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ABSTRACT

DEVELOPMENT OF A MODEL TO OPTIMIZE

IRRIGATION PLANNING FOR MULTI-RESERVOIR SYSTEMS

Marce] Marcos

The purpose of this study 15 to develop an optimization planning model tor
irrigation multi-reservoir systems. This is & monthly-based model that can be applied to
multi-reservorr systems to obtain optimal planning policies to maximize the net benetit
resulting from planting different kinds of crops. This model can handle an arbitrary number

of reservorrs with no restriction on their layout.

The planning model. developed through this research etfort optimizes the total net
benetit that can result from planting different kinds of crops. subject to physical constraints
such as mass balance. target demands and storage limits. The model is written in ANSI
FORTRAN 77 and the Penalty éuccessive Linear Programming (PSLP) procedure is
employed. PSLP is one of the most promising optimization techniques for non-linear non-
convex objective functions. The model developed in this study is the first model of its type

that applies PSLP to optiraize the planning of multi-reservoir systems.
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CHAPTER 1

Introduction

Water is a natural resource serving a wide range of uses in modern-day society.
Besides the basic purpose for support of life, water is also used for other purposes such
as irrigation, hydropower, navigation, recreation, pollution abatement, etc. Irrigation is

the only use of water discussed herein.

The availability of water, and its temporal and spatial distribution are governed by
climatic factors outside man’s contro!, at the present state of science and technology.
Optional management of water resources is therefore fundamental in ensuring the
continuous availability of water for the benefit of humankind both for the present and the

future.

The natural availability of water is often not sufficient to satisfy the demand and
use imposed by society. Control of water has therefore been practiced since the early

days of civilization.



The works of water control include primarily the construction of regulation

facilities in the form of storage and diversion channels. For many developing countries.
water resources development projects have been and will continue to be very important

components of their infrastructure.

1.1 Background:

When demand for water is low compared to its natural supply, water control
works are relatively simple. All potential users receive their full requirements and little
planning or coordination is required since efficiency is of l.ttle concem when there is a
surplus of water. Larson (1981) summarized the practice of irrigation management in the
private sector. He stated that. when water is abundant and energy is cheap. the approach
to irrigation is to apply plenty of water. Little attention was paid tc how much water was
applied nor how efficiently it was applied. This wastetul situation prompted researchers
to develop techniques to avoid over-irrigation, thus reducing water use. energy

consumption, and irrigation costs.

The techniques that were designed to avoid waste are called irngation scheduling.
Irrigation scheduling consists of, applying the right amount of water at the right time. The
goal is to meet the full water requirement of the crop thus avoiding water stress and

maximizing yields.

The yield maximizing approach outlined by Larson has worked relatively well in
the past when the intent was to maximize returns from a limited area of agricultural land

with an ample water supply. However, this maximizing approach is not appropriate when




one wants to maximize returns with a limited amount of water.

1.2 Problem:

This research effort assumes that water is the limiting factor, i.e., crops might not
receive their tull water requirements during all periods of the growing season. Under
unlimited water supply conditions. however, water usage in the current period does not
affect the availability of water in the near-term (the period of the planning horizon).
Whereas, under conditions of limited water supply. current usage reduces the water

available in the near-term, thus affecting subsequent water-use decisions.

Teraporal interdependence has major implications for the manner in which the
irrigation management problem should be examined. It implies an analysis that considers
the time frame of the planning horizon. because the water supply in future periods is
directly related to the water amount used in the current period. This implies that the
optimal planning for crop irrigation during any period includes the evaluation of both
current and subsequent periods. Therefore to obtain the maximum benefit from water
under unlimited water conditions, one could plant any acreage available for agriculture
with a high return crop and supply the full amount of water required. Whereas, under
limited water conditions, the availability of water limits the acreage and type of crops that
should be planted. Thus obtaining the optimal acreage of the crops can be done by

formalizing the problem and then applying a suitable optimization method to it.

The optimal planning of crop irrigation from multi-reservoir systems can be

modeled as a non-linear, constrained optimization problem. The objective is to maximize



the crop net benefit resulting from planting different kinds of crops. If hydrological
inflows to the system are assumed known or predictable. the resulting problem becomes
deterministic. Therefore, deterministic opumization techniques can be applied. They are

simpler to apply than their stochasuc counterparts.

A typical crop irrigation planming opumization problem is characterized by a non-
linear and non-convex objective function with most constraints linear. The non-convex
objective function constitute the primary difficulty in finding the successful mathematical
solution of this problem. For small systems. discrete dynamic programming is the most
reliable method for obtaining the global optimum solution. The real difficulty arises when
the system is large with many state variables. more than three, tor instance (Hiew, 1987).
Choosing a suitable optimization method. for this problem. 18 the focus of the next

chapter.




CHAPTER 2

LITERATURE REVIEW

A literature review is attempted, in this chapter, to choose adequate crop vield
functions and a suitable optimization procedure to be applied to the model developed in

Chapter 3.

2.1 Crop vield functions:

Since ancient times. farmers have observed that, to get a good harvest, they had
to provide enough water to the crops. However it was not until the 20" century that the
concept of crop yield function was formalized. i.e.. the relationship between crop yield
and water supply. Jensen (1968) proposed the following equation to estimate the grain

yield of crops.

(v Y
Y = Y,,l'[[a—) 2.1)



where, Yis the predicted yield, in (M/L>) or (L'/L?).
Y, is the potential grain yield, in (M/L®) or (L'/L*).
U. 1s the consumptive use or actual evapo-transpiration, in (L).

U, is the potential consumptive use or potential evapo-transpiration, in
(L). Tt refers to conditions when water is adequate for unrestricted growth
and development. U, represents the rate of maximum evapo-transpiration
of a healthy crop. growing in large fields under opimum agronomic and

irigation management.

A, is the relative sensitivity of the crop to water deficit during the i stage

of growth.

Hanks (1974) developed an analogous maodel to predict dry matter yield:

where, Y, is the potential dry matter yield. in (M/L?).
Tis the cumulative transpiration by the crop, in (L)
T, is the potential cumulative transpiration. in (L).

These two models are mostly used to predict the yield from evapo-transpiration
or transpiration of crops. They have proven to be reliable, as deviations, between

predicted and actual yields, are not significant (Hanks 1974, Rasmussen and Hanks 1978,




Stewart et al. 1977).

2.2  Optimization Procedures:

The optimal planning of multi-reservoir systems is a subject of great practical and
economic importance in the field of water resources engineering (Yeh, 1985).
Mathematical modeling is the most extensively used engineering technique in planning
and analysis of large-scale problems. A mathematical model is a set of mathematical or
logical expressions used to describe the essential operation and response of a physicul

system for a specific purpose.

There are two distinct deterministic categories of models. simulation and

optimization.

Simulation models are descriptive models that attempt to represent the essential
physical and operational characteristics of a real systern. They can accurately re present
the complex interactions between system components, be they linear, non-linear, convex
or non-convex. The flexibility of simulation models makes them widely accepted for
many water resources modeling applications. However. the disadvantage of simulation
models is that a lot of effort and experience are required of the user in finding the optimal
solution. For a complex problem, finding the optimum through several simulation
experiments can be difficult, time-consuming and frustrating. Examples of popular
simulation models are the Stanford Watershed Model, Storm Water Management Model,
Stream Flow Synthesis and Reservoir Regulation Model, Massachusetts Institute

Technology Model, and a series of models released by Hydrologic Research Center such



as the HEC-1, HEC-3, HEC-5 and HEC-6 Models (Hiew, 1987).

Optimization models, on the other hand, are aimed at identifying the best solution
based on a specific index of performance (the objective value) and meeting all the
relevant constraints. However, the mathematical structure of optimization models is more
restrictive than simulation models and real-life problems often need to be simplified in
order to fit into the structure and format of existing algorithms. Such simplification.
however has to be carried out with caution to ensure that the essential characteristics of
the original problem are retained. Examples ot optimization techniques commonly used in
water resources engineering are Linear Programming. Dynamic Programming. Optimal

Control Theory and Non-linear Programming (Hiew, 1987).

The choice of mathematical model for a particular system is highly dependent on
the structure of the problem and the preference and experience of the user. Because many
techniques have been developed and applied to optimization studies of multi-reservoir
water resources systems, inexperienced users are often faced with the difticult question of
deciding which of these algorithms is best suittd to a problem. Time and budget
limitations often do not allow experimentation with several algorithms to find the best
optimal result. Unfortunately there is no easy answer to this question and much depends
on the complexity of the particular system and the objective function of the problem.
Since most algorithms published in the literature are displayed on different systems, ie.,
not all algorithms were applied to each single problem variation to determine which
algorithm is the best suited. It is hard to draw conclusions on the relative merits of each

optimization procedure applied to a certain problem using strictly its objective criteria.



However, a review is attermnpted below.

The most widely used optimization technique among engineers is Linear
Programming (LP). Its popularity is due. to a large extent, to the existence of standard
programming packages capable of solving large problems efticiently. LP can handle large
number of variables and constraints but requires that the relationships between these
variables be linear, both in the objective function and the constraints. Dantzing (1950)

first developed the simplex algont to solve linear problems.

Most water resources problems are inherently non-linear and therefore LP cannot
be directly applied. In order for standard LP to be used for these types of problems. a
suitable linearization scheme must be introduced. A widely adopted linearization scheme
is based on first-order Taylor's series expansion of a non-linear function about a given
initial solution. This method is commonly known as Successive Linear Programming
(SLP). The concept of SLP is simple and easy to carry out. The method has been widely
used by practicing engineers for many non-linear engineering problems. Palicio-Gomez
(1982) studied the theoretical properties of SLP and proved that. for linearly constrained
problems, an iterative linear programming algorithm, which yields a feasible solution at
each iteration, will converge to a local optimum as the step size is reduced if the objective
function is continuously differentiable. In addition. he showed that SLP compares
tavorably with the generalized reduced gradient code (GRG2) and with MINOS/GRG.
Moreover, he found that SLP will be most successful when applied to large problems
with relatively low degrees of freedom. Grygier (1983) tested SLP against two other

methods: Optimal Control Theory (OCT) and Dynamic Programming-Linear



Programming method (DP-LP) and found that SLP was able to achieve the maximum
objective value consistently and with moderate computer time. These conclusions were
based on studies involving a single reservoir, two reservoirs in series and three reservoirs
in parallel. Although the objective functions were non-linear, they were relatively smooth

and did not deviate too far from linearity.

From each category of optimization techniques mentioned above. Hiew (1987)
selected the following algorithms: Succestive Linear Programming (SLP). Feasible
Direction Method (FDM). Optimal Control Theory (OCT). Incremental Dynamic
Programming (IDP). and Objective-Space Dynamic  Programming (OSDP). In the
selection of these algorithms which cover a broad range of techniques. preference was
given to methods that are commonly used and possess generalized structures. It was
concluded that both (SLP) and (OCT) are more general, provide more consistent
performance and better computatonal efficiency than the other methods tested.
Therefore. they are recommended to optimize planning and operation of large-scale

multi-reservoir systems characterized by non-linear and non-convex objective functions.

From the above. it can be concluded that SLP is one of the best optimization
methods commonly used in water resources engineering problems. It performs most
successfully when applied to large scale systems with relatively low degree of freedom.
and when a flexible, powerful and reliable LP code is available. However, tor non-linearly

constrained problems. a suitable SLP algorithm has still to be sought,

A discussion of Successive Linear Programming and the development of the only

10



existing SLP algorithm that has a convergence proof for non-linearly counstrained

problems follows.

2.2.1 Successive Linear Programming:

The basic idea of SLP is to approximate the objective function and the non-linear
constraints, if any, by using first-order Taylor series expansion about an initial or trial
solution. This results in an approximated programming problem which is linear in both
the decision and state variables. In LP, decision and state variables are treated alike as
unknowns to be determined simultaneously from the solution of the resulting constrained

optimization problem.

SLP algorithms sclve non-linear optimization problems via a sequence of linear
problems. Recall that SLP performs better when the non-linearity is confined to the
objective tunction. The proof of convergence with linear constraints is available from
Palacios-Gomez et al. (1982). The convergence theorem states that a problem with linear
constraints and a continuously differentiable objective function, the sequence of iterates
generated by an SLP algorithm will converge to a constrained stationary point if an
appropriate step bound-reduction scheme is adopted. Step bound-reduction introduces
maximum allowable deviations (measured from one iteration to the next) in the decision
variables of the linearized problem with linear programming. Without such a scheme, SLP
might experience oscillations or zigzagging about the optimum solution when the
optimum point is non-vertex, i.e., lying in the interior of the feasible solution space. The

feasible solution space is the locus where the constraints are satisfied.

11



Palacios-Gomez et al. (1982) proposed some modifications to the conventional
SLP algorithm to better cope with non-linear constraints, by using a modified objective
function and adding a term to it to account for the sum of feasibility violations caused by
the non-linear constraints. The reason of this sum of feasibility violations is the
replacement of the non-linear constraints by a term added to the objective function. It is
possible to introduce a criteria for rejecting or accepting a successor point and the related
changes of the step bound reduction. Palacios-Gomez tested this algorithm known as
SLP reject or SLPR on more than forty non-linear problems of different designs and
dimensions and reported good results with convergence to optimum (global or local).
Nevertheless. he admitted that theoretical proof of convergence is not possible for
problems with non-linear constraints. Then Zhang et al. (1985) developed a new SLP
algorithm called PSLP (penalty SLP). PSLP represents a significant strengthening and
refinement of the SLPR procedure. It can be viewed as a steepest descent procedure
applied to the exact penalty function associated with the non-linear problem. The search
direction is determined by solving the lincarized problem with linear programming, and
the distance advanced in each direction is determined by the size of a rectangular trust
region (the region that each non-linear variable is additionally constrained by). This
iegion is specified by the same step bounds given in Palacios-Gomez et al. (1982).
However, the trust region theory developed by ZHU and Zhang (1982). suggests a new
criteria for varying these step bounds and for accepting or rejecting new iterates. This
step bound-reduction theorem is more reliable and sound than the one given by Palacios-

Gomez et al. (1982). This conclusion was bome out both by extensive computational

12



results and more importantly by a convergence proof. This convergence proof shows that
PSLP converges to a stationary point of the exact penalty function. It is the first SLP
convergence proof for non-linearly constrained problems of general form. The
convergence theory of PSLP was supported by computational performance done at

Exxon by Baker and Lasdon (1985) who solved “real world” non-linear problems.

Based on Baker and Lasdon’s works, PSLP appears to be a powerful and
promising method for solving general non-linear problems, i.e., problems that have non-

linearity in both the objective function and the constraints.

Readers interested in greater details are referred to the works of Yeh (1985) and
Wurbs, ec al. (1985), both of whom have documented excellent state-of-the-art reviews
on the general appliction of enginecring techniques to the planning and management of

water resources systems.

13



CHAPTER 3

THEORY AND PROBLEM FORMULATION

Theoretical development and problem formulation in this work will be based on a
watershed that has an existing multi-reservoir system. The operation of this system is
optimized to maximize the total net benefit resulting from planting different kinds of
crops, over a time horizon of T periods, each of one month length, with known
unregulated flows g¢,, and initial reservoir content S,,. Here, the subscript n refers to
reservoir number and r to the time period. This general problem has a total of N
reservoirs with no restriction on their layout. This implies that the reservoirs can be in
series or parallel. Figure (3.1) shows the input and outp:'t components of a typical multi-
reservoir system for which the present problem formulation is applicable. The output
components of reservoir n are: spilling from reservoir n to downstream, SP,, total release
from reservoir n to the agricultural lands associated with reservoir n, R,, and the loss/gain
of water through evaporation, rain, and infiltration, if any, from reservoir n. Whereas, the

input component of reservoir n which is the total regulated inflows into reservoir n, Qn, is
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the sum of the unregulated flows from tributaries to reservoir n, g,, and the spilling from

one or more directly connected upstream reservoirs.

In modeling the planning of irrigation multi-reservoir systems, the objective is to
calculate the amount of water to be released, stored. and/or spilled to another reservoir
according to the economic value. For agricultural purposes, the irrigation multi-reservoir
system planning policy should reflect the economic value of stored versus released water
in all reservoirs. A planning model has been developed to estimate crop yields, transform
yields into net benefits, and maximize the economic value of available water. For a single
kind of crop this can be done by developing a model with the objective of maximizing the
total crop yield for the areas covered by all the reservoirs, subject to physical constraints
such as mass balance. target demands and storage limits. For a multiple crop case.
however, the objective is to maximize the total net benefit, B, which reflects the difterent
unit values of crops and different water requirements per unit of crop land. Therefore.
fixed costs, F., variable unit costs, V., and the crop unit price, P. must be included to
figure out the amount of acreage A.. and the time and quantity of release to each crop.

Variables denoted by subscript ¢ refer to a specific crop, ¢, numbered between 1 and C.

The objective function for a single crop would be:

Maximize B = i[m(e -V.)- F.) A @3.1)
n=}
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SP.

Legend:

R, . Release from reservoir n

Q, : Regulated inflows into reservoir z
AN Reservoir
Agricultural land associated with reservoir n
E, : Evaporation from reservoir n

SP,. Spilling from reservoir n
¢» . Unregulated flows from tributaries to reservoir n

Figure (3.1) Input and Output Components of a Typical Multi-Reservoir System
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where, B is the total dollar value of the net benefit resulting from planting a

certain kind of crop c.

Y.. is the predicted total yield of crop c, planted at an area served by

reservoir n, in (unit yield/L®).

1. For grain crops, unit yield is measured in terms of either mass or

volume, M or L?, depending on the crop.

2. For dry matter crops, unit yield is measured in terms of mass.

M.

P.. V. and F. are constant associated with crop c. So, if area A.., is constant. then

maximizing the net benefit will be nothing but maximizing the total crop yield.

This formulation is extended to several crops in the next paragraph.

3.1 Objective Function:

The objective of the model is to maximize the net benefit from several crops as

described by the following equation:

N C
M aximize B = EZ[YC,,, (P.-V.)- Fr] Acn (3.2)
n=l c=1
where, B is the total dollar value of the net benefit resulting from planting C

different kinds of crops.

P. is the unit market price of crop c, in ($/unit yield).
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V. is the variable unit cost of crop c. in ($/unit yield).

F. is the fixed cost of crop c. in ($/L°).

A_, is the planted area of crop ¢ served by reservoir n, in (Lz). A, is either

prescribed or a variable determined by the optimization process.

Crop prices, variable and fixed costs must be known. They can be obtained by

compiling information from the farmers in the region.

3.1.1 _ Crop Yield:

The two equations (2.1) and (2.2) presented 1n section 2.1 will be used.
Inspection of these two equations reveals that the crop yield is a function of the ratio of
actual to potential evapo-transpiration. Dariane and Hughes (1991) have adapted these
relations for reservoir management by assuming that the ratio of available water to water
demanded for a crop is analogous to the ratio of actual to potential evapo-transpiration

by that crop. They recommended the following two equations.

I. for grain yield:

T v y Ao,
Y, =Y’ H(—-——" ' ) (3.3)

=] cnt

2. for dry matter yield:

I |
Yon= DY, (b_—) (3.4)
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where, Y’. is the potential grain yield for grain crop c, in (M/L?) or (LY/L?).

Y, . is the potential dry matter yield for dry matter crop ¢ during month 1,
in (M/L?).

Vens is the available water for crop ¢ planted in the area served by

reservoir n, during month 7. in (L*).

Dc,; 1s the water demanded by crop ¢ planted in the area served by

reservoir n, during month ¢, in (L*).

A is the relative sensitivity of crop ¢ to water deficit during month r. It is
an exponent used to give the relative importance on crop yield of water

available versus water demanded for each stage of growth for each crop.

Note that actual evapo-transpiration is not exactly balanced with available water
for crops. There are some important factors such as soil moisture content at the
beginning of the irrigation season and soil water balance throughout the season that are
ignored in this formulation. Moreover the value of the relative sensitivity of the crop to
water stress A., for equation (3.3) may slighty differ from that of equation (2.1). but
since grain yield is not very sensitive to the value of relative sensitivity (Hank, 1974) it

seems reasonable to use the same A,

The available water for a certain crop, V.., is the water received, by the root
system of that crop, from both rainfall and reservoir release as described by the following

relationship:
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Venr = Renr e+ Pe’ A, (3-5)

where, R.... is the release to crop c, from reservoir n, during month ¢, in (L3).

e is the total efficiency from the reservoir to the root system. It is the

fraction of water released from a reservoir that is absorbed by the root

system.
P, is the effective rainfall, i.e.. the amount of rain absorbed by the root
system, during month 7. in (LY).

The crop water demand for a certain crop., D.,, 1s the potential evapo-

transpiration multiplied by the area planted of that crop as described by equation (3.6).

Dini=UcrAcn (3.6)

where, U, . is the potential consumptive use or potential evapo-transpiration of

crop ¢, during month ¢, in (L).

The Soil Conservation Service (SCS, 1970) proposed a simple equation to
provide good estimates of potential evapo-transpiration, U,,. for long periods. A period
of one month is sufficiently long for its application. In that use. the SCS equation takes

the form of equation (3.7).

U= kc,l F, (37)
where, k., is the empirical coefficient of the consumptive use for crop ¢, during
month ¢.
20




F; is the monthly consumptive use factor. It can be computed with

equation (3.8)

_T.P

F.= 700 (3.8)

where, T, is the mean monthly air temperature, in (°F).
P, is the monthly percentage of daytime hours.
By substituting equation (3.8) into (3.7), one arrives to the following expression

for U,

_ kc.lTI P!

[ S ]00 (3.9)

3.2 Constraints:

The following constraints will be considered in this optimization problem: mass

balance. release. area and storage constraints.

3.2.1 Mass Balance Equation:

In a reservoir problem, the main factors affecting mass balance. are input, output,
and storage. The ci.ange in storage of a reservoir is calculated by adding all the inflows
coming into it, and subtracting the evaporation and the outflows leaving it. Theretore, the

mathematical model for the mass balance of a reservoir is given by:
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ds
o "9-R-E-S, (3.10)

das . . : ,
where, m is the rate of change in the storage of a reservoir.

Q is the rate of inflow into the reservoir.

R is the rate of release trom the reservoir.

E is the rate of evaporation from the reservoir.
Sp 1s the rate of spilling from the reservoir.

Integrating both sides of equation (3.10) between the beginning of period ¢, r At,

and the end of period 1. (++1) At, yields,

i+l A (t+11Arf

.[dSz ,[ (Qu)-Rm—Em_Sp. )dt
[RY] 1A1 v
or,
(r+1) Ar t+ A (r+h A (+h s
S-S = [Qudr= [Rydi- [E di- [s, dr @3.11)
1A ol 1At tAr

The rate of flows and evaporation (volume/time) can be converted to volumes

during a time period of ¢, as follows,

(141} Ar (r+1) &t (r+1) 4t U+1)Ar
0= [o,dt. R= [Rydt E,= [E,dr s, = [s, dr (3.12)
tat 1At tar t Ar
2




Substituting equation (3.12) into (3.11) yields the discrete mass balance equation

of a reservoir.

Sl+l.n= Sin+ Q,.,.,_R;,,,-'E,_,,—Sp (3.13)

"n

where: Sin and S, are the storage volumes of reservoir n at the beginning (r)

and end (¢+17) of the current month ¢, in (L").

O:» 1s the inflow coming into reservoir n during month 1, in (LY. It is

described in equation (3.14).

R, is the total agricultural water volume released by reservoir n during

month r, in (L).
E,, is the volume of evaporation trom reservoir n during month, 7, in (L),

S, 1s the volume of water spilled by reservoir n. during month, #, in (LY.

The inflow coming into reservoir n during month, 7 . is the sum of the unregulated

tflows and spills (from upstream reservoirs) into that reservoir.
0, =dq,+|MS, ] (3.14)

where, g.» is the sum of unregulated or independent flow volumes between
reservoir n and the reservoirs immediately upstream during month ¢, in

(LY.

[M S p] is the total volume of water spilled into reservoir n. One or
' n

23



more reservoirs can contribute to the spilled volume.
M is a routing matrix described later.

For the multi-reservoir system, S, Q. R, E, §, and ¢ for a specific time period 1.
are vectors of size N, where N 1s the number of reservoirs. The volumes of water spilled

into reservoir n is the sum of water spilled by directly-connected upstream reservoir:

A reservoir can receive inflows from one ore more directly-connected upstream
reservorrs. Figure (3.1) shows reservoir No. 4 recewving inflows from two directly-
connected upstream reservoirs, No. 2 and No. 3. A routing matrix M is used to account
tor the flow of water from upstream to downstream reservoirs and therefore is
constructed to retlect the contiguration of the system. For a system with N reservoirs. the
routing matrix is a square matrix of size N with elements. (0 or 1. The mauix element
S, hos a numerical value of 1 when reservoir i receives the outflow of reservoir j. or 0 of

the two reservoirs are not directly-connected.

Equation (3.14) assumes that there is instantaneous equilibrium between
reservoirs. If the times of travel of flows between reservoirs are small compared to the
time priod used, this assumption is justified. In general. time-discretization periods of
onc month are used. In such cases, travel times are much shorter than the time period

used, and hence the above assumption is valid.



The routing matrix, M, corresponding to the typical multi-reservoir system shown

in Figure (3.1) is,

Sei St Sen Sa. S, 0 0o 0 0o 0]
Seev Spy Sen S Sa. 1 0 0 0 0
M=|S, S, S, S, S.| =1|0 0 0 0 0
Sp«.. 5,,4 : S,,‘ ‘ S,,, ) Sp‘ ‘ 0 1 1 0 0
Sne S S Sue Sa 0 0 0 1 0], ,

In equation (3.14). Q... consists of the sum of unregulated flows between
reservoir n and the reservoirs immediately upstream. and the total volume of water spilled
into reservoir n. @,,. which is used in the mass balance equation (Eq. 3.13), can be
multiplied by a factor less than one to include the channel seepage loss. if any, between
any two directly-connected reservoirs. This factor car either be obtained from previcus
measurements of channel seepage between each two directly-connected reservoirs, or, it
can be estimated from an empirical coetficient that gives the seepage per unit length of

channel. This coefficient depends on channel bed texture.

The evaporation rate from a reservoir at time r, can be calculated with the

following equation,

Ey= ay Ly (3.i5)

where, a and L, are the reservoir’s surface area and normal lake evaporation

rate, at time ¢.

The reservoir’s surface area at time ¢, a, is calculated by,
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a=p S, (3.16)

where, Sw s the reservoir storage dt time .

p and z are co=fficients describing the geometry of the reservoir.
They can be obtained by fitting the reservoir’s surface area versus

reservoir storage relationship to available data. See Figure (3.2).

Substitution of equation (3.16) into (3.15), and substitution of the resulting

equation into equation (3.12) yield,

[R22WRY; (1+11Ar o+ A
E = [E,di= [a,L,d= [L,pS5:d (3.17)
1A (Y [RY
The evaporation rate L, is only available as a monthly average L,. Since the
evaporation rate does not vary considerably during one-month period. in equation (3.17)
L., can be replaced by its average over the period without significantly affecting the

results.

u+ AL

E =Lp [S:d (3.18)

(
1A

Since the reservoir storage can only be known at the heginning and end of each
time period of study, an approximating rule had to be applied, like the trapezoidal rule.
That is, the average surface area of reservoir n during month ¢, can be approximated by

assuming that the reservoir’s storage during month ¢ is equal to the average of storage at
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the beginzing of a current month r and the end of that month, as shown in Figure (3.2).

Sl.n +S|+l.n -
Qn =Pn| ™5 (3.19)

Srn+sr+ln

where, ——T—" is the average reservoir storage during period .

Surface Area
/

din

>,
>

Stn Sertm Storage

Figure (3.2) Reservoir Surface Area vs. Storage Relationship

Finally, the evaporation volume from reservoir n during period ¢ can be expressed

En= ain L, (320)
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where, a,, is the average surface area of reservoir n, during month ¢, in (L?).

L; is the normal lake evaporation during month ¢, in (L).

3.2.2  Release:

Equation (3.21) describes the total release to all crops from reservoir » during

month z.

C
Rl,n= ERc.n.l (321)
e=]

This release is physically limited by upper and lower bounds. The upper bound
depends on the maximum channel flow rate, which in turn depends on the channel design.
The lower bound is either zero or a small flow rate, sufficient to guarantee that the

channel remains clear of debris.

RMIN .. £ R, < RMAX ., (3.22)
where, RMIN,, and RMAX,, are the upper and lowcr bounds on release tor
TESEervoir n.

Furthermore, the available water for crop ¢ should never exceed the water

demand by that crop:

Vet S Den (3.23)

Substituting equations (3.5) ar1 (3.6) into (3.23) and making some
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rearrangements yield the following expression for releases:

]f‘—‘i (3.24)

Rauslu, -P, -

Under limited water supply conditions, an additional constraint (equation 3.25)
must be added to guarantee that all the crops will at least receive the minimum water

requirements during all the periods of the growing season.
Ac.
Ren 2t U, - P, |22 (3.25)
e

where, {c is the minimum percentage of the full crop water requirements to allow

the crop to be produced throughout the season.

3.23 Area:

The total area to be irrigated by each reservoir can be either specified or
calculated for each crop. At the beginning of each planting season, it is best to specify the
total area that each reservoir is responsible for, as an upper bound and let the model

allocate it among the crops.
C
> A< ATOT, (3.26)
c=1

where, ATOT, is the total area (planted or not) under the responsibility of

reservoir n, in (L?).
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The model allocates all of the unconstrained areas to the crop with the highest net
revenue. However, this ignores that son.c farmers may want to plant some crops in which

they have special interest. Equation (3.27) provides a means to accommodate this

situation.
Qo2 My 0, tore[d,,+1,d,] and nell,N] (3.27)

where, the farmers are enumerated starting from the first reservoir to the last. @,
represents the number of farmers enumerated in reservoir 1 to . Since no

farmer is enumerated betore reservoir 1, @, = 0.

M, is the minimum fraction of the total area owned by farmer ¢ that

must be allocated for crop c.

Olo . is the minimum area of crop ¢ that farmer ¢ wants to plant.
o, is the total area, planted or not. owned by farmer ¢.

The planted area of crop c. served by reservoir n, is equal to the sum of areas

planted with crop c, by each farmer whose land is irrigated by reservoir n.

2,
A,= o,  forpe[®.+1,P.] andne(l,N] (3.28)

6=, +]

Using new variables for farmers will dramatically increase the number of variables

and constraints. This could make the computer program much slower. Therefore, an
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alternative solution, with less farmer variables, was sought. This alternative solution
states that the minimum area requirement for crop c, served by reservoir n, should at least
be equal to the sum of the minimum area requirements, for crop ¢, of each of the farmers
whose land is irrigated by reservoir n. Therefore, equations (3.27) and (3.28) can be

replaced by the following expression,

®’I
Ay 2 DB, 0  forde[®m+],®,] and ne(l,N] (3.29)
¢

=0, +1

The total number of variables and constraints for both equations (3.27) and (3.28)
is (CxN + ¢xC) whereas the number of variables and constraints for equation (3.29) is
{CxN). This means that the above alternative solution reduces the number of variables by

¢oxC variables and also reduces the number of constraints by ¢xC constraints.

3.2.4 Storage:

Maximum capacity and minimum dead storage of each reservoir must be specified

to determine storage limits.

SMIN ,, £ S, SSMAX,, (3.30)
where, SMIN,, and SMAX,, are the upper and lower bounds on the storage of
IESErvoir n.

3.3 Summary of the Planning Model:

The model presented above can be summarized with the following equations.
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Objective:

Y [Ye(Pe-V)-FAca (3.2)

e=]

M=

Maximize B =

[
—

n
where,

1. for grain yield:

(Ve )
Yo=Y .[1 [D——J (3.3)

=1

2. for dry matter yield:

T Ve
Yio= z Yp“ L ] (34)

r=1 cnt

Subject to:

Mass Balance:
Sl+ln= SI,n"'Q,,,—Rt.n—El.n"SPM (3.13)
Release:
C
Ra= X Rew (3.21)
c=1
RMIN 2 € Rin S RMAX in (3.22)
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Acp

Rn.<\U., -P == .

( c ) . (3.24)

Acn
Rn28, (U, - P, )—e— (3.25)
Area:
C
Y Acn < ATOT, (3.26)
c=1
@,

ALz D H,. O (3.29)

o=, ;+l
Storage:
SMIN 1 < S.n < SMAX,, (3.30)

Inspection of the model summary reveals that the objective function is non-linear
in the yield function for grain crops. In addition, there is a non-linear constraint, the mass
balance equation (Eq. 3.13) because of the non-linear evaporation term. All other terms
in both the objective function and the constraints are linear. To circumvent the non-
linearity of the problem, the penalty successive linear programming (PSLP) method was

selected because of its simplicity and for the reasons presented in Chapter 2.

4 datin Model:

The model consists of two planning modes. The first mode is to run the model at
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the start of the growing season and the second mode is to update the model at the

beginning of each month with recently collected data, for the reasons expiained in

subsequent paragraphs.

Designers can improve the predictive performance of the model by updating it at
the beginning of each month with data that has become available. Before the start of each
growing season the model should be run to apportion the area to each crop from the
agricultural areas associated with each reservoir and to predict the approximate quantities
and times. of releases to the cultivated lands. and spilling to other reservoirs. To figure
out the final estimated yields of the crops for the different areas planted, during the
season the model should be updated at the beginning of each month in order to adjust the
storage in each reservoir. Updating does not necessarily mean an increase in the net
benefit but rather helps to improve predictions and makes the adjustments that are

necessary.

In the updating mode, the optimal crop areas calculated in the first mode must be
considered to be known and fixed throughout the growing season. However, the level of
reservoir storage must be adjusted, since there may be some difference between
calculated and actual storage levels. The expected difference may be partially due to
deviations from expected climatic factors, such as levels of precipitation and evaporation:

or could be due to the difference between actual and estimated inflows and releases.

3.5 Application of Successive Linear Programming:

The application of Successive Linear Programming to the model is presented in
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the following section.

3.5.1 _Application of PSLP to the Model:

Based on the literature review presented in Chapter 2, PSLP appears to be a
promising method for solving this multi-reservoir optimization problem. However, first
some transformations should be made to the objective function to bring to a form suitable

to the PSLP method.

Substituting equations (3.5) and (3.6) into equations (3.3) and (3.4) yields the

following expressions for grain and dry matter yield,

1. For grain yield:

v Renre+ Pe Acn e
=Y : (3.31)
‘ H( Uct Acn J
2. For dry matter yield:
T R ., e+PA
= cen,l e, cn 3.32
Yen 2 Y, ( U A ] (3.32)

Substituting equations (3.31) and (3.32) into equation (3.2) and numbering grain
yield crops from 1 to C; and dry matter crops from C,+1 to C yield the following

objective function formulation,

n=l c=1 =1

N con P AC"
B-ZZ[Y\D V)H( ;+A ) -FC]AM
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Y & I R P A
DI [(P,-VC)ZYM (——%—-—)—F AM] (3.33)

n=l c=Cy+l =] ot

Equation (3.33) consists of a first part, which is non-linear, and a second part,
which is linear. This equation’s independent variables are R.., and A.,; all other
parameters should be known and must be specified. Therefore equation (3.33) can be

characterized as a sum of functions involving the unkuaowns, R. .. and A ..

N G N C
2 Z Rc nts Acn 2 z 62{." (Rc.n.ln Ar,n) (334)
n=l c=l n=l c=Cy+l

ont + €, ch
thre 6 (chlvArn) [ Pr V. )H( ; AP'A J FC]AC'"
=1 ctAen

Li Rr,nle+P¢- Acn
and 63”(Rc.n.thc,n) = (PC-VC)ZY“(——T_)— F. Acn
=1

cd

All the non-linear constraints in this model (the mass balance equation 3.13) are
multiplied by positive large values, W;,. and subtracted from the objective function (Eq.

3.34) to yield the exact penalty function, p, below:

N G N c N T
p= 2261:.. (Rc.n,l‘Acﬁ)+ Z 2 82'-" (RC-"-"AC-") —ZZ“II}I h

n=1 c=} n=1c=Cy+1 n=1 1=)

(3.35)

tn

where, h =E

tn

nt SH-!.n —Sr,n - Qul +Ru| + Sp,‘,,

Hence, the linearly constrained penalty problem (LCP) maximizes p subject to
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linear constraints in the feasible solution space, F.

F={S8..R.,..S, 1 h.=0, for te[1,T], ne[1,N] and subject to all the linear

constraints}.

PSLP attempts to solve the above LCP problem by first linearizing it using a first
order Taylor series expansion for the non-linear variables, about a base vector (R"..,...
A%, $°.: ). In this case, the vector is made of C;xNxT values of R’ nis CixN values of

A°., and TxN values of 5%, ;... Note thatd, depends only on R, and A, that R and A

have the same ¢ and n indices. Application of the PSLP method to equation (3.35) yields

the following linear approximation of the penalty function, p; .

N G 7 N C
P = 22[81“ (Rf.n,r ’ Aron)+ Zbc-’” dl, et + """"dZM :l + 2 2 82, . (Rr.n.l 'Ac,n )_ pl,
n=l c=l ' r=1 ' n=]c=Ci+l
N
p, = Zw,,,,IEl 4S8, =S, -0, +R,+ S, + \szdlz,l
- (3.36)
+ Y Y WilE, +Spa =S~ Qo+ R, +S, + W ,d  +VY dy
n=} r=2
where,
_ 861, n (Rc.n,t‘ Ac.n) _ 851,,, (Rc,n,t‘ Ac.n)
s aRc.n.l l 0 ° m‘-‘"‘ B aAC.'I I 0 0
Reni=Rens A n=Ac R =R A=Al
ah"" ahx,n
¥, == VYVan =
" 9z IS:_..=5§’u " ISini Sii1a=Sie1n S a=S)n
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oh,, 0
on =-aT- dl‘,,, = cat —Rc.n,l
rn S0 ,.:.\‘,U‘, n S N:S,o"
d?.,.,, = Ac.n - Afn dln = S:,n _SIU'"
El.n = El.n (SUZ.n) Er.n = E!.n (Sor+1.n~SOI.n)

d,’s represent the change in the non-linear variables between any two consecutive

iterations.
and S1 . is the known initial reservoir storage.

Since the non-linear parts are continuously differentiable. p, is a good
approximation to p if d,’s are not large. Thus p can be maximized by a sequence of

maximization of p,, with upper bounds on d,’s. This leads to the approximating problem:

Problem LP:
Maximize p,
subject to:
1. all the linear constraints.

2. -Bsd =B for i = number of tvpes of non-linear variables.

The mass balance equation (equation 3.13) can be written as:

E

tn

+S§ —Sl‘n - Qa,n + Run +SP,,, =0 (3.37)

t+ln

The first order Taylor series approximations of equation (3.37) is applied to tke
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non-linear variables.

For convenience. new independent positive variables n and p are introduced. (n,,-

Pin) is added to the left side of equation (3.37).

pl.n —nl.n = El,n

pm —"r.n = El.n

+87, =81, =0, +R,+5; +¥,,d; if r=1 (3.38)

t+in 1+l

#80, =S =0+ R, S, +Wdy  + WA, S 151 (339)

Later in this section, it will be shown that the objective function of the linearized

planning model (equation 3.42) minimizes the values of n,,,’s and p,,’s variables.

The right hand side of constraints (3.38) and (3.39). wnich are the only

constraints that involve the n,,’s and p,,’'s variables, cin either be: 1) zero 2) a positive

value or 3) a negative value.

Case 1:

Case 2:

If the right hand side of equations (3.38) and (3.39) has a zero value.
then, p,, —n,, =0. Even though this equation has an infinite number of
solutions, the optimization planning model which minimizes the values of
(Mea’s + pon’s) variables will lead to the following unique solution for n,,
and py..

Pin=n,=0

Ln

If the right hand side of equations (3.38) and (3.39) has a positive value,

r, then, p,,—n,, =r or p, =n, +r. Since the optimization model

minimizes p,, +n,, which is equal to 2n,, +r, it can be seen that the
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minimum will occur when n,, is minimum and p,, is equal to r:

p,=r and n, =0

tn
Case 3: If the right hand side of equations (3.38) and (3.39) has a negative value,
-r, then, p,, —n,, =-r. By applying the same procedure described in

case 2, it can be shown that, the optimization planning model will have

the following solution.

p.=0and n,=r
In all the above cases, either n,,.. p,, or both will be zero, and thus (p;,) () = 0.

Providing that, (p;.)(n,,) = 0, and taking the absolute value of both sides of

equations (3.38) and (3.39) the following can be written:

l\yhd‘_ +E, +5.,~5,-0,+R, +5,,“|=,,M+n,ﬂ it =1 (3.40)

di +¥,d, +E 2 S =S =0+ R, +S, |=p, +n, if 1>]1 (3.41)

I*l.ﬂ

Substituting equations (3.40) and (3.41) into (3.36) and omitting the constant
terms (which have no eftfect on the optimum search) from equation (3.3) yield the

linearized planning model (LP):

N G
Maximize LP = ZZZbC"'R'“ z(‘ ancn+z z §, (R,.A.)
n=! ¢.1

n=1 c=] 1=1 n=] c=Cy+1

T
S Win(p,,+ nin) (3.42)

n=/ =]
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subject to all the linear constraints in the planning model, to the linearized constraints

(3.38) and (3.39), and to the following constraints, which improve convergence:

-B1+R.,, <R.,, <Bl+R’,, for ce(1,Gy] (3.43)
-B2+A), <A, <B2+ AL for ce{1,G] (3.44)
~PB3+S.,,<S,,., <B3+S.,, force[l.C] (3.45)

3.5.2 ThePSLP Algorithm:

The penalty successive linear programming algorithm works as follows:

1. Select initial values for the variables. x*, satisfying all the linear constraints.

Select positive B1. B2, B3. B and a vector of positive weights W, .
Choose scalars 0<p,<pi<p2<1 and m>1.
Set k = 0.

2. Solve LP(xk, B") to obtain an optimal solution Pl

3. Compute the actual change in the exact penalty function:
A pi=p(¥)-p(x)
and the predicted change by its piecewise linear approximation, p;:

Ap, = p(x*") - p,(x*)
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note that p,(X') = ().

If any one of the following criteria occurs the program terminates:
a. | obj(*)-obj() | < £ (1+ ] obj(x) ).
b. | pt*)-pety < &1+ 1 pey .
e [ < e(1+ 4.
Where, obj and p are the objective function value and the exact penalty
function value respectively.
k+1 and k indicate the current and previous iterate.

Conditions (a) and (b) must be satisfied for three consecutive iterations in

order to terminate the algorithm.

If none of the above criteria takes place then, compute the ratio of actual to
predicted change:

ry, ==
¢ API,

k
4. If r < po. then replace P* with E": . g0 back to step 2; otherwise update {3

k+1

by:
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3\

i) {l-r|<p
B m, if '“”I o
i) |x** = x| = B
k
k+l=<_'3_ -f 1_ > .
B m, 1| rkl P2
g otherwise.

Condition (i/) must be sctisfied, for any variable, for three consecutive

iterations.
Replace B**' with the maximum of B**/ and B.
Replace k by k+1 and return to step 2.

This algorithm is of the trust region or restricted step type, which is defined by the

constraints (3.43). (3.44) and (3.45). The ratio r; is used to judge if B‘ is of a proper size.

Theoretically, p, and B can be arbitrary small positive numbers, and the algorithm

is not sensitive * 9 their precise value.

Figure (3.3) represents a simplitied flow chart of the PSLP algorithm.
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Figure (3.3) Flow Chart of the PSLP Algorithm

A computer code for the PSLP algonthm described above was written using

ANSI FORTRAN 77 and it included a Simplex subroutine adapted from Press et. al.

(1992). The mathematical formulation of the planing model explained in Chapter 3 was

implemented in a computer program. The resulting MAXCROP model was validated and

then applied to a realistic problem.




CHAPTER 4

CODE AND MODEL VALIDATION

Program validation is an integral part of software development. Without it. it is
impossible to make any judgment about the validity of the results produced by the
program. It is therefore crucial that a significant verification of the model be undertaken

before making any conclusion about the quality of its results, and its usefulness.

The following presents the test that were performed with MAXCROP model.

described in Chapter 3.

4.1 Tests:

The computer code was tested against non-linear problems published in the
optimization literature. Problems resembling the mathematical formulation of the
MAXCROP model were chosen. All the tested problems gave the best obtained objective
values. Two non-linear problems (problem No. 1 and problem No. 2) will be discussed in

subsequent paragraphs.
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4.1.1 Non-linear Problem No. 1:

Non-linear problem No. | corresponds to problem No. 40 of Hock and
Schittkowski (1981). The objective function of this problem is a simple product of the

variables, x;, x2, xz and x; :

MIN fix)=-xx2x:x4 4.1)
subject to:

xj+x3-1=0 (4.2)

Xixe-xi=0 (4.3)

Xi-x=0 (4.4)

Since the computer code maximizes objective functions, the minimization problem
is transformed into a maximization problem, simply by changing the sign of the objective

function. Theretore. equation (4.1) should be replaced by:

MAX f(x)=x1x_vxax4 (45)

subject to the above constraints.

This problem was chosen because, the objective function of the MAXCROP

T
model contains a non-linear multiplication term H

=)

(RC,,_,e + P, Acn

Kr.l
which is more
UC.I AC,’I )

complex but still resembles that of problem No. 1 (shown in equation 4.5), and because
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the mass balance equation in the MAXCROP model (equation 3.13) is a non-linear
equality constraint where its non-linearity is in the storage term raised to the power z (s°),

which resembles constraints (4.2), (4.3) and (4.4) of problem 1.

Note that under the following special conditions, the objective function of the

MAXCROP model becomes identical to that of problem No. 1 (equation 4.5).

1. the watershed consisis of one reservoir, only one grain crop will be planted and

the relative sensitivity of that crop to water stress, A, is equal to one;
2. the growing season consists of four periods:

3. the fixed costs of the crop is very small compared to the variable unit costs and

unit price of that crop;
4. the effect of rainfall on crop growth during the growing season is neglected.

Under the above conditions, the objective function of the MAXCROP model

2 Y (P.-V.)e .
becomes, MAX B = ZC,RC_,,‘,, where c, =—"—(—-——-)— = constant for each z, which is

=1 Ur,x
identical to equation (4.5) where, x, =c, R, ,, forr=1,4.

The same initial values given in Hock and Schittkowski (1981) to each variable

were used: 1%, =0.8,x-=0.8,x%=0.8,x%=0.8.

Hock and Schittkowski reported the best known solution, of the studied non-linear
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problems, obtained by applying different optimization procedures.

A comparison of the results is shown in Table (4.1), where the relative difference is
equal to the difference between MAXCROP and the best known solution divided by the

best known solution. It can be observed in Table (4.1) that the maximum absolute relative

difference is 5x107.

Table (4.1) A Comparison of MAXCROP and Best Known Solution for Test No. 1

Objective Function = MAXCROP Best Known Solution Relative Difference
Variables solution
X1 0.79367507 0.79370056 -0.00003
X 0.70714074 0.70710676 0.00005
X3 0.52971023 0.52973155 -0.00004
X4 0.84091663 0.84089643 0.00002
Slx) (0.25000000 0.25000000 0.00000

4.1.2 Non-linear Problem No. 2:

Non-linear problem No. 2 corresponds to problem No. 86 of Hock and
Schittkowski (1981). This problem was selected because it resembles the objective
function of the MAXCROP model (equation 3.31) which consists of two parts, the first
part contains summations of multiplications of non-linear variables and the second part

contains su.nmations of linear variables.

Problem No. 2 can be stated as:
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MIN f(x)=ie,x,-+iic.,x,x,-+id,xi (4.6)
j= j=
subject to:
5
Y asx,-b,20 i=1,..,10 (4.7)
where, ay. b, c,, d,and e, are constant values given in Table (4.2).
Table (4.2) Data for Non-linear Problem No. 2.
J 1 2 3 4 S
¢ -15 -27 -36 -18 -12
¢y 30 -20 -10 32 -10
Ca -20 39 -6 -31 32
Csj -10 -6 10 -6 -10
Cyi 32 -31 -6 39 -20
Csj -10 32 -10 -20 30
d; 4 10 6 2
aj; -16 2 1
ay; 0 -2 4
a; -3.5 0 0 0
ay 0 -2 0 -4 -1
asj 0 -9 ) 1 -2.8
as; 2 0 -4 0 0
as; -1 -1 -1 -1 -1
as -1 -2 -3 -2 -1
ag 1 2 3 4 5
aj 1 1 1
b; -40 -2 -0.25 -4 -4
bs.j -1 -40 -60 5 1
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Since MAXCROP maximizes objective functions, equation (4.6) should be

replaced by the following equation.

5

5 35
MAX f(x)=-2e,x,— Zc.,x.x,-Zd,xf (4.8)

5
=1 =] =1 =1

Equation (4.8) is subject to the constraints of test No. 2.

The initial values given in Hock and Schittkowski (1981) to the variables were

7] /]
used: 1" =0,x"=0.x"=0,x=0,s=1.

A comparison of the results is shown in Table (4.3). The relative difference is
equal to the difference between MAXCROP and the best known solution divided by the

best known solution. The maximum absolute relative difference is 4.5x10™,

Table (4.3) A Comparison of MAXCROP and Best Known Solution for Test No. 2

Objective Function = MAXCROP Best Known Relative Difference
Variables Solution Solution
X 0.30000001 0.30000000 0.00000
X2 0.33351102 0.33346761 0.00013
X3 .40000001 0.40000000 0.00000
X3 0.42841557 0.42831010 0.00024
Xs 0.22386311 0.22396487 -0.00045
f(x) 32.34867859 32.34867897 0.00000
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4.2 omparison to an Existing Model:

The MAXCROP model was tested against an existing one-reservoir planning
model (Dariane, 1989). Dariane’s model is the only existing model that resembles
MAXCROP in both the objective function and the constraints. Dariane used GAMS which
is an NLP optimization package obtained from Brook, et al. (1988) to solve his problem.
The objective of Dariance’s model is to calculate the acreage for each crop, the amount of
water to be stored in the reservoir and the monthly release to each crop to maximize the
total net benefit to be obtained from planting different kinds of crops subject to mass
balance, target demand and storage limits. Dariane uses both surface water and
groundwater to maximize the value of multiple crop yields as described by the following

objective function:

C
MAX B= Y [(P,-V,)Y, - F.]A,, - Pumping Costs (4.9)

c=)

Dariane's model was applied in a semi-arid zone to the Sevier Bridge reservoir
located in south-central Utah. The size of that reservoir is 236.150 acre-ft (291.2x10°m’).
and it is responsible for irrigating an agricultural land of about 60,000 acres (24,282 ha).
Three different kinds of crops were to be planted. O, * of them is aifalfa which has an
already planted area of 28,000 acres. Therefore, the model has to use this as a fixed area
without considering any fixed costs besides the other three crops. This makes the model as
if it had four different kinds of crops: two d 'y matter (fxalfalfa and alf~lfa), where fxalfalfa

is the already planted alfalfa (no fixed costs) and two grain crops (corn and wheat).
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The only difference between the objective functions of Dariane’s model and the
MAXCROP model applied to a one-reservoir watershed (equations 4.9 and 3.2 for n=1) is
the usage of groundwater in Dariane’s model. To make the MAXCROP model
comparable to Dariane’s, the effect of groundwater attribution to crop irrigation was
replaced by its equivalent reservoir storage. Also, the equation for reservoir evaporation

was modified in the MAXCROP model to match that of Dariane’s problem.

Dariane’s estimate of the reservoir surface area at time ¢ (a;) for the Sevier Bridge

reservoir by the best-fit line of the surface area versus storage curve was as follows:

St + St+
a, =450+ 0.044(-—3——‘) (4.3)
which can still be presented in MAXCROP.
2
with the following modification:
+S.aY
a, = constant + p (S 5 I) (4.4)

where, p = 0.044, z = 1 and constant = 450.

Notice that the derivatives of equations (4.4) and (3.16) are equal. Moreover, if we

substitute p = 0.044 and z = 1 and add the constant 450 into equation (3.16) then.
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equaton (3.16) will be identical to equation (4.3).

Atter the above modifications were made, the MAXCROP model was run to
maximize the total benefit that can be obtained from planting those four kinds of crop

according to the data given in Dariane (inflow data, climatic data, crop data...., etc.).

4.2.1__Comparison of Results:

In this section, the results obtained from MAXCROP will be compared with those

obtained from GAMS.

4.2.1.1 Releases:

A comparison of the releases during each month tc corn, wheat, fxalfalfa and
alfalfa by both MAXCROP and GAMS is shown in Tables (4.4), (4.5), (4.6) and (4.7)
respectively, refer that the relative difference is equal to the difference between releases

obtained from MAXCROP and GAMS divided by the releases obtained from GAMS.

It can be noticed from those Tables that the maximum absolute relative difference
is 1.4x10™ for corn, 3.0x10® for wheat, 0.9x10™ for fxalfalfa and 2.5x10* for alfalfa.
These are very small and their effect to the crop net benefit is insignificant as it is shown in

section 4.2.1.4.
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Table (4.4) A Comparison of Releases to Corn During Each Month by MAXCROP and

GAMS. in acre-ft.

Month MAXCROP GAMS Relative Difference
Model Model

April 0.0 0.0 0.00000
May 694.1 694.0 0.00014
June 3921.6 3922.0 -0.00010
July 9196.8 9197.0 -0.00002
August 7359.5 7360.0 -0.00007
September n) 0.0 0.00000
October 0.0 0.0 0.00000

Table (4.5) A Comparison of Releases to Wheat During Each Month by MAXCROP

and GAMS. in acre-ft.

Month MAXCROP GAMS Relative Difference
Model Model

April 3177.0 3178.0 -0.00030
May 9064.3 9064.0 0.00003
June 13037.8 13039.0 -0.00009
July 3327.9 3328.0 -0.00003
August 0.0 0.0 0.00000
September 0.0 0.0 0.00000
October 0.0 0.0 0.00000
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Table (4.6) A Comparison of Releases to Fxalfalfa During Each Month by MAXCROP

and GAMS, in acre-ft.

Month MAXCROP GAMS Relative Difference
Model Model

April 0.0 0.0 0.00000
May 11132.0 11133.0 -0.00009
June 17815.8 17816.0 -0.00001
July 24310.0 24311.0 -0.00004
August 19901.3 19901.0 0.00002
September 112020 11201.0 0.00009
October 0.0 0.0 0.00000

Table (4.7) A Comparison of Relcases to alfalfa During Each month by MAXCROP

and GAMS, in acre-ft.

Month MAXCROP GAMS Relative Difference
Model Model

April 0.0 0.0 0.00000
May 1192.7 1193.0 -0.00025
June 1908.8 1909.0 -0.00010
July 2604.6 2605.0 -0.00015
August 21323 2132.0 0.00014
September 1200.2 1200.0 0.00017
October 0.0 0.0 0.00000
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4.2.1.2 Planted Areas:

The planted areas obtained for each crop for both models are identical, as shown in

Table (4.8).

Table (4.8) A Comparison of Planted areas of Each Crop by MAXCROP and GAMS,

in acres.
Crop MAXCROP GAMS Relative Difference
Model Model
Corn 11000.0 11000.0 0.00000
Wheat 18000.0 18000.0 0.00000
Fxalfalfa 28000.0 28000.0 0.00000
Alfalfa 3000.0 3000.0 0.00000

4.2.1.3 Reservoir Storage:

A comparison of reservoir storage at the beginning of each month between
MAXCROP and GAMS is shown in Table (4.9). It can be noticed from that Table that the

maximum absolute relative difference is 2.0x10™.

4.2.1.4 Crop Net Benefits:

A comparison of crop net benefit between MAXCROP and GAMS is shown in
Figure (4.1) and in Table (4.10). The relative difference of crop net benefit can be seen in

Figure (4.2).
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Table (4.9) A Comparison of Reservoir Storage at the Beginning of Each Month by

MAXCROP and GAMS. in acre-ft.

Month MAXCROP GAMS Relative Difference
Model Model

April 120000.0 120000.0 0.00000
May 125439.8 125439.0 0.00001
June 104676.8 104677.0 0.00000
July 68147.9 68147.0 0.00001
August 29635.5 29634.0 0.00005
September 5961.2 5960.0 0.00020
October 0.0 0.0 0.00000

Dariane only reported the crop yield values, not the crop net benefit. The latter
was obtained by multiplying the difference between the average price of crop and variable
cost by the crop yield. The obtained result was subtracted from the multiplication of the
tixed cost and the planted area of that crop. It can be noticed from Table (4.10) that the

maximum relative difference is 1.2x107.

Table (4.10) A Comparison of Crop Net Benefit by MAXCROP and GAMS, in US §.

Crop MAXCROP GAMS Relative Difference
Model Model
Corn 3,402.520.0 3,402,520.0 0.0000000
Wheat 1,843,560.0 1,843,560.0 0.0000000
Fxalfalfa 9,775.225.7 9,775.225.6 0.00000001
Alfaifa 822.345.7 822,345.6 0.00000012
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Figure (4.2) Relative Difference of Crop Net Benefit between MAXCROP and GAMS
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4.3 Conclusions Regarding Validation:

These tests show no significant difference between the results obtained from

MAXCROP and other codes when solving the same problem.

Although these tests do not fully validate the MAXCROP model, they represent
the best possible validation of MAXCROP. The objective functions and the constraints of
the non-linear problems selected for the comparison were similar to the mathematical
formulat’ “n of MAXCROP model. Moreover, the only existing model that resembles the
MAXCROP model is a one-reservoir planning model called GAMS. The results obtained
from the MAXCROP model were consistent in every way with those obtained from
GAMS with & maximum relative difference of 3x10™ that could be simply due to the

optimization procedures approximations or the computer rounding error.
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CHAPTER §

A CASE STUDY: THE MUWAQQAR WATERSHED

5.1 Description of Muwagqar Watershed:

The Muwaqqar watershed is located, 30 km south-east of Amman, the capital of
Jordan. It is a part of the Azraq basin which has an area of 7200 hectares, and is located at
the upstream end of the basin. The Muwaqqar area is located in the 100-200 mm rinfall
zone (arid zone). In addition, the climate of the area is characterised by irregular, sporadic
and unpredictable rainfall. Rain falls during the winter season in the form of intensive
storms of short duration causing high rates of runoff. The intensity of rainfall is high and
infiltration index is very low due to soil surface crust. The net result is large floods

although rainfall is low.

There are three small earth-fill reservoirs in the downstream section of the
Muwagqar watershed about 10 km east of Muwagqar village. They were construcied to

capture flood waters and to store them for irrigation purposes. ‘These reservoirs are
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connected in series where reservoir | lies upstream of reservoir 2 which in turn lies
upstream of reservoir 3. In addition, they are permeable in order to allow water infiltration
into the ground to impound floods. The capacities of reservoirs 1, 2 and 3 are 2.8940,
2.3200 and 3.2500 ha-m respectively and the cultivated areas irrigated by reservoirs 1, 2
and 3 are about 15, 13 and 11 hectares respectively. Figure (5.1) represents the
approximate locations of the six gauge sites and the three reservoirs in the Muwaqqar

watershed.

5.2 __Data Estimation:

Some of the data obtained from the Muwaqqar watershed was limited. Therefore,
some manipulation and personal judgement were employed. Moreover, because of the

scarcity of available data, the precipitation and inflow data were used for 1994-95 season.

5.2.1 Reservoir Evaporation;

Reservoir evaporation is an important parameter of the mass balance equation (Eq.
3.13). A general method to estimate evaporation from reservoirs was discussed in section
3.2.1. The application of the method to the three reservoirs is briefly discussed here. The

evaporation E;, was calculated by equation (3.17):
Et,n= ayn L, (317)

where, the reservoir normal lake evaporation rate (L) for Muwaqgqar watershed is given in

Table (5.1).
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The Muwaqgqar Watershed

Figure (5.1)
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Table (5.1) Monthly Normal Lake Evaporation Rate (mm)

Normal Lake Month

Evaporation Nov. Dec. Jan. Feb. Mar. Apr. May Jun.

L 66 31 31 36 74 156 217 240

The reservoir surface area, a;,, is estimated with equation (3.16):

Sint Stain |
U = p"[—E_l] (3.16)

Values of p, and z, for the three reservoirs were obtained by applying the surtace
area versus storage data for each reservoir as shown in Table (5.2) to the Table Curve
(TC) software. The best fit curve for equation (3.16) has goodness of fit criteria (squares
of correlation coefficients, r*) of 99.57, 99.85 and 99.26 % as shown in Figures (5.2),
(5.3) and (5.4) for reservoirs 1, 2 and 3 respectively. This indicates the high correlation
between surface area and reservoir storage in equation (3.16). The values obtained for p,

and z, are shown in Table (5.3).

5.2.2 Estimating the Inflows:

Precipitation data in the developing countries is usually more available and realistic

than inflow data. Therefore, a simulation model is required to estimate the inflows at the
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Table (5.2)  Surface Area versus Storage Data tfor Each Reserveir
Data Reservaoir 1 Reservoir 2 Reservoir 3
No. Area Storage Area Storage Area Storage
(ha) (ha-m) (ha) (ha-m) (ha) (ha-m)
1. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2. 0.0100 0.1130 0.0190 0.1890 0.0200 0.1390
3. 0.1355 0.4280 0.1800 0.4730 0.1010 0.2180
4. 0.4600 0.8400 0.6960 0.7350 0.2330 0.3760
S. 0.9305 1.0280 0.8095 0.7740 0.5300 0.7900
6. 1.4520 1.2060 1.2470 0.9400 1.0000 1.1000
7. 2.1390 1.3970 1.7350 1.0700 1.6350 1.3760
8. 2.8940 1.6100 2.320 1.2150 2.3740 1.6300
9. - - - 3.2500 1.8800
Table (5.3) Reservoirs Coefficients
-
Reservoirs Reservoir 1 Reservoir 2 Reservoir 3
Coeflicients
Pn 1.046078 0 864693 1.026926
Zn 0.404116 0.387935 0.534822

desired locations. In an ideal case, the output of the simulation model should be used as an
input to the MAXCROP model. However, because of the insufficient data available and
the uncertainty of the exact locations of the gauge sites at the time when this case study

was applied, applying simulation models would not give any realistic results. Therefore,
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the following assumptions were made to illustrate the application of MAXCROP model to

a case study (Muwaqqar watershed).

The watershed was divided into two sub-watersheds by using the Thiessen method
for the locations of rainfall me.suring stations. The rainfall data obtained from the Civil
Deiense station was assumed to be uniform throughout sub-watershed 1 and the rainfall
data obtained from University Farm station was assumed to be uniform throughout sub-

watershed 2. Then. the runoff coefficients method (Varshney 1€86) was used:
Q=KP

where, €2, K and P are runoff, runoft coetticient and rainfall respectively.

Furthermore, it was assumed that X for each month and for each sub-watershed
had a co.astant average value, i.e.. the infiltration rate during each month in each sub-
watershed was copstant. Noticing that gauge stations 1 and 2 are located in sub-watershed
1 while stations 2, 4, 5 and 6 are located in sub-watersh.d 2 and from the above, one
could arrive to the following expression for the average monthly infiltration coefficients

for sub-watersheds 1 and 2 respectively.

fo-
g=l g=1

Pi

K= (4.10)
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K=——-" 4.1
P:
where, K, and K, are the average mionthly infiltration coefficicnts for sub-

watersheds | and 2 respectively.
€, is the monthly runoff for gauge g.
ag is the area covered by gauge g.

P; and P; are the monthly rainfall at Civil Defense station and University

Farm station respectively.

Considering the distance to be traveled and knowing that the soil in the Muwaqqar
watershed has a low infiltration capacity because of the crust at the surface which makes
tae soil almost impervious (Martin and El-jabi 1995), it was assumed that 20% of the
runoff from the gauge sites in sub-watershed 1, which is about twice further from
reservoir 1 than sub-watershed 2, and 10% from the gauge sites in sub-watershed 2
»» aporated and infiltrated. The accuracy of this assumption is not crucial because most of
the time there was excess runoff into the reservoirs whenever there was a storm.
Moreover, the average yearly runoff-precipitation ratio that arrived to reservoir | was
found to be equal to 13.2% when the total area of the watershed was considered which
does not differ much from the calculated inflows for reservoir 1. This justifies the previous

assumptons.
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The streams upstream of reservoir | flow into reservoir 1, The streams between
reservoirs 1 and 2 flow into reservoir 2, The streams between reservoirs 2 and 3 flow into

reservoir 3.

Considering the above, the following relationships for the monthly inflows into

reservoirs 1, 2 ind 3 were estimated as follows.

The monthly inflow into reservoir 1 was estimated to be equal to the sum of 80%

of the stream flows in sub-watershed 1 and 90% of the stream flows in sub-watershed 2.

¢, =08ka, p, +08k.a, p,

where, ¢, is the monthly inflow into reservoir 1.

a, is the area of sub-watershed 1 = 3425 ha.

«

5

,1s the area of sub-watershed 2 that contains the streams going into
reservoir 1 = 2840 ha.
The monthly intlow into reservoir 2 was estimated to be equal to the stream flows
at gauge sites 5 and 6.

g:= Qs+

where, g: is the monthly inflow intc reservoii 2.

The monthly inflow into reservoir 3 was estimated to be equal to the stream flows

going into reservoir 3.
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4, = k.a, p:
where, g3 ts the monthly inflow into reservoir 3.
a,_ isthe area that contains the streams going into reservoir 3 = 45 ha.

The calculated monthly inflows into reservoirs 1, 2 and 3 are shown in Table (5.4).

Only site 2 was used for sub-watershed 1, because the inflow data for site 1 was missing.

Table (5.4) Monthly Inflows into Reservoirs 1, 2 and 3 (ha-m)

Month inflow into reservoir 1 inflow into reservoir 2 inflow into reservoir 3

(ha-m) (ha-m) (ha-m)
Oct. 94 0.8870 0.2855 0.0156
Nov. 94 59.2994 7.8013 0.4604
Dec. 94 27.5729 5.5282 0.2984
Jan. 95 0 0 0
Feb. 95 0.9286 0.3088 0.0164
Mar. 95 0 0 0
Apr. 95 0 0 0
May 95 0 0 0
Jun. 95 0 0 0

5.2.3 Precipitation Data:

The rainfall data at the University YFarm Station was applied, because it is the

nearest station to the agricultural lands that are served by the three reservoirs. The rainfall
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data for the 1994-95 season at the University Farm Station is shown in Table (5.5).

Table (5.5) Monthly Raintall at University Farm Station for 1994-95 Season (mm)

Rainfall Nov. Dec. Jan. Feb. Mar. Apr. May Jun

Rain, 42.7 36.0 0.0 6.35 0.0 0.0 0.0 0.0

5.2.4_ Sensitivity of the Model to Crop Data:

Four crops have been considered in this case study: tomatoes as vegetable, alfalfa
as legume and corn and barley as cereals crops. Crop data, which is required in the model
consists of potential evapo-transpiration. potential crop yield, weighting factors, price,
fixed and variable costs. The model shows high sensitivity mostly to prices. costs and
potential crop yield. As has been noted in section 3.1.1, the model is not very sensitive to
weighting factors. The reliability of the results depends greatly on the accuracy of the
input data, especially those that show great sensitivity. 1ables (5.6). (5.7) and (5.8) show
some crop data, monthly potential yield for alfalfa and monthly potential crop evapo-

transpiration.

5.2.5 Efficiency:

It is usually difficult to estimate both the total efficiency from the reservoir to crop
root system and the rain efficiency. Such is the case in the Muwaqqar watershed.
Therefore, for this case study reasonable values of 70% for total efficiency and 30% for

rain etficiency were assumed (Doorenbos et al. 1979 and Jensen 1973 .
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Table (5.6)

Some Crop Data

Unit Price  Fixed Cost Variable Crop Potential
Crop ($/ton) ($/ha) Unit Cost Weighting Yield
(${ton) Factor (ton/ha)
Alfalfa 70 42 1.90 - 15
Tomatoes 38 59 3.20 0.21 30
Corn 97 48 2.15 0.18 8
Barely 92 44 2.55 0.12 6
Table (5.7) Monthly Potential Yield for Alfalfa (ton/ha)
Kind of Month
Crop Nov. Dec. Jan. Feb. Mar. Apr. May Jun
Alfalfa - 2.36 3.19 3.78 343 2.24 -

Table (5.8) Monthly Potential Crop Evapo-Transpiration (mm)

Month Alfalfa Tomatoes Corn Barley
November - - - 18.6
December 100.0 - 36.0 41.1

January 135.0 - 47.0 64.2
February 160.0 - 87.0 86.9
March 145.0 28.0 113.0 81.0
April 95.0 63.0 53.0 32.5
May - 115.0 - -
June - 106.0 - -
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5.2.6_ Routing Matrix:

Sm—

The routing matrix M for use with the mass balance equation (Eq. 3.13) was

discussed in Chapter 3. It is defined explicitly for the three-reservoir system as follows:

SPu P2 SP].J O O 0
M = SP‘.‘.I (2 %] sz..l = l O O
SP'.\ P32 SP\ 3 J3,3 0 1 3x3

The three reservoirs are connected in series where reservoir 1 lies upstream of
reservoir 2 which in turn lies upstream of reservoir 3. Hence, reservoirs 2 and 3 receive
the water spilled from reservoirs 1 and 2 respectively. That illustrates why the value of

S

p,, and S, is 1, whereas the value of all other elements in the matrix is zero.

5.2.7 Initial Storage:

Usually, initial storage should be given as input data but in this case study it was
not. Nevertheless, it can be calculated very easily. The only inflow that took place before
the planting season was on Oct. 9. Therefore, the initial storage of each reservoir (storage

at the beginning of Nov.94) can be calculated by the mass balance equation (Eq. 3.13):

Si,=8,%0,-R,-E, =S, (3.13)

+ln

where, t stands for Oct. 9, 1994 and ¢+ / stands for Nov. 1, 1995,

On the right hand side of the above equation (Eq. 3.13) the only non-zero terms

are storage $, and evaporation E; .. Therefore, equation (3.13) can be written as:
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Sl+l.u = Sr.n - Efn (5 l)

where, S, is nothing but g, ..

From equations (3.16) and (3.17) the evaporation term E;, can be calculated by:

Srn + Slf‘ﬂ -
Et_n = L[ P,, [—_E-—jl (52)
From equauons (5.1) and (5.2) the following can be written:
Sint Siain |”
Sl+l.n = Vin- L:p,, [_"'_2——_1—] (53)

where, L; is the normal lake evaporation from Oct. 9 to Nov. 1.

In equation (5.3) the only unknown term is Sy, ;.. It can be calculated for the threc
reservoirs by applying the fixed-point iteration method (Gerald 1994). The calculated

initial storage is given in Table (5.9).

Table (5.9) Reservoir Initial Storage (ha-m)

Initial Storage Reservoir 1 Reservoir 2 Reservoir 3
Sin 0.8338 0.2574 0.0102

5.2.8 Minimum Area Requirements:

Total area to be irrigated by each reservoir can be either known data or variable
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for each crop to be determined by the optimization process. In this case study, the
percentage, for each crop, of the minimum area requirement to the total area that reservoir

n is responsible for irrigation is given in Table (5.10).

Table (5.10) Minimum Area Requirements for Each Crop (%)

Crop Reservoir 1 Reservoir 2 Reservoir 3
Alfalfa 0.15 0.10 0.00
Tomatoes 0.10 0.05 0.07
Corn 0.07 0.08 0.05
Barley 0.30 0.25 0.25

5.3 iwo Case Studies:

The MAXCROP model was applied to a representative multi-reservoir system
(Muwaggar) to demonstrate a case study. The data presented in previous seciions were
used. First, as a multi-crop case study, the four crops (alfalfa, tomatoes. corn and barley)
were studied. Then, as a specitic-crop case study. tomatoes, the crop that has the highest

net revenue, were studied alone.

5.3.1 _Multi-Crop Casc Study:

In the PSLP algorithm, the initial selected values must satisty all the linear
constraints. Therefore the initial area values of the crops should be at least equal to the

minimum area requirements of the crops. Different initial value combinations were tried to
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obtain the best local optimal solution. Different optimization attempts with different initial
values were tried in a way to satisfy the minimum area requirements for the four crops and
to divide the rest of the agricultural area among the crops. The initial area values, in the
first run, were the minimum area requirements for the four crops, then the unconstrained
agricultural area was divided by giving 25% of it to each crop and increasing it by 10% to
one crop and decreasing it sy the same amount to another crop at a time in each

successive run.

The best obtained local optimal solution gave a total net benefit of US $18.871.3
for the season. The best obtained local optimal areas of crops, monthly release to crops,
total monthly release from each reservoir, reservoirs storage, spilling from each eservoir
and the total net benefit of the crops are shown in Tables (5.11) to (5.159). The results tor
release, storage and spills are published to six decimals to help in any future model
comparisons with MAXCROP. Figures (5.5), (5.6) and (5.7) represent the best obtained
local optimal monthly water available to the four crops from reservoirs 1, 2 and 3
respectively. Whereas, Figures (5.8), (5.9) and (5.10) represent the best obtained monthly

percentage of water available versus water demanded.

Table (5.11) Area of Crops at Each reservoir (ha)

Crop Reservoir 1 Reservoir 2 Reservoir 3
Alfalfa 2.25 1.30 0.00
Tomatoes 7.20 7.41 7.70
Corn 1.05 1.04 0.55
Barley 4.50 3.25 2.75
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Table (5.12) Monthly Release to Alfalfa from Each Reservoir (ha-m)

Month Reservoir 1 Reservoir 2 Reservoir 3
November - - -
December 0.286714 0.165657 -

January 0.043393 0.025071 -
February 0.050816 0.029361 -
March 0.046607 0.026929 -
April 0.030536 0.017643 -
May - - -
June - - -

Table (5.13) Monthly Release to Tomatoes from Each Reservoir (ha-m)

Month Reservoir 1 Reservoir 2 Reservair 3
November - - -
December - - -

January - -

February - - -
March 0.288000 0.296400 0.308000
April 0.502422 0.535300 0.693000
May 0.460941 0.506360 0.701737
June 0.390978 0.443617 0.596494
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Table (5.14) Monthly Release to Comn from Each Reservoir (ha-m)

Month Reservoir 1 Reservoir 2 Reservoir 3
November - - -
December 0.037800 0.037440 0.019800

January 0.0.0437 0.069432 0.036929
February 0.066798 0.066788 0.039560

March 0.045016 0.047964 0.033707

April 0.046485 0.046485 0.032580
May - -
June - - -

Table (5.15) Monthly Release to Barley from Each Reservoir (ha-m)

Month Reservoir 1 Reservoir 2 Reservoir 3
November 0.037221 0.026882 0.022746
December 0.194786 0.140679 0.119036

January 0.105882 0.075655 0.069923
February 0.092579 0.066765 0.062110
March 0.072787 0.051954 0.056642
April 0.069762 0.050627 0.054598
May - - -
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Table (5.16) Total Monthly Release trem Each Reservoir (ha-m)

Month Reservoir 1 Reservoir 2 Reservoir 3
November 0.037221 0.026882 0.022746
December 0.519300 0.343776 0.138836

January 0.219762 0.170158 0.106851

| February 0.210193 0.162915 0.101671
March 0.455410 0.423247 0.398349

April 0.649205 0.650055 0.780178

May (0.460941 0.506366 0.701737

June 0.390978 0.443617 0.596494
Summation 2.94301 2.72701 2.84086

Table (5.17) Monthly Storage of Each Reservoir at the Beginning of Each Month (ha-m)

Month Reservoir 1 Reservoir 2 Reservoir 3
November 0.8338u0 (.257400 0.010200
December 0.513672 0.513672 0.677730

January 2 894000 2.320000 3.250000
February 2418797 2.320000 3.084165

March 2.894000 2.320000 3.250000

April 2.063406 2.073392 2.715300
May 1.214941 1.258901 1.680677
June 0.538743 0.571248 0.741482
July 0.000000 0.000000 0.000000
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Table (5.18)  Monthly Spilling from Each Reservoir (ha-m)

Month Reservoir 1 Reservoir 2 Reservoir 3
November 59.561535 67.065758 66.822350
December 24.679756 28.062801 25.657467

January 0.207312 0.000000 0.000000
February 0.197175 0.307525 0.000000)
March 0.263470 0.000000 0.000000)

” April 0.000000 0.000000 J.000000
May 1L.000000 0.000000 0.000000

June ().000000 0.000000) 0.000000

Table (5.19) Total Net Benefit of Each Crup at Each Reservoir (US $)

Crop Reservoir 1 Reservoir 2 Reservoir 3
Alfalfa 467.0 269.8 -
Tomatoes 4288.7 4619.2 5716.2
Corn 464.4 462.0 279.6
Barley 963.8 694.2 646.6
Suimnmation 6183.9 6045.2 66424

5.3.2 Specific-Crop Case Study:

Under unlimited water supply conditions, tomatoes have the highest return among
the other three studied crops. This time the MAXCROP model was applied to the

Muwaqqar watershed by considering tomatoes as the only crop to be planted in that
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Figure (5.7) Monthly Water Available to Crops from Reservoir 3
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region.

The best obtained local optimal results gave a total net benefit of US $17.330.6 for
the season. The best obtained local optimal areas for tomatoes, monthly release to
tomatoes. reservoirs storage, spilling from each reservoir and total net benefit of tomatoes
are shown in Tables (5.20) to (5.24). Figures (5.11) and (5.12) represent the best obtained
local optimal monthly water available to tomatoes and the best obtained monthly

percentage of water available versus water demanded respectively.

Table (5.20) Area of Tomatoes at Each Reservoir (ha)

Crop Reservoir 1 Reservoir 2 Reservoir 3

Tomatoes 15.0 13.0 11.0

Table (5.21) Monthly Release to Tomatoes from Each Reservoir (ha-m)

Month Reservoir 1 Reservaoir 2 Reservoir 3
November - - -
December - - -

January - - -
February - - .

March 0.560628 0.520000 0.440000

April 0.541755 0.514730 0.756835
May 0.502369 0.483126 0.694514
June 0.430466 0.424104 0.589702
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Table (5.22) Monthly Storage of Each Reservorr at the Beginning of Each Month (ha-m)

Month Reservaoir 1 Reservoir 2 Reservoir 3
November 0.833800 0.257400 0.010200
December 0.000000 0.000000 3.132813

January 2.857801 2.046564 2.792015
February 2.529201 2.241289 2.770916
March 2.894000 2.320000 3.250000
April 2.050221 1.886179 2.674149
May 1.307276 1.211603 1.674573
June 0.583024 0.549859 0.733894
July 0.000000 0.000000 0.000000

Table (5.23)

Monthly Spilling from Each Reservoir (ha-m)

Month Reservoir 1 Reservoir 2 Reservoir 3
November 60.116085 68.165688 65.473000
December 24.721140 28.207138 28.855520

January 0.280203 0.049444 0.015518
February 0.517385 0.712173 0.194582
March 0.171557 0.000000 0.000000
April 0.000000 0.000000 0.000000
May 0.000000 0.000000 0.000000
June 0.000000 0.000000 0.000000
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Table (5.24) Net Benetit of Tomatoes at Each Reservoir (US $)

Crop Reservoir 1 Reservoir 2 Reservoir 3

Tomatoes 5550.7 5289.2 6490.7

54 Discussion of the Results:

It can be observed in Table (5.11) that the best obtained local optimal solution
corresponded to the minimum area requirements for alfalfa, corn and barley whereas,
tomatoes obtained the remained area of the agricultural land. Some other optimization
attempts gave local opumal values slightly less than the best obtained local optimal value
(the relative difference was less than (.5%). The relative difference is the difference
between the best obtained local optimal value and any run's local optimal value divided by
the best obtained local optimal value. in those optimization attempts the obtained area for
alfalfa and barley were again equal to the minimum area requirements for those two crops.

However. this time corn shared with tomatoes the remained area of the agricultural land.

The relative difference between the best obtained total net benefit for the specific-
crop case was more than 8% less than that for the multi-crop case. This is because even
though under unlimited water supply conditions, tomatoes are the crop that gives the best
net benefit among the other studied crops, it requires water in the last four months of the
season where the availability of water is limited. This limitation arises from the significant
amount of evaporation in those periods and the lack of rainfall and therefore inflows. This

also justifies why the relative difference between the local optimal values for some runs
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that gave less planted area for tomatoes and the best obtained local optimal value was
sometimes less than (0.5%. Because under unlimited water conditions the same amount of
less planted area for tomatoes would have affected the total net benetit more than (0.5% by

far.

For both case studies (specitfic and mulu-crop cases). from Figures (5.5) to (5.12)
it can be observed that the best obtained optimal rerease for all crops did not meet the
maximum water requirement of crops during all the months in the season. This means
increased water avalabihty dunng each month ot the growing season would give higher
net benefit even tor the same cultivated acreage In addition. when the water available for
each crop was not constrained. the optimal water avalable tor each crop decreased over
ume to decrease the release. apparently as a way for the system to reduce water loss
through evaporation. thus making more water available to crops and consequently

mcreasing the total net benefit.

For the mulu-crop case study. the total release to crops from the three reservoirs
was calculated trom Table (5.16), to be 8.5169 ha-m Whereas. from Table (5.18). the
water leaving the watershed. which 1s equal to the summation of the monthly spilling from
reservoir 3 was equal to 92.4798 ha-m. Thus. the amount of water left the watershed as
reservoirs’ outflow was more than 1) imes the amount used for irrigation and it was even
more than that for the specific-crop case. This 1s because most of the inflow occurred in
the first two months of the growing season and the existing three reservoirs were too

small to store that huge amount of water (see Table 5.4). Therefore, some other reservoirs




should be built to store the overflow water. The location and size cf the reservoirs should
be studied in a way to meet the water demand. minimize the cost of constructions, and

optimize the water use including minimizing reservoirs evaporation.
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CHAPTER 6

Conclusions

The model developed in this research effort (MAXCROP) is a monthly based
planning model. It can be applied to existing irrigation: multi-reservoir systems to obtain
optimal planning policy for maximizing the net benefit to be obtained from planting

different kinds of crops, subject to the constraints given in Chapter 3.

The model is used at the beginning of the planting season to determine the monthly
spilling from each reservoir, the monthly release to each crop from each reservoir and the
area to be allocated for each crop at each reservoir. A lower bound on the acreage for
each crop at each reservoir is applied to consider crop diversification’s requirements, i.e.,

crop nutrient cycling and on-farm animal feed needs and to satisfy farmers’ needs.

The model is written in ANSI FORTRAN 77 and the Penalty Successive Linear
Programming (PSLP) procedure is employed. PSLP is among the most promising

optimization techniques in achieving the optimal solution of non-linear non-convex
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objective functions. Unlike other developed SLP algorithms PSLP has a convergence
proof for non-linearly constrained problems of general form. This is the case with this

model where non-linearity appears in both the objective function and the constraints.

The code and model validation were checked. First, the computer code was tested
for general non-linear problems. The objective values obtained were exactly equal to the
best known solution in all the tested problems. Then, the performance of the model was
ccmpared to an existing one reservoir planning model. The results were consistent
between the two models. The objective values obtained were equivalent, with a maximum
absolute relative difference of 3x10™ between all the variables. Finally, as a case study. the
model was applied to the Muwaqqar watershed in Jordan. This watershed consists of three
small farming reservoirs. It is located in an arid zone where rain falls with high intensity
and snort duration. The results of the anplication of the Muwaqgar watershed were

illustrated in Chapter 3.

From the above it can be concluded that MAXCROP is potentially a reliable and
valid model that can help designers choose the optimal acreage. crop types and monthly
release to irrigate each crop, taking into considerations crop diversification’s requirements
and farmers’ needs. Mcre importantly, it is the first model of its type that applies PSLP
method to optimize the planning of irrigation multi-reservoir systems. Although, the
current version of the model only considers seasonal crops it could be enhanced to
consider permanent crops such as fruit trees. In this case, the ideal solution can be

obtained by considering the time horizon of the problem, 7, as the number of months of
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the life of fruit trees instead of the number of months of the growing season. This would
increase dramatically the ‘number of variables and constraints. Therefore, an alternative

solution that uses a smaller time horizon should be studied.
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