approximately 1/p** when
B > 10. Since the inverse power of P is greater than one, the new function will bring the

integrand to zero independently of parameter L
Rewriting equation (5.19) in terms of D(P) yields the following:

Hy(r.s) = K [ DB.rr)p————dp (5.23)
! s+la+Pla
Figure 5.4 shows a plot of the real part of the integrand of equation (5.23) versus [ for r=1.0,
r,=0.1, a=0.08, 2=0.029, R=1.0, and [=2.0. Figure 5.5 shows the real integrand for the same
values except that I=200. The figures show that the integrand decays with an increasing
effective time constant for larger values of I. Figure 5.6 shows the real integrand with D(3)
replaced by D(B), using the same values and I=200. The modified integrand clearly decays
much faster than the unmodified integrand. Furthermore, the integrand always decays at least

on the order of 1/Vp, independently of I, and for small values of I the rate of decay is

considerably faster.

The modified integrand can be used to obtain a faster and more accurate solution to
equation (5.19) in the following manner. Firstly, Da(f3) has been defined from D(f~) as

follows:

(cos(Br) +sin((3r))(cos([3ro) +sin(Br, o))

DB) = 24
P \/—’70 (5.24)

The modified function D(B) can then be expressed as follows:
D) = D(B) ~D,(B) (5.25)
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and equivalently:

D(B) = D(B) + D,(B) (5.26)
Now substitute equation (5.26) into equation (5.23) to give:

H_ =K +D —* 4
(r.s) f (D®) + DB))B e pa B (5.27)
Which expands to:
af op
H_ (rs) = KD()——d + KD )_—d )
F(rs f B T B f o(B e B (5.28)

The first integral in equation (5.28) contains the modified integrand which decays at the rate
of 1/VP or faster. The second integral however contains the D,(B) function which only just
cancels the f§ term in the numerator as B, and therefore has the same convergence problem
as D(B). The important difference however, lies in the ease of computation of D (), which
requires the calculation of one sine and one cosine function, as compared to D() which
requires the calculation of two Bessel functions. For comparison, an algorithm based on D.(B)
will run somewhere in the vicinity of 1000 times faster than an algorithm based on D(f3) for
the same number of sample points and calculated precision. Equation (5.28) is therefore, a
practical means of computing H.(r,s) numerically, to be then used in equations (5.11) and

(5.12) to generate the time domain transfer function G(t).

5.4 The Transformation of the Inverse Transfer Function to the Time Domain
5.4.1 The Numerical Transformation Equation
The inverse transform of G(r,s) into the time domain transfer function G(r,t) is defined

by the inverse Laplace transform equation:

O +jos
G(r,p) = —1— f e G(r,s)ds (5.29)
oo

where 0 is a real number that is larger than the largest pole of G(r,s). Taking s=R+1j, and

assuming that R meets the conditions imposed on o and that G(r,t) is a causal function,
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equation (5.29) may be integrated along a vertical line on the complex plane, yielding the real

integral:

Rt =
G(rp = £— [R{GrR+Ij)} costD - HG(r.R+I) sin(t]) dI (5.30)
s
0

Equation (5.30) may be numerically evaluated by a number of methods. It is normally the case
that higher order methods like Gaussian quadrature will produce more accurate estimates to
an integral when a fixed number of data points are available. However this assumption is not
necessarily true in the context of the Laplace inversion integral, because the primary source
of error might not be due the numerical integration itself. There are two other sources of error,
due to the inevitable processes of sampling in the time domain and sampling in the Laplace
domain. Sampling in the Laplace domain occurs because of the necessity of numerically
evaluating equation (5.8) to obtain H(r,s). The evaluation of equation (5.8) is based on a
fixed number of samples, which gives rise to a phenomenon called aliasing. A sampled-time
signal cannot be completely reconstructed unless the sampling frequency is at least twice the
system bandwidth, or in other words the sampling interval T must be less than 1/(2B), where
B is the system bandwidth in Hz. This must be kept in mind when writing the algorithm to
evaluate equation (5.8). The second source of error is the sampling in the Laplace domain,
which is inevitable when numerically evaluating equation (5.39). Sampling in the s-domain
yields a solution which is periodic in the time domain, therefore it is necessary to ensure that
the maximum interval between samples Al s less than 27/t, where 7 is the largest time value

for which G(r,t) will be evaluated.
One possible solution to equation (5.30) is obtained by replacing the integral by the

trapezoidal summation formula. This is the solution method proposed in a paper by Crump

[103], which results in the summation:
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a!

- el . i i) o f foe
G(r,p) T G(r,R) El{th(rR T )cos( T) 3G(r,R T )sm[ T)” (5.31)

where a and T are empirical parameters satisfying the conditions T > t and a > «, such that:

|G(r.f)] < Me™ (5.32)

The computational efficiency of the algorithm is improved if T is taken to be 2t, because then

the sine and cosine terms disappear. In this case, equation (5.31) becomes:
Gra) -—[ 0+ 2 {éRG[ rR+2 ) (-1)F - 36( r,R+(2k%tl) (-1 H (5.33)
2t t

The choice of the parameter a is critical to the convergence of equation (5.33). Equation
(5.33) is the product of two functions, one that includes the term e® and the other that includes
the infinite series. As the product {Rt} becomes large then the first term becomes large, and
the infinite series must become very small in order to converge to the same G(r,t). In order to
minimize truncation error in the numerical calculation of equation (5.33), it not desirable that
the ratio between the first and second products be very large or very small. A suitable ratio
may be obtained by restricting the product Rt. It has been shown [83] that an Rt product equal
to about 3.0 will yield a stable result over a wide range of the variable t. Thus, the parameter
R is approximated by:

R=23
t

(5.34)
5.4.2 The Problems Associated with Transforming an Inverse Transfer Function

The Crump formula in equation (5.33) is not a practical inversion formula because of its
typically slow convergence for most transfer functions. The slow convergence is particularly
detrimental in the present application because of the fact that the s-domain transfer function
G(r,s) must also be determined numerically for each value of s=R+]j. A second problem with

the Crump formula is that it will only converge to a solution if G(r,s) converges to zero as
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s—R+j. For an inverse transfer function, G(r,s) never converges to zero as s—R-+j. In fact,
for most inverse transfer functions, including the ones that will be considered later in this

thesis, G(r,s) goes to infinity as s—R+<j.

The fact that G(r,s) must converge to zero as s—R+wj in order for the time domain
function to converge to finite values can seen by referring to equation (5.30). Unless the real
and imaginary parts of G(r,s) converge to zero, the integrand will not decay to zero and so
there will not be a finite limit for any value of t as the integration in variable I-«. Notice
however, that the sign of the integrand oscillates between positive and negative at the
frequency of the sine and cosine terms. It is a fact that for all inverse transfer functions the
cumulative integration oscillates between positive and negative values, with the positive and
negative peaks approaching either a constant value or, more commonly, approaching infinity.
The reason for this, as will now be explained, is that an inverse transfer function contains
singularity functions which do not satisfy the existence criterion of the Laplace transform, and
therefore do not actually ‘exist’ in the time domain. The divergence of the inversion integral
for inverse transfer functions is therefore caused by the nature of the transfer function, rather

than by the choice of solution algorithm which led to equation (5.33).

As was explained in chapter 2, the term ’inverse problem’ normally is used to describe
a type of problem that has particular characteristics, and that requires a special type of solution.
The mathematical definition of an inverse problem is that the highest order derivative of the
input variable be equal to or greater than the highest order derivative of the output variable.
For a linear problem with one input variable x, and one output variable y, the mathematical

form of the problem is as follows:

a0y+al%+a,i1+ ..... a——boy+blz+b2 +....b

“dr?

(5.35)
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where n>m in the case of an inverse problem. Taking the Laplace transform of equation (5.35)
with zero initial conditions, the transfer function G(s)=Y(s)/X(s) can be obtained:

b,+b s+b,s%+...b s"
G(s) = Y(s) _ D02\ 5%0, n

5.36
X(s) ay+a;s+ays?+... a,s (5-36)

Since n>m for an inverse problem, the transfer function G(s) is not a proper fraction and so
G(s)~ as s~R+j, as expected. Now as long as n is finite, G(s) can be expressed in partial

fraction form as follows:

i

G(s) = cy+C, S +C,5 2 +uCS (5.37)

where k>I making the last term a proper fraction. Since the last term is a proper fraction, it
behaves as an ordinary direct transfer function. That is, since the highest power of s is greater
in the denominator than in the numerator, then G(s)~0 as s—R+ej and so its inverse
transformation converges to a finite result. As well as the proper fraction, there are I+1
additional terms in equation (5.37), where the value of I is equal to n-m. These terms will be
called the singularities of the inverse transfer function, and they are the part of the transfer
function which do not physically exist in the time domain, and so cause the failure of the
inverse transformation equation (5.33). The balance of the transfer function will be called the

proper transfer function, because of the fact that it converges to zero as s=R+j.

By analogy with equation (5.37), the numerical transfer function G(r,s) diverges because
it contains singularity functions. Unfortunately, it is not possible to mathematically separate
the singularities from the proper transfer function, as was done with the polynomial transfer
function in equation (5.37). However it is possible to separate G(r,s) into its proper part and
singularity part by an acceleration algorithm which filters singularities from the solution, as

will now be derived.
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5.4.3 Acceleration of the Numerical Transformation from Laplace to Time

In order to derive the acceleration algorithm, G(r,s) in equation (5.33) will be replaced by
the proper transfer function 1/(s+1). Figure 5.7 shows the cumulative summation of equation
(5.33) for G=1/(s+1) and t=1, where k is the number of terms in the summation and S, is the
cumulative sum. In the first place, notice that the derivative of the cumulative summation
changes sign with each k. This is a result of choosing T=2t in the derivation above. Equation
(5.33) converges to a value, but it does so slowly and in an oscillatory manner. It would seem
that it might be possible to anticipate the final value by looking at the centre of the oscillations.
The curve labelled ‘averaged S, in figure 5.7 was obtained by averaging the S, value with the
S,., value, which produces a marked decrease in the range of the oscillations. The range of
oscillations can be reduced still further by performing a second averaging operation on the
averaged cumulative values, and a third averaging operation reduces the operations still
further. The number of nested averages that can be taken depends on the number of successive
approximations that are available. At k=2, only one nested average is possible:

_T,+T,

= 5.38
5 (5.38)

where T, and T, are the first and second cumulative sums S, and S,. At k=3, the average of the
averages is:

I,+T, T+Ty

> 3 T,+2T,+T, (5.39)

N 2 T T

Similarly for k=n, the (n-1)" nested average is given by [83]:

aT, +a,T,+a.T,+...aT
fn=112_b33 nin (5.40)

where the co-efficients a, are given in table 5.1. The co-efficients in table 5.1 can be derived
by a recursive formula for any k. Thus, if a; is the co-efficient in column I and row j, then:

a.. = a. +a

ij i-1j-1 (5.41)

ij-1
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Table 5.1: Coefficients for the Accelerating Algorithm

al a2 a3 a4 as a6 a7 a8 b

1 1 2

1 2 1 4

1 3 3 1 8 |
1 4 6 4 1 16

1 5 10 10 5 1 32

1 6 15 20 15 6 1 64

1 7 21 35 35 21 7 1 128
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The speed of convergence is fastest when the maximum number of averaging processes
are performed on the data which is available. That is, when k=2 a single average of the two
values is taken, when k=3 a second nested average is taken, and when k=n, n-1 nested
averages are taken. The resulting series will be called the accelerated series, and when applied
to the transformation equation (5.33) it will be called the accelerated transformation. The
formula in equation (5.40) with co-efficients given by equation (5.41) is also known as the

Euler transformation, which is defined as follows:

(5.42)

k k
S% = (‘1+1)—k-l[q kTo"'( l)qk-lTl +(,7]qk_2T2+"' +T,

where k is the iteration number, T, is the k™ term of the unaccelerated series, and q=1. The
advantage of using equations (5.40) and (5.41) instead of equation (5.42) is that the
acceleration co-efficients are found recursively, rather than by the binomial terms. Calculating
the binomial terms involves multiplying and dividing the very large numbers produced by the
factorials, which causes numerical failure of the algorithm after only a small number of

iterations.

Figure 5.8 compares the convergence of the accelerated transformation with the
transformation using only one averaging process from figure 5.7. The convergence is several
orders of magnitude faster, up until around iteration 36 when the accelerated algorithm
suddenly fails. The failure of the accelerated algorithm is a result of the size of the coefficients
given by equation (5.41) growing geometrically with the iteration number k. After k=35, the
operations of adding and multiplying very large and very small numbers causes fatal truncation
error. The number of iterations can be increased somewhat by using a compiler with quadruple
precision to run the algorithm, however this is not necessary in practice since the accelerated
algorithm converges extremely rapidly. Figure 5.9 shows the approximation error for the
accelerated and single averaged transformations. The accelerated algorithm has converged

beyond the numerical resolution of a 12 digit mantissa after 10 iterations.
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A second important feature of the accelerated transformation is that it filters singularities
from the time domain solution, and this is not just a lucky co-incidence. From a more abstract
point of view, the accelerated transformation gives a physical interpretation to singularities
that agrees with the analytical definition. In this sense, the accelerated transformation is a more
complete representation of signals than the unaccelerated Laplace transformation which cannot
properly handle singularity functions. The abstract perspective will not be dealt with in detail
in this thesis, instead it will focus on the practical aspects of filtering singularities and
increasing the order of convergence. The abstract perspective has been used however, to
evaluate integral (5.32) in section 5.2.3, and so a discussion of this will be given at the end of

this chapter.

To understand how the acceleration algorithm filters singularities from the time-domain
solution, consider the transformation of the impulse function G(s)=1. Substituting G(R+]j)=1

into equation (5.30) yields the following expression in the time domain:

oo

G(r) = TR cos(eDdl (5.43)
0

When t=0, equation (5.52) is infinite, as expected for a unit impulse. When t#0 equation (5.43)

should be zero but it is not. Evaluating the integral in equation (5.43) when t=0 yields:

e

G = -T—r?smoo (5.44)
which does not equal zero unless « is a multiple of . Equation (5.44) is not a physically
correct interpretation of the impulse function in the time domain. Figure 5.10 shows the
unaccelerated transformation of the unit impulse at t=1 by a plot of the cumulative sum versus
iteration. As expected by equation (5.44), the transformation does not converge, rather it
oscillates about zero indefinitely. Figure 5.10 also shows the accelerated transformation of
G(s)=1 at t=1. The accelerated transformation converges to zero, and does so after only 3

iterations. Figure 5.11 shows the accelerated and unaccelerated transformations of a unit
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doublet G(s)=1 at t=1. The unaccelerated transformation oscillates about zero with an
increasing amplitude, while the accelerated transformation converges rapidly to zero. Since
all of the singularities in equation (5.37) transform to zero in the same way when t#0, the
accelerated transformation of equation (5.37) will converge to the time value of the last term
only, and it will do so at an accelerated rate. When applied to G(r,s), the accelerated
transformation filters the singularity functions from the transfer function and converges to the
proper part of G(r,t) only. The only exception is when t=0, when the accelerated

transformation is infinite.

5.5 Transforming the Singularities of the Inverse Transfer Function
The accelerated transformation is a practical means to transform the proper part of an
inverse transfer function from the Laplace domain to the time domain. However, there are two
elements to the transfer function which cannot be transformed in this way. The first is the
value of G(r,t) when t=0, and the second is the singularity functions. The singularity functions
cannot be identified in the time domain like the proper part of the transfer function, however
they can be identified in the Laplace domain, using the transfer function G(r,s). Referring to
the analytical transfer function in equation (5.37), it can be seen that as s~ the proper part of
the transfer function disappears, leaving only the singularities:
G(s==) = ¢y + ¢;5 + 87 + ... (5.45)
The co-efficients of the singularities can be identified by computing G(s) and curve fitting the
polynomial in s for successively larger values of s. The variation in the calibrated co-efficients
will eventually become zero for large values of s. The accuracy of this process is improved
considerably if the degree of the singularity polynomial can be limited to first or second order.

This can be accomplished by the method of regularization, as will be discussed shortly.

The last remaining element of G(r,t) which must be identified is G(r,t=0). This particular

value of the proper part of the transfer function cannot be transformed directly because it is
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superimposed onto the singularity functions at the origin. If G®(r,t) is the proper part of the

transfer function G(r,t), then the initial value can be identified by the initial value theorem:
GP(rt=0) = Lim sG?(r,s) (5.46)
Since GP(r,s) can be identified by subtracting all of the singularities of G(r,s), the initial value

can be found.

5.6 Implementing the Inverse Transfer Function Solution in Real Time

5.6.1 The Form of the Solution
The process of calibrating the generalized thermal step response and calculating G(r,t)
by numerical transformations to the Laplace domain and then back to the time domain is done
off-line, before the machine is operated with the deflection control system. G(r,t) is evaluated
at a finite number of t, values and stored as a table of data In order to use G(r,t) on-line to
transform measured temperature data into the heat input which produced it, a real-time
convolution integration algorithm is required. The relationship between temperature and heat
magnitude is expressed in the time domain as follows:
Q(s) = G(r,s) AT(r,s) (5.47)

In the time domain the relationship becomes:
!
o) = [Grt-m)AT(7) dr (5.48)
0

where AT(r,t) is the raw measured temperature difference at each of the measured node pairs.
G(r,t) is consists of two parts, a proper part and singularities. Denoting the proper part by
GP(r,t), the transfer function may be represented as follows:

G(r) = GP(r,t) + Aju(r) + Ajur) + ... (5.49)
Where U(t) and uy(t) are the time domain representations of a unit impulse and a unit doublet
respectively, and A, are the magnitudes of the singularities. Substituting equation (5.49) into

equation (5.48) yields the following:
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ow) = f G P(rt-t)AT(r,T) dv + A, f u(t-T)AT(r,T) dt + A, [uft-DAT(r, D) dt + ..... (5.50)
0 0 0

Because of the sifting property of the impulse functions, this equation reduces to:

o@) = f GP(rt-t)AT(rt) dv + A )AT(rp) + A d
0

AT(r,p .

T B.51D)

The evaluation of equation (5.51) on-line requires the calculation of each of the terms. The
first term is a convolution integral of the proper part of the transfer function with the time
history of the temperature difference from t=0 to t=t. Using a numerical controller and data
acquisition system, the temperature difference is sampled at finite time increments, which
must be stored in the controller’s memory in order to evaluate the integral. Because of the
nature of a convolution integral, the two product functions in the integrand shift in phase for
different values of time t. This means that the integral cannot be evaluated incrementally - the
entire integration from t=0 to T=t must be re-evaluated for each Q(t) that is required. Since at
least one new estimate of Q(t) is required for each control cycle, the convolution integral must
be evaluated in every control cycle. The numerical integration can be performed by any
method, however care must be taken to ensure that the points of measured temperature AT(r,t,)
co-incide with the table of transfer function values G(r,t,). Some integration methods, such as
Gaussian quadrature, are not appropriate because they require sample points at irregular
intervals. Since interpolation of either the measured data of the transfer function is not
desirable, a better choice is an integration algorithm based on Simpson’s rule, which makes
use of samples at a constant time increment. As it will be shown shortly, it is possible to
synchronize the temperature sampling with the control cycle and maintain a constant sampling

and control interval.

5.6.2 The Finite Temperature Window
Another feature of the convolution integral that should be discussed is the limits of © from

T=0-t. When the machine is first switched on the range of the integration is zero, and then as
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t increases so does the range of the integral which must be evaluated. If the machine were
running for several hours then many thousands of temperature samples would accumulate in
the controller’s memory and have to be integrated for each new estimate of Q). In practice
it is not necessary to store the complete time history of the measured temperature. This can be
understood by referring to the integrand in equation (5.48), which is the product of G(r,t-t) and
AT(z). If © is much smaller than t then G(r,t-T) approaches G(r,t). Any stable transfer function
approaches zero as t—e, therefore the values of AT(t) where t is much smaller than t are
multiplied by a transfer function that is approaching zero, and their contribution to the integral
diminishes. This can be understood physically by the fact that the temperature effects of heat
inputs diminish if they occur further back in time. After a certain amount of time has passed,
a heat input will have no effect on the present temperature distribution. Because of this fact,
it is not necessary to store an infinite amount of temperature data. The controller that has been
developed stores a finite ‘window’ of temperature data that is integrated with the transfer
function at each control cycle. The number of samples that is required for this window depends
of the sampling rate and on the characteristics of the proper transfer function. Because it is
desirable to have a constant control cycle frequency, the temperature window stores a fixed
number of values, so that the calculation time of the numerical integration will be roughly
constant for each cycle. When the machine is first turned on, the temperature window is loaded
with zeros. As each new sample is taken it is added to the top of the window and all of the
other values are shifted back by one, with the last one being discarded. In order for this process
to work effectively, it is essential that the sampling increment be maintained relatively

constant.

5.6.3 Processing the Singularities
As well as the convolution integral, there are a finite number of singularity terms in
equation (5.51). In the time domain, the magnitudes of the singularities represent scaling

factors for the present value of the measured temperature difference AT(r,t) and a finite
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number of derivatives, also at present time t. The presence of singularities in an inverse
transfer function can be understood with reference to figure 5.12, which is an example of the
generalized step response with K=3.5, a=0.02, 0=0.12, r=5.0, and r= 0.15. Since the
temperature profile in figure 5.12 was produced by a unit step input, the transformation of the
temperature profile by equation (5.51) must always equate to 1.0, for any value of 0.
Consider the case when t=0*: the integration from t=0~0* is zero and figure 5.12 shows that
the value of AT(r,t=0) is equal to zero. Equation (5.51) can only transform the temperature
profile to 1.0 if some of the initial derivatives of AT(r,t=0) are non-zero and the scale factors
A, are selected appropriately. This shows how the singularities are an integral part of the
transfer function, and in order to evaluate them the controller must be able to calculate the first
n order derivatives of the temperature difference, where n is the hi ghest order singularity that
is present. The derivatives do not need to be stored however, since it is only the present value

and not the history that is required in equation (5.51).

5.7 Regularization of the Inverse Transfer Function

The delay in the step response shown in figure 5.12 is typical of the measured temperature
difference on a large machine structure. The delay leads to very undesirable properties of the
convolution transfer function however. The convolution transfer function in equation (5.51)
identifies instantaneous changes in the heat input Q(t) by operating on the derivatives of the
temperature difference at the present time. It is clear from figure 5.12 that the temperature
derivative at t=0 is very small, in fact it is almost zero. Conceptually, a transfer function based
on this step response would have to contain several higher order singularities so as to
incorporate the higher order derivatives which are changing at t=0 in response to the step input
at t=0. While this is fine in theory, a practical temperature measurement apparatus cannot
measure high order derivatives because of noise produced by the environment, by the
temperature probe and circuit, and by the data acquisition system. Therefore, for the

temperature profile in figure 5.12, the analytically exact transfer function cannot be
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implemented in a real system where measurement noise is a factor. This implies that some
compromise must be made between the accuracy of the transfer function and its noise rejection
characteristics. In other words, the calibrated step response which serves as the basis for the
transfer function must be modified in some way. This process is called regularization, as was
discussed in chapter 2, the difference here is that the regularization can be implemented in a
more purposive way to directly re-tune the singularities of the transfer function to achieve the

desired performance characteristics.

Figure 5.13 shows a plot of the function Ate™ where A=0.025 and a=0.07, which we can
assume is an analytical response to a step input for some hypothetical system. This function
has an initial derivative of magnitude A, which is produced by this system in response to the
step input. An inverse transfer function based on this function contains singularity functions,
however the doublet predominates over all higher order singularities, which are equal to zero.
Conceptually, the convolution transfer function does not need to consider any higher order
singularities since the first derivative of the response, which is represented by the doublet term,

is sufficient to identify the input.

Now consider the third function in figure 5.13, in which the temperature function and the
regularization function are added together. The new function behaves exactly like the
generalized step response except that the initial delay has been replaced by an initial
derivative. The combined function in figure 5.13 is the regularized step response of the system,
and it is from this function that a practical inverse transfer function can be derived. The
regularization function has the form:

fr = Ate™ (5.52)
where A and a are the empirical regularization parameters. The advantage of this method of
incorporating regularization is that the designer has precise control over the form of time

domain transfer function. To derive this relationship, consider the case of a generalized unit
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step response, as in figure 5.13. At t=0" the contribution from the convolution integral and the

term containing A, is zero, and therefore:

AT(r,0)

o0 = A d i

=1 (5.53)

Since the derivative of the generalized unit step response at t=0" is A, equation (5.53) can be

solved for A;:

A oL
A

(5.54)
where A comes from equation (5.52), and A, is the magnitude of the doublet and the gain on
the measured temperature derivative. The transfer function representation isolates the
instability of the inverse heat conduction problem into one term, the term in equation (5.51)
which contains A, This term is the source of the instability because the differentiation of the
measured temperature greatly accentuates temperature measurement errors as compared to the
other two terms. Equation (5.54) allows the stability of the transfer function to be precisely
controlled, by establishing the gain on the temperature derivative within any required
specification. The parameter a does not affect A,, but it does affect A, and the proper transfer
function G®(r,s). This parameter determines the time constant of the regularization term in
equation (5.51), and it is used primarily to make a smooth transition in the regularized step
response from the initial temperature derivative, back down to the unregularized curve, as in
figure 5.13. It has been found that the single term in equation (5.52) does not give enough
flexibility to make a smooth transition and a fast transition at the same time for the
temperature profiles that will be used in this thesis. Hence, an alternate regularization term was
investigated, which has the form:

fr = (At+Br?)e ™™ (5.55)

It can be shown that:

Al = (5.56)

1
A



so there are two additional parameters B and a, to calibrate the transition from the initial slope
A. It is the regularization term in equation (5.55) that will be used throughout this thesis. The
parameters B and a will be chosen by trial and error, using a qualitative objective of making

a fast but smooth transition from the initial slope back to the unregularized curve.

The transformation of the regularized step response to the Laplace domain follows from
the linearity of the Laplace transform. If the regularized step response is Ty(r,t), then:
T(r,t) = T(r,) + fo(0) (5.57)
and so the transfer function H.(r,s) is found from:
H(r,s) = Hp(r,s) + sfi(s) (5.58)
where f(s) is the Laplace transform of equation (5.55). The second term in equation (5.58) can

be expressed as follows:

As 2Bs
Sfp(s) = +
fr ey sra) (5.59)
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CHAPTER 6: ESTIMATING HEAT GENERATION AND THEN THERMAL
DEFLECTION ON A LINEAR PHYSICAL STRUCTURE

6.1 Introduction

This chapter outlines the procedure to be followed to build an operational system to
estimate structural thermal deflection error from discrete temperature measurements in the
vicinity of the heat source. The system that will be studied in this chapter is the linear physical
test model that was designed in chapter 5. The first step is to identify the major heat sources
in the structure and then calibrate the generalized thermal model. The real time algorithm for
estimating the heat generation of the source will be implemented and validated on the physical
model, using a number of test inputs. The thermal deflection models will then be calibrated,
and the complete real time algorithm for estimating thermal deflection will be validated on the

physical structure model.

6.2 Identifying the Heat Sources in the Structure

The first step of the procedure is to identify the major independent heat sources in the
structure. The temperature increase in a real machine tool structure is large enough to be felt
by touch, so it is not be too difficult to locate the areas of major heat generation using a
thermocouple probe. An even better tool is a thermal imaging camera, such as the one used
to generate the images in figures 5.1 and 5.7. There are normally between one and three major
heat sources in a standard size machine tool, due primarily to the bearings, motor, and cutting
process in declining order of importance. The heat that is generated by the cutting process can
be transferred to the structure through the chips and cutting fluid, and throu gh the cutting tool
back into the spindle. There is no particular problem with identifying the chips and cutting
fluid as a heat source, as long as they transfer their heat to the structure in a fairly predictable
way. It is also important to run the machine under a variety of operating conditions in order
to distinguish independent heat sources from dependant ones. The heat generated by bearings

at opposite ends of a long spindle is an example of dependant heat sources that can be
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identified by only one temperature measurement near one of the dependant sources.
Independent sources can be superimposed on the same position on the structure, as for
example when the spindle bearing and cutting tool are in close proximity so that the heat
generated by each seems to originate from the same location. In this case the two independent
sources can be lumped together into one, identified by the same temperature measurement.
Some heat sources, though significant in temperature, may not produce any significant thermal
deflection. This might occur if the heat is channelled quickly out of the structure, or even by
accidents of geometry and kinematics. It is probably good practice to identify all of the major
temperature hot points as sources, and then look at their contribution to the thermal deflection

at a later stage of the process.

Figure 5.7 shows the thermal image of the test structure. The image identifies four heat
sources, two that can be seen in the picture and two located symmetrically on the other side.
The heat sources are all dependant and therefore may be treated as one source, requiring only
one measured temperature difference. The best practice is normally to place the two measured
temperatures where the temperature gradient is largest, and as close as possible to the source
to minimize the delay. Since the heat source is on the surface of the test structure it would be
possible to place the probes much closer to the source than could be done with a real machine
tool. In order to make the analysis more realistic, the measured points were chosen at one and
two inches from the outer edge of the electric heating pad. The locations of the measured

points is shown schematically in figure 5.6, which is repeated in figure 6.1.

6.3 Calibrating the Generalized Thermal Step Response

Figure 6.2 shows the temperature difference profile measured on the structure for a step
input of magnitude 280 W, which shall be non-dimensionalized to Q=1.0. The temperature
difference was measured using two thermistors and a pair of Wheatstone bridge circuits,

activated by a regularized power supply. The analog voltages representing resistance variations
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in the thermistors were sampled in blocks of 1000 at the rate of 1 - 1.5 kHz, and the samples
were then averaged within each block to yield one temperature estimate at the rate of about 2
Hz. The process of averaging a large number of samples produces a more stable temperature
estimate. All of the processing on the sample blocks is done by the data acquisition card itself,
independently of the main CPU which receives only the processed temperature estimates at
the rate of 2 Hz. This leaves the main CPU free to perform other operations in parallel with

the data acquisition and processing.

The system delay in figure 6.2 is on the order of 20 seconds long, which is quite large in
comparison with the rise time. The delay time is an important characteristic of the temperature
difference profile since it represents the interval in which no useful information is transmitted
to the control system following a change in heating conditions. The effect that this has on the
performance of the control system cannot be fully assessed however, until the relationship
between the heat input and the deflection error is determined. It will be shown shortly that it
is the ratio of the temperature delay to the effective time constant of the thermal deflection
error that is the most useful number for assessing the inherent stability of the uncompensated
control system transfer function. Figure 6.3 shows the calibrated generalized thermal step

response, with calibrated parameters:

ro = 0.12

r =512

a = 0.01565 6.1)
a =0.1173

K = 3498

The calibration of the parameters was done in MATLAB visual programming, and part of the
Matlab visual program is given in figure 6.4. The function F(t,u) in the figure is a matrix
containing the function to be calibrated and the function differentiated with respect to each of
its parameters, u. The initial guess is contained in the matrix labelled [vg]. The numerical data
to be calibrated comes from an external file STEVE.DAT. MATLAB uses a variant of the

simplex method to find a local minimization of the difference between the function and the
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data at the eleven selected points in matrix [n]. There are three calibration parameters in figure
6.4, a, o, and K. What is not shown in figure 6.4 is the iterative part of the program for finding
the optimal value of r. Figure 6.4 represents a sort of subroutine that finds the optimal a, «,
and K for given values of r and r,. This is done for several values of r, and a performance
criterion is evaluated for each calibration. The r value which optimizes the performance
criterion is the optimal r value. Calibrating r separately from the other three parameters was
found to be faster and more reliable than a single optimization with four parameters. The
performance criteria that was used is the root-mean-square of the error. The value of r, was
chosen arbitrarily rather than calibrated because it was found that the calibration of the other
four parameters gives sufficient flexibility, and thus the fifth parameter is redundant. Figure
6.3 shows that the calibrated generalized step response fits the measured data with high
accuracy in all aspects of the temperature curve, including the delay, the rise, and the steady-

state. This is expected because of the mathematical derivation of the generalized base

equation.

Figure 6.5 shows a plot of the difference between the calibrated generalized step response
and the measured temperature profile. The signal in figure 6.5 is actually the cumulative noise
from environmental and instrumentation sources, rather than a true error in the calibrated
generalized step response. It has a cumulative mean approaching zero, and its magnitude and
spectral composition are independent of the magnitude of the measured temperature, up until
T=T,., in figure 6.3. The generalized model rejects the temperature system noise because it
is incompatible with the mathematical form of the model. In this way, the generalized model
is able to extract the useful part of the real measured data from the random and systematic
noise. Figure 6.6 shows the spectral composition of the noise, with a plot of the magnitude of
the discrete Fourier transform of the noise, versus frequency. Figure 6.6 shows that the noise
energy is distributed equally over the relevant bandwidth, approximating the ‘white noise’

model. The highest frequency component in figure 6.5 is about 2 Hz, corresponding to the
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sampling time of approximately 0.5 seconds. This high frequency noise is due to
instrumentation and sampling effects as well as environmental noise. The low frequency noise
which is clearly evident in figures 6.5 and 6.6 is a greater concern however, because it is
potentially more damaging to the performance of the control system. Such low frequency noise
is a product of environmental fluctuations in the vicinity of the measured temperature points.
The thermistors on the experimental model were covered in insulating material about 1.5 cm
in diameter to minimize the effect of local air currents on the temperature readings, otherwise
the noise would have been considerably larger. Nevertheless, environmental noise dominates
over instrumentation noise in all of these experiments. Low frequency noise is a particular
concern because it requires a special low frequency filter that introduces a large time delay into

the system. This point will be considered in more detail shortly.

6.4 Selecting the Temperature Derivative Gain and Regularization of the Step Response

A complete discussion of the allowable temperature derivative gain will have to wait until
the thermal deflection step response is calculated in a later section. Figure 6.5 shows the
maximum derivative of the noise is around AT=0.05 degrees C divided by T=0.5 seconds,
which equals 0.1. A derivative gain of 155 would therefore produce a maximum noise
amplitude of 15.5 degrees C per second. While this might seem to be a very high gain for
undesirable noise, it has been shown that the thermal deflection transfer function is itself a low
pass filter, which will attenuate much of this noise in the final result [79]. Thus, using
A=1/155=0.00644, and B=0.00135 and a=0.0859, figure 6.7 shows the regularization function,
and the regularized step response. The parameters B and a were selected so as to make a
smooth but fast transition, as shown in the figure. Figure 6.8 shows how the regularization

function in equation (5.55) alters the step response.
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6.5 The Calculation of the Time Domain Transfer Function
The procedure for calculating G(r,t) was developed in chapter 5, but it is useful now to
extract the important equations from previous chapters, and compile them together here for

future reference. The generalized step solution in the time domain was given in equation (5.3):

I(rp =

B_ @I Brolt -e®=]ap 62)
+a

The direct transfer function in the Laplace domain H(r,t) was derived from the generalized
step solution, and expressed as equation (5.8):

=B Jo(Br) Ji(

s+[a+ﬁ"]oz

H(rs) = f B (6.3)

A practical numerical equation for calculating H(r,s) for all s=R+]j and I+~ was derived as

equation (5.28), which can also be expressed by its real and imaginary components as follows:

= +o{a+PB? o — +ol(a+B2
R{HO0)} = Ka [BDB) —2@B) 45 _ o [pD e —LeelaP)_gp
0 0

(R+a[a+p?)*+1? (R+afa+B*])*+1?
6.4)
P I PR I
r, = - d + K D d
Y H(r.s)} Ka{ BD() Roala BT B a{ BD,B Reala FIRT B
where (equation (5.22)):
—_ cos(Br)+sin(fr)fcos(Br,) +sin(Br,)
D) = J(Br)JyBry) - (cos(B )( 2 0) (6.5)
nﬁﬁ
and (equation (5.24)):
_ (cos(Br)+sin(Br))cos(Pr,) +sin(Pr,
D,B) = X ) (6.6)

11:(3\/—rr—0

This is the equation that will be used to calculate the transfer function GP(r,t). The
regularization part of the step response was transformed to the Laplace domain as equation
(5.59):

Fo(s) = sfs) = —AS_ , 255 6.7)

(s+a)*  (s+a)’

111



which can be evaluated in terms of its real and imaginary components for any value of s=R+]j.

The inverse transfer function G(r,s) is derived from the direct transfer function in equation
(5.12), which after including the regularization term becomes:
RUH (R +1j) + FR(R+Ij)

F{G(r.R+I)} =
RIH(r,R+Ij) + Fo(R+INP+SH(r.R+Ij) + Fo(R+IHF

(6.8)
~S{H(r R+]j) + F(R+I)

RUH(r.R+I) + FgR+INP+SH(r R+I) + Fo(R+[HP

S(G(r.R+I)} =

Equations (6.4) (6.7) and (6.8) are used to calculate the proper regularized transfer
function Gg(r,s). The numerical integration was done using Gaussian quadrature in block
increments until the maximum value of the integrand within the block is below a threshold
value. The transformation to the time domain was done using the accelerated Crump formula
discussed in chapter 5, to a tolerance of 1E-05, in increments of 0.5 seconds beginning from
t=0.5. The transformed transfer function G*(r,t) is shown in figure 6.8, where r=5.12. The
magnitudes of the singularities, Ay and A, were found with a precision of 1E-04 by equation

(6.7) using Gaussian quadrature in block increments.

6.6 The Real Time Process of Estimating the Heat Generation
6.6.1 The Temperature Window

The rate of decay of the transfer function in figure 6.9 determines the size of the
temperature window that must be stored by the controller. Although the transfer function
appears to decay quite rapidly, there is actually a small residual that lingers for some time.
Truncating the window at 150 seconds results in a steady-state error of about 2%, which is
unacceptable. Using a temperature window of 600 seconds results in a steady-state error from
truncation of less than 0.05%, but then there are 1200 temperature samples which must be
stored with a 0.5 second sampling time. For a given sampling time there is a maximum

number of samples that can be processed. On a 60 MHz Pentium PC, the convolution integral
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requires about 0.1 seconds with a 1200 sample window, leaving 0.4 seconds for the thermal
deflection and control system calculations. Furthermore, a 0.5 second sampling time system
produces more stable temperature samples than a system with a smaller sampling time because
of the averaging process done by the data acquisition processor independently of the main
CPU. There is in fact no advantage to using a smaller sampling interval, so the CPU may as
well use the time to greatest advantage, rather than just sit idling while it is waiting for another
sample. In an optimal parallel system the main CPU and the data acquisition CPU would finish
their respective tasks at the same instant, a goal which will never be achieved here. The
temperature window that will be used in this thesis is therefore a linear buffer 1200 samples
long. As mentioned previously, as each new sample is added to the top of the buffer all of the

other samples are incremented down by one with the last one being discarded.

6.6.2 Estimating the Temperature Derivative
As mentioned previously, the main source of instability of the inverse transfer function
G(r,s) is the term containing the derivative of the measured temperature difference. The

simplest method for calculating a derivative is the formula:

Afk - fk —fk-l

6.9)
AT T (6.9)

where f, is the k™ sample and T is the sampling time. Figure 6.10 shows the derivative of the
measured temperature difference in figure 6.2, using the first order derivative formula from
equation (6.9). As expected, the signal noise was amplified by the differentiation in
comparison with the useful signal, leaving the useful signal completely unrecognizable. Higher
order expressions for the derivative are more accurate and attenuate noise, however it can be
shown that all higher order derivatives can also be expressed as first order derivative followed
by a digital filter. In light of this, it is more effective to start with the differentiated signal in

figure 6.10 and then design a filter which will remove the unwanted frequency components.
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All real signals are usually processed in some way to eliminate noise, which normally
originates in the data acquisition and sampling process by a number of mechanisms.
Discretization of an analog signal produces noise at the sampling frequency as the signal
jumps between discrete storage levels. This type of noise can be minimized by using a data
acquisition card with a large bit storage for each sampled data value. The card used in these
experiments uses a 12 bit representation, which is excellent for this application. Lower
frequency noise may be produced by the data acquisition itself, both from power supply
fluctuations and changes in the measured variable introduced by the measurement apparatus.
All of the noise sources just discussed are much higher in frequency than the spectrum of the
useful signal. Figure 6.11 shows the frequency spectrum of the useful signal, which is the
calibrated temperature difference step response T(r,s). Notice that the magnitude scale is not
in decibels. The sampling frequency is marked on the figure, 12.56 rad/s, corresponding to 2
Hz. Since the frequency spectrum of the useful signal approaches zero at w=12.56 rad/s, noise
at this frequency can be easily removed by a suitable filter, without distorting the magnitude
spectrum of the useful signal. The figure shows that an ideal low pass filter will not introduce

any significant distortion for cut-off frequencies up to about 0.3 rad/s.

It is clear from figure 6.11 that the high frequency noise introduced by the data acquisition
system may be filtered without distorting the useful temperature signal. However the frequency
spectrum of the noise shown in figure 6.6 shows that low frequency noise persists, even below
0.05 Hz or 0.314 rad/s. The low frequency noise components are evident on inspection of
figure 6.5. The source of this high frequency noise was found not to originate from the data
acquisition process, but rather from environmental sources. Randem air currents over the area
of the temperature measurement causes small fluctuations in the temperature of the measured
points that is detectable by the measurement apparatus. Insulating the surface of the structure
around the thermistors reduces the noise, however it also reduces the temperature gradient,

making the measurements more difficult to resolve, and it increases the thermal deflection
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produced by the heat source by increasing the temperature. A compromise solution is to apply
a 1.5 cm. diameter insulating pad over each thermistor, shielding it from direct air currents.
The temperature differences shown in this thesis were all made using the 1.5 cm insulating

pads.

6.6.3 Design of the Derivative Filter

Since it is not possible to completely filter the noise in figure 6.5 without distorting the
temperature spectrum of the useful signal, a compromise solution will have to be achieved.
Since any significant magnitude distortion is not acceptable, the cut-off frequency of the low
pass filter is chosen to be 0.05 Hz or 0.314 rad/s, which is right at the edge of the system
bandwidth in figure 6.11. Since the cut-off frequency is so close to the system band-edge a
very sharp cut-off rate will be required. A FIR filter is normally preferred in digital
applications because of its inherent stability and ease of design. The IIR filter however, is more
computationally efficient, and allows for a much sharper cut-off transition for the same
number of terms. Hence, a third order Butterworth IIR filter will be used here. The continuous

transfer function for a third order Butterworth filter is:

1
FF(s) = .10
s3+252+25+1 (6.10)

The continuous transfer function is transformed to the z-domain using the bilinear

transformation:
22z+1
s—o_._.
Tz-1 (6.11)
which yields the discrete transfer function:
1 3
FF(z) = (e+1) (6.12)

1441.5z3 -3783.3z2 +3339.1z-989.2

from which a recursive formula can be derived.
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Figure 6.12 shows the derivative of the measured temperature difference from figure 6.10,
filtered by the discrete transfer function in equation (6.12). The noise component is
considerably attenuated, however the low frequency components, those below 0.05 Hz, persist.
There is another undesirable feature in figure 6.12 which is more subtle, but actually far more
detrimental to the ultimate objective of implementing a control system. The measured
temperature difference contains an initial delay of about 20 seconds, as seen in figure 6.2, and
a slightly shorter delay is expected in the temperature derivative. However figure 6.12 shows
that the initial delay has actually increased somewhat in the filtered derivative. The increased
delay is an inevitable by-product of filtering the derivative, and so filtering effectively
increases the system delay. This will be dealt after the thermal deflection transfer functions
have been presented and discussed. It will be seen that the controller will introduce an artificial
positive delay, by which it will attempt to cancel the negative delay that is inherent to the

system, including the delay produced by the derivative filter.

6.7 Results of the Real Time Heat Estimation Program

The procedure for transforming measured temperature difference samples into an
estimated heat generation function in real time is now complete. The solution is obtained by
numerically evaluating equation (5.5) for a window of 1200 temperature difference samples.
The convolution integral is evaluated by Simpson’s second order method using samples spaced
by T=0.5 seconds. The total computation time for the entire al gorithm, which was
implemented in real time in C++ is less than 0.125 seconds. Figure 6.13 shows the estimated
Q(t) from the measured temperature profile in equation (8), without filterin g of the temperature
difference derivative. The ideal estimate is a constant line of magnitude 1.0, which is also
shown in the figure. Although the ideal signal is not apparent in figure 6.13, the cumulative
mean of the signal is actually 1.0, and the oscillations are the result of amplified noise. While

not very aesthetic, the estimate in figure 6.13 will be filtered by the second part of the
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complete transfer function, the thermal deflection transfer function, which acts as a low pass

filter itself.

Figure 6.14 shows the same estimate of the heat generation as in equation 6.13, but this
time using the derivative filter given by equation (13). Figure 6.14 is much closer to the ideal
estimate, but it too contains unwanted noise. Further filtering is unnecessary however, as will
be seen shortly. The estimated Q(t) requires 30.76 seconds to reach the correct value of 1.0,
which constitutes the effective system delay for G(r,t). The cumulative mean of Q(t) in figure
6.14 is less than 0.05% in steady state, indicating very little steady-state distortion of the

processed signal.

The derivation thus far is based on the assumption of a linear thermal model. The main
potential sources of non-linearity are radiation effects and joint interaction. Since the two-
component experimental structure is not expected to exhibit significant nonlinearity, and
radiation heat transfer is negligible at the operating temperature of the experimental structure,
the linear assumption was assumed to be justified. Figure 6.15 shows the measured
temperature difference at the same measured points as before, for a dimensionless heat input
of Q=0.5. The measured temperature profile is compared with the temperature profile
predicted by the calibrated generalized model, using the expression for the general solution,
equation (6.2). Figure 6.16 shows the measured temperature difference at Q=0.25, compared
with the temperature difference determined from calibrated equation (6.2). These two fi gures
confirm that the linearity hypothesis is valid, since the cumulative mean of the difference
between the predicted and the actual temperature differences is approximately zero. A zero
cumulative mean indicates that the difference between the curves is due entirely to noise,

while the signal itself maintains the same ratio as the ratio of the heat input magnitudes.

120



25

0 LA
v 50

Figure 6.14: Estimated Q(t) with Derivitive Filtering

-
[3,]

Q(t) (dimenslonless)

(=]
[3,]

100 180 200 250 300

Time (seconds)

14

1.2 .

0.8

0.6

04

Temperature (degrees C)

021

100 200 300 400 560 600 700 800 900 1000

Time (seconds)

Figure 6.15: Measured Temperature Difference and Temperature Difference Estimated
with Calibrated Model (Calibrated at Q=1.0) for Input Q=0.5

121



0.7

Temperature (degrees C)

Time (seconds)

Figure 6.16: Measured Temperature Difference and Temperature Difference Estimated
from Calibrated Model (Calibrated at Q=1.0) for Q=0.25

1.6

Temperature (degrees C)

i 100 200 300 400 500 600 700 800 S00 1000

Time (seconds)

Figure 6.17: Measured Temperature Différence and Temperature Difference Estimated
with Calibrated Model (Calibrated for Q=1.0) for Triangular Input

122



6.8 Discussion of the Heat Estimation Results

An obvious feature of figures 6.2, 6.15, and 6.16 is that the noise magnitude in not linear
along with the temperature difference. In fact, the noise amplitude remains constant
independent of the magnitude of the temperature which is being measured from q=0 up until
q=1. The model was also tested up to g=2, and the linearity of the temperature difference was
found to be maintained. The amplitude of the noise actually increased when the temperature
difference exceeded 3.5 degrees C, probably the result of changing air flows on the surface of

the structure at high operating temperatures.

Although the transfer function G(r,t) was calculated on the basis of a single step response,
the linearity of the Laplace transform implies that the transfer function is valid for any input.
Figure 6.17 shows the measured temperature difference for a triangular heat input, beginning
from zero at t=0, increasing linearly to q=1.0 at t=300 seconds, and then decreasing linearly
to zero at t=600 seconds, after which it remains constant at zero. The temperature difference
predicted by calibrated equation (6.2) is also shown in the figure, and again the mean

difference between the two curves is about zero.

The three measured temperature differences in figures 6.15, 6.16 and 6.17 were processed
by the convolution transfer function G(r,t) as the samples were collected and the results are
shown in figures 6.18, 6.19, and 6.20, for q=0.5, q=0.25, and the triangular input respectively.
These figures also show the correct Q(t), and again the average difference between the two
curves approaches zero as time goes to infinity. These estimated inputs will be used to

estimate the thermal deflection for the same Q inputs in the next section.

6.9 Deriving The Thermal Deflection Model
The second part of the transfer function relating the measured temperature AT(t) to the

thermal deflection §,(t) and d,(t) is the direct transfer functions H,(s) and H,(s), where:
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The direct transfer functions are determined in the same general manner as with the inverse
transfer function, by calibrating an analytical model of the step response in the time domain
with measured data, and then transforming the calibrated model to the Laplace domain. The
accuracy of the thermal deflection model is not as critical as in the case of the temperature
model because it is not subjected to an inverse solution. Nevertheless, any inaccuracy that is
inherent to the thermal deflection model cannot be compensated by the control system, so it
is important to devise a calibrated analytical model that is as accurate as possible. The sources
of inaccuracy in the thermal deflection model may be divided into two types. The first type is
non-linear error, which is produced by, for example, joint interaction, radiation effects, non-
linear measurement and instrumentation noise. This type of inaccuracy cannot be dealt with
in a linear model, and so it represents an optimal error bound which can only be approached
with a linear transfer function. The second type of inaccuracy is linear error, that is error which
increases linearly with the magnitude of the input. This second type of inaccuracy results from
an inadequate linear model, which does not exactly match the measured data on which it was
calibrated. Since we are now dealing with a direct problem, there is no excuse for introducing
any significant linear error into the direct transfer function, since linear error can always be
reduced by incorporating more parameters into the analytical model. The objective then is to
reduce the range of the linear error to within the scope of the non-linear error, thereby realizing

an optimal linear system.

The finite-element and experimental results have shown that the thermal deflection in a
large machine structure is never an underdamped system. Hence, a reasonable analytical model

for the step response in the time domain is as follows:
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8(f) = A -Aje ™ + Aj-Ae™ v L+ A -Ae™ (6.14)
The derivative of equation (6.14) at t=0 is:
() = Aja, + Aya, + ..... +Aa, (6.15)
This form ensures that 8(0)=0, however it cannot easily accommodate an initial delay without
some of the A, co-efficients being negative. It will be shown that the initial derivative of the
thermal deflection step response is zero, therefore a better form for the step response is as
follows:
8() = A+B - Ae™ - Be™ + Dte ™™ (6.16)
The derivative of equation (17) at t=0 is:
Aa + Bb + D 6.17)
which can be made equal to zero if D=-Aa-Bb. The analytical form in equation (6.16), with
6 analytical parameters was found to be sufficiently accurate in all of the cases in which it was

used.

6.10 Calibrating the Thermal Deflection Model

Figure 6.21 shows the measured thermal deflection in the y-direction for a step thermal
input of magnitude Q=1.0. The steady-state thermal deflection is 242.4 microns, which is
around 2.7 times larger than the maximum deflection of the real machine tool shown in figure
(5.1). Figure 6.22 shows the thermal deflection in the x-direction for the same step input of
magnitude gq=1.0. The maximum x-deflection is 77.6 microns. The analytical model in
equation (6.16) was calibrated with measured thermal deflection data using MATHCAD visual

programming, as shown in figure 6.3. The calibrated values of the parameters in equation

(6.16) are:
A = 10.546 a = 5.90E-04
B = 67.08 b = 9.14E-04 (6.18)
D = -0.0414 d = 0.00435

for the x-deflection, and:
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A = 10043 a = 9.09E-04
B = 141.96 b = 1.57E-03 (6.19)
D = -0.01000 d = 0.00903

for the y-deflection. The calibrated analytical step responses are shown in figures 6.21 and
6.22 along with the measured thermal deflection data. The difference between the two curves
in figures 6.21 and 6.22 is the thermal deflection modelling error, shown in figure 6.23. The
error plots shown in figure 6.23 include both linear and non-linear error components. The
combined total error is less than +1.5 microns, which is within the band of the non-linear error
caused by measurement noise, and below the specified nominal resolution of the LVDTs,
which is 2 microns. Increasing the accuracy of the analytical model by increasing the number

of terms and parameters will therefore not improve the accuracy of the transfer function.

Figure 6.24 shows the magnitude of the DFT of the y-deflection noise, and figure 6.25
shows the magnitude of the DFT of the x-deflection noise. The noise is approximately white
noise over most of the useful frequency range, as shown in the figures. There is a low
frequency peak, which is apparent also from figure 6.23 as a low frequency movement. The
low frequency noise does not affect the Iinear accuracy of the calibrated model, as will be seen

shortly.

6.11 The Thermal Deflection Transfer Function

The analytical step response in equation (6.16) transforms to the Laplace domain to define

the following transfer function:

Co+C,S+C,52+C,83
H(s) = &) _ Stasta 31 (6.20)
Q(s) (s+a)(s+b)(s+d)~
where:

¢, = Aabd* +Babd 2
¢, = 2Babd +Bbd? + Dab +Aad* +2Aabd ©621)
¢, = 2Bbd +Aab + Db +Da +Bab +2Aad )
cy = D +Bb+Aa
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This transfer function could be transformed back to the time domain to define a time domain
transfer function H(t), which could be used to solve the direct problem using a convolution
integral, as was done to solve the inverse problem previously. Being a direct transfer function,
equation (6.20) does not contain any singularity functions, so the time domain transfer
function reduces to the convolution integral only. It turns out that the time domain solution
using a convolution is not a very practical method of calculating the thermal deflection in this
case. Figures 6.26 and 6.27 show the time domain transfer functions H,(t) and H,(t), based on
the calibrations of equations (6.18) and (6.19). The transfer functions were transformed
analytically, based on equation (6.20). The figures show that the transfer functions approach
zero as t—oo, confirming that the transfer functions are stable. However, the time constants for
this decay are very large. Even after 4000 seconds the transfer functions still have not
approached sufficiently close to zero to allow for the truncation of the tail end. Using the
convolution approach, the controller would have to maintain a window of at least 1500
seconds of stored input values Q(t,) in order to achieve an accurate estimate of the thermal
deflection. Using every estimated Q(t,) with a sampling time of 0.5 seconds would require that
3000 values be stored and processed with every control cycle. Since this much data could not
be processed in 0.5 seconds, it would be necessary to discard some of the sampled data,
keeping only one in five or less, which naturally will affect the accuracy of the solution. In
order to avoid the problem of maintaining and processing a large window of data, a different

approach to evaluating the thermal deflection transfer function will be used.

6.12 A Real Time Analytical Solution of the Thermal Deflection Transfer Function
6.12.1 The Criterion for the Solution

Before attempting to derive a real time solution to the thermal deflection transfer function,
it is important to recognize the limitations of any solution. In the first place, the input to the
transfer function is the estimated heat generation Q(t), which was shown for several inputs in

figures 6.13, 6.17, 6.19, and 6.20. The estimated Q(t) is a delayed and distorted representation
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of the actual heat generation, and this error will be carried over to the deflection solution, even
though it will be significantly altered by the dynamics of the thermal deflection model.
Furthermore, the estimated heat generation is determined at only a finite number of discrete
points, with no information available about the behaviour of the heat input between estimated
points. This does not pose a significant problem where the sample period is much smaller than
the time constant of the thermal deflection step response. Figures 6.21 and 6.22 show that the
thermal deflection time constants for the present model are around 20 minutes, and they are
normally even larger than that for an actual machine structure which is usually more massive
than the present model. A sampling time of 0.5 seconds makes for an excellent approximation
to a continuous system. Nevertheless, in order to derive an analytical solution it is necessary
to assume at least a piece-wise continuous analytical form for the input function. The
analytical form that will be used is the familiar staircase function, or zero-order hold of the

sampled heat magnitude values.

In order to minimize the data which must be stored and processed, the solution should be
an incremental one. That is, the algorithm should be able to store the thermal deflection at the
end of each time step, and then determine and add to it the additional thermal deflection
produced during the next time step. The thermal deflection transfer function in equation (6.20)
is inadequate for this type of solution because it is based on the assumption that the initial
conditions of all derivatives of the input and output variables are zero. The objective now is
to derive a more general solution that can accommodate non-zero initial conditions at t=0". By
the nature of such a solution it cannot be expressed in the form of a transfer function, as will

be seen shortly.

6.12.2 The Derivation of the Analytical Solution

The derivation of the general solution begins with the transfer function in equation (6.20).

Cross-multiplying results in the equation:
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(do +dis +dys?+ds3 + s“)é(s) = (Co +Cs + o5t o 3)Q(s) (6.22)

where the c; co-efficients are defined by equation (6.21) and the d, co-efficients are defined

as follows:
do = abd?
dl = ad?® + bd? + 2abd 6.23
d2=2bd+ab+d2+2ad (6.23)
d3 =2d+a+b

Assuming zero initial conditions, the above equation transforms into a differential equation
in the time domain:

5//// + d36/// + d26” + d]a/ + doa = C3q m + Czq 14 + C,q / + Coq (6.24)
The transfer function would be re-obtained if the differential equation (6.24) were transformed
to the Laplace domain with zero initial conditions. A more general solution may be obtained
however, by transforming the differential equation to the Laplace domain with non-zero initial

conditions. In this case, a continuous function f(t) transforms to the Laplace domain as

follows:

{0} = 5s"F(s) -5 f0) ~s"FK0) - .... F7(0) (6.25)
The Transformation of all of the terms of equation (6.24), collecting powers of s and then
solving for 8(s) results in a general equation that is a function of all of the initial derivatives
of & and of Q. The general equation can be simplified somewhat by recognizing that a zero
order hold representation of the input implies that all initial derivatives of Q(t) are zero at t=0".

Making use of this simplification, the general solution with initial conditions is:

2 3 2 3
CO+C1S+62.S' +C.5 e0+els+ezs +€3S

3
o(s) + 6.26
dy +ds +d,s* +ds? + s* dy+ds +dys? +dys® +5* ( )

O(s) =

where:
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= 5(/)” * d35(l)/ + dzatl) +d\§, -cyq,

€
/4 /

e; = 8 +dyd, +dy8, - ), 6.27)
y )

e, = 8, + d;6, - c3q,

e, =0

0

nd the denominator co-efficients are given by equation (6.23). Notice that all of the derivatives
of g, have been made zero in equation (6.27). The denominator can be refaétored back to the
form in equation (6.20) to yield:

Co+CiS +Cos 2 +Cys? entesresites?

3(s) = —Q0(s) + - (6.28)
(s+a)(s+b)(s+d)~ (s+a)(s+b)(s+d)”

In order to use equation (6.28) to generate a solution for 8(t) in real time, it must be
transformed into a solution in the time domain. Figure 6.28 shows hypothetical input data
representing Q(t) and the output function (t). Notice that the discrete estimated points Q(kT)
have been extrapolated to the staircase function shown in the figure. Prior to each transition
at t=kT the derivatives of the analytical function &(t) are, in general, non-zero. The analytical
input which is applied at each kT is a step of magnitude Q(kT). The form of the solution given
in equation (6.28) incorporates all of the previous step inputs into the initial conditions at t=kT"
, that is the time just prior to the application of the input at t=kT. Assuming that all of the
derivatives are known at t=KT, it is not necessary to retain any information about the previous
step inputs. Therefore, the analytical solution for the present time step is equal to the step
response of equation (6.28). Notice that the first term on the right in equation (6.28) is the
transfer function H(s) from equation (6.20). Applying the step input Q(s)=1/s to this transfer
function and transforming to the time domain yields the calibrated unit step response from

which the transfer function was derived:

8,(t) = A+B - Ae™ - Be™ + Dte ™ (6.29)
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The second part of equation (6.28) is the part which accommodates the initial conditions.
Before it can be transformed to the time domain it must be expanded into partial fractions. The
process of expanding the term involves very tedious algebraic manipulation that will not be

documented here. The unexpanded function is:

2 3
€, tes +€2.S' +e3s

(s+a)(s+b)(s+d)*

8,(s) = (6.30)

Which expands in partial fraction form to:

AA BB DD EE
57 = + + +
{5) s+a s+b (s+d)? s+d (6.31)

where:
) e,a’ -ea’+ ea-e,
(a-d)X(a-b)
BB - eb’ -eb? + eb - e,
(b-d)*(b-a)
PD - exd’ -e,d® +ed - € (6.32)
(d-b)(a-d)
EE - (2d-b-a)e, + (ab-d?)e, + (bd*+ad*-2abd)e, + (d*-2bd*-2ad?+3abd Ne,

(b-d)(a-d))

The function in equation (6.31) transforms to the time domain as follows:
5,(1) = AAe ™ + BBe™ + DDte ™ + EEe (6.33)
The complete step response is obtained by adding together equation (6.29) multiplied by the

magnitude of the step input q, and equation (6.33):

8(t) = Aq +Bgq + (AA-Aq)e ™ + (BB-Bq)e ™ + (DD+Dg)te ¥ + EEe™®  (6.34)

The co-efficients AA, BB, DD, and EE are defined by equation (6.32), which is in tumn a
function of the parameters e, in equation (6.27). The e, parameters are a function of the d,
parameters in equation (6.23), but they are also a function of the initial derivatives of § and
the initial value of Q. The initial values describe the condition of the system just prior to the

application of the input, that is at t=kT" in figure 6.28. These values must be evaluated at the
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previous time step, based on the previous input and initial conditions. The procedure then is
as follows: starting from a zero initial condition and a step input at t=0, calculate §(T) and
derivatives of 6(T) up to the third derivative. These values become the initial derivatives for
the second time step, beginning with a step input of magnitude q=Q(T) at t=T. The procedure
is repeated at each additional time step. Keep in mind that calculating these derivatives does
not introduce any error because this is an analytical system that is free from measurement
noise. The solution after n time steps will in fact be an exact analytical solution for the
deflection model with the staircase input shown schematically in figure 6.28. With a sampling
time on the order of 0.5 seconds, the sampled input solution very nearly approximates the

continuous one.

The value of 6(T), 6°(T), 8 (T), and 6™ (T) are found by differentiating equation (6.34)

and plugging in t=T. These define the initial derivatives of the next time step as follows:

&(T) = Aq+Bq + (AA-Aq)e 7 + (BB-Bq)e T + (DD+Dg)Te T + EEe T

8(T) = a(Aq-AA)e T + b(Bq-BB)e ™" + (DD+Dq)e T - d(DD+Dg)Te " - dEEe T 6.35)
8(T) = a*(AA-Aq)e T + b*BB-Bq)e " + d{DD+Dq)Te ™ - 24(DD+Dq)e T + d*EEe T 6.
8"(T) = a’(Aq-AA)e ™ + b*(Bq-BB)e *" - d(DD+Dq)Te ™ + 3d(DD+Dg)e T ~ d3EEe T

All of the equations for the incremental analytical solution are now in place. The only
constant variables in the algorithm are the calibration parameters defining the model: A, B, C,
D, and a, b, ¢, d. The solution is obtained by evaluating in sequence: the d, from equation
(6.23); the e, from equation (6.27) using the d, and stored values of the initial derivatives; the
variables AA, BB, DD, and EE from equation (6.32); and finally the thermal deflection and
its derivatives for a step of magnitude qg=Q(kT) from equation (6.35). The value &(T) is the
current estimate of the thermal deflection, and also is used along with its derivatives in
equation (6.35) to define the initial conditions for the next time step. Despite the large number
of equations, this solution is extremely fast because there is a very small amount of data to be
carried over and processed from one time step to the next. Furthermore it is an exact solution

because there is no truncation of the input function. A program that is based on this algorithm
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was written in C++ and combined into one module with the program written earlier to estimate
Q(KT). Before proceeding to the results, it is useful to first investigate the relationship between
the inverse solution for the heat generation based on G(r,s) and the direct solution for the

thermal deflection that was just derived, based on H(s).

6.13 Analysis of the Measurement Transfer function

The final objective of this chapter is to develop a practical method of estimating the
thermal deflection due to one source from a single temperature difference measurement. The
heat generation function Q(t) is an internal state variable that will never be used by the
controller in real time. Thus, it is the combined transfer function G(r,s)H(s) and not the
individual components that is the system of interest. The combined transfer function will now
be called the measurement transfer function because it operates in a control system as an

indirect measurement of the thermal deflection.

A Bode diagram of the inverse transfer function G(r,s) is shown in figure 6.29. The
magnitude plot shows a DC gain of -9.8 dB, with the gain increasing linearly with the
logarithm of the frequency after about 8.0E-03 rad/s or 1.3E-3 Hz. The absolute gain is
arbitrary because it depends on the units that are used for the input and output variables, in this
case temperature is measured in degrees Celsius and the heat generation magnitude is
dimensionless. The noteworthy feature of figure 6.29 is that the magnitude gain increases
linearly with the logarithm of the frequency, becoming extremely large for very high
frequencies. This is characteristic of all inverse problems, and it is the source of the instability
of the solution. The gain at 0.1 rad/s or 0.63 Hz is about 30 dB higher than the DC gain, and
the gain at the sampling frequency of 2 Hz or 12.6 rad/s is 60 dB higher than the DC gain. This
means that the 2 Hz noise is amplified one thousand times more than the useful signal, which
can be assumed to be a DC input. This is in agreement with the result shown in figure 6.13,

where the transformation of an unfiltered temperature difference by G(r,s) produced an
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estimate for Q(t) that was completely obliterated by amplified noise. Figure 6.29 also indicates
that the noise amplification problem becomes worse for higher sampling rates, approaching

infinity as the sampling rate becomes vary large.

Figures 6.30 and 6.31 show the bode diagrams of the thermal deflection transfer functions
H,(s) and H,(s) respectively. The Bode diagrams of the thermal deflection transfer functions
are characteristic of a low pass filter, with the gain approaching negative infinity decibels as
the frequency becomes very large. This is a desirable characteristic because it tends to filter
the high frequency noise that is amplified by the inverse transfer function. The H,(s) transfer
function has a better characteristic than the H,(s) transfer function because the transition from
the constant gain to the beginning of the cut-off region occurs at a lower frequency. This is
reflected in figures 6.32 and 6.33, which show Bode diagrams of the measurement transfer
functions G(r,s)H,(s) and G(r,s)H (s) respectively. Both measurement transfer functions have
a constant DC gain and a constant high frequency gain with a transition region. The unstable
increasing amplitude gain of the inverse transfer function has been attenuated by the filtering
characteristics of the thermal deflection transfer function. This would indicate that there is no
practical limit on the cycling frequency of the controller because the noise amplification
problem that is inherent to the inverse problem does not get any worse if the cycling frequency
is increased above 2 Hz. The figures also show that the high frequency noise close to the 2 Hz
sampling frequency is attenuated more than the lower frequency noise in the transition region.
This is completely the opposite situation to the case of the Q(t) estimate in figure 6.13, where
it was the high frequency noise that dominated the error in the Q(t) estimate. Since Q(t) is a
hidden state variable that is calculated by the controller but is not processed independently of
the thermal deflection transfer function, the noise in the Q(t) estimate should not be a concern
to the control system designer, rather it is the behaviour of the measurement transfer functions

in figures 6.32 and 6.33 that must be taken into consideration.
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A comparison of figures 6.32 and 6.33 shows that the noise amplification is greater for
the G(r,s)H,(s) transfer function than for the G(r,s)H,(s) transfer function. In the first place,
the constant high frequency gain is 16 dB lower than the DC gain for the G(r,s)H,(s) transfer
function, but only 8 dB lower for the G(r,s)H,(s) transfer function. This translates into a signal
to noise amplification ratio of 5.3 and 2.5 respectively. Secondly, the transition region for the
G(r,s)H,(s) transfer function is slightly shorter that 2 decades, while for the G(r,s)Hy(s) transfer
function it is slightly longer than 2 decades. These differences are inherent to the
characteristics of the physical model. The general appearance of figures 6.32 and 6.33 is
common to all large structures, however the particular characteristics vary from one machine
to the next, and for different axes of the same machine. If the noise characteristics of the
measurement transfer function are not satisfactory, then filtering of the input temperature
signal may be required. Filtering must be applied with caution however, since real time
filtering introduces a phase lag which increases the net system delay. A more directed
approach is to use derivative filtering only, since most of the high amplitude noise produced

by the inverse transfer function comes from the temperature derivative term.

6.14 The Real Time Implementation of the Measurement Transfer Function

Figure 6.34 and 6.35 show the estimated thermal deflections d (t) and 8,(t) for a measured
unit step temperature difference. The estimation was done in real time, using a sampling rate
of 2 Hz, with derivative filtering of the measured temperature difference. The figures also
show the actual thermal deflection, measured on the structure in real time. The estimated
thermal deflection is very close to the actual thermal deflection with the greatest difference
occurring near t=0 seconds. Figures 6.36 and 6.37 show the same estimated and measured
thermal deflections for the first 200 seconds after the application of the step input, showing
the initial lag in the estimate relative to the measured thermal deflection. The estimated
deflection profiles appear to be shifted in time relative to the actual profiles. This shift is a

result of the initial delay in the estimated Q(t), which was shown in figure 6.13, which
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produces a corresponding delay in the estimated thermal deflection. The shift in the thermal
deflection reduces with time because the input remains constant at 1.0 and the effect of the
initial delay diminishes. Figure 6.38 shows the difference between the estimated and actual
thermal deflection in the x-direction and in the y-direction, which represents the error in the
estimation process. The steady state error band approaches 2 microns in the y-direction in
steady-state, however there is an initial error exceeding -5 microns which expands the overall
error band to around 7 microns. It is the initial error that is most pronounced, dominating the

overall error band.

Figure 6.13 shows that the total system delay for the Q(t) estimation, including the
derivative filter, is about 30 seconds, which is the time for the Q(t) estimate to reach its final
value of 1.0. Figure 6.39 is a close-up view of the estimated Q(t) from figure 6.13. Now the
estimate would be closer to the actual Q(t) if it could be shifted backward in time, as shown
in figure 6.40. The estimate in figure 6.40 has not been changed relative to figure 6.39, except
to recognize that the effects being detected at the present time are actually the result of inputs
which occurred at some time in the past which have been held up by the system delay. For a
linear system, the system delay is invariant with the magnitude and type of input, thus if the
shifted estimate in figure 6.40 is actually better than the real estimate in figure 6.39, then it
should also be a better estimate for any other Q(t). The negative time shift shown in figure
6.40 will be called the artificial delay, and if chosen properly the artificial delay can be made
to cancel the system delay, resulting in an improved estimate of Q(t) and therefore an
improved estimate for the thermal deflection. The one major problem with using an artificial
delay is that it creates a band where no information about Q(t) is available, as shown in figure
6.40. The duration of this ‘silent region’ is equal to the length of the artificial delay. Since a
complete time history of Q(t) is required, it is necessary to fill in this region with some sort of
assumed or extrapolated values. Figure 6.41 shows a few possibilities for filling in the silent

region. One possibility is to assume a constant value equal to 0.5, another possibility is to
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extrapolate the last known value of Q(t), and the final possibility shown in figure 6.41 is to
extrapolate the last known derivative. There are many other possibilities, however the fact is
that no direct information can be obtained about Q(t) in this region, so any assumed or
extrapolated values will introduce some error. It was found that assuming values arbitrarily
produced unreliable results, and extrapolating the derivative introduced too much noise, thus

the best compromise is to extrapolate the last known value of Q(t) into the silent region.

Since the artificial delay with last value extrapolation increases the overall noise in the
output, the optimal solution is not necessarily to cancel the whole of the system delay.
Increasing the artificial delay has the effect of reducing the initial error to a step input, at the
cost of increased error in the steady-state because of noise. If the objective is to minimize the
overall error band for a step input then the optimal artificial delay will produce initial and final
error bands which are equal. However, if a machine tool is to be operated for long periods of
time, and only infrequently subjected to a sudden large step input, some other solution may
be optimal. Figures 6.42 and 6.43 show the estimated and actual thermal deflection for a unit
step input, using an artificial delay of 10 seconds in the real time estimation algorithm, and
figure 6.44 shows the error. The 10 second delay has reduced the initial maximum error to less
than 4 microns, and the overall error band is about 5 microns. Furthermore, the initial error
drops within the steady state error band within 40 seconds of the input, as opposed to 500
seconds in the case of zero artificial delay, and there is very little increase in the system noise
at steady-state. Increasing the artificial delay above 10 seconds brings much less improvement
in the initial error and increases the steady-state noise considerably, hence the 10 second

artificial delay is chosen for the best overall performance.

6.15 Results of the Thermal Deflection Estimation Algorithm for Various Inputs
Figure 6.45 shows the estimated thermal deflection along with the actual thermal

deflection for the measurement algorithm with 12 second delay, and an input of g=0.5. Figure
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6.46 shows the estimation error, which has an error band of about 5 microns. Since the actual
thermal deflection is on the order of 125 microns, the estimate is accurate to around 4% of the
maximum input. Figure 6.47 shows the estimated and measured thermal deflection for an input
of g=0.25, and figure 6.48 shows the estimation error. The range of the estimation error is
about 3.5 microns or 5.6% of the maximum thermal deflection. Figure 6.49 shows the
estimated and actual thermal deflection for a triangular heat input which increases linearly
from zero to 1.0 in the time interval from t=0 to t=300, and then decreases linearly to zero in
the time interval from t=300 seconds until t=600 seconds. Figure 6.50 shows the estimation
error for the triangular input. There is no large initial error in the estimated thermal deflection
for the triangular heat input because there is no abrupt change in the input. The abrupt change
in slope are reflected in the estimation error, as can be seen in figure 6.50. The range of the

estimation error is about 4 microns, or 5.7% of the maximum thermal deflection.

The results show that the measurement transfer function and solution algorithm is
accurate within a maximum error range of 6 microns. The results also confirm that the
estimated thermal deflection is reliable for any input, with the worst case inputs shown in the
figures above. Thermal inputs that include abrupt changes in value or derivative are the most
difficult to deal with because of the inherent system delay that can only be partially
compensated by the artificial delay. The analysis of the system delay above reveals that it
imposes a definite limitation on the estimation algorithm because there will always be a period
of time following a change in the input during which no useful information about the input can
be obtained. The extrapolation of the previous input into this silent region is the principal
source of estimation error. This means that every system will have an inherent estimation error
range which cannot be improved by further processing of the input signal. The only way to
improve the estimates above the results given above is to reformulate the system itself. If the
temperature measurement probes had been placed closer to the heat source then the smaller

initial delay in the temperature difference would have produced a smaller system delay and a
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more accurate estimate. This shown the importance of placing the measurement probes as

close as possible to the heat source, although there will always be some practical limit.

It is important to note that the system that was analysed here probably represents a worst
case in terms of the estimation error. Evaluating the effectiveness of the estimation for a
particular system can be understood by conceptually dividing the measurement transfer
function into its two parts, the inverse transfer function G(r,s) and the thermal deflection
transfer function H(s). The system delay is produced by the inverse transfer function, which
produces a Q(t) which is shifted back in time by some effective delay, and the output of G(r,s)
is the input to H(s). The initial deflection error is the amount of deflection that occurs in the
real system as a result of the actual Q(t) during the time interval of the system delay. Thus, the
magnitude of the inherent, or unavoidable estimation error depends not only on the system
delay that is associated with the inverse transfer function G(r,s), but also the time constant of
the thermal deflection transfer function H(s). A useful value for assessing a system is the
temperature difference delay to a unit step input, divided by the effective time constant of the

thermal deflection unit step response. That is:

Ee = _1d (636)

where Ty is the effective temperature delay to a step input, and T s the effective time
constant of the thermal deflection step response. The value of E, in this case is:

12.0

E[ = 525 = 0.00976
E) = === = 00157
760

The E, ratios in this model are quite large because of the large temperature delay in this model
relative to the time constant of the thermal deflections. In the next chapter, a model with a

more realistic E, ratio will be considered.
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CHAPTER 7: ESTIMATING THERMAL DEFLECTION ON A NON-LINEAR
COMPUTER SIMULATED STRUCTURE

7.1 The Source of the Non-Linearity

One may identify the three main potential sources of nonlinearity in estimating the thermal
deflection of machine structures as arising from (1) radiation effects, (2) measurement noise,
and (3) joint effects. Radiation is a common source of nonlinearity for thermal problems at
elevated temperatures, but it is normally negligible at low temperatures where convection and
conduction are the dominant mechanisms of heat transfer. It was shown in chapter 7 that
temperature and thermal deflection in the physical model is linear within the resolution of the
measurement apparatus, and therefore no significant nonlinearity may be attributed to this
source. Measurement noise as a source of nonlinearity was also considered in some detail in
chapter 6. It was found that the temperature and deflection measurement noise is approximately
white noise, with energy fairly evenly distributed over the system bandwidth. Several methods
of minimizing system noise were presented, including regularization and derivative filtering.
It was found that the nonlinearity introduced by measurement noise can be effectively controlled
so that maximum error is within a defined range that can be made sufficiently small to meet the

objectives of this thesis, stated in chapter 3.

The final potential source of nonlinearity to be considered is the joint effect, a phenomenon
which was described in detail in chapter 4. To summarize briefly, the joint effect is produced
by the interaction between the contact pressure in fixed and sliding joints with the thermal
resistance of the contact interface [12]. When the thermal expansion of the machine structure
changes the contact pressure of an interface between two machine components, the heat flux
through the joint is redistributed, changing the overall temperature distribution and the resulting
thermal deflection. In chapter 4 the contact stiffness was shown to be nonlinear, hence if the
redistribution of the heat flux is significant, the relationship between the measured temperature

difference and the thermal deflection will exhibit a certain amount of nonlinearity [104]. Since

159



the procedure that was developed in chapter 7 to estimate thermal deflection from measured
temperature points is based on the assumption of a linear model, a significant Jjoint effect will

cause a systematic error that cannot be dealt with by the procedure of chapter 6.

7.2 The Adaptive Model of a Nonlinear System

A block diagram representing the real system and the real time model with nonlinear effects
is shown in figure 7.1. The figure shows schematically that the stress distribution in the contact
region, which is a subset of the global stress distribution, changes the relationship between the
heat input and the temperature distribution in the real system by changing the thermal contact
resistance. In this case, any constant parameter model is only a ‘snapshot’ of the actual system
for one particular contact stress distribution, and any deviation from that distribution will
introduce an error in the model. In order to reproduce the joint effect in the thermal deflection
model, it is necessary to the modify the parameters of the thermal deflection model in
accordance with the actual contact pressure distribution, as shown in figure 7.2. The thermal
deflection model shown in figure 7.2 is called an adaptive model and it is generally a nonlinear
system. Implementing an adaptive model in this case requires a knowledge of the relationship
between the contact pressure distribution and the parameters of the thermal deflection model.
The thermal deflection model implemented in chapter 7 can be represented as a fifth order linear
differential equation with constant co-efficients. There are two major obstacles to implementing
adaptive parameter variation with this model. In the first place, the relationship between the co-
efficients of the differential equation and the contact pressure would have to be determined
experimentally, by varying the contact pressure distribution and then recalibrating the co-
efficients of the model. In the second place, the adaptive model requires a real time estimate of
the contact pressure, something which is not directly measurable in a real machine tool in
operation. Thus, while the adaptive approach is useful for visualization, it is not a practical

solution that could be implemented in practice.
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In order to approach a realizable solution, consider the schematic model in figure 7.3. There
are two sets of temperature measurements shown in the figure, one to estimate the heat
generation and the other to estimate the contact pressure distribution. This scheme is an
improvement over that shown in figure 7.2, because it provides a mechanism for indirectly
estimating the contact pressure distribution from temperature measurements. The problem
which remains is how to establish a reliable model relating measured temperatures to the contact
pressure. This relationship is not an obvious one since the temperature, even in the vicinity of
the source, depends on factors other than the contact pressure. Furthermore, the adaptive model
does not lend itself easily to empirical type models because the contact pressure is difficult to
measure, even off-line, and calibrated empirical models depend on the availability of known

input and output data.

7.3 The Equivalent Model Using Contact Element Flux Generators

The solution which will be implemented in this chapter is based on the configuration shown
in figure 7.3, however the mechanism will be based on the generalized model that has already
been developed in this thesis. In order to make use of the generalized model, the thermal
deflection system of a machine structure with a nonlinear Jjoint must first be transformed
conceptually into a form which can be more effectively modelled. Figure 7.4 shows a schematic
drawing of a discrete model of a machine structure with one heat source in the column, and with
a joint consisting of nine contact elements at the interface between the column and knee. The
arrows in the figure indicate the direction of heat flux in the linear structure, from the heat
source in the column through the contact surface, and into the knee. The thermal deformation
of the structure produces contact stress in the contact elements which can be either positive or
negative. Since the joint thermal contact resistance is proportional to the contact pressure,
shown in chapter 4, the effect of the higher contact pressure is to increase the heat flux through
those elements, and the effect of the lower contact pressure is to reduce the heat flux through

those elements. This is the nonlinear aspect of the system. From the point of view of the thermal
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deflection system, the effect of the contact pressure is simply to rechannel the heat flux through
the contact joint, with the resulting changes in the temperature distribution and in the thermal
deflection. The other effects of the contact joint relate to the mechanical stiffness of the
structure, which have only an incidental impact on the thermal deflection. Thus, an equivalent
thermal deflection system is shown in figure 7.5, now with the contact elements replaced by
hypothetical heat flux generators, each channelling the incremental heat flux magnitude that
results from the increase or decrease in the contact pressure of that contact element. Since the
machine tool test structure in figure 4.13 has been shown to be a linear thermal system, the
individual incremental heat fluxes shown in figure 7.5 may be linearly superimposed onto the

global heat flux shown in figure 7.4.

The above analysis indicates that, from a thermal deflection point of view, the heat flux
generators shown in figure 7.5 are equivalent to the nonlinear contact elements. This can be
better understood by considering that the thermal deformation of the structure depends on the
following three factors: (1) the temperature distribution, (2) the co-efficient of thermal
expansion of the structure, and (3) the stiffness of the structure. The nonlinear contact elements
only affect factors (1) and (3). Furthermore, it can be shown that for the configuration of figure
4.13 the nonlinearity of the contact does not affect the overall stiffness of the structure to any
appreciable extent. Several finite-element models were tested, using various combinations of
loading and joint geometry, with the conclusion that the equivalent stiffness between the points
of application of the cutting force is linear. Hence, the only significant factor which is
appreciably affected by the nonlinearity of the contact elements is the temperature distribution.
Considering heat flux generators in the place of contact elements to generate the same
temperature distribution is therefore equivalent. In the case of the finite-element system shown
above, nine flux generators are required to replace the nine contact elements with zero error. In

a physical system the flux generator would be continuous rather than being composed of finite
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Figure 7.5: Schematic Drawing of Finite-Element Model with Disturbance
Heat Flux Elements
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Figure 7.6: Schematic Drawing of Flux Generator
and Source-Sink Combination
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sized elements, however it could be adequately represented by a large number of smaller flux

generators, with flux magnitudes approaching zero.

The advantage of representing the contact joint by thermal flux generators rather than by
mechanical elements is that the equivalent system can be modelled by the powerful generalized
approach presented in chapter 4. The nine heat flux generators shown in figure 7.5 may be
modelled as paired heat source - heat sinks, as shown in figure 7.6. The magnitude of the heat
generation of each source-sink pair corresponds to the actual deviation of the heat flux through
the element which is produced by the nonlinearity of the contact. The magnitude of each source
can be estimated from temperature measurements, using the procedure derived in chapter 6 and
implemented in chapter 6. The thermal deflection due to each source can also be modelled using
the procedure described in chapter 6. One of the main advantages of this type of modelling is
that the nonlinearity has been eliminated from the modelled system. Both the temperature field
and the thermal deflection that is produced by the main source and the fictitious source-sink
pairs can be superimposed linearly. The nonlinear aspect of the problem is the behaviour of the
conceptual source-sink pairs, however this behaviour is not predicted by the model, it is

estimated from on line temperature measurements.

7.4 The Procedure for Estimating Thermal Deflection in a Nonlinear System
7.4.1 The Linearized Model

A linearized model of a nonlinear system is obtained by linear extrapolation of a single
system response to one particular input. This input is often called the reference input, and the
system response to this input is called the reference output. A linearized model is exactly correct
only for the reference input since linear extrapolation of a nonlinear model introduces a certain
amount of error. The amount of error depends on the nature of the system, however in general,
the error increases when the system variables deviate from their reference values. For many

systems that contain only a small amount of nonlinearity, the linearized model is acceptable over
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the useable range of the system variables. For systems with appreciable nonlinearity, the
linearized model is often a convenient starting point that is refined by adaptive parameter
variation or other methods. Since a procedure for estimating the linear thermal deflection has
already been developed in this thesis, the procedure that will be followed is to obtain a first
estimate of the thermal deflection from a linearized model, and then refine the estimate with a
correction model. The linearized model is obtained by the same procedure that was explained
in chapter 7: (1) define two temperature measurement nodes close to each independent heat
source; (2) calibrate the temperature difference step response and define the inverse transfer
function; (3) calibrate the thermal deflection model; (4) implement the transfer function
solutions in the real time algorithm. The step input is used as the reference input because it is
probably the most common type of thermal input in a machine structure. The reference step
magnitude could be approximately half of the maximum heat generation of the source, however
if the machine is known to operate within a particular thermal input range most of the time then
better results may be obtained by using a different reference magnitude. In the experiments that

follow, the half-maximum reference will be used.

7.4.2 Estimating the Heat Generation of the Contact Sources

The next step of the procedure is to define and estimate the heat generation of the fictitious
heat source-sink pairs in figure 7.5. As was discussed above, the heat generation of the source-
sink pairs represents the deviation in the heat flux through the joint from the linearized or
reference input, due to the nonlinearity of the contact joint. Hence, when the reference input is
applied to the system, the linearized heat flux is equal to the actual heat flux, and the heat
generation of the contact sources is equal to zero. Figure 7.4 shows a measured temperature
node adjacent to each fictitious contact source. Assuming that the main heat source, Q(t) in
figure 7.4, can be accurately estimated by the linear procedure, the temperature of each of the
measured nodes in figure 7.4 can also be estimated by the generalized direct thermal model.

Now if there is no deviation from the linearized heat flux distribution through the joint then the
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measured temperature at each of these nodes will be equal to its estimated value. If there is a
deviation from the linearized heat flux distribution then this will be reflected in a temperature
deviation at the measured point. Hence, the difference between the estimated temperatures using
the linearized model and the actual measured temperatures is the temperature change induced
by the contact joint, or from the other perspective it is the change induced by the fictitious
sources. It is this temperature difference that shall be used to identify the magnitude of the

fictitious sources, using a similar procedure to that which was developed in chapter 6.

Before applying the procedure of chapter 7 to estimate the generation of the contact
sources, it is important to identify and discuss certain differences between the fictitious contact
sources and real sources. In the first place, the temperature response of the contact sources is
not an absolute temperature, but rather a deviation from a reference temperature. The reference
temperature is determined from the estimated heat generation of the main source Q(t). The first
new consideration is whether the nonlinearity of the contact joint will affect the estimation of
Q(v). As was discussed in chapter 6, a heat estimate based on a temperature difference near the
source is very insensitive to more distant heat sources since the temperature gradient that is
produced by a source decays much more rapidly than the absolute temperature. Using the
perspective of fictitious contact sources, one would not expect a significant contribution from
these sources to the temperature difference measured near the main source. The finite-element
results show that the temperature difference used to estimate Q(t) in the test structure is linear
within the numerical resolution of the finite-element program. The second new consideration
is the process of estimating the reference temperature at each of the measured nodes. The model
relating heat generation to temperature is simply the direct transfer function corresponding to
the inverse transfer function G(r,s) and the parameters are calibrated from the measured
temperature responses to the reference input at each of the measured nodes in figure 7.5. The

on-line solution for the transfer function can be obtained in one of two ways: (1) using the
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general temperature solution in equation (5.1) and the calibrated parameters, or (2) using the

convolution integral approach developed in chapter 6.

The next consideration is the magnitude of the temperature deviation that is to be expected
near the contact nodes. It was shown in chapter 7 that the temperature measurement error
associated with the data acquisition process is nonlinear. That is, the magnitude and spectral
composition of the measurement error is independent of the magnitude of the measured
temperature, so for small measured temperatures the disruptive effect of the measurement noise
is potentially more significant. It will be shown that the temperature deviation is of the order of
one degree Celsius, which is large enough to be accurately detected in the presence of
measurement noise. However, it is not feasible to look at the deviation of a temperature
difference because the resulting signal would be overwhelmed by measurement noise. This
poses a serious problem of source dependance, particularly given the close proximity of the
sources in figure 7.4. The implication is that the temperature deviation of each of the measured
points in figure 7.4 is the linear superposition of the contribution from all of the contact sources

and it is not possible to estimate any one source independently of the others.

The final consideration to be looked at here is the nature of the heat source-sink pair, and
the applicability of the generalized thermal model to such an unusual heat source. The
generalized model rests on a calibrated base equation that is mathematically similar to the real
process, as explained in chapter 4. The difference between a source-sink pair and an ordinary
source relates to overall pattern of heat flux and temperature distribution. For one particular
point however, the mathematical form of the temperature profile is not greatly altered.
Furthermore, since the source-sink pair have equal and opposite magnitudes they are dependant
sources that are rightly lumped together into one single source. It will be shown that the

generalized model provides an excellent representation for the contact source-sink pairs.
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7.4.3 Modelling the Thermal Deflection Produced by the Contact Sources

Once the relative magnitudes of the contact sources have been determined, the next step
is to estimate the thermal deflection that is produced by their temperature distribution. The total
thermal deflection is the superposition of the linearized thermal deflection produced by the main
source and the nonlinear deflection produced by each of the contact sources. The most difficult
aspect is determining how much of the overall thermal deflection is produced by each one of
the contact sources, and this is done through calibration of the thermal deflection models
associated with each one of the heat sources. It is not possible to activate one contact source at
a time because any application of contact pressure in a real structure will invariably affect the
entire joint. Thus, the thermal deflection models must be calibrated simultaneously using some
sort of error minimizing scheme, and the number of calibrated inputs must be equal to or greater
than the number of contact sources. In practice, the nine contact sources shown in figure 7.5 are
not necessary, they can be effectively lumped together into a smaller number of independent
sources. This so because of the close proximity of the sources and the flexibility of the

generalized solution, explained in chapter 4.

7.4.4 The Algorithm for Estimating Thermal Deflection in a Nonlinear System

Figure 7.7 shows a block diagram of the real time process for estimating the thermal
deflection in a nonlinear system. In the figure there are three sets of temperature measurements
serving as the inputs to the estimation algorithm. Input AT represents the temperature difference
measured near the main source Q(t) and T, and T, represent two measured temperatures in the
vicinity of the contact joint. The first process is the estimation of Q(t) through the calibrated
convolution transfer function, represented by Block 1. Block 1 in figure 7.7 is the only truly
linear process since it is unaffected by the contact joint. Block 2 represents the algorithm which
calculates the linearized thermal deflection 0(t), using the incremental solution presented in
section 6.7. Block 3 represents two separate algorithms, which estimate the linearized

temperature profiles at T, and T, using the direct thermal model. The linearized temperature is
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subtracted from the measured to obtain the temperature deviations 6T, and 8T,. Blocks 4 and
5 represent the same inverse algorithm as in Block 1, now being used to estimate the disturbance
heat generation q, and g,. The estimated thermal inputs are transformed into deflections Ad, and

Ad, which are added to the linearized thermal deflection 6.

7.4.5 Calibrating the Temperature Models

The calibration of the temperature models corresponding to blocks 1 and 3 in figure 7.7 has
already been explained in chapter 7 and needs no further discussion here. Blocks 4 and 5 define
the inverse relationship between the temperature deviations 8T, and 8T, and the conceptual heat
sources q, and q,, and the calibration of these models poses a particular problem since the
procedure that was employed in chapter 7 is no longer applicable. The empirical calibration of
a model depends upon the availability of experimental system response data corresponding to
known inputs. In the case of blocks 4 and 5, neither the input variable nor the output variable
is directly available, as will now be explained. This lack of information entirely defies the
concept of empirical modelling, and it in this regard that the fundamental difference between

a purely empirical model and the generalized model truly emerges.

In chapter 7, it was reasonable to assume that well defined heat inputs could be generated,
for example by starting the rotation of a bearing or applying power to a motor in a
predetermined way. In the present case the controllable input is the main source Q(t) and not the
fictitious sources q,(t) and g,(t), which merely react to the effects produced by the main source.
What this means is that the input variable is always unknown, both in magnitude and in its
functional character. Furthermore, since the output variable is a temperature difference in time
rather than a temperature difference in space, it is no longer reasonable to assume that measured
temperature near one source in independent of the other sources. If more than one fictitious
source is considered then the measured temperatures are composed of contributions from each

of the contact sources, and it is not immediately possible to separate the contributions from each
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source. Now since the contact sources are fictitious, one might ask why it is not possible to just
assume that the nonlinearity is produced by a single source, eliminating the interdependence.
In practice it is not possible to adequately represent the flux redistribution that is produced by
most contact joints with only a single source, so in order to produce an adequate estimate of the

nonlinear thermal deflection it is essential to deal with the interdependence problem.

The first of these problems to be considered is the determination of the input heat functions
qq- Looking at a thin contact element, the heat conduction through the element is given by:

dr
q, =— (7.1
R

where q, is the total heat conducted through the element, R is the thermal contact resistance, and
dT is the temperature difference across the element. In chapter 5 is was shown that the thermal
resistance is approximately proportional to the inverse of the contact pressure, thus:

q, = P.dT (7.2)
where P_ is the contact pressure at the element. If the nonlinear deviation in the heat flux is
called q, then:

q = 0P dT (7.3)
where 8P, is the change in the contact pressure from the linear value. If dT is approximately
constant then:

q = OP, (7.4)
This analysis is simplified because it neglects the interaction among the contact elements and
the interaction between the contact elements and the linear substructure. Nevertheless, it shows
that the heat generation of the contact sources is proportional to the deviation from the
linearized contact pressure for at least some of the range of dP.. The advantage of using a finite-
element test system rather than a physical one is that it makes it possible to look at any variable
in the system, even those that are inaccessible in a physical system. In the experimental results

that follow, the behaviour of the contact pressure will be plotted for known inputs to the main
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heat source, and the results used to define a suitable functional relationship between the main
source Q(t) and the contact sources q;. This relationship must be a general one however, since

the same process cannot be repeated in the case of a real machine tool.

The second problem to be considered is the determination of the output variable
corresponding to the calibration input. Because of the superposition of the temperature
distributions from each contact heat source, it is not possible to isolate the temperature
contribution from each source individually at any given point on the structure, hence there is not
a single unique solution to the problem. It is important to recognize the significance of this
statement because it illustrates the fundamental difference between a purely empirical model
and the calibrated generalized model. The fact that the pure temperature response to a single
contact source cannot be identified is a practical limitation on the ability to measure certain
system variables. Specifically, the problem arises because it is not possible to activate the
contact sources one at a time, they must be activated together producing a jumble of temperature
responses at the same point in space. There is no information contained in the measured
temperature data to indicate the relative contribution from each source. The temperature rise at
a point near one contact source may be the result of heat generation by that source or it may be
a delayed response to the heat generation of another, more distant source. Any calibrated
empirical model inherently makes an assumption regarding these relative contributions, and this
assumption is not necessarily correct. The situation is analogous to a linear system of equations
where the determinant of the co-efficient matrix is equal to zero. There are an infinite number

of calibrated solutions, but only one of these solutions can be physically correct.
The inherent advantage of the generalized model is that its mathematical form is similar

to the mathematical form of the actual physical system. The missing information regarding the

relative contribution from each source at a given point is therefore built into the model before
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it is calibrated. The general model for the temperature profile at a point was given by equation

(5.1) and is repeated here:
o t
T(rs) = Ko [BIo(Br)JyBro)e P [q(r)e @ drdp (75)
0 0

where q(t) is the heat generation of one contact source and the other parameters are defined in
chapter 5. The temperature at a given point is the linear superposition of the temperature profiles
due to each of the contact sources, estimated by equation (7.5). To understand how the
generalized model can break down the temperature profile into its constituent parts consider
figure 7.8, which shows two measured points near two heat sources. The typical temperature
profiles produced by each of the sources at the measured points for step inputs at t=0 is also
shown in the figure. Notice that temperature response to the q, input is felt at T, before it is felt
at T, because the temperature delay is larger at greater distances from the source. Now, if the
q, temperature model were calibrated to produce the T, temperature profile shown in figure 7.8
then the temperature model would automatically predict the delayed response at T,. In this way,
the relationships between q, and Ti, and qi and T2 are not independent. The predefined
mathematical relationship forces the calibration parameters to converge to the mathematically

correct solution, as will be shown shortly.

The model for the temperature at any point T; is the linear superposition of the generalized

models relating the g; to T;. That is:

n

T, = Y T;(gpr) (7.6)

J

i=1

where the Ti(q;.r;) are the generalized models corresponding to each g;. Now, there is only one
generalized model for a particular source q; , which corresponds to equation (7.5). The same
calibrated model predicts the contribution from its source onto each of the measured points by

changing the value of parameter r in equation (7.5), called r; in equation (7.6).
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Figure 7.8: Schematic Drawing of Two Contact Heat Source System
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In the procedure presented in chapter 7, the variable r in equation (7.5) was treated as an
ordinary empirical parameter. In the present case, the missing information in the calibration data
requires that parameter r be treated as a fixed variable rather than a calibration variable.
Restricting the r parameter reduces the flexibility of the generalized model to conform to the
measured data, but it serves a different purpose in this case. Parameter r is used to establish the
mathematical form of the system model by defining the inter-relationship between all of the
temperature profiles that are produced by one contact source. In order that the mathematical
form be accurate, the selected values of r should be realistic for the geometry under
consideration. The procedure that will be used here is to assume the locations of the contact
sources, and then estimate the distance from the centre of the source to the measured points. The
sources will be assumed to be located at equidistant positions along the contact joint. For m
contact sources there are 3m calibration parameters for the thermal model: K, a, and o for each
contact source. These 3m parameters must be solved simultaneously, using the m temperature

profiles for the calibration.

The algorithm for calibrating the contact source parameters is shown in figure 7.9 for the
case where m=2. The parameters used in figure 7.9 are a,, a,, &, &, K;q,°"”, K,g,**, Koq,,
and K,q,>, where the subscript indicates the heat source number and the superscript indicates
the calibration input. There must be at least as many calibration inputs as there are contact
sources, two of each in this case. The calibration inputs that will be used in this chapter are step
inputs, one with a greater magnitude and one with a lesser magnitude than the reference input.
The first four of the parameters, a,, a,, &, ;2> Shall be called the real parameters and the other
four are called the product parameters. In the first block of figure 7.9 initial values are assumed
for the four real parameters and the four product parameters. The product parameters are formed
because the heat magnitudes cannot be separated from the temperature gain at this point. Block
2 represents the MATLAB calibration algorithm for the <1> calibration input, and block 3

represents the calibration for the <2> calibration input. Since the calibrated parameter values
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depend on the initial guess, the two sets of calibrated values will not necessarily be equal. Block
4 represents the control loop which checks whether the a and a parameters are close enough to
be considered equal, otherwise the two calibrated values for each parameter are averaged and
the process begins again with the averaged parameter values as the initial guess. When the two
calibration blocks converge to the same a and « parameters the control moves to block 5 which
assumes a reference heat magnitude of 1.0 for both q,*> and ¢,*”, so that K, K,, ;% and &
may be calculated independently. Selecting reference values for the heat sources does not affect

the result since the heat generation is an internal variable to the estimation transfer function.

7.4.6 Modelling the Thermal Deflection from the Contact Sources

A separate thermal deflection model is required for each contact heat source. Using the
form of equation (6.16), there are 6 empirical parameters for each contact heat source for a total
of 6m parameters. As with the thermal model these parameters must be solved simultaneously
since the total thermal deflection is the superposition of the individual contributions from each
of the contact sources. Since the thermal deflection model is entirely empirical, the model does
not necessarily assume the correct mathematical form, as in the case of the thermal model.
However the fact that the heat generation can be accurately identified by the procedure of
section 7.4.5 greatly simplifies the calibration of the thermal deflection models. It will be shown
that 1t is sometimes possible to isolate the contribution from one heat source by inducing the
saturation of the other sources. This technique is particularly useful when there are only one or

two contact sources.

7.5 Implementation of the Nonlinear Procedure

7.5.1 The Nonlinear System Model

Before settling on the final design of the nonlinear computer simulation model, a large
number of finite-element models of machine tool structures had been investigated, using

different configurations and different heat source locations, in order to identify the type of
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machine tool that is prone to exhibit a high degree of nonlinearity. Several general principles

emerged from this study, which will now be summarized:
1. The stiffness of the structure can affect the nonlinearity, however there is no definite
correlation that could be established. Stiffening the structure sometimes increases the
nonlinearity of the thermal deflection and sometimes it decreases it, depending on the
configuration of the model which is being tested.
2. Thick walled structures have a greater percent nonlinearity than thin walled structures
when other factors are the same. Changes in the thermal resistance of a contact joint affect
the heat flux in proportion to undisturbed heat flux through the joint. Thick walled
structures distribute the heat flux more efficiently than thin walled structures, so that the
thick walled structure increases the heat flux through the joint, which increases the
nonlinearity of the structure. Using the same reasoning, a structural material with higher
conductivity or a lower convection coefficient would also exhibit a greater percent
nonlinearity.
3. The location of the heat source is the most important factor affecting the nonlinearity of
the thermal deflection. As stated above, the greater the heat flux through the joint the
greater will be the effect of changes in the thermal resistance of the joint. Placing a heat
source close to a joint has a dual effect; in the first place it increases the heat flux through
the joint, and secondly it tends to increase the thermal deformation in the vicinity of the
joint which induces larger changes in the contact pressure. It was found that no significant
nonlinearity could be induced in the finite-element models unless there was a major heat

source located close to the contact joint, within about 100-200 mm.

Making use of these three general rules, the finite-element test model was designed in
chapter 5 with a 25 mm wall thickness and with the major heat source located close to the
contact joint, as shown by its finite-element grid in figure 7.10. The finite-element grid was

developed using the ALGOR finite-element modelling package [84], and the nonlinear solution
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algorithm incorporates the ALGOR finite-element processing package. Particular attention has
been paid to the modelling of the joint contact, so as to simulate realistic joint nonlinearity, as
would be encountered in a real machine tool under actual operating conditions. The finite-
element grid in figure 7.10 indicates the location of the heat source, and the points of measured

deflection.

Figure 7.11 shows a cross-sectional view of the heat source. In order to more realistically
represent the type of heat source that would be encountered in a real machine tool, the heat
source has been placed on the inside of the structure, at the base of the internal bracket shown
in the figure. There is on average 6 centimetres of material between the surface of application
of the heat generation and the outside surface of the machine, which is a realistic geometry for

a bearing.

7.5.2 Estimating the Linearized Thermal Deflection

Since all machine tools have joints, all machine tools exhibit a certain amount of thermal
deflection nonlinearity. It is the amount of nonlinearity that determines whether the model can
be dealt with the linear procedure of chapter 7, or whether nonlinear correction is necessary. The
procedure of chapter 7 is therefore the first step in the process of estimating the thermal
deflection in a nonlinear machine tool system. If the error in the linear model introduced by
nonlinearity is considered acceptable, then no further modelling is necessary. If the nonlinear

error is unacceptable then the nonlinear correction algorithm in figure 7.7 must be implemented.

Figure 7.12 shows the temperature distribution in the finite-element structure with a heat
input of 395 watts, which is now defined as the maximum heat input of dimensionless
magnitude 2.0. This figure was generated by the nonlinear finite-element algorithm, however
it is equivalent to the thermal image of the linear structure which was shown in figure 5.7. The

temperature distribution identifies the location of the major heat source near the interface

183



|

p
‘AI
e

<
N
[ .

3

BEEN
Ol

i

ST

Figure 7.11: Vertical Cross-Section View of Column Showing Heater Arrangement

NN
G

BN
o
NN o
=D

TR

QU0 U —

L
vl T

-
a

VT
L0 et

LM d= L

V]

Ry
!

r

o

[
S

.
=1 (T

QU o e— -

[

ST e b [
M
a
oot

1Mo
—
ol

[ 2 I R

fe.

ISR

fe_
170

Figure 7.12: Steady-State Temperature Distribution in the Finite-Element Test Model
for Heat Input Q=2.0
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between the column and knee of the machine. Figure 7.10 shows the locations of the two
measured points near the heat source which will be used to define the inverse transfer function.
The next step is the choice of the reference input for the linearized solution. In the absence of
any specific information regarding the machines operational duty range, the reference input shall
be defined as a step input with magnitude one half of the maximum, or Q=1.0 in dimensionless
terms. Figure 7.13 shows the temperature difference between the measured nodes following the
application of the reference input at t=0. The figure also shows the calibrated generalized step

response obtained from equation (6.2), with:

K =3372

a =320

o = 0.000212 (7.7)
r = 0.19

ro = 0.12

Figure 7.14 shows the actual and calibrated temperature difference for the first 30 seconds,
magnifying the difference between the two curves. The most obvious characteristic of the actual
temperature difference is that there is no initial delay. Since the generalized model cannot
accommodate a system without an initial delay there is a small deviation between the two
curves. It should be pointed out that the deviation is not due to a flaw in the generalized model,
it is actually a flaw in the finite-element model. The combination of a finite grid and time step
masks the initial delay at locations close to the heat source. It was shown using simple models
that the initial delay at this distance from the source can be reproduced with a finite-element
model, however the model must have such a fine mesh density and small time increment that
it is impractical to use as a test model. The calibrated generalized model is probably a better
representation of the actual system corresponding to the finite-element model, since it forces the
finite-element data to conform to the proper mathematical form. The uncorrected finite-element
temperature response will continue to be used for the actual systern model despite this inherent
flaw. The particular form of the finite-element response will also be used to illustrate some

points about regularization that were raised in chapter 6.
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Figure 7.15 shows the difference between the actual and calibrated temperature difference.
The measurement noise is negligible, as expected for a finite-element model, so the difference
represents the calibration error. The figure also shows the regularization model from equation

(6.2), using regularization parameters:

A = 5.59E-03
B = 8.25E-06 (7.8)
a = 0.290

The regularization model has been calibrated such that the regularized step response is equal to
the actual temperature response. This is only possible because the initial derivative of the
temperature difference is 0.00544, which produces an acceptable doublet singularity of 183.75.
In theory, if the regularized temperature difference is equal to the actual temperature difference,
and there is no temperature measurement noise, then there will be zero estimation error. This

is not the case in practice, as will now be shown.

Figure 7.16 shows the regularized temperature difference, and figure 7.17 shows the proper
part of the transfer function G(r,t) corresponding to figure 7.16. The singularities are:

A
A

-57.121
183.75

0 (7.9)

1

The thermal deflection step responses measured between the points shown in figure 7.10 for
Q=1.0 were calibrated using the model from equation (6.2), resulting in the following empirical

parameters for the x-deflection:

]
It

A = -0.1695 a = 0.00890
B = -1.255 b = 0.00129 (7.10)
D = -0.004785 d =0.0097

I
1

and y-deflection parameters:

A = 3.845 a = 0.0123
B = 2355 b = 0.00142 (7.11)
D = -0.0354 d =0.0338
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The maximum difference between the actual and calibrated curves is less than 0.1 microns.

The linearized thermal deflection estimation algorithm is the same algorithm that was
discussed in chapter 6. Since the regularized and actual temperature step responses are almost
identical, there is no significant estimation delay that is due to the regularization. Thus, the
artificial delay in the solution algorithm is chosen to be zero. Figure 7.18 shows the estimated
heat generation, corresponding to the temperature difference in figure 7.13. As expected, the
estimated heat generation rises quickly to the correct value of 1.0 and there are no detectable
high frequency components in the estimate. What might not have been expected however, is the
transition region from zero to about 30 seconds which is evident in the figure, and a steady-state
error of about 0.7% that is not clearly evident in the figure. Figure 7.19 shows the estimated and
actual thermal deflection, and figure 7.20 shows the estimation error. It should come as a
surprise that the estimation error range is as large as 1.6 microns, given the facts that the
estimation is for the reference input Q=1.0, the regularized and actual step responses are close
to identical, and there is zero measurement noise. The source of the error is numerical
inaccuracy in evaluating the convolution integral and the temperature derivative on-line with
a finite sampling rate. Increasing the sampling rate to above 2 Hz would reduce the estimation
error in figure 7.20, which would approach zero as the sampling rate approaches infinity. A
sampling rate that is higher than the controller cycling frequency could be achieved with a more
expensive data acquisition system capable of accurately multi-sampling during each control
cycle period. However such a system would not improve the accuracy of the estimation in
practice, since the range of the error induced by random noise has been shown to exceed 1.6
microns. Nevertheless, it shows how any effort to reduce the error associated with random noise
must be accompanied by a system of multi-sampling to reduce the error associated with the

finite temperature sampling.
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The error which is caused by a finite temperature sampling rate readily explains the initial
error shown in figure 7.20. It does not adequately explain the steady-state error however, since
the measured temperature and temperature derivative are approaching constant values. There
is another phenomenon at work here, which can be seen by referring back to equation (7.9),
where the magnitude of the impulse singularity was found to be -57.121. As already stated, the
steady-state temperature derivative is zero, thus the approximation to the thermal deflection is
found from equation (5.62) by taking the temperature derivative to be zero and the steady-state

temperature to be constant:

Q@) = AT, f G (rt-1) dt + A, (7.12)
0

where At is the steady-state temperature difference, equal to 4.133 degrees Celsius. Since the
steady-state Q(t) is the constant value 1.0, the bracketed term in equation (7.12) must be equal
t0 0.5/4.133 = 0.1210. It now becomes apparent why the steady-state round-off error is so large
for this particular model. Since A, =-57.121, the steady-state value of the integral must be equal
to +57.242, and the addition of these two is only accurate to three significant figures. Because
the integral must be approximated using a finite number of samples it is prone to inaccuracy,
which becomes accentuated when the difference is taken. The solution is to readjust the
regularization parameters so as to reduce the value of the A, term. As was explained in chapter
7, there are no definite rules for choosing the a and B regularization parameters, however
ensuring that A, is reasonably small is one of the objectives of this process, for the reasons just
shown. Since the estimation error is within the range of the expected error induced by noise for
the data acquisition system discussed in chapter 7, this discussion is academic at this time and

so the regularization parameters may be left as they are.

7.5.3 Evaluating the Linearized Model
Figure 7.21 shows the estimated thermal x-deflection for a step input of magnitude Q=2.0,

along with the actual deflection in the x-direction, calculated with the finite-element model.
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Similarly, figure 7.22 shows the estimated and actual y-deflection corresponding to the same
input. The difference in the estimated and actual deflections indicate a high degree of
nonlinearity in the system. Figure 7.23 shows the estimation error of the linearized system
model. The error range is 10 microns in the y-direction and 1.5 microns in the x-direction,
which represents nonlinearity of 3.4% and 2% respectively. While the percentage nonlinearity
is not high, the resulting error is unacceptably high. Furthermore, since the nonlinear error is a
systematic error it is partially additive with the other error sources, including measurement
noise. The analysis of numerous machine tool configurations that was described earlier indicates
that 3.5% is quite a high percentage nonlinearity, and 5% is probably the extreme outer limit for
any configuration that is realistic for a machine tool structure. Figure 7.23 shows that the 3.5%
nonlinearity is unacceptable for this machine tool, since the objectives of this thesis, stated in

chapter I, cannot be satisfied unless the nonlinear error is reduced considerably.

7.5.4 Estimating the Nonlinear Thermal Deflection

7.5.4.1 Calibrating the Contact Sources

One of the advantages of a finite-element test model for the nonlinear estimation procedure
is that it allows us to look at the system more closely, identifying general characteristics and
processes that may be common to all machine tools that exhibit a high percentage nonlinearity.
Before looking at the specific model under consideration, the essential characteristics of the
structure that are a precondition to high percentage nonlinearity will be identified. The single
most important condition that is common to all machine tool configurations that exhibit
significant nonlinearity is that there is a major heat source located close to a large joint contact.

This condition will be used a basic assumption in the analysis that follows.

Figure 7.24 shows the contact pressure distribution at the contact joint for a zero thermal
load. The static contact pressure is approximately uniform at about -27 psi, which represents the

clamping force that is present in a real machine tool. Figure 7.25 shows the steady-state contact
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Figure 7.24: Pressure Distribution
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pressure distribution for the maximum heat input Q=2.0. The contact pressure of each contact
element is determined by averaging the pressure over the surface area of the element. Figure
7.26 is a three-dimensional surface plot showing the contact pressure at each contact element
as a function of time for a step heat input of magnitude 2.0 applied at t=0. The elements are
numbered 1 through 9, corresponding to the element numbers in figure 7.4 The figure shows
that the elements numbered 1 through 4 have positive values in steady-state and for most of the
time after t=0. The elements numbered 5 through 8 are negative in steady-state and for most of
the time after t=0. The last element is positive in steady-state. Positive contact pressure means
that the surfaces are separating. As described in chapter 5, when the surfaces separate they are
assumed to be contacting over a different, smaller area that allows a negligibly small heat flux.
Hence, the effect of the joint is to cut off the flow of heat through elements 1 to 4, and to
increase the conductivity of elements 5 to 7. This pattern of increasing the conductivity on one
half of the joint and decreasing the conductivity on the other half of the joint is the most typical
situation which is seen in practice. The other, less common situation is where the conductivity
is increased or decreased over the entire contact area. Both of these situations can be
conveniently modelled by lumping all of the contact elements into two fictitious heat sources.
One of these sources shall be used to increase the heat flux through the lower half of the contact,
and the other source will be used to decrease the heat flux through the upper half of the contact.
It will be shown that the two source model gives an adequate representation for the contact

elements.

Figure 7.27 shows the same contact pressure versus time that was shown in figure 7.26, but
this time using line graphs for each contact element. The important point to notice from this
figure is that the contact pressures reach their steady-state values very quickly. All of the
elements with a negative steady-state contact pressure reach 75% of their maximum value
within one minute after the application of the heat input at t=0. It will be seen shortly that the

absolute temperature and the nonlinear temperature deviation in the contact zone have time
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constants that are many minutes long. By comparison, the contact pressure may be adequately
represented as a step input by neglecting the relatively short transition region. This is important
because it was shown in equation (7.4) that the heat generation magnitude of the fictitious
sources is proportional to the contact pressure. Figure 7.27 shows that a reference step input to
the contact sources can be approximately generated by applying a step input to the main source.
The contact pressure response to a step input in the main source shown in figure 7.27 is typical
when the main heat source is located nearby to the contact joint. Since the location of the heat
source nearby to the contact joint is a precondition for a nonlinear system, the conclusion drawn
from figure 7.27 is a general conclusion that is applicable to any machine tool system with

significant joint nonlinearity.

Figure 7.28 shows the assumed locations of the contact heat sources and the positions of
the measured temperatures in the contact zone. Figure 7.29 shows the temperature profiles
measured at these points for a step heat input of Q=1.0. Figure 7.30 shows the same temperature
profiles, this time scaled to show the initial delays. The generalized model was calibrated from
this data, resulting in the calibrated parameters for the T1 and T2 temperature models. The
difference between the actual temperature step responses and the generalized models is
negligible at the calibration input Q=1.0. An incremental direct solution based on equation
(6.34) was implemented, using these calibrated models. Figure 7.31 shows the linearized
estimate for T1 for a step input Q=2.0, calculated with equation (6.34). Figure 7.31 also shows
the actual temperature response at T2 for Q=2.0, determined by the nonlinear finite-element
algorithm. Figure 7.32 shows the actual and linearized temperature response at T2 for the same
input Q=2.0. Figure 7.33 shows the difference between the linearized estimate and the actual
T1 and T2 profiles for the Q=2.0 input, and figure 7.34 shows the difference between the
linearized estimate and the actual T1 and T2 profiles for the Q=0.5 input. The temperature
profiles in figure 7.33 and 7.34 are the temperature deviations produced by the joint nonlinearity

for the Q=2.0 and Q=0.5 step inputs respectively. From the other perspective, they are the
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temperature deviations produced by the contact heat sources. It is these temperature deviations

that are the inputs to the contact heat source estimation algorithm.

The temperature deviations for the Q=2.0 and Q=0.5 step inputs shown in figures 7.33 and
7.34 are the calibration inputs corresponding to <1> and <2> in figure 7.9. Before calibrating
the generalized model, it is necessary to assume the size of the contact sources, and estimate the
distance from the centre of the sources to the measured temperature points T1 and T2, shown
in figure 7.25. The Generalized model is not sensitive to the size radius r, when r>2r,, so r, is
selected somewhat arbitrarily to be r;=0.12. The distance from the source locations to the
measured points is determined by the geometry of the structure and the assumed locations of the
contact sources. Figure 7.35 shows a solid model of the contact area, indicating the locations
of the fictitious heat sources and the measured temperature points. The distances L where 1 is
the source and j is the measured point, were determined to be:

r. =489 r, = 12.47

11
rp, = 621 r, = 10.84

21

(7.13)

These values are important because they help to define the mathematical form of the system
model. With these r and r,, values, the empirical parameters were calibrated using the procedure
shown in figure 7.9. The calibrated parameters for source 1 and source 2 with a tolerance of 3

significant digits are as follows:

a, = 0.025 a, = 0.0361

o, = 0.0841 @, = 0.0799

K, = 0.00874 K, = 373 (7.14)
g2 =10 g2 = 1.0

g% =3292 g% = -0.124
where the subscript indicates the contact source index. These values for K and q were
determined under the assumption that q, and g, are both equal to 1.0 when Q=2.0. The relative
heat magnitudes in equation (7.14) are misleading because they seem to indicate that the heat

generated by source 1 is much larger than source 2, when in fact it is exactly the opposite that
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is the case. Without changing the validity of the model, the parameters can be redefined by
making K=K, instead of fixing q,=1.0. It is reasonable to assume that the dimensionless gain
of each source should be the same since the sources are in similar locations within the structure
and therefore should produce similar effects. Under this new definition the parameters of

equation (7.14) become:

a, = 0.025 a, = 0.0361
o, = 0.0841 «, = 0.0799
K, =373 K, =3.73 7.15)

g2 = 23E-04 ¢ =10
g2 = 00289 ¢2°% - -0.124

It is important to mention this redefinition does not affect the outcome of the model in any way,
it merely makes it easier to interpret the parameters. Figure 7.36 shows the calibrated
temperature profile at T1 and T2 for a heat input of 2.0, along with the actual temperature
deviations that were used to calibrate the model. The estimated temperature at each point is
actually the sum of the temperature contributions from the generalized model of each of the two
contact sources. Figure 7.37 shows the calibrated model and the actual temperature profiles for
the Q=0.5 input. The results show that the two source model fits the actual data very well for
the calibrated inputs. The figures also show that a one source model could not have represented
the system as accurately because the one generalized thermal model could not have produced
the overshoot in the T1 temperature profile that is evident the figures. From the perspective of
the fictitious sources, the overshoot is the result of the superposition of the two linear
temperature profiles from the two contact sources. Figure 7.38 shows the temperature step
responses T11 and T22 corresponding to the q, and g, contact sources respectively. T11 is the
temperature response at node 1 due to an input at q1, and T22 is the temperature response at
node 2 due to an input at q2 These are the temperature step responses that would be produced
if the contact sources could be activated independently. The figure also shows the regularized

step responses for T11 and T22, using the following regularization parameters:
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A, = 0.00203 A, = 0.00369
B, = 734E-04 B, = 1.26E-04 (7.16)
al = 0.0574 az = 0.0268

The transfer functions are determined in the usual way, resulting in time domain transfer

functions with the following singularities for the q, model:

Ay = -1.349 A, = 183.90 (7.17)

and for the q, model:
A, = -0.3492 A, = 281.46 (7.18)
The thermal deflection in the x any y directions is shown in figure 7.39 for the Q=2.0 step
input, and in figure 7.40 for the Q=0.5 step input. There are four models required for calibration,
relating q, and q, to the thermal deflections in x and in y. The calibration of the thermal
deflection models can be simplified considerably by noting from equation (7.15) that the heat
generation of the q; source is negligible for the Q=2.0 input. Hence, the x and y thermal
deflections in figure 7.39 are produced entirely by the g, source, which can be calibrated without
any interference from the q, source. It was found that the fourth order model in equation (6.16)
is not adequate for modelling the thermal deflections in figure 7.39 with sufficient accuracy.

Thus, a sixth order model was used with the following step response:

8(r) =A+B - Ae™ - Be™ + Dte ¥ + Ete™ (7.19)

With the g, models already calibrated, the q, models can be calibrated from the Q=0.5 thermal
deflection data with the contribution from q, identified and removed, using equation (6.16). The

calibrated parameters are for the g, source:
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x-deflection

A = 0.787 a = 0.00971
B = 1.20 b = 0.00441
D = -0.0145 d = 0.00849
(7.20)
y-deflection
A = -0.241 a = 0.00312
B = -6.29 b = 0.00462
D = 0.0357 d = 0.0123
and for the q, source:
x—-deflection
A = -0.737 a = 00120
B = 187 b = 0.00289
D = -0.0135 d = 0.0077
E = 0.0178 e = 00191
(7.21)
y-deflection
A = -0.111 a = 0.0022
B = -7.27 b = 0.00489
D = -0.123 d = 0.0157
E = 0.179 e = 0.0201

The calibrated deflections are shown in figures 7.39 and 7.40 along with the actual thermal

deflections.

7.6 Estimating the Thermal Deflection in Real Time

The block diagram of the real time process was shown in figure 7.7. There are three sets
of temperature measurements: the temperature difference near the main source, and the two
temperatures in the contact zone. These three measurements are used to estimate the heat
generation of the main source Q,, and the two contact sources qi and q2. The total estimated
thermal deflection is the sum of the estimated deflection produced by each of these three
sources. The sampling time increment is chosen to be 2 seconds, which is four times larger than
the sampling time for the linear model in chapter 6. A larger sampling time is required for the
nonlinear algorithm since it includes three inverse transfer functions instead of one, and it must

also estimate the temperature at T1 and T2 to calculate the temperature deviation, as shown in
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figure 7.7. The numerical procedures for implementing the process blocks in figure 7.7, are

identical to those explained in chapter 6.

7.7 Estimating the Thermal Deflection for Noncalibrated Inputs

The objective of the nonlinear thermal deflection estimation method is to accurately
estimate thermal deflection for any real input duty cycle. Three inputs have been chosen to test
the performance of the method. The first test input is a step of magnitude Q=1.5. Since this
input is between the two calibration inputs it tests the ability of the algorithm to interpolate the
calibration inputs. The second input is a step of magnitude Q=3.0, which tests the ability of the
algorithm to extrapolate the calibration inputs. The third input is a step input of magnitude 1.0
in addition to a constant force input applied to the table of the machine tool model. Contact
stress which originates from other sources or mechanical inputs influences the thermal
deflection by inducing nonlinearity into the system. Because the contact source approach is a
general system approach, it should not matter whether the nonlinearity is induced by the
calibration heat source or from some other source or input. Any nonlinearity will induce
temperature effects that are detectable at the measured nodes T1 and T2, and transformed into
an equivalent contact heat flux. The third input will test the ability of the algorithm to
extrapolate the calibration inputs into other sources of nonlinearity. The purpose of these tests
is to evaluate the real time nonlinear estimation algorithm, which corresponds to blocks 3
through 7 in figure 7.7. The actual heat input is applied to block 3 rather than the estimated heat

input, so as to isolate the nonlinear aspect of the algorithm for validation.

Figure 7.41 shows the temperature deviation from the linearized temperature for the Q=1.5
step input at T1 and T2. Figure 7.42 shows the nonlinear thermal deflection which is the
difference between the actual measured deflection and the linearized deflection. This is the
minimum error that would result from a linearized estimation of the thermal deflection, 2.5

microns in the y-direction and 0.5 microns in the x-direction. This is the error that is due entirely
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to the nonlinearity of the problem, without any numerical or noise induced error. Figure 7.42
also shows the estimated thermal deflection, using the nonlinear algorithm. The two curves are
so close that they are virtually identical, which demonstrates how effectively the nonlinear
algorithm interpolates the calibration data to estimate uncalibrated inputs. Figure 7.43 shows
the difference between the estimated and actual nonlinear deflection. The nonlinear error has
been reduced to within 0.06 microns in the x and y directions, which is completely negligible,

and the nonlinear error for this input is essentially zero.

Figure 7.44 shows the temperature deviation that results from the Q=3.0 step input. The
maximum temperature increase in the structure for this input is about 79 degrees Celsius, which
is not unreasonable, as can be seen by the temperature distribution in the real milling machine
in figure 5.1. Machine tools are sometimes operated at extreme conditions that produce
unusually high thermal loads. Since the model will normally be calibrated in the usual operating
range of the machine, the purpose of this test input is to investigate the performance of the
method under extreme conditions. Figure 7.45 shows the nonlinear thermal deflection which
results from this input. It is clear from the maximum y-deflection of 23 microns that a linear
model is totally unsatisfactory for this machine tool model under these input conditions. The
estimated thermal deflection is also shown in figure 7.45, and again the agreement between the
curves is excellent. Notice in particular that the shape of the deflection curves is quite a bit
different from the Q=1.5 and Q=2.0 cases, indicating that this is not at all a linear system. The
difference between the curves is shown in figure 7.46, in which the maximum deflection has
been reduced to within 0.5 microns in the y-direction and 0.1 microns in the x-direction, a
reduction to less than 2.5% of the original nonlinear deflection. This test case demonstrates that
the estimation algorithm can extrapolate beyond the calibration inputs as well as interpolate

between them.
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Figure 7.47 shows the finite-element test model with a constant force of 1000 pounds
applied to the end of the table and a step heat input of Q=1.0. The force is equally distributed
over the edge of the table, representing, for example, a large work piece mounted at a 45 degree
angle relative to the table. Figure 7.48 shows the steady-state contact pressure distribution that
results from the force and heat combination. A comparison of figure 7.48 with figure 7.25 shows
that large external forces significantly affect the contact pressure distribution. Figure 7.49 shows
the temperature deviation at T1 and T2, and Figure 7.50 shows the nonlinear thermal deflection.
In the absence of the external force, the nonlinear deflection would have been zero since Q=1.0
is the reference input. However, figure 7.50 shows that the 1000 pound force input induced a
nonlinear thermal deflection of more than 3.5 microns. For comparison, the static deflection
produced by mechanical deformation from this force is 0.538 microns in the x-direction and
4.84 microns in the y-direction. Thus, the static deflections and the thermoelastic nonlinearity
induced into the thermal deflection are on the same order of magnitude. Since the static
deflection of the table occurs instantaneously on the application of the force, it does not cause
any machining error. The nonlinear thermal deflection is more troubling because the effect is
time and load variant, which means that it changes from the time that the piece is loaded and
reference points are taken. Figure 7.50 shows the estimated nonlinear deflection along with the
actual nonlinear deflection. The curves are so close as to be nearly indistinguishable. Figure 7.51
shows the estimation error, which rises to a maximum of 0.07 microns in the y-direction and
0.02 microns in the x-direction. These results show that the nonlinear model is capable of
accurately identifying and estimating the effects of other sources for which no calibration data
was available. This result shows the power of combining empirical data with a mathematically
correct model of the structure. In the next chapter, the effect of measurement noise on the

accuracy and stability of the thermal deflection estimation will be considered
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CHAPTER 8: THE THERMAL DEFLECTION CONTROL SYSTEM
8.1 Introduction

The real-time thermal deflection control system shown described in chapter 3 is comprised
of two processes: estimation and compensation. The estimation procedure was demonstrated
in chapter 6 for the linear case and in chapter 7 for the non-linear case. What remains to be
developed is the position control actuator to compensate for the estimated thermal deflection.
The most effective actuation would be achieved by a motor control system, such as would be
available for NC type machines. Most commercial NC controllers can be programmed to
respond to external signals from the thermal deflection controller. Because of the relatively large
time constant of thermally induced error, the dynamics of the motor control are negligible, and
so the thermal deflection error is dominated by the estimation error. Many production machines
are not NC, and even among NC machines the numerical control is often not implemented on
all three axes. For these machines with less than three axis numerical control and where thermal
deflection error is a factor on a non-NC axis, some other form of actuation is required, possibly

in addition to motor control on the NC axis or axes.

Several non-NC actuation methods have been tested in the literature as discussed in chapter
3. The ideal actuator would achieve acceptable performance at minimal expense and
inconvenience, without being bulky or introducing additional compliance to the structure. The
most promising method of actuation in terms of cost and convenience is heating and cooling
elements placed strategically on the structure. The first disadvantage of heat control elements
is that the time constant of the actuator is comparable to the time constant of the track position,
which means that the dynamics of the actuators will not be negligible in the control system
design. The second disadvantage of heat control elements is that there will inevitably be cross-
coupling between the actuators and the adjacent controlled axes. These problems produce a

significant decrease in the bandwidth of the closed loop system and a propensity for
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overshooting with faster control, which can produce significant control error unless handled

carefully.

The best heat control compensator in terms of performance would have capacity for heating
and cooling within the range required by the control system, so that the actuator would form a
linear system, capable of passing both positive and negative inputs. Although thermoelectric
cooling elements are commercially available, the cost and complexity of a cooling actuator is
considerably higher than for an actuator which generates positive heating only. A system
employing only positive heating would be far more economical and would not require any
external heat sink. It would also be inherently non-linear and create additional challenges for

the control system designer.

Two compensation approaches will be implemented in this chapter, one based on NC
position control, and the other based on positive heating elements alone. Since the NC position
control problem is a simple one, the results will be simulation only, implemented on the non-
linear machine tool model that was presented in chapter 7. The positive heater compensation
will be implemented on the physical model that was presented in chapter 6. The heating
elements will be resistance type electric heaters because of their low cost and ease of
implementation. The actuation mechanism will be heater control on all three axes, with the

control on one axis being zero because of model symmetry.

8.2 Motor Controlled Actuation for NC Machines

Figure 8.1 is a schematic block diagram showing the proposed thermal deflection control
system to be implemented on an NC machine tool with three-axis position control. The block
labelled G(s) represents the inverse transfer function that was developed and implemented in
chapters S and 7. The block H(s) represents the thermal deflection transfer function that was

developed and implemented in chapters 6 and 7. The estimated thermal deflection 6° is negated,
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filtered, and fed into the actuator control system of the NC machine tool. The filter removes
high frequency noise that might cause long term damage to the NC drive motors and cause a
deterioration in the surface finish of the work. The design of this filter is somewhat arbitrary
because the relationship between position control noise and surface finish depends on the feed

rate, the type of operation, and the geometry of the cutting tool.

Figure 8.1 shows that there is no direct feedback of the actual position 8%, only an indirect
feedback through the measured temperature difference AT, as explained in chapter 3. Since the
forward control loop does not introduce any thermal input to the system the measured
temperature is unaffected by the feedback, and so the system can be redrawn as an open loop
system, as shown in figure 8.2. Furthermore, the dynamics of the NC actuator control system
are negligible compared to the dynamics of the estimated thermal deflection §°. Thus, for all
practical purposes, the control error is equal to the estimation error after filtering, and that is

how it will be simulated here.

8.3 The Simulated Test Case for NC Actuator Control Applied to a Nonlinear Machine

Structure
Figure 8.3 shows the heat disturbance test input, which was applied to the non-linear

machine tool model that is shown in figures 7.10 and 7.11. The input is a triangular pulse with
a maximum amplitude of 2.0 and a total duration of 10 minutes. Figure 8.4 shows the resulting
non-linear temperature deviation profiles of the measured nodes, determined by the finite-
element algorithm developed in chapter 7. This temperature deviation is caused by the system
nonlinearity, as explained in chapter 7. Figure 8.5 shows the nonlinear thermal deflection for
the same input, calculated by processing the temperature distribution with the thermal deflection
finite-element model. The curves in figure 8.5 represent the deflection error that results from
system nonlinearity, explained in chapter 7, and the figure also shows the estimated nonlinear
deflection, determined by the algorithm that was developed in chapter 7. The performance of

the nonlinear estimation algorithm is evaluated by the estimation error, shown in figure 8.6. As

222



25

151

Heat Generation (dimensionless)

051

0 2 4 6 8 10 12 14 16

Time (minutes)

Figure 8.3: Triangular Heat Generation Test Function

0.25

0.2.

0.15

f—T1,

0.05 |

Temperature (degrees C)

-0.05

Time (minutes)

Figure 8.4: Temperature Deviation for Thermal Triangle Input

223



expected from the verification results of chapter 8, the estimation error is significantly smaller

than the actual nonlinear deflection shown in figure 8.5.

The temperature profiles in figure 8.4 are unrealistic because they do not contain any
measurement error. In order to better simulate the operation of the control system as it would
be employed on an actual machine tool, a simulated measurement error should be superimposed
onto the temperature profiles. Measurement noise will be generated from actual temperature
measurements taken from the physical model shown in figure 6.1, using a high pass filter to
remove the DC bias. Figure 6.5 shows the actual temperature measurement error using
thermistor probes on the surface of the real structure, which is filtered and reproduced here as
figure 8.7. Figure 8.8 shows the temperature profiles from figure 8.4 with the measurement
noise superimposed. Figure 8.9 shows the estimated thermal deflection, determined by
processing the temperature profiles with the algorithm that was developed in chapter 7. Figure
8.10 shows that the nonlinear estimation error is contained within the range of 0.4 microns,
while the noiseless estimate in figure 8.6 is within the range i—O.lS microns. This may be
somewhat surprising given the fact that the inputs to the estimation algorithm, T1 and T2, do
not exceed 0.24 degrees C and 0.07 degrees C respectively, and the range of the temperature
noise is about 0.12 degrees C. The reason why the measurement noise is not transmitted to the
output is because the thermal deflection system acts as a low pass filter, blocking transient

fluctuations in the measured temperature and transmitting only the long term trend.

The position compensation is realized on an NC machine as a sequence of discrete steps,
where the minimum resolution is defined by the characteristics of the stepper motor controller.
For the purpose of this simulation it will be assumed that the minimum resolution is 0.5
microns. It is apparent from figure 8.10 that the deflection estimate is well filtered so that no
further linear filtering is necessary. However it is prudent to implement a hysteresis to prevent

rapid switching about a set point. This means for example that when the error exceeds +0.5
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microns the NC controller will move -0.5 microns, but will not reposition again until the error
is #0.5 microns from the new set point. Figure 8.11 shows the thermal deflection error after

compensation by the NC controller, which is always within a range of +0.6 pm to -0.5 pm.

8.4 Actuation Using Resistance Electric Heaters on a Linear Physical Model

The advantage of heater compensation is that it can be used to control non-NC machine
tool axes without any complicated or expensive additional apparatus. The problems derive from
the short bandwidth of the compensation transfer functions and the cross-coupling between
controlled axes. As a consequence, not all machine tools can be compensated using heating

elements, and in others the compensation is not very effective, even assuming ideal conditions.

As an example of heater control, consider the columnar structure shown in figure 8.12a,
which might represent an industrial turning machine. The position of point x can be shifted to
the right by the application of heat to Q1, or to the left by the application of heat to Q2. The
application of equal heating to Q1 and Q2 would produce a positive deflection along the axis
of the column. However, no combination of heating will produce a significant negative
deflection along the axis of the column for these heaters or for any other heater positions.
Hence, positive heating actuation could not be used to control the thermal deflection along the
columnar axis of this structure. Now consider figure 8.12b, which has the configuration of an
overhead milling machine or a press drilling machine. The application of heat to Q1 would
deflect point b along the negative y-axis and the application of heat to Q2 would deflect point
b along the positive y-axis. Both heaters will also produce deflection along the positive x-axis.
The effect of Q3 and Q4 is similar to Q1 and Q2, except that the deflection primarily affects
point a instead of point b. If the controlled variable is the relative displacement of point a to
point b, then both positive and negative displacements are possible along the x and y axes.

However the fact that the heaters produce deflection along more than one axis implies a coupled
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system, and as a consequence for some geometries it may not be possible to control more than

one axis at the same time.

Figure 8.13 shows a schematic example of a two-axis system with coupling. Assume for
the moment that it is only the x-axis that is being controiled by heater Q1, and assume that for
any desired deflection §, there is a corresponding steady-state value of Q1. Under these
circumstances, the proper value of Q1 will achieve the desired J,, but will also produce a non-
zero 6°, in the process. Now, if the y-axis must also be kept under control then the disturbance
&%, that was produced by Q1 must be compensated by the proper heat applied to Q2, which will
in turn produce a disturbance deflection 6° that must be compensated by Q1. This is an intuitive
process only, but it illustrates how the coupling of the systems affects the heating values. If
&¢,<d, then there exists a combination of Q1 and Q2 which will produce the desired control on
both axes, however in general the steady-state Q1 and Q2 values will be considerably larger than
they would be for the case without coupling between the axes. If 6°. >0, then there is no finite

combination of QI and Q2 that will produce the desired position.

The above example shows that multi-axis heater compensation is geometry dependant, and
is not suitable for all machine tool configurations. Furthermore, the transfer functions of the
thermal deflection response have a very short bandwidth that results in slow tracking. The
problems associated with heater actuation will be explained in greater detail in subsequent
sections of this chapter, however it is worth stating at this point that heater actuation by itself
is not recommended as a practical solution for the general case of multi-axis control. Heater
actuation is best suited to supplement some other form of actuation, such as using NC position
control on one or two axes, and then using heater compensation on the remaining axis or axes

that do not have NC control.
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In order to fully explore the potential and the limitations of heater actuation, the test cases
that follow will employ two-axis position control using heating elements only. It must be
pointed out that this is the most extreme case, and not necessarily the most suitable application

for heat actuation elements.

8.5 Compensation Using Full-State Feedback on a Linear Physical Model
8.5.1 Control System Design Using the State Feedback Approach
Figure 8.14 shows a block diagram of the position control system vusing electric heater
compensation and a full state feedback model. In figure 8.14, the estimated disturbance thermal
deflection 9, is estimated in the usual way from the inverse transfer function G(s) and the direct
thermal deflection transfer function H(s). Figure 8.15 shows the state model portion of the
control system, where 9§, is the disturbance deflection to be tracked by the control heaters and
d. is the estimated controlled deflection. Figure 8.15 is a graphical representation of the state
feedback system [105]:
X = Ax + Bu
3, = Cx 8.1
where:
u=KN/3,-x)+NJ, (8.2)
The matrices A and B and C are defined by the thermal deflection transfer functions of the
control heaters. The matrices N, and N, are defined by the equation [105]:
-1

N

X

N

u

A-I B
c 0

0
I

(8.3)

The selection of feedback gain matrix K is used to manipulate the dynamics of the closed loop
system. The advantage of the state-space formulation over the classical methods of cascade and
feedback compensation is that it allows the poles of the closed loop system to be placed
arbitrarily. This gives the designer more control over the dynamics of the closed loop system,

however there are still significant limitations in the performance that can be achieved for a given
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system. One important limitation for the designer is that state feedback cannot be used to
influence the zeros of the closed loop system. From a physical standpoint this means that in
some systems it is not possible to bring all of the states to zero in an arbitrarily short period of
time without introducing an overshoot in the step response. In general the overshoot to a step
input increases toward infinity as the largest time constant of the closed system approaches zero.
Another important limitation is the saturation magnitude of the control actuator, which imposes

practical limits on the speed of the response.

An important tool to aid in selecting closed loop pole locations is the theory of linear
quadratic regulator (LQR) steady-state optimal control. The basis of optimal control is the

minimization of a cost function:

T = fxTle + u'Q,udt (8.4)
0
for a continuous system. In the case of the discrete system:
Xy = Pxyy * T
(8.5)
Oy = Hxy
the discrete cost function is:
—~ [T T
T = g {x(k) Q) Xyy * Uy Q?.u(k)} (8.6)

The minimization of equation (8.6) is a constrained-minima problem which can be solved by
the method of Lagrange multipliers [105]. The solution is obtained by the method of eigenvector
decomposition of the system matrix, called the Hamiltonian matrix. The numerical solution for
a given system can be obtained using control system software such as Matlab, CC, Matrix,, or
CTRL-C. In this thesis the Matlab software package will be used to obtain numerical solutions
to the LQR problem.
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The use of optimization methods in the development of the LQR design method is
somewhat misleading since there is no single optimal solution. The ‘optimal’ solution that is
determined by the LQR procedure depends on the weight matrices Q, and Q, The matrix Q, is
the matrix of weights associated with each of the states of the system, and Q, is the matrix of
weights associated with each of the inputs. The objective of the LQR procedure is to minimize
the activity of the states when the system is subject to an initial condition, while at the same
time minimizing the use of control effort. The relative weight that is given to the activity of each
of the states and each control actuator is determined by the entries of the weight matrices. If Q,
and Q, are diagonal matrices with only positive diagonal entries, then the cost function reduces
to a sum of the square of each state and each control input, with the weight of each quadratic
term given by the corresponding diagonal entry. It is this form that shall be used in the

procedure that follows.

When selecting the weights for each state and control input it is important to consider the
relative contribution of each state and control input. For example, suppose that there are two
control inputs u,; and u,, and that the maximum allowable value of u, is 100 Newtons and the
maximum allowable value of u, is 10 Nm. If equal weight is given to u, and u, then the optimal
solution will tend to keep both inputs within the same range, which would either be too large
for u, or else too narrow a range for u,. The same is true for the states of the system, since some
states might normally fluctuate in a large range while others are naturally contained within a
narrow operating range. Bryson and Ho [106] suggest a procedure which ensures that the states
enter the cost via the important outputs. According to this procedure the weight matrices are
defined by:

0, =H'QH 8.7)

and the diagonal entries of the Q, and Q, matrices are:
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1, = — 02, = —
my n,

01, = 1 02, = 1

22 > 22 2 (8.8)

m, n,

= 1

Ql;; = —
ms

where m; is the maximum value for state x; for a step input, and n, is the maximum allowable
value for input j. By following this procedure the weight that is allocated to a given state is the
same as the weight that is allocated by the system output matrix H, and the weights are scaled
according to the maximum amplitude of the state or input. In order to give a certain amount of
flexibility in the design, two variable parameters are introduced into the procedure. The first
variable is a constant p which defines the ratio between the weight allocated to the state error
and the weight allocated to the use of control effort. This variable is introduced into equation

(8.6), modifying it as follows:

T T
T - {px(k) Q% *+ U Qz“(k)} (8.9)

k=0
The second variable is the constant & which is used to modify equation (8.5) as follows:

X

ey = @Pxyy + aluy,

(8.10)
0.y = Hxyy

The effect of a is to apply ‘pincers’ around the discrete poles of the closed loop system, which
has the effect of reducing the settling time at the expense of control effort [105]. It is by
manipulating the variables o and p that the ‘optimal’ solution may be tailored to best satisfy the
design requirements. For the designs and simulations that follow, the continuous system [A,],
[B.], [C,], shall be transformed into its discrete equivalent [®], [T'], [H], using a zerc order
sampling period of 0.7 seconds. Since the zero order sampling period is very much smaller than
the time constants of the system, the practical difference between the continuous system and the

discrete system is almost negligible.
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8.5.2 Implementation of the LQR Optimal Solution

Figure 8.16 is a schematic diagram showing the proposed locations for the controlled heat
sources. The deflection of the structure is measured as the difference between points a and b,
shown in the figure, as explained in chapter 6. Heat source q1 is comprised of one 3x8 inch pad
with a 330W heat capacity, and g2 is comprised of two symmetric 3x5 inch pads with a total
of 165W heat capacity. The g2 heat pads are symmetric about the plane of the paper in figure
8.16. The heat source q1 primarily produces negative deflection along the y-axis by bending the
edge of the overarm downwards, and q2 primarily produces negative deflection along the x-axis
by causing the table to elongate in the x-direction. Figure 8.17 shows the calibrated deflection
along the x-axis (dx) and the deflection along the y-axis (dy) for a step input of 330W to q1,
which shall be non-dimensionalized to q1=0.72. Figure 8.18 shows the calibrated deflection
along the X and Y axes for a step input of 165W to q2, which shall be non-dimensionalized to
q2=0.72. The calibration was done using the fourth order linear model in equation (6.16). The
transfer functions shall be designated by H,', H,%, H,', and H,?, where the superscript indicates
either q1 or g2 and the subscript indicates the X or Y axis. The continuous state-space system
shall be designated as [A], [B,], and [C,]. The figures show that q1 primarily causes negative
deflection in X and q2 primarily causes deflection in Y, as expected. The figures also show the
coupling between the axes since q1 produces a deflection in the y-direction and g2 produces a
deflection in the x-direction. Since the coupled deflections are both negative and the disturbance
step responses in X and Y are positive (see chapter 7) one might anticipate that this cross-
coupling could improve the performance of the control system. The reasoning here is that when
ql is used to compensate for the positive disturbance in Y, the secondary deflection in X will

tend to reduce the disturbance deflection in the x-direction, which is positive also.

By looking at various combinations of « and p, the best possible compromise was found
to be «=0.7 and p=10"". Figure 8.19 shows the simulated closed loop x-axis step response, and

figure 8.20 shows the simulated closed loop y-axis step response of the control system that is
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obtained from these values. The figures show how the feedback controller decouples the system
by bringing the secondary deflections to zero in the steady-state. The obvious problem with
these step responses is the time constant, which is estimated to be 30 minutes for the primary
deflection from q1 and 17 minutes for the primary deflection from q2. The problem is that the
time constants cannot be reduced any further without introducing an unacceptable overshoot in
the step response. Figures 8.21 and 8.22 show the simulated step responses for q1 and g2
respectively for the feedback system designed with «=0.7 and p=10"°. Figure 8.22 shows that
the overshoot has increased from 20% to 130% while only reducing the time constant of the q1
response slightly. It has been established through trial and error that the system shown in figures
8.19 and 8.20 are about the best compromise between speed of response and overshoot that is
possible for this type of controller. Figure 8.23 shows the response of the control system for a
more realistic input, which is the simulated disturbance thermal deflection unit step response,
shown in figures 6.21 and 6.22. It is clear from figure 8.23 that there is a considerable
discrepancy between the desired control output and the actual control output. Figure 8.24 shows
the difference between these two curves, which is the simulated error of the controlled system.
The control system has reduced the thermal deflection error from a range of 0-250 microns to
a range of -110 to 55 microns. It is clear from these simulated results that this type of control
system is inadequate to achieve sufficient accuracy to meet the objectives of this thesis, and so

a different type of control system will have to be explored.

The problem with the LQR approach that was just described is that the objective is to bring
all of the states of the system to zero within as short a time as possible. Figure 8.25 shows the
pole-zero map of the uncontrolled system transformed to continuous time, and figure 8.26
shows the pole zero map of the controlled system, also transformed to continuous time and
designed with #=0.7 and p=10"°. The figures show that the effect of the state feedback control
is to move the dominant poles of the system away from the imaginary axis, reducing the settling

time of the system. The figures also show that the poles are generally moving away from the

240



08 |

06 }

04 |

02 1

Deflection (microns)

0

-0.2

dx |
—dy!

1000 2000 3000 4000 5000 6000

7000

Figure 8.19:

Deflection (microns)

Figure

Time (seconds)

Simulated q1 Unit Step Response of LQR system, Parameter Case 1

1.4

1.2 ]

08|

0.6 .

04}

021}

]

1000 20b0 3000 4000 5000 6000 7000

8.20:

Time (seconds)

Simulated q2 Unit Step Response of LQR System,
Parameter Case 1

241

dx
g_dyi




0.8 {
06 }
04 |

02}

T \OQQ_ZQQ.Q_—JGGQ""_‘WOO 5000 6000 7000

Time (seconds)

Deflection (microns)

o

-0.2

—— . dy
"

Figure 8.21: Simulated q1 Unit Step Response of LQR system, Parameter Case 2

25
21
@ 15|
e
2
£
c
2
g
= 0.5]
D
Q
] 1000 2000 3000 4000 5000 6000 7000
-0.5

Time (seconds)

dx

Figure 8.22: Simulated g2 Unit Step Response of LQR System, Parameter Case 2

242



Deflection (microns)

-250 |

-100 |

-150 |

-200 1

-300

1000

2000

3000 4000

5000

6000

70

Figure 8.23:

60

Time (seconds)

i desired dx |
i desired dy !
outputdx |

outputdy :
!

Simulated LQR Control System Response to Disturbance Unit Step Input
Compared to Simulated Disturbance Step Input

40 |

20 |

Deflection (microns)

-100 |

-120

00

3000 4000

o]

—

Figure 8.24:

Time (seconds)

Simulated LQR Control System Tracking Error for Disturbance Unit Step

Input

243



0001

0.0008 |
- 0.0006 |
0.0004 1
-
= 00002 |
. + Poles |
. Ne ; o—om on——oem—eo—u-| e !
-0.p08 -0.005 «0.004 -0.003 -0.002 -0.001 ¢ [= <508
= -0.0002 [
-
-0.0004 1
- -0.0006 1
-0.0008 |
N0
Figure 8.25: Pole-Zero Plot of Open Loop System
0001
0.0008 1}
= 0.0006 }
0.0004 |
- L ] L ]
- 000021 7gs :
. me-e e—om o —on—oedt Y Open Loop Poles :
'0. )06 '0005 '0.004 '0.003 '0.002 '0.091-0'0002 SD' : ° C‘osed Loop mles
= L J L J
-0.0004 |
- -0.0006 |
-0.0008 1
0001

Figure 8.26: Pole-Zero Plot of Open Loop and Closed Loop Systems

244



zeros, which has the effect of increasing the amplitude response of each mode, and that is
responsible for the overshoot shown in figure 8.22. The weakness of this approach is that it
ignores the transmission zeros, which have a strong influence on the closed loop behaviour of

the system.

8.6 Compensation Using a Feedforward Controller
8.6.1 The Robustness of the Control System

An alternative approach to feedback compensation is the use of a feedforward compensator.
In contrast with the LQR approach just discussed, the objective of a feedforward controller is
not to bring all of the states of the system to zero when subjected to an initial condition, rather
the objective is to mask the activity of the states by preventing it from reaching the output. This
is done by generating an actuation input that just balances the activity of the internal states at
the output of the system. Unlike the LQR approach, the control effort produced by a feedforward
controller does not necessarily become constant when the output of the system has reached the
desired condition. That is, even after the output of the system apparently shows no activity, the
control input may continue to show considerable activity as it acts to balance the continued

activity of the internal states of the system [105].

The advantage of a feedforward controller is that it is possible to achieve perfect control
of the output with the minimum control effort. The major disadvantage of a feedforward
controller is that the controlled system is not as robust as it would be with a feedback controller,
where robustness is defined as the ability of the controlled system to reject parameter variations
of the open-loop system. From a mathematical perspective a feedforward compensator contains
a zero corresponding each pole of the system and a pole corresponding to each zero of the
system. If the poles and zeros of the system can be located with exact certainty then there will
be perfect pole-zero cancellation and the dynamics of the system will be completely masked

from the perspective of the output. However, if there is any mathematical discrepancy between
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the actual system and the compensator then the masking will not be perfect and the dynamics
of the system will appear at the output, although reduced by the compensator. Furthermore,
because a feedforward compensator does not monitor the actual output it cannot compensate for

external disturbances that could not be anticipated at the time of the design.

The reason why feedback control is normally preferred to feedforward control is because
of the robustness of the closed-loop system, as explained above, where the robustness of the
feedback system derives from the measurement of the system output [105]. It will now be
shown that for the thermal deflection system shown in figure 8.14, feedback control does not
offer any advantage over feedforward control, because the actual system output is not available
for measurement. The system equations for the thermal control system with an estimator are as
follows:

X = Ax + Bu
6, = Cx (8.11)
u=KN,-x) + N5, + L(6,-9)
where 0, is the actual thermal deflection measured on the structure. It can be shown that
equations (8.11) can be re-written in transfer function form as follows:
8, = [C(sT+BK+BLC-A)" B(KN,+N,)|8, + [C(sI+BK+BLC-4)"BL]§, (8.12)

and the control effort is given by:

u = [KN,+N,-(K+LC)((sI + BK+BLC-A)" B(KN,+N,)|8, + [L-(K+LO)(sI +BK+BLC-A)"' BL]s,  (8.13)

This transfer function is shown in block diagram form in figure 8.27, which is the conventional
transfer function representation of a state feedback system with output measurement and state
estimation. The state equations for the electric heat actuators, given by equations (8.1) and (8.2)
differ from equations (8.11) in that there is no output measurement used for state estimation.
This is explained in chapter 3, where the impracticality of real time measurement was discussed.

The transfer function representation of equations (8.1) and (8.2) is as follows:
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8, = [C(sT+BK-A)"B(KN,+N,)]3, (8.14)
and the control effort is given by:

w = [I-K(sI+BK-A)"B] (KN_+N,)$, (8.15)
which is shown in block diagram form in figure 8.28. Figure 8.28 shows that the system
equations given by equations (8.1) and (8.2) are feedforward in nature, even though the control
system is formulated as having state feedback. The performance of the closed loop system is
determined by the control matrix K. In a properly designed system the transfer function U(s)
contains zeros which tend to cancel the poles of the open loop system, replacing the open loop
dynamics with new dynamics chosen by the designer. This can be understood more easily by
referring to the simple feedback system shown in figure 8.29, where the control effort is given
by:

K D(s)

" B+ KNG ®.19

If this control signal is used to control the actual system, as shown in figure 8.29, the effect is
the cancellation of the system poles D, (s) with the estimated poles D(s), just as with a
feedforward compensator. Considering the formulation of equation (8.14), even when the
control system design is formulated as a state feedback system, the operation of the real time
controller is ultimately reduced to pole-zero cancellation, and the effectiveness of the control
is limited by the accuracy of the calibrated system model. Thus, the advantages of feedback
control cannot be realized for this system, while the limitations of this type of design continue

to affect the performance of the control system.

8.6.2 Designing the Feedforward Controller

Since the ultimate objective of a feedforward controller is to reshape the output system
response to a given input, a better approach is implement pole-zero cancelation directly, without
going through the feedback formulation. We begin by writing the control deflection in transfer

function form as a sum of the deflection from each of two sources:
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5, = Hlq + Hlg,
1 . (8.17)
6y =H,q + Hjgq,

The X and Y deflections are equated to the disturbance deflection which is the desired

deflection:

&) [H](s) HZ(s)

(8.18)

q,(s)
8(s)|  |H,)(s) H ()[40

The next step is to solve for the matrix [q], which is the control effort that will exactly achieve

the desired deflections:

H' ) B2 [896)
_ 8.19)

[ql (s)
H!(s) HX()| |80

q,(s)

The desired deflections are related to the disturbance heat generation Q(s) as follows:

H!(s) HX(s) B H(s)
- 0, (8.20)

[ql (s)
H)(s) H}®)| [H ()

q,(s)

The system matrix is inverted to yield:

H}(s) H(s) ~H2(s) H(s)
H(HL(s) - H)()HXs)  HYS)H(s) - Hy(s)H(s)

8.21)
~H (s) H(s) H, (s) H,'(s)

|H;(5)HJ(s) - Hy©)HXs)  H}()H[(s) - Hy(s)H[(5))
This matrix was transformed into a 16x16 state-space system matrix by means of the MATLAB

control toolbox, using the calibrated transfer functions H,', H', H?, and Hyz, based on equation
(6.16) shown in figures 8.17 and 8.18. The disturbance transfer functions H,! and Hyd were
calibrated in chapter 7, and given as equations (6.18) and (6.19). The continuous system shall

be designated by [A,], [Bgl, [Cql, and the corresponding discrete system by [®], [T], [Hel,
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with zero order sampling period T=0.7 seconds. The input to this system is the disturbance heat
generation [Q,] and the output is the control heat generation [q]. When the control heat
generation [q] is applied as input to the actuation system [A.], [B,], [C.], the dynamics of the
system should be cancelled and the output match the response to the deflection transfer

functions H,* and H*.

The performance of the feedforward controller is evaluated using a step input in disturbance
heat generation Q,=0.5. Figure 8.30 shows the simulated control effort response of equation
(8.20), and figure 8.31 shows the simulated response of the system to this control effort. Figure
8.31 also shows the simulated step response of the disturbance deflection system. The difference
between the curves in figure 8.31 is zero within the numerical resolution of the simulation
software, which indicates perfect pole-zero cancellation, as expected for a simulation. However,
figure 8.30 shows that the simulated heat generation of q1 is negative for approximately the first
100 seconds after the application of the step input, which is not achievable on the actual system
since only positive heat generations possible. The explanation for the positive control heating
is the large negative x-deflection coupling of the q1 heater, seen in figure 8.17. It is this negative

coupled deflection that requires a positive output from q2 to compensate.

The performance of the system can be improved by adding an additional 25W heating pad
to ql, as shown in figure 8.32. This heater receives power from the same power source as the
larger q1 heating pad and so the two heaters are dependant, requiring no additional control
hardware. The purpose of the smaller heating pad at the end of the overarm is to reduce the
negative x-deflection coupling, as shown by the calibrated step responses of the modified system
in figures 8.33 and 8.34. A comparison between figures 8.16 and 8.33 shows how the additional
heating pad reduces the coupling almost to zero in the first 5 minutes following the step input.
The simulated control effort for a step input to Q,=0.5 is shown in figure 8.35 and the simulated

system response to this input is shown in figure 8.36, along with the simulated step response of
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the disturbance system. As with the unmodified system, the difference between the two curves
in figure 8.36 is zero, indicating perfect compensation by the feedforward controller. Figure 8.35
shows that the control effort which achieves this compensation is always positive, and is

therefore physically realizable with positive heating elements.

A comparison between the results of the optimal LQR controller in section 8.3 with the
feedforward controller in section 8.4 is striking. While the simulated tracking error of the LQR
controller for a unit step disturbance input is contained within 60 to -110 microns (0 to -300
microns uncompensated), the simulated tracking error of the feedforward controller is zero
within the numerical resolution of the simulation software for the same input. Furthermore, the
feedforward control heating for this input is kept well within the operating range of the control
heaters, so it is physically realizable by the heat source actuators. It must be remembered
however, that these results were produced by simulation. The assumptions made by the
simulation are as follows: 1) the calibrated control system model exactly matches the physical
system, 2) the calibrated disturbance model exactly matches the physical system, 3) the input
is a perfect unit step in heat generation at t=0 with no noise or fluctuation, 4) the control heating
[q] that is requested by the controller is achieved perfectly by the heat source actuators. The first
two of these assumptions are reasonable because of the accuracy of the modelling procedure,
demonstrated in chapter 6. It is the fourth assumption that is not easily achievable in practice,

particularly when there is high frequency input fluctuation.

Heat actuation error arises from three sources, which are transition error, saturation error,
and steady-state error. Transition error occurs when the desired output changes abruptly, causing
a deviation between the desired power output and the actual output. Saturation error is produced
when the desired heating power is beyond the range of the heat actuator. In the present case this
would correspond to a control effort outside of the range 0~1 for either q1 or g2 in non-

dimensional units. Steady-state error is the constant error which is produced by a steady input,
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and tends to vary with the magnitude of the input. The trouble with heat actuation error is that
it is cumulative, and since there is no on-line deflection measurement to detect this error, a
considerable error may accumulate even when the actual deviations are small. A practical
control system which takes account of heat actuation error shall be developed in the next

section.

8.7 The Features of the Real Time Thermal Deflection Control System
8.7.1 The Heat Actuation Control System

A Schematic block diagram of the feedforward control system is shown in figure 8.37,
where the blocks that are enclosed by the dashed lines are hardware implemented systems and
the other blocks are software implemented systems. The design of the feedforward system is
based on a thermal deflection model that was calibrated for step heat inputs of various
magnitudes. By using a step input for calibration, some of the dynamics of the heat actuation
system, shown in figure 8.37, are concealed. The saturation error is concealed because the
calibration step input is always within the range 01, and the transition error is concealed
because the set power is constant. It is only the linear portion of the steady-state error that
appears in the calibrated model, while the dynamics have been neglected. The problem now is
that when operated in real time, high frequency components in the control inputs [u] may excite
significant dynamics that were not anticipated by the calibrated model of the thermal deflection

system.

One possible solution to this problem is to create an accurate model of the heat actuator
system, along the same lines as the thermal deflection system model. This is unnecessary
however, if an accurate measurement of the actual heating power is available. Figure 8.38 shows
a block diagram of the hardware implemented heat actuation system that was used for this
control system, which shall be referred to as the outer loop control system. The main

components of the outer loop control system are the voltage controlled AC power supply and
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the RMS power meter. The control input is the desired power P, which is converted to a set
voltage by a transformation equation K which is programmed into the computer controller. The
output true RMS power P, is converted to an analog voltage V, by the power meter, which
drives the voltage controlled power supply through a constant gain K, all of which is

implemented through linear electronics devices.

The outer loop control system significantly improves the performance of the voltage
controlled power supply by reducing the response time, reducing the inherent nonlinearity, and
reducing the effect of temperature variations and external power supply fluctuations, which
would otherwise affect the output of the voltage controlled power supply when used alone. The
RMS power meter also provides a convenient measurement of the heating power actually
delivered to the resistance heaters, which does not always correspond to the desired power P..
All of the components in figure 8.38 are inexpensive and easy to implement. With a forward
gain of approximately 50, the step response of the RMS power is underdamped with an
overshoot of about 45% and a 5% settling time of about 2.0 seconds. There is also a steady-state
limit cycle fluctuation of less than 2% of the maximum rated power with a period of about two
seconds, which is caused by a deadband in the voltage controlled power supply. It is possible
that the dynamics of the outer loop could be improved with the implementation of a hardware
PID controller, however this is made unnecessary by of the data acquisition processor. An
accurate estimate of the power delivered during one control cycle can be obtained by sampling
the instantaneous power at a rate that is much faster that the inverse of the smallest time
constant, which is 0.5 Hz for a time constant of 2.0 seconds. The measured power is sampled
by the data acquisition processor at a rate of about 1.5 kHz, which is more than sufficient, and
the averaged results are delivered to the computer controller as the average power delivered

during the control cycle.
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In addition to improving the accuracy of the heat actuation system, the configuration of
figure 8.38 provides a convenient measurement of the heating power that is actually delivered
to the resistance heaters. Thus, unlike the thermal deflection system, the dynamics of the heat
actuators can be sensed and controlled in a true feedback configuration, which is shown by the
schematic block diagram in figure 8.39. In order to understand the configuration in figure 8.39,
consider the case where Q, contains only low frequency components so that the dynamics of the
heat actuation system are negligible. In this case the actual power delivered, q,, will be equal
to the power requested by the feedforward controller ug, and the control of §, will be as accurate
as the estimate of Q, and the thermal deflection model will allow, which is the ideal case for the
feedforward controller. If, on the other hand, the dynamics of the heat actuators are excited by
the input Q, to produce either saturation error or transition error, then q, will not be equal to the
correct ug, and an actuation error will be created. As discussed above, actuation error tends to
be cumulative, causing significant deflection error in a relatively short time. The purpose of the
feedback control system shown in figure 8.39 is to sense the power actuation error and
compensate for it. To complicate matters further, it may not always be possible to immediately
compensate for power actuation errors, as for example when the actuator is already saturated
at g=0 or q=1. The inputs to the feedback controller are selected as Q, and q,, however a scheme
based on inputs ug and q, would work just as well since Q4 and u; are mathematically related

by the feedforward system [@], [Tl, [Hgl-

Figure 8.40 is a block diagram that shows how the feedback system in figure 8.39 is
implemented. All of the elements of figure 8.40 are implemented through software in the
computer controller, in parallel with the feedforward system. There are three principle processes
in figure 8.40, identified by the dashed boxes and labelled Block 1 through Block 3. Since figure
8.40 shows the real time implementation of the system, the processes are designated as discrete
systems. The inputs to the system are labelled as Q,(k) and q,(k) to indicate that they are

sampled at discrete intervals and held constant during the interval, as already explained in
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chapter 6. Block 1 is composed of two processes, Hy(z) and H_(z), which are the discrete
equivalents of the thermal deflection disturbance system H,(s) and the thermal deflection control
actuator system H(s), respectively. The discrete systems are defined by equation (6.34) and the
calibrated system parameters, as was derived in section 6.11.2. We recall from the derivation
of equation (6.34) that the hold interval is redefined for every iteration, accommodating a
variable sample period, which is an important attribute that will be discussed again shortly. The
output of Hy(z) is the estimated deflection of the disturbance heater 8,(k), and the output of
H (z) is the estimated deflection of the control heaters 8_(k). The sum of 8.(k) and the negative
of d4(k) is the negative of the estimated net deflection of the structure, labelled §,,(k) in figure
8.40. The variable &, (k) is the desired defection, or sometimes called the tracking deflection
of the feedback system since it is the negative of the estimated total deflection of the structure.
Block 3 in figure 8.40 determines the required output ug(k) according to the state-space
equation:
ug(k) = K(N3,, (k) - x(k)) + N,8,, (k) (8.22)
The matrix x(k) in equation (8.22) is a column vector of the current values of the states of the
system. The states are generated by Block 2 in figure 8.40. which is a graphical representation
of the equation:
x(k+1) = @ x(k) + T uk) (8.23)
The advantage of the discrete formulation is that states at each time kT can be found recursively
by simple matrix multiplication, as shown in equation (8.23). A problem arises however, when
the sample period T is not constant, since the matrices [®,] and [I.] can only be calculated from
the continuous system for a particular value of T. It will be shown that the sample period is not

constant for this system, and so this problem will be dealt with in a subsequent section of this

chapter.
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8.7.2 The Design of the Feedback System Using Output Optimization

The feedback control system shown in figure 8.40 is designed by choosing the matrix K
such that the closed loop system meets certain design specifications. It was shown in section 8.3
that the LQR design procedure proposed by Bryson and Ho produces a closed loop system with
poor tracking of the input signal, as shown by the simulated response to a disturbance step input
in figure 8.23. The problem with the design procedure in section 8.3 is that the transmission
zeros of the system were ignored by the optimization. While this produces a control system
which is robust, it misses the opportunity to mask the activity of the internal states behind the
transmission zeros of the system. In order to make better use of the transmission zeros of the
system a new procedure will be introduced in this section that is based on output optimization.
The basis of this procedure is the minimization of the system outputs [0] rather than the matrix
of states [x]. Thus, the error equation (8.9) is modified as follows [105]:

T = E{pﬁ{k) Qla(k) * “(kT) Qz“(k)} (8.24)

k=0

where O6(k)=Hx(k). The minimization of equation (8.24) results in a modified Hamiltonian
matrix that can be solved using the MATLAB Control Toolbox. The important difference
between output minimization and state minimization is that with output minimization there is
no weight given to the activity of any individual state of the system, it is only the combination
of states reaching the output that is given weight in the minimization of equation (8.24). There
are two main disadvantages to output minimization: 1) individual states may show considerable
activity even though the output appears inactive, even becoming unstable if the system contains
zeros in the right half of the imaginary plane, and 2) variations in the transmission zeros of the
physical system can have significant consequences in terms of closed loop performance,
meaning that the system is not as robust. The second of these two disadvantages is not relevant
for the thermal deflection system in this thesis because it is, by its nature, an open loop system
anyway. With respect to the first of these disadvantages, the nature of the system which is to be

controlled is very important, and should be screened for positive real zeros before attempting
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to apply the procedure. The form of the thermal deflection model in equation (6.16) is usually
flexible enough to allow for than more than one calibrated solution if the zeros of the transfer

function, given by equations (6.20) and (6.21) , contain any positive real parts.

The output optimized solution was obtained for the following values of the weight
matrices:

o - 100 0 o - 075 0 $25)
L7l 0 0 1.00 21 0 1.00 '

Figures 8.41 and 8.42 show the simulated unit step response of the discrete system for a step
input to q1 and q2 respectively, and figures 8.43 and 8.44 show the simulated control effort fof
each of these step responses. The weight matrices were varied by a trial and error process until
a good compromise between the speed of the step response and the use of control effort was
achieved, as shown by figures 8.41-8.44. Figure 8.45 shows the simulated response of the
feedback control system to the simulated thermal deflection disturbance step response Q,=0.5,
and figure 8.46 shows the resulting control effort. These figures show that output optimization
produces results that are far superior to those for state optimization, even approaching the
accuracy that was achieved by the feedforward controller in figures 8.35 and 8.36. The reason
for this improvement in accuracy is the way that the optimization locates the poles of the closed
loop system. Figure 8.47 shows the dominant poles and zeros of the continuous open loop
system, and figure 8.48 shows how the dominant poles have been relocated by the optimized
closed loop system. The closed loop poles have been moved on top of the system zeros,
performing pole-zero cancellation in the same way as the feedforward controller. Since there
IS no state estimator for this system, the performance of the control system is dependant on the
accurate identification of the transmission zeros by the calibrated system model. It is for this
reason that considerable attention was given to the accurate modelling of the thermal deflection

system in chapter 6.
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8.7.3 Measurement Sampling and Real Time Processing

The control power output is sampled by the data acquisition processor in the same way as
the measured temperature, as discussed in chapter 6. The data acquisition processor samples the
measured variable at a much higher rate than the control cycle and then averages the values
before sending the result to the computer controller. For the present system the sampling rate
is above 1 kHz, and the period of the control cycle is governed by the collection of a fixed
number of samples. Although the DAP 1200 data acquisition board has provision for an external
trigger, so such triggering hardware has been implemented for these experiments. Thus, the
control cycle time period is not exactly constant from one cycle to the next. Figure 8.49 shows
a plot of the typical sampling period distribution for a real time experiment. Rather than
implementing an external trigger to synchronize the control cycle to a fixed period which is
larger than the largest possible period, the software shall be implemented to accommodate a
variable cycle period. The inverse algorithm and the discrete transfer functions shown as Block
I in figure 8.40 inherently accommodate a variable sample period. The discrete state constructor
shown as Block 2 in figure 8.40 and the discrete feedforward controller shown in figure 8.39
must be defined for a fixed sampling period T. The discrete state space system [®], [I'] is

computed from the continuous state space system by the transformation equations [105]:

& - 1+ AT ,+A_T(_,,,£_ ,+A_T)
2 3 N-1 N

I'=®TB

In the case of the feedforward controller it is not worth the extra effort to transform the

(8.26)

continuous system to the discrete system on-line. The feedforward controller is transformed off-
line for an average sampling period T=0.6136 seconds and the discrete system is stored by the
on-line program. The accuracy of the feedforward controller is not so critical because it is used
only to approximate the control effort and there is a feedback controller working in parallel to
correct the error. The accuracy of the state constructor shown in figure 8.40 is more critical

because it is used to fine tune the control to within less than a couple of microns. Thus, the
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discrete system matrices [®,], ['y] shall be computed from the continuous system matrices

[Ag], [Bg] by the controller in real time using equation (8.26).

8.7.4 The Complete Real Time Thermal Deflection Control System

The architecture of the complete thermal deflection control system is shown by the
schematic block diagram in figure 8.50. The three system components are 1) the Controller
Computer, 2) the Data Acquisition Processor board (DAP) which includes the ADC and DAC
converters and buffers as well as the processor itself, and 3) the Outer Loop control system
which is hardware implemented as shown in figure 8.38. The three components operate
independently in parallel, with the interfacing between system components shown schematically
in figure 8.50. There is an analog interface between the outer loop and the DAP and a digital
interface between the Controller Computer and the DAP. The operations performed by each
system component are summarized inside the blocks in figure 8.50. The controller computer and
the DAP are synchronized by each one going into a wait state after fully executing one control
cycle, beginning the next cycle when signalled by the other system component. In this way the
period of the control cycle is the longer of the time required for the controller computer or the

DAP to complete one control cycle.

A schematic block diagram of the of the operations performed by the controller computer
is shown in figure 8.51, in summarized form. The first operation is the acquisition of data from
the DAP. The second operation is the calculation of the estimated heat generation for the
previous cycle by the method of a convolution integral, as was derived in chapter 5. The third
process is the feedforward transfer function, which uses the discrete system matrices stored in
memory. The fourth process is the calculation of the estimated deflection, using discrete transfer
function models of the disturbance system and the control heater system, derived in section 6.11.
The fifth process is the calculation of the correction control heat generation from the feedback

system matrices. The feedback system matrices must first be computed from the matrices of the
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continuous system, as shown in the figure. The final operation is the transformation of the
control heat generation to a binary voltage using a calibrated look-up table and a linear
interpolation program. In spite of the modularized representation of the system in figure 8.51,
the program modules actually operate from common data base and share many important
subroutines. Despite the fact that some modules in figure 8.51 are shown connected in parallel,
the program executes sequentially, calculating the required variables in the sequence shown. It
should be remembered that this flowchart shows only the basic operations performed by the
controller computer in summarized form. Many of the details that have been discussed in this

and previous chapters have been omitted for brevity.

8.8 Validation of the Thermal Deflection Control System using Electric Heater
Actuation

8.8.1 The Validation Procedure

The performance of the control system will be tested by applying known inputs to the
disturbance heater, while running the control system in real time. The actual deflection will be
measured and recorded for comparison with the estimated deflection, and certain other system
parameters will also be recorded for analysis. The input functions are chosen so as to be similar
to the actual disturbance heat generation that would be expected for a real machine tool in an
industrial environment, normally a series of step inputs of various magnitude and duration. The

input functions are also chosen so as to expose the limitations of this type of control system.

8.8.2 Test Case 1: Single Step Input of Magnitude 0.5

The first case is a single step in heat generation from zero to 0.5, beginning at t=30 seconds.
Figure 8.52 shows the measured temperature profiles for this test case, and figure 8.53 shows
the temperature difference. Figure 8.54 shows the on-line estimate of the disturbance heat
generation, labelled Qy, in figure 8.51. Figure 8.55 shows the estimated uncompensated thermal
deflection of the structure for this input, where the estimate was produced on-line by the transfer

function Hy(z), shown in figure 8.51. Figure 8.56 shows the on-line estimate of the compensated
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thermal deflection error for this input, which is labelled 6,_, in figure 8.51, and figure 8.57
shows the actual deflection error for this input, obtained by the LVDT position measurement

apparatus. A plot of the actuator heat generation is shown in figure 8.58.

A comparison of figures 8.55 and 8.57 shows that the estimated uncompensated thermal
deflection of 119 microns has been reduced to an actual controlled deflection of +2.5 microns
to -3.5 microns, for a total range of 6 microns, and a percent reduction of 95%. Figure 8.58
shows that the heat actuators do not suffer any upper bound saturation for this input, although

there is considerable lower bound saturation.

8.8.2 Test Case 2: Single Step Input of Magnitude 1.0

Test case 2 is a single step in heat generation from zero to 1.0, beginning at t=30 seconds.
Figure 8.59 shows the measured temperature difference profile for this test case. Figure 8.60
shows the on-line estimate of the disturbance heat generation, and Figure 8.61 shows the
estimated uncompensated thermal deflection of the structure for this input, which reaches 243
microns in Y, and 84 microns in X. Figure 8.62 shows the actual and estimated controlled
deflection of the structure, which is in the range of +7 to -2.5 microns in Y and within +3.5 and
-1 in X, for a maximum total range of 8.5 microns. Figure 8.63 shows the actuator heat

generation for this test input.

The figures show that the thermal deflection control system has reduced the net thermal
deflection by 96% in Y and by 95% in X, a slight improvement over test case 1. The reason for
the improvement in the percent reduction is partly due to the increased signal to noise ratio of
the measured temperature difference for the larger input, shown in figure 8.59. Another reason
for the improved percentage reduction is that the saturation of the actuation heaters is now
approximately equal at the maximum and minimum cut-off values, shown in figure 8.63.

However, in absolute terms the thermal deflection error has increased from 6 microns in case
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I to 9.5 microns in case 2. A large part of this absolute error is due to the initial saturation of
the control heaters, which is evident by the large peak in the estimated controlled deflection in
figure 8.62 which mirrors the actual deflection. This peak in estimated deflection indicates that
the controller is aware of the deflection but is unable to compensate for it because the heaters

are in a state of saturation, shown in figure 8.63.

8.8.2 Test Case 3: Single Step Input of Magnitude 1.5

Test case 3 is a single step disturbance of magnitude 1.5, applied at t=30 seconds. Figure
8.64 shows the temperature difference profile, figure 8.65 shows the estimated heat generation,
and figure 8.66 shows the estimated uncompensated thermal deflection. Figure 8.67 shows the

estimated and actual controlled deflection and figure 8.68 shows the actuator heat generation.

The purpose of this input is to show the limitations of the control system when subjected
to too large of a disturbance input. Figure 8.67 shows that both the estimated and the actual
thermal deflection reach an initial peak of 32 microns in Y before coming back slowly to within
7 microns error. The reason for this tracking error is the initial saturation of heater q1, lasting
for nearly 15 minutes, as shown in figure 8.68. The result of this test case shows that the thermal
deflection control system cannot be used to compensate for a step input of magnitude zero to
1.5. Furthermore, the steady-state error shows that an input this large produces significant
saturation error, even in the steady-state. Thus, the conclusion is that the absolute heat
generation cannot reach much beyond 1.0 for this system of compensation heaters. In general,
any system of compensation heaters will have a maximum operating range for the disturbance

heat source.
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8.8.3 Discussion of the Test Case Results

The results show that the thermal deflection control system is capable of reducing the net
thermal deflection of the structure by more than 93% for disturbance heat magnitudes up to
Q.=1.0, with a maximum deflection range of 9.5 microns. The two main sources of error are 1)
errors in the estimation of the disturbance heat generation, and 2) actuation error as a result of
control heater saturation. For a step input, most of the disturbance heat estimation error occurs
in the first minute following the application of the step input, as shown in figures 8.54 and 8.60,
which produces an initial peak in the net thermal deflection, shown in figures 8.57 and 8.62. The
effect of actuator saturation error is to produce deflection error throughout the operation of the
control system, although this error is accentuated by sudden changes in the demand for control

heating, as shown in figures 8.57 and 8.62.

A simple way to improve machining accuracy when using this control system is to wait five
minutes after an abrupt change in the operating conditions of the machine before using the
machine to cut metal. For test case 2, with an input magnitude Q,=1.0, this would reduce the
absolute deflection error range from 9.5 microns to 4 microns. Although this simple solution
would be effective for heat inputs that are related to the speed of the motor or the spindle, it

could not be used effectively for heat inputs that are related to the cutting forces.

A more effective method of improving the accuracy of this system is to locate the measured
temperature points closer to the heat source. Although this tends to increase the signal to noise
ratio of the measurement, it also reduces the initial temperature delay to a step input, which has
the effect of reducing the delay in the estimation of the disturbance heat generation, as discussed
in chapter 5. As already discussed, the distance of the measured temperatures from the
disturbance source used for the above experiments is at the extreme outer end of what would

be expected for the heat sources on a real machine tool. In the next sections, the performance
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of the system will be investigated for measured temperature points that are closer to the heat

source.

8.8.4 Test Case 4: Unit Step Response of System with Intermediate Temperature Nodes

Figure 8.69 shows the locations of the intermediate temperature measurement pair, labelled
pair 2, which are 1.7 centimetres and 3.7 centimetres form the outer edge of the disturbance heat
source. Figure 8.70 shows the measured temperature difference for a disturbance step input
Q;=0.5, along with the calibrated generalized thermal model and the regularization term. Figure
8.71 shows the first five minutes of the measured and calibrated temperature profiles, showing
the initial regularization more closely. Figure 8.72 shows the actual thermal deflection of the
structure corresponding to the above input, along with the calibrated model. Both the
temperature and the thermal deflection calibrations were done using a subset of the total data
series, using a higher density of points for the initial part of the curve and the lowest density
near the steady-state. Only the temperature and deflection samples that were actually used in the

calibration are shown in figures 8.71 and 8.72.

The input for test case 4 is a heat generation step from zero to 0.5, which produces the
temperature difference of node pair 2 shown in figure 8.73. Figure 8.74 shows the estimated
uncontrolled deflection, which reaches 104 microns in Y and 32 microns in X. Figure 8.75
shows the actual and estimated net thermal deflection error, and figure 8.76 shows the estimated

disturbance heat generation.

A comparison of figures 857 and 8.75 shows that node 2 pair has improved the
performance of the control system over node pair 1 by reducing the initial peak in actual thermal
deflection from about 2.5 microns to about 2.0 microns. This improvement is due to a reduction
in the initial delay in the estimated thermal deflection, as expected by locating the measured

temperature nodes closer to the heat source. The system using node pair 2 also has a 0.5 micron
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Figure 8.69: Position of Temperature Measured Points (Dimensions in Centimeters)
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lower maximum error between 10 and 30 minutes, which is probably due to random variations

and possibly a more accurate thermal deflection calibration.

8.8.5 Test Case 5: Unit Step Response of System with Close Temperature Nodes

Figure 8.69 shows the locations of the inner most temperature measurement pair, labelled
pair 3, which are 0.7 centimetres and 1.7 centimetres form the outer edge of the disturbance heat
source. Figure 8.77 shows the measured temperature difference for a disturbance step input
Q4=0.5, along with the calibrated generalized thermal model and the regularization term. Figure
8.78 shows the first five minutes of the measured and calibrated temperature profiles, showing
the initial regularization more closely. The calibrated thermal deflection model is shown in
figure 8.72. Since the temperature data for the calibrations of node pairs 2 and 3 were both

collected for the same input, the thermal deflection model is common to both.

The input for test case 5 is also a heat generation step from zero to 0.5, which produces the
temperature difference of node pair 3 shown in figure 8.79. Figure 8.80 shows the estimated
uncontrolled deflection, which reaches 106 microns in Y and 35 microns in X. Figure 8.76
shows the estimated disturbance heat generation, and figure 8.75 shows the actual and estimated

net thermal deflection error.

A comparison of figures 8.54, 8.76 and 8.81 shows how the signal to noise ratio of the
estimated heat generation varies with the position of the measured nodes. As the measured
nodes are moved closer to the source the signal to noise ratio of the measured temperature
difference is increased but the singularities of the convolution transfer function are reduced. As
a result of these conflicting effects, the signal to noise of the ratio of the estimated heat
generation is reduced slightly from node pair 1 to node pair 2, however it increases considerably
from node pair 1 to node pair 3. A comparison of figures 8.57 and 8.82 shows that node 3 pair

has improved the performance of the control system over node pair 1 by reducing the initial
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peak in actual thermal deflection from about 2.5 microns to about 0.7 microns. The total error
range of the system using node pair 3 is about 4 microns, compared with 9.5 microns for the

system using node pair 1.

8.8.6 Test Case 6: Response of System to Arbitrary Input with Measurement Pair 1

The final test case that will be used for verification of the thermal deflection control system
is an arbitrary input consisting of short steps and ramps of disturbance heat input. The input is
applied manually over a period of 30 minutes, simulating the sort of duty cycle that would
typically be expected from a real machine tool in operation. For the purpose of comparison with
the other results, the measured temperature pair T1, shown in figure 8.69, will be used as the

measured input for the IHCP solver.

Figure 8.83 shows the measured temperature difference corresponding to this heat input,
and figure 8.84 shows the estimated heat generation. The magnitude of the heat generation
covers the full usable range of the disturbance input, noticeably exceeding the maximum
allowable Q, between t=5 and t=10 minutes. Figure 8.85 shows the estimated uncompensated
thermal deflection corresponding to this input, which rises to a maximum of 168 microns on the
y-axis and 43 microns on the x-axis at about t=10 minutes. Figure 8.86 shows the actual
controlled deflection, which is contained within a range of 13 microns, a reduction of 92%. As
can be seen from the control heat generation plots in figure 8.87, the distinct peaks in the
controlled deflection error correspond to the periods of actuator saturation in figure 8.87. The
range of the controlled deflection error is somewhat larger than for the pure step cases because
of the effect of cooling down the machine after t=5 minutes, which tends to saturate the
controller around zero. The configuration of the heaters was chosen to maximize compensation
for positive disturbance heat inputs by generating negative control deflection. The only way to
produce positive control deflections is by shutting the controlled sources off and allowing the

structure to cool down. This situation could be improved by adding additional control heaters
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which produce primarily negative control deflection. In general, two control heaters are required
to produce controlled positive and negative deflection for one axis, a total of six for three axis.
The use of such a large number of controlled heaters would probably not be practical however,

and unnecessary since heater actuation would normally be used in combination with an NC

position controller on some of the axes.
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CHAPTER 9: CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE
WORK

9.1 Conclusions

A review of the research into the problem of modelling and control of the thermal
deformation of machine tools has led to the identification of voids in the present state of
knowledge and the key elements required to develop a generic multi-variable closed loop
control system. Because of the recent availability of powerful computer facilities and
sophisticated calibration software such as neural network design tools, the trend has been to
devote less time to mathematical modelling for real time variable estimation. However, the
computer modelling approach has not proven to be successful for accurately estimating thermal

deflection in a real time environment because of the complexity of the estimation problem.

The performance of the identification process was significantly improved in this thesis by
incorporating powerful mathematical tools with the numerical calibration procedures that have
been used by other researchers. The approach recognizes the need for real time estimation of the
heat inputs and for the thermal deformation of the machine tool structure. The concept of
"generalized modelling” is used for the estimation of the heat inputs, which combines
mathematical modelling with empirical calibration, and is based on the existence of a
mathematical similarity between the real process and a simplified model. The mathematical
form of the generalized models which were developed in this thesis is closely related to the
mathematical behaviour of the real system, particularly in the delayed nature of the temperature
response to a heat input. The form of the model allows for the identification of heat inputs even
where the measured temperatures are located far from the source, and noise is present in the

measured signal.

The real time solution to the generalized model is based on the convolution integral

approach using the generalized inverse thermal transfer function G'(s). The singularity
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functions in G''(s) are identified and an analytical solution of its inverse Laplace transformation
was derived. This allows for the computation of the convolution integral and the inverse Laplace
transformation of G''(s) numerically. The form of the solution changes the ill-posed nature of
the inverse heat conduction problem, and allows for regularization to control the instability. Due
to the generalized nature of the formulation, this method can readily be applied to any class of

machine tools without any further developments by the end user.

An important aspect of the estimation problem which has never been fully investigated is
the nonlinear effect of the contact joint interaction problem. The finite-element models that have
been developed in this thesis demonstrate that this phenomenon exists for some classes of
machine tools, and the effect can be considerable. The generalized modelling procedure has
been used successfully to simulate the mathematical form of the contact interface, and to
generate a model of the joint induced nonlinearity which can accurately estimate the nonlinear
deviation of the thermal deflection in real time. Because of the mathematical foundation of the
model, it has been shown to accurately predict the nonlinear deviation resulting from thermal
inputs outside of the range of calibration, and even external mechanical inputs for which no

calibrated data was available.

The multi-variable thermal deflection control system which was developed in this thesis
incorporates a real-time inverse heat conduction algorithm to identify the time variation of the
heat generation sources, a real-time dynamic model of the thermal deformation of the structure,
and an adaptive model of the contact joints to correct for the nonlinear joint interaction
phenomenon. The combination of these dynamic models has been shown to predict the actual
thermal deflection in a finite-element and a physical machine structure to within +4 microns.
The knowledge of the system dynamics which is provided by these models is the basis for the
multivariable optimization of the thermal deflection control system, and the thermal deflection

which is predicted by this procedure in real-time is used as simulated feedback signal to the
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controller. Two mechanisms have been investigated for micro-positioning the cutting tool for
compensation, the first being an NC position control system, and the second is an array of
resistance heaters positioned strategically on the machine structure. Since there is a significant
time delay between the actuation of the electric heaters and the resulting control deformation,
and since actuation for control on one axis produces undesired deflection along other axes, an
optimized control strategy is essential for maximizing the operational performance of the closed

loop system.

Verification tests were conducted on two models of a machine structure. The first is a
physical model incorporating all of the measurement and power actuation hardware that will be
required on a real machine tool. The second model is a three-dimensional finite-element model
of a machine tool structure, which is designed to simulate the effect of significant joint
nonlinearity, as would be encountered on a relatively massive machine structure. The results
confirmed the accuracy and inherent stability of the IHCP solver and the control system for the
measurement and power actuation hardware that was used. The regularized inverse thermal
transfer function minimizes the propagation of random temperature measurement errors, so that
the accuracy of the estimated thermal displacement is excellent. The results confirmed that the
objectives of the proposed control system for maintaining residual errors < 10 pum and control

cycle < 1 second were met.

9.2 Recommendations for Future Work

The next step for the future development of the method is for verification on a real machine
tool in operation. The major challenge to implementing the procedure on a real machine tool
will be the identification of the major heat sources and running them independently for
calibration. The thermal imaging camera has been shown to be highly effective at identifying
the principal heat sources for the structures in this thesis. A possible method of verification

testing would be to produce precision parts with and without the thermal deflection control
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system. An analysis of the machining accuracy could be obtained by an analysis of the accuracy
of the machined parts. In order to test the adaptive model for estimating contact joint
nonlinearity on a real machine tool it will be necessary to find a machine tool that exhibits
significant nonlinear behaviour. It might be necessary to test a number of machine tools before
a suitably nonlinear response is found. It would be interesting to study the feasibility of using
heat sinks as well as heat sources to increase the flexibility of the control system. Heat sinks

could be provided by miniature heat pipes or thermo-electric cooling units.

The method could also be extended to variable geometry machine tools by incorporating
adaptive parameter variation of the thermal deformation models. The measured input for this
proposed system would be the linear position of the table, or another variable geometry element.
The parameters of the models would be modified according to the position of the geometrical

element, perhaps using a neural network based adaptive strategy.
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