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ABSTRACT

Experimental and Numerical Study of the
Bleed Effect on the Propagation of
Strong Plane and Converging Cylindrical Shock Waves

Mourad El-Mallah, Ph.D.
Concordia University, 1997

A combined experimental-numerical study was conducted to determine the effect of
bleeding on the propagation of plane and converging cylindrical shock waves. A fully 3-D
Finite Element code was written for simulating inviscid unsteady flow in various cases of
shock tube geometry. The scheme used was implicit time-marching with the Galerkin
discretization for spatial coordinate derivatives and multi-step finite difference formulation
for time derivatives. Initial trials with 1-D radial flow have shown good agreement with

the analytical power law of shock propagation derived by Guderley.

The numerical code was first applied to the test case of shock wave strengthening through
its reflection from a 15° ramp. The numerical results of the shock front shape were found
to be in good agreement with the Schlieren photographs taken for the flow at different

time intervals.

The numerical code was then applied to the test case of a plane shock interaction with a
transverse slit. Experiments were carried out in this case to determine the degree of shock

attenuation for shock Mach numbers ranging between 1.2 and 2.5, and slit-duct width



ratios varying between 0.25 to 1.0. For this test case, a simplified model - based on the
Method of Characteristics and the Chester-Chisnel-Whitham (CCW) theory - was also
introduced. Numerical results for the attenuated shock Mach number were found to be in

excellent agreement with the experimental results and the approximate analytical model.

For the 2-D axisymmetric flows, domains similar to the plane flow cases were used to
account for the radial convergence effect. Pressure measurements were also carried out at
various radii to determine the pressure time history. The transmitted shock, past the slit,
was found to undergo attenuation as in the 2-D case, but combined with strengthening due
to area convergence. At the same location downstream of the slit, attenuation was found

to be higher than in the 2-D case of similar slit-chamber width ratios.
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1 - INTRODUCTION

The creation and performance of shock waves have been the focus of study by many
engineers and scientists working in topics related to continuum physics. Shock waves -
either in their weak form (acoustic waves) or their moderate to stronger form - play an
important part in scientific and engineering calculations whether their existence is desirable
or not. For example, in the case of gas pipelines, a sudden valve closure or opening (or
any other blockage or leak) creates a response signal in the form of shock or expansion
waves, whose speeds depend on the aerothermodynamic state of the gas. The change in
properties behind such waves should be taken into consideration for designing the pipeline
as well as the surrounding installations (for safety considerations). Similar dangers exist in
coal mining operations (due to methane gas explosions). In the latter case, explosions are
more confined and tend to propagate through branches of underground tunnels. For
internal combustion engines, the sudden opening and closing of valves create a continuous
stream of shock or expansion waves, interacting and moving down the muffler as well as
other ducts. This stream has to be controlled and optimized for environmental protection
[1]. In the field of interior ballistics of guns, the existence of shock waves ahead of and
behind the projectile is an unavoidable side-effect to contend with, and designs are made
to divert the blast and reduce its noise level [2]. Another example is the shock wave
formation ahead of underground trains while entering tunnels. While part of the air slides
beside the train body, the major part is moved forward through a shock wave, causing a

pressure rise and drag as well as noise at the tunnel ends [3].



Another important application is the use of cylindrical converging shock waves to produce
localized high gas pressures and enthalpies. Theoretically, area convergence is expected to
strengthen the shocks, thus producing infinitely dense amounts of energy at the center of
convergence (point of collapse). Probably the most famous application in the military is
the creation of partly converging - partly advancing shock waves in shaped charges for
armor piercing. Furthermore, converging shocks are used to create naturally non-existent
environments or materials for scientific research processes or applications. Examples of
these processes are artificial diamond manufacturing from graphite [4], propulsion of
projectiles at hypersonic speeds [5], rocket engine ignitions, thermonuclear fusion, and
creating chemical non-equilibrium gas mixtures. The common factor here is the need for
accumulating great amounts of energy in virtually point-size domains. This fact probably
explains why the technical steps required to create converging shocks have their inherent

difficulties.

For the case of cylindrical converging shock waves, one of the main issues faced in
establishing the physical process is the shock stability. This is defined as the ability of the
generated shocks to retain their required symmetric shapes if subjected to perturbations
due to geometrical or physical irregularities, which is inevitable in practical considerations.
Unlike plane shocks, which retain their shape due to transverse waves [6-9], cylindrical
waves are affected by two contradictory processes: stabilizing effect due to the transverse

waves, and the increase in shock speed associated with the reduction in the frontal area.



Therefore, the measure of stability for converging shocks should aim at minimizing the
ratio between the magnitude of unavoidable perturbations, and the mean value of the

shock radius.

The need to stabilize the shock for as long as possible requires an efficient method for
simulating the shock performance throughout the implosion process. In this respect,
research activities have been diversified according to the available theoretical and technical

facilities.

1.1 - Analytical Methods

The converging shock problem was first handled theoretically in 1942 by Guderley [10]
under the assumption of perfect inviscid gas. Guderley demonstrated that strong
cylindrical converging shock waves propagate according to a power-law relation when
approaching the center and that their Mach numbers reach infinite values at the point of
collapse. However, this is not possible in reality due to the effect of viscosity and heat
conduction. Subsequent studies were conducted under the same assumptions by Lighthill

[11], Butler {12,13], Stanyukouvich [14] and Whitham [22].

Theoretical handling of the one-dimensional form of governing equations continues to this

day [e.g., 15-19], with the introduction of new equations of state or constitutive relations



to simulate shock dynamics in more complicated physical situations, or in other types of

continua ( including real gases ).

During the same period, the development of the CCW theory deduced concurrently by
Chester, Chisnell and Whitham [20-22], as well as Whitham’s Ray-shock Theory [23,24],
provided researchers with a new graphically-operable tool to simulate shock dynamics.
For the CCW theory, shocks are considered as discontinuities between continuously
varying sections of fluids. The continuous fluid sections were solved for by using the
modified set of quasi-1-D Euler equations in its characteristics form, while the variations
across wave fronts are governed by the Rankine - Hugoniot relations. The final result was
a new governing equation relating the local duct area (at shock location) to the local
shock Mach number, incorporating the newly-defined Chester function, named after its
inventor. Although the quasi-1-D derivation was meant to deal with flows in ducts with
varying cross sections, the simplified set of equations was used for handling the cylindrical

and spherical converging shocks (where symmetry ensures one-dimensionality) [26,27].

This method of solution was extended to multiple dimensions using the Ray-shock Theory
deduced by Whitham [23,24]. Based on concepts from geometrical acoustics, the method
employs successive shock contours and their orthogonal trajectories (rays) as curvilinear
coordinate lines. It was assumed that no lateral flow takes place across the ray lines,
meaning that the rays coincide with streamlines at the shock location. The geometrical

compatibility requirements lead to one differential equation relating the shock Mach



number, M , and the ray-tube area, A , for each tube. A second relationship between the
two quantities is deduced using the CCW theory for the motion of a shock wave down a
tube of varying cross section. The resulting equations are of hyperbolic nature and a
solution can be deduced using the Method of Characteristics, which also describes the
motion of lateral waves on the shock front. These are interpreted as the intersection of
acoustic waves with the shock front, and the case where these waves break is termed a

"shock-shock" (which is well visualized in the case of Mach reflection).

Another fundamental assumption in Whitham’s formulation of the Ray-shock theory is
that there is no interaction of any kind between neighboring ray tubes. In some cases, it is
more feasible to use a constant averaged value of the Chester function K(M) in the
integration of the characteristic relations. In general, however, the results should be
treated with some reserve. Apart from the assumptions concerning the shape of fluid
motion, the results simulate the kinematics aspects of the shock motion without referring
to the motive forces behind it, which are the pressure and momentum fields. Consequently,

the results do not give a complete picture of the flow environment.

Due to its multi-dimensional form, the Ray-shock method has been applied successfully to
a wide variety of shock dynamics problems. For the cylindrical converging shock in the
radial-tangential plane, it has become possible to perform more accurate studies on the
effect of circumferential perturbations of irregular nature on the shock advance and

eventual collapse [34,40].



Although cumbersome in use and not flexible with complicated geometries, graphical
methods of Geometrical Shock Dynamics have proven to be accurate enough due to their
analytical basis. This is why they remained the mainstay for scientific research in the field

of shock wave dynamics until the advent of modern computers.

1.2 - Experimental Methods

Considerable efforts were made to investigate the converging shock stability
experimentally, to obtain test data in order to verify theoretical or numerical trials and to
reach empirical relations defining the basic parameters affecting the process. Initial trials
relied on creating imploding cylindrical shock waves using outer rim explosions in solid
chambers. To this day, improvements in lab technology are bringing up new ideas for the
process [28-30]. However, these methods are prone to technical difficulties as well as the
impossibility to ensure axial symmetry for the generated waves. A simpler method relied
on reflecting originally plane shock waves using specially designed surfaces to create
implosions [31-34]. The method has the disadvantage of incomplete one-dimensionality of

the resulting shock, except using large dimensions.

Attention was then shifted towards using the conventional shock tube creating an easily
obtained plane shock, and then reflecting it using a multiple-conical surface to form the

required cylindrical converging one. This tcchnique was pioneered by Perry and



Kantrowitz [35] using the "teardrop” design shown in Fig.(1.1) . It was later used, with
differences in the apparatus, by Knystautus and Lee [36] for relatively weak shocks, as
well as Takayama et al. [41] and Watanabe et al. [42]. It has been observed that for weak
shocks, the transverse pressure waves are able to regain the symmeuical shape of the
shock provided it did not reach the self-propagation stage. The design, shown in Fig.(1.2),
gives the generated shock more ability for transverse signals to retain the shock's plane

shape before conical reflection.

Wu et al. [37-39] and Neemeh et al. [40,67] used a new setup which relied on splitting the
initially plane shock into an inner cylindrical core, which is removed, and an annular part
which is kept and reflected into a cylindrical converging shock. The time required to form
a stable annular shock becomes very small depending on the sharpness of the splitter
section. Although a considerable improvement was obtained in the quality of generated
shocks, it was not possible to maintain their cylindrical symmetry near the geometric
center. Recent research work in the Concordia shock wave dynamics lab aims at

correcting this problem using non-uniform bleed effect [69,70].

Reliable experimental work, however, should be tackled with care and, whenever possible,
it should be used only for validating numerical or analytical studies. In the present work,
attention is directed towards studying the bleed effect on the propagation of strong plane
and converging shock waves using less expensive numerical techniques, augmented by

experimental verification to gain more insight into the physical details of the problem.



1.3 - Numerical Methods

Numerical methods were proven to be a viable tool to produce results with minimum cost
in solving the problem of unsteady compressible flow. It was evident from the beginning
that the governing equations for fluid flow have no exact solutions excep: for special cases
with simple geometries, limited dimensions or gross simplifying assumptions. In view of
the facts also mentioned above pertaining to requirements for experimental methods, the

cost-effectiveness of numerical techniques stands today beyond doubt.

On the other hand, the rapid development of high-speed, high-capacity computers
facilitates the numerical handling of problems with complicated geometries using fine and
boundary-conforming grids. This, in turn, facilitates getting repeatable answers, with the

ability to change parameters independently at marginal increase in cost.

The numerical simulation of cylindrical converging shocks has been pioneered by Payne
{43] using the Lax finite difference scheme. Part of the current numerical studies is
directed towards using a 1-D set of equations to solve the implosion problem in an ideal or
real gas but with more detailed simulation of related physical processes, while dispensing
with multi-dimensionality and its related problems [44,46,47]. Furthermore, two-
dimensional cases for convergence of shock waves in the radial-tangential plane have also

been simulated [45,48-52,68,72]. The main issue has been the evolution of the inherent



instabilities as a function of the geometry and the nature of shock front disturbances. The
results obtained showed the anticipated rise in pressure and temperature as well as the
dominating onset of instability for the initiated perturbation modes at small radii, leading

to the eventual collapse and formation of vortex pairs at the center.

1.4 - Shock Bleed Control

In view of the importance of shock wave effects in structural and industrial applications,
there is an ever-growing interest in simulation and measurement of the interaction,

particularly the loading nature, of shock or blast waves with obstacles and structures.

As a first example, the spillage and subsequent ignition of combustible gases present a
major problem to the engineer concerning the ability of the surrounding structures to
survive a catastrophic explosion. Consequently, the design process of gas lines or
industrial plants should incorporate practical methods of dissipating shock waves, which
may be generated either regularly or accidentally. Designing blast-resistant structures or
keeping a proper distance away from explosion sources can lead to a considerable damage
reduction. This question arises while choosing the locations of gas processing facilities

relative to loading facilities, storage sites as well as population centers.



Attention has also been focused on the inverse problem, that is, the modification and
optimization of blast and shock waves by varicus structures and obstxcles. This topic falls
into the aspect of gas dynamics, called "shock wave interactions”. For example, in the
internal combustion engine mufflers, proper adjustment of shock wave synchronization
improves the charging volumetric efficiency of the engine (through a better expulsion of
exhaust gases from the cylinders) beside reducing the noise levels, thus improving engine
performance. For the gun muzzle brake design, the shock diffraction should be optimized
to reduce the noise level and also to contain and reverse the resulting flow behind the
shock. The optimum design reduces the recoil force and, if applicable, facilitates using the

combustion gases to re-arm the weapon.

To date, most of the work on shock control has been focused on attenuation of traveling
plane waves moving through ducts. The simple solution of duct area increase is not
practical for strong shocks or attenuation requirements along a small distance. One
method for shock attenuation is to reflect the wave by placing obstacles in its path.
Examples of used obstacles include cylinders, grids, perforated barriers, orifice plates and
similar objects. Another method, which receives considerable attention today, examines
the duct shock attenuation by creating particle-gas mixtures, triggered before or by the
shock, to absorb the kinetic energy of the gas. The disturbances are then communicated
forward to the traveling shocks to cause attenuation. This requires the solution of the two-

phase media equations for gas and dust suspensions [53].

10



The third method, which is adopted in the present study, focuses on the attenuation of
shocks by bleeding mass, and tiius momentum and energy using wall slits or perforations.
Expansion waves are generated by the bleeding of fluid through the perforations, which

then overtake and gradually weaken the traveling shock.

1.4.1 - Shock Diffraction and Reflection Processes :

Provided that interactions in the third-dimension are omitted, a fair judgment for the
performance of fluid bleeding methods needs an accurate analysis of the simple 2-D shock-
slit interaction. A simplified description for the stages of that interaction have been given
previously [64] for plane shocks where the flow behind the incident shock is subsonic
(Fig.(1.3)) or supersonic (Fig.(1.4)). However, in the present case the emphasis will be on
supersonic flow behind strong shocks. Initially, the planar shock is diffracted as it exceeds
the upstream edge into the slit, so the shock curves around the opening to maintain
contact with the wall. At the same time, a series of cylindrical expansion waves is
generated at the upstream edge of the slit as the fluid passes by. As time progresses, these
waves spread out into the channel and are responsible for the attenuation_of the shock.
Since the flow behind the shock is taken to be supersonic, the acoustic waves will remain
enveloped by the first characteristic line in the expansion fan. Furthermore, since there is
no characteristic length involved, this initial stage of the interaction is self-similar, the

configuration remains but with a time-expanding scale.

11



The later insertion of the downstream edge of the slit into the problem introduces a
characteristic length (the slit width) and the self-similar nature of the flow is no longer
valid. In physical terms, this is accomplished by the reflection of the diffracting shock at
the downstream edge, which produces a Mach stem (the new shock) as well as a reflected
shock spreading out into the flow. This compression wave, which is also nearly cylindrical,
then terminates the initial expansion and tends to reduce the attenuation of the main shock.
It is interesting to note that in the case of subsonic particle flow, the secondary shock
progresses upstream and eventually collides with the opposite (upstream) edge of the slit
to produce a third shock which then moves downstream to collide with the downstream
edge (Fig.(1.3)). This reflection process continues until the colliding waves become so
weak that the motion is entirely acoustic. However, if the flow is still supersonic after the
initial shock, then the secondary shock will remain attached to the downstream edge while
propagating across the channel as well as the outer region. If the downstream edge is not
sharp, the shock will be slightly detached from the edge - according to the flow situation -
and this will trigger expansion zones for the fluid to catch up with the original waves

outside the channel.

Experiments indicate that the reflection of the diffracting shock is a Mach reflection, i.e. a
three shock configuration with a Mach stem normal to the duct wall at its foot. Although
there is no reason to put this assumption as a general case, the present work focuses on
strong shocks (i.e. small downstream edge reflection angles), and only the Mach reflection

case will be considered. The initiated Mach stem is later transformed into the attenuated

12



wave, and since the stem lags behind the undisturbed portion of the main shock, significant
shock curvature is exhibited in the vicinity of the triple point. The generated expansion and
compression waves continue to affect the flow inside the duct through their interactions as
well as multiple reflections at the walls. Signals emanating from the processes are

transferred to the main shock along characteristic lines.

After some time, the internal attenuated shock moves far downstream and regains its plane
shape due to transverse wave reflections. At the slit zone, the wave configuration inside
the duct approaches a steady state, with the internal flow characterized by the waves
described earlier. Outside, the external expanding shock waves move far away from the
slit zone and their influence is no longer present. A steady inclined fluid jet is established at
the slit, with jet structure depending on the pressure ratio across the slit as well as the flow
velocity behind the shock. For the case when the particle velocity behind the incident
shock is supersonic, a Prandtl-Meyer expansion exists at the upstream edge of the slit and
a slightly detached shock exists at the downstream edge, as shown in Fig.(1.4c). The jet

structure is quite complex due to the reflection of the detached shock from the jet

boundary.

Furthermore, for a confined shock problem, like shock waves in ducts, both the expansion
wave and secondary (reflected) shock will undergo multiple reflections from the walls of
the tube as the main shock propagates down the tube. Thus the attenuation, measured at

the wall containing the slit, will proceed in cyclic form corresponding to the arrival of the
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reflected waves at the wall. Furthermore, the frequency of the reflections, and hence the
attenuation rate, will depend upon the width of the duct. In practical cases, multiple slits
would provide more efficient attenuation and this effect would become secondary (as in

the case of perforated walls).

In general, shock wave attenuation is a complex process and since the equations which
describe shock wave dynamics are nonlinear, there are no simple solutions to this type of
problems. Apart from the natural tendency of waves to attenuate due to area divergence
effects, the slit bleeding geometry creates a complicated set of shock and expansion waves
affecting the shock. To this day, simulation and measurements for the flow field at the
diffraction and reflection corners are a challenge to researchers in numerical as well as
experimental methods. Multiple reflection of waves from the duct walls provides a more
complicated attenuation history with shock or expansion waves traversing the original

shock several times before the dissipation of their effects.
For cylindrical converging shocks, specifically at small radii, the problem includes the

additional effect of the high rate of area change and the eventual self-propagating state,

when the imploding shock evades the effects of the shock structure behind.
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1.4.2 - Related Research Work:

In view of today’s requirements in industrial and engineering applications, the bulk of
research in shock bleed attenuation deals with flows in ducts and similar geometries.
Consequently, the schemes are mostly developed for perforated duct flow using quasi-1-D
formulation, for which the Method of Characteristics was the most widely used. An
important question was how to express the flux terms due to perforations in the governing
equations. The earlier scheme developed by Rudinger [54] assumed the fluxes leaving the
duct to maintain the same axial momentum as the main stream. A different approach was
later adopted by Rosciszewski [55] assuming thick-walled ducts and the jet velocity to be
normal to the duct axis, while its value was deduced using Bernoulli's equation. His
method was developed using the linearized general form of the quasi-1-D characteristic
equations, from which the CCW theory was deduced. The linearization limits application
to cases where disturbances in the flow field are relatively small, but the generalized
formulation has given it a wider applicability. Experimental measurements have shown
good agreement with theory, although the theory was found to predict a more rapid shock
decay rate. This has been attributed to errors in evaluation of the mass, momentum and
energy flux through the perforations rather than a flaw in the general analysis. Later
studies have been directed partly towards updating the formulation the external bleed flux

terms [56-59].

15



A general analysis of shock bounded flows with mass, momentum and energy transfer has
been presented recently by Frolov [60]. In his paper, the author has tried different methods
of shock wave attenuation for quasi-1-D configuration and compared the output with
experimental results. The author has concluded that the proper method for shock wave
attenuation depends on the available geometrical space and the required attenuation
amount. A nomograph has been supplied to define zones of relative efficiency for different
methods in the ( M , X ) diagram, where M is the Mach number and X is a non-
dimensional axial coordinate whose definition depends on the method used. A set of
empirical formulae have been obtained for different methods, with an error margin claimed

to be less than 5% over the Mach number range between 1.01 and 4.

Later work by Wu et al. [63] and Lee et al. [65] used the Ray-shock Theory, with
experimental back-up, to study the 2-D shock bleeding through a single transverse slit for
shock Mach numbers producing both subsonic and supersonic flow behind the shock.
They have concluded that the single slit attenuation is relatively weak (with a maximum
value of about 7% for the largest slit tested) and sensitive to the change in channel width
(controlling the lateral reflection frequency) rather than the change in slit width. Thus they
concluded that for an effective shock attenuation, multiple-slit bleeding would be the

proper method.

However, single slit attenuation continued as an interesting topic for researchers in the

field of cylindrical converging shocks. Due to the encountered stability problems, side
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bleeding has arisen as an option for controlling the shock speed. A more detailed single slit
bleed analysis was required since the available distance - through which attenuation is
required - is relatively small. The accelerating radial effect further reduces the travel time,
thus rendering a detailed study of bleeding process more crucial for optimizing the
experimental procedure. Initial research by Wu et al. [66] dealt with bleeding through a
localized aperture to study the transverse diffusion of the bleed effect along the shock
front. They concluded that the perturbation tends to die out at large radii and then it is
intensified at smaller radii, thus introducing the bleed radial location as an important factor

in defining the relative efficiency of stabilizing the front shape.

Later work by Neemeh [67] used bleeding for the different purpose of isolating the effect
of the boundary layer from that of the chamber geometry. This was done by splitting the
converging shock into two parts using an adjustable disk, thus keeping one part in a
cylindrical chamber with a controllable width, while keeping the initial shock conditions

invariable.

The recent studies have focused on the effect of all-perimeier bleed on the stability of
converging shock waves. The sudden bleed and expansion in flow area slow down the
shock wave and provide an opportunity for transverse signal propagation to bring the
contour back to its original shape. For a distorted wave front, non-uniform bleed can

facilitate regaining the original circular front shape and maintain it until smaller radii.
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Amirfazli [68] developed a finite difference operator-splitting code to simulate the front
shape development of a 2-D imploding shock in the radial-tangenticl plane. The inital
solution of an elliptic shock front was taken from experimental results of a converging
shock after undergoing a non-uniform bleed. The results depicted a tendency to maintain
the shock front until the center where breakdown takes place, and agreed with
experimental results showing a complex shape of perturbation for elliptic waves. however,
this treatment precludes the detailed simulation of the bleeding process and the effect of
shock reshaping in the axial direction, whose nature and frequency have a significant effect

on the developing shock front.

Tashtoush [69,70] experimentally studied the effect of non-uniform bleed on the shock
propagation and stability as well as the vortices formed at the center behind the reflected
shock. The study has indicated the incremental effect of increasing the chamber width
(which means reducing the reflection frequency) on the shock’s rate of recovery. Another
conclusion was the technique’s ability of bringing distorted cylindrical shock fronts back
to their required shape. This is done by aligning the non-uniform bleed geometry to cope
with the observed departure from circular geometry, and slowing the faster portion of the
shock front. In part of his work, Tashtoush used the Ray-shock Theory to predict the
effect of variable bleed on the wave propagation. Bleed non-uniformity was represented by
dividing the domain in the tangential direction into segments and solving each one
independently using graphical methods in a 2-D Cartesian formulation (for radial-axial

coordinates). The above mentioned scheme works efficiently at large radii, where the
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radial effect is minimal. At small radii, however, the area rate of change is too significant
to be ignored. Besides, the kinematics-oriented CCW theory and the absence of lateral

interaction considerably reduce the applicability of the solution.

1.4.3 -Objective of the Present Work :

The ultimate goal is to be able to perform a complete parametric study on the shock
convergence in fully 3-D domain to simulate both shock bleeding and lateral instability.
One suitable method for doing so is to develop a 3-D Euler numerical code which

represents the full flow field rather than the kinematics of the shock motion.

For the time being, the mandate of the present work is to perform a parametric study for
cylindrical converging shock-slit interaction in the radial-axial plane, covering the whole
convergence history, including the bleeding stage with its associated diffraction and
reflection phenomena. In addition to complementing the previous work, the present
work’s generic 3-D code facilitates including the transverse (tangential) direction at a later

stage, thus covering the complete domain once computing facilities are available.

As an introductory step for studying cylindrical shock attenuation, the first stage deals
with studying the purely 2-D shock-slit interaction. The purpose of this stage is fourfold.
The first is to validate the numerical code against well-established benchmark test cases.

The second is to be able to visualize the expected shock structure due to bleeding. The
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third is to calculate the anticipated attenuation behavior without the radial convergence
effect. The last is to utilize the availability of better measuring instruments and analytical
results for re-evaluating the previously concluded trends [64]. Results will be presented in
terms of the system parameters, basically the initial shock Mach number and the slit-
chamber width ratio. The second phase tackles the analysis of similar geometries in the

axisymmetric plane to investigate the effect of frontal area contraction.

Attention is paid to the numerical simulation of the problem, and it will be shown that the
Finite Element Method provides an adequate description of the fluid flow cases. As the
theoretical basis, the Euler equations are chosen as they form the simplest approach and
still give a reliable overview for the wave motion in the fluid. The energy equation is
written in a new form to introduce the pressure as a convected variable. With pressure and
density as variables, the results are easily compared to Schlieren photographs and pressure
transducer outputs. Although Euler equations assume the working fluid to be inviscid and
perfect, they have been used successfully to describe this category of problems, and it will

be shown later in the discussion that the model is adequate for the present purposes.

Because of the complexity of flow phenomena associated with the shock-slit interaction,
experimental work is needed to validate the numerical handling. Two types of shock tubes
are used for the study. For the 2-D tests, a simple air/air shock tube with a square cross
section is employed to cover the practical range of shock Mach numbers up to about 2.5,

thus covering the regime where supersonic flow exists behind the incident shock. For the

20



cylindrical converging flow cases, a 6" inner diameter cylindrical shock tube is used to
create converging shocks. To cover strong shocks, a new test section was designed to

extend the Mach number range by inward bleeding into the vacuumed driven section.

The theoretical background of the plane and cylindrical converging shock wave analysis is
presented in Chapter 2. This includes the governing equations, the analytical methods
developed for one- and multi-dimensional treatments, as well as their application to the
basic processes of diffraction and Mach reflection. The Finite Element formulation and
derivations are presented in Chapter 3, together with the solution techniques and means of
implementing boundary conditions. In Chapter 4, the experimental setups for plane and
cylindrical shock testing, as well as their monitoring instruments, are described in detail.
Chapter 5 is dedicated to presenting and discussing the results for plane and cylindrical
converging shock bleeding, as well as the necessary benchmark problems for numerical
code validation. Finally, Chapter 6 includes the conclusions and recommendations for

future work.
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2 - THEORETICAL BACKGROUND

For control volume-based schemes, like the FEM and the FVM, the conservative ferm is
the most suitable formulation because it represents the local rate of accumulation of
convected variables, as well as their convective fluxes across the boundaries. It is aiso
useful for flow description in the vicinity of shock waves, across which the exact rates of
change can not be easily defined while the total variations can be calculated using

conservation laws.

2.1 - Alternative Formulations for Euler Equations

The govemning equations for 3-D unsteady inviscid compressible gas, without heat
conduction or chemical reaction, are loosely known as Euler equations. The conservation

formulation is written as follows :

Mass : %-{-Z.(pl) =0 (2.1a)

X - Momentum : M+Z.(p!u) = - ﬂ (2.1b)
dat ax

Y - Momentum : 9OV v (pvv) = - 22 2.1¢)
at ay

Z - Momentum : —a(p—w)-«i—z.(p_\_/.w) = - dp (2.1d)
at dz
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Energy : 9-(—‘-39‘—)+V.(p Ve, +Vp)=0 (2.1e)

where the variables are ( p,pV,e, ,p ), where e, = C,T+4|V[® is the total internal

energy / unit mass , incorporating the kinetic energy. To complement the abovementioned

set, the equation of state is added for a perfect gas:

p=pRT 22)

The set written above is in terms of Cartesian coordinates, which are suitable for
geometries of the 2-D cases in the present study. The equations can be rewritlen in
different ways depending on the problem geometry, the chosen set of variables and the
associated boundary conditions. For the energy equation, another form can be deduced
leaving only the static instead of the total intemnal energy. The momentum equation in non-

conservative vector form can be written as :

N WYY =-L9p o
t p
DV 1
—— e — V 2.3
e = oY 23)

After scalar multiplication by the velocity vector, the equation is recast as :
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D
p oo ( ) =-V.Vp (2.4)

Subtracting this streamwise line integral from the non-conservative total energy equation

will result in the modified form. Using the equalities :
p=(y-Dpe . p(¥.V)=V.(¥p) - ¥p.¥
and adding the continuity equation again, the conservative equation becomes :

209+ ¥ .(Yper= - p (T V) 2.5)

Introducing the pressure (p) leads to the final form :

%f—tV_.(v Vp)= (y-1)Vp.V 2.6)

where the variables then are (p, pV , p). This form has the advantage of introducing
the pressure as the convected variable, and simplifying the linearization processes in case
they are needed. The newly-emerging non-divergence term can be considered as an
internal energy source (actually it represents the work done by the pressure gradient force

inside the control volume).
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A third form for the energy equation can be deduced applying the first and second laws of

thermodynamics. Consider the non-conservative continuity and energy equations :

Ds D 1 De p De
T— = —(=)+ — = =(V.V)+ — =0 2.7
Dt th(p) Dt p(_ V) 2.7

This means that the material derivative for entropy is zero. Thus entropy is conserved
along the particle path unless the particle is subject to a physical entropy-generating

process (e.g., a shock wave).

2.2 - One-Dimensional Formulation

In view of the mathematically complicated nature of the equations governing fluid flow, it
was inevitable that initial trials for handling shock wave propagation relied on the simple
1-D formulation. The domain of applications covers phenomena where the effect of
irregularities is small compared to the otherwise-1-D computation domain (e.g., shock
flows in straight ducts with perforations, cylindrical and spherical implosions, nuclear
explosion shock waves....... etc.). Dispensing with the multi-dimensionality enabled
researchers either to simulate other physical aspects of the flow and introduce the

necessary minimum assumptions for obtaining closed form solutions {e.g., 10-19].
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2.2.1 - The Method of Characteristics :

For the present problem of converging shock waves, the initial trials were performed
analytically assuming only radial velocity component. The one-dimensional set of

equations is written in non-conservative form as :

Continuity : %+ rgp pa—a";-'-+p"r—f= 0 (2.82)
Radial Momentum aa"t v, aa"r' +%%—5— =0 (2.8b)
Energy : gs r% =0 or

3‘{’ gp c? ( %B) =0 (2.8¢)

Where the local speed of sound ¢ = iy Modifying the energy equation to include one
\I p

time derivative, the set can be written in the form :

— + [J]|=—= = S(U 29

dat [ ]ar 2(4) (2.9)

, 0
p -pv_/rt Ve P )
U={v, . S(U)= 0 , [T] 0 v, -
p —cpv, /It P

|0 c’p v,
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The eigenvalues of the Jacobean matrix are calculated using the determinant of the matrix

[J —-A I] where A is the eigenvalue diagonal matrix. The results are three different

real values :

dr v. , v.+cCc , V.—¢C (2.10)
dt

Thus the system of equations is hyperbolic and a set of characteristics can be defined for
signal propagation in the ( r, t ) plane. In case the energy equation is written in terms of
entropy as the convected variable, it will be self-sufficient for defining its own
characteristic line of entropy conservation (the particle path, which is moving with a speed
equal to particle speed in the position-time space). In the present case pressure was
introduced since it is intended to be used in the coming work. Lagrange multipliers can be

used to define the associated eigenvectors, equations and variables:

ap op ., OV v av av 1dp
bl 4 L it (p—= 4 A (—= —r £
e Vg tE (PR MG )
ap ap av v
Ay (== —+p—=+p—+)= 2.
+ _(at+v,ar+p ar+pr 0 (2.1D

re-arranging terms in operator form :
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d 1 d d
[§+(v,+xlg)—} p+[ll$+(klv,+c2p +k2p)$} v, +

[lz"a—‘*‘(;"zvr)i]l’+[ksz+C2pL]=0 (2.12)
t or r r

To have an exact differential along a certain characteristic line in the ( r, t ) plane, the

differential operator should have the same proportions.

1 Av,+cip +A
v, + A= = — PP o Ve
p A
The first possible solution is that A, =0 , A,=—c* which leads to the exclusion

of the momentum equation and repetition of the energy equation in the conserved entropy

form. To avoid this trivial case, the density derivative terms should be canceled out.

) 1.9 | %) , 0 M, v,]
[at+(v,+7\.lp aer+[klat+(llv,+c p)ar]v,+l_c P =0

= v, + kll - Mvetep or Vv, A+ kzl—l— = Ay, +c’p
P M p
ANo=c¢*p? or MA=%cop (2.13)

Substituting in the operator equation :
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It is possible to rewrite the previous equation in terms of a defined total derivative w.r.t.

time along the characteristics in the (r, t ) plane. Defining the operators:

r —

D* 2 d
— = —+(v,xCc)—
Dt dt (v ) or
along the characteristics C* : d_ v +c . The equations become :

dt

Ve ] =0 (2.14a.,b)

D* D* [
— pxpc— v, +|c
Pt ¥ P

Dt

dr .. .
along the characteristic P : i v, . The entropy equation is satisfied :

= 0 (2.14¢c)

Ds
Dt

As a special case, the isentropic flow region may be considered. In this case, the pressure

may be expressed as a function of only the density.
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CZ=Y£=Y lx)/ K . 2dc=y—1£1_g_= y-ldp
p p" c Y P pc
*+ *
= 2pcp—cipc—v,+l:czp—']=0
Y—-1 Dt
D[ 2 [v]
— ——c +|c—=|= .15a,
Dt[y—l c v,] c " 0 (2.15a,b)

2
where the quantities :Y_l ¢ £ v, are called the Riemann variables.

The equations are used for solution advancing in time steps to solve for radial velocity and
thermodynamic state variables. This is supposed to be done graphically on a plane
representing the radius-time space. the domain is divided into nodes and an iterative
procedure is performed to adjust both the f:haracteristic variables and the characteristic

lines passing by each node in terms of the previous value distribution.

However, contrary to the case of Cartesian formulation for plane waves, the extra
algebraic term in the case of cylindrical converging waves renders the tracing process
impractical since no conserved variable is well defined along the first two characteristics.

2.2.2 - Self-Similar Solutions :

The self-similarity principle provided another simple, yet cost-effective, technique which

was incorporated for the solution of one- or multi-dimensional equations. The similarity
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methods are used in case the problem has no fixed characteristic length. The technique
facilitates transforming the govermning P.D.E.s to simpler ones, or even O.D.E.s, in terms
of a time-dependent expanding (or contracting) set of coordinates, thus reducing their
complexity. The coordinate time relationship is assumed to take the general form of a

power law.

The method has achieved success in the case of point explosion with the following two

assumptions : very strong shocks ( M? >> 1), and a dimensional argument that results

depend on the amount of energy released at the center as well as the density of the
stagnant medium ahead of the shock front. The Rankine-Hugoniot relations were modified
accordingly to express the pressure, velocity and density in terms of the shock speed. The
balancing of units led to the calculation of the exponent ( n ) value equal to 2/5 for the

shock radius-time relationship being in the form.
E n/2 E 1/5
R(t) =shock radius attime t = k (—) t° = k (———) t2s (2.16)

where k is a non-dimensional constant.

For the implosion problem, there was no similar dimensional argument to define the value

for such a power law exponent. However, the power law assumption was adopted by
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Guderley [10] for the shock radius-time relationship. Defining the set of dimensionless

variables :

r

§=R(t) where R(t) = shock radius at time t = (K t)
v, :n%V(&) y c = n-:-C(ﬁ)
2 r’
P = Po £2(8) ; p=np, 5 P(&)
c=[XE
Q

The partial derivatives are modified in terms of the new variable

. 3 _ 2% _ &
ot o€ Jdt t 3§ or 0§ odr r 0§

Introducing these modifications, the one-dimensional set of equations can be re-written in
terms of the new set of variables, and the original partial differential equations (in terms of
dimensional physical variables) are transformed into a new set of ordinary differential

equations which can be solved independenty.

fov-n?-c?}e % - {ZV— 2(111;“)}@ —V(V—l)(v—%) (2.17a)
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N2 _ SdC _(l—n) -t 2 ‘Y—-I ( _l)
{ov-p C}C_d§ = {1 -~ (V-1 }C o ViV -
—-DV(V-1- (V—n(v-l) (2.17b)
n
o84 _ _(A=-n)l o -2 ( _1)
{ov-n C}Qd& = 2{2U o }(v D™ C - V(V-—

2V (V-1 (2.17¢)

Where U is the non-dimensional shock speed. The set is integrated between the limits
E=o (inlet) and E=1 (shock) with the Rankine-Hugoniot relations forming the
boundary conditions at shock location. There is a clear singularity when V*C= 1,

which agrees with the fact that all singularities must happen on the family of characteristics

df_ v +c = nf(vz0) (2.18)
dt t

Thus the limiting member along which the singularity can occur is the one passing by the

origin of the (r, t) plane.

(o9
-

V+C=1 = —=n% or r=(Kt)" (2.19)

o
-
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which means that the power-law curve becomes a characteristic when approaching the
center. However, other than this particular moment the flow is not supposed to have any
other singularities, especially if one considers the feedback resulting from the backward-
moving characteristics reflecting on the limiting one (Fig.(2.1)). The only way to ensure
this is to have the exponent ( n ) such that the RHS tends to zero when the LHS has the
same value. The values of ( n ) were tabulated for different values of specific heat ratio for
both spherical and cylindrical converging shocks {25]. It must be mentioned here that the
flow approaches a power-law behavior at small radii. Far from the center, the flow should

be treated with the Method cf Characteristics and numerical integration.

2.3 - Multi-Dimensional Formulation

Other than perfectly one-dimensional problems, the only cases handled with characteristics
were those in which transverse flow adjustments require smaller time scales than those
required for advance in the axial direction. Adopting a time-marching scheme in which the
solution step - between the successive shock fronts - is small enough to ensure small area
increment, the flow can be treated as quasi-one-dimensional. This applies to duct flow
problems including small rate area variations. Applying the characteristic relations and
Rankine-Hugoniot thermodynamic relations can lead to defining the history of shock
propagation as a relation between the area and the Mach number variations along the duct

or tube.
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Furthermore, similar cases where side bleeding process is used for attenuating shock
waves were of major concemn for engineering applications related to duct or tube flows.
This requires investigators not only to consider the effect of area changes on traveling
shocks, but also to examine the more general situation where mass, momentum and energy
transfer flux terms exist and influence the shock motion as well, thus providing farther

guantitative insight into the continuous bleed problem.

Our interest in the present investigation is confined to the case where no fluxes exist (for
the CCW is considered here as an introduction to the Ray-shock Theory, which does not
assume cross flow, as will be shown later in this chapter). Besides, the bleed problem
studied is due to a single slit only, which precludes the use of continuous flux term

treatment.

2.3.1 - Quasi-One-Dimensional Treatment :

Omitting the mass, momentum and energy flux terms on the right side of equations, the

quasi-one-dimensional formulae for Euler equations can be written in the form :

Continuity : 2—-&- u——+p a—x+ p— T 0 (2.20a)

Momentum : —+u— +——=20 (2.20b)
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ds das

Energy : E+ué—x= or
dp, 9p_ o 9p 9P, _
at“’ax c (8t+uax)—0 (2.20¢)

. - . dx
or in characteristic form. Along the characteristics C*: m
t

1
e
H+
e}

[it+(ui c)a—:l p x pc[-—a—-+(ui c) _8_] u+ [pczuid—A-] =0
x

d d at ax A dx
(2.21a,b)
while the entropy equation
as ds
—4u— =0 2.21c
at ax ( )

is valid along the particle path P : —c:l—J: = u

In this case, u is the local velocity in the tube direction and x is the position along the tube

axis. The only equation which includes area change is the continuity equation. Across the

shock front, the Rankine-Hugoniot relations apply
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u,— w2 [M_ _1_] (2.22a)

a, Y+1 M
2— —
_E; - ZYMYH(Y D (2.22b)
1
2
P, _ _(+hHM i (2.22¢)
o, 2+(Y-DM
c /2
s - [22]
1 1 2

where case (1) refers to the state ahead of the shock and case (2) to the state behind the
shock. Assuming stagnant conditions ahead of the shock, the particle path and C
characteristic not affecting the shock, the equation of the C* characteristic can be recast in

the general form :

—— = - gM) dM (2.23)

The form of the function g (M) reflects the different approaches followed by the early
researchers who handled the problem. Chester [20] assumed that the variations at any time
station to be small compared to the current flow conditions. So the equations were recast
as perturbations superimposed on the previously-uniform tube mean flow. The equations
were linearized around the mean flow state and solved explicitly. By integrating each

linearized equation along its own characteristic line, the equations take the form :
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pic’u A-A

p—-p,+ P ¢ (u—u) + = F[x—-(u,+c¢;)t] (2.24a)
u, +c¢, A,
2 —

p—p;,— P, ¢ (u—u) + Pic v A-A G[x—(u, —c))t] (2.24b)
U, ¢ A,

p—p + 012 (p-p;) = Hlx-uy t] (2.24¢)

where the functions F , G and H represent the disturbances carried along their respective
characteristic lines to reach the point under investigation. Since the C* line is the only one
capable of carrying signals from the undisturbed region far behind the shock, the function
F is identically zero. The other two can be calculated from the local thermodynamic values
through the Rankine-Hugoniot relations and their values are conserved along their
respective characteristics to interact with other locations at new time stations (Fig.(2.2)).

The final result is in the form :

AA _  _ 2MAM 2.25)

A (M? - 1) K(M)

where K(M) is a slowly varying function ( from 0.5 at M =1 to 0.3941 at M = o)

which was named the Chester function (Fig.(2.3)).

2 2 1-p?

=m where A.(M)=[1+Y— J(1+2u+ and

KM) +1 #)
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2 (y-DM?*+2
2yM? - (y-1)

Chisnel [21] followed a different approach assuming any finite area variation as a sequence
of area jumps after each the flow can be treated as steady uniform. The shock undergoes a
disturbed transformation while the emanating signals are reflected along the
characteristics. These are re-reflected again - after intersecting with previous changes - to
overtake the shock and contribute to its behavior. Considering multiple re-reflections was
impractical and so one re-reflection was considered. It was found by the researcher that
their total contribution to the shock history is negligible. This led to considering Chester’s

Area-Mach number relationship as the differential form of the real one.

dA _ 2MdM .
A (M2 = 1) K(M)

2MdM
A = A, exp(—‘!. YT K(M)) (2.24)

where the area where M = 1 is taken as the reference area A,
Whitham [22] followed the more direct approach of assuming that in the ( x, t ) plane, the

shock path and the C* characteristic are close enough to be considered as one line.

Applying Rankine-Hugoniot equations directly on the equation of the C* characteristic,
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Whitham obtained the same formula derived by his two predecessors. Because of this, the

resulting formula was called after them the CCW relationship.

For high Mach numbers (M? >> 1) in imploding cylindrical and spherical shocks, the
Chester function approaches its asymptotic value and the area-Mach no. relation takes the

power law. For cylindrical case :

dR _ dA _ 2M dM _ _ _2MdMm

R A M- DKM (M?) 0394
dR _ _ _1 dM (2.25)
R 0197 M

2.3.2 - Geometrical Shock Dynamics
( Whitham Ray-shock Theory ) :

For multi-dimensional cases associated with complicated geometries, the use of the
Method of Characteristics in its original form (with the time axis) becomes impractical and
different schemes relying on space axes only become a must. For quasi-1-D flows in duct-
like paths, the CCW theory has provided a tool relating the local shock Mach number and
the local area across which the flow is confined to move. With the moving shock
thermodynamic relations incorporated, the new scheme was supposed to provide

researchers with the thermodynamic state just behind the shock front and not far beyond.
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As an extension to the abovementioned quasi-one-dimensional formulation, Whitham
presented a multi-dimensional treatment based on the same derived formulas [23-25]. It is
assumed that the solution domain - between the successive shock fronts - is divided into
stream tubes. Each tube is bounded by rays in stream line directions as well as the shock
fronts (which are assumed to be normal to the rays). In each tube, if the time increment
and tube width are small enough, the flow can be considered as quasi-one-dimensional.
The CCW theory can predict the alternatives for shock speed versus tube width, while the
lateral geometrical compatibility requirements enforces the definition of the new total front

shape.

An orthogonal curvilinear set of coordinates was defined to match the two orthogonal

families of curves. Along the rays, the axial coordinate ( & =c, t ) represents the

locations of shock fronts at its contours , where co is the undisturbed speed of sound
ahead of the shock. Accordingly the distance traveled by the shock in a time increment dt

is Udt=M da, where (U ) is the shock speed and ( M ) its Mach number. The other
coordinate ( B ) describes the rays as its contours such that the area increment is defined

as dA = A(a, ) dB . as shown in Fig (2.4).
The P.D.E.s for the new system can be rewritten in terms of the original Cartesian system

of coordinates using the proper Jacobean tensor. The geometry of the curvilinear element

PQRS shown in Fig (2.4) shows that

4]



A+ 22 da) dB ~ AdB
aa

é = 6,-6, = QR-PS _
PQ Mda
JdA
— dodp
do. de 1 0A
e = — — = - — 2.26
Mda or B M a0

A similar derivation leads to the formula relating the angle of the orthogonal contours

M+ M 4B) do - Mda
Adp
_d¢e _ 1M
da ~ A B 2.27)

Since the two families of contour lines tend to be orthogonal, i.e. d® =d¢, then

de 1 A de 1 oM
— — ——— O , _— ——=0 2.28
df M oa de A OB 229

The set of equation is hyperbolic and the characteristic form can be obtained using

Lagrange multipliers. Multiplying the first one by A and adding to the second one

a d 1 dA 4 1 ¢
9 o S W W = 2.29
[ +laB]e+[deM6a+AaB}M o e



It must be noted that in the equation above the A-M derivative is introduced as a total
derivative assuming the one-to-one relationship deduced previously and assumed to

describe the flow inside the stream tubes. Denoting the A derivative w.r.t. M as A’
dA ,
A = - gM) dM = A= —gM) A (2.30)

the existence of characteristic lines implies the uniqueness of the directional derivative

operator along them. Then

= CM) (2.31)

B 9 | dM

—_ 4 _— + —_— =

_aa‘cas_[e * AC] 0 or
-—iCi-(B T oM)) =0 2.32)
| da B |

Since the integral ® (M) in the above equation is a function of M only, its values - as well

as those of the characteristic angle m = tan™ ( C (M) ) - are tabulated to be used in the
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solution for the advancing shock fronts in two-dimensional problems. For using Cartesian

coordinates the transformation is easy to visualize and the characteristic directions

B _ scap = £ tan(m) (2.33)

are recast as the formulation

tan (6 +m) (2.34)

For practical applications, the value of the Chester function K(M) are taken as equal to a
constant mean value depending on the Mach number range of operations. Consequently
the value of the characteristic angle ( m ) can be deduced as a direct function of the Mach

number. Defining the parameter (n ) as 2 / K(M), the equation (2.24) is rewritten as

dA 2MdM o MdM
A M? - DKM) M?* =1
1
2 _ K
A M- (2.35)
A, M?I-1

where A, (taken usually as 1) and M, are the undisturbed reference values. Going back to

the relations of the angle ( m ) and the integral (@),



dp M 1 [M?*-1

tan = = + [— = +— 2.36

(m) dol AA’ MY & (2.36)
dM T dM

oM = |— =+n f ——— = «n(cosh™M —cosh™ M,) (2.37)
AC M? -1

As mentioned before, the Ray-shock Theory has its limitations concerning the location and
quality of results obtained, in addition to the cumbersome calculation procedure. The
approximation above can not be considered as reliable for weak shocks with large Mach
number variations or large diffraction angles (since the constant function K assumption
will not be suitable). In problems including flows in the radial-axial plane, the scheme
should be modified for considering the width of flow area in the tangential direction,
which is proportional to the radius. This means that solutions based on the

abovementioned derivation are reliable only at large radii.

2.4 - Application to Shock Diffraction and Mach Reflection

Interaction of an initially plane shock with both concave and convex corners has been
examined by several authors both analytically and experimentally. In the present section,

we present a brief discussion for the application of the Ray-shock Theory for the two basic

events.
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For the case of diffraction at a convex corner, the result is the simple expansion fan
comprising one family of characteristics. Considering the sharp edge as a concentration of
simple finite angle diffractions, The straight, radial lines will be centered at the corner, as
shown in Fig.(2.5). Each characteristic carries constant values of the diffraction angle and
its associated Mach number, and corresponds to the appearance of acoustic waves which
spread out and perform the modification of the shock. In fact, the characteristic lines are
just the paths of the intersection of each acoustic wave with the shock. The head
characteristic line is associated with the initial (undisturbed) shock Mach number

according to the above equation (2.33).

The shock shape can be calculated by integration along characteristics and the shock or
along rays instead [64]. For weak to moderate strength shocks, the former method is
chosen as it is simpler. For the diffraction of a very strong shock Whitham has chosen the
latter method and found that the shock shape is given universally in terms of the similarity
parameters X /M, and Y /aMo, centered at the edge, where a is the time-dependent

coordinate ( co t ) used in the theory's derivation.

As the Ray-shock Theory was the first feasible method to emerge, an early experimental
verification for it has been undertaken by Skews [61,62] for 2-D diffraction around both
sharp and rounded corners via Schlieren photography. As anticipated by Whitham,

reasonable agreement between the experimental and theoretical shock profiles is observed
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only for shock Mach numbers greater than about 3.0. For lower values of Mach numbers,
Whitham observed that the theory concentrates the disturbance over too small a segment
of the shock. In actuality, the disturbance is spread over the entire region encompassed by

the sonic circle emanating from the corner, as is verified by Skew's experiments.

The approximate nature of the Ray-shock Theory is demonstrated by the fact that for a
given shock Mach number there exists a limiting value of the turning angle which
corresponds to a wall shock Mach number equal to unity. Beyond the maximum angle, no
solution exists for a given M, since the shock wave degenerates into a Mach wave.
However, experimental evidence indicates that this is inaccurate for low or even moderate
shock Mach numbers ( My < 3 ) [61]. For example, at Mach number 1.5, the critical
diffraction angle is roughly 90° while the experiments show a finite shock strength even
for Mach number 1.2 and a diffraction angle of nearly 180°. For corner angles less than
90°, the theory is observed to predict the wall shock Mach number fairly well throughout

the entire range of the tests (Mach numbers = 1.0 to 5.0 approximately).

The theoretical value for the angle ( mo ) takes the form :

tan(m,) = (My* = DI2+(y =DM, ] (2.38)
’ (v +1) M,* '

These results imply that the Ray-shock Theory will likely not accurately predict the

characteristic angle ( m ) at any arbitrary location on the diffracted shock as well. Skews'
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experiments using Schlieren photography demonstrate that a finite shock strength is
observed for initial Mach numbers for all corner angles tested (up to nearly 180 °) while
the theory breaks down at limited diffraction angles of about 72 °. Skews thus concluded
that generally the Ray-shock Theory is not adequate for all shock Mach numbers and
corner angles simultaneously. For moderate shocks, the theory works well for angles less
or equal to 30°, while for large corner angles, good agreement with the theory is observed
only for M, > 3. The two formulae were found to approach the same asymptotic value of

23° at Mach numbers > 5.

For strong shocks and slight turning angles, assuming an average constant Chester
function K(M) becomes applicable, so are equations (2.36,37) and - defining the aveirage

value (n ) as 2/ K,y - the head characteristic angle is approximated as

2-
anm, = [CE=D @)

For the interaction of a plane shock with a concave comer, the CCW and Ray-shock
Theory were used to calculate the resulting motion. It was experimentally observed that a
critical angle value - which depends on the incident shock Mach number - exists, dividing

between two possible cases:
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e If the angle is below this value, Mach reflection will take place where the shock is
replaced by the confluence of three parts : the remaining incident shock, a reflected
shock initiated at the corner and its profile depending on the fluid Mach number behind
the shock, and a third shock - called Mach stem - normal to the wall with the flow

behind parallel to the wall. The point of confluence is referred to as the “triple point”.

e If the angle is higher than the critical one, the Mach stem disappears and the incident-

reflected shock structure, called regular reflection, prevails.

A schematic description for the two cases is shown in Fig.(2.6). In the present study, the
interest will be confined to the first case since it is the one mostly found. Although Mach
stems are assumed to be straight it was found that this is not the case, specially for weak
shocks and near the triple point. This is due to the fact that the fluid is affected by three
rather than one shock, as well as the non-uniformity of the conditions behind the
advancing shock structure (due to reflected waves) which - in turn - affects the shock
behavior through characteristics. Since part of the flow is influenced by the incident-
reflected shock couple while another part by the Mach stem, a slip line is created behind

the shock formation across which equality in pressure only is satisfied.

The Ray-shock Theory treatment assumes straight Mach stems. For the geometrical

compatibility of the two triangles described in Fig. (2.7)
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A _ sin(x-86) and M _ cos(x-8) (2.40)
A, siny M, cosy

Also, considering the values of Ray-shock Theory variables

A
AAB g tany = A, AP
MAa M, Ao

tan(x—-0) =

A M
tan(x—-6) = —-—2 tan
(% ) A, M X

which is consistent with the geometrical considerations above, thus leading to the final set

of equations

_ / 2 172
tan(x—0) = -Af1=(Mo/M) (2.41a)
A, [1-(ATA,)
M2 —=M2)2 (A2 — A2)2
tan 8 = ( A;;ﬂi 131 ) (2.41b)
(V] 0
in addition to the previously derived CCW equations (2.24,25)
A _ f(M) in general , A = {—M—Q-} for strong shocks
A, f(M,) A, M

50



The integral f(M) is evaluated using the reference M = 1 state and the Chester function, as

indicated before.

However, the theory was found to have limitations in finding the Mach stem angle. For
moderate to weak shocks, it was found that the Ray-shock Theory overestimates the
Mach stem angle for wedge angles higher than 20° . On the other hand, when the wedge
angle approaches zero - which means that acoustic theory is applicable - the theory was
found to underestimate the angle. As a compromise based on experimental observations,
Ostrowski [64] suggested the use of the mean value of the Ray Theory and the acoustic

theory values for the triple-point locus.

Although the processes described above are those occurring at the corners, other
reflection processes occur at the straight wall for the fully developed Mach stem and the
expansion fan or whatever comes out of their interaction. For this reason, the duct or
chamber width plays a pivotal role in defining the exact features of the problem since it

controls the reflection positions and consequently the interaction trends.
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3 - NUMERICAL METHOD

The solution of Euler equations has always been a challenge to specialists in computational
gas dynamics. Despite their apparent simplicity, their mathematical hyperbolic nature
implies the physical existence of characteristic directions for signal propagation with
respect to time. Even in steady flow analysis, the problem becomes more critical in case of
transonic flow which includes mixtures of subsonic flow domains (in which signals passing
by any point can propagate in all directions) and supersonic flow domains (in which signals
passing by the point propagate into - or come out of - restricted domains governed by the
Mach number). To reach an efficient simulation of the physical problem, the numerical
scheme has to accurately simulate the process of signal propagation (or zonal interaction)

while defining the mathematical relations between nodal variables.

To simulate unsteady transonic flows, numerical schemes fall into two main categories:

1. Explicit schemes : in which the spatial residue formulation is evaluated at the old time
level. This means that each nodal value at the calculated new time level is obtained in
terms of the old set of values at the previous time level.

2. Implicit schemes : in which spatial residue formulation is evaluated at the new time

level. This is formulated using a “reversed” form of the explicit schemes (each nodal

value at the old time level is expressed as a function of the values at the new time
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level). Consequently all the equations for nodal values at the calculated new time level

are coupled and should be solved for simultaneously.

The main advantage for implicit schemes is their unconditional stability, which facilitates
using unstructured grids and increasing the time step to a limit governed only by accuracy
considerations. This depends on the complexity of the geometry and flow history.
However, they require larger amount of matrix storage for the discretized spatial and
temporal derivatives. Since the accuracy of the time derivative has a profound effect on
the obtained flow history, solution at two or more previous time levels are used to
discretize the current time derivative and increase its order of accuracy. This limits the

ability for changing the time steps and increases storage requirements.

On the other hand, explicit schemes require storing only the time-derivative terms in the
matrix. This advantage of considerable reduction in matrix storage can be augmented
further if the set of variables is chosen such that the time derivative matrix is diagonal-
dominant and linear. In this case the matrix is loaded once during the run. Unlike multi-
step implicit schemes, it is possible for explicit schemes to change the time step in the
middle of calculations (by re-scaling the matrix). This is useful in case the time step needs
change for stability- or accuracy-related reasons. The main disadvantage is the limitation
imposed on the time step to ensure stability (the Courant-Friedrich-Lewy criterion).
According to the CFL criterion, signals emanating from one node point at the calculated

time level should not overjump the neighboring node points at the next time level. The
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problem becomes more critical in casc of unequal element size (which is desirable for a
better simulation for the flow at high gradient domains). Although this limitation could be
inevitable for the sake of simulating the flow history with reasonable accuracy, the number
of nodes, and the size of their associated arrays, becomes higher and consumes part of the

gained storage space.

Considering explicit and implicit methods as the two extremes in numerical simulations,
researchers tried to reach a compromise by deriving schemes which combine as much as
possible the advantages of both. The literature contains a variety of schemes of variable

order of accuracy with mixed formulation for the temporal derivatives [71].

3.1 - Finite Element Method :

The rapid development of the Finite Element Method has led to its incorporation into a
gradually increasing number of fields of scientific research dealing with continuum physics.
In the Finite Element Method, the domain is divided into small cells (or elements). Inside
each element, a prescribed piecewise continuous distribution of the variables is assumed in
terms of the values at the element’s corner points (or nodes). The problem is then
transformed into finding the finite set of nodal values so as to satisfy the governing

equations with the minimum possible residual error integral.

The basic advantages of the Finite Element Method can be summarized as the following:
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1. Its weighted average solutions cover the complete domains solved for, rather than

local linearization of differential terms at nodes (e.g., the Finite Difference Method).

2. Since nodes are shared between adjacent elements, then the prescribed distribution can
also be made continuous across the boundaries, thus ensuring solution continuity over

the whole domain.

3. The method’s flexibility in conforming with complicated domain geometries. This is
attributed to the localized nature of the mapping process linking the real element in the
physical domain to the parent element in the computational domain. This is contrary to
old methods which require global mapping of the computational grid to ensure
localized conformity (which puts limits on the grid design according to domain

complexity).

4. The ability of the mathematical formulation, extending to element boundaries, to
incorporate the natural boundary conditions through its contour integrals.
Consequently, the extrapolation of any mathematical quantity from inside the domain

to the boundaries is done automatically.

Although the Finite Element Method was a late newcomer to the field of numerical

methods for fluid dynamics, it has achieved considerable progress in simulating viscous as
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well as inviscid flow test cases. Despite the fact that most of the scheme development
efforts are still based on the two older methods, the FEM is gaining more ground and
more schemes, originally derived for the FDM and FVM, were re-formulated for the FEM
[75]. However, it has been noticed that this is not the case for researchers working in the

field of shock wave dynamics, of whom very few showed interest in the method [72-74].

In this chapter, a fully implicit multi-step three-dimensional Finite Element scheme is
introduced for the solution of unsteady Euler set of equations for 2-D or 3-D domains.
Two-dimensionality can be imposed in the global matrix assembly stage by imposing
invariance in the transverse direction, and plane motion can be imposed through setting
the transverse velocity to zero. The code was prepared for using the minimum possible
storage requirements, with an iterative solver for the resulting matrix equation. The
success of the code to simulate 1-D and 2-D problems gives a good indication about the

code's capability of simulating the original fully 3-D cases.
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3.2 - Governing Equations :

The Euler equations for 3-D unsteady inviscid compressible gas, without heat conducting

or chemical reaction, are written in conservation form as follows :

Mass : ¥+Z.(p1) =0 (3.1a)
2

Radial momentum : 9PV y (pyv)=-3R, PY (3.1b)
at or r

Tangential momentum : M+Z.(pgv9) = - dp_ _ PV: Y 3.1c)
at roo r

Axial momentum : I(pv,) +V.(pyv,) = - 92 (3.1d)
at az

dp
Energy : —a—t-+2.(vxp)= (y-D)¥p.¥ (3.1e)

where the variables are :  the density ( p ), mass velocity ( pv ), pressure (p)

This set of variables was chosen to be suitable for both explicit and implicit schemes to
account for the possibility of future modifications. However, it was decided to use implicit
methods at the present stage to be able to change element size distribution without
stability problems. The energy equation was put in its modified form omitting the kinetic

energy term, thus making it represent the pressure variation equation.

57



Since the primitive variable formulation is convection-dominated, an artificial dissipation
term had to be used to smooth the shock discontinuity by diffusing it along few grid
points, to omit the possibility of entropy-lowering expansion shocks and to overcome the
matrix ill-conditioning due to the central difference discretization of convection terms.

Since all the equations take the form

20, v. o=,

where ¢ is the thermodynamic variable, a Laplacian term was introduced to the RHS of

all the above equations. The Laplacian coefficients were tested to be made as small as

possible. In the modified form, Euler equations will take the form :

%‘-i—*-z.(p v)=V.([u].¥p) (3.2a)
a(g:f)+Z.(pxv,)=—%+#+2-([u]-zpvr) (3.2b)
a(g:") Y.(pyvy)= raa‘;—p";v"d-([u]-zpve) (3.20)
a(gt D4V (py )=-3—Z+_V_.([u].ZPvz) (3.2d)
4V (v = (1-D¥pu+ Y Y. ([1]. Tp) (3.2¢)
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where [u] is a diagonal matrix relating the diffusion and the gradient vector of the

convected variable. In the simple case this will be equal to a constant multiplied by the

identity matrix [ I] . In the present case this matrix was chosen as follows :

H, 0 0
[u]={ 0 u, © (3.3)
0 0 pn,

where the coefficients are constant but linearly proportional to their respective grid sizes

and the anticipated orders of magnitudes of the respective velocity components.

3.3 - Weak Formulation :

For every time marching to a new time level, the set of coupled equations was discretized
using the Galerkin weighted residual formulation for the spatial coordinate distributions
and derivatives [75,76]. The implicit 3-step Gear formulation, based on a Taylor series
expansion in time, was used for the time derivatives since it has proven to be accurate

enough for maintaining shock intensity and time accuracy.

The weak form is created by multiplying the governing equations, in the form F(u) =0 ,

by a group of test functions ( called weight functions ):

W. , 1 =1, number of nodes/element
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covering the element space but giving more weight to the zones adjacent to their
respective nodes. For each test function, the weighted residual is integrated over the
element volume. Through the coupled solution for all elements and nodes, the local as well
as global residuals are brought to their minimum possible values. The resulting divergence

volume integrals are transformed into surface integrals using the divergence theorem, and

used to introduce natural boundary conditions.

For the set of Euler equations, the weighted residual equations take the form:
Continuity :

IJIW‘ {%‘%*z'(f’!)- .V_-([u]-Zp)}dv =0 =
vc

(e o= gy
ve

(3.4a)
”W; {py-[u].Yp}.nda=0

AE
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Radial momentum :

r

J’” {a(pv)+v (pvv)+_a__p7_v ([1]-¥pv, )}dv =0 =

2 ___W-
m—{ , a(pv ) _w,RXPYs _yw (v, —[u]-YP"r)"’aar'}dv+

r
(3.4b)
HWi {pvv, ~ [u].Vpv,+pe}-ndA =0
A,

Tangential momentum :

v at rofo r

oW,
J-J‘j{ a(PVe) l__pV;Ve —VW. .(pyve—[u]. Ypve) - p raé}dv+

(3.4c¢)
J.J‘Wi {plve— [n]. Vpv, + pga}-QdA =0
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Axial momentum :

HjW{a(pv 24 (pyv,) + 32 - y_.([u].sz,)}dv -0 =

(- - 5 - 2o

_UW; {pyv, - [u].¥pv, + pe,}.ndA =0
A,

(3.4d)

Energy :

MW{ +Y.(yvp) - (Y- ¥p.y —v_V_.([u]._V_p)}dv =0 =

_Uj{ ~ W,(y-D ¥p.y - YW, .(vvp —7[u]. Vp)}dw
(3.4e)

.UW‘ {yyp-v[n].¥p}.nda =0
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The formula for variable distribution inside the element is written in the form
nnode
o= N; ¢, (3.5)
1

where N i is the shape function defining the contribution of node ( j ), ¢j is the associated
nodal value of the variable and (nnode) is the number of nodes in the element. The brick
elements used in the present work are defined in a dimensionless mathematical space,
called the natural coordinate space, as cubes extending between the values (-1, 1) in
each direction (Fig.(3.1)). The trilinear shape function is defined in terms of the natural

coordinates (§,n, ) as:
N, = (LHEE(L+m)(1+EE) . j=1.8 (3.6)

For simulation of spatial variable derivatives, the shape function partial derivatives with
respect to physical coordinates are needed. These derivatives are obtained at any point
inside the element through inverting the Jacobean equation. In the element used, the real
coordinates are linearly distributed in the natural coordinate space using the same shape
functions as the variables. So the Jacobean matrix elements - as well as the variable
gradient vector w.r.t. natural coordinates - are also evaluated using the shape functions

and their derivatives :
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For the Galerkin formulation used, the weight functions are also chosen to be the same
shape functions for the nodes. Because of the non-linearity, the problem is cast in the

Newton iterative technique. The value of an unknown ¢ is linearized and modified after
each iteration as follows :

oM =0"+d ¢ (3.8)
The differential terms with order higher than first order are neglected. Applying the

distribution formulae on the element level and assembling for the whole grid, a global

matrix equation is created in the form :
[Kii ]{dq)l}: - {Rl } (3.9)

where
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K = the Jacobean matrix of coefficients (solution-dependent)
¢ = vector of the current solution values
dd =the increments to be added to the current values

R = the residue vector, which is the motive for the solution correction
For the equations used, the local element's matrix equations will take the following shape :

ontinui .10a);

28‘ [zs‘ Kf:’;,:l = —-R®  where

Fl m=1

am e W N
K® = {uT{LJrgwi.([u].y_Nj)}dV+IJ'-wi {[1].¥N;} .nda
R iy
K® = _a—awr—i. N, dv+ || W,N;e .ndA
A A
amm awl o~ p
Kg?g:.v. 238 N, dV+“ W;N; e .ndA
AC
K®) = W Nnoave[[w. N, .nda
! -v. az J dA. ! J

R® =J1J‘{wl _ﬁ[ljp(nﬂ) —2p® _*_ij(n-l)]_z\yi .(PX - [u]-¥p )}» dv +

[[w {px - [1.9p }.nea

AC
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Radial momentum (3.10b):

i l:i Kfj’;] = —R® where

Fl m=1

v 1 1 (pv )?
K™ ”J‘{p—z(ZW. -pY¥)pv.N; +;wi N; —pi—} dv -

‘U—WN pv,. (pv.ndA)

kg m{ - oW pys

[[w {EN" (py+pv,e,) - [u]-ZN,-}.gdA
A,

v (| oW, pv, 2 1
K§?3:)=“- {—WPTNJ_;WN pve} dV+‘”‘;Wi N;pv. e .ndA
c A'
K{ev) = _9W, N; AR dV+J- -l-WiN.pvr e, -ndA
! JJJ 0z P P !
¢ Ae
ol ol o W
K = (aa W, ) N. dv+_UW N, e .ndA
. r

<:

o

2
R = ‘”‘J-{ I.Spv(“*“ =2pvi® +05pvi? ] -W, PYe } dv +

HI{ {pvv,~[u].Zpv.}- (%%)}m

”W; {pyv,- [u].¥pv,+pe }.ndA
Ac
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Tangential momentum (3.10c);

i [i Kff:)jl = -—-R® where

Fl m=1

K& = J‘”{ DY) peN, —piw N, pv'ppv"}dv_

J. —W; N, pvy (pv.ndA)

iz - m{ 2 L v [[ Lo 2o
K5 = IH{U
U/H— ;(zwi.pyi;‘g pve)N,-+_\zwi-{{u].ZN,-}}dV+
Hw{ N, (py+pvaes) — [ul. VN} ndA
= {5 2 v nn
<=l [rae)N v [, o

+——WN PV, }dV+

R = _”J'{ [L5pve —2pve +05pve]+w, BT }dV+
r

J-”{ Apyve-[n].¥pve}-p ;v(; }dV+

J‘J.Wi {p VYvg — [u]-ZPVe +P§e}~ﬂdA
A,
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Axial momentum (3.10d):

$[5 ea] - o

m=1

v )1 1
KfY = J -F;T(_V.Wi.px)pv,N,-}dv-J'J'p—zwi N, pv, (py.ndA)
AQ
K(pvx = J
ij2
A
Kg?;x)::ddj
'

ke = [[[{1s
vV,

(8

’N PY, }dv+H-WN pv, e, .ndA

oz

\% —W.N. .ndA
{ FET }d i P L
{ 1 ZWi-P!+aWi pvz)Nj+ZWi.{[u].y_N,.}}dV+

1
Wi {-p'N,- (py+pv.e,) - [u]-.V_N,-}.gdA

<= [ -( G2 ) moav+ [fwn, e
i dz ! ’
\A A

RO = J.“.{ 1.5 pvie* —2pv® +05 pv‘z"“”] } dv +

.[.”{ {pyv,-[n]-¥pv,}- pl}dv-i—
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The volume or surface integrals are evaluated numerically using Gauss quadrature
technique. Three quadrature point were chosen for every spatial direction to ensure
accuracy up to a fifth-degree polynomial. For multi-dimensional integration, the Gauss
point locations are distributed in the multi-dimensional range ( -1 , | ), while their weight
values are combinations of the one-dimensional weight values (according to their location

in the natural coordinate space).

Concemning the differential volume or surface elements used in the integration process,
they are evaluated using their associated differential domains in the natural coordinate

space and the Jacobean matrix of transformation. Since the coordinate transformation

equation is :
rde| = rai’e raie % dn|= [ J J dn G.11)
dz | -%é ?}q_z g_CZ - | dC | | dC |
then the volume integral differential element is
rdrdddz = |J|d§dndg (3.12)
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Combining the above mentioned formulae, the volume integration will be written as :

”' f(r,0,z) rdrdédz =

o—-'.-."‘
.-.‘—-v-'

1
j fEMYD |I[dEdndg
-1

Ve (3.13)
3 3 3
z 2 Z W W Wy, £k M108m) IJ(k.Lm)l
k=l I=l m=l

where §,,7;,{,, are natural coordinates of the Gauss points and W, ,W,;, W, are their

weight values. The same method is used for surface integrals in double instead of triple
summation, with values of Gauss point coordinates depending on which face of the

standard element in handled.

In the global assembly stage, the convective and pressure surface integral parts of the
residues, which represent the interaction, will be identically canceled out to ensure
conservation between elements. The normal derivative surface integrals resulting from the
artificial dissipation terms are also ignored between elements in order to enhance, at least
partly, the averaged continuity of the normal first derivatives (since the original FEM

formulation has no means of doing so).

The resulting global matrix equation will have the same residual minimization form of the

element matrix while imposing conservation of all convected variables between elements.

Once the residue L, norm reaches a specified value, the solution for the time level stops

71



and the code shifts to the next one. In the present study, reaching the machine accuracy
value of 10'° was taken as a sign of convergence. This has been reached in a maximum of
4 iterations, converging quadratically (on a semi-log chart of L, .vs. iteration number, the
curve takes an approximate inverted parabolic shape). Fig.(3.2) describes the flow chart of
the nested loop. The outer loop is for time-marching and the inner loop is the iterative one

dealing with residual minimization to account for non-linearity

3.4 - Boundary Conditions :

As discussed in Chapter 2 , the hyperbolic nature of Euler equations implies that the
boundary values imposed should be consistent with the possible channels for signal
propagation. For a 1-D set of Euler equations, the characteristics are found to propagate
with speeds equal to the forward- and backward-moving speeds of sound, superimposed
on the flow velocity. For multi-dimensional flow the active velocities were found to be the
same sound speeds, superimposed on the velocity components normal to the local

boundary [75,76].

The boundary condition specification depends on the boundary status as well as the

velocity component normal to the boundary. Several cases are possible in this respect :

1 - For subsonic inlet, two characteristics will be coming from outside the domain. So

their associated variables, or mathematical relations, should be imposed as boundary
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conditions either explicitly or implicitly through surface integral terms. For isentropic flow
these are the transverse velocity component in addition to the entropy and the C* Riemann

invariant

where u is the inlet fluid speed and c is the speed of sound. The third one is supposed to
be extrapolated from inside the domain. In the Finite Element technique this is identically

satisfied.

2 - For supersonic inlet, the three characteristics will be coming from outside the domain.
This means that inlet section conditions will not be perturbed by any signal propagation
from the inside. In this case all the characteristic variables, or any other complete set of

variables, can be introduced as boundary conditions.
3 - For subsonic exit, only one characteristic will be coming from outside the domain. So

its associated variable or relation can be imposed as a boundary condition. For unsteady

isentropic Euler equations it is the C” Riemann invariant

Q=u—-:Y_Llc.
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4 - For supersonic exit, the three characteristics will be coming from inside the domain.
This means that exit section conditions will not be perturbed by any signal propagation

from the outside. In this case, no values are imposed for the variables.

5 - For wall surfaces, the no-penetration condition is imposed. However, in the case of
unsteady flow with localized shock or rarefaction waves colliding with walls, the method
of imposition should be strong enough to avoid flux values at walls, yet it has to avoid
multplicity in imposing the condition to avoid the numerical scheme's divergence. Since
the solid surfaces encountered in the present study were found to be straight surfaces, the
no-penetration condition was easily imposed in the global matrix assembly stage. Linear
combination was enforced between the velocity components such that the normal
component is zero. In this case the no-penetration condition is imposed only once, and all
convective flux integral terms, including the continuity flux integral, were included in the
matrix calculations since they vanish identically. The surface integral resulting from the
artificial dissipation is ignored since it is not strong enough to impose zero normal

gradient, yet it causes a non-realistic flux value in case the gradient exists.

3.5 - Matrix Solution Requirements :

To extend the work to three dimensions, matrix storage has to be considerably optimized
to be able to use the available computing facilities. Although explicit schemes contribute

greatly to the solution of this problem, the most cost-effective method is to use iterative
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solvers, which require storing only the matrix non-zero elements. Despite the gradual
approach to the final solution, the method is suitable for conventional computers and for

the diagonally-dominant matrices associated with time-marching problems.

The GMRES iterative solver used in the present study was developed by Y. Saad [77] for
linear algebraic problems with large size sparse matrices. The main idea is to perform an
L-U decomposition only for the originally-nonzero entries of the matrix. Consequently the
resulting L and U matrices are not exactly equivalent to the original matrix and the
resulting solution will not satisfy the matrix equation at once. Assuming an N-dimensional
space including the solution and RHS vectors (where N is the number of unknowns), the
solver creates a limited number of orthonormal basis vectors, from which the solution is
composed, by successive minimization of the residual vector (the difference between the
combination of previous solution vectors, and the RHS). Once the residual vector is less

than the specified minimum, the solution is constructed from the calculated vectors.

This solver is decoupled from the original formulation and is used explicitly for matrix
equation solution - a task in which it has gained considerable reputation for its success in
problems with ill-posed matrices (e.g., convection-dominated P.D.E.s of high Reynolds
number fluid dynamics). It has been used successfully for steady flow problems for both
Euler and Navier-Stokes equations [78], and for the present study its performance has
shown improvement due to the enhanced diagonal dominance resulting from the linear

time derivative terms.

75



4 - EXPERIMENTAL SETUP & PROCEDURE

The experimental work for the present study was carried out in the Concordia University
Shock Wave Dynamics Laboratory. A variety of test cases were used to compare to the
simulation of the basic phenomena encountered in the original problem ( e.g., convergence
strengthening, diffraction, reflection ....etc.). The test results chosen include Schlieren and
pressure measurements of plane 2-D flows for validating Cartesian coordinates
formulation, as well as pressure measurements of radial or 2-D axisymmetric flow for

validating the cylindrical coordinates formulation.

4.1 - The Two-dimensional Shock Tube

4.1.1 - Experimental Setup :

For two-dimensional cases, a square section shock tube was used. The tube is made of
seamless structural steel and has inner dimensions 2.06 " x 2.06 " (51 x 51 mm) and a 0.25°
(6.3 mm) wall thickness. A schematic diagram of the shock tube assembly is shown in

Fig.(4.1). The setup consists of four basic parts :

1. A driver section 5 feet (1.52 meter) long for high pressure, supplied with air either

from the compressed air line of the building (up to 110 psig), or the air tank filled by a
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reciprocating compressor available in the lab (for higher values). The idea behind a
relatively long driver section is to prevent any waves reflected at driver tube end from

affecting the measured flow at the critical time.

. A drven section of equal length in which some transducer measurements are taken to
calculate the incident shock velocity. Special threaded holes are available on top of the
section to introduce the pressure transducers. The length of the driven section allows
the shock - resulting from localized diaphragm rupture - to regain its planer shape due
to transverse signal propagation. The driver and driven sections have O-ring sealed
flanges. They are separated by mylar plastic diaphragms whose rupture depends on the
pressure values at the two sides and the diaphragm thickness. The same flange and
sealing mechanism exists between the driven and test sections. However, an extra set
of pins is used to align the two sections to minimize the possibility of shock

perturbation.

. A 37.5 (952 mm) long test section in which all Schlieren photographs as well as some
transducer measurements are taken. For Schlieren photographs a 5~ (127 mm) long
section is milled away on three sides of the test section. Two square frames are
welded on opposite sides, each holding a 0.5 ~ (12.7 mm) thick commercial glass
window with the necessary clamping and sealing. The third (middle) milled part is
replaced with the metal sections defining the experiment's geometry. The test section

should always be broad enough to maintain the two-dimensionality of the experiment.
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The driven and test sections are well sealed to allow creation of negative gauge
pressure, thus increasing the shock speed, and the test section has wide outer bleed
chamber with square dimensions to prevent the bled shock from reflecting and

affecting the tube flow once more.

4. A 5-KV power supply unit equipped with a time-delay circuit to control the spark time
for Schlieren photography. The circuit is triggered by a transducer located in the
driven section, upstream of the test section. For the slit interaction experiment, the
same transducer is used to trigger the oscilloscope cursors for pressure and shock

velocity measurements.

Compressed air enters the shock tube via a copper tubing through the control panel. The
pressure in the driven section could be atmospheric or vacuum, depending on the Mach
number required in the experiment. Vacuum pressure is provided by an electrically
powered vacuum pump via a connection to the driven section, through the control panel,
by copper tubing. The pressure supply is measured by two control panel gauges, one
measuring absolute pressure with operating range (0-100 psia) for the driven-test sections,
and another measuring gauge pressure with operating range (0-300 psig) for the driver

section.

The driven section is evacuated to different values, while the driver section is filled slowly

until the diaphragm ruptures. The driver pressure rupture value was maintained as much as
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possible by using the same diaphragm type and careful handling of the driver section filling
process. It should be mentioned, however, that according to the Riemann problem
formulation, the pressure behind the shock is lower than the driver pressure, which means
that the resulting error in its value will be smaller. Furthermore, it is evident from the
Rankine-Hugoniot pressure ratio equation that the sensitivity of the shock Mach number

to variations in pressure ratio is small.

Near the downstream end of the driven section, 3 transducers were installed. One is used
to trigger the oscilloscope and the other two to measure the incident shock speed. For the
slit bleeding experiment, the attenuated shock speed is measured using 2 more transducers
located 20 ~ downstream of the slit zone on the test section. They are not installed for the
ramp experiment, since the flow does not reach their location. For the ramp test case, and
since it was only possible to have one photograph for each experiment, the Schlieren
system was adjusted with successively increasing lag time relative to the trigger

transducer.

The available tube did not have diaphragm piercing mechanism similar to that of the
cylindrical shock tube. However, it was found that for the same diaphragm type, the high
pressure value is almost the same at rupture. So the diaphragm type (instead of the high
pressure) and the low pressure value became the control parameters, so as to reach the

range of supersonic flow Mach number behind the incident shock. The piercing mechanism
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will be essential if the used diaphragms rupture at pressure values higher than the available

operating range for the driver pressure.

4.1.2 - Test Section Options :

Fig.(4.2) shows the configuration of the test section, whose inner outlines depend on the
phenomenon to be tested. Two have been tried using the tubes in the lab with air as the
working fluid. One is for shock waves undergoing a contraction through an incline, and

the other is for shock waves being decelerated through side slit bleeding.

For the bleeding experiments, two L-shape aluminum wedges, with 15 ° edges, were
employed to form the slit. The upstream wedge was fixed while the other was varied in
dimension to control the slit width. Ostrowski's Schlieren results were used to visualize
the flow and shock structure for numerical code validation. However, in the present work,
experiments were also carried out to determine the shock attenuation as a function of the

geometrical parameter, namely the slit-channel width ratio.

For the ramp reflection-diffraction experiment, the two wedges were replaced by an L-
shape 15° wedge and a supporting U-shape panel. The wedge geometry represents the
50% reduction in area of the original cross section through a 15° slope, while keeping the
2" (51 mm) breadth constant. For facilitating Schlieren photography, the side walls are

made of commercial glass (as opposed to metal plates, in case no photography is needed).
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4.2 - The Axisymmetric Cylindrical Shock Tube

4.2.1 - Experimental Setup :

Fig.(4.3) shows the general layout of the axisymmetric shock tube assembly. The
axisymmetric air-to-air shock tube is made of seamless steel tubing with 7 mm wall
thickness. The inner diameter of the cylinder tube is 154 mm and the total length is 5.81

meters. This shock tube consists of three sections :

1. A 2 meter long driver section which is connected to a compressor or a high pressure
compressed air line available in the lab. The driver and driven sections, separated by a
mylar plastic diaphragm, are assembled using standard and well centered flanges bolted
by eight bolts. In order to prevent air leakage and to assure sealing, O-ring seals were

installed in the raised face of the flanges, connecting both driver and driven sections.

2. A 3.81 meter long driven section which is connected to a vacuum pump to create
negative gauge pressures. This section is subdivided into two parts: one 2.74 meter
long tube followed by another 1.07 meter long tube housing the three-stage conical
contraction and is closed by a cover flange. A two-part aluminum inner tube with 10

cm outer diameter and 1.83 meter length is mounted concentric with the driven section
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of the shock tube. This inner tube combination has two purposes: The first splits the
originally produced normal shock wave into an inner plane wave and an outer
(annular) wave, and the second houses the bleed test section at its end. These two
aluminum parts are supported at the middle by an outer aluminum flange of thickness
40 mm (recessed in the shock tube inner surface) and a ring with 100 mm outer
diameter (recessed in and matching the aluminum tube outer diameter) and 76 mm
inner diameter. Four fins with 10 ° wedge angles at both sides, are placed between the
flange and the ring in order to provide the support (as webs) while minimizing the
disturbing effect on the shock front shape. A 5 ° chamfer is machined at the upstream
end of the aluminum inner tube in order to minimize any disturbance to the annular

part of the plane shock, whose effect might show later at the inlet condition.

. A test section located downstream of the driven section. At the extreme end of the
shock tube, a 3-stage incremental area contraction, designed by Wu et al. {37], is fixed
at the end of the aluminum inner tube. Its geometry is defined using the outer
machining of the test section corner and the inner machining of the end cover flange.
The contraction’s contour is designed to turn the annular plane shock by 90° to form a
cylindrical converging one. The inner bore of this cover flange is designed to
accommodate a fine quality glass window, which is sealed by a rubber gasket of 0.5
mm thickness. In the present study, where the bleed effect only is to be studied, a 78.7

mm diameter circular disk with an adjustable axial location was used for the purpose
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of defining the constant width test chamber by adjusting its surface to be parallel to

that of the end cover flange.

Compressed air enters the shock tube via a copper tubing through the control panel. The
pressure in the driven section could be atmospheric or vacuum, depending on the Mach
number required in the experiment. Vacuum pressure is provided by an electrically
powered vacuum pump through a connection to the driven section by a 75 mm steel pipe
followed by copper tubing. The pressure supply is measured by two gauges, mounted on
the control panel, one measuring absolute pressure with operating range ( 0-760 mm Hg )
for the driven section, and another measuring gauge pressure with operating range ( 0-100

psig ) for the driver section.

At the downstream end of the shock tube and upstream of the area contraction, a
transducer was installed to trigger the oscilloscope. In order to gain precise control of the
bursting pressure, induced rupture of the diaphragm by mechanical or electrical means is
preferable over the natural bursting by pressure alone. The piercing mechanism
incorporates a sharpened plunger driven by compressed air. This plunger was put

concentric with the shock tube and is controlled by a switch located on the control panel.
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4.2.2 - Test Section Options :

In previous work the test section was bled to atmospheric air, which limited the available
pressure ratio. At present, a new test sections is available to facilitate lowering the
pressure of the driven section, thus obtaining higher pressure ratios and Mach numbers.
The inner tube of the annular shock tube section was made to contain a bleed chamber
which absorbs the diffracted part of the shock wave. A schematic layout of the new
section is shown in Fig.(4.4). The end cover flange has two options: either a glass window
in the test section for visualization of the shock front shape using the Schlieren system, or
a solid aluminum cover with transducer threaded holes for studying pressure history and

deducing shock velocity accordingly.

The set of four transducers was placed at different radii in the cylindrical chamber ( 1.4,
0.95,0.55 and 0.15 ", respectively) and activated using a fifth upstream trigger transducer
to measure the shock pressure history down the tube radius. Bleeding takes place at an
outer radius of 1.475  , with a slit width of 0.1" . The results show the anticipated sudden
jumps in pressure for the incoming wave and the reflected wave passing by the transducer
location. From these results, one can measure the pressure ratio across shocks. It is also
possible to measure time between successive incident shock jumps and compare it to the

numerical and theoretical results.
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4.3 - Monitoring Equipment

4.3.1 - Schlieren System :

The Schlieren system is used to photograph shock wave fronts at any time, depending on
the fact that refractive indices of gases depend on their density gradients. Therefore, if a
plane fluid flow is subjected to a normal light beam, it creates dark and light zones whose
intensity depends on the density gradient contours and, consequently, give an indication

about shock structure.

A conventional Schlieren photography system was employed to photograph shock waves
in the 2-D ramp problem. This system, whose components are shown in Fig.(4.1), consists
of a 5-KV spark source, a condenser lens, two parabolic mirrors, a plane mirror, a knife
edge and a camera. The spark source is charged by a high voltage power amplifier and
operates at pulse value less than 0.1 microseconds. In this system, the light generated from
the spark source becomes parallel following its reflection from the parabolic mirror,
located at the focal length distance from the source. The other parabolic mirror reflects all
incoming rays at the test section, and the flat mirror receives and transmits all the light

rays to an open shutter camera.

The spark source and delay circuit were triggered by a transducer placed in the driven

section, upstream of the test section. The size of the light source was limited to 0.5 mm x
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0.5 mm by edges of four razor blades. In the adjustment stage, a continuous light source -
whose light beam follows the same path as the spark’s - was used to ensure the alignment

of different system components.

4.3.2 - Pressure Transducers :

A set of Piezotronics PCB 105A pressure transducers was used for shock tracking and
measuring the shock initial and final (attenuated) velocities. The transducer geometry and
performance characteristics are presented in Fig.(4.5). In the 2-D slit bleeding problem,
two transducers were located 18" , 24" upstream of the slit edge to measure the incident
shock velocity, and two others were located 20" , 24" downstream of the slit edge to
measure the attenuated shock velocity (after regaining its original 1-D shape). Signals are
processed using a 12-channel Piezotronics PCB Model 483B07 amplifier, and then
transmitted to a 4-channel Tektronix TDS 420 digitizing oscilloscope to calculate the

shock location history.

The first case which was tried was the simple one-dimensional shock tube problem
(Riemann problem) used for calibrating the pressure transducers. The interest has been
confined to the values of thermodynamic variables in the driven section behind the moving
shock. Far enough from the punctured diaphragm, the wave becomes a plane shock wave
with time-invariant state (relative to a frame moving with the shock) and the Rankine-

Hugoniot relations can be used to calculate the expected pressure.
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Experimentally, several trials were conducted - using the 2-D square shock tube without
bleeding - for various driver-driven pressure ratios and interchanging the transducer
locations, while the resulting shock motion history was recorded using the oscilloscope.
The transducers were placed 6" apart with the upstream one acting as the trigger. The
shock speeds were calculated by dividing the distance between the various transducers

over the time between successive pressure jumps measured from the transducers' outputs.

A sample of the oscilloscope output is presented in Fig.(4.6). The equal distances between
transducers are clearly manifested through the equal time intervals between jumps in the
channels’ output rises, thus indicating uniform shock speed in the constant area driven

section. The theoretical pressure rise across the shock, A p, is calculated using the

Rankine-Hugoniot relations:

Ap = p %(%—%— ) 4.1)
where :
p: = pressure ahead of the shock
Co = sound speed ahead of the shock
Va = shock speed
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Measuring the voltage output from each of the four transducers, it was possible to obtain
the required calibration curves for each of the transducers used. The results are presented

in Fig.(4.7) for the transducers used in the present study.

Similarly, the transducers are used - although along a smaller distance - to monitor the
shock motion down the cylindrical implosion test chamber. Theoretically, the rapid change
in the Mach number requires relying only on the local transducer to measure the local
shock speed. In this case, calculating the local Mach number is based on pressure jump
measurement (which makes its output quality extremely crucial for predicting the Mach
number). Another theoretical method is using the oscilloscope's shock radius-time output
and an assumed radius-time relationship. For example, the power-law form of the shock

Mach number - radius relationship

M=C * (R)" 4-2)

can be modified to obtain the radial location history by separation of variables and

integrating :

(R)*™ = -k*t + C (4.3)

where C; is an integration constant and k is equal to (n+1) (C,) co.
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However, from the practical point of view, results for such a small duration are susceptible
to defects in the transducer’s performance parameters, namely its lag time (between 1 and
2 microseconds). Furthermore, in case the transducer is near the center, the flow exhibits
high rates of pressure rise and pressure drop following the passage of the reflected shock.
This change of trend is expected to yield lower peaks in the pressure curve at the moment
of shock reflection since the transducer can not cope with such a change in pressure in a
very small time duration (1-2 microseconds). Therefore, the pressure measurements are
directly used, without further processing, for comparison with the equivalent numerical or
analytical values. An initial adjustment is performed for the two data sets to have the same
rise starting time, then the pressure points are obtained from oscilloscope output for
comparison with other results. A sample of the oscilloscope output is presented in

Fig.(4.8) for cylindrical shock convergence with no bleed.
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5- RESULTS & DISCUSSION

5.1 - Shock Wave Reflection & Piffraction in a Ramp

The first case to be tested was the process of shock strengthening through a 15 ° ramp
ending with a straight duct of half the upstream cross sectional area. This test case was
chosen for the developed numerical scheme due to its simple geometry, allowing a clear
visualization for the phenomena of shock reflection and diffraction, and facilitating a
closed form solution to compare to. In the present case, with an initial shock Mach

number of 2.106 and a 15° ramp, Mach reflection took place due to the small angle used.

5.1.1 - Experimental Results :

All tests were run using air as the working fluid. The test section used is presented in
Fig.(4.2b). The Schlieren system was adjusted with successively increasing lag time
relative to the trigger transducer. The history of shock diffraction and reflection can be
visualized in the set of photographs shown in Fig.(5.1). Photograph (5.1a) shows the
incident shock, whose measured Mach number was equal to 2.106, after passing by the
concave edge and undergoing the Mach reflection process, thus creating the reflected
shock and the Mach stem. Due to the fact that Schlieren photography recognizes lines of
noticeable density gradients, it was also possible to visualize the reflected shock and the

slip stream in photographs (b-d). The experiment shows that the Mach stem is
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approximately straight near the triple point, which agrees with the Ray-shock

approximation for strong shocks concerning Mach reflection.

Photograph (e) show the shock approaching the ramp end. It is worth noting that in the
case dealt with, the Mach stem reaches the convex edge at the same instant as it nearly
dominates the whole flow cross section. This implies that the incident shock has been
completely transformed into a Mach stem, and that the reflected shock has been
completely re-reflected at this particular instant, as seen at the figures. As a result, the

angle ¢ between the shock-shock and the horizontal is approximately 30° .

Photograph (5.1f) shows the "transient" straight shock, with Mach number equal to the
Mach stem value, being aligned to its original direction through two new processes; a
diffraction process at the convex edge, and a Mach reflection process at the opposing

straight wall.

5.1.2 - Analytical Results :

The Ray-shock Theory treatment was previously presented in Chapter 2 for the two basic
processes, as it provides a basis to compare to both experimental and numerical treatments
[25,64]. According to the initial shock with My = 2.106, the 15° Mach reflection process

results in a stem Mach number, My, , approximately equal to 2.345, at the inclined surface
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(Fig.(5.2)). The shock-shock has an angle of 14.79° with the incline (y is approximately

30° with the horizontal), which is the same valuc observed in the experiment.

At the downstream convex comer, a diffraction of 15° is introduced to the fully-developed
inclined straight shock, producing a fan of characteristic straight lines centered at the
corner. For the wall downstream of the edge, the Ray-shock Theory predicts the first
characteristic to make an angle, m,, equal to 22.5° with the initial shock direction (the
incline in our case), and a new diffracted shock Mach number, My, , approximately equal
to 2.08, with the last chaiacteristic having an angle of 22° with the horizontal. For the
opposing straight wall, the same 15° Mach reflection procedure followed previously is
introduced to the shock, which in turn produces a new upper wall stem Mach number,

Mg, equal to 2.64.

5.1.3 - Numerical Results :

The domain covered is shown in Fig.(5.3). It included the upstream straight section, the
ramp section and the downstream straight section with length ratios of 2 : 2 : 1,
respectively. The grid was composed of trilinear 8-node elements of uniform length in the
axial direction to improve the shock resolution. In the normal direction, a gradually
increasing length with fixed expansion constant was used, with the grid refined near the
edges, where rapid change in properties was anticipated. The third dimension was

neutralized during the assembly process by imposing invariance in that direction.
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As boundary conditions for the problem, no-penetration was imposed on all the wall
nodes. For the convex corner, only the continuity flux integral was canceled on its two
adjacent surfaces, while its variables were left to float (to allow the velocity vector to take
direction with the minimum error possible). For the concave corner, the velocity was set
to zero to stabilize the end of the reflected shock at the corner (which is identical to the
real situation). An initial solution pertaining to the shock Mach number of 2.106 - which
was obtained experimentally - was calculated using the one-dimensional flow code, and
introduced at the starting time level. Numerical solution advancing with time steps of 10
microseconds was calculated, with the thermodynamic variables recorded and compared

to the experiment.

The numerical results for the same problem are presented in Fig.(5.4). Evidently, the
shock thickness is not as it is in reality due to limitations of the grid selectivity (for the
infinite Fourier modes present in a sharp discontinuity). For this reason the shock location
will be considered the contour line corresponding to the mean value between the

unperturbed fluid ahead of the shock and the final value behind the shock thickness.

Numerical results are presented in Fig.(5.4a-d) for the Mach reflection process. It is
evident that the evolution of the straight triple point locus - or “shock-shock™ in Ray-
shock Theory terminology - approaches a fixed direction as assumed in the theory's

treatment. For calculating the angles, measurements were done on figures where the shock
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was far enough from the concave corner, as they provide a better definition for the
geometry of the Mach stem. As the Mach stem advances and its area gets bigger, the
numerical and experimental values of shock-shock angle converge to the same value of
approximately 30°. It is understandable, however, that availability of more computing
power will cause a significant improvement for the shock resolution. The first stem Mach
number My, is found to be equal to 2.39, which is slightly higher than the analytical

solution value of 2.345.

On the other hand, the diffraction and new Mach reflection can be visualized on
Fig.(5.4e). In agreement with experimental results, their simultaneous occurrence is almost
present, as well as their effect on turning the shock to its original axial direction. The
expansion fan, defined by the density contour lines in the figure, is centered at the convex
corner. This is consistent with the anticipated uniform change of fluid properties across the
fan, provided that the driving flow behind the shock is uniform. The new Mach stem is
found to have a shock Mach number of about 2.73 as opposed to the analytical value of
2.64. The differences between numerical and analytical results are partly attributed to the
slight peaks created in the solution due to the discretization of sudden discontinuities (like
shock waves). Differences are also expected due to the nature of the Ray-shock treatment,

which is purely based on shock kinematics.

Furthermore, an additional grid-dependence test was carried out for the numerical

solution. This test is carried out to ensure the ability of the numerical scheme to approach
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a grid-invariant solution once the grid refinement approaches the continuum state. The
grid in the ramp and downstream sections were introduced with variable element numbers
in both axial and lateral locations, specifically 150 x 50, 300 x 70 and 540 x 90 elements,
respectively. The grid in the upstream section was varied accordingly in the lateral
direction. Its axial configuration had 110 elements and was kept invariant so that the same

initial solution can be introduced to all grid options.

The test results for the three grids are shown in Fig.(5.5) for the density contours after 30
time steps from the initial state. The general overview, specially of the last two grid
solutions, shows that the solution is becoming more and more invariant with grid
refinement. The first observation is the expected effect of grid refinement on the thickness
of the incident shock-Mach stem front. A similar observation is the relative improvement
in defining the discontinuity at the secondary reflected shock. This gives a good indication
about the numerical simulation efficiency since the reflected shock in the present case is
relatively weak (due to the small deflection angle) and the grids were not too much refined
in the lateral direction. Another encouraging note is the emerging definition of the slip line
starting at the triple point, which is hard to capture by any numerical scheme due to its

small gradient values, thus requiring adaptive grid refinement.
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5.2 - Shock Wave Interaction with a Narrow Slit

An initial description for the process of shock-slit interaction was presented in Chapter 1.
However, experimental studies by Skews [61,62], Wu et al. [63] and Lee et al. [65] have
shed more light on the complicated nature of the interaction process and the existence of
more elements in the configuration of both the diffraction and Mach reflection. Another
factor is the growing interest in numerical methods due to the new developments available
in computers, as well as their increasing flexibility in simulating flows over complicated

domains.

The present work's experimental and numerical results are preceded with the Schlieren
photographs obtained by Ostrowski [64] for an initial shock Mach number of 2.33. The
results yield a valuable description for the diffraction through side bleeding, while

comparison to the present work's results facilitates judging the code's efficiency.

The photographs in Fig.(5.6) describe stages of the shock wave interactions with the
wedged slit. Photograph (5.6b) shows the plane shock diffracted as it exceeds the
upstream edge into the slit, with the expansion wave starting to form. The wave is
supposed to follow the expansion fan lines, which are actually the loci of the points of
intersection between the incident shock and the acoustic waves created when fluid passes
the edge. Since the flow is supersonic, the resulting expansion wave is enclosed within the

domain of characteristic lines, with the first line as an envelope emanating at the upstream
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edge. As time progresses this fan spreads out into the channel and becomes partly
responsible for the attenuation of the shock. The fan splits the shock into the incident
straight part, and the nearly cylindrical expanding part which curves around the edge to
maintain contact with the wall. Consequently, a contact surface is formed between the
fluid domains affected by the two waves. The contact line forms a curve starting at the
demarcation point between the incident and expanding shocks. Due to the inability of the
flow behind the shock to negotiate the sudden enlargement, a slip line with an associated
vortex starts to form at the edge. As the outside frontal area for the diffracted initial shock
gets bigger, the shock and flow Mach numbers become smaller. According to shock
diffraction experiments by Skews, and for the diffracted flow behind the shock to cope
with this deceleration, a new (secondary) shock is gradually formed between the upstream
edge and the diffracted shock. This shock should be approximately bounded by the slip

line and the last characteristic line (the terminator).

Photograph (5.6¢) shows the flow shortly after the shock reaches the downstream edge of
the slit. The diffracting shock is reflected from the downstream edge, producing a
reflected shock inside the duct (which also spreads out into the flow to terminate the
weakening effect of the initial expansion) as well as the "Mach stem", which is the first
phase of the new attenuated shock. For supersonic flow and due to a some degree of
downstream edge bluntness, the reflected oblique shock remains detached at the edge, and
extends through the bleed jet formed at the outer side of the slit. The detached shock

results in pressures higher than the values behind the diffracting shock. An expansion fan,
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centered at the downstream edge, forms in order for the fluid to match the fluid pressure
outside the duct. At the upstream edge, the trio of the slip line, the terminator and the

secondary shock is clearly visualized, with a new extension of the shock at the duct side.

Photograph (5.6d) show the flow at a later stage. The detached shock and the expansion
fans after the flow are more distinct. Because of the outside frontal area increase, the
shock Mach number and the flow Mach number become smaller. For the expanded flow
behind to adjust to this factor, the secondary shock appears between the downstream edge
and the diffracted initial shock front. The nucleus of a "stagnation zone" can be visualized
between both shocks. Inside the duct, the three elements of the Mach reflection are more
clear, so is the slip line splitting fluid affected by the incident-reflected shock couple from
that affected by the Mach stem. The situation is better defined in photograph (5.6e) where
the downstream edge is the center of the detached shock backed with an expansion fan
“trio"” similar to the one at the upstream edge, bounded by the detached shock, the

secondary shock and a new terminator and slip line close to the edge surface.

The photographs (5.6f,g) provides an idea about the flow while approaching its final
steady state. At the upstream edge, the full expansion fan, ending with the terminator, as
well as the slip line can be visualized, and a Prandtl-Meyer expansion exists at the
characteristics zone. At the downstream edge, the detached compression-expansion
couple and the slip line define the flow zone. The external traveling waves move far away

from the slit and their influence eventually vanishes. A steady inclined fluid jet, whose
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geometry is defined by the abovementioned set of waves as well as their interaction, is

established at the slit.

Inside the duct, the expansion wave, the reflected shock and the original expansion fan will
undergo multiple reflections from the walls as the shock propagates down the tube. The
characteristic line structure inside the duct can be partly visualized in photograph (5.61).
The dissipation of the expansion fans will cause a gradual shock weakening. Eventually
the expansion waves become diffused while overtaking the shock and the attenuation

process becomes smooth but at a slower rate.

5.2.1 - Shock Attenuation Experimental Results :

A series of experiments were carried out for four slit-duct width ratios (0.25, 0.5, 0.75,
1.0, respectively) as well as a wide range of shock Mach numbers (ranging between 1.2
and 2.5). All tests were run with air as the working fluid. Fig.(4.2a) shows the test section,
which consists of the tube section of width 2 and the large bleed section. These sections
are separated by two 15° wedges to yield the abovementioned slit-duct width ratios. A set
of four transducers, two upstream and two downstream, were used to measure the shock
speed before and after the slit. The oscilloscope traces were simultaneously activated using

a fifth upstream trigger transducer, as shown in the figure.
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To ensure reasonable repeatability of the test results, extreme care was taken in setting up
the driver and driven pressures and the loading rate of the driver pressure. For any given
initial conditions, a sufficient number of trials were carried out (at least five). In most of
the cases, four points were considered repeatable (within 0.5 % variation) to be averaged

and used for computations.

The results of the measurements are presented in Fig.(5.7) for the attenuated shock Mach
number M. The figure shows the attenuation ratio, M/Mo, versus the incident Mach
number, My, with the slit-duct width ratio, W/H, as a parameter varying between 0.25 and
1.0 according to the experiment setup. The attenuation did not exceed 8% over the
covered range of shock Mach numbers and slit-duct width ratios. The general trend shows
a high rate of variation in the attenuation coefficient at low shock Mach numbers (with
low subsonic flows behind the shock). However, for higher Mach numbers, the flow
exhibits a more dominating effect for the width ratio rather than the Mach number.
Attenuation becomes nearly invariant over a wide range of Mach numbers high subsonic
flows behind the shock Mo < My = 2.068). As M, increases beyond the critical value,
the coefficient M/M, then increases slightly. This trend will be explained later in the

analytical solution.

In agreement with Ostrowski's conclusions, the results that have been presented so far

give the indication that increased attenuation due to reflections and the corresponding
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effect of slit width is relatively small within the practical operating range of Mach numbers

and width ratios.

5.2.2 - Numerical Results :

The computational domain for the problem is shown in Fig.(5.8a), which includes both the
tube and bleed sections. The tube section length was taken as 10 times the tube width to
give the shock enough distance to reach the final 1-D attenuated state. The slit was
located at only twice the width from the inlet section because the zone between them is
not supposed to undergo any deviation from the incident steady supersonic flow (for the
used shock Mach number value). The bleed section was chosen to be 4 times as wide as

the tube to avoid any disturbance created by reflected waves from the bleed chamber.

The grid was composed of trilinear 8-node elements whose axial dimensions depend on
the zone covered, with the most refined part in the slit zone as shown in Fig.(5.8b). In the
other two zones, elements had an expansion coefficient depending on the zone length and
the expected variation in flow properties. The lateral direction element size was calculated
with lower expansion coefficients for the tube section than that for the bleed section.
However, the percentage expansion was kept below a maximum value of 3% to have the
best possible results in the vicinity of the edges. Far inside the bleed section, the flow is

not required to be accurate as long as it is far from disturbing the tube flow.
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As boundary conditions for the problem, no-penetration was imposed on all wall nodes.
For the upstream edge, only the continuity flux integral was canceled on the two surfaces
adjacent to it while its variables were left to float. For the downstream edge the velocity
was set at zero to impose the presence of a detached shock facing that edge at later stages.
An initial solution pertaining to the shock Mach number of 2.33 was calculated using the
one-dimensional version and introduced at the starting time level. Numerical solution
advancing with time steps of 1/400 of the reference time ( tube length / inlet velocity ) was

calculated while recording the values of thermodynamic variables at every tenth step.

Figures (5.9a-d) describe the numerical results at different time levels. Fig.(5.9a) shows
the plane shock diffracted as it exceeds the upstream edge into the slit, with the expansion
fan starting to form. The fan splits the shock into the incident straight part, and the nearly
cylindrical expanding part which curves around the edge to maintain contact with the wall.
The peaks in the density contours differentiate between the density gradient across the
shock and that inside the expansion domain. In the bleed chamber, the slip line starting at
the upstream edge is noted by the closely spaced group of contour lines originating at the
edge, with an associated vortex as closed density contours. The vortex size is affected by
the artificial dissipation introduced for shock capturing, which depends on the grid
refinement and the available computing power. Since the particle velocity is assumed to be
supersonic, the expansion fan remains attached to the upstream edge. As the outside

frontal area of the diffracted shock gets bigger, the flow and shock Mach numbers become
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smaller. Accordingly, another (secondary) shock is gradually formed behind the original

diffracted shock.

Fig.(5.9b) shows the flow shortly after the shock reaches the downstream edge of the slit.
The diffracting shock is reflected from the downstream edge, producing the reflected
shock and the Mach stem. Due to the Mach stem lagging behind the incident portion of
the shock, shock curvature is anticipated and can be visualized in the vicinity of the triple
point. For supersonic flow and due to downstream edge bluntness, the reflected shock
links with the similar one at the outside to form a standing detached shock at the edge.
This will trigger an expansion fan, centered at the same edge, for the fluid to match the
original shock outside the channel. The outgoing closely-spaced group of contour lines,
emanating at the downstream edge, defines the boundaries of the outside detached shock

and the outside expansion zone.

Fig.(5.9¢c) show the flow at a later stage. The detached shock and the expansion fans after
the flow are better defined. Because of the outside frontal area increase, the shock Mach
number and the flow Mach number become smaller. For the expanded flow behind to cope
with this effect, the secondary shock starts formation between the downstream edge and
the diffracted initial shock front. The stagnation zone can be visualized between both
shocks as the contour line for the local maximum density value. Inside the duct, the
reflected shock contours link with those of the expansion fan, thus dividing the internal

domain ahead of the upstream edge into three zones: the first affected by the expansion
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fan alone, the second by the fan-reflected shock, and the third (incident) affected by none

of them.

Fig.(5.9d) shows the outer slit zone a few time steps later. A slip line starts at the
upstream edge of the slit, and ends at a slightly detached shock at the downstream edge,
followed by the expansion zone. The original and secondary diffracting shocks are more

clear.

Inside the duct, the expansion wave, the reflected shock and its associated expansion fan
will undergo multiple reflections from the walls as the shock propagates down the tube.
Thus the attenuation will proceed with either sharp jumps (corresponding to the arrival of
the reflected shock-shocks at the wall), or gradual increase (corresponding to the reflected
shock). The expansion fans in general will cause a gradual weakening. Eventually the
expansion waves become diffused while overtaking the shock and the attenuation process

becomes smooth but at a slower rate.

Fig.(5.10) shows the shock Mach number versus shock location on both flat and slit
surfaces for the width-height ratio, W/H = 1 . At the slit wall, the sudden drop and rise
correspond to the diffraction and Mach reflection, respectively. The flat wall remains
unchanged until the arrival of the expansion fan. The slit side starts a gradual decrease
which can be attributed to the effect of the expanding reflected shock, as well as the fan

created at the downstream edge (behind the standing shock). At the flat wall, the gradual
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decrease corresponds to the effect of the expansion fan while the rise corresponds to the
arrival of the shock-shock. The diffused rise can be attributed to the effect of the Mach
reflection’s reflected shock, whose effect was not taken into consideration in the Ray-
shock treatment (which produces sharp jumps upon arrival of the Mach stem). However,
the diffusion partly gives an indication about the numerical method's effect on the

resolution of shock-shock simulation.

Furthermore, the frequency of the reflections - and hence the attenuation rate - will
increase with decrease in duct width, as seen in Fig.(5.11) for the same case and a new
value of W/H = 2 . In terms of the slit width, the first reflection of the expansion fan at
the flat wall is seen to have started earlier than before the downstream edge. In general,
the reflection cycle (defined by the distance between successive intersection points of the
two curves) is taking a shorter distance and the attenuation rate (defined using the
envelope of the two curves) becomes larger. This is consistent with the fact that

enhancement of the expansion wave diffusion hastens attenuating the wave.

The experimental and numerical results for the initial shock Mach number of 2.33 are
presented in Fig.(5.12) for the attenuation coefficient M/M, versus the slit-duct width
ratio W/H. It shows good agreement between experimental and numerical results despite
the difficulties encountered during measurements. The initial value approaches unity for
zero slit width, and decreases monotonically as the width increases. This is consistent with

the anticipated effect of the width ratio as a measure of percentage loss in mass,
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momentum and energy fluxes. As the slit width increases, the expansion fan is more
diffused and reflected (in case of wide slit) and the diffracted shock becomes weaker upon
reaching the downstream edge. This results in a weaker shock system after the edge and

eventually a more attenuated final state.

5.2.3 - Analytical Results:

For the purpose of comparison, a simple solution model was introduced for the shock-slit
interaction problem for shock Mach numbers > 2.068 (supersonic flow behind the shock).
The solution is based on the assumption that, after a certain time duration, a fully
developed steady supersonic flow will take place at the slit zone. Accordingly, a portion of
the flow expands gradually from inside to outside the duct, while the rest expands to
occupy the full duct width downstream of the slit. The flow in the slit zone can be solved
using the steady Method of Characteristics to determine the percentage of the initial flow
which is not bled. Once the artificial "duct” geometry has been approximately defined,

then the CCW-based A-M relationship is used to calculate the attenuated Mach number.

For low subsonic particle Mach numbers, the zone inside the duct and adjacent to the slit
allows signal propagation in all directions. The flow field is brought to a final state
matching the pressure ratio across the slit. For this case there is a noticeable effect for
both the shock Mach number (a measure of the pressure ratio across the slit) as well as the

slit-duct width ratio (a measure of the loss amount as compared to the total initial flow).
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As the incident shock Mach number gets higher, the bled mass flow increases until it
reaches a maximum state that corresponds to choking conditions of the bleed jet. This
explains the initial decrease in the attenuation ratio as the incident shock Mach number
increases, until it reaches a minimum value before it increases again when supersonic

conditions prevail.

Higher than the critical value, the particle flow becomes supersonic and the attenuation
becomes dependent on the characteristic wave structure at the slit, which still depends on
the slit-duct width ratio and the shock Mach number. For the critical shock Mach number
of 2.068, the leading characteristic angle starts with a value of 90° with the flow direction
(corresponding to a sonic particle flow behind the shock) and decreases gradually with
further increase in the Mach number value (Fig.(5.13)). The same observation holds for
the other fan lines (provided that they are kept corresponding to the same deflection angle
values). This implies that with increasing the shock Mach number, the streamlines start
downward curvature at a location further downstream of the upstream edge. By reverse
drawing of the last bled streamline (passing by the downstream edge), it is noted that
increasing the shock Mach number results in that streamline originating from a lateral
location closer to the slit side. Consequently the non-bled portion of the initial flow

becomes greater. From the A-M relationship of the CCW theory (2.24,25):

2 A K
_M_z_l = u , M Ay for strong shocks  (5.1)
My -1 A

=
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where A, is the original duct area, A, is the upstream non-bled par: of the original area,
M s the final attenuated shock Mach number, M, is the incident shock Mach number
and K is the averaged Chester function (varying between 0.5 and 0.394). Since the values
of the exponent are less than unity, it is concluded that the attenuation coefficient
increases slightly with increasing the shock Mach number. At high shock Mach numbers,
the shock structure does not exhibit too much dependence on the Mach number as much
as it does on the geometrical parameters, because the characteristic angles approach their

asymptotic values. The following results are tabulated for shock Mach numbers higher

than critical value:
M, M/ My
W/H = 0.25 0.5 0.75 1.0
2.1 0.98665 0.97252 0.9575 0.94144
2.33 098717 0.9736 0.95925 0.9439
25 0.987688 0.9747 0.96098 0.9464

The results show that the slit-duct width ratio is a more dominant factor than the incident
shock Mach number, which is the same trend observed during the experiments. For high

shock Mach number, the attenuation ratio M/My increases slightly.
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Based on the abovementioned approximate model, the third set of values is presented for
Ostrowski's test case in Fig.(5.12). The results were found to be slightly higher than the
experimental and numerical results. The reason for such differences is due to the fact that
the Ray-shock Theory is based on shock kinematics, and not on the full dynamic Euler

equations employed in the numerical scheme.

5.3 - Cylindrical Converging Shock Wave Bleeding

In view of the requirements previously mentioned in Chapter 1, the need has arisen to
study the effect of side bleeding on the converging shock propagation. The available
studies concentrated on examining the behavior of an already non-uniformly perturbed
shock to have an idea about the resulting non-uniform convergence history and eventual
instability. To augment the past work, the present study focuses on the bleeding process
itself (without tangential variation) to have a clearer idea about its attenuating effect on
the convergence history. Furthermore, conclusions were compared to the previously
established rules for plane shocks to determine whether or to what extent it is feasible to

unify these rules.

As an extension to the 2-D problem of shock-slit interaction, the present work explores

similar cases for the cylindrical converging shocks where the radial coordinate’s effect of

front area reduction supposedly results in an increase in shock strength. For the purpose of
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isolating the radial convergence effect, the ( r , z ) computational domains used were
identical to those used in the previous section for plane 2-D cases. The plane and
axisymmetric cases were then compared. These computational domains are not identical to
the geometry of the experimental setup used in the verification, which had a 90° upstream
edge. However, experimental studies by Skews [61] have shown that if the flow turning
angle exceeds a certain value (about 75°) the diffraction shock structure above the slip line
becomes independent of the edge angle. To validate the assumption, the numerical code
was tested for two similar plane flow cases with turning angles of 90° and 165°

respectively. The numerical results obtained agreed with the previous conclusion.

The numerical scheme was first tested to solve the basic radial converging shock problem
with the code modified for radial motion only (no bleeding). One-dimensionality is
imposed during the matrix assembly stage by retaining only the radial velocity component,
while imposing invariance in lateral directions and setting the other two velocities to zero.
At large radii, the radial geometry effect becomes negligible and the thermodynamic
variables ahead and behind the shock wave front are relatively steady. However, this is not
the case for small radii due to the front reduction and outcoming signals causing
strengthening. The thermodynamic properties on the shock's two sides are related in terms

of the shock Mach number using the Rankine-Hugoniot equations.
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Fig.(5.14) shows the shock Mach number versus shock radius for different inlet Mach
numbers. The results were found to be in good agreement with the power-law formula

deduced by Guderley as well as the similar rule using the CCW theory for strong shocks:

Msa = C * (Ra)™" (Eqn.(4.2))

(Ra)™ = -k *t +C (Eqn.(4.3))

where C; is an integration constant and k is equal to (n+1)(C,)c,. Numerically, the
exponent ( n ) was found to increase at smaller radii but the average value was equal to
0.195, which is in close agreement with the value of 0.197 obtained by Guderley for the
self-similar solution. The change in shock strengthening rate can be attributed to the effect
of numerical discretization without conditioning as opposed to the pre-assumed constant
power-law assumption of Guderley’s solution, which is applicable only at high‘ shock

Mach numbers throughout the whole convergence process.

5.3.1 - Experimental Results :

All tests were run using air as the working fluid. The new test section, modified for high
Mach numbers, is shown in Fig.(4.4). Various experiments and numerical runs were
performed to obtain a consistent set of data pertaining to the same pressure history. The
experimental part was obtained using a set of pressure transducers located at radii equal to

1.4, 0.55 and 0.15, respectively. The experimental results are presented later in
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Fig.(5.16), with their numerical equivalents, for slit-chamber width ratio W/H equal to 1.0.
For the purpose of comparison, the pressure history is also presented at the last transducer

location for W/H equal to 2.0.

5.3.2 - Numerical Results :

The domain covered included both the chamber and bleed sections and its features are
identical to those of the plane problem, the bleed section length was taken as 4 times the
slit width to avoid any disturbance created by the waves reflected from outside. The inlet
section was located at a 5 cm radius with the inlet shock Mach number value adjusted to
the value of 2.2012 in order to create a shock Mach number of 2.33 at the upstream edge

(to compare the results to the 2-D problem).

The grid was composed of trilinear 8-node elements whose radial dimensions depend on
the zone covered, with the most refined part in the slit zone. In the other two zones,
elements had an expansion coefficient depending on the zone length and the expected
variation in flow properties. The lateral direction element size was calculated with lower
expansion coefficients for the chamber section than that for the bleed section. However,
the percentage expansions were kept below a maximum value of 3% to obtain the best
possible results in the vicinity of the edges. Far inside the bleed section, the flow
simulation is not required to be accurate as long as it is not disturbing the flow in the

cylindrical chamber.
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As far as the boundary conditions are concerned, the same conditions used for the plane
problem were used in the present case, except for one extra no-penetration condition at
the chamber centerline to impose reflection. In order to yield the required shock Mach
number of 2.33 at the upstream edge, an initial solution pertaining to the shock Mach
number of 2.2012 at the inlet section was calculated using the one-dimensional code and
introduced at the starting time level. Solution advancing with time steps of 1/400 of the
reference time (inlet radius / inlet velocity) was calculated for different slit-chamber width

ratios by recording the values of thermodynamic variables at every tenth step.

The pressure distribution history was extracted from the numerical results and shown in
Fig.(5.15) on the flat wall at different time levels. At the slit location, the tendency of
formation of a steady flow field can be visualized through the almost complete invariance
of the pressure values at later time levels. At earlier time levels, however, the pressure
local values decrease because of the formation of the expanded zone and bleed jet.
Considering the steady supersonic inlet section conditions, the amount pumped into the
chamber tends to increase the local amount of air behind the shock. Since smaller radius
means less storage capacity, as the shock converges, the local pressure values increase
with a rate depending on the radial location. After reflection at the centerline, the shock
proceeds against the flow which was coming behind the incident state, and the shock
speed tends to decrease, as concluded from the figure by measuring the distance traveled

for a specified time duration.
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For studying the attenuation phenomenon, the associated shock Mach numbers were
calculated from the pressure jumps across shocks. In the present case, the output jump
interval is avoided, and the two sides (constant value before jump and monotonic change
after it) are extrapolated to the jump mid-point to form the theoretical jump, and to
calculate the pressure behind the shock (and the shock Mach number) accordingly. The
final attenuation coefficient was obtained using the numerical results for Mach number at
the radial location of the last transducer. It should be mentioned here that the last
transducer results should not simply be compared to the first transducer Mach number, but
rather to the Mach number at its same location due to the no-bleed 1-D results. The ratio
precludes the effect of radius difference and is taken as a measure of shock attenuation.
The results are shown in Fig.(5.12) and compared to the similar 2-D plane case. The two
curves are almost identical for the value W/H < 0.8 to 1.0. At higher ratios the cylindrical
case exhibits slightly higher attenuation than the plane one. Although the difference is not
great, this shows the inevitability of using a full numerical simulation rather than relying on

unified formulas which might be reliable within a limited range.

However, for plane flow with the same dimensions of openings, the ratio W/H is a
measure of the ratio of the bleed area (at the slit) to the entrapped flow area (at the
downstream edge) since the width is the same. For axisymmetric flow, this is not the case

due to the radial geometry and the area ratio is larger. Denoting the upstream and
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downstream edge radii as ( r, ) and (r; ), respectively, and noting that W =r, - r; , the area

ratio between bleed and flow sections is :

At _ m(r; - 1) _ Wr +r W|W+2r,
2rr,H H 2r H

e -

inlet

which is greater than the simple 2-D plane motion by an amount highly dependent the
downstream radius, and directly proportional to the slit width. Since the bleed area is

greater for the axisymmetric case, it is expected then to exhibit more attenuation.

To validate the numerical study, the last set of results includes both the experimental and
numerical values for the pressure-time history for the transducer locations. This is shown
in Fig.(5.16) for W/H = 1.0, 2.0 . The numerical part follows the trend described earlier
with the first transducer (located close to the upstream edge) undergoing a sudden jump
and then gradual drop leading to a steady situation. The other transducers undergo the
expected sudden rise due to the incident shock, followed by a gradual rise due to the
upstream-traveling reflected waves (created by area convergence and shock
strengthening), and then the sudden rise due to the reflected shock. Other than the
limitations of numerical discretization or instrumentation errors, the discrepancies between

numerical and experimental readings can be attributed to the numerically-omitted effect of
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boundary layer on the reflected shock propagation. This effect of the boundary layer is
noted where the reflected shock faces the incoming flow with the boundary layer,
generated just behind the incident shock, after it has had enough time to develop. This
results in pressure peak values lower than expected behind the reflected shock. This
discrepancy is less noticeable at the last transducer near the center, where the time allowed
for developing the boundary layer is small, and the flows before and after reflection are

supposed to have low radial velocity.

As to the effect of slit-chamber width ratio, the basic differences between the last
transducer's readings in Fig.(5.16) are the delay of 4 time steps (about one microsecond)
in the convergence time observed for the larger slit as well as 25% smaller values for the
incident and reflected peak pressures, which is consistent with the expected effect in both
experimental and numerical treatments. In all, good agreement was noted between the

experimental and numerical results.
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6 - CONCLUSION

The present work was directed toward performing a parametric study, numerically and
experimentally, for the process of shock attenuation by side bleeding in both plane ana
axisymmetric domains. The work investigated the fluid flow behind shocks throughout the
complete bleeding process, with its associated diffraction and reflection phenomena, and

ending with the attenuated final state.

The numerical part was carried out using a fully 3-D Finite Element code, written for
simulating inviscid unsteady fiow in various shock tube geometries. The energy equation
was written in a newly used form, which introduces the pressure explicitly as one of the
convected variables in Euler equations. The Newton-Galerkin discretization was used for
an implicit multi-step time-marching scheme, with the Galerkin weak formulation for
spatial distribution and coordinate derivatives, and an implicit three-step Gear formulation
for time derivatives. 2-D cases were obtained during matrix assembly by imposing

invariance and zero velocity in the third direction.

The experimental part for 2-D flows was carried out using a variable slit width square
shock tube, while keeping the duct width constant. For the cylindrical shock implosion
problem, a cylindrical shock tube was used, with variable width for the test chamber while
keeping the slit width constant. To verify the numerical results, spark Schlieren

photography was employed for flow visualization at different time intervals, while pressure
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transducers were used to determine the shock velocities and pressure history upstream and

downstream of the slit.

For the cases of supersonic flud flow behind incident shocks, a new simple analytical
model was introduced for the 2-D side bleeding process to compare with other results,
assuming a fully developed duct flow behind the attenuated shock, and combining the
steady Method of Characteristics solution at the slit zone (to define the non-bled flow

profile) with the CCW theory (to calculate the attenuated shock Mach number).

The first phase of the numerical work was directed toward studying the purely 2-D
bleeding process, where the radial effect is neutralized. The experimental work covered a
reasonable range of slit-duct width ratios as well as inlet shock Mach numbers (for which
subsonic as well as supersonic flows exist behind the incident shock). Results were

presented in terms of the abovementioned system parameters.

The numerical work was then extended to the 2-D axisymmetric flow, with domains
similar to those of the plane flow cases, to account for the radial convergence effect. A
newly designed test section was used to bleed the flow inwards into the vacuumed driven
section, thus creating stronger converging shocks. The experimental-numerical work

covered the effect of slit-chamber width ratio on the convergence process.
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From the present study, the following conclusions were drawn :

1. As an introductory step, the experimental-numerical work was first applied to the
simple test case of shock strengthening through a 15 ° ramp. The numerical code
predicted very well the shock structure for the reflection-diffraction process, and the
calculated values for the stem Mach numbers were reasonably close to the analytical
CCW solution. The experimental and numerical values for shock-shock angles and
shock front shapes were in close agreement. Furthermore, the grid sensitivity test
showed the numerical code's efficiency in approaching a grid-independent solution
with mesh refinement, and in simulating weak discontinuities once enough computing

power is available.

2. The 2-D aucnuation experiments showed the strong effect of the slit width, rather than
the initial shock Mach number, on defining the final attenuation in both subsonic and
supersonic fluid flow. For subsonic fluid flow, the experiments revealed the expected
attenuation increase with the shock Mach number as an indication for the pressure
ratio. Also was revealed is the existence of a minimum value for the attenuation ratio,
M/M, , due to the choking effects on the fluid jet. At shock Mach numbers higher than
the critical value of 2.068, the attenuation ratio was then found to slightly increase,
which is more consistent with the analytical steady Characteristics solution than

previous work.
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3. Comparison between the experimental Schlieren photographs and the numerical results
showed fair agreement in view of the available computing facilities. Good agreement
was also noticed conceming the attenuation ratios, thus proving the cost-effectiveness

of the used Finite Element Euler scheme in describing the fluid flow.

4. The results obtained by the new approximate analytical model were found to follow
the trends obtained experimentally and numerically, with slightly less attenuation. This
is expected since the CCW formulation, based on shock kinematics, underestimates the

amount of bleeding loss caused by the diffraction process.

5. Without side bleeding, the numerical work for cylindrical converging shocks was
applied to the simple case of radial shocks, which have a self-similar analytical solution
deduced by Guderley [10]. The numerical results showed good agreement with
Guderley's power law solution, giving a power exponent value of 0.195 compared to

the closed form solution value of 0.197.

6. The comparison between plane and axisymmetric shock test cases revealed differences
between the trends at high slit-chamber width ratio, which are attributed to the higher
values of slit-chamber (or bled-entrapped) area ratio for cylindrical geometries. As to
the attenuation effect, the numerical values for the pressure history at different radii
were in good agreement with the experimental results obtained using pressure

transducers.
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Proposed Future Work :

1.

In the field of studying shock wave dynamics in 2-D and 3-D geometries, the bulk of
the work effort is still based on the two older methods (Finite Difference and Finite
Volume), and their ever-growing literature provides new ideas for simulating flow
discontinuities and boundary conditions. On the other hand, the advantages of the
Finite Element Method present the technique as one of the promising tools for
unsteady fluid flow simulation, as demonstrated in the present work. The first priority
for future work should be the issue of refining the code performance, and using new

schemes possessing better resolution for discontinuities.

To extend the work to three dimensions, matrix storage has to be considerably
optimized to be able to use the available computing facilities. One way of doing this is
using iterative solvers, which require storing only the matrix non-zero elements. The
cost-effectiveness of the technique is expected to improve for the diagonally-dominant
matrices associated with time-marching problems. The original version of the code
incorporates the efficient GMRES iterative solver with the unconditionally stable
implicit scheme, to allow the use of large time steps or variable size grids. The solver
is uncoupled from the original formulation and can be used elsewhere. However, in

case of more matrix well-posedness, other solvers may be introduced in due course, if
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their performance is found to be satisfactory and their array requirements are

reasonable.

. A second possibility for extension to 3-D is using explicit time-marching schemes,
where only the time derivative term forms the matrix. In addition to the advantage of
reduction in matrix size, then the matrix can be formed once during the code run, with
the possibility of re-scaling in case of time step change. Besides, the stability-related
time step limitation should not always be considered a disadvantage since it might be
inevitable for accuracy consideration. However, this will require more uniform grid
size, and a considerable increase in node number and related storage. In anticipation
for future developments, the numerical code incorporates a set of equations and
variables chosen to ensure that the time derivative matrix is linear and solution-

independent.

. Once the computing facilities are available, the fully-deployed generic 3-D code can be
used to handle the full problem of cylindrical converging shocks. The main goal is to
investigate the various options for stability improvement, at a lower cost compared to
experimental work. Possible options include non-uniform inner edge [69,70] or outer
edge geometry for the bleed slit (to cope with observed trends of front irregularity)
and multiple bleeding (to maintain the circular shape until it is as close as possible to

the center).
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S. Numerical and experimental facilities can be later used to tackle the more general
problem of shock wave interaction in various geometries. The method presents a rich
field of research for science and engineering applications (some interesting examples
were mentioned in Chapter 1) thus enabling the research team to try new ideas of

geometrical and physical control of shock wave perturbation and propagation.
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Fig.(1.2) Takayama and Watanabe shock tube.

135



"(aofy 190p dpuosqns) uonorIAUL M[s-Yooys (¢'1) 1y

uo130unBijuoy U0 11D3143y YDol
9101s- Apoays PUD UO|3dvUg41] 'O . Uo13}I04441G v

4..
/é N
u @ ﬁ \\M‘b

136



uo130unb)4u0>
910315 Apoay§ (>

‘(moyy 1onp otuosiadns) uonoeiaul s-yooys (y°1) 81y

U0 13331434 Ydoy
PUO Uoi1d0uy41Iq (o

U0 13.00u3 410 (0

137



Reflected Shock
Time

Limi ting characteristic

Converging Shock

Distance

Fig.(2.1) The ( x, t ) diagram for Guderley's implosion solution.
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Fig.(3.2) Flow chart for the numerical solution.
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Fig.(4.2) Test sections used in the 2-D square shock tube.
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QUARTZ, LOW-IMPEDANCE, VOLTAGE MOOE
SUBMINIATURE PRESSURE TRANSDUCER P[ﬂ
with built-in amplifier Series 105A

PIEZOTRONICS
o flush, flat diaphragm; only 0.1 inch diameter
I frontal ires littl ti =7 060A04
e small frontal area, requires little mounting space :_’:; ey
o choice of three instailation configurations = NUT
i .04 D:a
e rigid quartz element - Solcer
e built-in unity-gain amplifier enhances resolution — Termunal
e high level, low-impedance output signal 7 0 166
{ — =—.165
b
For shock wave, blast, explosion, combustion, compres- l {—L,-/ maégsié;gos;ﬂk
sion, actuation, puisation, cavitation,ultrasonic, aerodynamic, 09;_ _’__ (supplied)
hydraulic, fluidic, acoustic and turbulence pressure measure- Dia
ments in applications with very restricted mounting space or MODEL 105A
where frontal area is critical. (Weight 1.5 gm)
MODEL NO. 1CSA
SPECIFICATIONS MODEL NO. 105A02 105A12 105A22
MODEL NO. 105A03 105A13 105A23 105A33 105A43
Full Scale Range psi 100 1000 5000 10000 30000
eMaximum Pressure psi 200 2000 7500 15000 40000
Resolution {200 £V p-p Naise} psi ot 0.1 0.2 0.4 1.0
Sensitivity mV/psi 20t 5 1 0.5 02
Resonant Frequency KHz 250 250 250 250 250
Rise Time Hsec 2 2 2 2 2
Discharge Time Constant sec 1 1 1 10 160
Low-Frequency (—3.0; Hz 05 0.5 0.5 0.05 0.005
Linearity 8.5.L. %FS. 2 2 2 2 2
Qutput Voitage, F.S. volts 2 S 5 5 ]
Qutput Impedance chms 106 100 100 100 100
Acceleration Sensitivity psi/g 0.003 0.003 0.003 0.003 0.003
Temperature Coefficient %/9F 0.03 0.03 0.03 0.03 0.03
Temperature Range ofF -100 +250 -100 +250 -100 +250 -100 +250 —-100 +250
Flash Temperature OF 3000 3000 3000 3060 3a00
Vibration /Shack g pk 1000/5000 1000/5000 1000/5000 1000/5000 1000/5000
Material SS. 174PH 17-4PH 17-4PH 174PH 174PH
Power Req’d (thru CC Dicde} +VOC/mA +18-24/2-20 +18-24/2-20 +18-24/2:20 +18-24/2-20 +18-24/2-20
Note {1} 10mV/ps for Model 105A03 04 Ova . 1032 Tha.
Soider Terminai R4
Series 10SA universal quartz sub-minigages measure slow R4 140 Hex ., 060a03
and fast dynamic pressures from full vacuum to 30.000 psi, 7 (35MM) — § Camp nu
refative to the initial or average pressure levei. The structure 10.32 Tha. 1.2 '__ :
of this tiny instrument contains wo quartz disks operalirng —mr Mod. 0G5AT0 i ! Moda. 065a21
in 3 thickness-compression mode. An internal microeiectronic, '_"-‘._.'_z Seal .130 00 Tt Slﬁsa.'x 00 X 020 Th
unity-gain  amplifier generates a high-level low-impedance (A ’:ﬂ;%":g:;" - -
analog output signal proportional to the measurand when - —_
) ] - =140 - =099 D
the transducer s connected with a coaxial or 2-wire cable to 099 Dia D Y . 248Da
a pcbh power unut. Three external configurations offer a {Weight 1.5 gm} Weight 3 gm) .
«anety of mounung possibilities. Contoured conformal ups MODELS 105A02. 12, 22 MODELS 105203 13.23.33.43
ar2 also possible. 19

Fig.(4.5) Specifications for the pressure transducers.
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Fig. 5.1 Schlieren photos for shock propagation over a 15° ramp, M, =2.106
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Fig. 5.1 Cont’d
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Incident shock Mach number

Mo=

M,, = First stem Mach number

MsZ

Second siem Mach number

Diffracted shock Mach number

Mg,
p 4

Shock-shock angle

Fig.(5.2) Shock front stages for the ramp test case
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Fig.(5.3) Computational domain for the ramp test case.
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Fig.(5.5) Grid senitivity checks for the ramp problem (M ¢ = 2.106)
(density contours)
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Fig.(5.6) Schlieren photos for shock-slit interaction M = 2.33)
(Ostrowski [64]).
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Fig,(5.9a) Density contours for shock-slit interaction
(M = 2.33, 40 time steps).
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Fig.(5.9b) Density contours for shock-slit interaction
(Mo = 2.33, 80 time steps).
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Fig.(5.9c) Density contours for outer diffracted shock
(M = 2.33, 120 time steps).
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Fig.(5.13) The effect of incident Shock Mach number on bleed ratio

(supersonic duct flow).
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Fig.(5.14) Converging shock Mach number .vs. shock radius.
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W/H=0.25 WH=0.5 W/H=0.75 WH=1

Mo M/Mo Mo M/Mo Mo M/Mo Mo M/Mo
2.200 0.986 2.409 0.966 2.352 0.946 2.383 0.927
2.100 0.985 2314 0.963 2.135 0.942 2.255 0.926
2.003 0.982 2.084 0.961 2.074 0.944 2.017 0.920
1.863 0.983 1.908 0.962 1.904 0.939 1.920 0.919
1.628 0.978 1.844 0.956 1.802 0.938 1.847 0919
1.567 0.984 1.823 0.957 1.789 0.937 1.823 0919
1.519 0.979 1.770 0.959 1.684 0.939 1.810 0.920
1.465 0.985 1.711 0.954 1.659 0.940 1.685 0.921
1.368 0.982 1.714 0.954 1.629 0.941 1.644 0.922
1.280 0.987 1.635 0.954 1.617 0.941 1.596 0.921
1.559 0.958 1.568 0.938 1.565 0918

1.523 0.959 1.557 0.939 1.540 0.920

1.487 0.957 1.511 0.939 1.532 0.923

1.463 0.959 1.508 0.937 1.511 0.924

1.378 0.961 1.481 0.943 1.461 0.922

1.288 0.963 1.476 0.942 1.361 0.928

1.474 0.939 1.357 0.924

1.379 0.941 1.282 0.930

1.337 0.947 1.280 0.931

1.295 0.946

Table (5.1) Experimental results for 2-D shock-slit interaction M, =2.33).
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W/H=1 | WH=2
Transducer 1 Transducer 3 Transducer 4 Transducer 4
Time P/Po Time P/Po Time P/Po Time P/Po

1.40 1.00 83.40 1.00 40.40 1.00 44.50 1.00
4.00 1.00 125.00 1.00 41.90 1.00 46.00 1.00
6.40 8.00 130.94 7.00 44.40 21.00 46.50 6.65
9.90 3.76 142.83 9.31 47.40 16.00 47.00 10.41
11.90 6.64 158.67 9.77 49.10 22.88 47.70 15.44
14.40 3.76 170.56 13.00 50.90 21.00 48.00 17.32
16.90 5.88 182.45 12.54 52.40 34.75 49.50 17.95
19.40 3.97 198.29 14.85 53.50 59.75 50.50 16.69
20.90 5.88 212.16 13.46 54.70 77.88 52.50 20.46
24 .40 3.97 218.10 15.77 58.40 52.25 54.00 22.34
25.90 482 229.99 14.85 59.90 65.38 54.50 33.01
241.87 15.77 63.90 46.63 56.50 60.00
261.68 16.69 65.50 35.52
269.60 19.46 69.50 27.36
273.56 25.92 70.70 32.38
279.51 29.62 74.50 20.46
291.39 23.15 78.50 22.97

303.28 23.43

319.12 17.15

Table (5.2) Experimental results for cylindrical shock-slit interaction (M o = 2.33).
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