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ABSTRACT"

DIFFERENCE EQUATIONS.:

= STABILITY THEORY AND APPLICATIONS

-

Anthony'Vanne]li

This thesis.con;iders three methods for studying
the stability of differénce eqaﬂéigfs. The first 1is the
Elaséical Lyapunov theéry appraach. The secbnd is based on
tﬁe_ndn—Lyapunov work, due to Pemran and”Bellman. Finally,
the third method iévolves important extensions of the

classical Lyapunov';heory, due to LaSalle and Huret,

/

The various stability concepts are illustrated by

_

examples and a chapter of aﬁplications, which emphasizes the

important role that stability theory plays in the under-
. )
standing of physical systgms: Some ¢f the theoretical results

obtained are new.
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CHAPTER I _ .

INTRODUCTION

1.1 OUTLINE,

Many phenomena iﬁ nature have the'proberty that
their dynamics change only aﬁ discfete times. For instance,.
many biologi;al species (May.[?O]“; Hassell and May [161)
haye been observed to change only at specific times. -
Between these changes, the;biological gopulétiondoei not
change.‘ Thé discrete time dynamics of such phenomena are

-

modellled by a difference equation of the form
~_
(ll 1) . xk+l = f(x.k’k) »

+

where X, 1s an n-dimensional vectoTr and k is an integer (k>0).

As with differential equatioﬂé, qualitative analy-
LS ’ .

-

sis of such difference eduhtioﬁs is of importamnce. The

purpose of this thesis is to study the stability properties
of difﬁerende_equations.o Basically, stability involves

,gnalyzing the behavior of solutions about an equilibrium o

-~ 3
point x*, where

(1.2) S x* = £(x*,k)

for all k>0. In stability analysis, we show that solutions

near x* stay near x*, converge to x*, or move away from x¥*.

-1-
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1.2 THE NEED TO STUDY DIFFERENCE EQUATIONS APART FROM

-“.

DIFFERENTIAL EQUATIONS.'

' : n . . al
Innis [19} advocates the use of difference equa-

‘tions instead of differentia; equations in the representation

.0f the dynamics of "soft science" syétems—ﬁiology, ecology,
. 4= :08Y

sociqlogy, economics, political science, epc: ~-These

disciplines are distinguished by two factors. Firstly,

"there exists &ifiibulty in making p:ecisé measurements of ° /

the variables of interest. .Secondly, the laws which govern

- 1 [
their dynamics are not generally known with great precision.

Differentiai‘equations*is a tool of precision.

This tool has proven to be «Gseful in precise applications,

sﬁph as engineering'andfphysics. However, the -less precise
2

the application, the less useful the toowl. ;n.reality“

differential equations may hinder rather than help. -This. is

revealea‘in the following argument.

A difference equation .can be exﬁresbed mathema-
tically as- > ‘
F

(1.3) © x(t+h) = x(t) + hE(x,v,t,h)

where x is a staté vector of the system, t is the time, h is -

.

. the time step, f is the qgteﬂﬁector describing the average

rate of change of x ovgr the time interval { t,t+h] and v is”

a vector of other variables (exogeneoué)_thét affect the

Pl
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rates of change of x,. .

+

It is.Eiqple to express the difﬁerence equation

as a differential equation,‘p;ovided the necessary limits

exist. We see that . . ' ;

() % b ix,vye,m)

(1.4) . -

EY

and letting h—=0, we have

tl.S) N . “ _—= f(x)V,t:O)

[a [} '
L]

The time step'h, important information for the difference

equation, has been lost. ) -

Innis 1llustrates his argument by considering a

¥

‘biological syétem (carcinogenic model) and mbdelling it.

.as a simple iotka Volterra eystem (differential equation)
ILotka -Vplterra equations model many predator-prey systems.
The biologist who formulated the model was seeking a descrip-
tion of the dynamics of those populations which displayed

*
Eyclic behavior, since this was observed naturally. A

mathematician descretized ‘the differentizal equation system

=1dnto a difference equation system and used a time step that

was too large. ‘The results showed no cyclical behavior.

Once the biologist considered more obvious reactions between

;he_predetdr;prey_({.e. hoetrparasite)-and a smaller time

etep, the new difference equation led to nearly cyclical

Y o R P
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behavior. Thus not only did the difference equatipn»model

give the biologist the desired results, the,;e—thinkfﬂg on

" the model gave him a more appropriate mathematical_represen~.'

1

tation of tHe.pHysical system which the more appealing

qifferential equation model could not give. ;
.Greéhspan [12] reinfo:ces_inqisf.agéument. He

i
. >

notes th'at scientific e*pefimentation leads to &iscrete

~*data which 1s then modelled by some coutinudus model.

Shoﬁld.ﬁhe equations of the continuous model be ion—l%near

;(which.is'often the case), these wpuld be solved by numerical.

\ .

methods, which result. again in discrete détal Figure I

v

sumﬁaryzes this regsoningu The middle step of this scienti-

",

fic activity is incorfistent with the other two and should

~

be replaced by the appropriate model, as Figure II indicates.

1.3 '~ QUALITATIVE ASPECTS .OF DIFFERENCE ﬁQUAIIONS.

System (1.1) exhibits a variety of qualitative

behavior. -As with differential sYsEems, (1.1) may be stable

-

around the equilibrium point. 'System (1.1) also exhibits

behavior that i;_peculiar.to discréce-;ime s}gtems.
Selutions may gitﬁer apprpach or afg theﬁselvgs cycles of
var%ous periodicities. Or, s91utions may behéve,in a
'"chaot;c" féshibn.‘ That is, solutions may haﬁe all p;riods,

and\there exists a set § such that solutions'starting in S

do not approach any cycle at all. . f¢ -

N
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' ‘ May [30] illustrates these different qualitative™
properties in the case of biologicai populations obeying -
difference equations., He observes that several biological

-populations are modelled by the non-linear difference

equation

-

| (1.6) T Xy TOX, exp{r(l—;t/ﬁ)} .

2 -

Y

where 'r 1s the growth raEe, K is a carrying capacity, and

X is the population sizé’at time t. Depending on r, the

? ]

model in Table I demonsffatgsaagﬁ the properties discussed

. ’ ‘f
in the previoys paragraph. ¥

Hoppensteadt [171 reveals similar properties by

considering the simplest of non-linear difference equations:

"

(1.7) : 'xt+1 = m xt(l—xt) o

The behavior of this equation is outlined in Table ITI.

These two examples illustrate unexpected dynamics
inherent in difference equations. Generally, one assumes

that if a natural systemlcould-be modelled by a discrete-time

system, maﬁy'qualitative aspects'of such a system could be

-

determined. May. summarizes what really occurs: .

For population bioclogy in genefal,'and
for temperate zone insects in particu-

lar, the implication is that even 1if - ' .

-5-



the natural world was 1007 predictable, .
the dynémics of pbpulétions with
"density depenﬂent% reguéition could
nonetheless in some circumstances: be
indistinguishablé fromechaos, 1f the

. intrinsic growth rate r is largg

»
: enough.

As interesting és chaos may_be,.the aim of this
thesis is to preéent stability theory for difference
aqﬁations'whiéh.do not exhiﬂit chaotic behavior. Chapter IT
-presents the necessary theory for 1ingar différence equa-—
tions. This ;ill serve-ﬁs a #agis for éttackiﬁﬁ'non-iineaf

equations in subsequernt chapters.
, : A )

Chapter III formulates: the notion of a Lyapunov

+ e

T

function for discrete systems. "‘This function *1é*then used

[

LA -

"to establish several powerful stability results.

Chapter IV investigates the stability properties’ of

difference systems by a’ non~Lyapunov technique. New results

are presented and extensions of older ones are also given,.

(L

Chapter v expands on the ideas presented in
Chapter IITI. This chapter is iﬁportant‘in developing

criteria for establishing stability domains.

Finally, Chapter VI looks into three applications,
of the theory introduced in Chapters III-V. Another aim of

this chapter is to show how stability questions arise from

physical problems.



. CHAPTER 11

LINEAR DIFFERENCE EQUATIONS

2.1  OQUTLINE.

In this chapter, an outline of_the_ba;ic theory
ofllinear difference equations 1is p;esented. In a way that
is analogous to ﬁifferential equations, we shall present
théorﬁes for'ﬁbmogenéous and non;homogeneous digference:
equatlons. As with differential equationsr‘t&iﬁigyaaﬁen;al
matrix solution of difference equations will be inhroduced-

and,developed. o

The chapter ends with two important results.

Firstly, an existence and uniqueness result for non-homo-

geneous equations is shown. Secondly, Gronwall's Inequality

for discrete systems is proved. Both these r%ﬁults are used

to establish several stability theorems in Chapter IV.

2.2 HOMOGENEOUS AND NON-HOMOGENEOUS DIFFERENCE EQUATLONS.

4

Consider the linear difference equation

(2.1) Ve © A(t)yt_l + L

and I_ = {a,a+1,a+2,...}

where A(t) is non-singular for IEIA+1

for a€R. We call (2.1) a non-homogeneous difference equation

if w_ is not identically zero on Ia+ . Related to (2.1) is

t 1
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the associate homogeneous equation

*

(2.2) yt = A(t)}'t_l’
for teIa+1' By a solution of (2.1) on I_ we mean a vector

t

(2.3) . V=AY, ow,
« ™~

for tEIa+lﬂ

P2 )
THEOREM 2.1: Let a€R and ¢ be an n-dimensional constant

vector. Then there exists one and only one vector ¢t

.defined on Ia such that

. (ba = ¢
(2-4) and ) .
) _ +
Qt A(t)@t_l v,
for all t>atl.
f
Proof. Let @a = ¢,.-and define ¢a+l = A(at+l)e + wa;l'
We eclaim that '
t-1 '
(2.5) ¢t = A{t) A(t—l)...A(a+1)cJ+ z 'A(t) A(t—l)...A(r+l)wr
+
Ve

'
LY

for t = at2,at+3,até4,...4is the unique solution that satisfies

¢ -

-~ 8-

o~
¥, with the propertiez that Wa is defined and that it satisfies
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(2.4). This result is shown by induction. 'Observe that

for t = a+2, (2.4) gives

A

(2.6) ¢a+2 = A(a+2)¢a+1 + Vato

~
= A(a+2) A(atl)c + A(a+1)wa+l + V42

I

Thus, (2.5) is true for t = at+2. _Assume (2.5) is true for

t = at+n, that is

(2.7) ¢a+n = Alatn) A(aTn-l)...A(a+l)c_
atn-1
- + _
(1 ACatn) Alatn-1)...8(eFL)w, +owo,
r=at+l
Since,
(2.8) . ¢a+n+l = A(a+n+l)¢a+n + Vo 4o+l

and substituting (2.7)Tinto (2.8), we have

€2.9) @ = A(atntl) ACa+n)...A(atl)e

a+ntl
+ +
_Z Aatn+l) Afa+n). . AGetDw + W g 4,
r=atl .

Thus,-we‘have shown recursively that (2.5) satisfies (2.4).

Equation (2.5) shows uniqueness. If we had defined -

Wt on Ia’ which satisfies (2.4) for't3a+1, then from (2.4)

we have



¥a+l = A(a+l)?a + Vo1
. .
(2.10) = A(afl)c + wa+1
= ¢a+1

Using (2.4), one can show récursively that

for nza+2

(2.11) | ¥ = ¢a+n

Q.E.D.
Let {y,(t), 1<i<ql} be n-dimensional column vectéru
- i - = Y

solutions of (2.2) on Ia' Then the nxq matrix

" &

(2-12) Yt =‘[Yl(t),---,}’q(t)]

whose colums are the y,(t) vectors is a matrix solution of
i —

(2.2) oﬁ Ia' Thus we have

(2.13) Y = [yl(a),...,yq(a)]'and

-
|

A(D)Y, 4

for t>a+l,

As in the theory of linear differential equations,
we introduce the notion of linear aependence for linear

.difference equations.

Definition 2.1: Let fi(t) 1<i<q, be n-dimensional vectors

defined on Ia' We say fi(t) are linearly dependent on Ia

-10-



1f there exist constants cy 1<i<q, not all zero, such that

'(2.14)“_c1fl(t) + c2f2(t) T.s.+ cqfq(t) = 0

Ll s
’

for aill tEIA. If any relation of the form (2.,14) implies

1 = ey T .. = tq = 0 for all t ;n Ia, then fi(t) are

linearly independént on Ia. This leads to the following

c

definition. _

I

Definition 2.2: If yigt), 1§iin,are n-dimensional linearly
'independent vectors on

‘Ia which are solutions of (2.2) on

I,, then Y = [yl(t),yz(t),...yn(t)] is called a fundamental

matrix set of solutions of (2.2) on-I;ﬂ-'

"To show that Yt is linearly independent of Ia’

Miller [ 321 establishes the following equivalent criteria.

THEOREM 2.2: Let"%t = [yl(t),yz(t),...yn(t)] be an nxn

matrix solution of-(2.2)‘oh Ia' Thar the following three

statements are equivalent:

(i) Yt is linearly independent on‘Ia;'

(1i1) Yt is non—singulé}, for all tEIa;

(111) lxal‘#‘o.

As" with differential equations, one would lik? to
find the‘solution of (2.1) from the sclution of (z2.2).

The following theorem allows us to do -this.

~11-



THEQREM 2.3: Let a€R, Let v, be an n—-dimensional vector

defined on Iﬁ+l’ and A(t) be an nxn non—singular matrix on

Ia+1' Let Yt be a fundamental matrix set of solutions of

(2.2) on Ia, Let ¢ ,be an arbitrary constant vector. Then

-

¢t’ where .
.
”
. ¢ ) = ¢ ) al
- a __ .
(2.15) _ - t
-1 -1
$_ =Y, Y ¢+ ,) Y. Y "w
t t s=a+1 t s T

e

for Qzé+l, is tbe'unfque solution of (2.1) on Ia' .

)

Proof. We 'observe that

(2.16) 7 - CY =AY .

Thereforeﬁ we obtain

-1
A2012) YL Y To o A(e) ACE-1)...A(t-s+l)
LY

Hence (2.5) becomes ¢a'= ¢ and
- . t-1 -
- $ =Y Y-lc + Y Y_lw + w
t t Ta - r r t
r=a+l i
(2.18) '
. -1 t -1
=Y, Y e+ ] Y Y Tw,
a r=atl

for t>atl. Thus we have shown (2.15). By virtue of Theorem2.1,

-12-



we know that this solution is unigue.

£\\° ' - _ | ) _ :Q.g.D.
.‘“\ . : . :

-

We conclude this chapter with a result that will

be referred to frequently in the sequel.

-

-

1

THEOREM 2.4 (Croﬁwali's‘lnequglity)i Let u{(t) and v(t)
be defined and non—negative:on Iaﬂ Let ¢ 'be a positive

constant. If

, ufa) < ¢ ‘
T(2.19) e-1 '
u(t) < ¢+ § v(s)u(s)
. 8Fa
for t>atl, then .
e ,
. . t-1
(2.20) u(t) < ¢ expl v(s)}
: s=a

for q3a+l.'.

Proof. We define o(t) on Ia as:

. g(a) = 0 and
(2.21) - . Te-1 |
g(t) = J .wv(s)u(s
s=a

‘Then for tEIa, we have

SRR
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(2.22) u(e) < o) ,

which implies that

1.1
' c+c(t)'e-u(t)

(2.23)

Multiplying both sides of (2.23) by u(t)v(t), we have

u(t)v(t)

(2.24) ~Fo (o) S V(D)
and:
(.25 1 MOV Ll ¢ arpuceyt )

cta(t)

If we change the variable ¢t ;d s and taking logarithms, we

have
(2.26) logl c+a(s+1) ] - logl cto(s) 1 < v(s)

. . . -~ ) .
for SEIa. Now sum the above equation from s=a to s=t-1.

This results in

| t-1
(2.27) log[ cto(t) I'=- log ¢ < } v(s) or,
. §=a .
t-1
eta(t) < ¢ exp{ } v(s)}
S=a

~14-
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By hypothesis, u(t) < cto(t) for tGIa

is proved.

-15-

Thus,

the theorenm

Q.E.D.



CHAPTER III

5

CLASSICAL LYAPUNOV THEORY E

3.1 OUTLINE. ! .

“

An important problem.of system theory centers

.
around the concept'of stability. Briefly, stability refers’

to the behavior of the variables of a system as tw

]

. Freeman [11] observes that there are two major
poiets of view with respect to the stability of a system.
In one, the syetem 1s presumed to possess an eguilibrium
poiet and concern is with the ayility of the system to

maintain a state in the vicihity of this equilibrium in the

absence. of any-control or input u, as t?® . Such systems are

referred to as free systems.

In the other, we assume that the system is stable

if a bounded input u(tk) yields a bounded output x(tk+1) .

In the first case we are considering a system

(3.1) x(ty ) = F(x(t),e)
. - .
for k>0 . As Figure III illustrates, one starts at X in a

6-neighbourhood of the equilibrium x, and wishes to show
that x(tk).sﬁays in an e-neighbourkood of X, as tk+m . In

the second case we are considering the system

-16-
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(3.2) . x(t,p) T 6(x(e),ult),t)

k+1?

for k>0 . As Figure IV illustrates, one stsrts with an
inftial state*xo,aﬁd input u, and wishes ﬁélshow tﬁat

x(t,) is bounded. .
e

[y

In the followiﬁg theory we shall make the assump-

tion that if a-.discrete-time system is stable at discrete

k’
tito . This assumption ignores the ﬁossihility that the

inskants t fof‘kzo ,, the system'ié stable for all time

state of a system may remain bounded at the discrete
instants tk and yet increases without bound in the.intervals

between successive instants.

)

3.2 BASIC STABILITY¥ DEFfNITIONS AND THEOREMS.

In this section, the basic stability concepts for
free systems are presented. Firstly, the stability defini-
tions for free éystems are stated and then some stability

results using Lyapunov's direct method are deveioped.

We consider té? system (3.1) where tk is an
independent, discrete-time varliable, tk+1>tk for all in;egers
_k, and tk*m as k#® ., We shall denote the solution of (3.1)
for anylinit%al state X and an initial time to by

(3.3) ;x(tk) = B(tk;xo,to) /

-17-
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. -‘l. . »—>
for all tk>t°.. We assume that the vector valued function B
. ' — . ‘ " ] .
is continuocus for all tk and for. each {o" x and- that
R 4
(3.4) . N F(O,tk) =0

)

for all £, - Then (3.1) possesses the trivial solution

x = 0 . This trival solution is teferred to as phé /

equilibrium point of the system (2.1). We are now ready to

giﬁe the'definitions of stability.

Definition 3.1: The equilibrium pointfﬁ i® said to be
stable ("stable in the sense of Lyapunov") if, for'any £,

and éhy;€>0 , there exists a G(E,to)zo such that if 4

k;xo

II#QH< §(e,t,) , then || B(t .

,tp)l[fs for all t e,

Definition 3.2: The equilibrium point O is said ta be

uniformly stable with respect to to y 1f for any ttho and:

any €>0 , there corresponds a 6(g)>0 (N.B. € does not depend
on tl) sucﬁcthat if r|k0[|<6(E) , then ||B(tk;x0,tl)|l<€ for

.all t >t

k—="1

Definition 3.3: The equilbrium pcint 0 is said to be

4

asymptotitally stable 1f:
(i) it is stable and

'(ii) 1f there exists an n(t;) >0 éuchmthat -

-1l8- -



.‘(3.5') C ldm )| BCegsx Lt )] = 0

ko

_fo;.allle°||< n(e ) . v

Definition 3.4: The equilibrium point 0 is said to be

uniformly asymptotically stable ifs

(1) . the origin is asymptotically stable, -

(11) n(t ) is independent of t,

,» and

(1i1) for any- >0 , there exists T(g) such that

'“ B(ﬁ#;xo,to)|| < e for all t 3t0+T(E) whenever [|xo|| <r

k

(r>0 , r being some fixed constant which does not depend‘on

’

E-or xo)
From the dgfinitions,,we see that for‘a stable
equilibrium point 0, x

k
origin; while, for an ésymptotically-stable roint, the

remains in the vicinity of the

system converges to the origin.

-

Definition 3.5: ‘The equiiibrium point 0 'is said to be. !

=

Nagymptotically étable in the Iafge if |LB(t ,to)||*=Q or

L

Before we proceed.to develop sufficient conditiohns

for a given system to be stable in the various senses

;X
k’"o

all x
o

discussed above, we will need ﬁhe folloying additional

definitions.

el
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Definition 3.6: A scalar functioan(x,tk) is said to be

positive definite in a nedighbourhood N of the point x = 0

if;V(O,tk) = 0 and if there exists a continuous, non-

decreasing, scalar function w(+*) such that

0 and

(3.6) : w(0)

“ Vix,t,) > w(]l‘xll )

€

for all x in N and for all values of tk

Definition 3.7: A positive function is said to be

decrescent in a neighbourhood N if there exists a

continuous nondecreasing scalar function s(*) such that

1t
<o

and

(3.7) s(0) |
| sCl] x| . &

Vix, t

[ A

»

for all t, and all x ¥ 0 in N,

Definition 3.8: A positive definite function V(x,tk) is

salid to be radially unbounded if |V(k,tk)]+ ® as || x[]>e=

for all tk

. /
We are now ready to present a set of important

stability theorems using Lyapunov theory for discrete

systems. The ideas inherent In these theorems were introduced

by Li [26] and later extended by Hahm [13] , Kalman and

Bertram [ 21] ..

-20-~



Consider the system (3.1) for whi¢h 0 is the
equilibrium point, Let V(x,tk) be' a édntinuous positive
definite. function. Let AV(x,tk) denote the first forward

differénce_in V(x,tk), that is

V) s t) - V(e ).t

(3.8) AV(x,t,) =

Then we have

THEOREM 3.1 (Lyapunov Stability Theorem): The equilibrium
point 0 1s stable if there exists a continuous positive
definite_function V(x,tk) possessing a non-positive forward
difference AV(x,tk)

Proof. ?or the sake 0of convenience, we let tk+1—tk = 1

Civen a particular e>0 , we select G(E,CO)E(O,E) such that
for leo||< 6(E,t0)we obtain V(xo,to) < w{e) . This is

possible because of .the continuilty of V(x,tk) in x. Since

BV (x,8,) <0,

4
(3.9) Vix st ) 2 V(B(tk;xo,to),tﬁ)
From the positive definiteness of V(x,tk) it follows that

(3.10) 'V(xo,toy > w(IIB(Lk;xO,FO)J[)

and therefore

- !
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(3.11) w(e) > Wx_,t) > w(|l Bl .t ) )

Since ' w(*) is é ndndecreasing function, it follows

||B(tk;xo,to)||< £

for all t >t, and all |[x°|[< G(E,to)

k

THEOREM 3.2 (Lyapunov's Asymptotic Stability Theorem):
The equilibrium'point 0 1s asymptotically stable if there
exists a decrescent positive definite function V(x,tk)

pbssessing a2 negative definite forward difference AV(x,tk)

N

Proof. From the proof of Lyapunov's Stability Theorem we
know that the positive definite functicn V(x,tk) has a non-

negative limit as tk*m . We denote this limit by V*

Since Vtx,tk) is decrescent by hypothesis,’

(3.12) vix,t,) < sl =D

Hence V*>0 implies that I[x(tk)|| = I|B(tk;xo,to}]| will

always be larger than some positive number p . ‘Since

AV(x,tk) is negative definite,

" (3.13) Av(x, e ) < ol x|,

-22~
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*/.
where r is a continuous, nondecreasing scalar function.
Then V#*>0 dimplies

L

(3.14) L ) AV(x,tk) < -r(u) <0

ry

We now write V(x,tk) in terms of its forward difference

AV (x,t,)
k~1 :
(313 (), ) = Vix L)) F iEOAV(X(‘i)’ti)
It follows that
(3-16? Vix(r,d,t,) 2 V(xo.to) - kr(u)

Since V(x,tk) is positive definlte, the right-hand side of

(3.16) may not become negative. The only way this can be
satisfied for large k is to have r(u) = 0 . Hence u = 0 and

H B(tk;xo,to)ll-{q as k—-w

]

Q.E.D.
[
THEOREM 3.3 (Lyapunov's Asymptotic Stability in the Large
Theorem) : The equilibfium point O is asymptotically stable
in the large 1if V(x,tk) is positive definite, radially

unbounded, and AV(x,tk)'is negative defPnite.

Proof, The proof of thjils theorem follows directly from the

" proofs of the previous two theorems.

-23-



The first two theorems reveal both an adﬁant;;?p
and a‘drawback of Lyapunov's direct method. The draﬁbéqk
is that 1t 1s often éifficult to construct a Lyapunov
function; an important feature of th; method is that it
yields a regioq,fd; local stability. However, the region
of lo;él stabilif}rwill vary with the Lyapunov function
constructed. One wishes to construct a Lyapunov function to
obtain the largest region of locai stability. Unfortunately,
‘éhis 1s only possible in special cases. One must bear in
mind. that the foregoing theorems give only éufficieﬁt condi-
tions for stability. 1In section 3.4, we develop nhecessary

conditions for sfability.

3.3 STABILITY OF LINEAR, STATIONARY SYSTEMS.

1
Let us consider the linear, stationsry system

described by »

(3.17) x = Ax | . ,/

k+1 k

L] - e

with ‘an arbitrary initial state x . We will establish a

.
)

fundamental result in stability theory by considering the ,

following two cases: ‘ l
Case 1: n independent éigenvectors of A exist.

If this is so, there exists a non-singular matrix

H stch that

S e e it

2l



(3.18) A= H TAH ,

where
.r. ) -
o ¥ v 7\1 . O
: . A
_(_3.19) ' . A= 12.
O -
J . m

and,\l—i are the eigenvalues of 4 . Now, conside{\i?e trans-

formation P

(3.20) - e = Hyk,'

Then we have f
(3.21) éyk;l = AHyk

Y

Pré—multiplying botrh sides of (3.21) by H_l, we obtain

(3.22) ey = AV
Thus

' _ .k
(3.23) Yk - A yO ’

-25-



where’

(3.24) ° AR = 2

< 1 for all

It follows that lim [{yk||= 0 if and omly if [A]{ ,
ko

i=1,2,...n , and that lim []yk]]= © if ome or more
- ke
N -
2,0 >
Case 2: less than n independent eigenvectors of A exist.

In this case we can find a noh—singulaf matrix P

" such that

(3.25) X, = Pz

and by the same manipulation as in Case 1 we obtain

. . - N - l .
(3.26) 241 P APz,
where
. all alz...aln
-1 899---85,

(3.27) P TAP = . .
0"
nn

-26~-
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i

iy

From (3.26) we have

[ 7 [
Zp+1,1 811 83127 %1n
(2.28) k1, 2| = %227 %2n
zk+i,n - (:) %an.
i 1 L )
or,
* If‘_
(3.29) z = a,.,z .+ _ a,,z
k+1,1d 11%%,1 of4q 137K
(3-30) zk+l,n = nnzk,n

Hence, for any k>0 and any initial state zé

(3.31) z, = (a_ %

Clearly 2y 1 will converge to zero as k>*» if and
?

|a <1

nnl
Let us examine ,

(3.32) zk+i,n~1

and a,, = A" are the eigenvalues of A for i1

+
an-l,nfl zk,n-l.

n—l;n

1,2,...n

k,n

It is apparent from the same reasoning applied to‘(3.31)

- - ‘ ' -27-
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that z,  _, will converge to zero as k*o if and only if
,n-1 ¥

- —3c0
[an—l,n-ll < 1 and simultaneously 2k . n 0 as k . .

By induction, it themn follows frém (3;33) that 211

's
zk,i*O as k*e 1f and only if all Iaiil <1 .JASince the A4 .

are the eigenvalues of A and since they are invariant under

the tranéforma;ion (3.27), we have established the following
) SN
result. N ;

+
THEOREM 3.4: A linear stationary system '

(3.17) gy T Ax

is asymptotically stable if and only 1if all the'eigenvalues

of A are of magnitude less than unity.

Observe that Theorem 3.4 is true‘for all xo..

Thus, we have asymptotic stability din the large. For
convenience, it will be understcod that (3.17) is asymptoti-
cally stable in the large whenever we state that (3.17) is

asymptotically stable.

3.4 A CONVERSE THEOREM.

In section 3.2 (Theorem 3.1) we saw that a Lyapunov
function with a non-positive forward difference AV implies
that the equilibrium point is stable. Often, stability

analysis concerns itself with the converse problem: 1t is .

~28-



" known that the system 1is stable and one seeks’ a Lyapunov

function to determine. the region of local stsgbility.’

The problem is to establish the existenceé of such
functions. In general, this is difficult. For linear
systems, however, Lyapunov functions can be .constructed.

Let us consider
(3.33) v(x) = ¥ Qx ,

where Q is positive definite and x' is the transpose of x

Then with respect to (3;17) énd (3.8) we have,
(3.34) AV(x) = V(Ax)-V(x) = x (A" Qa-Q)x

" Hence, if A" QA-Q 1is negative definite, equation (3.17) is-
asymptotically stable. Conversely, suppose (3.17) is

asymptotically stable and comsider the equation
(3.35) A QA-Q = -R . .

If it has a solution,‘then

ty k
(3.36) = 7 (") RrRA
k=0

n+1 ntl

ko @ -qQ

Since the eigenvalues of A ave in magnitude less than unity,

we have that (A )"0 and A"+0 as n*» . Letting n¥® , we see

~29-



that the solution Q of (3.35) is

- '.f
(3.37) Q = X (' ykrak
k.._
In [11,pp.164-165], Freeman shows that (3.35) has a unique

golution Q provided the eigenvalues of A satisfy the

condition

(3.38) Ajdy ¥ 1 for all i,3<n
. This condition i3 met, since Theorem 3.4 shows that the
eigenvalues of & are all less than unity Also Q is pcsitive

definite 1f R is positive definite since

“(3.39) xQx = x' Rx + Z x' (A’ )k ,

. k=1
where x' Rx>0 and each terﬁ in the sﬁmmation of (3.39) is
greater than or equal to zero for x ¥ 6 .  Thus, x' Qx>0 for
x % 0 ,-which implies Q is positive definite. Thus we have |
shown the>following theorem, which can be found in

LaSalle [ 23]

THEOREM 3.5: If there are positi§e definite matrices Q and
R satisfying (3.35), then (3.17) is asymptatically stable.
Coﬁversely, if (3.17) is asymptotically stable, then R,
(3.35) has a unique solution Q. If R is positive definite

fhen, Q 1is positive deﬁinite;
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fhis result shows that 1f a 1ineaf, stationary
system is asymptotically stable (i.e. ;igenvalues‘are in

£%m§%iQude less than unity) and we have a positive definite

-ﬁ;trix R, then a positive definite_métrik Q can be:found'by‘
solving (3.35). Q is sucﬁ that V(x) = x Qx 1s a'Lyapuﬁov

funetion of the system (3.17). . °

/
)

i

. ' This result plays an important role, in the theory
of discrete control systems and is useful in non-linear

discrete systems. The following theorem from LaSalle { 23] 1is

‘an example.of such an application.

THEOREM 3.6 (Stability by Linear Approximation): Consider’

the following system

(3:40) Xppp = AX, tOE(x))

where f(x) is o(x) (i.e. lim iLiLElﬂ-= 0) . If (3.17) is
: . fxll»0 x|
. ] .
asymptotically stable, then the origin is an asymptotically
stable point of (3.40). If one of the eigervalues has

magnitude greater than unity, the origin is gystable.

L

nggf. We shall bnly'prﬁve the first part of this tﬂearEm.

The second part is slightly more difficult to prove and fol-
lows from~results in- Chapter V. From Thébrem,B.S, there is a
positive definite matrix Q satisfying (3.35). For convenience,

téke“R = I ;‘and let V(x) = x'Qx.. Then relative to'(3.30)
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1l

(3.41) AV(x) = [Ax+E(x)]'Q [Ax"‘f(x) - xax f
) [x'A’+f(5<)1 Q[Ax'i'fo)]-x Qx )

i}

= x A" QAx + x A Qf(x) + f(x) QAx

F]

. f(x) Qf(x) - x' Qx

x' (A QA-Q)x + 2x Qf(x) + V(£(x))

I

x' (- I)x + 2x QE(x) + V(f(x))

il

-xrx + 2x-Qfo) + V(£(x))

P ’ “ . .
Using the fact that £(x) is o(x) , it follows that for any

#0<a<l there exists a 6 sufficlently small that

(3.42) AV(x) < -ax'x  for all || x| < &

o

ﬁence, V and -AV are positive definite, and the origin is

asymptotically stable by Theorem 3.2.

Notice that this theorem tells us that the
stability domain.{][x||< 8§} comes out of the Lyapunov

function constructed. .That ié,'ﬁ is a functipn of the

~

Lyapunov function.

3.5 REDUCIBLE NONSTATIONARY SYSTEMS.

The asymptotic behavior of -

(3.43) 24y = ARz, L



is difficult toﬁéstaﬁlish. ‘Professor LaSalle, in a p ivaie
: )

: ~ y ;
communication, informed the author of an example where the

i

eigenvalues of A(k) are constants and lie inside the unit

gircle and yet there are unbounded solutions.

If (3.43) can be "reduced”" to a form-1like (3.17),

then perhaps yﬁe stébility properties could be related.

F;Eemag [11] shows how this can be done through the careful

/
+

use of Lyapunov's results.

iet S(k) e an nxn matrix-with-bounded-componenfs

that is non-singular for all k>0 and Sql(k) is bounded.

-

" Let

(3.44) Yiry = By >

-

where (3.44) is'related to (3.43) in accordance with

'S
L 4

(3ij5) ' Vi = S(k)zk, .
for all k>0 . Upon combining (3.45) and (3.43), we obtain

©(3.46) . S(k+1) A(k) S"l(k)yk

Y+l

.

- ‘ )
Erom (3.44), we have

B
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(3.47) B(k) = S(k+1) A(k) $™T(k) .. -
Freeman indicates that’ if S(k) 1is as specified,
the system correspcnding to (3.44) has precisely the same
stability propertles ‘as that corresponding to (3.43). This
e

fact can be used ‘to advaﬁgage in establishing the stability

of certain non-stationary systems.

Let us suppose that for a given linear, non-
stationary system (3.43), an equivalence transformation S(k)

-exists such that .

"

(3.48) S(k+1) A(K) STT(k) = A

for all k>0 . We can determine the stability of the given’

non-stationa&y.system by studying the stability of the
Cf o
transformed stationary system
4

(3.49) - Vb1 = AV

using the methads of section 3.3. Systems that.can be trans-
formed in this manner into stationary systems are known as

reducible systems.
—~ '

3.6 MODIFIED SCHUR-COHN CRITERION.

We have seen that for all linear, stationary

sysﬁems, and reducible non-stationary systems, the necessary

-

.
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an&psufficient condition for asymptotic stability is‘that

the magnitudes of the eigenvalues be less than one. For

an almost linear system we have'éufficient'conditions. To
determine the eigenvalues of an nth ;rder system we must
solve the nth degree characteristic equation [A-AI| = 0 .
Without a digital computer, difficultieé may occur if n>3 .
Fortunately, a numbe; of tests exist thaf enable us to deter~

mine whether or not all the roots of a characteristic

equation are of'magnitude less than ane without requiring

. us to solve for the roots themselves. Such tests are known

as stability criteria.

One éf the simplest and most effective criterion is
tbe modified Schur-Cohn criterion. The modified criterion
was introduced by Tsypkin [37] and Ju?y [20] and repreéents .
a considerable simplification of an older criterion duve to
i Schur and Cohn (Marden [29)) . The modified Schﬁr;Cohn
criterion ;as developed for discrete-time systems. Other
criterion such as‘the Rputh-Hurwitz,.Liénard~Chipart, or
Nyquist are designed to test for stability of continuoys—time

systems, and thus require some modification before they can

be used for discrete-time systems.

Let us consider the polynomial

= n + .
(3.50) F(x) a x + an_lx -i-+'56

<::;I;h’ﬁ;§0 > ay real for i = 1,2,...n , we define its inverse
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polynomiél:

1

]

(3.51) F oo(x) = x"F(x )

a xm + a x4+, x + a
o 1 n-1 n

1l

With the'polynomials in the form (3.50) and (3.51), we
divide Fﬁl(x) by F(x), beginning at the left (highest power)

end, to obtain a quotient term-and a remainder.

FL (x) P, )
(3.52) — = 4+
F(x) - F(x)

The division is now repeated using the remainder

polynomial F;l(x) and its inverse polynomial Fl(x) in

sccordance with the recursive relation

(3.53) e T
Fi(x) Fi(x)
for {1 =‘0,1,..l,n-2 and where Fo(x) = F(xj-. The necessary

and sufficient condition that the roots of the equation

F(x) = 0 lie in the interior pf'the unit circle is that all

of the following conditions are met:
(a) F(1) > 0 for n odd
(b)) F(-1) < O for n odd

>0 for n even, and
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(¢) o, | <1 1= 0,1,...n~2

|

The following example [11l,pp.173] uses this criterion.

EXAMPLE 3.1:  We wish to determine whether a system having
ther following characteristic equation is asymptotically

stable.
[a-AI| = 1022 - 412% + 541 = 5 = 0
Letting F{A) = [A—XI[ , we have

(a) F(1) =18 > 0

(b) F(-1) = -110 < 0 (n = 3, odd)
() F ) = =523 s4a? - 41x + 10
-1 2 .
F ) - 5.5 4+ 33.5A7-14X+7.5
F()) 1003-41224542-5
-1 ,
Fi 335, _48.5)-142.3
L) 7.5 7.502-142+7.5
H ;r‘
Since n = 3 , we need only determine %y and ai ’
|a0| = l0.5] <1
_ 133.5 .
lajl = 55521 > 1 (violated).

Hence the system in unstable (the actual roots are

A= 2-4, -2+i, and 0.1).
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CHAPTER IV
ST@EILITY ANALYSIS BY MEANS OF LINEARIZATION -

A NON-LYAPUNOV TECHNIQUE

4.1 OUTLINE.

As was demonstrated in the last chapter, the’

existence of Lyapunov functions can be used to prove powerful

-

stability results., Even 1f somehow, a Lyapugov function is*
known to exist for a system, i# may be difficult to construct
jt. Often, one may not want to know whether a system is
stable,-but rather wishes only to show boundedness of solu-
tions, orlwhat is termed Lagrangian stability. In view of
the foregoing, it is desirable to have an aitgrnative to

Lyapunov theory.

This chapter develops a mnon-Lyapunov technique
(linearization) that can be used to‘esEabligh uniform
asymptotic stability and boundedness.fesults for difference
equations. This technique is due mainly to the work of
Perron { 34 ] and Bellman [ 3,4,5] . However, somé new results
will be presented using_several ideas from Struble [?6] .

Examples will illustrate these tesults.

4.2 PREREQUISITES.

The notion of an. "impulsively small' perturbation
is used to solve particular linearization p}oblgms in the

continuous-time case. It 1s ouxr aim to apply this idea to
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the discrete-~time case.

Suppose that we wisk to analyze the stability
propertles of the system
(4.1) X,z A(t)xt_l .
One would l1ike te show that the stabllity properties of the
system (4.1) are similar to those of the simpler linear

system

(4.2) . X _ = Ax ’

where A = lim A(t)
t-)-oo

The following two definitions will be used to

establish many of the results in Section 4.3,

Definition 4.1: If A = 1im A(t) , then B(t) = A{t)-A

t-}m

is called the perturbation matrix of A(t).

Definition 4.2: B(t) is impulsively small as t—== ,

oo -

1f J lIsall= I I+ [ IBs)lf<=

§= = 8= = 5= 0

One result that will be used often in this section,

can be stated as follows:
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LEMMA 4.1: If in the system (4.2), the‘brigin is asymptoti-
cally stable, then

_ \
(1) ||YtYa_l|[j ||A||t_a for t>a*+l , and

(11). ] YtYa“lll + 0 as tow

Proof. (1) This first result 1s easily derived from eqda—

tion (2.13): )
| (11i) By Theorem 3:4, the hyﬁothésis-indicates that
the eigenvalues of A are of magnitude less than one. This
fact plus the result in [8,p.27] allowé us to find a,norﬁ

Il'||such that

(4.3) Al < 1

~.

From the result obtained in the first part of the .lemma, it
_ll

~

ig clear that IlYtYa | > 0 as t==
4.3 LINEARIZATION THEOREMS.

The following theorem illustrates how the impulsive
smalliness of the perturbing term determines the boundednéss

of (4.1).

THEOREM 4.1: 1f a;l solutions of the system (4.2) are
bounded as t-+ , the same is true of (4.1); provided the

perturbution matrix B(t) is impulsively small.'

Proof. We wish to find a constant Ma with the property that:
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(4'4) || ¢t,a”i Ma

for all t€I_ . ¢,  _-indicates that the solution begins at
. . »
time a .and point ¢a-a and continues along the orbit deter-
. ¥

mined by ¢t a for 't>a . Now sﬁppose‘that ¢t a is any non-
. » H]

zero solution‘of (4.1)on Ia . We can readily verify that

(4.5) ¢, o = Y .Y ® + )
s=a

where t€I and Y_ is a fundamental matrix solution of (4.2),
a+tl st :

determines the solution of (4.1). From the properties of

r

norms

. 1 .

ooy Aoy < My e 0 ITe, L
t-1 -1 N .

DI (SR Sl [T YEE S TN

s=a .

Since ][Yt||§ c(a) (by‘hxpothésis}, 1|Y3—1|f= b(a) » and

14, = dCa) , (4.6) becomes

£-1
(4.7) 1o, Ml 2 c(a)b(ard(a) +
' l . [ ] L . . ?-?a. o

- . '.“'_ _.-\;-". -

Th the hypotheses of Gronwall's Inequality are met with
e .

41— ' {
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(4.8) ' e, A= o)

t,a
(4.9)"f ' c(a)b(a)|] B(s+1) || = v(s)

Therefore,

t-1
(4.9) ||¢t al|i c(a)b(a)d(a)-exp {c(a)b(a)

| B(s+1) |} .
s=a :

ie s

i
.— ¢
o«

But, ) |/ B(stl)|[= M < o . Thus, ¢ is bounded by M_,
§= = . t,a a

where

{(4.10) Mé = c(a)b(a)d(a) exp {M e(a)b(a)} .

Q.E.D.

The following theorem establishes an asymptotic

~”

stabllity result for (4.1).

1

THEOREM 4.2: If (4.2) is asymptotically stable znd

|| B(k) || > 0 as k2= , then (4.1) can be shown to be asymptoti-

cally stable.

Proof. Define p(A) to be. ,

(4.11) o(A) = max {lli|: Ai are eigenvalues of Al

[8,p.27] shows that there exists a norm || ¢|| such that

-



Il All < 1, since p(A) < 1 . Choose a positive € to be

smaller than 1-p(A) . There is a Ko such that

4.12) - I all+ 1l Beo) Il < 1-e

for allﬁszo . The solution of (4.1) cén also bel§xpressed

by
< k-1 |
(4.13) %, = (T {A+B(1)})x
- o
- 1=0
KoL k-1
= ( T {A+B(4)}) ( T {A+B(i)})xo'
w 1=0 i=K
o
for k>1 .. Taking norms of both sides, we have
o Ko-1. ' k-1 o )
(4.18) Ml = 12 ¢ TAa+B D € Tl a+se) D | =[], -
' i=0 i=K
LK -1 ) .
Let ! [IA+B(i)||= M and with  the inequality from (4.12),
i=0 .
we have'
' < k-K
(4.15) =, Il 2 Ml x | (1-e)" 0
Thus, ||xk]|+ 0 as k*= ., 1In fact (4.1) is globally

‘asymptotically stable, since it is asymptotically stable for .



each x
e o
Q.E.D.
As thée following theorem indicates,‘we can show

- the stronger result that (4.1) is uniformly asymptotically

stable 1f B(t) is impulsively small.

THEOREM 4.3: If (4.2) is asymptotically stable, then (4.1)

is uniformly asymptotically stable if B(t) is impulsively .

small as t-w

Proof. Cons{der any a€R . Let_Yt be a fundamental matrix

splution of (4.2). As in Theorem 4.1, the solution of the

system (4.1) can be expressed by the equation (4.5).

It follows thét

-1 _ ,t-a
(4.16) YtYa = A
for tEIa+1 . Thus, (4.5) can be expressed by
t-a el t-s-1
€4.17) bp o = A g0 ¥ 2 A" B(st1)é_
‘ 5=a -
Vv

‘ -‘.

We see th!{Jm'
' t-a | tol t-s-1 i |

a.18)y o, M= Ilall "o, i +S§al] all "=l s I ¢

b b

s,all



Since (4.2) is asymptotically stable, Hall <1 . Letting

t+a

o = l]A[]and multiplyipg both sides by o ; we have
L
-tta ) eol -1 ' —sta
(4.19) ¢, N L A RIS SN PR S | .

s=a

We can use Gronwall's Ine?uality to obtain -

[

-téa ' | Lot -1 .
(4.20) ¢, lla S e, zllexe '] « 7l BCs*1) (|} .
8= a
4
. .
Since ) [l B(s)|]= # < » , we have that
s=-@ :
.21y 1o, M< e, Mexp @fat-a )
R t,a'l = a,a P 3
Tc show <£hat the origin is uniformly asymptotically stable,
we must verify Definitiom 3.4, 'Ciearly parts (i) and (ii)
are true for equation (4.f1). It remains to show that for
any €>0 there corresponds T(€) such that lIB(t’¢a a,é)l]i £
- 3 .
‘for all t>a + T(e) whenever ||¢a alli r , r<0.{(where r does
. not depend.on a, €, ¢a.a). Choose any €>0 and >0 . We wish
2 . .

to find T(e) 3 ||¢t a][i € for all t>a + T(e) whenever

a alli r . Thus, we wish to show

-4s-



(4.22) il e, s rlexs 13 0"TR < e

whenever [|¢

|| « x . Equation (4.22) becomes
a,a'l — . :

(4:23) o agtta o £ .
- M
A . r exp {E}

Since a<l , we can find T(g) such that

3

(4.24) LIS AP
: - M
r exp (T}

‘
-

Thus, the Erigin in uniformly asympéoticélly stable.

Q.E.D.

Having established seyeral -stability results for
the linear, non-stationary system (4.1), we can ob;aiu:f,‘

boundedness results for the following system:

+EGe) .

-'\ -

(4.25) o x, = A(t)'xt_

t 1

-

lTHEOREH 414
then the same is true bf the inhomogeneous equation (4.25)

prhvided B(t) and £(t) are both impulsively small.

Proof. Consider any a€R . The solution gf thé above

equation can be expressed as -

P

s et IR ————

If all solutions of (4.2) 'are bounded as t~® ,

S NES

[l T B

ISV PR LR



(6.26) - 4 = Y L}g o+ ZaYt_s_1+aYa-_l(B(?+1)¢s;a+f(s)) ,

. for t3a+1 and where Yt is the fundgmental matrix so}ution of

(4.2).. Thus, we have

hid

4.27) Mo, <y L ne, e, |l
. t,a t a ) a,a e
| t-1 — o .
f LIl Hldirelie, L+l
&

This results in the following inequality

t-1

G.28) oy il < c@rlle, Ll + I ez e,
t-1
@l e,

where |[Yt||i c(a) and b(a) = ][Ya_lll. Since
Ille@]=nes,

S:-oo ". -

¢

(4.29) < fle, L2 (@bl o, I+
S t=1 .

F v ] el e, Il -

, s=a ‘

1

+ We have by Gronwall's Inequality

-57-



t-1

(4.30) cht a[.]f_(c(a)b(a)“lba a||+n) exp {c(a)b(a) T Bes+1)|} -
. : ’ ~ ’ - , s a

Since B(t) is impulsively small as t*= , we have that ¢t

is bounded ag t—+= ., -

" "Q.E.D.
J
If the system (4.2) is asymptotically stable, one

can derive the same resultstas in Theorem 4.4 by weakening

the condition on £(t)

THEOREM 4.5: If all solutions of (4.2) approach zero as
t7*= , then a1l solutions of (4.29) are bounded as t—w ;-

provided f(t) is bounded as t-*® and B(t) is impulsivély small

-,

as t7e |,
) .

Proof. To prove this theorem, we begin By considering the

system -
- ) * - 0

(4.31) oy, = Ay, t £(t-1)

t

Any solution of this system can be expressed as

- t=-1 1 _ )/’

. . = -+ . =
(4.32) ¢t,a ¥e¥a ¢a,a S=aYt—341+aYa f£(s) =
for t>atl ., In view of 'Lemma 4.1, the hypbthesis iﬁplies
that

-

T e e e —et



(4.33) ey, THE< AR and
(4.34) Il £Ce)]l < xCa)
, - "1
for t>atl . Thus, we have _ -
| : t-a eot t-s-1
(4.35) 1o, < INAIE 11, 1+ T I1AIE ke
s=a :

-

Letting t=~ -and summing the geometric seriles we have

= e, Lll+xa G .

t,all =

(4.36) | ¢

where a = || Al] .’ Therefore the solution y, of (4.31) is

! 3

bounded. If we subtract (4.31) from (4.25),-we-obtaj? )

((4.37) : e T Ve T A(B)xr_—l =AYV -
\
LetFing e e we Fave

4.38) z_ = x, -y, = A(t)(xt_ljyt_lr\$ (A(E)-A)y, 4
= A(t)z + B(t)yt_l . : .

L t-1

Since B(t) is impulsively small as t== and y is bounded,

-49-
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the product B(t)yt¥l is impulé}vely small as t-®

Therefore the hypotheses of Theorem 4.4 are satisfied and we

conclude that every solution z; is bounded as t-® , Cle?rly

th‘n, every solution X, =z, +_yt of the system (4.25) is

bounded as t+w

Q.E.D.

Let us consider the mpre general difference system

(4.39) | x, = £(x,_ ,t-1)

For simplicity, assume (4.39) has an equilibrium point at the

-

origin.,. Then, we may also express the r;ght-hand side of

(4.41) in the following manner

(4.40) . f(xt_l,t-l) = Cxt_1 + r(xt_l,t-l) s

where £ is (any) constant matrix. Here r(x t-1) 1s the

t-1*

difference f(xt_l,t—l) - Cx Suppose C is a nonzero

t-1

/

matrix and that r(x;t) is o(x) 'uniformly with respect to

t>a : That is, given e>0 there is a 6>0 such that
[ r¢x,e) ]| < ellx || for .all t>a and all ||%]| < & . Then, the

equation

(4.41) : . x_ = Cx

3 -50"



is called the linear approximation of the system (4.39). The

fact that r(x,t) is o(x) uniformly with respect to t>a
indicates that the, linear term in (4.40) 1s the dominant part

of X 1 near. the origin.

To determine the stability of (4.39), the following
theorem due to Perron [ 34 ] and Bellman [ 3] dehonstrates-that
in some cases, one can draw certain stability-coneclusiaons

by studying the linearized part.

THEQREM 4.6: If ‘the linear approximation (4.41) is
asymptotically stable at thehorigin,'then (4.39) 18 uniformly

asymptotically étable at the origin.

Proof. For any a€R ., the solution of (4.40) can be expressed

as:

where Yt 1s the fundamental matrix solution of (4.42) for
t>atl . Since (4.41) 1is asymptoticallf stable,

( | : L

E)

(4.42)" - IR S R R

where IIA!L< 1 as shown 1in proof of Lemma é.i letting

IIAIIf‘a', we have



=1 t-s-1
a I
a

t
oap) e <o e, I+ . SCHREIN

Since r(¢,t) is o0(¢) uniformly with respect to t>a , there
exists M and a 6>0 such that

o exp(l/M) < 1 and ||r(¢é,a,s)||< % ['¢s,all’ where

l1¢s_a||< § . éubstituting into.(4.44), we obtain
3

(4.45) log o lho ™% < 1l e, Il exe (552
B ‘F "
(4.47) o, < 1he; I (e expea/my) 72

-

As in Theorem 4.3, we observe that equation (4.47) has the,

same behavior as equation (4.21). Thus, ¢

t,a is un}formly

asymptotically stable about the origin.

4.4 EXAMPLES.

4

In this section we present some examplés.éf the

linearization results established in Section 4.3. In these

-

examples the norm of a matrix D is .denoted by

_—

o

. n n
(4.48) llofl= 1 T lagyl
L 4 i=1 j=1
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EXAMPLE 4.1: Congider the difference equation

c

. ) L )
(4.49) z + (1+ Yy z =0
nt2 l+n2 n

We wish to show that all solutions are bounded. One can

represent this equatdon by the following system of difference

equations. Let "

B i B =
2 = Zn *a-1,1
xn-l - B X
Zn+1 n-1,2
Zatl xn—l',2
then tx = : = 1
- (] e
: S (1 7) *po1,1
| i | 1+n
-
v 0 1
i .
= - F— -
*a (1 2) 0 *n-1 ,&I(n)xn 1 :
1+n . .
' ‘ 0 1
Observe that lim Al(n) = t = A, . (Therefore kK
n-—rm l R 3
-1 0 ,
£
- : 0 0 ‘
Bl(n) = Al(n) - Al = ! ' 0' . We note that
1+n2
oo . . o 1 .
T Il B (n) || = Z < @ ., Thus B_{(n) is impulsively
1 . 2 1
n=-~-w n=-« l+n .
small as t-e . If onmne considers the system x_ = A.x .
n 1"n-1

53



then for any initial value X, the solution is x = A

Fof Al , we have

Thus any soélution is periodic and is clearly bounded. Since
all the kypotheses of Theo}em_4.l have been met, the differ-
ence equation {4.49) has bounded solutions.:

o

EXAMPLE 4.2: If we Te—-arrange the equation (4.49) to

. 1 _
(4.50) zn+2 + 2) z, .0,
1+n
P 0 1
' we_now have x = - 1 2) ol *n-1 = Az(n)x _1-
1+n
2
. , o 1[ . .
Observe that lim'Az(n) = = AZ . B, (n) = Bl(n)rand
. n-w 0 ) 0 ra .
thus 1t is impulsively small as n*® . Since the repeated

eigenvalue of AZ is zero, we have that (4.50) is uniformly

asymptotically stablé by Theorem 4.3.

L3

EXAMPLE 4.3: We will show that the following difference

equation



: .\I '—[n| i
(4.51) Z 42 + (1 + 4) z = e

has bounded solutions., Defining x _q as in -Example ‘4.1, we

obtain
- > .
0 1 0
= 1 + -
- Xa -(1+ 4) 0| *n-1 e Inl
- 1+n
.—- + —
Ag(mx, o, * £(n-1) .
¢
. . 0 1 ' 0 0
One finds that A3 = {* and B3(n) = 1
S P R [T B

f- “ 1+n

Clearly B3(n) is impuisively-small as nte Observe that

<

e-lnl <1 . As in Example 4.1, the solutions of

.are bounded, since'they are perioddic., Therefore,

xn 3xn-1

the solutions cf equation (4.51) are dounded by Theorem g

-55-
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CHAPTER V

" EXTENSION OF CLASSICAL LYAPUNOV THEORY

5.1 OUTLINE.

In ghapter;IiI, we we?e able to establish with éhe
ald of Lyapunocv functions, several sﬁability‘properties of an
equilibrium point, Lyapunov theory enabled us to find a
domain of stability of an equilibrium point.

Now, consider the following difference équation

. _ : _ 2
(5.1) Xy © (X

for x>0. Equation (5.1) has the solution

Loy K
= (x )%

(5.2) | Xy

~

Then i:_xo = 1, X = 1 for all k.

"If xo<l, then xk+0 for even k.

ik*m fo; oddlk.

If x0>1, then xk*O for odd k. \

x,*» for even k.

k
If we allow @ to be in the vector space, we then have that

some subsequences of the solutions approach a set

-

Ax = {0,1,} . Under the previous definitions of stability



presented thus far we would have corcluded that the equilib—
rium point 1 is ueseable; 'However, 1f we coeld regard

{Oal,m} as the limit set of the solutions and observing that
subsequences of the eolutions cpeyerge to this set, theﬁ the

previously eﬁpty domain of stability becomes the set .

6= {x>0} . The limit set A* and the domain G play important

roles in stability analysis.

.

The theory that follows was formalieed by several
authors, most notably LaSalle-[23], ﬁurt.[18] : and Hale
[15) . This chapter formalizes the thecry which extends
classical Lyapunov theorj. We first examine this theory in
regards to non-autonomous systems. Finally, we study the.

properties that apply to autonomous systems.

5.2 GENERAL STABILITY THEOREM.

Consider_the.non—autqnomous system

/

" (5.3) N

¢

For any non-empty set A, denote the distance from x to A by

d(x,A):

(5.4) | d(x,A) = {[[x-ylla yEAL} .. ™

We add the vector « to the vector space X and define

L



LU

(5.5) dGey) = =l 7E . S
Letting A% = AU{w}‘, we define d(x,A*) as: M -

(5.6) d(x,A*) = min'{d(g,A), d(x,=)}

-

o

Let G be any set in the vector spﬁce X; where G may
be unbounded. If V(x,k) and W(x) are continuous in x, V(x,k)

18 bounded from below, and

(5.7) AV(x,Kk) = V(E(x,k);k+1)-V(x) < ~W(x) < 0

]
I

for all‘kzko and all x in G;* then V is a Lyapunov function

/

for (5.3) on G. Let G be the closure of G, including = if

G is unboUndgd;‘and define the set A by

(5.8) A = {x€G : W(x)=0}
Hurt shows the discrete analogue of LaSalle's general

stability theorem for differential systems.

THEOREM 5.1 (General Stability Theorem): If there exists
a Lyapunov function for (5.3) on G, then each solution of
(5.3) vwhich remains in G for a1l kzko appreaches the set

A¥ = AU{=]

Proof., "Leg x, be a solutiomn (5.35 that remains in G for all

k
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kiko . Then;'by assumption V(xk,k)'iS'a monofone non-

increasing function which 1s bounded from below. Hence,

V(xk,k) mist approach a 1imit as ke ,‘and W(kk) nust

-

approachég as kwo , -If {xk} is unbounded, then lek]|-l¢0
and we have d(xé,A*)*O . If {x. )} is boundé®, ‘then there.
exlsts some subgequénce {xL}fy.as ko | ‘By continuity, we.

‘have W(xL)*W(y) = 0 . Thus, yEA and d(xk;A*)+0‘as k-re

r

.Therefore, xk+A* as k¥= ., _

Reﬁéﬁks} (1) Theorem 5.1 reveals several important points.

If G 1s unbounded and there exists a sequence {xn} such.that
[[xn]L+m and W(xn)*o as n*» , then it 1s possible to have an

unbounded solufion-undéf the terms of the.theoreﬁ. If G 1is
bounded then thefe exists a set B in A such thaﬁ B is {g
compact. THis is.shown by obsegving that B is bounded, and
éince.we consider all‘su?séquences that converge to'yEB, then
B is closed. | f

(2) ‘Theorem 3.4 can be pro#ed usi%g Theorem'SJl..
For ?nétancé,'if G is the entire space X and W(x) is
positivé definite,)then A = {9} and all solutions approach

the origin as ko= ., Thus+if each eigenvalue of the linear

system

(5.9) o X4 Ax

-59--
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- N
.~

)

"hag modulus lesg,Ehgn unity,.we can find a positive.
definife function W(x) Gheorem 3.5) and thus (5.9) is

asymptoticaliy stable in the large.

< .

EXAMPLE 5.1 [18 p.584] :" Let us apply the.results of
Theorem 5.1 to the system (5.1). Let G be ‘the ‘set of positive

numbers.. Then, 1f x>0 we obtain xk>0 y and all solutions

which start in G stay in 6. The function V(x,k) = V(x) ,
where
L
.

V(x? = v . "

\

is a Lyapunov function for (5.1) on G since V(x)>0 and

L.
|

. ; %2 x ;k(xa—l)(lQX)
AV(x) = V(f(x))-V(x) = - =
: x4 D)
[ T h ‘
= ~W(x}<0 .
We have W(x) = 0 where x = 0 and 1 and W(x)=0 as x—+e .,

. This implies that A¥* ='{0,1,m} . Comparingjthis-with the
actual case shown in. the introduction, we have that this
Lyapunov function gives the smallest A* -and largest domain °

of stability G.

Example 5.1 illustrates the importance of finding
a;Lyapuno; function for which A* is as small 'as ?ossible apd
é as large és possible. Hurt [18] shoys that a set G can be‘
ccnétructed sorghat all solutions which start in some smaller

set G, remain in G. From Theorem 5.1, 1f we have a Lyapunov

Lo
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function on G then all solutions which start in G, approach

Af as ko=

COROLLARY 5.1: Let u(x) and v(x) be continuous real-valued

functions, Let Vﬁi,&) be such that -

(5.10) - u(x) % V(x;k) < v(x)

for all szo . For soq@ N , define the sets Gl = Gl(nf and

G = G(n) as

1l

(5.11) C6(n) = {xtuGo<n} o

1l

(5.12) . G (m) = (Evix)<n)

If V is a ﬁyapunov function for (5.3) on G(n, then all

solutions vrich‘Stapt in Gl(n) remain in G(n) and approaéh
K . .

A as ﬁgm,. . .
’ , ) i
. b

Proof. ©Let x(k) be a solurion of (5.3) with ¥(k%) € Gl(nl

v . . -
then u(x(k)) < V(x,,k) < V(x_,k ) < v(x,) < n for all
, ‘ - k - o’ o’ — k0 : 1,
% e G
€ > .o '
&zko fmplying =x(k) G(n) for all K—Eo‘ |
-, » . (.r
. SR
5.3: PRELIMINARIES FOR- AUTONOMOUS SYSTEMS. i
' - - ; . .
’ ' o 3
Let us consider the autonomous system
(§f13) ) X 41 = f(xn) .
b -61-
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. 1imit points of x.

1

L ¢ ]
where x_ 1s the stdrting point. The solution of (5.13) 1is

(5.14) ' x_ = fn(xo) ,

n | . : /

P L 1]

where fn(xo) = fn"}(f(xo)) for n>1 . The following defini-

tions and theorems form the backbone of LaSalle's "Invariance

f .
Principle”, which 1s discussed in the next section.

e - N Coe
Definition 5,1: A point y is a limit point of x if there is

4 sequence n

‘ n .
i such that £ ix*y and ni*m as i#® . The limit

set (x) of the motion {f x} starting at x is the set of all

Definftion 5.2: -Relative to (5.13), or to £, a set H is said

to be'positiveli (negatively) invariant if f(H) C H (HCf(H))

H is said tc be invariant if‘f(H) =.H ,

L] G

Definition 5.3: A closed invariant set A is.said'to_bb

invariantly connected if it is not the union of twolnon—empty-

digjoint‘closed invariant sets.

' ~

-

Definition 5.4: A motion £"(x) is said to be periodic (or

cyclic) if for some k>0 , fk(x) = x . The least such integer
k 15 called the Eerio& of the motion or the order of the cycle
1f f?(x) ¥ x for 1<j<k . 1If k=1, x 1§ a fixed point of.f and

is called an equilibrium point of (5.13). The following

‘results are well known.
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THEOREM 5.2: Every limit set’ Q(x) is closed and positively

invariant.

TREOREM 5.3: 1f {fn(x)} is bounded for all n>1l, then Q(x)
is non¢ehpty, compact, inyariant,.invariantly connected, and

is the smallest closed set that {£%(x)} approaches as n=+wo .

THEOREM 5.4: An invariant set with finite number of
elements i1s invariantly connected if and onl& 1f 1t is a

periodic motion.

Y

5.4 . LA$ALﬁE'S INVARIANCE PRINCIPLE FOR AUTONOHOUS SYSTEMS.

For V a Lyapunov function of (5.13) on G, LaSalle

defines

- (5:15) . E = {x:AV(x)=0, x€G}

We use M to denote the largest invariant set-in E, and

(5.15)_ Vul(c)_=~{x:V(x)=c, x€R™} .

LaSalle'establishes-the following ihprovement of Hurt'é

Theorem 5.1. ' ) . /

THEOREM 5.5. (Invariance Princ?ple): SIf (4) V 1s a
Lyapunov function of (5.13) on G and (ii) {xn? is a solution
o0f (5.13), bounded, and in G for all n>0-, then there is a

W
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number c such that xn+M n V—l(c) as n-o

Proof. We know X = fn(xo) is a solution of -(5.13). Our
assumptions imply that V(xn)‘is'nonincreasing and bounded
from below and hence Van)*c'as n*e , Let yGQ(xo) , then

"there is a sequence n

such that ni*w and x .*y .. Since
L .

ny
V is continuous, V(xn J»V(y) = ¢ . Therefore Q(ko) c v
) i

Since Q(xo) is invariant, V(£(y)) = c and AV(y) = O

i

e

Therefore Q(xo) C E and hence 1s in M. Since xnﬂﬂ(xo) ,

xn+M N V-l(c) (larger set) as n=®

. \ . -

- One of the results that wcomes out of this theory

. 1s that solutions approachiperiodic cycles, the equivalent of
limit cycles in the continuous time case. The folquing

example [23,§p.§-7] illustrates this poinf. :

EXAMPLE 5.2: Consider the two-dimensional system

.

' . ' ay
(5.17) ‘ x(nt1l) = —
’ . I1+x “
n
. bxn,
1+y
n

or, withithe obvious netation,

-
q

ay

1
X —
2
+
1 yﬁ- . ’ . - -
bx
y = :
’ l+y2'
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where a2 = b% = 1., Take V(x,y) = x% + y2
AV(x,y) = V(X' ,y' ) - _v(x,y)
2 ' 2
, P ¢ (s —1y?
(1+y™) (1+x“)

._,« . - >

ﬁ is a.LyapﬁnoY function of {5.17) on the entire space Rz.
‘Hefe E=M 1is thé union of the two coordinate axis and by’
Theorem 5.5, we kn;w each solution approaches {(c,0),(0,¢c),
(-¢,0),(0,-c)} for some ¢ - the intersection of E with a
cirele of radius c¢. There are t;o sub;ase;
(1) ab'='1-.l Then f(s,o) = (0,be) , fz(t,O) = f£(0,be)
= (abc,0) = (e,0) . Sinée limit setévareinvariantly
conne;ted,’every solution approéches one of perieodic

motion of period 2 (Theorem 5.3, 5.4).

(11) ab = -1 . Hence £(c,0) =.(0,be) . F
£2(c,0) = £(0,be) = (abe,0) = (-¢,0) @
£3(c,0) = £(-c,0) = (o,dbc) - | . ;
£4¢e,0) =

£(0,-be) = (-abe,0) = (c,0)
“

A3 in (i}, each solution approaches the origin or if c % 0,

it approaches a periodic motion of period 4.
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o CHAPTER VI

TAPPLICATIONS

6.1 OUTLINE. - '

The aim of this chapter is to 1llustrate some
applications of the theory developed in Chapters III, IV,

and V. 1In the process, we will get some insight into how

physical preobhlems motivate the mathematical theory.

The . three areas that 4re examined in this chapter
are quite different. Hoyever, gach model indicates that a
stability problem is présent. Each stability problem will
‘bélsblﬁed using the methods of Chapéers IITI, IV, and V.

The mathematical resolution of the stability problem is
. . {
-then interpreted in physical terms. The wholé exercise

-

indicates the beautiful interplay between the questions that

come cut of physical systems and the mathematical machinery
used to model and respglve them.

/;/&6 2

. POPULATION DYNAMICS AND STABILITY.

Beddington [ 2] investigates the effect of age

[y

structure on the dynamics of populations, He'illustrates
"that several authors used linear, staticnary systems to model

this particular aspect of the population. Thus, models are

of thé form
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(6.1) X4y = Axt R

where x, is a column vector containing the n groupings of a

population at time t aﬁd_A is a square ratrix of order n.

]

In this model the. first row of A has the n age
specific coefficients of fecundity and 1its sub-diagonai
containé the n-1 survival probabilities. Further, it was

e

assumed that the fecundity and survival coefficients were

constant-.

The model is able to predict the stability proper-
ties around the equilibrium point for some types of biologi-
cal specles. However, it becomes more and more ineffective,

2s fluctuation in the fecundity and survival coefficients,

which vary with age, population and time, incrpases.

In an attempt to represent the biological pheno-
menon more accurately, Beddington suggests that one consider

the following system:

(6.2) S Xegq T N(x.t)% .

where N(xt) is now a linear, non-stationary matrix. The

fecundity and survival coefficients are no longer constant.

As was mentioned in Chapter III, it is very

¢ difficult to obtain stabjlity results for linear
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'non—stationary systems. However, Beddington shows.that
(6.2) can be represented by Ehe gystem N
(6.3) Y41 T Byt -+ f(yt) N

where £(y) 1is o(y). Thus Theorem 3.6 states that it is:
sufficient to show that

r

(6.4) Yoy = BY,

is stable {(i1.e. eigenvalues of B are in magnitude less than

tunity) to demonstrate that the more complicated system {(6.2)

is stable.

-

3

£ Beddington proceeds as follows. The system will be

in equilibrium when for some vector x* and matrix N(x*) .
(6.5) x* = N(x*)x* .

Ciearly the equilibripm can -be found when one solves
(6.6) |N£x*)——I| =0 .

Now, consider é deviation from the equilibrium ,such that

(6.7) ﬁ = x* + y



Then, substituting into (6.2), we have

(6.8) L oxk oy 0= N(xkby ) (xdy )

Expanding N(x*+yt) to the first order, we obtain

n
(6.9) N(x*ty ) = N(x*) + ] y N' (x%)
=1

+ second order terms of Ye

where we define Ni'(i*) as the partial derivatiye of ‘the

) ' k] . M ' .
matrix N with respect to the ith element of the vector X,
evaluated at x*, and y; as the 4 ER element of the vector yt

Substituting into (6.8), we have

* n
(6.10) xk + yt+l = [N(x*) +i_zlyiNi‘ ()E*) ]'(x*+yt)

+ second order terms of Y,

Ignoring second order terms and noting that N{x*)x* = x*

we obtain

. - A n .
. . ' ;

+ second order terms of Ve -

If we let Hi be a square matrix whose ith column is x* , we

have
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(6.12) N.' (x*) H

= ' xkhYyxk
1 e yiNi_(x )x

Substituting into (6.11), we finally have

, n
(6.13) Yebp = [N(x*) +i£1Ni'(x*) Hy ]y,

+ second order terms of Yy

Let us define

: n
(6.14) B = N(x*) + ] N (x*) H

1=1 i

Thus, (6.2) is of the same form as (6.3), where B is defined

as in (6.145 and £(y) is o(y).

Thus the stability problem of the system (6.2) has .-

-

been reduced to the calculation of the eigenvalues of the
matrix B. Theorem 3.6 eﬁables us to determine when we have
stability or instability.- Beddington indicates that th;
type of populations where thelsurvival Tate is dependent on
the present population (i.e. ﬁ(xt)) is found in the varying

hare, the vole Microtus agrestis, and the red grouse,

As an example of the application of this criterion,
Usher [38] considers a simpler model. 1In Ehis model the
~elements of the matrix N(xt) are functions of n defined as

the sum of the elements of the vector xi.

.Here B is given by
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- (6.15) B = N(x*) + N (x*) H ,

where N{(x*) is the derivative of N(xt) with resbect to n
evaluated at x* and H 1s a matrix whose columns are the

vector x*

Usher considers a model where there are three

female age groups and the matrix N(xt) is given .by

) 0 9 12

(6.16) N(xt{‘ﬂ Bl(n). 0 0
1

0 3 0

‘L

where
(6.17) s.(n) = 1
I 3{1+exp ((n/a)-B)}
"and af = 500. After completing the necessary calculations,

he found, that

0 9 12 7
: ' = | L_g - -
(6.18) B -8 -0 8
; 1
0 7 0
L i

-~ . — . \ _
where 8 = 8(log 4 + B)/165. B has the characteristic

.

equation o - . ' : ¢
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~

(6.19)- A3 + 822 + A[196/2 - 3/5] + 6[8 - 1/15] = O .
The relationship betweeﬁ the modulus of the dominant elgen-

value of B and the parameter B is given in Figure V.

©

6.3 THE STABILITY OF EPIDEMIC MODELS.

Epidemigf have iong been a natural motivator of
stabllity analysis. Many models have been used to describe
this'phenoﬁeﬁop.. One of the earliest and most flexible of
models remains the Kermack-McKendrick model (McKendrick [31D.
The model'esaentiélly divides a population into three sub-

populations: susceptibles, infectives, and removed

iﬁdividuals. Susceptibles are exposed to the disease

through contact with Infectives. They then %ecome infeqtivés
themselves, and then afe eventually removéd'either,through
expiration of infectiousness, by treztment and cure, of b; '
death. Hoppenstead& [17] Summarizes thls-process by the_
relation:

§s>I1I-<+R. )

He goes on to-develoﬁ the discretg—time Kermack~McKendrick

model:
(6.20) sm%1 = exp {—anIn} S,
— + — - *
In+1 apIn (1 exp { anIn}) 5
Ro41 ™ (1 - a) 1.1_l + R, ‘ -
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where_$£ = susceptible population size in the nth time period.

=t
1

)
|

ihfective population size in the nth time period

= . removed ﬁOpulation size in the nt:h time period

and 1-d denotes the proportion of infectives that are cured

in the'nth time period.

(6.21)

= ;10
n

1

We also have

4

g (1—pn) )

!
!

- where P, = probability of an effective contact between any -

given infective and susceptible in the population in the nth

(6t23) X4y

]

‘time period. TFurther, we assume that the pobulatidn is
‘ f
. . R | . .

bounded by P. If a S aand e = o are constants (6.20)
becomes ,

Sn+1_— exp {-al } s_ | |

B = 4 — — '
(6.22) T4 = @I +Q1 exp_{ aIn}) S *
= - + /

Rn+1 (1 ?) Tn & ) :

Observe that 1f we let x = [Sn,In,Rn] '; then, we have

o 0 X f f(xn) .

in view of the fact that we are seeking qualitative

t

,results on epidemics, (6.23) brings qut an Important problem
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in stability - that_of detefmiﬁing égability of a lineaf
syétem when the lar;gst”eigenvalhe is one. One would 1like
to use Theorem.3.6 to'éhow stability or imstability,
However, éven if £(x) 1is made to be o(x),._ the third equation
cannot be ch;nged without desﬁroying the effectiQenes; of the
model. It 4is precisely this equati;n which gives‘the‘largegt
eigenvalue és gne (i.e. 1f wu<l). However, as the next
theoren indica£es, we stil} may ha&%Tstabiiity.

THEdREM 6.1 (Threéhold Theorem): Suppose Ro =.0 and.a Q‘l.‘

Then we have these two results.

(i) The sdsceptible population approaches a limiting value;

S —+ S% ag n * ® , ) -
n _ .
: . aSO -Io
(11) If F = S*/5_, then F = exp {- (1 + = - ®}
' l-o S -
0 )
Proof. (i)  Since S _+1 = exp {-aIn} $, < 8,and §_ >0,

for all n, wé see that lim Sn exists. Denote this by S* .
n—Pw .

Since Bn+l = (1l-) In+Rn > Rn and Rn < P, we see that iiz,Rn

-

exists, call it R* . Since I_ = L

n 1-a (Rn+1-Rn) fir.a 1,

we have lim,In = 0 and so R* = P-S*-T% = P-§5% ,

n-rw

(11) Since S 41 = exp {—aIu} S, we have that

, nfl . q% '
S exp {-a 1.1} .
n o k=0 k

d

(6.24) 7 8

-a b )
So exp {755 L (Ruep =R}



S
- =5, exp'iija Rn-l} .
A
Letting n*M,_we_have ' '
. . * = . —a I_‘ *
(6.25) S . S, exp {1—u (?‘S’)} -
Letting F = S*/So'gives ;
. : | “
1 i : ’—aSo -Io_ ' :
- (6.26) F = exp { (1 +— - F)} -
i : 0 -
- . o : - ' ' Q.E.D.

L.
P

“F' is a measure of the epidemic's final severity. -

‘It is,in;eresting to study F's dependence,on the parameters

! .

~ofthe system. The case of interest 1s where 1 /S <<1,

c b

.since this is the_ usual situation.“ The solution for F is

“ﬂescribed in Figure VI frompﬁoppensteadt. This’ﬁhows the

as_ {

“eritical dependence of F on the parameter Y = = —2 ¢ 1f T<1L

v ' -a
ther few susceptibles are exposed but if y>>1, many fewer

susceptibles are exposed and implies that they, are either

infected pr removed (i.e. a siguificant epidemic¢ occurs). '

’ ’ T K .I -
.- e

6.4  ESTABLISHING A DOMAIN' OF STABILITY. .
) s ' - N

“-The following discrete time system studied by Vidal

and Laurent [39] was used to model control systems.

-



(6.27) ' xkfl = L(xk.k)xk ,

] .

where L(x,k) isna matrig. Hurt [ 18] studied this s?stem'
and used the results of Theorem 5.1 and Corollary 5;1 t§
find a domain of stability. Hurt proceeds in the following
manner: for any vector x, |x| defineé the norm ;f x. The

norm of the matrix L is ‘given by:

(6.28). llpxx,u3|| = min {hEJL(x,k)yllj bly]l for all y¥o0} .
-Then clearly,

te.zé). [L(x,k)§| g}IIL(x;EEIIle .o

For. (6.27), Hurt tried the Lyapunov function

' Wt

(eiso) ' - ‘Vt;,k) =.|x|: . ",.g
(6.31) CAV(x, k) = [L(x,k);l- x|
| < ool - .
Letting u(x) = ;ex) = V(x,k) = |x|, then
(6;52) \ -? ﬁg(n) = G(A),=“{x=|x{ < n} -

-

Letting I[L(x;k)ll < a(x) and W(x) = (l-a(x)B[xl . Then we .

have : i_ -

3



(6.33) . AV(x,k) < -W(x)

Hurt obéerved that if a(x)<1 for all x in G(n),
then -W(x)<0, the set A is the origin and|possibly something
on the boundéry of G(n). Since V{(x,k) 13 a nonincreasiﬁg
function of k and the boundary of G(n) is a level surfacé‘
V(x,k), the solutions cannot approach the‘bopndéry of G(n).
Thus the solution which starts in G(h) remains in G(n) and

approaches the origin as k*w ., The set G(n)is called a

domain of stability for (6.27). Thetbest G(n) 1s chosen by

picking N as large as possible without violating a(x)<l for

all x in G(n).

Various choices for the vector norm and Lyapunov
functions will result in various G(x), and different domains
of stability. Since each 1is sufficient, the union of all -
thesé domains of stability is also a domain of stébility.
Rurt finally shows through the use of a resuflt from
-Ostrowski [ 33 ] that if L(0,k) is a constant matrix, indep-
endent of k, and the largest eigeuvalué of L(QO,k) is less
than one, then'there is a véctor norm sq;h that a(x) is
continuous.in x and a(0)<1. This 1ndic5tes that there is a -
non—eﬁgti domain of ;tability. Thus,.if Hurt's criﬁeria can

4

be met, one could establish a stability domain about the
- : + . .f !

origin. . : r .
) Y * 4 [:] /



= Value of

TABLE I

x =%, exp {r(lﬁxt/K)} .

t+l t

Growth Rate, T

0

2

< 2

. < 2.526

< T <2.656 t)

< r < 2.692

.692

Dynamical Beﬂavior

globally stable equilibrium point

globally stable 2-point cycle
globally stable 4-point cycle

stable cycles, period 8, giving
way in time to cycles of period
16, 32, etec., as r increases

chaos (cycles of arbitrary period,
or aperiodic behavior, depending
on ingdtial condition) )

TABLE II

Xe+1

Value of m

"1 <€ m < 13

3 <

m

37449

3.544

< 3,449

< m < 3.544

<m < 3,570 .

.570

= mxt(lﬁxt)

Dynamical Be&or

stable equilibrium point

stable 2-point cycle
stable 4-point cycle

stable cycles, period 8, then

16, 32, etc., as m incre;;gs
chaos -
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CONTINUOUS

DISCRETE DATA | DISCRETE DATA
FROM —> FROM
EXPERIMENTATION . ' MODEL NUMERICAL METHODS
. ” T
.
FIGURE I.
DISCRETE DATA DISCRETE DISCRETE DATA
FROM —— FROM
EXPERIMENTATION MODEL NUMERICAL METHODS
8
FIGURE II. .
.
FIGURE III.  STABILITY.OF SYSTEM (2.1) ABOUT TKE

EQUILIBRIUM POINT x,

a

-79-



FIGURE IV, STABILITY OF SYSTEM (2.2) ABOUT THE

EQUILIBRIUM POINT X,

2.2 b
2.0 k
1.8 p 3h
[A] 1.8l
1.4 ¢
d1.2 }
1.0
- ]
0‘8 ] L A Y 3 [ Y L 1
1 2 3 4 5 6 7 8 9 10
FIGURE V.- RELATIONS BETWEEN THE MODULES OF THE DOMINANT

[N

. ? .
EIGENVALUES A OF MATRIX B AND THE PARAMETER B



FIGURE VI.

3

L2

1

THIS FIGURE SHOWS THE CRITICAL DEPENDENCE OF
F, A MEASURE OF THE_EPIDEMLC'S FINAL SIZE, ON
THE PARAMETER o = As°/(1-a) . If ;'< 1,
THEN FEW SUSCEPTIBLES.ARE EXPOSED. BUT IF

Y >> 1 , A SIGNIFICANT EPIDEMIC OCCURS.-
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