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ABSTRACT

Diagnosability and Diagnosis of Sparsely Interconnected
Multiprocessor Systems

Anindyva Das Ph. D.,
Concordia University, 1989,

This thesls Is motlvated Ly certaln shortcomings of the classteal -
dlagnosabllity theory developed by Preparata, Netze and Chien (I°NICY when
applied to fault dlagnosls of lurge sparsely Interconnected multlproeessor systems,
Thls calls for a detalled study of diagnosable systems such as /s -dlagnosable
systems whlch requlre fewer tests and development of a theory of loeal diagnosls
which permits correct diagnosis of all faulty processors 1n o laree sparsely Inter-

connected system as well as development of dlagnosis alzorlthins whleh are

amenable for distributed Implementation on the multiprocessor system Hsclf,

The flrst part of thls thesls (Chapters HIE and V) Is concerned with o stody

of t /s-dlagnosable systems.

In Chapter HI, we present characterizatlons of f /s-diacnosable systems
which generalize those glven earller for { /{-dlagnosable systems, \We show how
the t/s-characterization for the PMC  model  based  on Kolda's -
characterization theorem can  be  caslly  modifled o arelve  at a | [/s-
characterization for the Barsl, Grandonl and Naestrind (BGND) model as well as
characterizatlons for the sequentlally {-dlagnosable systems, We also present, i
this chapter, certaln structural propertles of general /s -dlagnosable systems
which generallze some of the carlier results. These properties lead 1o a new

t /t +1-characterization.

With the oblective of determiuing an efficlent test for a vertex o to be 1n an

allowable fault set of slze at most f, we flist establ<h In Clhapter [V oseversl
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properties of allowable fault sets, Usling these propertles and the characteriza-
tons glven in Chapter I, we then develop an O (n35%) algorithm for diagnosis of
a t/t+1-diagnosable system. We also present a t/t+k dlagnosls algorithm
whieh runs 1 polynomlal time for cach fixed posltlve Integer k. We show how
these  algorlthins can be modifled to construct algorithms for sequentlal (-
dinznosls,

In the sceond part of thls thests (Chapters Voand VI). we use the
comparlson-bhased approach to deveiop a theory, whereln Instead of a slngle glo-
bal constralut, local fault constratuts on the number of faulty processors in the
nelehborhood of cach processor 1n the multiprocessor system are constdered.

In Chapter V', we reformilate a result 1n syndrome decoding reported in the
Nterature nnder varlous forms and apply 1t to regular Interconnected multipro-
cossor systemns with very small connectivity, Iere a local nelghborhood 1s deflned
around each processor which conslste of 1ts { Iimmediate nelghbors and { subse-
quent nelehbors, The faulty or fault-free nature of each processor Is then deter-
mined as lone as no more than ¢ processors are faulty in its corresponding nelgh-
borhood., Based on thls result., we also present a slmple O (1) distributed dlag-
nosls algorithim. We study the application of local fault constralnts on a ring of
processors,  Spectfleally, we determine 10 unique diagnosis s possible If p out of
any ¢ consecutlve processors tnothe ring are faulty. We develop sequentlial and

distrihnted algorithms for these systems,

In Chapter V1, we Introduce the coneept of a t-ln-Lk dlngnosable system.,
We st present eertaln basle results whieh lead to a sufllclent condltlon for
unlque dingnosts of a system when certatn fault constraints are satisfled 1n the
loeal domain L 1(”‘) ol each processor u,. In this chapter, we also study the t-
ln-l,‘ dlagnosability of certaln regular Interconnected systems: the closed rec-

tanaular. the hexazonal and octagonal grlid systems. and the hypercube systems.



We present f—ln-Ll dlagnosts algorithmes for these regular svstems as well as
those which satisfy certaln other conditions, These diagnosis aleorithims ean be

executed In a distributed manner on the syvstem {tsell.
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CHAPTER 1

INTRODUCTION

Computer applicatlons demand systems which are many orders of magnl-
tude faster than those currently avallable. Systems which Incorporate a large
number of processing elements are required to solve a wide range of computation-
ally Intenslve tasks. Contlnulng advances In semlconductor technology have now
made practical the development of very large systems conslsting of hundreds and
thousands of processors, and systems consisting of milllons of processing elements
are belng envisaged. As the number of processors In a system lnereases, the
fatlure of some of these processors durlng operation becomes more likely., ‘TThe
fallure of a few of these processors could be critiel and at thmes even eatas-
trophlc. Thus the high rellabllity and avallabilty of these systems Is an area of

major concern.

An approach to achleve high rellability and avallablllty is to bulld fuult-
tolerant systems: fallure of some components can occeur in the system but thelr
presence is not allowed to Influence the output of the system. Although a fault-
tolerant system may suffer a degradation In performance, 1t contintes to generate

correct output In the presence of a few faulty components,

A technique Involving masslve repllecation, known as N-modular redundancy
(NMR), 1s sometimes used In fault-tolerant systems. In systems uslng the NMR
technique, the computation corresponding to a component are performed by N
different elements whose outputs are submitted to a voter. The voter then
decldes which results ought to be propagated, thereby masking the effects of any
faults. Other techniques Include:(1) error detecting and/or error correciing codes
including self-checking components; (2) valldity checks of software and dlagnos-

tics of hardware: and (1) watchdog timers and sanity messages.



Techulques such as the ones mentioned above are well-suited for systems
comprising of a comparably small number of processors. However, the Increased
scale of future systems and thelr radically different archltectures wlll render these
technlques less atiractlve. On the other hand, these developments will provide
the basls for alternate strategles such as self-monitoring and self-dlagnosis.
Clearly systems whilceh Incorporate a large number of Independent processors
could explolt the potential of these processors to m.unitor one another to detect,
dlagnose and 1dentlfy the faulty processors. A procedure to reconflgure the sys-
tem to comprlse of only flault-free processors could be Inltlated once the faulty
processors are ldentifled. System-level fault dlagnosls, an area ploneeres by the
work of Preparata, Metze and Chlen [1], provides a framework for thls approach

for identifying faulty processors in distributed systems.

1.1. Basic Models for System-Level Diagnosis

Several models have been proposed In the literature for dlagnosable system
design.  In thls thesls, we constder three basic models: the PAMC model, the BGM

model and the Comparlson model.

1.1.1. PMC Model

The now well-known PMNC mode! Introduced by Preparata, Metze and
Chlen [1] has been extensively studled In the llterature. In thls model, each pro-
cessor In the system tests some of the other processors and produces test results.
The exact nature of these tests and the manner In which they are conducted are
not spectfied by the model, A test result determines whether the testing proces-
sor fluds the proceessor belng tested to be faulty or fault-free. Different fault
models arlse depending on the type of testing, the fault types considered and the
Interpretations assoclated with the test results. In the PMC model, also referred

to as the symmetric invalidation model , faulty unilts are consldered to be
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permanently faulty and a test result Is rellable only If the testlng processor s

1tself fault-free.

The processors In the system and the test Interconnectlon can  be
represented by a dligraph G (U,E) where the vertices represent processors and
there Is an edge from vertex u; to Uj If and only If processor u, tests processor
uj. The digraph 1s referred to as the connectlon asslgnment of the system. A
label a;j which represents the corresponding test result 1s assoclated with each
edge (; U, ). The collectlon of all test results over the entlre system Is referred

to as a syndrome.

1.1.2. BGM Model

A varlatlon of the symmetric Invalldatlon model, formulated by Barsl, Gran-
donl and Maestrinl [2] and known as the BGM or the asymmetric invalidation
model , arises when a different Interpretation Is assoclated with the test results.
In the BGNI model, In additlon to the requlrement that a test resuit is reliahle
only If the testing processor Is fault-free, it 1s also required that a faulty proces-
sor always tests another faulty processor to be faulty. The motlvation for this
assumptlon Is that processors In the system are consldered to bhe complex and
each test 1s In fact a combinatlon of a sequence of tests, Thus 1L is hlghly
unlikely that the faults In the testing processor would mask the faults In the pro-
cessor belng tested for the entire sequence of tests. Although the diflerence
between the PNC and the BGN! models seens mindmal they dead to very
different solutlons for related problems, some of which seem to bhe counter-
Intultlve. For example, Somanl, Avis and Agarwal [3] presented a problem
which Is co-NP-Complete In the BGAM model bhut 1s solvable In polynomlal time
In the PMC model whereas in 4], Gupta and Ramakrishnan presented another
problem which Is solvable 1n polynomtal time in the BGM model bhut s co-NP-

Complete 1n the PNIC model,




1.1.3. Comparison Model

Another model, known as the comparison model , was proposed In [5], [6]
and [7]. In the comparlson-based approach, all the processors In the system are
assigned the same task to be performed and the outputs of some palrs of these
tasks are compared, The processors In the system and the comparison assign-
ment can be represented by an undirected graph (U,FE) where the vertlces
represent the processors and the edges represent the comparlson tests. Chwa and
Iakliml proposed that a comparlson outcome be considered unrellable only If
both processors belng compared are faulty. This model of Interpretation ls
clearly In spirit with the symmetric Invalldation model for directed testing. It ls
thus possible Lo conslder an alternative model of test outcome Interpretation for

the comparison approach also, stmtlar In splrit to asyvmnietric Invalldatlon.

The test outcomes assoclated with the PMC, BGNMN and comparison models

are shown In Flg. 1.1,

1.2. Review of Literature

In order to carry out a study of dlagnosable systems, assumptions are
required regarding the fault sets whlch could occur In the system. ¥For instance,
It all processors In the system are faulty then in the PNIC model any posslble
sy ndrome could be generated. The classlcal constralnt used s to assume that the
number of faulty processors 1n the entlre system Is upper bounded by an Integer

l.

1.2.1. t-Diagnosable Systems

A system Is sald to be ¢-diagnosable if, given a syndrome, all processors
can be correctly tdentifled as faulty or fault-free provided that the number of
faulty processors present In the system does not exceed ¢t. Three problems of

interest arlse In this context.
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t-characterization problem : Given a positlve Integer ¢, determine the
necessary and sufllclent conditions for the system test asslgnment to be (-

dlagnosable.

Haklml  and Amin [8] gave the flrst complete solutlon to the -
characterlzation problem under the PANC model. Other characterlzations were
given by Allan, Kameda and Tolda [9] and by Kohda {10]. A characterlzatlon for
the BGN model was given In [2]. A {-characterization for the comparlson model
was glven tn [6).

t-diagnosability problem : Given a system, determine the largest value

of £ for which the system Is ¢ -dlagnosahle.

An algorithm to solve the t-dlagnosabliity problem for the PN C model was
long constdered to he exponentlal, persuading researchers to restrict thelr study
of dlagnosablilty to varlous subelasses of digraphs. Uslng network flow tech-
nlques, Sullivan [11] developed a t-dlagnosabliity algorithm based on the (-
characterlzatlon given by Allan, Kameda and Tolda [9]. This algorithm runs In
O (mn'®) time where m s the number of tests and n 1s the number of proces-
sors.  Subsequently, Raghavan [12] Improved upon this result by presenting an
algorlthim which runs In O (nf*%) time. Narasimhan and NakaJima [13] also
presented a diagnosability aleorithm based on a characterlzation which is stmilar
to the [-characterization for the PNIC model given by Allan, Kameda «uu Tolda
In [0]. Somani [3] presented an O (n?) t-dlagnosabillty algorithm for the BGM

model based o the orlginal characterizatlon glven In [2].
t -diagnosis problem : Given a (-dlagnosable system, develop an algo-
rithm to locate the faulty untts present in the system, using a given syndrome.
Kameda, Tolda and Allan [14] were the flrst to publish a ¢ -dlagnosls algo-
rithm with polynomial thme complextty.  This algeitlin as well as the one

presented by Madden [15] are backtracking algerins of tlime complexity



O (n®. Dahbura and Masson [16] developed an O (n?®) algorlthm for the -
dlagnosls problem under the PMNC model by transforming 1t Into a problem of
finding a maximum matching in a bipartite graph. This algorithm Is based on
the concept of Implled fault sets and other results which they developed In [17].

A t-dlagnosls algorithm with complexity O (| E | +¢) ustng braneh and bound

technlques. and based on the algorithm glven In [1-4], was presented by Sulllvan
[18]. Meyer [19] gave an O (m) { -diagnosts algorithim for the BGNT model. Diag-

nosls algorithms for speclal classes of graphs have been presented In [20-25].

1.2.2 Variations of the PMC Model

Other varlations of the models conslderced above can arlse I the faulty pro-
cessors can be elther permanently faulty or Intermittently faulty.  Intermittent
faults under the symmetrie Invalldation model were flest proposed hy Nialleta and
Masson [26]. The varlous test outcomes wWhich occur when all combinations of
fault-free. permanently faulty and Intermittently  faulty  proeessors are con-
sldered for the svmmetric Invalldation assumption are shown n Flg, 1.2, Test
outcomes under tne asymmetrie Invalldation assumption are deflned stmllariy. A
system Is sald to be f -diagnosable II' glven a syndrome which s compatible
with a permanent fault situatlon, the dlagnosls wlll never be ncorreet, alt hough
1t may possibly be Incomplete. Mallela and Masson gave a characterizatlon for
such systems and subsequently Yang and Nlasson [27] presented an O (m ) diag-
nosls algorithm. Other variatlons of this model were reported in [28,29]. Intep-
mittent faults under the asyvmmetrle Invalidation model were studled by Somanl
[3] who presented an O () dlagnosablity algorithin. It s obvious that ddentify-
Ing all the faulty processors when Intermlttent faults are also present s far more
difficult than when only permanent faults are present. A generallzed theory for

svstem-level dlagnosls was proposed by Soman!, Davis and Agarwal 1n ol Ths



: Fault-Free unit

0/1 O
0/1 @
0/1 @
0/1 @

Intermittently Faulty unit

O,
® . Faulty unit
@ ;

Fig. 1.2 Test outcomes under the PMC model
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paper presented a generallzed characterizatlon theorem which provides the neces-
sary and sufliclent condltlons for unlque dlagnosis of fault sets of any stze under

different fault models.

Maheswar! and Haklinl [31] tntroduced the concepts of probabifistie and
welghted dlagnosabllity and established the relationship hetween them. A proba-
bility of fallure is asslened to each unit In probabilistle dlagnosis.  Assuming that
processor fallures occuir Independently, the probablliity of fllure of any set of
processors can be determined. A system 1s sald to be p-dragnosable I any set of
fallures which occur with probablllity at least p can be correctly ldentitied from
the test results. This probabillstic model was further studled by Fullwara amd
Kinoshtta {32]. In the model for welghted dlagnosis, o welght Is attached to each
unit In the system and such a system 1s sald to be f-diagnosable I any set of
faulty processors whose welghted sum 1s at most [ c¢an be correetly idontified
from the test results, Sulllvan (33} studicd extensively the diagnosablllty and
dlagnosis problems for probabllistie and welghted dlagnosabiity models.  Dah-
bura presented In [34] a dlagnos's algorithm for the welghted model. Other gen-

erallzatlons of the PAMC model have been reported 1n [35-39)

1.2.3 Other Measures of Diagnosability

The requliremnent that all the fauliy processors 1 a nrultiprocessor systen he
identified exactly s ratlicer restrictive and In many cases may not he satisfled,
One such Instance s when the number of faulty processors Is falrly large with
respect to the number of test assignments. In such cases, an Interlor quallty of

fault dlagnosls Is lmposcd.

1.2.3.1 Sequential Diagnosis

One way of obtulning a slightly nferlor guality of dlagnosis 1t peqidre

that given a syndrome, at least one faulty processor be correetly et fled, In
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such a casc fewer tests need to be done. The rationale for this relaxed requlre-
ment 1s that once a faulty processor Is correctly tdentified It can be replaced,
hopefully by by another fault-free processor, and another set of tests can be per-
formed to determiine the rematning faulty processors. The dlagnosis 1s correct as
no fault-free processor 1s declared faulty. Iowever the dlagnosls may be Incom-
blete. Since the system undergoes repalrs before the entlre set of faulty proces-
sors s tdentlled, sequential dlagnosls 1s also referred to as diagnosis with
repair. A systenn S s sequentially {-diagnosable It and only 1f, given a syn-
drome, at least one faulty unit can be correctly 1dentifled, provided that the
number of faulty unlts In the system does not exceed ¢ . Sequentlal dlagnosls
was fisst Introduced In [1]. Raghavan [12] presented a characterizatlon of sequen-
Ually f-diagnosable systems for the PNMC model. Ie also showed that sequential
f -diagnosability Is co-NP-Complete for hoth PMC as well as BGNI models. More
recently Themg et al. [40] presented a  characterlzatlon of sequentlally ¢-
diagnosable systems and presented an approach for the deslgn of sequentially ¢-
diagnosable systems. Although  sequentlal dlagnosls algorlthms have been
presented tor varlous restricted classes of graphs [1,41] the general sequentlal ¢-

dlagnosls problem has not yet been solved satisfactorlly,

1.2.3.2 t /s-Diagnosis

Another way of obtalning an Inferlor quallty of dlagnosis Is to require that
all faulty processors be 1dentifled but a few fault-free processors may be declared
as faulty.  This type of dlagnosls Is complete but perhaps Incorrect. Friedman
{12, 13] Introduced the concept of ¢ /s-diagnosability which allowed the possible
replacemient of fault-free processors, whereas In t -dlagnosabllity only the replace-
ment of taulty processors 1s considered. A multiprocessor svstem S 1s sald to be
{ /s-diagnosable if, glven a syndrome, the set of faulty processors can be lso-

Iited to within a set of at most 8 processors provided that the number of faulty
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processors does not exceed ¢ . Allowlng some fault-free processors to be possibly
ldentlifled as faulty permits the system to have far fewer tests In comparlson with
exact dlagnosls. It has been shown that f/f-dlagnosable systems  with
n¥ [(t+1)/2] tests can be constructed [41,45). ¢ /¢-dlagnosable systems have
been studled extensively In the literature. Chwa and Haklml [16] gave a ¢harae-
terizatlon of (/t-dtagnosable systems and presented procedures for destgning
these systems. Sulllvan [33] presented polynomlal time algorithms for the /-
and t/t+1-dlagnosablilty problems. Ile also developed a ¢ /{ +k -dlagnosabliity
algorithm which runs In polynomlal time for cach fixed Intecer k. This diagno-
sabllity algorithm 1s based on a characterization of f/{+k -dlagnosable systems
also developed In [33]. In [12], Raghavan has developed, among other things, a
characterization of {/s-dlagnosable systems. Yang et al. [M7T] presented an
O (n*?%) algorithm for the ¢ /t-dlagnosls problem. The diagnosis problems for

t/t +1-and t/t+k -dlagnosable systems have not been studled In the literature,

1.2.4. Adaptive System-Level Diagnosis

An adaptlve system-level dlagnosls approach was first Introduced by Naka-
Jima [48]. In this approach, the cholce of the sequence of tests Lo be run is made
adaptively. The objJective 1s to determine one fault-free anlt with a minlnnmm
number of tests and then use the fault-free unit to determlne the status of the
other units. Thls approach assumes that any unit Is capable of testing any other

unlit. This approach was further studled by Hakiml and Nakalima 1n [19].

1.2.5. Diagnosis of Sparsely Interconnected Systems

In multiprocessor systeins such as those implementable In very large scale
Integration (VLSI) and wafer-scale integration (\WSI), the number of units it a
syste.n can be very large [50]. Morcover, the commonly used system nterconnee-

tlon npetworks such as the rectangular grids are very svinetrleal and sparse,



When such a system Is analyzed using the classleal theory, the number of lfaulty
processors permitted, which 1s Mmited by the connectivity of the processor inter-
connection graph, I1s very small In comparison to the number of units In the sys-
tem.  Thls shertcoming motlvated the development of some novel theoretleal
results on sf -dlagnosabliity [51] and the recent works on probabllistle dlagnosls
algorithms for sparsely Interconnected systems [32,53]. In [32], Blough and Sul-
Itvan presented a diagnosls algorithm for such systems in which the status of
each unit Is determined by taking a simple majlorlty vote of all its test outcomes
with respect to s inmediate nelghbors. A probabllistic model for the faults In
the system Is used to analyze the majority-vote dlagnosis algorithm. In [33].
[Pussell and Rangaralan presented a probabilistie model whieh allows a processor
to perform multiple tests on another processor. They designed probablilistic dlag-
nosls algorithins for these systems which requlre minimal constraints on the syvs-

tem Interconnection,

Most diagnosls algorithms are assumed to be executed on a single, highly
reflable supervisory processor which has access to the complete syndrome. A sln-
gle supervisory processor Is a performance bottleneck In a system wlth a large
number of processing elements, Distributed dlagnosis algorlt hms executed on the
multiprocessor system Hsell would be deslrable. Such distributed dlagnosis algo-
rithms can take on two essentlally different flavors: one In which no single pro-
cessor has the knowledge of the complete syndrome but 1ts decoding of that part
of the syndrome avallable to 1t may be passed on to Its nelghbors and the nelgh-
bors thereof, and so on: and and the other in which the distributed task s to
make the complete syndrome avallable to every processor of the system and then
let each processor perform the dlagnosts algorlthm to determine all the faulty
processors I the system. Work based on the flrst approach was reported In

[FES . Work ushig the second approach has been presented In [55,56).
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An excellent overview of the system-level dlagnosls area has been presented

by Dahbura In [57].

1.3. Scope of the Thesis

The work reported In thls thests Is motivated by certaln shortcomings of the
t -dlagnosability theory (mentloned In the previous section) when applled to large
sparsely Interconnected systems. As we noted before, when such systems are
analyzed using the classical theory, the number of faulty processors permitted Is
very small In comparison to the total number of processors in the system. A rea-
son for this Is that in ¢-dlagnosablility theory, each syndrome Is regulred to
correspond to a unlque fault set, a requirement which Imposes a large number of
tests between processors. A pardal solutlon to this problem 1= to use  he | /s -
dlagnosabliity theory, whlch allows the possiblllty of ldentifving certain fault-tree
unlts as faulty, thereby reducing to a conslderable extent the number of tests
requlred. This calls for a detatled study of t /s-diagnosable systems and [ /s -

dlagnosls algorithms.

Note that the constralnt imposcd In the classteal theory on the nuamber of
faulty processors allowed 1s global 1n nature. So, we may expect, that a theory of
fault-dlagnosls which s based on fault constralnts In the loeal nelghborhood of
each processor of a sparsely Interconnected svstem wotutld permit correet, ding-
nosis even when a large number of faulty processors are preseut dn the systenn.
Also, the t- and [ /s-dlagnosls algorithms are assumed 1o he excented on a single
highly rellable supervisory processor whilch has access to the complete syndrome,
A single supervisory processor 1s a bottleneck 1n a system with a large number of
processing elements. So, 1t would be deslrable to have distributed dlagnosls algo-
rithms executed on the multiprocessor systemn 1tsetf, Thus, we would NNke to seek
a theory of local dlagnosis (that s, diagnosls based on local fault constralnts)

which permlts correct dlacnosis of a sparsely interconnected systemn even when
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there are a large number of faulty processors In the system and whlch also
adinits simple dlagnosls algorithims which are amenable for distributed Implemen-

tatlon on the multiprocessor system tself.
With the above oblectives In miind, this thesls Is organized as follows.

The first part of thls thesls 1s concerned with a study of ¢ /s-dlagnosable

systenns.
In Chiapter II we present certaln basle deflnttions, notatlons and results.

In Chapter I, we present characterlzatlons of f /s -dlagnosable systems
which generalize those glven In [16,17]. We show how the ¢ /s-characterization
for the PNIC model based on Wolida's {-characterizatlon can be easlly modifled
to arrive at o ! /s -characterization for the BGM model as well as characteriza-
tHons for the sequentlally {-dlagnosable systems. We also present, In this chapter,
certaln structural properties of general { /s -dlagnosable systems which generalize
sonte  of  the carller results,  These properties lead to a new t/t+1-
characterization,

With the objective of determining an efliclent test for a vertex v to be In an
allowable rault set of s1ze at most {, we flrst establish in Chapter IV several pro-
pertles o allowable Iault sets, Using these properties and the characterizations
ghven tn Chapter 111, we then develop an O (n2°) algorithm for dlagnosis of a
{ /t+1-dingnosable system. \We also present a t /¢ +k dlagnosis algorithm which
runs in polynomtal tlme for each flxed positlve integer k. We show how these
algorithms can be modifled to construct dlagnosls algorithms for sequentlally ¢-

diagnosable systems. Some results of this ehapter have been reported in [58].

In the second part of this thesis, we use the comparison-based approach to
develop a theory whereln Instead of a single global constralnt, local fault con-
stralnts on the number of faulty processors In the neighborhood of each processor

in the multiprocessor system are consldered.



In Chapter V, we reformulate a result in syndrome decoding reported 1n the
Hterature under varlous forms [20,21,46] and apply 1t to regular Interconnected
multiprocessor systems with very small connectivity. Here a tocal nelghborhood s
deflned around cach processor which conslsts of 1ts { Immediate nelghbors and f
subsequent nelghbors. The faulty or fault-free nature of each processor 1s then
determined as long as no more than { processors are faulty in s corresponding
nelghborhood. Based on this result, we also present a simple O (1) distributed
dlagnosls algorithm. We study the application of local fault constralnts on o ring
of processors. Speclflcally, we determine I unique dlagnosis Is possible 1 po owt
of any ¢ consecutlve processors In the ring are faulty. We develop sequential
and distributed algorithms for these systcms. The results of this chapter have
appeared In [59],{60].

In Chapter VI, we Introduce the concept of a f-n-L; dlagnosable systeni,
We first present certaln basle results which lead to a sufflelent conditlon for
unlque dlagnosis of a svstem when certaln fault constralnts are satisfled 1 the
local domaln L (u;) of cach processor u,. In thls chapter, we also study the |-
ln-L1 dlagnosabliity of certaln regular hiterconnected systems: the closed ree-
tangular, the hexagonal and octagonal grid systems, and the hypercube systems,
We present (-In-L, dlaghosls algorlithms for these regular systeins as well as
those which satlsfy certaln other conditlons. These dlagnosls algorithms can be
executed In a distributed manner on the system itsell.  For models of distributed
computing [61] may be referred. Results of thls chapter have heen reported tn
[60].

The thesls Is concluded 1In Chapter VI




CHAPTER II

PRELIMINARIES

In thls chapter, we present baslc deflnltlons and notation used in thls thesls
relating to graphs and fault dlagnosls models. We also glve a summary of some
lmportant results In system level dlagnosls which are used in the remalnder of
this thesls. A few concepts and notatlons which are particular to a chapter are

Introduced In the appropriate chapter.
2.1. Basic Definitions and Notations

Definition 2.1: We use the notatlons Y CU and X CU tosay X Is a subset of
[" and X s a proper subset of [, respectively. We say z€U If z 1s a member
of ", For two sets X' and Y, X'=} Is the set of elements In X' which are not
members of Y. X' @ Y denotes the set (Y-Y) J(Y-X), the symmetric
difference of X and Y. The set XY @ Y Is also called the disjoint union of .\’
and Y. The cardinality of a set X Is symbollzed by |X |. The empty set

wlll he denoted by o.

Definition 2.2: A graph G (U ,F) conslsts of a finlte non-empty s=t of vertlces
" and a set of edzges E consisting of unordered palrs of vertlces In /. An edge
Incldent en vertices u, and u; 1s denoted by (u;,u;) or (u;.u;) and the vertlces

u, and u, are then sald to be adjacent.

Definition 2.3: The degree of a verteyx, denoted as deg(u ), refers to the number

of edges Incldent on u.

Definition 2.4: A directed graph or digraph G =(U ,E) conslists of a finlte
non-empty sct of vertices " and a set of edges E conslsting of ordered palrs of

vertices In U7, An edge directed from w; to u; Is denoted by (u;,u;) and the



vertlces u; and u; are then sald to be adjacent.

The symbols n and m denote the cardinalltles of the sets U and I respee-

tively.

Definition 2.5: Let ¢ =(U,E) be a graph or a dirceted graph. For X' C 7,
G' =(X,E'’ ) 1s called the induced subgraph of ¢ on the vertex set X1
edge (u,,u,)EL' I and only If w;u, €X and (u, .u, YEL . ‘The tnduced sub-

graph on U-X wlll Le denoted by (-,

Definition 2.6: A path tn a graph G (U,E) 1s a sequence ol one or more ver-

tices U 4% gyeenytty, such that for all 1< <k, (u, o0, ) € IV,

Definition 2.7: A directed path In a digraph G (I7,19) s a sequence of one or

L}

more vertlces u ;U o..nit; such that for all 1<e <k, (u, ,u, ) € 1),

Definition 2.8 : The length of a path between vertiees u, and w, refers to the

J
number of edges In the path. The distance d («, ,u;) between two vertlees u,

and u, denotes the length of a shortest path between u, and ", .

J

Definition 2.9 : Let v, be a vertex In a digraph G (U7,015). Then we deflue the
following subsets:

)= {u; | (uu,)EL}

)= {uJ | (u.u, EL }
This definltlon Is extended to sets of vertices In a stralght-forward manner. let
X be a subset of vertices In U, then

) = (YTl - X

u, ~X

) =yt A

u, X



I'or what follows, let ¢ =(U,E) denote a general undlirected graph.

Definition 2,10 : A subsct ' C U Is called a vertex cover set (VCS) of G If
every edge 1n ¢ 1s Incldent on at Jeast one vertex In . A minimum vertex

cover set (NVCS) 1s a VVCS of minimum cardinallty in G'.

Definition 2.11: : A subsct M C [F 1s called a matching If no vertex In U s
Incldent on more than one edge In Af. A maximum matching is a matching of

maxtimum cardinality in @'

Definition 2.12 : A bipartite graph , with bipartition (\',)"), 1s one whose
vertex set can be partitioned thto two subsets X and Y such that every edge Is
Ineldent on o vertex In Y and a vertex In Y. Finally, for v, € U, N(u,)

denotes the set ol all vertices which are adjacent to u; .

Defintttons of graph-theoretle concepts which have not been discussed In this

sectlon may be found n [62].
2.2, Basic Definitions for the PMC Model

A multlprocessor system S consists of n unlts or processors, denoted by the set
U= {u .t ., }o Each unlt Is assigned a subset of other unlts for testing.
Thus the test Interconnectlon can be modeled as a dlrected graph G =(U E).

The test outcome a,,. which results when unlt , tests unit u;, has value 1 (0)

J

W ou, evaluates unlt u, to be faulty (fault-free). Slnce all faults consldered are

! J

permanent, the test outcome a;; 1s rellable If and only If unit u; s fault-free.

The collectlon of all test results over the entlre system 1s referred to as a syn-
drome. WIth respect to the test Interconnectlon graph G (U,E), a syndrome s
a functlon from the set of edges to the set {0.1}. If a;j= 0 (1) then u; Is sald to

have a 0-link (1-link) to v, and u, 1s sald to have a 0-link (1-link) from «,.1If

J



(uy,u, ) 1s an edge In G, then unit u, Is sald to test unit e

Flg. 2.1 glves an example of a system wlith 7 nodes.

Definition 2.13 : Glven a syndrome, the disagreement set A (u, ) of u, € U
Is defined as

Ay(u)={u, |a;=10ra,=1}.
For a subset V" C U,

A= | ().

u, e W

Definition 2.14 : Given a syndrome, the set of 0O-descendents of u, 1s
represented by the set

D y(u;)= {u; :there 1s a directed path of 0-lUnks from u, to w, }

and for a set 1" C U, the 0-ancestors of 1V denotes the set
A W)= {u, : u, € Dolug)and u, € W

For u, € U, Il j(u;) corresponds to the set A o(u, ) U {u, }.

The dlsagreement set, the O-descendants, and the O-ancestors of the nnit

In Fig. 2.1 are glven below,

A(ug)= {uuqzu,l.
D y(u )= {ugugu,}. /

A ()= {u gz} /

Definition 2.15 : Glven a system S and a syndrome, a‘subset f° C 1] 15 an
allowable fault set (AFS) If and only It

cl: v; € (U-F)and a;;=01mply u, € (U F), and



Fig. 2.1 A system with 7 units.



c2: u; € (U'-F)and q;,=11mply v, € F.

In other words, F Is an AFS for a given syvndrome If and only If the assump-
tlon that the units In F arc faulty and the unlts in U=F are fault-free s con-
slstent with the glven syvndrome. In Flg. 2.1, the subsets {u Pl ol _,} and
{u g ugugus} are allowable fault sets corresponding to the glven syndrome,

A minimum allowable fault set (MAFS) 1s an allowable fault set of

minimum cardinality for a glven syndrome,

Definition 2.16 : Given a system S and a syndrome, the implied faulty set
L(u;)of v, € U 1Is the sct of all units of S that may be deduced to be faulty

under the assumption that u, Is fault-free.
It follows that
L(u )= 2,(Dyu,) U oD (D ).
Note that If u, €L (u, ) then there exists a 1-1Ink (uy 4y or (ug,up ) such that
there 1s a directed path of O-links from u; to u and a directed path of 0-lnks
from u, to w. Such a path will be refered to as an implied-fault path

between v, and u,

The !mplied fault path and the Implled fault set for a unit u, are shown n

Fig 2.2,
2.3. Basic Definitions for the Comparison Model

A multiprocessor system S under the comparison model consists of n
Independent processors U ={u ,us,...,ut, }. In the comparison model of inul-
tiprocessor fault dlagnosls, all processors In S are assigned to perform the same
task. Upon completlon, the ontpnts of certaln palrs of these processors are comn-

pared. The comparison asslgnment can be represented by an undirected grapl



-929.

0 0 0~ 0 0 0
i O—O—0O0—0O_O+0O+0O+0x
—>

1

(a) Implied fault path between two units.

(b) Implied fault set for unit u.

Fig. 2.2 Implied fault path and implied fault set.



G =(U ,E) where an edge ¢,, belongs to E It and only I the outputs of u, and

1) :

uj are compared.

An outcome a,, lIs assoclated with each palr of processors whose outputs are

J
compared, where a,; =0(1) I the outputs compared agree(disapree).  Staee only
permanent faults are consldered and we make the symmetrle Invalldation

assumption, 1t follows that a,, =0 whenever both u

' and uw, are fault-free;

} J

and w, 1s fault-free and the other faulty; o, s unrellable tf

a;; =1 1f one of u, J

]
both w, and w, are faulty. N (u,) denotes the set of nelghbors of u,, Le. the set
of all processors adlacent to u,. An edge that has a 0O(1) outcome assockted with
It Is referred to as a O-Nnk(1-Nnk). N g(u,) and NV (u,) denote the set of proces-

sors adlacent to u, which are connected with u, by a 0-Ilnk and a 1-lInk, respee-

tively.
2.4. Diagnosable Systems

Definition 2.17 : A system S Is {-diagnosable I and only 1If, glven a syn-
drome, all faulty units can be correctly Ildentifled provided that the number of

faulty units In the system does not exceed .

Definition 2.18 : A system S iIs { /s -diagnosable It and only 1f, glven a syn-
drome, all faulty unlts can be Isolated to within a set of at most s anlts, pro-

vided that the number of faulty units In the systeny does not exeeed

Flg. 2.3 glves an example of a 2-dlagnosable system and o 2/3-dlagnosable

system Is shown In Flg, 2.4,

Definition 2.19 : A system S Is sequentially /-diagnosable If and only If,
given a syndrome, at least one faulty unit can be correctly identifled, provided

that the number of faulty untt:in the system does not exceed



./f><i>

Fig. 23 A 2-diagnosable system
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2.5. Basic Results in System-Level Diagnosis

The tollowlng lemmas determline a few propertles of AFS's and Implied
faulty scts.

Lemma 2.1 [16]: Glven a systemn S and a syndrome, each of the followlng
statements holds:

(1) for ugu, € U u, € Liu, )i andonly it u; € L(u,).

1y

(2) for u, s ou, C U7 a,=0then L (u,) C L(u,)

P J

() C s an AlS then | L) S F.//
u<U-F

Lemma 2.2 [33]: Given a system S and a syndrome, If F | and F, are AFS's

then sots (I JF,). //

Lemima 2.3 : Glven a system S and a syndrome, let ' C U be an AFS

contatlng v, € 170 Then H (u,) C F .

Proof : Suppose that u, € IT,(n,) 15 not a member of F'. Since w, €

to u,. Since u; € U-F

H o (u, ) there exists a directed path of O-links from u j

J
and u, € I7, there exists a 0-1lnk from U-F to I on this path, contradleting the

as~umption that F1s an ARS, //

The following lemmas ghve alternate definttions of sequentlal ¢-dlagnosable
systems and /s diagnosable systems. Here a ¢ -fault situation refers to the case

when the number of taulty processors s at most (.

Lemma 2.4 [12]: A system S Is sequentially {-dlagnosable If and only If for
every syndrome occeuring 1n a f-fault sttuation, the Intersection of allowable fault

sets of slze at most ¢ s non-empty.  //

—~

Lemma 2.5 [12]: A system S Is t /s-dlagnosable If and only If for every

syndrome oceuring in a {-fault sttuation, the union of allowable fault sets of size



at most ¢ Is less thanor equaltos. //

The following theorems give some lmportant charactertzatlon results 1In

system-level dlagnosis which we wlll refer to In the remalnder of this thesls,

~

Theorem 2.1 [8]: A system S with test Interconnectlon graph (U7 1)
under the PNC model Is { -diagnosable If and only 1T the followlng conditions are

satisfled:
1 n =2t+1
(M) Forall u, €7, |TYu;)| >t

(M) For o< p <t and for all X CU with [N | =n 204p,

|T(N) | > p.

Theorem 2.2 [10]: A system S with test Interconnection graph G (U 1)
under the PNIC model 1s ¢ -dlagnosable 11" and only I for all distinet, non-cmpty
subsets X, X, C U, [ X, | <(, [ X, | <, there ts a test from 17X

Y

Into X, @ &,. //

Theorem 2.3 [9]: A system S with test Interconnection graph (1)
under the IPAC model 1s ¢ -dlagnosable it and only It for all Z Cl" with Z 4o,

RAVEEED ARSI

Theorem 2.4 [16]: A system S with test Interconnectlon graph G (U 17)
under the PNC model Is ¢/t -dlagnosable I and only i for 0 < p <! and for

al Y CUwhh | X | =n-204p, |PX)| >p. /]

Theorem 2.5 [17]: A system S with test nterconneetlon graph G (U1

under the PNIC model 1s ¢ /t-dlagnosable If and only I for all distinet, non-

empty subsets X, X, © U, [X| | =1, |4, | =, there Is a test from
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UX, X, moX,®X,. //

Theorem 2.6 [106]: A system S wlith test Interconnectlon graph G (U ,E)
under the PMC model Is |/t +6-dlagnosable, only If for 0 < p <t - 6 and for

all X C U with | X | =20 -p), [TV >p. //



CHAPTER III

STRUCTURE AND CHARACTERIZATIONS OF
t/s- AND SEQUENTIALLY ¢t-DIAGNOSABLE SYSTEMS

As stated In Chapter I, Frledman [42] introduced the concept of (/s -
dlagnosabllity which allowed the possible replacement of fault-free unlts In SV s-
tem repalr. We recall that a system S Is sald to be ¢ /s -diagnosable 1if, given a
syndrome, the set of faulty processors can be lsolated to within a set of at most
§ processors provided that the number of faulty processors does not exceed ! .
The problem of characterizing these systems has recelved considerable attention
In the Iiterature, In view of Its usefulness In deslzning these systems as well as
developing efliclent dlagnosabllity and dlagnosls algorithms. In [48], Chwa and
Hakiml studled extenslvely ¢ /¢-dlagnosable systems and presented ,among other
things. characterlzatlons of these systems. In [47], Yang and Masson presented
certaln new characterlzatlons of (/{-dlagnosable systems and used them in
developing an efficient ¢ /{-dlagnosls algorithm. Sulllvan [33] gave the first ehar-
acterlzatlon of ¢ /s-dlagnosable systems. Ile used 1t to show that the f/s-
diagnosabllity problem s co-NP-Complete and to develop a ¢/l +4+k-
dlagnosabllity algorithm which runs In polynomial time for each fixed positive
Integer k. He also derlved slmpler characterizatlons In the cases when § = ! or
§ = {41 which lead to polynomlal diagnosabitity algorlthms for these speclal
cases. Mlost recently, Raghavan [12] presented characterlzatlons for ¢ /s- and
sequentlally ¢-dlagnosable systems and showed that the sequentlal ¢-
dlagnosabllity problem Is co-NP-Complete. He also derlved simpler characteriza-
tlons for ¢ /t-dlagnosable systems presented earller In [16] and [17] as well as cer-
taln necessary condlitlons for general ¢ /s-dlugnosable systems. Raghavan also

showed how hls method for characterizing ¢ /s -dlagnosable systems can he used
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Lo characterize sequentlally ¢ -dlagnosable systems. All these results in the litera-

ture relating to t /s-dlagnosable systems assume the PMC model.

Many of the t /s -characterizatlons presented In the literature elther resem-
ble, 1n part, or scem to have been motivated by, characterlzatlons for (-
dlagnosable systems. For example, the characterizations glven in [48], [47], and
[33] hear resemblince to the f-characterlzatlons glven by Hakim! and Amin [8],
Kohda [10}, and Ailan ct al [9], respectively (See Theorems 2.1, 2.2 and 2.3).
Interestingly, the characterlzations based on the one given by Allan et al [9] have
proved useful in developing efMelent algortthms for ¢- and U /s-dlagnosabllity
[11]. [33].

In this chapter, we Investlgate further the f/s-characterizatlon problem.
We first present a characterization of a general t /s -dlagnosable system based on
KKoitda's characterlzatlon (Theorem 2.2) of {-dlagnosable systems. Thls charac-
terlzation which assumes the PPNIC model generalizes the one presented earller In
[17] tor (/f-dlagnosable systems (See Theorem 2.5). We show that this charac-
terlzation can easily be modified to vield a characterlzation In the BGM model as
well as characterlzations for sequentially {-dlagnosable systems. \We also present
a characterlzation which generallzes one of the {/t-characterizations (Theorem
2.4) presented by Chwa and llakliml [46]. We draw attention to certaln
difMeultles one encounters In establishing such a generallzatlon. Using our ¢ /s-
eharacterlzations, we tnvestigate the structure of t /s-dlagnosable systems. This
leads to a necessary condltion for a system to be t /s-dlagnosable. Glven a syn-
drome we also present a property of allowable fault sets of a t/s-dlagnosable
systenl.  Agatn, this property generalizes the one given in [47] for a t/t-
dlagnosable system.  Starting from this property, we develop a new necessary

and suffielent condition for a system to be t /¢t +1-dlagnosable.

Aetawy
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3.1. t /s-Characterizations: PMC Model

In the PMC model, two distinet fault sets I", and I"2 cannot generate a
common syndrome If there is a test from the outslde Into the disjolnt unton
(svymmetric difference) of the two sets. For Instance, Flg, 3.1 shows two subsets
of a test Interconnectlon graph G (U,E) In which there 1s a test from outshde
Into the disjolnt unlon of F', and F,. The outcome a;;j = 01n the presence of
fault set F'}, and a¢;; = 1 In the presence of fault set F,. Thus ', and I, can-
not generate a common syndrome. This condltion 1s both necessary and
sufllcient to ensure that two distinet subsets do not generate a common syvi-
drome. This observatlon led to the followlng characterlzatlon by Kohda [10] for
{-dlagnosable systems. This result stated In Theorem 2.2 1s repeated below for

easy reference.

Lemma 3.1 : A system S with test Interconncetion graph G (U7 1) under
the PNIC model 1s ¢ -dlagnosable 1f and only 1f for all distinet, non-empty subsets
N CU, X S8 1Y S ttherets atest from 11N, X
@Y,. //

; tto

This approach can in fact be used to determine the unlque diagnosabliity of

an arbitrary family of fault sets,

Lemma 3.2 : Let S be a system with test Interconnectlon  graph
G = (U,E) and I’, a collection of non-cmpty subscts of {7, Then the system S
Is unlquely dlagnosable with respect to the fault-class 7 1f and only If for all dls-
tinct, non-empty subsets X, .\, C P, there Is a test from /X - X)) nto X, @

X;. //

The above approach for characterizing fault sets whleh generate a common

syndrome Is used In this chapter to develop characterizations tor /s - and
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Fig. 3.1

_

Two fault sets which cannot generate a common
syndrome under the PMC model.




sequentially ¢-dlagnosable systems.

From Deflnitlon 2.18 of Chapter 11, it follows that ¢ <s for a system to be
t /s-dlagnosable. It should be observed that a system Is trivially ¢ /s-
dlagnosable If n =s. Thus, In this thesls, 1t Is required that 0<t <s <n. It
should also be noted that under these conditions n 2>20 41 for { /s -diagnosable

systems.

Definition 3.1 : Glven a system S and a subset X C U, aset A = {XN,..\,}

Is sald to be a t-decomposition of X" 1Iff and only I |} N;=X and

1= r<r
0< | X; | <t for 1<i<r. The set Py 1s the collection of all #-decompositions
of X'.
Theorem 3.1 : A system S under the PMNC model with test Interconnee-
tlon graph G =(U,F) 1s t/s-dlagnosable 1f and only 1t for al X C U/,
| X | >s, and for all t-decompositions A € Iy, there exlst subsets XX € A

such that there Is a test from U-X,-X, to X, @ .

Proof : (Necessity) Assume that the system S Is { /s -dlagnosable and that
the conditlon of the theorem does not hold. Then there exists X CU with
|X | >s and A €Ly such that for all X,,\, €A there Is no test from
U-X; —Xj to \; @ _\'J. Constder now the syndrome where for each edge (ug up)

€ E the outcome is deflned as follows :

Casel. u, € U-X ory € U-X
1.1. w,u; € U-X; thenset ay=0.
1.2. w € U-X andforall X, € A,y € X, ; thensct ay= 1.

1.3. u, € X andwuy € U-X; thenset = 0.

Case 2. u,u €Y

2.1. .y @ X, forsome X € A 5 then sel ay = 0.
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( Note: In this case there Is no subset X; € A such that v, € X; and
w, € X,. For otherwlse, there would be a test from U-X;-X; to X;

@ X,.)

2.2, Forall X; € A elther v; € X; oryy € X; ; thenset ay= 1.

Let X; be a member of A . We show that X; Is an AFS of S for the above

svindrome.
Let (u ,%; ) be an edge In & with w4, €U -X;.
(1) It up,u; €=\ then conditlon 1.1 applles and ay = O.
(M) Ifw € X and u, € U-Y, then condlition 1.3. applles and q; = 0.

() If g ,u; €V then by condition 2.1, a = 0.

Thus, for an edge (ug o) with g,y €U-X; a = 0.
Next let (ug ,u) be an edge In G with w, €UV-X; and y €,
(1) Wy € U-X and g €X for all X;, then by condltion 1.2 ayy = 1.

(M) I w € X then, as we have noted before, condltion 2.1 does not occur

and so by conditlon 2.2, ay = 1.

Thus, for an edge (g, u;) with w, €U-X; and 4y €EX, ay = 1.
rom the above, It follows that .\ Is an allowable fault set.

Sinee X, 1s an arbltrary member of 4, 1t follows that, for the above syn-

'
drome, each X, € 4 1s an allowable fault set of slze less than or equal to t.
Stnce the unlon of all these allowable fault sets 1s X and | X | >s, no subset of

units of U’ of slze at most s can Isolate the faulty units for the above syndrome.

Henee S 1s not ¢ /s -dlagnosable, a contradiction.

(SuMeteney). Proof Is given by uslng a contrapositive argument. Suppose S Is
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net ¢ /s-dlagnosable. Then there exists a syndrome, say 0, and subsets
X, XX, of slze at most ¢ such that these subsets are allowable fault sets

with respect to 6 and that | X" | >s, where X" 1s the unton of X' ,X,..... N, .

Suppose that for some palr X,,X;, 1<j7<hk<r there Is a test from
U-X;-X; to X; @ X;. Let (uy,u) be such a test edge.  Without loss of gen-
erality, let vy €X;. If .\ Is the fault set then the test outcome ay= 1;1f X, 1s
the fault set then ¢y = 0. Thls contradicts the assumption that both X, and X,

are allowable fault sets for #. This shows that the conditlon of the theorem 1s

not satisfled. //

We wish to note that the following syndrome can also be used 1n the proof
of the necessity part of the above theorem:
ay =0 ,1f u,uy & \; for some .\, €

= 1, otherwlise.

Definition 3.2 : A {-decomposition A ={X,,...,\, Jof X 1s sald to be a non-
trivial {-decompositlon of X If the followlng additlonal conditlons are satisfled:

() forall X; € A, X, - X #14
J#

(1) forall X, X; € A, i7#) 1mplies | N, (YN, | >(.

Lemma 3.3 : Given asystem S, the followling statements are cqidvalent:
(I) Forall X C U with [ X |>s and for all {-decompositlons A € Py,
there exist subsets X, ,\') € A such that there Is a test from /X X o X,

@ X;.

(I) Forall X C U with | X |>s and for all non-trivial ¢ -decompositions

A" of X, there exlst subscts X,/ ,X)" € A" such that there Is a test from

U-X;'-X," 10X, @Y,
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Proof : Gilven a subset X C U such that | X | >s, the set of all non-
trivial decomposltlons Is contalned In Py. Hence (I) implles (II). Now assume (I)
does not hold. Then there exists ¥ C U with | Y | >s and there exists A, €
Py such that for all palrs Y,,Y; € A there Is no test from U-Y;-Y, 10 }; @

Y

,- Consider the set A= {Y,,..,Y,}. Now we construct from A, a non-

trivial {-decomposition of Y whilch does not satlsfy condltion II.

A set A= {W,..., Wq } Is first constructed from A, by merglng subsets In
A | whenever thelr unlon has at most ¢ elements. It follows that for any two
subsets W, W, € A, there Is no test from U-W; =W, to W; @ 1V, ; for other-
wise one can flnd two elements Y, ,Y, € A, such that there 1s a test from
U-Y,-Y, to Y, @ Y,. The set A, satisfles condition (1) of Definltlon 3.2.
From A, a non-trivial {-decomposition A ;= {Z,.....7,, } 1s next constructed as
follows. An clement of 4, Is flrst chosen arbitrarily and placed In A ; Recur-
sively another element W, of A, 1s added to A ; such that 1V, contalns at least
one unlt whteh 1s not a member of any of the subsets added previously to A,
This procedure 1s continuced untll no further elements of A , can be added to A ;.
Clearly A, satlsfles all the conditions of a non-trivial t-decomposition of Y.
Shnee A 515 a subset of A . for all Z;,Z, € A, there Is no test from U-Z;-Z, to

Z, @ Z,. This shows the equlvalence of (1) and (II). //

I'rom Theorem 3.1 and Lemma 3.3, we obtaln the followling.

Theorem 3.2 : Glven a system S and 0 <t <s <n, the following state-

ments are equivalent.
1. Sis t/s-dlagnosable.

2, Forall X' C ' with | X' | >s and for all t-decompositlons A € Py, there

exist subsets X7\, € A such that there Is a test from U-X,-X; to X; @



X,.

8. Forall X C U with |X | >s and for all non-trivial {-decompositions
A’ of .Y, there exist subsets X;’ ,\;’ € ' such that there Is a test
from U-X," -X;’ w0 X,' @ X,;". //

Corollary 3.2.1 : A system S with test Interconnectlon graph G =(U',F)
Is ¢ /t-dlagnosable If and only If for all X C U with | X | >t and for all f-
decomposltlons A € Py, there exist subsets X, ,.\; € A4 such that there 18 a test

from UV-X;-X; to X; @ X,. //

We remark that glven a syndrome for a ! /s-dlagnosable system which
corresponds to a fault set of slze at most t, there exists a non-trivial -
decomposition {X.X,, ..., X} of X such that b < s-t42, X, 1<i <k 18

an allowable fault set, and every allowable fault set of stze at most § 1s contalned

In | X

1< <k

IN

Combining the above Theorem with Lemma 3 of [47], we obtaln the follow-
Ing theorem which summarizes all the characterizations of  /f-dlagnosable sys-

tems based on IKohda's f-characterlzation.

Theorem 3.3 :
1. Sist/t-dlagnosable.

2. Forall X C U with| X | >t and for all {-decompositions A € Py, there
exlst subsets X;,.Y, € A such that there Is a test from /- X, -X, to X, D

xX;.

3. For any two sets of units X' ;,X, C 7 where | X, |=|N,| =t and X,

# X,, there Is a test from U-X-X, to A, @ X,
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4. For any twosets of units X, X, C U where | X, |,|X, | <t, X, € X,

and X, € X, thereisa test from U-X,-X,t0 X, @ X,. //

We next proceed to develop a characterization which generalizes the one

glven by Chwa and Hakimi In [46] ( See Theorem 2.4 of Chapter II ).

Theorem 3.4 : A system S Is t/s-dlagnosable if and only If for all p,
O0<p <t and for cach XCU with |X | = n -(s+¢)+ p one of the fol-

lowling 1s true:
1) i) >y

Mm ri\V)y=q¢ <np and  G-X-T(X) 18 (t-¢)/(s+t-(p +q+1))-

dlagnosable,

Proof : (necessity) Assume that the condition does not hold. Then for
some p, 0 < p < and forsome X C U with | X | =n -(s+t)+p.
we have N(V)= ¢ <p and ¢-X-T'(YX) 1s not (t-¢)/(s +t-(p +q+1))-
dlagnosable. Let Y = U-X-I'(X'). Then |Y | = (s+t)-(p+g). Since
G-X-1"(\") Is not (t-q)/(s+t)-(p+q +1)dlagnosable and
| Y| = (s +{)(p +q), by Theorem 3.1, there exists a (t-q)-
decomposttlon A = {1,.Y,..,)% } of Y such that for all ¥;,Y; € 4,
there Is no test from Y-Y,-Y, Into Y, @ Y;. Conslder the t-
decomposltion of Z = )'UI‘(.\') given by B = {Z,.Z4...2,} where

Z, = Y,-Ul‘(_\'). Then
2] = [Y] + [P
= §+t-p
> 8

By construetion, for all Z; . Z; € B, i # J, there Is no test from U-2;-2;

Into 7, @ Z,. As In the case of the proof of Theorem 3.1, we can construct
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a syndrome such that the subsets Z;, 1 < 1 < k, are all allowable fault
sets of size at most ¢ for thls syndrome. Slince the unlon of these subsets Is

of size greater than s, It follows that the system S 1s not /s -dlagnosable.

(Sufficlency) Now assume that the system Is not { /s-dlagnosable.

Then, by Theorem 3.1, there exists Z CU with Z|>s and a (-

decompositlon A4 = {Z,...,Z; } of Z such that for all Z;,Z; €4 there s 1o

test from U-Z,-Z; to Z; @ Z,. Let r be an Integer with 1 < r <A such

that
I U 41 <s
1< <r -1
and
| Zi | > s.
1<t <r
Let Y = Z;y, X=U-Y and NXN)| =¢q. Then, since
1< <r
| Z, | <t,we have
| Y| =s +1t b

where 0 < b < !land |X | =n - (s+t)+ b. Furthermore, since

U zZ- U 4

1<:1 <r 11 <r-1

contalins at least [-0 wunits and

Z, | < t, 1 follows that

| N %] <.

1<1<r

Moreover'(X)C M Z;.

127 <r
Thus
ITX)| =q < b.
Since A = {Z,,..7; }sa t-decompositlon of Z such that for all 2, ,Z, €A
there 1s no test from U-Z,-Z; w0 Z; @ Z,, the sct [§ = (W W}
where W, =7,-'(X), 1 <1<k, Is a - -g-decomposition of

U-X-T(X) = Y-I"(Y) such that for all W, ,W;€l there 1s no test from
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(Y-1'(\)) W, -W, o W, @ W,. By Theorem 3.1, it follows that
G-X-T'(X)Isnot ({-q)/s+t~(p +q +1)-dlagnosable where p = b. From
the above, 1t follows that for p=b and for the set X where

| X' | = n (s +t)+p netther (1) nor (11) Is satisfled. //

It can be shown that for all s and f with ¢t < s < n we can filnd a
value of p sueh that | X | > 0. When | X | = 0, condition (1) of the
above theoremn Is not satisfied. In that case, conditlon (1) needs to be tested.
But ths condltlon for the case | X | = 0 1s essentlally a restatement of the

condition of Theorem 3.1 for appropriate values of s, ¢+ and n.

Note that the characterization glven In Theorem 3.4 itself Involves the

INohda-type characterizatlon presented in Theorem 3.1.

3.2. t /s-Characterization: BGM Model

In the BGM model, to determine whether two distinet fault sets, F',
and I"._,. can generate a common syndrome, the tests Iyving within the dis-
Joint unlon of the two sets have to be constdered in additlon to the tests
comling from outslde Into the disjoint unlon of the two sets. For Instance, In
Ml 3.2, 10 elther of the tests (u,,u;) or (g ,u ) Is present then the fault

sets /' and F, cannot give rise to a common syndrome; a;, and q;; have

7
vilue 1 in the presence of fault set /') and have value 0 In the presence of
Fault set F,. This leads to the following t-characterization under the BGN

model,

Lemma 3.4 @ A system S with test Interconnection graph G (U ,E)
under the BGND model 1s -dlagnosable It and only If for all distincet, non-

empty subsets XN, C UL [ | <t | X, | < f, at least one of the
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Fig. 3.2 Two fault sets which cannot generate a common
syndrome under the BGM model.



following s satl<fled:
(1) therels atest from U-X, -1 Into X| @ ).
(M) there 1s a test between units Iving entlrely within X,-—Xj or withln

X, N/

Lermmma 3.5 : Let S be a system with test Interconnectlon graph
¢ = (U,[0) under the BGM model and P, a collectlon of non-empty sub-
sets of /. Then the system S Is unlquely diagnosable with respect to the
Fault-class 7 10 and only 1f for all distinet, non-empty subsets X;,X, C P,
al least one of the following s satisfled:

(1) thereds atest from U-X;-X) into X; @ X
(1) there Is a test between untts Iyving entirely within X —.\'J or within

XX/

We now present a characterlzatlon of ¢ /s-dlagnosable systeins for the
BGN model,

Theorem 3.5 : A ~ystem S under the BGAI model with test Intercon-
nectlon graph G =(U".1) Is t /s -dlagnosable If and only If for all X' C U,
| X' | >, and for all f-decompositions A € Py, there exist subsets X A
€ .1 such that at least one of the followlng s satisfied:

(1) there s atest from 7= X X)) 1o X, @ .
(2} there Is o test hetween unbts Iyving entlrely within X, -7, or X', -X;.

Proof : (Necessity) Assume that the system S 1s { /s -dlagnosable and
that the condition of the theorem does not hold. Then there exists X CU
with | X' [ >s and L €y such that for all X} .\, €A4 we have the follow-
Ing:

(1) there Ikno test from =X, =X to X, @ Y.
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o ey

(b) there Is no test between units Iying entirely within .\', ~~.\'J or within

X;-X,.
Conslder now the syndrome where for cach edge (ug ;) € £ the out-

come 1s deflned as follows :

Casel. uy € U-X oruy, € U-X
L1, w . € U-X 5 thenset aq;=0
1.2, u € U-X andforall X, € 4,4, €N, : then set qp; =1

1.3. vy € X and u; € U-\ ; thenset ay==0

Case 2. .,y € Y, then set ap =1

Let X, be a member of A, We show that X, Is an AFS of S for the

above syndrome.

Let (ug,u;) be an edge In G with wg €07 X

-

M It w o €U-X then conditton 1.1 applles and ay = 0.

(m 1r v € X and wy € U-X, then conditlon 1.3, applles and
a, = 0.

(1) Suppose that wy . €XN. Then stnee w0 € X, conditton (a) or
condition (b) Is violated for some palr of members of AL Henee,

this case cannot occur.

Thus, for an edge (ug,up ) with wy o €U X, ayy = 0.
Next let (ug ) be anedge In G with oy €07 X, and w €.

€A, then by comitlon 1.2

M I € LU-X and w €N, for all X €

|
i
G, = 1.
‘ (M) Mu €N, then by conditlon 2, ayy = 1.
\
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Thus, for an edge (w4 ) with v, EU-X, and v, EX;, ay = 1.

Also for ecach edge (u;,u; )EX,, condition 2 applies and hence In this
case ay == 1.

From the alove, It follows that .\, is an allowable fault set.

Since X, s an arbltrary member of A, 1t follows that, for the above
svndrome, each X, € 4 1s an allowable fault set of size at most t. Since
the unton of all these allowable fault sets1s X and | X | >s. no subset of
units of 7 of slze at most s can lsolate the faulty units for the above syn-

drome, Tence S s not { /s-dlagnosable, a contradiction.

(SuMeleney). Proof 1s glven by uslng a contrapositive argument. Assume S
Is not /s-dlagnosable, Then there exlsts a syndrome, say f, and subsets
VXL, of slze at most ¢ suceh that these subsets are allowable fault
sets with respeet to 0 and that | X | >s, where X 1s the unlon of

A NPT WA W

Suppose that for some palr X;,\ ), 1<) <k <r, (1) Is satisfled. Let
(g 2 ) be such o test edge. Without loss of generallty, let v, € X,. If X}
Is the Tault set then the test onteome ay = 1; If X'} Is the fanlt set then
day == 0. 'This contradicts the assumption that both X, and X, are allowable
fault sets for 0.

Now suppose that for some palr X, ,X, 1< <k <r, (2) Is satlsfled.

J ’
Let (ug o) be such a test edge. Without loss of generality, let w, ,u; €
X=X, 0 10X Is the fault set then the test outcome ;= 1; If X; 1Is the
fault set then a = 0. This contradiets the assumption that both .X; and

are allowable ault sets for 0.

This shows that the conditton of the theorem s not satisfled. //



Theorems 3.1 and 3.5 show that a characterlzation glven for the PMC
model can easlly be modifled to arrlve at a characterization for the BGM
model. The usefulness of thls app:roach 1s further HHlustrated I1n section 3.1,
where we present characterizatlons of sequentially ¢-diagnosable systems

under the PNIC and the BGNT models.

3.3. Structural Properties of { /t +k-Diagnosable Systems

The following results give some Insight regarding the structure of
t/t +k-dlagnosable systems.

Theorem 3.6 : Let S be a t/t+k-dlagnosable system where
0< k <. Then for every integer p with 0 < p < -k and for all X
with | X | =a-20+p, [T(X)]| > p.

Proof : Assume the contrary., Let p be an  Integer with

0< p < t-k and let X be asubsct of ! with | X | = n-2{+p such
that I (X)) | ==q <p. Let Y = l’«(.\'Ul‘(.\' ). Then
| Y | =2t-(p+¢) and there s no test from X Into Y. Note that ) s

non-empty since Loth p and ¢ are less than ¢, Partltion Y Into two sib-
sets Y, and Y, such that | | Y, |-]| Y, | < 1. Clearly both ¥, and Y,
are  of slze at most t-|(p+q)/2].  Now  constder  the  subsels

X, = }'lUF(.\') and X, = )'__,Ur(_\' ).

[N, L <t =Lp+g)2] +9 <

and

X, | <t -lp+g)2] +9 <t

Moreover, since p < t -k,

X Yl =20 O+q)+yq
= 2! -p

>t +
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Thus | X, | <t, | X, < t, | X, UXo| > t+k and there Is no

test from U-X |-X, into X | @ X, which violates the conditlon of Theorem

3.1. //

This property of a t/t +k-dlagnosable system bears resemblance to a
property presented in [16].

The followlng theorem shows an Interesting relatlonshlp between allow-
able fault sets of slze at most ¢ 1n a ¢ /s -dlagnosable system.

Theorem 3.7 : Glven a syndrome for a t /t +k-dlagnosable system S,
let 1) and [, be two allowable fanlt sets of slze at most {. Then

[P Fy| < 2k +1).

Proof : The result 1s obvious for £ 2 (. So assume 0 < k < ¢,
Suppose the result Is not true 1n this case. Let F|and F, be two allowable
fault sets of Stze ot most {0 for the given syndrome such that |F1 @

Fo| > 2(k+1). Shee 80 ¢/t +k-dlagnosable, | F | JF,| < t+k. Let

A be o subset of U7OF - F, such that

AlYUIFWYF:| = t+k+1. Let
J o= 1 U(I"lﬂl"._,). Then

Z | | UFIUF.‘| - [ Fy@®F,|
(+h+1D) =20 +1)
t (k+1)

et p =1t (A+1)and X = U - (A UF,UF._,). Then

ININA

[N | =n ~(t+h+1)
=n - 20 + ({ - (F4+1))
=n -2t + p

Thus 0 < p <t-k and | X | =n -2t + p. Hence, by Theorem
3.6, [1(NY] > p. Staee | Z ] < p.oitfollows that there 1s a test (u, .u,)
frrom X tnto Fy @ F Lo Without loss of generallty. assume u, € F-F,.

Then a,, = 1 1n the presence of fault set £y and a,, = 0 In the presence of



fault set F,, contradlcting the assumption that F, and F, share a common

syndrome. [/

We note that the above result Is a generallzation of Lemma 5 In [17].

We also observe that this conditlon Is not sufflclent even for f/t+1-

dlagnosable systems. A system which satisfles the conditlons of Theorem 3.7

but Is not ¢ /¢ +1 dlagnosable Is shown In Flg. 3.3. We obtaln necessary and

sufficlent conditions for (¢ /f{+41-dlagnosable systems It In addition to the
above condltlon, we also Ilmpose the followling:

If, for all Y € U with | Y | = 3, there Is no test among unlts 1y Y,

then |IY(Y)| > (-1,

This leads to the followling result.

Theorem 3.8 : A system S wlth test Interconnection  graph
G = (U, ,EF)ist/t+1-dlagnosable I and only If the following conditlons are

satisfled:

(1 I, forall Xy X, QU with Xy 5£N, [ X | < ¢ and [N, | <1, there

) |
Is no test from U-X;-X, into Xy @ X, then [ X, @ N, | < 1.
() If. for all ¥ € U with | Y | =3, there s no test among unlts in Y,

then |I°NY) | > (-1.

Proof : (nccessity) The necessity of condition (1) follows from I"heorem
3.7 . Now suppose condition () 1s not true. Let Y = {u u,u,} bea sub-
set of U such that there no test between units In Y and [ 1" (Y )| <t 1,
Let WCU-Y beasct with [I" MY )| CTW and | W] =1 1. Now con-

sider the subsets Y, = {un, JUW, 1<e<s. For oany palr Y, Y,

1<¢,7 <3 there s no test from U2 Y, o Y @V, and
| U Y, | > t+1. Henee by Theorem 3.0 the sys<tem S s not 1 /14 1-
17073
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o=
,O

Fig. 3.3 A system satisfying the conditions of Theorem 3.7
which is not 2/3-diagnosable.
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dlagnosable.

(Sufficlency) Now assume that the system 1s not ¢ /f+1-dlagnosable,
Then, by Theorem 3.2, there exists Z C U with | Z | >s and a non-trivial
t-decomposition 4 = {Z,,...,.Z; } of Z such that for all Z,,Z; €A there Is
no test from U-Z,-Z, to Z, @ Z,. Let r be an lnteger with 1 < r <4k
such that

| U 4l S+

1<t15r-1

and

| U 4] > t+1

1< <r
Note that 2 < r < 3.
case 1 : r = 2,

Since |Z,| <t. |Z,| £t and

Z\\JZ | = 421 follows that

| Z,NZ.| < t-2. Henee |2, Z,] > 1. Slnee there IS no test from
U-Z,-Z,t0 Z,@ Z,, condition (1) Is not satisfled for these two sets,

case 2: r = 3.

Stnee {Z,,....Z; } 1s a non-trivial decomposition, 1t follows that the
unlon of any two subsets Z,, Z,, 1<0<) <3 contalns at least {+1 unlts,
Conslder the subsets Z,, Z, and Z4; Assume condltion (1) Is satlsfied.
Clearly each of these subsets has at least one unlt whiech does not helong to
any of the other subsets, Also, each of these subscts contalins at most two
units which do not belong to any of the other subsets, We elaliy that no
subset has two units which do not helong to the other subsets. Suppose that
thls 1s not true. Without loss of generdity, assume 2., has two units whieh

do not belong to the unlon of 7, and 7Z,. Then

A a2
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Since | Z,| JZ, | Zt+1, It follows that one of these two subsets contalns
two units which do not belong to Za, contradieting our assumptlon that con-
dition (1) 1s satlsfled. Thus each of Z ;,Z, and Z, has exactly one unlt which
1s not contalned In the other two subsets. Now let }™ be the subset whlich
contalns these three units and 7' = Z,( JZ 4| JZ 5 Then

17" | = |7, JZ)JZs| = t+2.
Sinee there 1s no test from U-Z;-Z, to Z, @ Z,, 1<i<j <3, It follows

that there 1s no test between units in Y and I"YY) C Z' -Y. But

7" -Y | =t+2-3
=1-1.

so | I"Y(Y) | < t-1. violating conditlon (). //

Glven a syndrome for a t /t +1-dlagnosable system, If the Intersection
of allowable fault sets 1s empty, then It can be shown using the above
theorem that the allowable fault sets can be partitioned Into two fault sets
I, and F, sueh that one of the subscts contains exactly one unit and the

other contalng one or two units,

3.4. Scquential 1 -Diagnosable Systems: Characterizations

The characterization for ¢ /s-dlagnosable systems glven In Theorem 3.1.
can  caslly be modiled to obtaln a characterlzation for sequentlal (-
dingnosable svstems, We note i a system 1s sequentially dlagnosable, then
for any given collection of subsets of slze at most ¢, the subsets have at least
one unit In common (See Lemma 2.4) or these subsets cannot generate a
comuon sy ndrome Le. they satlsty condlition (1) of Theorem 3.1 for the PMC
model and for the BGN] model they sautsfy conditlon (1) or (1) of Theorem

2.5, 1 1s easy to show (as In the proofs of Theorems 3.1 and 3.5) that these
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condlitlons are also sufflelent. Thus we have the foliowing results,

Theorem 3.9 : A system S under the PMNC model with test Intercon-
nectlon graph G =(U,E) s sequentlally {-dlagnosable If and only If for all
X C U, and for all t-decomposltions A = {X ...\ } of X' at least one of

the following ls satisfled:

m N X Fe

1< <k
(11) there exist subsets \; ,\'; € A such that there Is a test from [T X\

toX; @ X;. //

J

The above characterizatlon Is the same as the one glven 1n [10].

Theorem 3.10 : A system S under the BGM model with test intercon-
nectlon graph ' =(U ,E ) 1s scquentlally (-dlagnosable I and only It for all
X C U, and for all {-decompositions A4 = {\'|,... X, } of X' at least one of

the following Is satlsfled:

1) rw JQ 7£(b

1<t <k
(1) there exist subsets .\, ,.\') € A4 such that there Is a test from /XX
toX, @ ;.

(1) there exist subsets X ,.\) € A such that there Is a test between uniis

Iving entlrely within Y| ~XJ or within ,\'] -X,. //

3.5 Summary

In this chapter we have studled the structure of /s ~dlagnosable sys-
tems and have presented several results generallzing  previously Known
results derlved for speclul cases, Flrst we have presented characterlzations
(under the PMC model) of t/s-dlagnosable systems which generallze those

glven eariler \n [46], [47] for {/{-dlagnosable systems.  Interestingly, the



characterization given In Theorem 3.4 itself Involves the characterlizatlon
glven \n Theorem 3.1. The reason for this Is as follows. It can be seen from
Theorem 3.3 that characterlzatlon of a ¢t /t-dlagnosable system Involves an
arbitrary collectlon A of exactly two subsets X, and _\’]- each of slze at most
{. To test for the conditlon stated in thls theorem we need to check for the
presence of tests Into X; @ X from U-X,-Y;. On the other hand, It can

be seen from Theorem 3.1 that characterization of a ¢ /s-dlagnosable system

Involves an arbltrary collectlon A = {\;,X,,..,X; } of subsets of U such
that cach X, 1s of slze at most ¢ and {X | = | |J X;| > s. To test
1<T <k

for the condition In Theorem 3.1, we need to check the presence of tests into

N, @ .\'J (for every pair X, and .\'j) from U-X; —_\'J. Thus, In additlon to
the tests rom outstde X we should also examlne the tests lying entlrely
within X', slnee In general £ > 2.

We have shown that the characterization based on Kohda's f-
characterization  theorem can  eastly be modifled to arrlve at /s-
characterizations for the BGNMI model as well as characterizatlons for the
sequential f-dlagnosable systems. We note that no study of the t/s-

characterization problem lias been reported In the Ilterature for the BGNMN

model.

We have also established certaln propertles of ¢ /s -dlagnosable systems.
Whereas the property glven In Theorem 3.6 resembles the one glven In [46]
by Chwa and Hakim), the property of allowable fauit sets given In Theorem
3.7 generallzes the one gilven by Yang et al [47] for the case of a t/t-
dlagnosable system. The latter property has helped us develop a new char-

acterizatlon of 1/ +1-dlagnosable systems.



CHAPTER IV

DIAGNOSIS OF t /s-DIAGNOSABLE SYSTEMS

In thls chapter we Investigate the problem of deslening effictent algorithms
to isolate all faulty unlts In a ¢ /s -dlagnosable system. The only work reported
In the Iiterature deallng with thls problem was due to Yang, MNasson and
Leonettl [47]. These authors presented an O (n°®) dlagnosis algorithm for a
¢t /t-dlagnosable system. Thls work Is based on certaln properties of allowable
fault sets (AFS's) of a t/t-dlagnosable system and the ¢-dlagnosls algorithm
presented by Dahbura and Masson {16]. Our maln contributions In this chapter
are: (1) an O (n®®) algorithm for a ¢/t+1-dlagnosable system, and (11) a
t /t +k-dlagnosls algortthm which runs In polynomlal time for each flxed positive
Integer £. \We also show how these algorithms can be modified to determine the
set of all unlts which lle in every allowable fault set of cardinallty at most [,
These unlts can be correctly ldentlfled as faulty. Thls modified algorithnm can

thus be used for dlagnosls of a sequentlally -dlagnosable system.

Our approach In thls chapter Is flrst to develop an efllclent test to determlne
whether a vertex v of a {/s-dlagnosable system Is In an AFS of cardinallty at
most ¢{. The set of all vertices whlch satlsly tlils property wlil he the requlred
set lsolating faulty units. This Is ensured from Lemma 2.5, WIth thls oblectlve
In mind we first present In the followling sectlon <2veral propertles of AFS's In a
t /s-dlagnosable system. These propertles lead to the algorlithms developed In
the subsequent sectlons. Our Investigations In thls chapter are based on the
notlons of Implled-fault set and the Implled-fault graph used by Dahbwura and
Masson [17] In thelr study. Definitlons of most of the concepts and symbols used

In this chapter may be found in Chapter II.



4.1 Basic Properties of Allowable Fault Sets

In thls scctlon we establish certaln propertles of allowable fault sets with
respect Lo a glven syndrome, Our study Is directed towards Investigating condl-
tlons for a vertex ¢ to be In an allowable fault set of cardinality at most . For
thls purpose we use the notlon of Implied-fault set and the implled-fault graph
used by Dubibura and NMasson [17] 1o thelr study.

Given a syndrome for a system &, define the implied-fault graph
G =" 177 ) to be an undirected grapn sueh that U =0 and £’ = {(x, o)

", & I,(uj)}. Peeall that L(u, ) s the et of all unlts of s that moy be
deduced to be faulty under the assumption that u, s fault-free. Also H (u,)
corresponds to the set Lt (u, )U{u,} where A o(u, ) Is the set of 0-ancestors of
(i b For o € U7 et ¢ denote the subgraph of GF obtalned after all units In

H(u) and atl edges Tneldent on these units have heen removed from G °, Let
I, represent o NV OS (minlmum vertex cover set) of G and let G —Hy(u)
denote the subgraph of G where all vertices In I (u) along with all edges
neldent on these vertices have been removed from G. These concepts are illus-
trated tn Ple. 11 and g 1.2 for a partleular test Interconnection graph
GU LR ) and a given syndrome.

Note that 1t w, € L(u,) then u, can Immedlately be 1dentlfled as faulty.
Thus we assume that «, € L (u, ) for any », €U'. This means that ¢ * has no
sellf-loops,

The results and proof of the following lemma can be found n [16]. We

present this lemmia for the sake of cempleteness.

Lemma 4.1 : Glven a syndrome for a system S, we have the following:

(1) Ihvery APSOF G lsaVCsol G°.
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Fig. 4.1 A syndrome for a 3/4 diagnosable system






(M It F C U tsaminimal VCSof G#, then F isan AFS of (7.

(my F C UsaNAFSof G fandonly I F s a MY OS of (7,

Proof:

(1) Let F be an AFS of (¢ for the given syndrome. Assume [ Is not a VOS of
G *. Then there exist u, ,uJE(" Fsuch that (u, Jdp ) s an edge o G ',
Sinee all directed edges from 0 F Into Foin G are 1-Unks (F s an AFS of
G ). 1t can be seen from the structure of an mpled-fault path that all ver-

must belong to U7 1.

tices which lle on such a path hetween uw, and u

J

But this lmplles that there s a 1-1tnk between two vertices In ', con-
tradicting the assumption that F ls an AFS of . This shows that (1)

holds.

(1) Let F obe a minlmal VOS of G0 L Assume (1) does not hold, T'hen at least
onie of the followlng conditions Is satisfled,
(a) There extst u,ou, € U-F with a,, =1
(b) There exist w, € £ and vy € 0 F with q,, =0

Assume (i) holds. Then the edge (u, ¥ JIstn G0l But this contradiers the
fact thut F 15 a VCS of ¢* slnee nelther n, nor , s w member of I

Now assume (b) holds and (a) does not hold, Stuee F'ois a mbimmal VOS of
G* there extsts aounlt g I U-F suel that (u, ) s an edge In (G5 for
otherwise F-{u, } will he a VOS contradieting the mintmality of Fo Hepee
u, € L (uy). Stuee a,) =0, 1t follows that w, € LGy ) and so (a1 an
edge In G . Sinee nelther u, nor ug 3s a member of I thls contradiers the

fact that F lsa Vs of G°,

(M) Statement (M) follows from (1) and (A1), //



Lemma 4.2 : I" 1s an AFS In G of minimum cardlinallty contalning unit v
IMand only i I =F I (v)ls a NAFS of G- y(v).

Proof : (Necesslty) We first show that /] 1s an AFS of (' -H g (v). Slnce
Uk =" Hyv))y I and F 1s an AFS of G all edges within (U-H (v ))-H
are O-11nks and all edges from (U-H (v ))-H 1nto II are 1-links. Hence H 1s an
AlS of G I (v). To show that I 1s a NMAFS of G-I ,(r). assume H | 1s an
AFS of G H (). Clearly all edges with both vertlees Incldent on vertices in
(1 1 () Iy are O-inks and all edges trom U'-1T (e )-IT | into H | are 1-Inks.
Now constder edges from (0 I (v ))-If | Wnto I (v). These edges must all be
I-lihs; otherwise the vertiees tneldent on these edges would all belong to ().
This shows that the set I JH o(e) 1s an AFS of G Hence It [ H | < [ 1]
then I0 | JH (e ) would he an AFS of cardlnallty smaller than F, contradlcting
the ract that £ W an AFS of minimum cardinallty contalnlug vr. Hence

Vi) 2 VL o I s o MAFS of G-I (e ),

(SuMecleney) 0 F H(e) s an MAPS of G -1 () then as we have shown In
the proof of necesstty, Fls an AFS of G0 1P F s not an AFS In G of mInimum
cardinality containing ¢, then let F| o be an AFS of ¢ contalning v wlith
[F, ] < TP | But then F o H (e ) from the necesstty part, would be an AFS

of (1) of cardinallty smaller than F- I y(v ), a contradiction, //

Lemma 4.3 : For v € U, (G -H (e ) =6

t

Proof : Since the vertex sets of both graphs are the same, we need only

show that the edge sets are Mdentieal. Clearly every edge In (G -Hy(v))* 1s In

LR

G'. Now assume that there s an edge (u,.uj) In G,

' which 1s not In

(G H e N Then every implled-fault path tn ¢ hetween v, and «, must con-

taln at enst one vertes from ff (e ). But this tmpltes that elther o, or u, 1s a



member of Ho(z' ). contradicting the assumption that both vertlees are members

of G -H y(v). llence the two cdge sets are also ldentieal. //

Lemma 4.4 : Glven a syndrome for a system X, let F©C U be an AFS

contalning v € U'. Then F-I(v)1sa VCSof G,

Proof : Let | = F-I,(v). From Lemma 2.3 and the proof of Lenima
4.2, 1t follows that F | Isan AFS of G0 H (). Then from Lemma L1, F s a

NVCS of (G-Hy(r ). Thus, by Lemma 4.3, Fyisa VvVesor G //

Theorem 4.1 : Glven a syndrome Tor o system S, F7s an AlYS of
minimum cardilnality among all allowable fanlt sets that contatn unit « ¢ U7

and only It F-F1 () 1S a MVOS of G

Proof : Proof follows from Lemmas 02, 1.3 and 41, //

The condition 1n the above theorem ean be used to test 1w untt helongs 1o
an AFS of cardinallty at most £ for a glven syndrome.  However thls condition
requires determining o NVOS for o senceral undirected graph, a problem which 1
known to be NP-Complete [63]. So, we would lthe to develop o test whieh
requires determining o NMVOS of a bipaoetite graph. With this ob)eetlve 1nomtned,
we now defllne a bipartte graph for each vertex v. This Dlpartlte graph s
dertved from G5 We then refate a NINVOS of this graph to an AFS contalning,
vertex v oand establish certidn propertles of thlis AlFS which wll be used Y the
following sectlons to develop appropriate dlagnosts algorithms,

Given a system S and a syndrome, define [f =y L) 1o be the undirected
blpartite graph with bipartitton (X, Y ) where

N={r o, b oY =1yt

and
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Ey={(s,,y,):u, € L(u;)In S}
For v € {7, define the undirected blpartte graph B, =(U, ,E, ) with bipartition
(X,,Y, ) to be the vertex Induced subgraph of B3 such that
N,={r, 1u, € U-Hyv)},
Y, = {y, :u, € U-H(v)}.
g, 1.3 Ulustrates these concepts for the test Interconnectlon graph
G U E ) and the syndrome glven 1n Flg 1.1,
For cach vertex v in G, et

{, = (- |1 (r)]

‘
and
Upo= 1" - Hy(e).

Theorem 4.2 : Ghven o syndrome for a system S, a unlt ¢ € U7 does not
belong to any AIFS of cardinaltty at most ¢ 1 B, has a NIVCS of cardinality
egreater than 24, .

Proof : Let the cardlnallty of a NIVCS of 3, be greater than 2f,. Assume
€U belongs to an APS [T osach that | F | <t Lev H= F-H(v). Clearly
| 11| <t . Detine By (H)=("y .IXy) to be the vertex Induced subgraph of B, .
w here

Uy={e, cu, €N} U{y, v, €U, -1}
By (D)= ("y .7y YIS defined to be the vertes Induced subgraph of f3, . where

Uy ={a, 1w, € U~y U {y, 1y, € 11},
Clearly Fy={e, tu, € H}yand Fy= {y, : v, € H} are V'CS's of By (/) and
By (). respectively. It follows  that  Fp=Fy | JFy 18 a \VCs of
By DBy (D) Stnee Fods an AFS I G * there are no edges connecting ver-
tiees of {7 F. From this It follows that every edge In B, has end vertlces In

Fg.o Therefore Fyods o VOS of B contradleting our assumptlon that the
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Fig. 4.3 Bipartite graph corresponding to Gm 4



cardinallty of a NVCS of 5, 1s greater than 2f,. Hence v Is not contalned In

any AFS of cardinallty at most t. //

In the following we use Fp (v) to denote a MVCS of B, . For aglven Fg(v)
let
Fi={u |r, € Fylv)andy €Fg(v)}
and

P, ={u, |1, € Fyle)ory € Fy(r)}.
We now proceed to establish certaln properties of F, .
Lemma 4.5. F | JH (v ) s an AFS of G

Proof: Assume the contrary. Then at least one of the following condltlons

IS satisfled,
(1) There exist w, uy, € U= F -1 () with ;=1
(I) There extst v € Fo JH (v) and up € U-(F, | JH (v ) with a,;=0

Assumie (1) holds. Then the edge (v, ,u; ) 1s In G Henee (r,.y,) 1s an edge
In I, . But this contradiets the fact that Fg(v) Is a VCS of B, slnce nelther 1,
nor g, Is aomember of Fp(e).

Now assumie (h) holds and (4) does not hold,  Clearly u, ¢ 11 (v ): for other-
wise «, would also belong to Hg(e). Thus uj € F,. Hence either ryory lsa
member of Fy(r)., Without loss of generallty let T, € Fgy(v). Since Fg(v)isa
NIVOS of 8, there exIsts y In B, with y, € Fpg(v) such that (J‘j,yk) Is an
edge tin 13, . Henee u, € L (u). Since a,, =0, v, € L (u; ). Hence (r,,y;) s an
edge In 2. Since nelther o, nor y; Is a member of Fp (v ). this contradicts the

fact that Fye)Ytsavesor .. //

Lemma 4.6.

Ghven a syndrome tor o system S and a unlt v €1, we have the following:
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(1) In G*, there s no edge (u, ) with w, €U=(F (e ) and w, €F, - F).
(1) In G, there Is no edge (u, A ) with w, €U- (F, UHO((' Nand u, €l F.
Proof:

(1) Assume the contrary. Let (u, 5 ) be be an edge from U ~(F, L ol ) o
F,~Fp i G7. Then either z; or y, Is not a member of Fy(e). Thus hn
B, elther the edge (z, ,yJ) or the edge (.T] U, ) 18 not Tneldent on any vertes

In Fg(v), contradieting the fact that Fy(e)isaVOS of B,

(11} By Lemma 1.5, the set F, | JH (v ) 1s an AF'S of . "Thus every edge fron

U‘(FuU”o(")) Into F,-F; In ¢ must be a 1-lluk. So W such an edge

(u, .uj) exists In (', then (u, ,uj) Is an edge 1n G'L Thus from (1) 1 follows

that there 1s no o edge (woou) I Goowhth w07 (F (JH () and

u, €F -F;. //

Lemma 4.7. Every AFSof (7 contalned tn £, | I () contains the subset
F;.

Proof: To show that every AFS of (' contalned W Fy | I ,(1) contatns the
subscet Fy 1t suffices o show that every VS of G contalned 1 F, Ul
contalns F;. The above assertion holds 1f every vertex In 7 s Ineldent on some
vertex of U-(F, ( JH(v)) In G *. Assumce the contrary. et u, be a vertex i
F; which Is not Incldent on any vertex of the set 17 (F, o). Then tet
We(e)={x, | v, €F, }J{u [ v €Fp {ug bt From Lemana 1.6(1) and the con-
structlon of B, 1t follows that In B, there IS no o edge (a,,y,) with
u, €U -(F, U” of ) and EF, -F;. So Wyter) s o VOS of I3, B
| Wg(v)| = | Fy(r)] - 1. This contradiets the assumption that Fg(v)1s a
NVCS of B,. Thus every vertex In Fy s Aneldent on some vertex of
U—(F (JH(e)) m G7o This dmplles that every VOs of G077 contalned n

F, UHO( v) contalne the subset Fpo0 By Lemnie 1.1, 1 follows that every AFS of
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¢ comalned n F Ullo(v) comalns the subset F;. //

4.2 O (n®°% Algorithm for Diagnosis of a ¢ /{ +1-Diagnosable System

In this section we establish that In the case of a t /{ +1 dlagnosable system,
the condition of Theorem 4.2 1s both necessary and sufllclent for a vertex v to be
0 an AIS of eardinallty at most ¢. This will lead to an O (n 2 %) dlagnosls algo-
rithm to lsolate all faulty units to within at most ¢+1 unlts In a {/{+1-
dlagnosable system. IMlrst we derlve a necessary condltlon for a system to be

! /4 t-dlagnosable.

Lemma 4.8. I S, a multiprocessor system with test Interconnection

G =(U" 1) 0 /4 1-dagnosable then for all X, X, © U with | X; | >, X
g N, and [N, [+ Y, [ <2o, there exists a test from U-X, - Into X, @
.
Proof: Assume S 1s {/t +1-dlagnosable but the condition does not hold.
Then there extst X, N, C 07w [ X [ >, X, € X, [ X, [+ 1Y, | <2t

such that there Is no test from U-X; =Y into X; @ .

Stee X >0 aad X, € XL | XY, | >1+1, we construct two sets

W, and W) from X and X by moving elements from X;-X, into X;-Y, untll

Wy and W have eardinallty at most £, Thus we obtaln two sets W and 1

with | IV

]

| <o W < tand [ W W, | >t such that there Is no test
from 7 W, H'J tnto W, @ H'J. By Theorem 3.1, this contradlets the assump-
ton that SIS 1/ +1-dlagnosable, //

Recall from the previous sectlon that Fg(v) s a MVCS of B, and F, and
F; are sets dertved from Fp (e ).

Theorem 4.3 : Glven a syndrome for a f/t +1-dlagnosable system S, a

unlt 1 € U belongs to an AFS of cardinality at most { if and only if



| Fp(v)| < 2t

Proof : It | Fy(v)|>2t, then. by Theorem 1.2, ¢ does not contaln an
AFS of cardinality at most { contalnlng the unit v,

Now assume | Fp(v)| <2¢t.. If F | JHy(r) contalns an AN of (7 of car-
dinallty at most { containlig the unit ¢ then we are through. So assume
| Fg(v) | <2t, and F, (U o(r ) does not contaln any AFS of (7 of cardinallty
at most ¢ contalning the unit . Note that from Lemma -1L.5, F, UH(,(:' Y 1s an
AFS of G contalning the unit v. If Fo = F; then | F | H(v) ]| < & sinee
| Fp(v)| <2t,. So we further assume that F, s£F,. Sinee (7 does not con-
taln any units with self-loops and F,5F,, the subset | F,-F, | > 2 Let F
be an AFS of smallest cardinallty containlng unit e such that /7 C
F JHov). Clearly | F, | >t.

By Lemma 1.7 every A'S of (7 contalned 1n F, UII(,( ) contalns the subset
Fy,and since v € F 1t follows that Fy | JH(v) © F .

We mext  show  that  F #EF (U (). Let w €F, Fpo Then
W =F, -{u}lsaVCso G becanse, by Lemma 1.6(1), tn (0 there 1s no
edge (u, ,uj) with u, €U —(F, UIIO((' ) and uJEI"U Fy. Henee by Lemmn LY,
Wis a VCS of (G-I,(v)). This means, by Lemma (), Wocontalns an
ATS of G -I(v). Thus W (r) has an AFS of G ocontalning unlt ¢ oand of
cardinality less than that of F { JH(v). Stnee F1s an AFS of smallest cardl-
nallty  contalnlng v such  that  F,CF (JHle ), 0 follows  that
| F, | = (F, UH(e) F, | >0 and IFy CF, (See g, ).

Now | F |+ |Fyl =21 Fp 4200y +[F, 1+ 5]

= | Fy(e)y| + 2| Hye)]

<za2f + 2| Hyv)] <2t
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Fv v HO(V)

F,= F UHv)UF,
I:V=Faul-‘bul-‘I
IFB(V)I = 2IFII + |F aI +[F B!
meFB=H0(v)uFI

F,0F,=F,UF,

Fig.4.4 |lllustration for proof of Theorem 4.3.
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Thus we have | F |>¢t,Fy & F,, | F,| + |F3| <2t,and by Lemmn
4.6.(11) there 1s no test from U-Fo-Faito F @ F 5 This, by Lemma L8, con-

tradicts our assumption that the system Sis ¢ /{+1-dlagnosable, //

Glven a valld syndrome fora ¢ /t+1-dlagnosable system S and a unit ¢ in
S, we have shown that the bipartite graph B,, has a MV CS of cardinallty at
most 2, If and only If ¢ has an AFS of cardinallty at most ¢ contalning the
unit v. Thus we have the following algorithm to Isolate all faulty units in a
t /t 4+1-dlagnosable system. Note that vertices In G * correspond to units which
can Immediately be ldentifled as faulty. These vertices are removed from the

graph and the parameters adjusted accordingly.
Algorithm 4.1: Diagnosis of a { /¢ +1-Diagnosable System

Step 1. Glven a ¢ /* +1-dlagnosable system S with test Interconnection graph
G =(U,E) and a syndrome arlsing from a {-fault sltuatlon, construct
G'* and remove all vertlces with self-loops. From  the resulting graph,

construct the bipartite graph B=(Upg,liy) with bipartilon (X,V).
Step 2, Set F=¢ ; forall v € U, label v unmarked.

Step 3. While there exists an unmarked v € U
begin

3.1. Label v marked.

3.2, Set f,=1t-| Hyv)].

3.3 Construct 2, from B.

3.4. Compute a maximum matching I, of [},
using the Hoperoft /IKarp algorithn [61].

3.5 If | N, | <2, then add v o [,

end
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Step 4 F s the required set,

The Dipartite graph In Step 1 can be constructed in O (n* ®) operations [186].
Step 2 requlres O (n ) operatlons, The computation within Step 3 1s domlnated
by the cotnputation of a maxtmum matehing which requires O(n“) operatlions
[61]. Sincee Step 3 1S performed for each untt in 17, the complextty of the entlre
algorithin 1s O (n*7°),

The condlition of Theorem 4.3 can be use o develop an algorithm simtlar
to Algorithim 11 to determine all unlts 1n a !/ +1-dlagnosable system whleh
belong to every AI'S of cardlnallty at most ¢. For every unlt v noa ¢/t +1-
dingnosable system whileh belongs to some AN of cardinallty at most { we test
whether there extsts an AI'S of cardinallty at most 1 which does not contatn the
undt v Given o valld syndrome for a f /t +1-dlagnosable system. If an AFS does
not contaln a untt v then 1t must contaln L (). the set of units Implied faulty
when ¢ 1S assumed to be fault-free. Thus 1n order te determine if v does not
belong to some AFN of (7 of cardinallty at most { we check If the bipartite
graph B, the subgraph induced on 3 when vertices corresponding to L (v)
hive heen removed, contalns a NMVOS of cardlnallty at most 2(f ~ L (¢)). This
conditton 1s both necessary and sufflelent to ascertaln \f the unit ¢ does not
belong to some AN of (F of eardinality at most £. We note that an MVCS of
If, () does not contiatn the vertlees corresponding to v slnee these vertices are
olated vertlees tn By ) 10 e does not have a self-loop In G *. Thus we have
the followlng algorithm to determine the set of all units which lle In every AFS

of cardinallty at most { 1n at /i +1-dlagnosable system.
Algorithm 4.2:

Step 1o Glven a £ /14 1-dlagnosable system S with test Interconnectlon graph

Go=(U.FE) and a syndrome arlsing from a f-fault situatlon, construct
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G * and remove all vertices with self-loops. From the resulting graph,

construct the bipartite graph B=({"g .L;) with bipartition (X ,) )

u

Step 2. Set F= o forall v € U, Iabel v unmarked.

Step 3. While there eadsts an unmarked ¢ € U7
begin
3.1. Label ¢ marked.
3.2, Net tp = t- [ L(v)].
3.3 Construet I3 ) from 3.
3.1. Compute a maxtmum matellug hy oot By
uslng the Hoperoft/INarp algorithm [6 1],
3o I N1 > 20, then add ¢ 1o 1,
end
Step . Fots th e reguired set of all untts whiteh He 1n every AFS of cardinality

most {.

Thus for a { /{ +1-dlagnosable system not only ecan all faulty unlts be 1so-
lated to within at most {41 faulty unlts, hut also all unit< which e ln every
allowable fault set of cardlnallty at most { can bhe ldentfled 1o O (n**). The
unlts »f the set Fothus obtatned by Algorithm 12 can be correetly ddentifled to

be faulty. Note that W a /{4 1-dlagnosable system Is not sequentially /-

dlagnosable then the set [ produced by Algorithm 4.2 moy he empty,

4.3 Diagnosis Algorithm for a ( /! +"-Diagnosable System

Glven a t /t +-dlagnosable system where E>1 and a syndrome the dlag-
nosls algorithm of the preceding sectlon miny not Jsolate sl the faulty anlts 1o
within at most {44 units. In thls case, tor o wnlt v € 17 ever MW the the eardl-

nallty of the maximum matehing I, determined by the algorithng Is bess than or



caqual 1o 24, the graph G may not have an AFFS of cardinality at most { which
coptalns the unit . I this seetlon we develop a dlagnosts algorithm for such a
svstenn,

First we show that the set Fyo| JH () deflned 1 the previous section con-
talns a siallest AN coptalnlng the vertes v,

Theorem 4.4. F (JH(r) contalns an AFS ) coutatulng unlt v such
that Tor every AFS I, of G contalntng unlt o, | F < JF, .

Proof: Let F/pobe an AFS of smallest cardinality contalning unlt ¢ such
that F0 C F (e Assume [74 1o bean APS of (0 contalning unlt v, Let
o=l oy i ote N We observe that Fr| JH () C F,, slnce every
Abs of G containtng o P (v) contains | JH(v). Aleo
I',UI"_,, = I, UII(,( e) and I C I'lUI”“.

First we note that ~twee 'pand 7y are VOS's of (07 there are no edges In
the suberaphis of G Ynduced by the vertex sets U-F and U-F,0 Also. by
Lemme 160, for every edee In 77 with one vertes tn U= F/ - F . the other ver-
tex I tn O From  these  facts  we  can  conclude  that
OV PO IO D) s a VO of GFL The shaded area in Flg.
L.5() corresponds to this VOS which Hes entirely within Fo( ().

We now elatin that the tollowlng Inequality holds (See Flg. 4.5(h)):

[F O F) Fy | 2 [ F-F Y (1.1)
Assume (L) IS not true. Then the VOS ((I"\,,r]l"'_,)-l",)U((F:;UF.:)HF1) s of
staller eardinaltty than /| and so by Lemma .1(11) 1t contalns an AFS of ¢ of
eardinality smatler than £, a contradietion,

By Lemma 600 1 B for every edge (x5, ) with 0, €U~F |-F —F 5, the
vertex oy IS F OV F L stnee Fy | H (e = F M F ;. From this and the fact

that FLsa VOS of (7L i follows that 1 By for every edge (1, Y, ) With



(a) (b)

(c)

Fig. 4.5 Illustrations for Theorem 4.4.
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IF I= [Al +E +|Cl D] +|E + [F| +|Gj - 2[H _(v)]

Fy, /= [BI+ICl+ 2D+ |E| + 2F + |G| -2]H, (v )|

Fig. 4.5 ( Contd.)



U, €EU-F ~F ;~F 4 the vertex u, 1sin F\\F,M\F - H o(r). So the set
Fa = {‘Tn I u, € (quF'.‘UF:;)"[{o(" )}U{y; I u, € (Ijnl_'n[x) ”n(" )l\
1sa VCS of B, .

We clalm that the followling lnequallty also holds (See Fig. Lo(e)):
| Fo-F-Fal 2 (PO F L (1.2)
It (4.2) 1s not true, then | F, | < | Fp(r)] beeanse (See Fla, 1o
| Fg(u) |- F, | = [(FsMF-Fyl -

fact that Fg(v)1sa NIVCS of I3, .

Fo,F-F,1 >0, contradicting  the
Thus (4.1) and (4.2) are true. But this tmples that [Py [ > ] F ] 1t rol-

lows that the set F'y contalned tn ' ( JH o(r ) 15 a smadlest AFS containing v, //

Theorem 4.5. Glven a  syidrome  ftor o {/U4+k  system S, W
| F, | > t, + &k for some unlt v €77, then G does not have an ARS of eardi-
nallty at most { contalnlng v.

Proof: Assume the contrary. Let 'y be an AFS of smallest cardinallty con-
talned In Fy | I o(v) of which ¢ 1s a member. From ‘heorem 4 Fpds an AFS
of smallest cardlnallty of which ¢ s a member. Thus |[F,] <. Lt
Fo=(F,JHy) - (F-F=-Hye)). We el that [ o] < | F,]. For
otherwise, the set

M = {a, |, eF ~H )}y, 1w, €F 1 (v)}
which 1s a vertex cover of B, wlll have cardinality less than Fy(e) contradleting,
the mintmality of | Fp(v)|. Henee [ F,o] < | F, | < 1.

Conslder the two sets F, and F,  |[F, | <t, | F,] <1 and
!F1UF2| >t + k. Swnce all edges from U Fo-H v ) o Fo I ((0) are
incldent on F| JH (7 ), there 1s no test from U 17 F oy o F .G F, Ths, by

Theorem 3.1, contradicts the assumption that the system Is /04 L -diagnosable,

//



Our dlagnosls  algorithm  for lIsolating all faulty units In a ¢/t +k-

dlagnosable system 1s as follows. For eacli v, we determine a max!mum match-

g K, of B, . It |, | >2f, then, by Theorem 4.2, v does not belong to any

ARS of cardinallty at most {. Otherwlse we determine from K, a MVCS Fg(v)

of I3, . We then construet Fpoand Fyo If | F, | < t, then v s In an AFS of

cardinallty at most (. If not, we cheek It | F, | < t,+k. If ves, we check If F,

contalns a VOS of cardinallty at most 4, . We do so by taking all possible sub-

sets Woof Fooof cardlnallity equal to {, with };, C W and examinlng if " 1s a

\VOS of the subgraph induced on G.f by the vertex set F, .

Algorithm 4.3: Diagnosis of' a | /I +/-Diagnosable System

Ghven a0/t +h-diagnosable system S with test Interconnectlon graph
G =" [7) and a svndrome arlslng from a {-fault sltnatlon, construct G °
and remove all vertiees with «elf-loops, From the resulting graph, construct

the bipartite geaph £ ="y . Ey ) with bipartitton (X, Y).
Set fr= o forall v € 17, label v unmarked,

While there exists an unmarked v € U7

begin

3.1 Label ©omarked,

3.2 Setd =t | )]
3.3 Construet [ from 3.

3.0 Compute a mantlmum matehing A, of B, uslng the Hopcroft/Karp
algorithm {81}
3.0 If |, | <27, then

begin



[31)
1

Compute a MVCS Fy(v)of B, trom N, using

¢
the Konlg Constructton Technlque [65].
Determine F. and F; from Fp(v).
If |F, | <t thenadd v toF
elseif |/, | <t + & then

For each subset W with F;, CHW o and | W | =, cheek
It s a VOS of the suberaph of ¢ indueed on the the
vertex set [ Ifso, add ¢ to F.

end

end

S.4 F 1s the required set.
The correctness of Algorithim 1.3 follows from Theoreins 1.2, - and 1.5,

Regarding complestty of this algorithm, the Bipartite graph o step SO0 ean
be constructed In O (n* ") operations [16]. Computations 1 steps S.801 - 8,301 08
dominated by the computatlon of a maximum matehing Inoa Wipartite graph
which 1s of O (n*?%). Step 3.5 may require computing all subscts of F, of eardl-

nality equal to f, and testing cach of them for the required VOS property. T'his

LF

step may requlre | F2 | C ¢, © operations. Note that VR <0, 4+ kL Sinee

1 —_
oo F k .

C,* =0}y and (< t, the overall complexity of the algorithm s
On?°+ mnt* ).

Note that If, In Algorithms 4.1, 4.2 and 1.3, a unlt v Is tneluded In the set,
F then all unlts \n Fy{JH (v) can also be added to F1oSo for these anits, we
do not need to perforin step 8.3 separately, Though, by dolng so, we may reduee
the number of computations, 1t will not Ymprove the overall complexitles of the

algorithms.



We wish to note that as in the case of the { /1 +1 dlagnosls algorithm of the
previous sectlon, Algorithin .3 can be modlifled to identify all unlts In the
t /L 4k -dlagnosable system which belong to every AFS of cardinality at most ¢.
This will Involve determinlng a NIVCS of BL(!,) for every untt v which Is a
member of some AFS of ceardlnallty at most (. The followlng 1s a formal

deseription of such an algorithim,
Algorithm 4.4:

S.oGiven a /4L -dlagnosable system S with test Interconnection graph
G =(",17) and a svndrome arlsing from a f{-fault shtuatlon, construct G'°
and remove all vertees with self-loops. From the resultlng graph, construct

the bipartite graph B ="y .Ep ) with bipartitton (', 1).
N2 Net F= ¢ forall e € U7, Iabel v unmarked.
Sa8 While there extsis an unmarked v € [7
begin
3.1 Label ¢ marked.
32 Set =1t {L{r)].
3.3 Construet B ) from B,
3.0 Compute  a  maxlmum  matehing Ay, of By, using the
Hoperoft/IKarp algorithm (6 1],

8.5 I K | > 2 then add v to F.
else
begin
Compute a NIVCS Fp (v) of By, from K} (. using

the Kontg Constructlon Technlque [65].



Determine F| and F; from Fp(v).

If |F, | >t y+k thenadd v to F

elseif | F, | >t then
For each subset W with Fy CW o oand | W = {
check 1t W 1s a Vs of the subgraph Induced on 7 * by
the vertex set /.. If not, add ¢ to }F,

end

end

S.4  F 1s the requlred sct of units which Ile in every AFS of cardinality at most

t.

Thus for a t /{ +k-dlagnosable system not only can all faulty unlts be 1so-
lated to within at most { & faulty unlts, but also all unlts whieh e In every
AFS of cardinality at most [ c¢ian be ldentitted in polynomlal thine Tor every fixed
positive Integer k. The units of the set F thus obtalned by Algorithm 1.4 can
be correctly 1dentifled to be faulty. Note that 1 a { /¢ 4k -dlagnosable system 1s
not sequentially ¢-dlagnosable then the set Fooproduced by Algorithm L1 may be

empty.
4.4. On the Diagnosis of a Sequentially {-Diagnosable System

Algorithm 1.1 of the previous sectlon can ea<tly be modifled to arrlve 1o
arrlve at an algorithm for dlagnosls of a sequentially f-dlagnosable system.  The
only mod!flcation required Is to substitute { for k. The algorithi Is formally

presented below.



Algorithrn 4.5: Sequential {-Diagnosis

S.1

Glven a sequentlally (-dlagnosable system S with test literconnection graph

(=(U,F) and a syndrome arlsing from a {-fault sltuation, construct the

bipa

ritte graph BB =(Upg ,Ep ) with bipartition (X,Y).

set F'= ¢ ; forall v € U, label v unmarked.

While there exists an unmarked v € U

begin

3.1

3.2

3.3

3.1

3.0

end

L.abel 0 marked.,
~et l[,(r)::l' |Il(l')|.
Construct I3, from 3.

Compute  a  maximum  matching KL(U) of BL(r) using

Hoperoft /IKarp algorithm [6 ).

If | K] > 24 ythenadd v toF.

else
begin
Compute a NVCS Fp(v) of By ¢,y from K, using
the Konlg Construction Technlque [65].
Determine F, and F; from Fy(v).
It |F. | >t then
For each subset W with F;CW and | W | =t
cheek 1f 117 1s a 'CS of the subgraph Induced on G'* by
the vertex set F,.If not, add v to F.
end

the



S.4 F s the required set of unlts which lle In every AFS of cardinallty at most

t.

It Is easy to see that the complexlty of the above algortthm s

O (n3°% + mnt').

4.5. Summary

In this chapter we have studied the problem of dilagnosing { /s -diagnosable
systems. We have presented ¢ /{+k-dlagnosls algorithms. In the case of
t /t+1-dlagnosable systems, our algorithm runs in O (n?®) tlme. In the general
case of & > 1 our algorithm has complex!ty which 1s polynomial for cach fixed
positive Integer k. These algorithms are based on certaln properties derlved
from the characterization of { /s-diagnosable systems glven In Chapter 1 and

the structure of allowable fault sets of these systens.

We have shown how these algorithms can be moditied to destgn algorthms
for ldentifylng all units which lle In every AFS of cardinality at most 1 ol
t /t+k-dlagnosable systems. These unlts can then be correctly tdentlfled as
faulty. We then presented an approach for diagnosing a seqguentinlly -
dlagnosable system. This approach leads to an algorithim whieh Is of complexity

O (n3% + mnt!).

The (¢ /{-dlagnosis algorithm of Yang, Masson and Leonettl [47) and the
t/t+1- and ¢t /t+k-dlagnosls algorithms of thls chapter complement  the
corresponding algorithins developed by Sulllvan [33] for the 1 /1, t /{ +1- and the

t /t +k-dlagnosabllity problems.



CHAPTER V

FAULT DIAGNOSIS UNDER LOCAL CONSTRAINTS: A BASIC
ALGORITHM AND ANALYSIS OF A RING OF PROCESSORS

In multiprocessor svstems such as those Implementable in very large scale
Integratlon (VLSI) and wafer-scale Integratlon (WSI), the number of unlts In a
system can be very large [50]. Moreover, the commonly used system Interconnec-
tlon networks such as the rectangular grlds are very symmetrical and sparse.
Two major problems arlse In analyzing Lhege systems using the classlcal approach
for system-level dlagnosis. Filrst, the value of {, and therefore the largest
number of faulty processors that can be dlagnosed, Is Iimlted by the connectlvity
ol the processor Interconnectlon graph of the system. This shortcoming
motivated the recent works on probablllstlec dlagnosis algorithms for sparsely
Interconnected systems {32.53}. The other serlous problem 1Is that the dlagnosls
alcorithms are assumed to be executed on a single, hlghly rellable supervisory
processor which has access to the complete syndrome. A slngle supervisory pro-
cessor 1s a bottleneck In a system with a large number of processing elements,
Distributed dlagnosls algorithms executed on the multlprocessor system lItselfl
would be desirable. Such distributed algorithms can take on two essentlally
ditferent Navors: one In which the distributed task Is to make the complete syn-
drome avatlable to every processor In the system and let each processor act as
the syndrome decoder to determine the faulty processors; and the other in wi 1
no single processor has the knowledge of the complete syndrome, but 1t, decoding
of that part of the syndrome avallable to It may be passed on to Its nelghbors
and the nelghbors thereof, and so on. Ploneering work using the first approach

was reported In [5353,56]. The second approach has not been established firmly;
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some early work In thls direction has been presented In [51]. More recent work

In this area Includes [54].

In this and the following chapters, we address both the problems mentloned
above. In particular, in this chapter we aim at the application of system-level
dlagnosis for regular Interconnected multiprocessor systems with very small con-
nectivity. The maln result Is to note a key result in syndrome decoding reported
In the literature In varlous forms [20,21,46] and apply It to regular Interconnected
systems. Here a local nelghborhood 1s deflned around each processor which con-
sists of Its ¢{ Immedlate nelghbors and ¢ subsequent nelghbors. The faulty or
fault-free nature of each processor Is then d_ctcrmlnod as long as no more than !
unlts are faulty In its corresponding nelghborhood. Based on this result, we also

present a simple O (1) distributed dlagnosls algorithn.

There arc two distlncet advantages to this approach for distributed dlagnosis.,
The flrst Is that, since the dlagnosls of faulty processors s done based on test
results generated by the processors which belong to a small nelghborhood, a large
number of faulty processors can be dlagnosed In the entire system. This number
i1s, of course, bound to be much greater than f, the connectivity of the system.
The other advantage 1s the natural beneflt of a distributed algorithim 1n which
the entlre dlagnosls effort for the whole system s carrled ont simultancousiy in
all nelghborhoods. Thus, up to one less than half the total number of processors

In the system could be faulty, and vet could ! ¢ liagnosed 1n O (1) time.

It 1s, however, clear that not all all possible combinatlions of faulty unlts up
to this slze are expected to be dlagnosed, since many of these fault patterns will
not satlsfy the constraint of having no more than ¢ faulty unlts ln cach nelgh-
borhood. To partly overcome this problem, we consider 1n this chapter another
dlagnosls algorithm In which more than one nelghborhood 1s constdered for each

processor. A form of majority votlng allovs us to decode the Information




generated by each of these neighborhoods about the faulty or fault-free nature of
a processor. We present some results of analysls of fault coverage obtalned when

thls approach Is applled on a rectangular grid systen.

We also study the Implication of applying local fault constraints In the diag-
nosls of a ring of processors.

In thls and the following chapters we use the comparison model (deseribed

In Chapter II) for our studles.

5.1. Local Diagnosis Algorithm

Let S be a multiprocessor system with test Interconnection graph
G =(U ,E ). Note that when the comparlson model s used, (G 1s an undircected

graph.

Let u;, be a unit in S with ¢ distinct paths of length 2 from w,. I, (u,),

called a neighborhood of order t around w,, denotes the set of processors

which lle on these paths including «,.

Fig. 5.1 shows a unit u; In a system with a hexagonal grid Interconneetion,
and Flg. 5.2(a) defines a locai nelghborhood of order 6 around a unit u,. In a
system S, there may be more than one way to define a local neighborhood around
a unit v; . This polnt 1s Hlustrated In Fig. 5.2(b). It 1s posstble that a unit which
s at a distance 2 from u, In [2,(w,) may also be adlacent to u, . Flg 5.2(c¢)
deflnes a local nelghborhood of order 3 around u, In a hexagonal grid Intercon-
nectlon system where such a sttuation arlses. It I~ also easy to observe that 1n &
hexagonal grid Interconnection with wraparound 1t 1s nossible to deflne a local

nelghborhood of order 6 around 1t.

We requlre the followlng theorem to prove the results of this chapter. This

result helps determine the faulty or fault-free status of any unit using only
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comparison outcomes In its local nelghborhood.

Theorem 5.1 : Let u, be a processor In a system S with ¢ distinet paths
of length 2 from u,. Let R,(u,) denote the set of processors which lle on these
paths including processor u,. If at most { processors are faulty In R, (u,-) then

u, 1s faulty If and only If

'
| F )R ()| >t

wheee I (u,) 1s the set of processors which have a 1-link with u, or can be

recached from wu, by a 1-llnk followed by a O-link or by a O-link followed by a 1-

k.

Proof. Let Ng(u,) and N (u,) denote the set of processors which are
Inctdent to the processor u; by a O-llnk and a 1-link respectlvely. Then
F(u, )=N (n, )U/\'l(;\'(,(ul ))U;‘\'O(_f\’l(u, ))- We observe that If u; 1s fault-free
then F(u, )ﬂl.’,(u,) denotes the set of processors which can immedlately be
declared as faulty. Hence I | F (u, )R, (0;) | >t then u; 1s faulty, for other-

wise 1t contradlets the fact that at most { processors can be faulty in R, (u,)

Now, suppose we assume

; to be faulty. Conslder a palr (uj,.uj,_,) in

Iu’, (o, ), with U adjacent to u, .

case 1w, s Tault-free and u,, Is faulty: Clearly uj, 1s 1n N (u,) and hence
belongs to F (u, )ml?, (u; ).

case 2. u, 1s fault-free and w5 1s fault-free: Clearly u,;, Is In N (u;) and Ujo
belongs to NN (¢, ). Thus both uj, and u,, belong to Fu, )O\Re ().

case 3w,y 1s faulty and ), Is fault-free: In this case, since both w; and uj, are
faulty, u;; may belong to elther No(u, ) or N (u,). If uzy 1s in No(u; ) then uj,
Is tn N (N y(¥;)). and hence also belongs to F (v, )ﬂR, (u; ). On the other hand,

I ou,y ts I N (g ) 1 Tself rather than uy, belongs to F(u )N (4)

Thus In all three cases above, we flnd that If u; Is faulty then for every



fault-free processor in R,(u, ), there exists a corresponding processor In
F(u; )R (v, ). Also slnce at most t processors can be faulty In R, (u,), there
are at Jleast {41 fault-free processors. As a result if o

, Is faulty then

| F(u; )R (v, )| > t. This completes the proof. //

The dlagnosls result presented above permits correct diagnosis of a unlt, as
long as a local nelghborhood R, (u,) of order ¢ can be deflned around u, and 1t
contalns at most { faulty units. Clearly, the value of { ean be different for
different units. Moreover, the nelghborhood can be defined 1n a varlety of ways.
However, for regular Interconnected structures It Is convenlent to predeflne a
local nelghborhood of the same order around each unit In a uniform way so that
an algorithm that works In a distributed manner can be Implemented. If the loeal
nelghborhood around each unit can be constructed to have the same topology,
then each unlt can exccute a copy of the same local dlagnosls algortthm synehiro-
nously. Inltlally, each unlt must execute the same job and transmit the result to
each of Its nelghbors so that the results can be compared and the comparison
outcomes generated. At thls polnt the comparlson outcomes are avallable In a
distributed manncr with each Hit of the comparisen outcome belng avallable at
two sites, namely the unlts Involved In that comparison. In other words, each
unlt has ¢t blts of comparlison syndrome, corresponding to the comparison tests
with 1ts ¢ nelghbors. These are used to compute Ny(u, ) and N (u, ). In order
to compute N (N (u,)) and No(N(u,)), each unlt must recelve some fnforma-
tlon from each of its nelghbors. DBut depending on the palring of the ynits 1n
Ry (u;), only one bit of this informatlon from each of the nelghbors ean be of
Interest since we are ultlmately Interested ln computing only I"(u, )ﬂlf, (u, ). If
the local nelghborhood has the same topology at each unlt the Information 1o he
transmitted by a unlt to each of 1ts nelghbors can easlly be evaluated, using a

svndrome decoding function.
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As an example, consider the hexagonal grid Interconnectlon with a local
nelghborhood as shown In Flg. 5.3, Since the topology of the local nelghborhood
1s the same, and cach unit executes a copy of the same algorithm, let the unlt
untder constderation be stmply labeled ¥ with the { nelghbors of the unlt labeled
from 1 to (. It Is clear that the central unlt must route the test outcome
corresponding to Its nelghbor 1 to neighbor 4, the test outcome corresponding to
1ts nelghbor 2 to nelghbor 5, and so on, as llustraied In Flg. 5.3. In other words,
the syndrome routlng function f Is given by [ (k)= (k+2) mod 6 + 1.
Clearly, a syndrome routing function wili be one-to-one and onto on the set of
nelghbors and will be dependent on the the relative ordering of the adjacent
units and the chosen local nelghborhood.

In order to Implement the algorithm 1n a distributed manner, we assume the
existence of two £-bit reglsters A4 and 3 at each unit, A [#] contains the com-
parlson outeome avallable at that unit corresponding to the kth nelghbor. In
other words, A [A] = 1 1f and only If & belongs to N (u ) at unlt . The regls-
ter 3wl be used to recelve Informatlon from the nelghbors. Let B [k]
correspoid to the comparlson Information sent by the kth nelshbor. Now,
observe that A (K] XORR B [k] = 1 1f and only If the corresponding nelghbor of
u's kth nelghbor belongs to the Intersection of Ny(N,(u ))U.«'\'l(:\'o(u )) and
I¢y (). Thus the computation of | F (u )mR,(u )| can be carried out very
c¢Melently through simple logleal operations at each unit. The algorithm per-

fornied by any unit can be presented formally as follows,
Algorithm 5.1: Local Diagnosis

begin

O. Perform the same Jobh: send the result to all neighbors.
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Fig. 5.3 A local neighborhood of order 6 in a hexagonal grid
and a syndrome routing function.
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1. Foralll1 <k < t, Alk]:= 01f the result computed matches that of

the kth nelghbor; else A [k] = 1.

e

For all 1 < k < (. send in parallel A [k] to nelghbor f (k). For all
1 <k < t, recelve In parallel B[] from nelghbor k.

3. Foralll <k < t,BF)]:=A[k] XOR B k]

4. SUAM = Number of 1's In reglster A + Number of 1's In register B.

H. Ir SU'M > 1 then declare the unit fanlty; else declare the unit fault-
free,
end.
We observe that only Step 2 onwards constitutes the syndrome decoding
part and cach of these steps can be executed In constant tlme. Thus the syn-

arome decoding algorithim exeeutes In constant parallef time.

We note that Fig, 5.3, Just shows one posslble local nelghborhood of order
sIx for a hexagonal grid structure. It Is possible that a single predefined local
nclghborhood at a unlt v may have more than ¢ faulty units whereas another
local nelghborhood may not have more than ¢ faulty units. Therefore for a
glven syvudrome, Algorithm 5.1 executed for two different local nelghborhoods at
a unlt ¥ may evaluate the status of that unlt differently. Thus, In order to
Improve the quallty of dlagnosis, Algorithm 5.1 may be modified to Incorporate

more than one local nelghborhood at each unit.

As an example, we conslder the rectangular grid structure to see how this
modileation helps. Flg. 5.4 shows flve different local nelghborhoods defined at
unit u. It can be seen that two syndrome routing functions are sufficlent for u
to obtaln Informatlon regarding any unlt at dlstance two In a rectangular grid

structure. Thus, the central unit v sends two bits of Informatlion to and recelves
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Fig. 5.4 Local neigborhoods of order 4 in a rectangular grid.




two bits of information from each nelghboring unit. The Informatlon gathering
process 1s independent of the number of local nelghborhoods of order t belng
consldered at cach unit. The evaluation of the slze of F (u )R, (u ) Is then car-
ried out for eaclh of the speclfied local nelghborhoods. An odd number of local
nelghborhoods Is chosen at each unlt so that majority voting can be applied.
The unit u Is evaluated to be faulty If and only If more than half the local

nelghborhoods have more than ¢ unlts n F ()R, (u).

As stated In the Introductlon the development of the local dlagnosis crl-
terlon has been motlvated primarlly from the viewpolnt of its applleation to reg-
ular interconnectlon structures such as rectangular, hexagonal and octagonal
grids with wraparound In two dlmenslonal structures, binary n-cube connected
eveles, and hypercube connectlons, In these archlitectures each processing ele-
nient Is connected to the same fixed number of other processing elements with
perfect symmetry with respeet to Interconnectlons, Thus, 1t Is eas) to observe
that each of these architectures permlits the construction of local nelghborhoods
of order { around each unit, tor ¢ equal to the number of netghbors of any unit.
The ¢-dlagnosls algorithms permlit the correct identification of all unlts in the
system provided the total number of faulty unlts In the entlre system does not
exceed [,

For example. conslder an n * n rectangular grid with wraparound connec-
tlons.  Constder two verstons of the local dlagnosls algorithm, say A and B.
Alzorithimn A uses a shngle local nelghborhood as shown In Fig. 5.14(a); Algorithm
B uses three local nelghborhoods, namely the ones shown in Flg. 5.4(a), Flg.
5.4(b) and Flg. 5.4(¢). There are (‘;‘Q fault patterns of size five that can occur In
the system. Classleal £ -dingnosls conslders fault patterns of slze at most 4 only
for this Interconnectlon structure, and cannot correctly dlagnose any of these 5-

fault patterns,
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In algorithm A, a local nelghborhood corresponds to a 3 * 3 subsquare 1n 2
rectangular grid. Thus, Algorlthm A, executed at each unlt, results In the
correct dlagnosis of the entire syvstem If the 5-fault pattern s not conflned to i
single 3 ¥ 3 subsquare. The total number of fault patterns which may lead to
Incorrect dlagnosls at a unit u s ('59 . Stnce the Intersection of the loeal nelgh-
borhoods of two adjacent unlts can contaln six different H-fault patterns, the
total number of 5-fault patterns which may lead to Incorrect dingnosis Is glven
by n? # (C'9 - (8+4)/2) = 114n*~,

A 5-fault pattern may lead to a wrong dlagnosls for Algorithun B at a untt «
iIf the fault pattern occurs In at least two of the three local nelghborhoods con-
sldered at v . There are a total of 41 such fanlt patterns for each unit. None of
these fault patterns can lead to an Incorreet diagnosls at a nelghborlng unlt, W n
Is greater than 6. Thus, In this ease, the total number of S5-fault patterns which
may result 1n Incorreet dlagnosls of the entire system Is 41n =,

From the above analysls, we observe that for regular Interconnected strue-
tures, the 'ocal dlagnosis eriterton developed In thls paper permmits the correct
diagnosls of fault patterns which cannot be handied by classleal f-dlagnosabiiity
theory, even If only one nelghborhood around each processor Is consldered, THow-
ever, the question stlll remalns as to whether or not a local nelghborhood of order
t can bhe constructed around every unit In an arbitrary f-diagnosable svsteny so
that the local dlugnosis approach can be used. Unfortunately, thls Is not so,
Flg. 5.5 presents a system whose connection asslgnment permits 3-dingnosabiiity,
but does not permit the construction of a local nelghborhood of order 3 for the

units v, and u,. On the other hand the conversc of the above result Is troe,



Fig. 5.5 A 3-diagnosable system which does not have
local neighborhoods of order 3 for units v; and ;.
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Theorem 5.2 : Let S be a system under the comparlson model with a loeal

nelghborhood of order { defined around each unit, Then S s {-diagnosable.

Proof : If there are at most ¢ faults In the system, ther for every unit
u; €U, there are at most ¢ faults In R, (v, ). Thus, by Theorem 5.1, every unit

u; €U can be correctly dentified. Ilence S 1s { -dlagnosable. //

5.2 Diagnosis of a Ring of Processors under Local Fault Constraints

In thls sectlon, we analyze the Implicatlon of Imposing local fault constraints
on a ring of processors. Speciflcally, we determine if, glven a syvandrome, we ean
uniquely determine the set of faulty processors as long as at most p out of any
consecutlve processors are faulty.

Theorem 5.3 : Let S be a ring of n processors where n Is even. Glven tlhat
at most p processors arc faulty out of any q consecutlve processors, the values for
p and q which admit the maximum numb.  of fault sets that can be unlquely

dlagnosed are p=2 and q=5.

Proof: Let {u,u 4,...,u, } be the ring of processors,

case 1:3< p <n.

We show that in thls case, the set of permlissible fault sets cannot bhe
unlquely dlagnosed. Conslder the followlng syndrome: a4, (=1, a,,=1, 01,,=1,
@z,=1 and all other outcomes have value 0. Both F = {u u,uy} and I',=
{u;,u,} are allowable fault sets for this syndrome.
case 2: p=2,q > 3.

case 2.1: p=2, q=3 .

Conslder the followlng syndrome: ¢, =1, ¢ ,=1, Qyy=1, €41, 0 4,=1
and all other outcomes are 0. The fault sets F o= {u,uqu,} and F,=

{u . u u,}two permissible fault sets under the glven fault con<tralnt, are
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allowable faults for thls syndrome.

case 2.2: p=2, q=1 .,

Since 1 Is even, let F be a fault set contalning alternate processors in S.
Then the fault sets F' and F© are allowable fault sets for the syndrome in which
all outcomes are 1.

case 2.8: p=2,q 2 5.

We note that I there are at most 2 faulty processors In any consecutive 5
processors then for any processor u , Lo(u )| J{u } which conslsts of 5 processors
contalns at most 2 faulty processors. Thus, glven a permissible syndrome, the
local diagnosis algorithm (Algorlthm 5.1) developed In the previous sectlon can
be used to ldentify all processors correctly., Slnce the constralnt p=2 and q==>5
permits all fault sets which are valld when p==2 and g Z 5, these values for p

atd  admit the maximum number of fault sets which can be unlquely dlagnosed.

//

It & fault constraint permits a fault set F and its complement F ¢ to be per-
missible fault sets, then given a valld syndrome, the faulty processors may not be
correctly tdentitied; the tault sets F and F° generate a common syndrome. We
note that 1f Wnttially one processor v 1s correctly determined to be fault-free or
less than half the total number of processors In the system are faulty then for
any subset Foof U, at most one of the subsets F and F° can be an allowable
fault set for a glven syndrome.

Theorem 5.4 : Let S be a ring of n processors In which one of the follow-
Ing conditions Is satlsfled:

(1) some processor Is known to be fault-free and n > 5

Ld

(2) less than half processors In the system are faulty and n > 7

(3) n 15 odd.



5

- 96 -

Then the values for p and ¢ which permit the maxlmum number of fault
sets which can be unlquely dlagnosed In S under the local constralnt of at most
p faulty processors In any ¢ consecutlve processors are p =2 and ¢ ==

respectively.

Proof: It can be verified as In the proof of Theorem 5.3 that the case
p 2 3 and the case p = 2 and ¢ = 3 may result In the syndromes which can-
10t be unlquely dlagnosed.

Assume p = 2 and ¢ =-. We flst show that If one Flt-free processor ¢
Is Known to be fault-free, all other processors can be ldentified correctly. We
assume that the dlagnosls procedure initlated at v proceeds clockwise. It a pro-
cessor Is fault-free then the adlacent processor can be correctly ldentified. If two
consecutive processors are ldentlfled as faulty then the next processor can be
correctly ldentlfled as fault-frece. Thus only the situation shown I Filg. 5.6 could

pose a problem.

Since there are at most 2 faulty processors In any < consecutive processors,
there are at most 2 faulty processors In A. IHence B contalns at most 2 faunlty
processors. The processor w has at most 2 faulty processors In 1ts loeal nelgh-
borhood L2(1U)U {w }. Thus Algorithm 5.1 can be carrled out with respeet Lo
processor w to determline Its status. Thus If one processor Is given to be fault-
free or can be identifled correctly to be fault-free then all other processors cany he

1dentlfled correctly.

We now show how one processor can be ldentlfled correctly If elther (2) or
(8) 1s true. We note that If a valld syndrome contalns the sequence of conseci-
tive outcomes 00, 011 or 110 then the processors adjacent to the O-finks are
fault-free; for otherwise there Is a sequence of 4 consecutlve processors of which

at least three are faulty.
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Fig. 5.6 Illustration for Local Diagnosis Algorithm
in a ring of processors.



We now clalm that for a valld syndrome one of the following sequences of
outcomes 00, 011 or 110 occurs. Assume the contrary. Then the following syun-
dromes are the only syvndromes which do no; contaln any of the sequences 00,
O11 or 110: the syndrome s; In which all outcomes have value 1 and the syn-
drome s, In which O and 1 outcomes alternate.

case 1: Less than half the processors are faulty and n 2 7.

In this case, S contalns two consecutlve fault-free processors, ilence there
exists at least one O-link and the syndrome s, cannot occur. Since at most 2 of
any 4 consecttive processors can be faulty, the syndrome s, corresponds to fault
sets In which two faulty processors are followed by two fault-free processors and
vice versa. But thls contradicts the assumption that the number of faulty pro-
cessors 1s less than the number of fault-free processors.

case 2: n 1s odd.

In this case, the syndrome §, cannot be present. Sinee at most 2 out of any
4 consecutive processors can be faulty, the syndrome s, corresponds to fault sets
in which faulty and rault-free processors alternate; thls 1s not possible sinee n is

odd and S Is a ring of processors.

This shows that one fault-free processor can be determined 1f either (2) or

(3)1s true. //

We obszserve that the dlagnosls algorithms outlined in the proof of the above
two theorems can be deslened to run secuientlally on a host processor or in oo dls-

tributed manner on the ring of processors.

5.3. Summary

In this chapter, we have studled the problem of fault dlagnosts of multipro-

cessor svstems under local constraints. Assuming there are no more than |
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faulty processors In an appropriately constructed local nelghborhood around each
processor, we show how to determine the faulty or fault-free nature of each pro-
cessor using syndrome Information avallable in the local nelighborhood. The
algorithm can be hinplemented on O (1) parallel time. We have also presented an
analysls of Tault coverage for an n * n rectangular grid. It has been shown that
all but 1140 ° of the possible 5-Tfault patterns can be dlagnosed correctly., This Is
In contrast to the t-dlagnosis algorithms which do not permit more than 4 faults
In the entlre n * n grid. We have shown that using more than one nelghbor-
hood around each processor and uslng a form of majority votlng, the quality of
dlagnosls can be lmproved. In fact, If we use three nelghborhoods around each
processor, then 1n the case of the n * n-rectangular grid no more than 41n2 of

all possible H-fault patterns will result In Incorrect dlagnosis.

We have also consldered the application of Algorithm Local Dlagnosis In the
analysts of a ring of processors when, Instead of a single global fault constraint,
local fault constralnts are Imposed. Speclfically, we determline If, glven a syn-
drome, the scet of faulty processors can be unlquely determined as long as at most

p out of any (q consecutlve processors are faulty.



CHAPTER VI

t-in-L -DIAGNOSABILITY AND DIAGNOSIS

In thls chapter we continue our study of the problem of dlagnosing faulty
processors In a multiprocessor system imposing local constralnts on the number
of faulty processors In the nelghborhood of each processor. Specifically, we Intro-
duce In the followlng sectlon the concept of ¢-in-L; -dlagnosability and present
several baslc results which lead to a sufficlent conditlon for unlque diagnosls
when certaln local fault constraints are satlsfled. In sectlon 6.2 we study {-in-
Lk-dlagnosablllty of certain regular Interconnected systems: the closed rectangu-
lar, hexagonal and octagonal grid systems and the hypercube systems. In sectlon
6.3 we present ¢-In-L -dlagnosls aigorlthms for these regular systems as well as
those which satisfy certaln conditlons. These dlagnosls algorithms can be lmple-
mented In a distributed manner on the system 1tself. As in the previous chapter

our study In thls chapter Is based on the comparlson model (See sectlon 2.3).

6.1. t-in-L -Diagnosable Systems

Glven a multlprocessor system with test Interconnectlon G =(U,F), a pro-
cessor u; Is sald to belong to a local domain L, (u, ) it u, les within a distance
k of u,. A system S 1s deflned to be t-ln-L;-dlagnosable If, glven a syndrome,
all faulty processors can be correctly ldentifled provided that there are at most ¢
faulty processors In L; (u; )U{u,-} for every processor u, In 5. In this sectlon we
study t-ln-Ll-dlagnosablllty. Recall that the dlstance between any two proces-

sors ¢ and y Is denoted by d(z,y).

Lemma 6.1 : Glven a system S and a syndrome, let /7, and F, be two distinct

allowable fault sets for the glven syndrome such that F; U F, £ U and for all




processors w € U, L (u) F, and L,(u)-F, are both non-empty. Then there
exlst processors x,y € U such that

(1) z€eU-(F,UF,)

(2) y e F,0F,

(3) 2 < d(r,y) <3 and d(r,y) s minimum among all z and y

satlsfying (1) and (2).

Proof : Since Fy U F, 5 U theset U - (F, U F,) Is non-empty. Furth-
ermore, since [, and F, are distinct, there exlsts at least one processor which
belongs to one fault set and 1s not contalned In the other. Thus there exist pro-
cessors In U satisfying conditions (1) and (2). Now let x and y be processors In
[/ satisfying condltlons (1) and (2), respectively such that the distance d (z,y)1s

minimum.

Assume d (r.y) > 4. Conslder a processor w such that w 1s at a dlstance
of at most [ d(x,y)/2] from both r and y. Slnce L, (w)-F, and L (w)-F,
arc both non-empty, there exists a processor z € L ,(w ) satisfying condition (1)
or (2). If z satisfles condltlon (1), then d(z,y) < d(w,y) +1 < d(r,y ); If 2
sallsfles conditton (2), then d(x,z) < d(r,w)+ 1 < d(r,y). In elther case, the
mintmallty of d (& .y ) 1s contradicted. Hence d(r,y) < 3.

To prove that d (r,y) > 2, we show that the assumptlon d (z,y ) = 1 leads
to a contradictlon. Assunme d(r,y) = 1. Then the edge between r and y Is a
O-IInk with respect to one fault set and a 1-llnk with respect to the other, con-
tradicting the assumption that F, and F', share a common syndrome. //

Lemma 6.2 : Let S be a system with test Interconnectlon graph
G =(U,E) In whieh for every processor u € U, there are at most | k/2 | + 1
faulty processors In L (u)J {u} where & = |L (u)]. Glven a syndrome and
two allowable fault sets [/, and F, corresponding to thls syndrome, the followlng

condlittons hold for every r € F,@ F,:
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(1) there Is at most one processor w € L,(x) with w € FlﬂF._, .
(2) there are at least k-1 processors v € L ((r)withe € F,@® F.,.

Proof : Without loss of generallty assume & € [~ F,. Then r s faulty
with respect to F'| and fault-free with respect to F,. Let X denote the subset of
processors in L (r ) which are fault-free with respect to F,. ‘The processors in X
are all faulty with respect to Fl siince they have O-1Inks with & and r Is faulty
with respect to F . |X| < | k/2 ] slnce there are at most | & /2] +1 faulty
processors In L (z)_J {x}. Furthermore [ X' | > [ k/27 -1. sInce the processors
in L,(z)-X are all raulty with respect to F', and there are at most | & /2 |
faulty processors In L ,(z)(_J {z}. Thus

[k/2]-1 S X | < [ k/2)

Now conslder the processors In L (x)-.X'. They are all faulty with respect,
to F',. Now, If more than one processor In L (z )}~ 1s also faulty with respect
to F then the number of faulty processors In L () ) {7 } with respeet to Fy 1
greater than |k /2] + 1, contradlcting our assumption that F* s a permlssible
fault set. This shows that (1) Is truc.

Since all processors In X' are contalned In F[=F, and all processors except
at most one In L,(z )X belong to F,—F,, there arc at least | L (x)]-1 proces
sors In L ,(z ) which also belong to @ F,. Sluce | L, (x) | =k, 1t follows that
(2) holds.  //

Lemma 6.3 : Let S be a system with test Interconnectlon graph
G =(U,E ) 1n which the number of faulty processors s less than | U] /2 and for
every processor v € U, there are at most | k/2 ] 4 1 fanlty processors 1y
L,(u)y {u} where k = |L (u)|. Glven a syndrome and two allowable fanit scs
F |, and F ,corresponding to this syndrome, there exist two processors ry € 1)

such that
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(1) relU -(FLUF,

(2) yeF,&®F,

(3) 2<d(r,y)< 3 and d(r,y)1s minimum among all z and y
satlsfying (1) and (2).

(4) If w lles on any shortest path hetween z and y and d (w,y)==2

then

there 1s exactly one path of length 2 between w and y.

Proof : Sluce the system S satlsfles the conditlons of Lemma 6.1, it follows
that there exist 7 and y satlsfying (1), (2) and (38). Now assume (4) Is not true.
Then there exlsts a processor w Iying on a shortest path between z and y with
d(w,y)=2 and there are two or more paths of length 2 between w and y. We
note that o could be the processor a Itself. We also observe that the system S,
the fault sets F'; and F, and the processor y satlsfy the conditlons of Lemma
6.2, Hence there exists at most one processor In L (y ) which belongs to FlﬂF:z
and all other processors belong to Fy @ F,. Since there are two or more paths
of length 2 between w and y, there 1s at least one processor 1n L (y ) belonging
to F', @ F, which 1s closer to ¢ than y. If w=xr, thls wlll contradict (3); If =

# w, this will comtradict the mintmality of d (x,y).  //

Note: IFor every palr of processors r and y satisfying conditions (1)-(3) of
the above leniina, conditton (1) holds for every shortest path between x and y .

The following theorem follows directly from Lemima 6.3.

Theorem 6.1 : Let S be a system with test Interconnectlon graph
G =(U,E) In which the number of faulty processors Is less than | U | /2 and for
every processor #, € U there are at most |k /2] + 1 faulty processors 1in
L (u, )U{u,} where A, = L (v,). The system S Is unlquely diagnosable If
between any two procossors at distance 2 from each other, there are at least two

disjoInt paths of length 2, //
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A stralght forward consequence of the above theoren is glven below.

Corollary 6.1.1 : Let S be a system with test Interconnectlon graph
G =(U,E) \n which the number of faulty processors Is less than | U | /2. 1If
between any two processors u, and u; at distance 2 from each other In (, there
are at least two paths of distance 2, then S Is I-ln-l,l dlagnosable for
t = [6/2] + 1, where 6 Is the mimimum degrec of (. //

As we wlill see In the followlng sectlon, the condltion given In the above
corollary fer t-ln-Ll dlagnosablllty with ¢ = L(S/:ZJ 4+ 1 1s not In general neces-

sary.

6.2. t-in-L ,-Diagnosability of Regular Interconnected Systems

In thls sectlon we study the {-ln-L1 dlagnosabilty of certaln regular inter-
connected systems - the closed rectangular, hexagonal and octagonal grid systems

and the hypercube systems. Flrst we consider the hypercube systeins,
Theorem 6.2 : Let S be a hypereube system contalning ok processors. The
system S Is {-In-L, dlagnosable for (= |_ k /'.z_] +1 provided less than half the

total number of processors In S are faulty.

Proof : The above result foliows Immediately from Corollary 6.1.1 and the
observation that In a hypercube system there are two disjolnt piaths of length 2

between any two processors at distance 2 from cach ether.  //

The condition of Theorem 6.1 1s not satlsfled by the other regular Intercon-
nected systems to be consldered In this sectlon. We now proceed to determine
the maxlmum value of ¢ for which these systems are t-ln-l,l diagnosable under
the assumption that less than half the total mumber of processors In these sys-
tems are faulty. Interestingly, we will sce that the value of s equal to

|6/2] + 1 In these cases too.
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Theorem 6.3 : The max!mum value of { which permlits a closed rectangu-
lar grid S to hLe l-ln-Ll dlagnosable glven that less than half the processors In S
are faulty, 1s 3.

Proof : The theorem s proved by contradlction. Assume there exist two
permissible fault sets I’l and FQ sharing a common syndrome s, such that there
are at most 3 faulty processors In L (u )| J{u } for every processor u In S and F,
and [', contaln less than half the total number of processors in the system.
Stnee | L(u) | =1 for every processor u, the system .S and the two fault sets
Fyand F, satisfy the requlrements of Lemma 6.3. Thus there exlIst processors
and y satistying the conditions (1),(2), (3) and (4) of this lemma. Assumlng con-
dittons (1),(2) and (1) are satisfled by x and y we arrlve at a contradiction by
showing that (3) 1s violated,

We observe that the status of all processors In L () remaln unchanged
With respeet to both Foand F, slnce 2 1s fault-free In the presence of elther
fanlt set, This means that all processors which share a 1-1lnk with r belong to
FiF . We also note that there cannot be a path of fault-free processors
between o and y with respect to elther fault set; otherwlse F', and F, cannot
share a common syndrome,
case I d(r.y) =2

Constder Fle. 6.1(2). All other cases with d (x .y )=2 satisfying (1).(2) and
(1) are symmetrie to thls case.

The processor z must be faulty with respect to both fault sets, otherwise
there Is a path of fault-free processors between r and y. Now the following sub-
cases arlse.

case 11w orw, helongsto F,@ F..

In this case, from Lemma 6.2, 1 Is adiacent to a processor belongling to
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Fig. 6.1 lllustrations for proof of Theorem 6.3
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F'y @ F, this contradicts the observatlon that all processors In L (z ) belong to
F\OYFyor (FUJF2)°.

case 12w and v, bLelong to FyMF .

If both w, and w, are faulty with respect to F'| and F,, then since y Is
faulty in the presence of one of these fault sets, L,(z )U {z} contalns more than

3 faulty processors wlith respect to 1"l or FQ: a contradictlon.

Note that If w or wy 15 In (F ;| JF,)", then there would be two paths of
length 2 between y € @ F,and w | (or w,) € (F IUFQ)" . contradieting con-
ditton (4) of Lemma 6.3,

case 2-d{(r,y)=3.

We constder Flgg, 6.1(b). All othier cases with d (o,y)==3 satlsfying (1), (2)
anel (-1) are symmetric to 1o this case.

The processors w, awd e belong to F lﬂF'._,; otherwise the minimallty of
the distance d (r.y) Is violated. Stmlarly w; and w5 cannot be fault-free with
respect to both Fy and F, and so they both belong to F,| JF, Since w, and
w, are at distanee 3 from r and both have two dlsjoint paths of length 2 to w4,
by L.emma 6.3, they cannot belong to Fl @ F,. Thus w, and w; are In
FiYF o But then L (wy) g {w,} will have more than 3 faulty processors with
respect to elther Fpor P

It follows that the system S 1s 3-1n-L | dlagnosable given that less than half
the processors 1 S are faulty. Flg, 8.2 shows a closed rectangular grid In which
two fault sets having at most 1 faulty processors In L (u )U {u} for every pro-
cessor u, share a common syndrome.  In thls syndrome, the comparison outcome

between faulty processors Is 1. This proves that the maximum value of t Is 3.

/!
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® Faulty ® Fault-free

Fig 6.2 Two fault sets generating a common syndrome
in a rectangular grid.
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Theorem 6.4 : The maximum value of ¢ which permlts a closed hexagonal
grid S to be t-ln-L, dlagnosable given that less than half the processors In S are

faulty, Is 4.

Proof : We prove by contradlctlon that Sis 4-1n-L | dlagnosable. Assume
the contrary. Then there exist two permissible fault sets F, and F, with at
most 4 faulty processors In L (w)( J {u } for every processor u In S such that F,
and l"._, share a common synpdrome s. Then there exlst two processors r and y
satisfying the conditions of Lemma 6.3. Assuming conditions (1), (2). and (4) are
true, we arrlve at a contradiction by showing that conditlon (3) Is violated.

case 1. d(x,y) = 2.

Conslder g, 6.3(a). All other Instances of r and y such that d(z,y) = 2

and satlsfying conditions (1).(2) and (4) of Lemma 6.3 are svmmetric to this case.

Stiee y € (@ Iy and w € Fy(F,, from Lemma 6.2, z, and z, belong to
I'y@ F,. This In turn Implles that 24 and 2 belong to F; @ F,. But this con-
tradicts the fact that both z5 and z, belong to FyMF, or (F | JF,)° as they
both belong to L ().

case 2 d(r,y)=3

Constder Flg. 6.3(h). All other Instances for ¢ and y with d(r,y) = 3 and
satlsfving condittons (1).(2) and (1) are symmetric to thls case. The processors
Ty Sae Zapand 2 are all faulty with respect to both fault sets, otherwlse d (7 ,y )

I~ not mintmum. Sinee y Is faulty In the presence of F'| or F,, L (z3) contains
more than four faulty processors with respect to elther F] or F,_,, a contradlction.
Thus d (r.y) £ 3.

Thus the system S Is ‘l-ln-Ll diagnosable given that less than half the pro-
cessors In 2 oare faulty, Flg, 6 1 gives an example of two fault sets in a hexagonal

grid, having at most 5 faulty processors 1n L 2 (u ) for every processor u such that
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they both share a common syndrome. In thls syndrome the comparison outcome
between two faulty processors Is 1. //

Theorem 6.5 : The maximum value of { which permits a closed octagonal
grid S to be {-In-L, dlagnosable glven that less than half the processors In S are

faulty, Is 5.

Proof : We show that S Is 5-In-L | dlagnosable glven that less than half the
processors in S are faulty, Assumec the contrary. Then there exist two permilsst-
ble fault sets F'y and F,, with at most 5 faulty processors \n L, (u)_J {u} for
every processor u In S, such that they share a common syndrome s. Thus there
exlst two processors x and y satlsfying the conditlons of Lemma 8.3. T'o arrlve
at a contradlctlon we show that condltlon (3) of Lemma 6.3 1s violated If we
assume that r and y satisfy conditlons (1),(2) and (-).

case 1: d(zx,y) = 2.

Conslder Fig. 6.5(a). All other Instances of  and y with  (r,y )=2 and

satlsfylng condltlons (1),(2) and (1) of Lemma 6.3 are symmetric to thls ease.

The processor w Is faulty with respect to both /| and [7,. Otherwise
d(z,y)1s not minimum. Since y € F/,@ F,, from Lemma 6.2, both w, and w,
belong to F;@ F,. There are two disjolnt paths of length 2 between w and i,
a contradlctlon of 4.

case 2. d (x,y) = 3.

Conslder Flg. 6.5(b). All other Instances of 2 and y with d (r,y )=3 and
satisfy'ng condltions (1),(2) and (4) of Lemma 6.3 are syminetric to this case.

The processor w Is faulty with respect to both F'| and F,. Sincey € | D
Fa and w € FyMF, by Lemma 6.2, both w; and wy belong to F. 1, Yor
the same reason, both w, and w, belong to F,@ Ff_,. This means that there s a

processor ( w, and w, ) In F ;@ F,at a distance 2 from 7, contradleting the
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Fig. 6.5 lllustrations for Theorem 6.5
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minimality of d (z,y ).

It follows that S Is s-m-Ll dlagnosable provided that less than half the pro-
cessors In S are faulty. Fig. 6.6 glves an example of two permisstble fault sets In
an octagonal grid, with at most 8 faulty processors In L (u )U {u } for every u,
which share a common syndrome. In this syndrome the comparison outcome

between two faulty processors Is always 1. //

6.3. t-in-L | Diagnosis

In thils sectlon we present t-!n-L1 Alagnosls algorithms, To begln with, we
assume that one processor 1s known to be fault-free and show how dlagnosls can
be done in the cases of all the regular Interconnected systems studled 1n the pre-
vious sectlon as well as when the system satlsfles the conditions of Theorem 8.1,
We then present a unlfled verslon of these algorithms. We next show how thils
basle algorithm can be used to determine a fault-free processor In linear tlme In

all the cases consldered. Finally we present the complete dlagnosls algorithm.

We need the followlng lemma whlch forms the basls of ali the dlagnosis

a;gorithms of this section.

Lemma 6.4 : Glven a system S and a syndrome, let 1 be a processor in S
such that |L,(x)] = k, L ()| J {u} has at most [ k/2 | +1 fanlty processors,
and at least 2 processors in L (n ) have been correcty Identifled. Then w can be

correctly ldentifled.

Proof : Let X denote the set of processors In L (u) which have heen
correctly 1dentifled. If any member of X' Is fault-free then the status of 4 can be
determined correctly. We now consider the case when all processors in X have
been identifled to be faulty. Let X, and X', represent the set of processors 1n

L (v)- X which have O-llnks and 1-links respectively with w ., If
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X |+ X, > Lk/2 ]+ (6.1)
then u can be declared faulty: v can be declared fault-free If

X |+ Xy 41> [k/2] +1 (6.2)

Both (6.1) and (6.2) cannot be satisfled slmultancously; for otherwise the
assumptlon that there are at most | k/2 ] + 1 faults n L, (u)|J {u} s violated
or the processors In F have been ldentified Incorrectly. At least one of the con-

ditions (8.1) and (6.2) Is satlsfled If we ensure that

| X | +max{XNy+1,X,}> Lh/2] +1 (6.3)

Sinece X g+ X =A-| X |, max{X;+ 1, X',} > | (k- |F])/2] + 1. But

|X |+ L= X D/2) +12> Lh/e] +2
If | X' | >2. Hence condlition (6.3) Is satlsfled If | X | >2. //

Theorem 6.6 : Let S be a closed rectangular grid 1n which there are at
most 3 faulty processors In L (u )| ) {u} for every processor u In S. Given a
syndrome and a fault-free processor v in S8, all processors In S can be correctly
ldentified.

Proof : Given a fault-free processor v, all processors in L, (r) can be
correctly ldentifled. Conslder the processors I, To, T3 and r, In Fig. 6.7(a).
Since each of these Is adjacent to 2 processors In L j(u)| J {u } and there arc at
most 3 faulty processors In L (u )U{u} for every processor u in S, the proces-
SOIS T, To Tz and a, can be correctly ldentified.  Now assuming all processors
within a rectangle with sldes contalning at least 3 processors have heen correctly
identified, we show that the processors In the enclosing rectangle can he correctly

ldentified.
Let R be the rectangle In which all processors have been correetly tdentified
(See Flg. 8.7(h)). Let x, be a processor 1n IR which s adjacent to the

unldentlfled processor 7, on A such that 7 does not lle on a corner of . If x|
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Fig. 6.7. Propagation of fault-identification
in a rectangular grid.



or one of Its adjJacent processors whici lle on the same column as & Is fault-free
then one of the processors on A can be identified correctly. If all three are faulty
then z, can be ldentifled as fault-free since there are already three faulty proces-
sors In L ,(z,). Once one processor on .4 has been correctly 1dentifled, the status
of an adjacent processor on A can be determined shice two of its nelghboring
processors have been correctly ldentified: one of the 1dentifled nelghboring proces-
sors I1s In 2 and the other lles on A . Applying this technique r peatedly, all
processors lyving on 4 can be ldent!fled. The processors Ixing on 3. €', and /)
can be ldentifled simllarly. The status of the processors Iving on the corners of
the enclosing rectangle can be determined correctly slnce cach of these s adla-

cent to two processors whilch have been ldentified correctly.

By Inductlon, all processors In the system can be correctly 1dentified, !/

Theorem 6.7 : Let S be a closed hexagonal grid 1n which there are al most
4 faulty processors In L (u )U {u} for every processor w in S, Glven a syn-
drome and a fault-frec processor v I S, all processors tn S ean be correctly
identifled.

Proof : Given a fault-frec processor v, all processors \n L (v) can be
correctly identifled. We now show that If R 1s a hexagonal reglon In S and all
processors within R have becn correctly ldentifled then all processors in the
enclosing hexagonal reglon can be correctly ldentifled. Constder lg. 6.5,

All processors lyving on the encloslng hexagonal reglon except Lthe processors
2, ..2%g are adlacent to at least two processors In R. Thus from Lemma 6.4,
these processors can be correctly ldentified. Now each of the corner processors
21,02 can be correctly tdentlfled as cach of them Is adjacent to two correctly

Identifled processors.

By Inductlon, all processors In S can bhe correctly ldentifted, //
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Theorem 6.8 : Let S be a closed octagonal grid In which there are at most
5 faulty processors in L 2(u )U{u } for every processor u 1n 5. Given a syndrome

and a fault-free processor v In S, all processors In 8 can be correctly ldentfled.

Proof : Glven a fault-free processor v, all processors In L () can be
correctly identlfied. WWe now show that If R Is a rectangular reglon In 8 and all
processors wlthin R have been correctly ldentifled then all processors in the

enclosing rectangular reglon can be correctly ldentifled. Consider FFig. 6.9,

All processors Iying on the enclosing rectangular reglon except the processors
2, ...,24 are adlacent to at least two processors In R. Thus from Lemma 6.1,
these processors can be correctly ldentlfled. Now eacli of the corner processors
Z1,..,2 4 can be corrcctly ldentifled as each of them 1s ad)acent to two correctly

Identified processors.

By Inductlon, all processors 1n S can be correctly ldentifled. //

Theorem 6.9 : Let S be a hypercube system with ok processors Ino which
there are at most | k/2 | +1 faulty processors In L (u)|_J{u } for every proces-
sor v In S. Glven a syndrome and a fault-free processor v 1n S, all processors In

S can be correctly ldentified.

Proof : We observe that In a hypercube system, If a processor u 1s at a
distance r +1 from a processor v where r 21, then It Is adlacent to at least two
processors at a dlstance r from v. Thus If all processors within distance 7 from
v have been correctly ldentified then, by Lemma 6.1, all processors within dis-
tance r +1 from v can be correctly ldentifled. If v s Inttlally glven to be fanlt-

free, all processors within distance 1 from v can be correctly Ydentifled,
By Induction, all processols 1n S can be correctly \dentified, //

Note that the procedure outlined In the above proof will work correctly even
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Fig. 6.9. Propagation of fault-identification
in an octagonal grid.



in the case of general systems which satisfy the conditions of Theorem 6.1. Thus

we have the following.

Theorem 6.10 : Let S be a svstem with test Interconnection graph G =

(U,E) satisfying the followlng conditions:

(1) For all uw; € U, there are at most |k;/2 | + 1 faulty processors In
L ((u; )| J{u } where k; 1s the degree of u;.

(2) There are at least two distinct paths of length 2 between any two processors

at distance 2 from each other in S.

Given a valld syndrome for S, all processors can be correctly identitied pro-
vided one processor Is inltlally given to be fault-free. //

The procedures dlscussed above to Identify all processors glven a fault-free
processor can be used to develop diagnosls algorithms for all the cases constdered
when instead of belng glven a fault-free processor we have the constralnt that
less than half the processors in the system arc faulty. In these dlagnosls algo-
rithms, the following procedure s called at most two times to determine at least

one fault-free processor.

procedure LABEL (v : vertex)
S.1. Label vertex v fault-free. Let A 1= {v}.

S.2. (a) Let x be a vertex which Is adJacent to a vertex In A and X 1s not a

member of A.

(1) if z 1s adjacent to a fault-free vertex y In A then label x as
fault-free If £ and y share a O-link; label z oas faulty, other-
wise.

(1) elseif z 1s adjacent to two faulty vertlees In A then determine

the label of z using Lemina 6.4.
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(1) elseif z 1s adjacent to a faulty vertex y In A which already
has | deg (y)/2] vertlces labeled faulty in L,(y) then label 7

as fault-free.
(b) if vertex r s labeled then add r to the set A.

S.3. Repeat 8.2 until A = U.

end procedure

From the proofs of Theorems 6.6-6.10, {t can be verifled that the procedure
LLABEL{2) will terminate after labeling all the vertices assuming that v Is fault-
free. I this labeling 1s conslstent with the fault constraints and the glven syn-
drome then v s fault-free; otherwlse 1t will be faulty. Using breadth-first search
[62] an O (n+ | I |) implementation of the procedure can be designed. We now
present our dlagnosls algorithm which flrst uses the above procedure to deter-
mine a fault-free processor, and then completes the dlagnosis. A stralght forward
approach to determine a fauit-free processor Is to apply procedure LABEL on at
most |deg (u)/2] processors adjacent to some processor u. However the com-
plexity of such an algorithm will not be linear. \We show In the foliowing that we
need to use procedure LABEL at most two times to determine a fault-free pro-
Cessor,

Iirst we plek a vertex ¢ with at least l_deg (q )/2_[ — 1 0-llnks. Such a vertex
exlsts stnee each fault-free processor has thls property. In fact a vertex with this
property can be found 1n the nelghborhood L l(u )U{u } for every processor 4 in
the systemi. I the degree of ¢ 2> 3, then let w and - be two vertices sharing 1-
IInks with ¢; If ¢ does n¢' have two 1-links, then ¢ must be fault-free. If the

degree of ¢ 1s two, w and : wlill be the two vertices adjacent to ¢ .

Having selected w and : as above, we apply procedure LABEL on these two

vertlees, If elther one of them determines a consistent labeling, then It Is fault-




free and we are through. If both are faulty, then ¢ must be fault-free, for other-

wise L (¢)| J{g} will have more than |[deg(q)/2] + 1 faulty processors, con-

tradicting the local fault constraints.

Thus, we need to use procedure LABEL at most two times to determine a

fault-free processor. One more applicatlon of this procedure on the fault-free

processor wiil complete the dlagnosis.

A formal presentation of the above algorithm is glven below,

Algorithm 6.1: ¢t -in-L -Diagnosis

S.1.

un
(&%)

w
X

S.4.

S.5

S.8.

Select any vertex ¢ with at least L(]f,g (g )/‘.‘.’_| - 1 0-lInks,

/* Such a vertex always exists. v/

. if there are more than |[deg (¢)/2] O-Ilnks incldent on ¢ then call

LABEL(q ). Stop

/¥ ¢ must be fault-free. The dlagnosis Is complete. */

. if ¢ has degree two then let w and z be the two vertlees adlacent to

q.

else let w and z be two vertlces sharing 1-1inks with ¢.

/+ w and z exlst */

Call LABEL(w).

if labellng 1s consistent with the fault constralnts and the glven syn-
drome then the current labellng determines the fault set. Stop

Label w permanently faulty. Call LABEL(z ).

if labellng s consistent with the fault constralnts and the glven syn-
drome then the current labellng determines the fault set. Stop

Label 2 permanently faulty. Call LABEL(g ). Stop

/* ¢ must be fault-free. The diagnosls Is complete «/



The complexity of the above algorithm Is dominated by the complexlty of

procedure LABEL which s called at most 3 tlmes. So the overall complexity of
this algorithm 1s also O (n + | E |). This algorithm can also be implemented in
a distributed manner using standard technlques of distributed algorithm design
[61]. A synchronous distributed Implementation with time complexity O (n ) and
message complexity O (n + | £ |) can easlly be constructed.

Proof of correctness of the above dlagnosls algorithm follows from the
correctness of procedure LABISL and the unlque 15-111-Ll dlagnosability of the
regular Interconnected systems we have consldered as well as those which satlsfy

the conditions of Theorem 6.1.

The above results lead to the followling,

Theorem 6.11 : Let S be a closed rectangular grid, a closed hexagonal
grid, a closed octagonal grid system, or a hypercube system (wlith slze 27) In
whieh for every u, € U there are at most | k/2 | +1 faulty processors In
L (u, )U {u, } where k =4,8,8 and p respectively. Glven a syndrome, all proces-
sors In S can be correctly tdentlfied provided less than half the total number of
processors In S are faulty. //

Theorem 6.12 : Let S be a system with test Interconnection graph

G =7, ) satlsfying the following conditlons:

(1) For all u; € U, there are at most Lk,- /2 J + 1 faulty processors in
Ly (u ) J{u } where k, 1s the degree of u;.

(2) There are at least two distlnet paths of length 2 between any tWo processors
at distance 2 from ecach other In S.

Given a valld syndrome for S, all processors can be correctly ldentified pro-

vided less than half the processors In S are faulty. //



Note that In the above theorem the number of faulty processors permitted
In the domain L (u )U{u} of each prccessor u depends on the degree of u.

Thus, In this theorem, we do not assume that the system Is regular.

6.4. Summary

In this chapter we have Introduced the f-in-L, dlagnosability theory.
Assumling that less than half the processors In a system are faulty, we presented
a sufficlent condition for unlque diagnosis of a general system when eertatn fault
constraints in a local domaln of each processor are speclfied. This leads to a
sufficlent conditlon for a general system to be (-lu-L, diagnosable for
t = [6/2] +1 , where 8 Is the minlmum degree of the Interconnectlon graph.
This condition holds In the case of a hypercube. Interestingly, we have shown
that certaln regular Interconnected systems which do not satisfy this condlition
are also ¢-In-L; diagnosable for t = [§/2] + 1. \We have also presented {-\n-L |
dlagnosable algorithms for all the cases constdered. These algorithms are of

llnear complexity with respect to system size.

In most useful multiprocessor systems, each processor has direct connectlons
to a small number of processors. If only processors with direct connections are
allowed to test one another, then for most practical systems whleh are sparsely
connected, the classlcal dlagnosability theory will allow only a small hmmber of
faulty processors. The ¢-In-L, diagnosabliity theory overconmes this shorteoming
of the classical dlagnosls approach. Our dlagnosls algorithms can be Ymple-
mented 1n a totally distributed manner on the system Itself requiring no global
syndrome analysls. Synchronous Implementatlons of these dlagnosts algorithims
with linear message and tline complexities (with respect to systemn slze) can easiy

be designed.




CHAPTER VII

SUMMARY AND FUTURE WORK

7.1 Summary

Motivated by the inadequacy of the classlecal {-dlagnosability theory of
Preparata, Metze and Chlen, when applied to large sparsely Interconnected mul-
tiprocessor systems, we have carried out In thils thesls, a detalled study of ¢/s-
dlagnosable systems. We have also developed a theory of local dlagnosls (that s,
dlagnosls based on local fault constralnts) which allows the presence of a large
number of faulty processors even when the system Is sparse and yet permlts
correct dlagnosls of all the faulty processors. The theory also admlits simple
diagnosls algorithms which are amenable for distributed Implementation on the
multiprocessor system lItself. A brlef summary of the maln results of this thesis

now follows.

In Chapter 1II, we presented characterlzations of ¢ /s-dlagnosable systems
which generallze those given earller for {/¢{-dlagnosable systems. We have
shown how the { /s-characterizatlon for the PMC model based on Kohda's ¢-
characterizatlon theorem can be easlly modified to arrive at a (/s-
characterlzatlon for the BGM model as well as characterlzations for the sequen-
tlally ¢-dlagnosable systems. We also presented, In thls chapter, certaln struc-
tural propertles of general ¢ /s-dlagnosable systems which generalize some of the

earller results. These properties have led to a new ¢ /¢ 4-1-characterizatlon.

In Chapter IV, we developed an O (n3%) algorithm for dlagnosis of a
t /t+1-dlagnosable system. We also presented a t/t +k dlagnosls algorithm

which runs 1n polynomlal time for each fixed positive Integer k. We have shown



now these algorithms can be modificd to construct algorithms for sequential {-

dlagnosis.

In Chapter V, we presented a basle approach for local dlagnosts and applied
it to regular interconnected multiprocessor systems with very smail connectivity.
Here a local neighborhood 1s deflned around each processor whicii conslsts of its
t immedlate nelghbors and { subsequent nelghbors. The faulty or fault-free
nature of each processor is then determined as long as no more than { processors
are faulty In its corresponding nelgnhorhood. Based on this result, we also
presented a simple O (1) distributed diaznosls algorithm. We have studied the
application of local fault constralnts on a ring of processors. Speclfieally, we
have determlined If unlque dlagnosls Is possible If p out of any ¢ consecutive pro-
cessors In the ring are faulty.

In Chapter VI, we Introduced the concept of a {-In-L; dlagnosable system.
We first presented certaln baslc results which lead to a sufflclent conditton for
unique dlagnosis of a system when certaln fault constralnts are satlsfled 1n the
local domaln L ,(u, ) of each processor u,. In this chapter, we also studled the f-
ln-L1 dlagnosablility of certaln regular Interconnected systems: the closed pee-
tangular, the hexagonal and octagonal grid systems, and the hypercube systems.,
We presented {-In-L, dlagnosls algorithms for these regular systems as well as
those which satisfy certain other conditions. These dlagnosls algorithms can bhe

executed In a distributed manner on the multiprocessor systein tself.

7.2 Future Work

While the results of this thesls make Important contributions to the area of
system-level dlagnosls, they also suggest certaln new problems for future

research.
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The propertles of t /s-dlagnosable systems presented In Chapter III provide
much Inslght Into the structure of these systems. They have helped us In
developing efficlent ! /s-dlagnosls algorithms. They can also be of conslderable
value in studying the problem of designing ¢ /s-dlagnosable systems which have

minlinum number of tests and which admit simple dlagnosis algorithms.

The results of Chapter III and Chapter I'V bring out clearly the relationshlp
between /s - and sequentially ¢-dlagnosable systems. Comblning the properties
of these systems with Sulllvan's [33] proof of the co-NP-Completeness of t /s-
diagnosablilty, one may be able to simplify conslderably Raghavan's {12] proof of
the co-NP-Completeness of sequentlal f-dlagnosability. It 1s worthwhlle to
present within a unifled framework all the results relating to ¢ /s- and sequen-
tally (-dlagnosable systems. We wish to note that Somanl, Avis and Agarwal

have presented such a unlfied theory In a different context.

Further research is needed to develop slmple characterizatlons of t-ln-Ll
dlagnosable systems. Although the sufllclent conditlon of Theorem 8.1 is ot
satlsfled by some of the regular Interconnected systems consldered In Chapter VI,
this conditlon 1s satlsfled for most palrs of vertices In these systems. This sug-
gests the possibllity of developing a characterizatlon which Is a generallzed ver-
slon of Theorem 6.1. Such a generallzed result will help In arriving at a unlifled
proof of the I-In-Ll dlagnosabllity of all the systems consldered In Chapter VI.
Another Interesting problem will be to develop the general theory for {-in-L;

dlagnosable systems extendling the results of Chapter VI for & > 1.
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