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Abstract

Some New Types of Designs with
Applications in Conjoint Analysis

Yuan Ding, Ph.D.
Concordia University, 1997

Conjoint Analysis (CA) is a mainstream method in market research study-
ing the consumer behaviour. This method entails choice of experimental
designs often dealing with large numbers of attributes and attribute levels.
This thesis introduces the use of Partially Augmented Design (PAD) in CA
and develops the universal optimality of two specific PAD’s for use with large
numbers of attribute levels. An example is presented to show the efficiency

of the universally optimal PAD.

Uniform design, based on the work of Fang and Wang (1981), is intro-
duced as an alternative to PAD in CA. A theorem previously developed by
the author concerning the restriction in use of uniform design is presented.
Optimal uniform designs are proposed. These designs are not orthogonal and
hence they are also useful in the context of CA, because substantial correla-

tions may exist between attributes.

The next important step in CA is proper statistical analysis. Appro-
priateness of random and mixed effects models, which are different from
traditional fixed effects models used for analyzing CA data, is highlighted in

several examples.
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Chapter 1

Introduction and Overview

1.1 An Introduction to Conjoint Analysis and
Review

Since the mid-1970’s, probably no technique for modelling consumer prefer-
ences has received more attention than conjoint analysis (Steckel, DeSarbs
and Mahajan, 1991; Gattin and Wittink, 1982; Green and Srinivasan, 1978).
Areas of its applications cover products and services, as well as consumer,
industrial and institutional markets. Currently, conjoint analysis and the re-
lated technique of experimental choice analysis represent the most widely
applied methodologies for measuring and analyzing consumer preferences
(Carroll and Green, 1995).

Since its introduction, conjoint analysis has been one of the fastest-
growing marketing research techniques. Today, a variety of paradigms, meth-
ods, and analytical techniques are commonly used in academic and commer-
cial applications of conjoint analysis. Cattin and Wittink (1982) did a study
of commercial usage of conjoint analysis during its first decade and found

approximately 600 commercial applications, of which more than 20 percent



occurred in the last year of the study. During the 1981-1985 period, they
estimate that about 400 applications were performed annually (Wittink and
Cattin, 1989).

Marketing research, similar to the business disciplines in general, has been
a long time borrower of models, tools, and techniques from other sciences.
Economists, statisticians, and operations researchers have made significant
contributions to marketing, particularly in prescriptive model building. Over
the past 30 years, psychometricians and mathematical psychologists have also
provided a bounty of research riches in measurement and data analysis tech-
niques (Carroll and Green, 1995). The seminal theoretical contribution to
conjoint analysis was made by Luce, a mathematical psychologist, and Tukey,
a statistician (Luce and Tukey, 1964). Early psychometric contributions to
non-metric conjoint analysis were made by Kruskal (1965), Roskam (1968),
Carroll (1969, 1973), and Young (1972). The evolution of conjoint analysis in
marketing research and practice has been extensively documented in reviews
by Green and Srinivasan (1978, 1990), Wittink and Cattin (1989), and Wit-
tink, Vriens, and Burhenne (1994). In addition, Green and Krieger (1993)
have surveyed conjoint methodology from the standpoint of new product de-

sign and optimization.

1.1.1 What is Conjoint Analysis (CA)?

Conjoint analysis is a multivariate technique used to understand how respon-
dents develop preferences for products or services. It is based on the simple
premise that consumers assess the value or utility of a product/service/idea
(real or hypothetical) by combining the separate amounts of utility provided

by each attribute. It is unique among multivariate methods in that the



researcher first constructs a set of hypothetical products or services by com-
bining the possible attributes at various levels. These hypothetical products
are then presented to respondents who provide only their overall evaluations
of the hypothetical products/services. By constructing specific combinations
(treatments or stimuli), the analyst is attempting to understand a respon-
dent’s preference structure. This information is used to determine which
concepts of different segments would like best and whether a new concept
is preferred over products that are currently on the market. It is also used
to determine the importance of various attributes, including price. Conjoint
analysis is closely related to traditional experimentation (Hair, Anderson,
Tatham and Black, 1992). It is actually a “family” of techniques and meth-
ods, all theoretically based on the models of information integration and
functional measurement (Louviere, 1988). Green and Srinivasan (1978) use
the term conjoint analysis (CA) to refer to any decompositional method
that estimates the structure of a consumer’s preferences, given his/her over-
all evaluation of a set of alternatives that are prespecified in terms of levels

of different attributes.

From a marketing management standpoint one is interested in the norma-
tive problem, namely, to find the point location that optimizes some objective
function. The optimal product design problem requires procedures for not
only estimating the value of the objective function for each point location of
interest (the prediction problem) but also for searching the space systemati-
cally to find the specific location that results in the highest profits, revenue,
share of choices, or whatever is being optimized. The first approach to Adap-
tation of CA (ACA) based methods to optimal product design was proposed
by Zufryden (1977). His model assumed that the consumers’ preference could

be rated by an objective function or a utility function (Green et al, 1981)



such as following.

e total number of test brand first choices, each weighted by the frequency

of product purchase

e total number of respondents not choosing a specific competitive prod-

uct, conditioned on the test product

e total expected profits or total expected cash flow, in which both (sub-

jective) purchase probability and conditional payoft are measured

That means, researchers could use a particular utility measure as a re-

sponse variable in CA.

1.1.2 Steps and Assumptions Involved in Conjoint Anal-
ysis

The traditional method of CA is called the full-profile method (Green and

Wind, 1975; Louviere, 1988; Wittink and Cattin, 1989). In this method, the

consumer responds to complete descriptions (full profiles) of hypothetical ob-

jects.

For more detail see the following Table 1.1 from Green and Srinivasan
(1990) which gives a general framework of the different steps in CA and the

alternative methods of implementing each step.



Table 1.1 Steps Involved in Conjoint Analysis

Step Alternative Methods

1 Preference model Vector model, ideal point model, part-worth
function model, mixed model

2 Data collection method Full profile, two-attributes-at-a-time (trade-off
tables)

3 Stimulus set Fractional factorial design, random sampling
from constructing a multivariate distribution,
pareto-optimal design

4 Stimulus presentation  verbal description (multiple-cue stimulus card),
paragraph description, pictorial or three-dimen-
sional model representations, physical products

5 Measurement scale for  Rating scale, rank order, paired comparisons,
the dependent variable constant-sum paired comparisons, graded paired
comparisons, category assignment

6 Estimation method Metric methods (multiple regression); non-metric
methods (LINMAP, MONANOVA, PREFMAP,
Johnson’s non-metric algorithm); choice-probability
-based methods (logit, probit).

These related procedures are based on a number of assumptions (Clarke,

1987):

e It must make sense to view the product as a bundle of attribute levels—

the product can be decomposed into separate features for which utilities



can be computed.

e The utility of the product is some simple function of the utilities of the

product’s attribute levels.

e A respondent will buy the product for which he/she has the highest
utility. It isn’t necessary to assume that this happens at every pur-
chase occasion. It may just be a purchase probability, but there is an

assumption that utilities are translated into real purchase behaviour.

e The attributes in the questionnaire are relevant as well as they ade-

quately describe the product.
e There isn’t any redundancy; that is, nothing gets counted twice.

e We must assume that, in real product-buying decisions, people act the

way they behave in the interview.

These assumptions may never be completely valid in any situation, but
they are similar to the assumptions made in a large number of marketing

research studies, and they are reasonable approximations in many situations.

Montgomery (1985) presents some evidence of the ability of conjoint anal-
ysis to predict market shares. The results of Davidson’s (1973) study of traffic
between Montreal and downtown Ottawa and Robinson’s (1980) study of the
North Atlantic air travel market show that their market predictions are quite
good (Table 1.2).



Table 1.2 Evidence of Predictive Validity
of Conjoint Analysis

Forecast of Traffic Montreal to Downtown Ottawa

Transportation Actual Conjoint
Mode Share, % Prediction, %
Air 3.2 3.2
Train 10.9 104
Bus 15.1 15.5
Car 70.7 70.7
North Atlantic Air Travel
Fare Actual Conjoint
Type Share, % Prediction, %
Economy 25 23
Excursion 14 12
(14-21 day) Excursion 43 49
(22-45 day) GP Fares 18 16

1.2 Importance and Limitations of Existing
Designs in CA

The application of formal experimental designs to marketing problems has
increased markedly over the last three decades. Almost every marketing re-
search text published during this period has devoted at least a chapter to
the subject. Moreover, complete books on the topic have been written for

the marketing research community.

In CA, the use of experimental design in the analysis of consumer deci-

sions has two objectives (Hair et al, 1992):



(1) To determine the contribution of predictor variables and their respec-

tive values to the determination of consumer preferences.

(2) To establish a valid model of consumer judgements that is useful in
predicting the consumer acceptance of any combination of attributes, even

those not originally evaluated by consumers.

As is well known, full factorial designs provide maximum information
per observation and allow the researcher to estimate interactions as well as
main (or single factor) effects (Green, Carroll and Carmone, 1978). How-
ever, it is not always economical or possible to collect data on all of the
experimental combinations that would be implied by a full factorial design.
Therefore, statisticians have developed classes of designs called fractional fac-

torials where only some of the experimental combinations are constructed.

In some product categories, consumers may know enough to make ra-
tional decisions, but not enough about individual brands to rate them on
a number of attributes. For example, lots of consumers can make intelli-
gent trade-offs between size, price, energy efficiency, and freezer space when
choosing a refrigerator, but they would not be able to rate current models
on these same attributes. The number of brands in a product class that a
respondent may be familiar with usually is small. Furthermore, real brands
and services are usually not distinctive enough to provide reliable estimates
of parameters. For these reasons, CA is usually done with hypothetical stim-
ulus descriptions. The most popular method of creating such descriptions is
by using an orthogonal design, which chooses a good subset of all possible
experiments or a complete set. As usual, a good experimental design should

satisfy the following principles:



1. Uniformity: The experimental points should be scattered uniformly
on the domain for experimentation such that these points are good

representations.

2. Regularity: The experimental points satisfy some regularity condition
so that it is convenient to do the analysis of variance for the experi-

mental data.

The orthogonal design is produced according to these two principles. Due to
its orthogonality, the orthogonal design yields a diagonal information matrix
and uncorrelated estimates of main effects and interactions. Therefore the
orthogonal design has been successfully applied in various fields, including
CA. On the other hand, some limitations of orthogonal design in CA have

been noted, such as the following.

(1) If there is a substantial amount of environmental correlation between
some of the attributes (e.g., in the case of automobiles, acceleration, top
speed, and size of engine are all positively correlated, and each is negatively
related to gas mileage), an orthogonal design can produce some stimulus
profiles that are not representive of the subject’s environment (Steckel, De-
Sarbo and Mahajan, 1991). Under orthogonality, factor independence is to

be sought wherever possible.

When some of the profiles turn out to be infeasible, various solutions can
be implemented (Moore and Holbrook, 1990). First, one might permute the
attribute levels to generate another orthogonal design. However, this solu-
tion works only when there is a very small number of combinations that are

much less realistic than others. Second, one may merely remove the stimulus

9



that contain the infeasible attribute combinations. However, treating infea-
sible attribute combinations as missing observations is viewed as somewhat
“artificial” and “hypocritical”. Third, one can prepare a composite factor
(super-attribute) for a number of highly correlated attributes, but it is no
longer possible to separate the effects of the subfactors contained in the com-
posite. Fourth, one might introduce designs that have lower environmental
correlations, trading off some statistical efficiency for increased realism. This
could be achieved by employing a random sampling procedure from a multi-

variate distribution.

(2)The early successes of conjoint analysis have led to industry demands
for techniques that handle ever larger numbers of attributes and attribute
levels. In addition, the number of levels may differ from factor to factor.
Thus, too many experiments are required for an orthogonal design to satisfy
the principles given above. This need, in turn, has prompted the develop-
ment of data collection methods and models, such as, experimental choice
analysis (Carson et al. 1994; Batsell and Louviere, 1991); adaptive conjoint
analysis (ACA) (Zufryden, 1977; Johnson, 1987); Green’s hybrid models
(Green, 1984) and hierarchical Bayesian methods in CA (Allenby, Arora,
and Ginter, 1995; Lenk and colleagues, 1994), etc. What appears to be lack-
ing is constructing/introducing appropriate designs and convincing evidence
of whether the newer conjoint methods for coping with larger numbers of

attributes and levels are markedly superior to the older approaches.

10



1.3 Outline of the Thesis

This thesis deals with the problem of designing appropriate experiments for
conjoint analysis. It has been highlighted in the previous section, choice of
a design plays a very important role in conjoint analysis. There are indeed
other concerns and issues in this important area of market research, the au-
thor is primarily concerned with the problem of design of experiment. Since,
some of the issues mentioned here with respect to conjoint analysis may also
prevail in other disciplines, the designs discussed here may also be applicable

in other areas.

Because of the limitations of existing designs, two new classes of designs,
partially augmented designs (PAD) and uniform designs (UD), are intro-
duced for conjoint analysis in chapters 2 and 3, respectively. Within these
two classes of designs, special designs have been proven by this author to
be statistically optimal according to certain criteria. Universally optimal
PADs and optimal UDs could be used to provide more flexible choices in
the numbers of factors and levels with some optimal statistical properties in
estimation. They may provide efficient achievements in the presence of envi-
ronmental correlation. In analysis of marketing research data, they will give
more accurate results in a wide range while requiring only a small number
of stimuli. In addition, except for generating these new classes of stimuli, no

new computer software is needed.

In section 2.1, the class of partially augmented designs is presented as
a class of non-orthogonal designs. A new model related to PAD with some
restrictions is then established. Section 2.2 presents a strong optimality cri-

terion called universal optimality. Two useful types of PADs with universal

11



optimality under some conditions are proposed by the author in section 2.3.
Detailed proofs are also developed. In Section 2.4 the author introduces
these PADs into CA and illustrates their applications to CA. To assess the
efficiency of the newly developed universally optimal PAD in CA a study of
a real problem is conducted. The results of the analysis show that the new

classes of designs have interesting potential power in CA.

Section 3.1 gives an alternative model, a regression model using uniform
design. Section 3.2 introduces the construction of uniform designs based on
“good lattice point sets”. A theorem previously developed by the author
concerning the restriction in the use of uniform designs is presented. Some
designs with optimalities or uniformity are proposed in appendix A. The re-
lationship between uniform design and orthogonal design is also presented in
this section. To illustrate the application of uniform designs in CA, a uniform
design for varying numbers of levels generated by a pseudo-level technique is

used to creating stimulus descriptions for banking services.

In chapter 4, further work concerning the mixed effects model is discussed.

Several examples show the potential research interests.



Chapter 2

Partially Augmented Designs
with Universal Optimality

2.1 Introduction and Model

In this chapter, we introduce a class of designs called partially augmented
design (PAD) proposed by Taguchi (1987). Using a different method of anal-
ysis, we establish a model with some restrictions. Under the model two
special kinds of PADs with universal optimaiity are found in Theorem 2.4
and 2.5. Applying a universally optimal PAD to a real data set, the results
of analysis show that this new class of designs has interesting potential ap-

plications to CA.

Now consider a factorial design with n factors. The j-th factor has s;
levels (j = 1,...,n). We assume the expected value of an observation taken
on the i;-th level of the first factor, the 7,-th level of the second factor, ... ,
and the 7,-th level of the n-th factor is specified by

E(yisig.in) =0 + ..+ 607 1607, (2.1)

tn—~1

13



where 0,(11),...,9,(::11), and 0,(-:) are unknown constants, 1 < 17; < s; for 1 <
j < n, and all observations are uncorrelated with common variance. A design
with N observations is a selection of N combinations of the levels of the n
factors. We write Dy as the collection of all such designs with NV observa-
tions. We restrict the number of levels in the first n — 1 factors to the same s
when discussing augmented designs, i.e., we assume that s, = ... =s,1 = s
and s, = p, where p may differ from s. We denote the design as ;Z € Dn. We
can write the model in matrix form as follows:

X6

{ E(Y) = (X1, Xa - Xaot, Xa)f (2.2)

Var(Y) = oIy,
where ¥ is N x 1 observation vector obtained under design :f; X; is an

indicator matrix of the j-th (y = 1,...,n) factor specified by design d, i.e.,
X; = (8 )nxs(f = 1,-yn = 1) and X; = (2 )vxpli = n) for

et

G) _ 1, [-th level of the j-th factor appears in the a-th experiment;
ol = 0, [-th level of the j-th factor does not appear in the a-th experiment.

Therefore, when j = 1,...,n — 1, X;1, = 1y, where 1, = (1,...,1)', and

Xa1, = 1y, X is called the design matrix, § = (64,65,...,6,)" (prime de-
notes transpose) is a [(n — 1)s + p] parameter vector with subvectors §; =
69,09 = 1,...,n —1) and 6, = (6", ...,8$"Y, and Iy denotes the

identity matrix of order N.

Assuming additional k(1 < k < p) levels of the n-th factor, which will
also be investigated, but there is no suitable orthogonal array for this type
of design. We may keep the N combinations, and augment N, new combi-
nations which include the k additional levels of the n-th factor. Then, the

new design d is a selection of N + N; combinations of the adjusted levels of

14



the n factors. Let Dy4n, be the collection of all such designs with N + N;
observations. We call such a d € Dn+nN, an augmented design. The new

design matrix is

g X5 X2 - Xa Xa O
“\ z2i Z, - Za Z, ZW)°

where Z; is a N; x s indicator matrix of the j-th (7 = 1,...,n — 1) factor
and (Z,|Z®) is a N; x (p+ k) indicator matrix of the n-th factor in the N;

augmented combinations. The corresponding new model is given by

E(Y) =X§,
{ Var(f/) = ?Inin, s (2:3)
where Y = (}:/ |Y))" is a N + N; observation vector including a N, augmented

~ </
observation subvector ¥, and 8 = (4, 91(,’:_)1, ooy 9,(,3,),:)' £ (91,...,0,._,,8.) where

0, = (8, ..., 00,65, ... 60 ). If we write W; = ( Xf' ) fori=1,...(n—

Z;
X, 0
Z., Z®

design matrix is X = (W1, ..., W), and the coefficient matrix of the normal

1) and W, = < ) , then, for the augmented design d € Dy, , the

equations, i.e., “information matrix” of d for estimating 8 is

WIW, WiW, --- WIW,
X[X . - -

ww, WWw, -.- W.W, (2.4)
_ (Wh.. W)Y (Wh.. W) (W . W YW,

- Wl (W,..W,_1) W W, '

To estimate some linear functions of a subvector of § in model (2.3), par-

ticularly the contrast of level effects of any factor, (0) = Uj_, Q(F;) =

T_1{ai0; : a;1 = 0} is the set of the parameters which need to be estimated.

15



If we are interested in estimating a’ 8, , by Gauss-Markov Theorem the
g a,

b.Lu.e. of @’ 8, is a’8, with

0
Var(a.b,) =o?(0a’)(X'X)™ ( )
an
= UZGL(W,I;P(WI_"Wn_l)J.Wn)_an

£ 62a.C7(X)an,

where the (0:a!,) means (0, ...,0,a,) and the orthogonal projection matrix

(n—~1)s

Pw,.wo_yr = 1= P, .wa_y) ,
= [ = (Wi W) [(Whee WtV (Wh W)~ (Wh.. W) -

The coefficient matrix of the reduced normal equations, i.e., the “information

matrix” of d for 8,

Cu(X) = WP, . wo_)t W (2.5)

is called the Cj;-matrix of the design d for estimating 8,. C7(X) is any
generalized inverse of C,(X).

It can be shown that

any a, 8, in the Q(8,) is estimable <= rkCn(X) = (p+ k) — 1 for the
(p + k) x (p+ k) C-matrix Cp(X).

For this reason, we will discuss the optimalities only for the designs whose
C-matrix Cp(X) have rank of (p + k) — 1.

16



2.2 Optimalities

In this section we use theorems, definitions and related interpretations in a
paper of Hedayat (1981) to summarize the concepts and results regarding

some optimalities.

We perform experiments mainly to efficiently estimate or test hypotheses
about some specified unknown parameters of a given model. Different con-
siderations lead to different criteria for the choice of “best” design. Here we
limit our search to discrete designs which are supported on sets consisting of

finite number of points.

In general, let d be a design and let Y be the vector of observations ob-

tained under d, and assume

E(Y)=X0=(X1:X2) | - |, Var(y) = oI,

where 6, is a v x 1 vector, its information matrix under d and above model
is Cq = X, X1 — X; X2( Xy X2)" X2 X,
Suppose that

B, = the class of all v X v nonnegative definite matrices,
B,o ={C:C€B,; C1=0 and C'1 =0},
D = the class of designs d under consideration,
¢ ={CudeD},
Also, let

Hdl = [d2 2 - 2 Hdy

be the eigenvalues of Cy. Note if C C B, o, pav = 0 for all d € D. If neces-

sary, we let £ denote an approximate design (a probability measure on the

17



experimental space) and C¢ be the associated information matrix.
1. Some Well-Known Optimality Criteria
Assume C C B,.

Definition 2.1 A design £ € D is G-optimal if and only if
mingepmaxxE,yVargE‘Yx = mazxexVare EYx,

where EY x is the b.l.u.e. of EYyx and X is the experimental space. Kiefer
called it G-optimal (for global or minmax), since we are minimizing the max-

imum variance of any predicted value over the experimental space.

Definition 2.2 A design d* € D is D-optimalif and only if Cy. is non-singular

and
mingepdet(C7') = det(CL').

Here, “D-” stands for determinant.
This criterion has many appealing properties, such as:
(1) Under normality, if d~ is D-optimal, d* minimizes:
a) The volume (or expected volume, if 62 is unknown, and the rank
of Cy is invariant under d) of the smallest invariant confidence region on

6,,...,0, for any given confidence coefficient.

b) The generalized variance of the estimators of parameters ( Sup-
pose X = (X, Xa, ..., X,) is distributed as multivariate N(x,V). The de-

18



terminant of V is called the generalized variance of X as defined by Wilks
(1932)).

(ii) In the class of approximate designs, D-optimality <= G-optimality

whenever §; = 6.

(iii) The design remains D-optimal if one changes the scale of the param-
eters: Let 6}, ...,0! be related to 6,...,0, by a non-singular linear transfor-
mation. If d* is D-optimal for 6y, ..., 8,, then d* is also D-optimal for 61, ..., 6.

The analogue for other criteria is false in even the simplest settings.

Definition 2.3 A design d* € D is A-optimalif and only if Cy4- is non-singular

and
mingepTr(CrY) = Tr(CRY).

“A-" stands for average.

~

If d* is A-optimal, it minimizes the average variance of él, een 0.

It seems natural to specify some optimality function ¢ on C, then, the
problem is to find d to minimize ¢(Cy). We call ¢ as an optimality criterion.

Then the above criteria are as follows:
A-optimality : ¢4(Cy) = i, u3t,
D-optimality : ¢p(Cyq) = ITio; 3t

E-optimality : ¢£(Cs) = 13,

where t is the number of non-zero eigenvalues of Cy.
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2. Universal Optimality

In Kiefer (1975), a strong optimality criterion universal optimality was

considered, where assuming C C B, o.

Definition 2.4 We say d* € D is a universally optimal design, if d* mini-
mizes ¢(Cy),d € D for every function ¢ : B, o — (—00, +00] satisfying:

(1) ¢ is convex,
(2) ¢(bC) is nonincreasing in the scalar b > 0 for each C € By,

(3) ¢ is invariant under each permutation of rows and (the same on)
columns.

Definition 2.5 A matrix M is called a completely symmetric (c.s.) matrix
if M = al, + bJ,, where a,b are scalars, I, is the identity matrix and J, is

the v x v matrix consisting of all 1’s.

The following theorem given by Kiefer (1975) is a simple tool in deter-

mining a universally optimal design.

Theorem 2.1 Suppose a class C = {Cq : d € D} of matrices in B,o con-

tains a Cy» for which

(a) Cqo s c.s.

(b) trCgye = mazgeptrCy (2.6)
Then d~ is universally optimal in D. (Since —tr(C) satisfies the conditions

20



in definition 2.4, it follows that (2.6)(b) is necessary for universal optimality).

Cheng refined Kiefer’s criterion and defined a larger class of optimality
criteria called optimality criteria of type i(i = 1,2) and generalized optimal-
ity criteria of type 1(i = 1,2) that include A-, D- and E-criteria, and more.
Referring to Hedayat (1981), if there is a universally optimal design over D,
then it is optimal with respect to a very general class of criteria including
Cheng’s criteria of type (7 = 1,2) and generalized criteria of type i(z = 1, 2),
etc. Obviously, if there is a universally optimal design over D, then it is also

a A-, E- and D-optimal design.

2.3 Partially Augmented Designs (PAD) with
Universal Optimality

2.3.1 Orthogonal Array and its Universal Optimality

We define a rectangular array denoted by (N, n,s; X ... X s,) as an N X n ma-
trix with entries in the i-th column from a set S; of s; elements, 1 < : < n.
A (N,n,s; X ... X s,) array is said to be an orthogonal array (with vari-
able numbers of symbols) of strength d if for any selection of d columns, say
the a;-th,...,ag-th, the number of times that the row vector (7i,...,24)'(¢; €
Sa,»j = 1,...,d) occurs in the N x d submatrix specified by the d selected
columns is constant for all combinations ¢; € S,,, ..., 2d € Sa,- The constant
may, however, depend on the set of selected columns. We denote such an
orthogonal array by OA(N;si,s2...,54;d). When s; = 52 = ... = 5, = s,
we also write it as OA(N,n,s,d) and call it a symmetric orthogonal array.
We will restrict ourselves to orthogonal array of strength 2 (i.e., orthogonal

main effect plans) in this chapter, and denote it as OA(N;sy, ..., 5,;2), or
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LN(s’f‘....s,’f') which has k; columns with s; levels, n = k; + ... + k- and s;
being unequal, if » > 1, the array is said to be mized or to have mixed levels.
Cheng (1980) gives following results for OA(N; sy, s2, ..., Sn; 2):

Theorem 2.2 [f there is an OA(N; sy, S2,..-, 5n;2) under the model speci-
fied by (2.1), then it defines a factorial design d* with N observations which
minimizes Y r, ¢:(Cu:) over Dy for all functions ¢; : By 0 — (—o00,+00]

satisfying
(1) ¢&: is convez,
(2) for any fized C € Bs, o, $:(bC) is nonincreasing in the scalar b > 0,

(8) &: is invariant under each simultaneous permutation of rows and
columns, where By, o is the set of all s; x s; nonnegative definite
matrices with zero row and column sums;

where Cy; is the coefficient matriz of the reduced normal equation for esti-

mating (8)y,...,00) ), i=1,...,n.

By Kiefer’s Definition 2.4, Cheng had proved that an orthogonal array is

universally optimal.

2.3.2 Construction of Partially Augmented Designs

For s; = ... = Sp_; = 5,8, = p+ k,k > 1 and p may differ from s, assuming
there is no orthogonal array with M(M < 2N) combinations for the n factors
with the levels sy = ... = 8,1 = §,5, = p + k respectively, but there is a
Ln(s™'p) which is universally optimal according to Cheng’s theorem, then,

it is possible to construct an (N + N1) x n array in order to add k(1 < & < p)
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levels on the n-th factor.

Firstly, we arrange the first n — 1 factors with s levels each and the n-th
factor with its first p levels into 1st, 2nd,..., n-th columns of an orthogonal
array Ln(s™ 'p) respectively. Secondly, we use another Ly (s™ !p), where
we keep the same settings for the first n — 1 factors and some p — k levels
of the n-th factor as the former array Ly(s"!p), then replace the other k
original levels of this factor by its last k new levels in the n-th column. It is
easy to see that there are only &T £ N, where T = N/p, new rows in the
second Ly (s" !p) comparing to the first Ly(s* !p). Finally, the N rows of
the first Ly(s™ !p) and the N;, (N; < N) new rows from the second orthog-
onal array Ly(s""!p) form an augmented (N + N;) x n array, which defines
an augmented design. We call such a design based on the orthogonal array
a partially augmented design (PAD) and denote this (N + N;) x n array as
PADnn (" Hp + k).

This type of designs can be used in CA when one factor has more levels
than other factors or some extra levels of one factor need to be investigated

after an orthogonal design.

Example 2.1 If a 3 x 3 x 3 x 4 factorial design is considered, but fewer
than 15 combinations can be investigated. Lo(3*) is used for four factors
with three levels each, where N = 9,s = p = 3 and n = 4, while we want
to augment another (i.e. k& = 1) level to the fourth factor but there is no
suitable orthogonal array to use. By choosing T = N/p = 3 augmented runs
from the Lg(3*), total of three possible PAD2(3% x 4) with 12 combinations

each are generated in Table 2.1.
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Table 2.1 Three PAD;5(3% x 4) based on Lg(3%)

Stimulus Factor 1 Factor 2 Factor 3 Factor 4
Original Design
1 1 1 1 1
2 2 2 2 1
3 3 3 3 1
4 1 2 3 2
5 2 3 1 2
6 3 1 2 2
7 1 3 2 3
8 2 1 3 3
9 3 2 1 3

Possible augmented
new runs (I)

10 1 1 1 4
11 2 2 4
12 3 3 3 4
Possible augmented
new rows (II)
10 1 2 3 4
11’ 2 3 1 4
12’ 3 1 2 4
Possible augmented
new runs (III)
107 1 3 2 4
11 2 1 3 4
127 3 2 1 4

From Table 2.1, it is easy to see that any one of the three possible PADs
with 12 runs is no longer orthogonal but has “partially orthogonality’. That
is, a total of 9 pairs (1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3) in any

two columns from the first three columns all appear but their frequencies
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of appearances are different in the 12 rows. For example, the frequencies of
each pair between factor 1 and 2 in the PAD (III), which includes the origi-
nal orthogonal combinations No.1 to No.9 and the augmented combinations
No.10” to No.12”, are as follows:

Pair | (LD) (L2) (L3) (D) (22 (23) (3.1) (3.2) (3.3)

Frequency 1 1 2 2 1 1 1 2 1

It is not hard to see, sometimes, the augmenting is equivalent to deleting.
For example, from the following two tables we can see that their first 6 stim-
uli are the same when we augment one level of the third factor by adding
two stimuli 5 and 6 to the orthogonal array L4(22), or delete one level of this
factor by deleting two stimuli 7 and 8 from some columns of the orthogonal

array Lg(2* x 4):

Stimulus { Factor 1 Factor 2 Factor 3

1 1 1 1
2 2 2 1
3 1 2 2
4 2 1 2
3 1 2 3
6 2 1 3

Stimulus | Factor 1 Factor 2 Factor 3

1 1 1 1
2 2 2 1
3 1 2 2
4 2 1 2
] 1 2 3
6 2 1 3
7 1 1 4
8 2 2 4




Therefore, the PA method might also be used in situation of deleting
some unsatisfactory stimuli. For example, we can delete the fourth level of
factor 3 from above Lg(4 x 2%), i.e. the stimuli 7 and 8.

2.3.3 Partially Augmented Designs with Universal Op-
timality for the n-th Factor

By PA method we have the following design matrix in the linear model (2.3):

X, X2 - Xoct Xo 0O .-+ 0
(1) Z(l) Z(l) 0 1 o0

X = L =T T, (2.7)
z® z® ooz® 9 0 ... 17

where Zl-(t)(i =1,....,n —1;t = 1,...,k) is the indicator matrix of :-th fac-
tor corresponding to the t¢-th augmented level of n-th factor in the second

Ly (s™'p).

For the special class of the augmented designs-partially augmented de-
signs, we use design matrix X of (2.7) instead of X in the model (2.3). The

coefficient matrix X’X of normal equation is then
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\

XX +5h, 2020 o XX +55, 2929 XX ZM1r--

XiX, +35, 20z XX, +x8, 2020, xix,  Z{Mir--

Xi X +5k, ZWzZ0 ox X +55, 2029, xi_ X, zZr--
Xa Xy e X Xno1 X' X, 0---
AR e 14289, 0 T---
VAN 25, 0 0--

where forz =1,...,n — 1,
XiX: = -1;—713,
X, X, = 1—:—[,, =TI,
(2.8)
X X; = %Js,i #7,7=1..,n-1,
XX, = %Js,p.

In fact, the matrix Z,-(t) is a T x s submatrix of X; and corresponds to t-th

augmented level of the n-th factor in the second Ly (s"~!p), so every level of

the :-th factor should appear Zs: times in the T rows so that % = ;’% must be
a positive integer. We denote m £ % and have
z'z =mI
(t) —
Zi I]-s - lmss (29)
Zi(t) It = ml,,
Ny = kT = kms,

fori = 1,...,n—1. Using (2.8) and (2.9) the information matrix X’'X becomes:

(S
~

ka)llr \
Z:S.k) 17




e 4T 270 - BL AT 207 mliee )

S

N+, 20z Ntkms [ o Bu 4+ vE, 20020 mi, e
Njo+5k, z0z0 Ny 45k z0z0 ... Nethms J mJ (pik)
M (p+k).s mJ(p+),s mJ(p1k),5 mslyse /
(2.10)

Now our focus is to find some optimal design d*s. i.e., to find some spe-
cial Z,-(t)s which may lead to some optimal designs. Two new classes of PADs
are presented below. It is shown that they universally optimal under certain

conditions.

Lemma 2.3 For a design d € Dyyn, under model (2.3) with design matriz
X, the coefficient matriz Cn().() of the reduced normal equation for estimating
a.b, is (p+ k) x (p + k) nonnegative definite, and Cn(X)1=0.

Proof:
Since Cp(X) = W, Pw,..w,._)+Wa by (2.5), it is nonnegative definite.

For convenience, we denote W £ (Wi, ..., Wh_1), then P, w,_tr =
Py for X = (W|W,). Thus

Ca(X)1pss = W!PwiWolpk
= W,ILPVVL]-p-{-k’

this is because of W,1,4x = In4kms. Further, since Wl(,_1y, = Sro)! Wil, =

(TI. - 1)11\'+kmsv

Ca(X)lpik = WPy Wiy
= 0.
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Theorem 2.4 Under the model specified by (2.8) with design matriz (2.7),
if there are positive integers T = N/p,m = T/s, and a partially augmented
design dj which is based on an orthogonal array Ln(s™"'p) and satisfies
Sk Z,-(t)IZJ(t) = kml, for the k(1 < k < p) augmented levels of the n-th
factor and any t,5 = 1,...,(n — 1)(z # j), then di is a universally optimal
design for Q(6,) in Dnyn, with Ny = kT.

Proof:

First, we denote the design matrix of df by D,. Since the d} is a partially
augmented design under model (2.3), the coefficient matrix Cp(D;) of the
reduced normal equation for estimating a. 8, is (p+ &) x (p+ k) nonnegative
definite and C,(D;)1 =0 by lemma (2.3). Therefore, C,(D1) € B(p+k).0-

Second, Cpn(D,) is c.s.:

If there are positive integers T = N/p,m = T/s, and a partially aug-

n-1

mented design dj which is based on an orthogonal array Lx(s"'p) and
satisfies 35, Z,-(t)IZJ(t) = kml, for the k(1 < k < p) augmented levels of
the n-th factor and any 7,7 = 1,...,(n — 1)(z # j), that is, if a design d7 sat-

isfies the conditions of Theorem (2.4), then the information matrix of (2.10) is

Ntkmer kmL+ ZJ, -+ kml + 500 | mJ; prr
kml,+ %g,  MEkmepo o kmI + B | mJs ek

DiD, = : : : :
kml,+ 50, kLo B, o MEmL gy o
mIprk)s  MIprk)s 0 MIprk)s | mShy

>

An—h D12
Dy,  mslppk



where Dy = 1,1 ® (mJ,,(p4+x)), the ® is Kronecker product, and A,_; in-

cludes (n — 1) x (n — 1) submatrices.
Using equation (2.5), (2.4) and (2.11), we have

Cn(D1) = mslprx — DAL 1 Dia,

where
DipAiyDiz= (U @ mlpal)) A7y (Lo @ m11h,)
= m21P+k1,(n—1)sA;—11(’1-1)51;+k‘
Since
[ RMEEmel kmIo+ 3J, o kmlo+ 3,
A kml; + %Js Nikms s"’"s I -e+ kml; 4+ %J,
n—-1 = . . .
\ kmI,+ %J, kml, +5J, ... AHms]
E[s ﬁst e E’Js
(&7 %7 0%
=Js TIs s
= . . -(ln—l ®[s)(—'km[s)(1/ —1 ®[s)

\ ¥J, §J, - Ep
Ay — A Ajn A,

>

where A, = A, = 1,1 ® I;, A7, = —kml;, by the formula of generalized

inverse of partitioned matrix (Searle, 1982)

AT = AL+ AL A(A2 — A2 Af A) " An AL,

and by lemma (2.2) of Cheng (1978), we have A7; = N~'diag(sl;, sl —
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Jsyoeysls — Js), then
A22 —_— A21A1—1A12 = N_I[(Tl - ].)S[s ot (Tl - 2)J3],

and

_ Nkm 7, + (n — 2)km ]
N+ (n—Dkms ° N+ (n—1kms *

(A2 — A1 AT A12)” =

Therefore,

A1a( A2z — A21 AT A12) " An AL

T2 (Jnot ® (L + GRS diag(s sy -onv 515 — Js)

= W(,ﬁ:nﬁm(ln—l ® C, 1n.—l ® ([s - S_IJs)y LR} ]-n—l ® (Is - 5—1']5))7

where ¢ = [, + Q—‘_—zyﬂJs, and a generalized inverse of A,_; is

N+kms
a (I, — azJs) —kms(I, —s™1J,) --- —kms(ls —s71Jy)
—kms(I, —s7'Js) a(l,—sYJ,) - —kms(I, —s7UJ)
A;-l = dg . - :
—kms(Iy — s7YJ,) —kms(I, —s™'Js) - —kms(l; —s71J)
where
s
= = - v d
ag NIN £ (7 = 1)kms]’ a; =N+ (n—2)kms, an

_ (n — 2)k%*m?2s
" (N + kms)[N + (n — 2)kms]’

Because 12n_1)sA;—11(n-1)s is the summation of all elementsin A,_;, and the

az

summation of elements in I; — a3J; equals to s — s2a, and the summation of

elements in [, — s~!J, equals to 0, we have

- — 2 2 /

m2s? J
N+kms/ptk:
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Thus,

Jp+k (2.12)

IS C.S.

Finally, to prove that

trCo(D;) = maz trC,(X),
XeD
trCn(D;) = [(p + k) — 1]ms follows directly from equation (2.12). On the
other band, by 1, ,a, = 0, and dimR(1,4¢) = 1, there exist p + k£ — 1 stan-
dardized orthogonal vectors in R*(1,4x). Let ' = (H |\/—;—_+—;1p+k), where the
orthogonal matrix H consists of p+ k — 1 standardized orthogonal vectors of
R+(1,44), then we have (Ni and Ding, 1984)

trCu(X) < trW,HH'W! = (N-Hcms)(l—;—j_—k) = (p+k—1)ms = trC,(D,).

Therefore, we proved that the dj is universally optimal design for €(6,) in

the Dy yer, T = ms.

The following example demonstrates the existence of the universally op-

timal design.

Example 2.2 In the example 2.1, we have three PAD;5(3% x 4), where
N =9,s=p=3,k=1and T =3 which leads m = 1. For the augmented
design (I) denoted by d~, its total run includes orthogonal experimental com-
binations No.l to 9 and augmented experimental combinations No. 10 to 12.
Since its augmented indicator matrices are Zfl) = Zz(,l) = Z:S,l) = I3, hence
Z,-(I)IZJ(U = [3 for any ¢,7 = 1,2, 3,7 # j; which satisfies the conditions in the
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Theorem 2.4. Thus, this augmented design d* is universally optimal for the
Q(04) n D12-

Theorem 2.5 Under the model specified by (2.3) with design matriz (2.7),
if there are positive integers T = N/p,m = T /s, and a partially augmented
design d; which is based on an orthogonal array Ln(s™'p) and satisfies
>k, Z‘-(t)lZJ(t) = L‘sﬂJs for the k(1 < k < p) augmented levels of the n-th
factor and any 1,7 = 1,...,(n — 1)(z # j), then d} is a universally optimal
design for Q(6.) in Dnyn, with Ny = kT.

Proof:

If there are positive integers T = N/p,m = T'/s, and a partially augmented
design d5 which is based on an orthogonal array Ly(s""'p) and satisfies
>k Zi(t)IZJ(-t) = ¥R J, for the k(1 < k < p) augmented levels of the n-th fac-
tor and any 2,7 = 1,...,(n — 1)(¢ # j), then we have the information matrix

of (2.10) for design matrix D, of the d; as follows:

N+kms N+kms N4+kms
s [s 252 Js ot 52 Js sz,(p+k)
N+k N+k N4k
ﬁ;zms Js sms [s .. 32ms Js sz,(p+k)
DyD, = : : : :
N4k N4k N+kms
szms Js -{;zms Js Tt s [s sz,(p-{—k)
mJprr)s MIprr)s 0 MIpri)s | MSIpsk

>

Bn—l D12
112 mslpik
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where D;; is the same as in (2.11) and

a By B2 _
Bn-1 = ( B, al, ) =
Note that B,.; denotes the matrix B with (n — 1) x (n — 1) submatrices,

such as al, and as™'J,, a = &*':‘i and B;; = B,_;. Thus, C,(D3), the

coeficient matrix of the reduced normal equation for estimating a8, is

al, as~1J,

as™'J, ---| al,

Cn(D2) = mslypx — D1, B, D1a.

By the same reason as in the proof of theorem (2.4), Cn(D2) € B(k+p)0-

To prove that C,(D,) is c.s., we need to find the generalized inverse of

B._1 by the partitioned inverse rule for B,_;. Since

Bua(al)"'Bly = (laz ® s=1J.)(als) " (1, @ as~1J,)
as™H(Jn-2 ® Js)
as~tJm — 2)s;

o

E = B — Ba(al,)™'By,
= B(n—2)—as 'Jin—2)s
( al, - as7'J; as™'J, -+ as”tJ
- \ as':le a-I_.r B as'.le as‘.le
[ a(ls—sJs) --- 0
- \ 0 a(l, ——:s‘le)

= Itn-2)® [a(L; = s7' )]
Thus,
E- = [(n—z) & a"l(Is - S-IJ,).

34



RET= (1,,® as 1) In-2 @ a7 (I, — s71J;)]
= 5_1[1;1-2 ® (Js ~ Js)]
= 0
= E_BIZ’
and
B = E- 0 L2 ® a~ (I, —s71J,) 0
— =\ 0 (aL)t )" 0 a1, )
Therefore,

Cn(Dg) = ms[p+k - DIIZB—(TL — 1)D12

Lo ®a (I — Js/s) 0

= mslytx — (1, ® mJ(p+k),3) ( 0 all, ) (1n ® sz.(P+k))

1,..® sz.(p+k) )

_ (1! ~1 el -1
= mslpyk (1,_,®ma J(p+k),s([s s7tJs)|ma J(p+k)'s)< A

0

m<s
MSlpik = ks Jp+k-
(2.13)

Which is a c.s. matrix.

The equations (2.12) and (2.13) show that the expressions for C,(D;) and
Cn(D3) are identical. Therefore, the d; is also a universally optimal design
for Q(4,.) in the Dyyn, with Ny = kT.

Such kinds of universally optimal design also exist as demonstrated below.

Example 2.3 For a 2% x 7 factorial design, it seems there is no suitable
orthogonal array with fewer than 32 runs to use. Based on an Lig(2'? x 4),
since T = N/p = 16/4 = 4,k = 7 -4 = 3,N;, = kT = 12 we use its
three columns with two levels each and one column with four levels to form

a PAD2g(2® x 7) (Table 2.2) for this case:



Table 2.2 A universally optimal PAD,g(2® x 7)

Stimulus Factor 1 Factor 2 Factor 3 Factor 4
Original Design
1 1 1 1 1
2 1 2 2 1
3 2 1 2 1
4 2 2 1 1
5 1 1 1 2
6 1 2 2 2
7 2 1 2 2
8 2 2 1 2
9 1 1 1 3
10 1 2 2 3
11 2 1 2 3
12 2 2 1 3
13 1 1 1 4
14 1 2 2 4
15 2 1 2 4
16 2 2 1 4
Augment
combinations
17 1 1 1 5
18 1 2 2 5
19 2 1 2 5
20 2 2 1 5
21 1 1 1 6
22 1 2 2 6
23 2 1 2 6
24 2 2 1 6
25 1 1 1 7
26 1 2 2 7
27 2 1 2 7
28 2 2 1 7

From the table 2.2 we have
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7 = Lz = 2

= =]
—_0 O M=
(e N > ]

OO =
O = O
o~ O

fort =1,2,3. Then

S0 ) = ) ) _ = 1) () km
Nz zP =320z = 5" 2 Z§ =30 =/,
t=1 t=1

t=1
where m = T'/s = 2. Therefore, this PAD d" satisfies the conditions of theo-
rem 2.5, so it is universally optimal for the {2(6s) in the Dygy(3)4) = Das-

2.3.4 The Efficiencies of the PADs for the First n — 1
Factors

In the previous subsection, the Theorem 2.4 and 2.5 provide the universal
optimality of PADs for the €(8,) under the model (2.3) with design matrix
(2.7). Although the optimality for the other (6;),7 = 1,...,n — 1, has not
been investigated yet, because of the complexity in find the related gener-
alized inverse, but we have studied the A-, D-, and E- efficiencies for the
n — 1 factors of some PADs by SAS program and the results are listed in

the following table. Here, with no loss of generality we can partition the

-1 -1
' 9 us I, Epn ' uzs™ I Fip
DD of (2.11) as ( E!, Qus ) and the D,D; as ( F, R._,

for uy = N+kms, the total number of experiments in the PADs, respectively,
so that the C-matrices of the design d~ which satisfied the conditions of Theo-
rem 2.4 or 2.5 for estimating 6; are C;(D;) = C1(D) = ups ' [, ~E2Q;_ E,
or Ci(Dz) = C1(Ds2) = w28, — FioR;_F|,;,i = 1,...,n — 1, respectively;
as a comparison, the full s ! x (p + k)(é u;) factorial design (FFD),

which is an orthogonal design with universal optimality, has its C-matrix
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C; = s7'NI, — s7*NJ, (Cheng, 1978). Since the non-zero eigenvalues of
the C-matrix Cy are pay > ... > pys-1), for [ = 1,2, we define the A-

: $4(Cs)m -offici $p(Cyplui™ ;
efficiency as F2CiPN the D-efficiency as ——L—N R and the E-efficiency
$£(Crlus

de(Ci(Di))u2”

The efficiencies of some PADs for the first n — 1 factors

| Designs |

The types of | FFD 22 x3 P x7 2° x 7
Designs PAD | PADg(2% x 3) | PAD2;(3° x 7) | PADs6(2° x 7)
No. of Uy 12 1701 224
runs Usg 6 21 56
C-matrix FFD 6[2 — 3J2 567[3 - 189.]3 112[2 —_ 56-]2

PAD 2L —3J; 6.613 —2.2J3 281, — 14J,
Eigenvalue of | FFD 6,0 567, 567, 0 112, 0
the C-matrix | PAD 2,0 6.6, 6.6, 0 28,0
Efficiency A- .89 .94 1

D- .89 .89 1

E- .89 .94 1

From the table, we can find that the A-, D- and E-efficiency are all greater
than 0.89, from which we may conclude the PADs’ approximate A-, D- and
E- optimality for estimating 6;(i = 1,...,n — 1) under the conditions of the

Theorem 2.4 or 2.5.

2.4 Application of Universally Optimal PAD
in CA

The PAD can be applied in a variety of situations of CA:

38



o There is one factor which includes more levels than the other factors

but there is no a suitable orthogonal array to use.

e The number of experimental combinations must be smaller than the

existing OA for some reasons.

e The survey needs to be separated by two stage designs, or after com-
pleting a set of experiments, some extra levels in one of the factors need

to be compared statistically with former levels of the factor.

2.4.1 PAD (3% x 7)

Example 2.4 To examine preferences for various attributes of personal com-

puters, the following table reports the 6 attributes and 22 attribute levels.
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Description of Attributes Personal Computers

Attribute Name

Attribute Levels

1.

o

w

Chip

Monitor

Storage

Upgradeability

Price

Rrand

SO O 10 L0 N0 00 DD 1 L0 10 1 00 10 1 W N

Intel Microprocessor

AMD Microprocessor

Cyrix Microprocessor

Average (VGA 640X480)

Above average (SVGA 1024X788)

Far above average (XVGA 1280X1024)
Average (80 meg Hard Drive)

Above average (120 meg Hard Drive)
Far above average (240 meg Hard Drive)
Processor can not be upgraded

Can upgrade to a faster processor in the further
Can upgrade to a faster processor now
$1500/ $2700

$2000/ $3500

$2500/ $4300

Brand A (Most preferred)

Brand B

Brand C

Brand D

Brand E

Brand F

Brand G (Least preferred)

(This example is adopted from Allenby, Arora and Ginter, 1995)

For this 3° x 7 factorial design, there is no a suitable orthogonal array

which defines a fractional factorial design with a small number of runs. By

the PA method we can augment one level to the sixth factor based on the 6
columns of L;g(3% x 6). Since N =18,s =3,p=6,k=1,and T = N/p =3,

three experimental combinations can be augmented to the original 18 exper-
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imental combinations. According to the theorem 2.4 we can choose the first
three combinations of the orthogonal array as the augmented part by change
the original level 1 to level 7, that is, the PAD matrix includes total of 21
combinations, where one factor is with 7 levels and five factors are with 3

levels each as follows:

4]



Table 2.3 A universally optimal PADy; (3% x 7)

Chip Monitor Storage Ability Price Brand
Original Design
1 1 1 1 1 1 1
2 2 2 2 2 2 1
3 3 3 3 3 3 1
4 1 1 2 2 3 2
5 2 2 3 3 1 2
6 3 3 1 1 2 2
7 1 2 1 3 2 3
8 2 3 2 1 3 3
9 3 1 3 2 1 3
10 1 3 3 2 2 4
11 2 1 1 3 3 4
12 3 2 2 1 1 4
13 1 2 3 1 3 5
14 2 3 1 2 1 5
15 3 1 2 3 2 5
16 1 3 2 3 1 6
17 2 1 3 1 2 6
18 3 2 1 2 3 6
Augment Design
19 1 1 1 1 1 7
20 2 2 2 2 2 7
21 3 3 3 3 3 7
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2.4.2 A Real Example of Universally Optimal PAD

New developments of models and methods in CA are arriving so fast that
even specialists find it difficult to keep up. In order to assess these new mod-
els and new methods, sometimes Monte Carlo simulation is used (Carroll
and Green, 1995). Several authors (DeSarbo, Oliver and Rangaswamy, 1989;
Wedel and Kistemaker,1989; Wedel and Steenkamp, 1989) have used small
Monte Carlo studies to evaluate the performance of their methods and inves-
tigate the effects of factors hypothesized to influence performance. Vriens,
Wedel and Wilms (1994) use Monte Carlo simulation to compare nine dif-
ferent models related to metric conjoint segmentation. Their ANOVA were

based on 576 (64 data sets x9 methods) combinations.

In this section, the author provides an example of universally optimal

PAD for a real problem in a Monte-Carlo study in CA.

The six factors are as follows:

A (Corrtype) two types of correlation (Pearson and Polychoric)

B (Item) seven types of items
(four of same category and three of mixture type)
C ) two test lengths (20 and 40)
D (Loading) two types of item loadings
E (N) two sample sizes (1000 and 1500)
F (p) two levels of correlation between abilities (r = 0.3&0.7)

Nandakumar, Yu, Li and Stout (1995) use a full factorial design (2 x 7 x
2 x 2 x 2 x2 = 224) to investigate the performance of a new software POLY-
DIMTEST which is used to assess the unidimensionality of polytomous test

data. This is a simulation study in the test industry (for details see Li and
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Stout, 1995). For each of the combinations, 100 replications were carried out

and altogether 22400 replications were done. The response is the power of
the POLY-DIMTEST.

In Table 2.4, the first two columns summarize the results of their simula-
tion study, that is, the estimators of level effect (cell mean) and P-values for
each factor by ANOVA. Their findings are included in the far right column
of the same table. The detailed ANOVA is given in Table 2.7.

Because the size of the experiment is huge when a large number of fac-
tors is to be studied, simulation studies involving full factorial design are
usually extremely time-consuming. For this reason, the author proposes a
PADs6(2° x 7) with universal optimality for the same study. Another reason
for using the PAD is that there is no an orthogonal array which is appro-
priate to reduce the size of experiment for this study. We choose specific
six columns from a L33(2%® x 4) including the unique column with 4 levels
to arrange the 6 factors, where only the first 4 levels of factor B (Item) are
used, N = 32,s = 2,p = 4. We use this 32 x 6 orthogonal array as our
first 32 experiments labeled No.1 to No.32. Since p+ &k =7, so k = 3 and
N, = kT = k(N/p) = (3)(32/4) = 24. Using the same 6 columns from
another L3,(2%8 x 4) we keep almost all settings as the same as in the first 32
experiments but use level 5, 6, 7 and 4 of the factor B instead of the level 1,
2. 3 and 4 in the 4 levels column respectively. Comparing with the first 32
experiments we find that there are 24 new combinations, which is augmented
part with label No.33 to No. 56. Merging these 24 new experiments into the
32 x 6 array, a PADsg(2° x 7) is formed in Table 2.5. It can be shown that this
PADs¢(2° x 7) meets the conditions of Theorem 2.5, hence it is a universally
optimal PAD denoted as UOPADsg(2° x 7).
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As the comparison the estimators of level effect for all factors in the
UOPADsg(2° x 7) and related F-test are also listed in Table 2.4. The conclu-
sions based on the UOPADs6(2° x 7) are almost the same as those based on
full factorial design L294(2° X% 7), except for the p-value of factor A. The im-
portant fact is that 3/4 of the 22400 replications are saved by use of the PAD.

In addition, if we observe the detailed ANOVA given in Table 2.8 and
compare with Table 2.7, it can be seen that the residual under the full fac-
torial design Ly.4(2° x 7) is 79.494, and for the UOPAD3¢(2° x 7) is 64.087.
The efficiency —%ﬁ:% = 3.225. As a comparison, we also give another
design PADs6(2°% x 7) (see Table 2.6), which is also a partially augmented
design but does not satisfy either conditions of Theorem 2.4 and 2.5. The

related results of ANOVA are given in Table 2.9.

This example shows that the use of the PAD with universal optimality
provides an efficient alternative of the full factorial design with advantages
in small number of stimuli, some statistical optimalities, and general tool of

analysis, etc.
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Table 2.4 The summary based on data of Nandakumar et al

Design Full UOPAD Nandakumar’s Description
replications | 22,400 5,600
factor Cell P Cell

Mean Mean
A (Corr) < .01 .05 | Pearson correlations led to
Pearson 70.67 70.96 equal or better performance
Polychoric | 65.74 66.25 than Polychoric correlations.
B (Item) < .01 .05 | The power decreased slightly
3 83.72 83.13 for tests containing mixed
4 79.06 75.50 category items.
2 71.56 71.00
1 62.22 66.23
6 62.13 62.75
) 60.34 61.00
7 58.41 60.25
C(J) < .01 .01 | The power increased as the
40 77.03 79.07 number of item increased.
20 59.38 58.14
D (Load) < .01 .01 | When tests contain mixed-
1 or2 75.36 78.14 ability items, the power
1 and 2 61.05 59.07 decreases.
E (N) < .01 .01 | The power increased as the
1500 73.06 73.11 sample size increased.
1000 63.35 63.11
F (p) < .10 .01 | The power increased as the
0.3 83.3 85.17 correlation between the
0.7 53.11 51.50 abilities decreased.
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Table 2.6 PADsg(2° x 7) based on data of Nandakumar et al
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Table 2.7 ANOVA Table for Full Factorial Design (N=224)

* *x ANALYSTIS

POWER

by CORRTYPE
ITEM
J
LOADING
N
RHO

Source of Variation

Main Effects
CORRTYPE
ITEM
J
LOADING
N
RHO

Explained

Residual

Total

Sum of

Squares

105809

1360.
19214.
.571

5284

11457.
17431.
51062.

105809

16852.

122662.

.750

286
429

161
143
161

.750

804

554

49

0F

DF

11

I

11

212

223

VARIANCE

Mean

Square

9619.
1360.
.405

5284.
11457.
17431.
51062.

3202

8619.

79

550.

068
286

571
161
143
161

068

.494

056

*

121

40
66

219

121

*

*

F

.003
17.

112

.285
477
144 .
.275
642.

125

337

.003

Sig
of F

.000
.000
.000
.000
.000
.000
.000

.000



Table 2.8 ANOVA Table for UOPADs6(2° x 7)

Source of Variation

Main Effects
CORRTYPE
ITEM
J
LOADING
N
RHO

Explained

Residual

Total

*

by

*

*

ANALYSIS

POWER
CORRTYPE
ITEM
J
LOADING
N
RHO
Sum of
Squares
32497 .536
311.143
3439.607
1134.000
5092.071
6132.071
16388.643
32497 .536
2819.821
356317 .357

50

CF

11

55

VARIANCE =* * *

Mean

Square

2954.
311.
573.

1134.

5092.

6132.

16388.

2954.

64.

642.

321
143
268
000
071
071
643

321

087

134

46.

F

099

4.855

79

255

46.

.945
17.
.456
85.
.726

695

684

099

Sig
of F

.000
.033
.000
.000
.000
.000
.000

.000



Source of Variation

Main Effects
CORRTYPE
ITEM
J
LOADING
N
RHO

Explained

Residual

Total

Table 2.9. ANOVA Table for PADsg(2° x 7)

by

* *x * ANALYSIS

POWER
CORRTYPE
ITEM
J
LOADING
N
RHO
Sum of
Squares
27141.394
279.018
6142.357
2040.537
2405.161
4376 .823
10892.161
27141.394
4959 .588
32100.982

51

0

11

556

F

VARIANCE

Mean

Square

2467

279.

1023

2040.
2405.

4376

10892.

2467 .

112.

583.

.399
018
.726
537
161
.823
161

399

718

654

21

* %

F

.890

2.475

21
38

96.

21

.082
18.
.338
.830

103

632

.890

*

Sig
of F

.000
.123
.000
.000
.000
.000
.000

.000



Chapter 3

Uniform Designs

3.1 Introduction

Generally, conjoint analysis gives the analyst three alternatives to choose
ranging from the most restrictive (a linear relationship) to the least restric-
tive (separate part-worths), with the ideal-point or quadratic model falling
in between. The linear model is the simplest yet of most restricted form, be-
cause we estimate only a single part-worth (similar to regression coefficient)
that is multiplied by the value of level. In the quadratic form, also known
as the ideal model, the assumption of strict linearity is relaxed, such that we
have a simple curvilinear relationship. Finally, the part-worth form is most
general, allowing for each level to have its own part-worth estimate. When
using the separate part-worths, the number of estimated values increases
quickly as we add factors and levels because each new level has a separate
part-worth estimate. The type of relationship can be specified for each factor
separately, thus allowing for mixture if needed. This choice does not affect
how the treatments or stimuli are created, but it does impact on how and

what types of part-worths are estimated by CA.



Green (1974) pointed out a problem in the design field of conjoint studies.
He assumed that twelve different airline carriers are involved in a conjoint

study. After 20 years, Carroll and Green (1995) wrote:

Two trends have been noted in the application of conjoint anal-
ysis to business problems. First, the early successes of conjoint
analysis have led to industry demands for techniques that handle

ever larger numbers of attributes and attribute levels. ...

They considered that coping with larger numbers of attributes and levels
still is a problem in CA. In fact, with growing emphasis on marketing stud-
ies that deal with the measurement of consumer preferences (e.g., conjoint
analysis) it is not unusual for some researchers to deal with twelve or more

factors, each involving two to six or more levels.

Several experimental designs, including completely randomized, random-
ized block, incomplete block, orthogonal designs, are based on an analysis of
variance (ANOVA) model. This model has the advantage of allowing a quite

general dependence of the response on the various factors and levels.

Suppose there are s factors, and for simplicity we assume an equal number
of levels q of each factor. Carrying out such a experiment would be expensive
when using orthogonal array even if ¢ is of moderate size. The constraint of
orthogonality requires N > ¢* for the number N of experiments. Moreover,
an even larger number of experiments is required to estimate all the main and
interaction effects. Hence, most authors recommend the use of Ly(2°) and

Ln(3°%). But sometimes the restriction of two or three levels is not adequate.
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An alternative approach is taken to consider some design d, such as op-

timal designs, by assuming some regression model

E(Y)=XB, Var(Y)=o%ly. (3.1)

where Y is an N x 1 response vector, X is an N x s design matrix, g =
(81, ---,B5) Is a parameter vector. The least square estimate of [ is 8 =
(X'X)"'X'Y with covariance matrix Var(8) = (X'X)™!, where Cy = X'X
is information matrix. The ANOVA model can be considered as a special
case of (3.1), where the elements of X consist only of zero and ones. Since
one disadvantage of the ANOVA model is that the number of parameters to
be estimated is quite large, therefore, we may consider the regression model

(3.1).

According to these concerns a new class of experimental designs called
uniform design(UD), generated by number-theoretic methods and based on
the regression model (Fang and Wang, 1994), will be introduced for conjoint
analysis in this chapter. The UD is proposed by Fang (1980), Wang and
Fang (1981) and has been widely applied in China to problems in system
engineering, pharmaceutics, chemical engineering, and natural sciences. We
may use the UD in situations of larger number of attributes and levels, or of

environmental correlation between attributes under regression model for CA.

3.2 Construction of Uniform Designs (UD)

If we drop the principle (b) of a good experimental design and only keep the
principle (a) described in chapter 1, then we may use a uniformly scattered

set of points on the experimental domain. Wang and Fang (1981) have given
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the following definitions:

Definition 3.1 A uniform-type design (U-type design for simplicity), de-
noted by Un(N?), is a N x t matrix with each column being a permutation
of 1,2,...,N.

A U-type design Un(N?) provides an experimental design with NV experi-
mental points for ¢ factors at N levels each. Where the notation Un(/N*) has
a similar meaning to the orthogonal array Ly(s'): “U” denotes the U-type
design; “N” the total number of experiments, which equals the number of
levels for each factor; “t” the maximum number of possible columns. There
is a basic difference between orthogonal design and U-type design: in the
orthogonal design, any q¢ < t columns are equivalent, i.e., any g columns
are orthogonal, but in the U-type design, the efficiencies may be different
for distinct choices of ¢ columns, i.e., the uniformity may differ for different
q columns. Therefore, a recommendation of best ¢ columns for any given
number g < t is needed. Given a Un(N?) = (uij), let z;; = (ui; — 0.5)/N for
i=1,..,Nand j=1,...,t, then X = (z;;) is an N x t induced matrix de-
noted by Xn(N?), where z;; € (0,1). There is an one-to-one correspondence
between the Un(N?) and Xn(N*). Each row in the matrix X also can be
treated as an experimental point. Let Un, be a set of all U-type designs for
given N, X be a set of induced matrices of all U-type designs and D be a
measure of uniformity defined on the Xn.. D maps An, into R* = [0, 00).
Suppose that the lower D corresponds to the better uniformity for the N
experimental points of X (or say, Un(N?)).

Definition 3.2 A U-type design Un(N') = (uy;) is called uniform de-
sign(UD) for given N if its induced matrix XN (N*) has smallest D-value
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among AN ;.

It is clear that there are different uniform designs corresponding to differ-
ent measures of uniformity, and any criterion of uniformity should be invari-
ant for exchanging rows and columns of a U-type design. Therefore, the first
column of Un(NN?') can always be taken (1,2, ..., N)'. There are N! — 1 pos-
sible permutations of {1,2, ..., N} for the second column, N! — 2 choices for
the third column, and so on. Finding a uniform design Un(N?) is a difficult
task for even moderate N and t,e.g., N > 10,t > 5, the load of computation
for choosing the best ¢ columns from all possibilities is very heavy. Thus,

many authors have restricted consideration to some subsets of U ;.

3.2.1 Uniform Designs Based on Good Lattice Point
Sets

Wang and Fang(1981) suggested to use good lattice point (glp) sets as the
subset of Un, . For given N and s < ¢ they defined a subset UG x s of the

Un s as follows:

Definition 3.3 Let {h;,...,A}(h1 < hy < ... < hy < N) be a set of all
positive integers, which satisfies the conditions that the great common di-
visor (g.c.d.) (IV,h;) =1 for i = 1,...,t. The maximum number ¢ can be
determined by the Euler function ¢(N) (Hua, 1956). ¢(N) = N(1 — pll)(l -
;12-)...(1 ~ ;1:), where N = pi'...p!" is the prime decomposition of N. Let
u;; = thj(modN) and u; = (uyj,...,un;),t = 1,..,N,j = 1,...,t, where the
multiplicative operation modulo N is modified such that 1 < u;; < N, e.g.,

u;; = N if th; = mN for some integer m. Let Gy be a set of u;,7 =1,...,¢.
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Then the subset UG n s of Un s is defined as
UGNs={U : U €Uns, each column of U belongs to Gn}.

A design in UGN s is called a UG-type design. A UG-type design with small-
est D-value for its induced matrix over UGy, is called a G-uniform design
and denoted by UGy 5.

For examples, since 12 = 3 x 22, ie.,, p; = 2, p» = 3, so ¢(12) =
12(1 — 3)(1 — 3) = 4. In fact, the 4 possible associated h; with (h;, N) =1
are 1,5,7 and 11; and ¢(7) = 7(1 — ) = 6 with 1,2,3,4,5,6 as h;s. Therefore
for given N, we have t = ¢(N).

Fang (1980), Wang and Fang (1981) have given a detailed discussion on
properties and generation of UG-type designs. Since computation required
to find the G-uniform designs is burdensome even when the ¢(N) is moder-
ate, there are two ways to reduce the computing load. The first is to choose
h, = 1, which reduces the possible designs from (?(™)) to (f_(_f)—l). The second
is to consider (hy, ..., h:) to be of the form (1, a,a?,...,a' !)(modN), where a
is an integer satisfying 1 < a < N and a' # a?(modN),1 <i<j<t-—1.
(Niederreiter, 1977, and Fang and Wang, 1994). Since the a has at most
N — 1 possible choices and we only need find the best a after the compar-
ing, the computing load reduced dramatically. Although this restriction only
yields nearly G-uniform designs, most design given by Fang (1980) and oth-
ers were obtained in this way. They obtained G-uniform designs based on
the discrepancy for 4 < N <31 and s <t = ¢(N).

Fang and Wang (1994) suggested to use only the first N rows of Un 4. ((N+

1)*) notated as UF(N*) for even N to improve the uniformity of G-uniform
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designs and UG}, , was defined similarly. Such modification can lead to de-

signs with lower discrepancy than existing nearly G-uniform designs.

The author point out that the G-uniform designs are available for any

number of levels N and any number of attributes s only when s < £ +1 for

Un(N*) and Ug(N?).

Why should the number s of attributes be less than or equal £ + 1 when
total ¢ columns is included in the Un(N?*) 7 As an answer, the author pro-

poses the following theorem concerning the ranks of Un(N*) and Ux(N*):

Theorem 3.1 For any UG-type design, the ranks of matrices Un(N*) and
Uz (N') (N > 4) are both less than or equal to £ + 1.

Proof: According to the definition (3.3), we consider the following three

cases:

(1) N is a prime number. So, the Euler function ¢(N) = N —1. Thus, there
is an integer k,k <t = ¢(N) such that ¢ = rk. For any given h; = i(z < k)
of the first row (A1, ha, ..., ht) = (1,2,..., N —1) in the Un(N*), there must be
another Any_; = N — 1 in the same row corresponding to it. The m-th row of
the Un(N?) is (mhy, mhg, ...,mh;)(modN),(1 < m < N). For h; =1, we can
write that mh; = NI+ p, where [ and p are positive integers with 0 < p < NV,

then mhy_; = m(N — i) = mN — mi, that means, mhy_; = —mi(modN),
where
) N —p, if N
—mi=—(Ng+p)=N(—q—1)+(N—p) = { N, P ifziN
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Therefore, for any positive integer m,1 <m < N,

p+(N—-p)=N\, p#N

mh;(modN) + mhy_i(modN) = { p+N=N+N=2N, p=N

Performing elementary transformation of columns of the matrix of Un(N?)
by adding the i-th (i = 1,2,...,k) column of matrix Un(N?) to its N — i-
th column, respectively. We get k new columns which are all same as

(N,N,...,N,2NY, so, the rank of the new matrix is less than or equal to
A g

N-1
£ 4+ 1. Therefore, the rank of matrix Unx(/N*) also is less than or equal to

s+ 1

(2) N is a non-prime number. In this situation, we have (A1, ks, ..., k), the set
of all positive integers which satisfies the conditions of g.c.d. (N,A;) =1 and
h;i < N fori=1,...,t and t = ¢(N), as first row of the Un(N*). Obviously,
thet < N —1.

Since (N, h;) = 1 for any number A; in the (hy, k2, ..., h¢), and the neces-
sary and sufficient condition for (/V,h;) = 1 is that there are two integers a
and b which satisfy a N +bh; = 1. It is follows that (a +b)N +(—b)(N —h;) =
aN + bh; = 1, that is, (N,N — h;) = 1. Thus, N — h; also is in the set
(hy, ha, ..., ht). Therefore, as in case (1), we can prove that the rank of ma-

trix Un(N*) is less than or equal to 3 + 1.

(3) When N is even. The matrix of the UG-design could be either as a special
case of (2) or as a remainder of Un41[((V +1)*]. In the second situation, the
N rows of the matrix are the first N rows of Un41[(INV + 1)!] and denoted as
Ux(N?). Using same procedures as in cases (1) and (2) to number NV + 1,

we found that after same elementary transformation of columns the k new
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columas in the first N rows of the Un4+1[(N+1)Y] are all (N, N, ..., N), so the

N
rank of matrix Un(N*) is still less than or equal to £+ 1, where t = ¢(V +1).

The theorem is proved.

Corollary 3.2 For regression analysis, at most %+1 factors can be arranged
by UG-type design Un(N*) or Un(N*Y).

From now on, for simplicity, we still use the notations of matrices Un(N?)
and UX(N?) provided by Fang (1980), Wang and Fang (1981), but no more
than £ + 1 columns of the ¢t columns in the both matrices are effective for

use under regression model.

Furthermore, according to the author’s results of computation for 4 <
N <19 (see Appendix A), the ranks of matrices Ux(N*) and Uz (N*) both
equal to £ + 1.

3.2.2 UG-type Designs with Uniformity and Optimal-
ities

Let P = {x1,...,Xn} be some set of N points on unit cube C°. Generating

a uniform design requires a measure of uniformity. Several useful measures

for generating an uniform design have been proposed (Fang and Hickernell,

1995). To find out the G-uniform design we need to find out ¢ columns with

some lowest measure D for the number of factors s = 2, ..., 4+ 1. We intro-

duce following discrepancy as the measure of uniformity:
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Definition 3.4 Let Fy(x) be the empirical distribution of P, that is,

1 N
Fn(x) = N;I{x; <x},

where I'{.} is the indicator function and all inequalities are understood to be

with respect to the componentwise order of R°. Then
Dy(P) = [ |Fw(x) = F(x)P? dx]"”

is called L,-discrepancy of P, where F(x) is the uniform distribution func-
tion on C*. Setting p = 1,2 and oo give the Ly-, L,-, and Ly.-discrepancies,

respectively.

The Lo-discrepancy is usually simply called the discrepancy, the more

popular measure in UD. It can be written as
D(P) = sup |Fn(x) — F(x)|.
xeC*

In fact, the discrepancy is the Kolmogorov-Smirnov statistic for goodness-of
fit. One disadvantage of the discrepancy is that it is expensive to compute.
Bundschuh and Zhu (1993) gave an algorithm suitable for a small number of
factors. A better approach is used by Winker and Fang (1995).

What are the statistical advantages of the G-uniform design based on
above discrepancy except the uniformity of its experimental points on the
domain (Ding, 1986)? In other words, can we find a class of designs with

some statistical optimalities while keeping the uniformity?

Recall the definition of the G-optimality and compare it with above con-
cept of the discrepancy, their statistical meanings seem to be related. Be-

cause of the equivalence of G-optimal and D-optimal designs, according to
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the Kiefer and Wolfowitz (1960) theorem, a special result of the general
equivalence theorem for optimum designs (see Kiefer, 1974), it may not be
surprising if optimality and uniformity are satisfied at the same time in many

cases.

Now, assuming
C={Cp,P €D} CB.,, DEUGw.,

we denote a design in D with uniformity as Py, a design with D-optimality as
Pp, a design with A-optimality as P4, and a design with both A-optimality

and uniformity as Pay, etc., respectively.

Suppose that we use an UG-type design P to arrange an experiment with
s < £+1 factors having N levels each under following linear regression model
(Ding, 1986):

Ya = .BO'*',BI(-TaI_51)+-..+ﬁs(1’as—‘53)+€a (3 1)
(:BO - 18151 T e T ﬁsi's) + 181'7:01 + ... + ﬁsxas + Eay h

where Z; = ﬁz{;’:l Tairl = 1,...,8,aa=1,...; N, the design matrix

llzin—Z1 ZT12—T2 -+ T1s—Ts
lizag—Z1 T22—Z2 -+ T2s—Ts N

XO = . . . . = (]-IXNXS)’
llzyi—Z1 ZN2—Z2 --- INs— I,

the information matrix

N 0
Cp = X' X, 2 :
[ (0 L)

It is easy to see the advantage of the model (3.3) which decreases comput-

ing load of the related traces and determinants by reducing the order of the
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N7t 0

Cp-matrix, i.e., by Cp' = ( 0 L3
8Xs

Tr(L™') (or det(L™')) instead of compare Tr(C5') (or det(Cp')). Due to

this reason we may also simply call the X and L as design matrix and infor-

). Therefore, we can comparing

mation matrix, respectively.

In appendix A, we have given Papy, Ppu, Pap with Fang’s Py for the
UG-type design for N < 20. From this appendix one may find indeed that
most of the designs provide A- and D-optimality while keeping the uniformity.

3.2.3 Uniform Design Related to an Orthogonal Array

It is possible to relate the UD to the orthogonal array by using the pseudo-
level technique. Suppose that we want to use a design with N levels in a
practical problem with only q interesting levels when N = rq for some integer
r. We may reduce the original N levels to g levels by pseudo-level technique
as follows: merge the first r levels of the N levels into level 1, the (r 4+ 1)-th
to (r + r)-th levels of the NV levels into level 2, and so forth. For example,
applying this pseudo-level technique to a U-type design Ug(9*) in Table 3.1,
we get an orthogonal array Lg(3*) in Table 3.2.

In general, Fang et al (1995) gives the following theorem in this connec-

tion.

Theorem 3.3 Any orthogonal array Ln(q'), if it exists, can be generated
from a U-type design Un(N*) by the use of the pseudo-level technique, as-

suming N is a multiple of q.
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Figure 3.1 shows the plots of first two columns of the Table 3.1 and 3.2.
The 9 circle points from Lg(3*) lie on a 3 x 3 grid. By shifting each of these
points onto a finer 9 x 9 grid, we can obtain 9 star points that form a Uy(9*)
design which may have lower discrepancy than Lo(3*). One may think of this
as the reverse of the pseudo-level technique. Therefore, Fang (1995) proposed
the following U-type design Un(N?*) based on the OA.

Definition 3.5 A On,:, design Uy(N?) is a U-type design that can be re-
duced to an orthogonal design Ly(q') by the pseudo-level technique where
N is some multiple of q. The design with lowest D-value is called an Op ¢ 4-
uniform design and denoted by UOn,q-

For a given Ly(q") there are many possible Oy, designs Un(N?). In
each column of Ly(q') we can replace level k(1 < k < g) by any permutation
of (k—1)r+1,(k—1)r+2,...,kr. A search over possible permutations yields
a On ., uniform design. Fang (1995) found that Oy, uniform designs often
have lower discrepancy than G-uniform design and OA. Table 3.3 compares
the discrepancy for these three types of designs for N =9 and ¢t = 2,3 and 4.
But Fang only obtained the Oy, uniform designs for a few cases of small N
and ¢. Furthermore, the relationships of the UD and OD has not been fully
studied.
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Table 3.2 Ug(9*)

Table 3.1 Lo(3%)

1 2 3 4
1 2 1 3
2 5 4 5

b=

4 3 6 9

I 9 4
8 6 3 8
9 8§ 5 2

7

No.

1 2 3 4

2
3
4

1 2 2 2
1 3 3 3

1

2 2 3

8
9

1

3 3 2

*0

No.

2

I~

9

Figure 3.1. Comparison of the experimental points Lg(3*) (o) and Us(9?) (*).



Table 3.3 Discrepancies for Lg(3°),

UGg s and UQg 3 designs
Lg(3%) UGgs UOg,3
0.3056 0.1574 0.1451
0.4213 0.2885 0.2114
0.5177 0.4066 0.2739

B b et

3.3 Uniform Designs with Different Number
of Levels

Although the uniform design has the advantage of requiring fewer experi-
ments with large number of levels, it is usual that some of the factors must
be restricted in a certain number of levels. For example, the only possible
numbers of seats in a car are 4, 5, or 6. Therefore, we need the uniform de-
sign with different numbers of level for different factors. In fact, Fang and Li
(1994) generate a number of designs with various numbers of levels derived

from glp sets using the pseudo-level technique.

Example 3.1 For redesigning its checking account services, a financial in-
stitution may consider four attributes with different numbers of level listed

in Table 3.4.

We may choose Us(6® x 3) (Table 3.5), the G-uniform design, to arrange
the four factors, where the factors A(cost of checking account), C(accessibility
to banking service), D(hours) have six levels each while factor B(quality of
service) has three levels. By linear regression model, 5-4(1)=1 degree is for

residual, and we can estimate single part-worth, or say, regression coefficient.
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Table 3.4 Four attributes in a design of financial service

Attribute name

Attribute levels

A. Cost of check-

ing account

B. Quality of ser-
vice

C. Accessibility to
banking service

D. Hours

RS i al ol e

A o

$0.60 a check, monthly statement along with the
checks processed

First six checks each month are free, subsequent
checks are $0.85 each

First two checks each month are free, subsequent
checks are $1.25 each, earn interest on every dollar.
$1,000 minimum balance in a checking or savings
account all the time

Free checks by keeping $1,000 minimum monthly
balance, otherwise, $0.60 a check

Absolutely free checking service

Service is less friendly than average. Bank personnel
are less likely to help you than those

in most banks.

Service is average in friendliness. Bank personnel
are average in their willingness to help you.
Service is above average in friendliness. Bank
personnel are more likely to help you than those
in most bank.

20-minute drive from home

15-minute drive from home

10-minute drive from home

5-minute drive from home

10-minute walk from home

5-minute walk from home

Weekdays 9am-4pm

Weekdays 9am-4pm and evenings 4pm-8pm twice
a week

Weekdays 9am-4pm and Saturdays 9am-12:00noon
Weekdays 9am-5pm

Weekdays 9am-5pm and Saturdays 9am-12:00noon
Monday through Saturday 9am-4pm.
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Table 3.5 G-uniform design Ug(6° x 3)

A C D B

1 2 3 4
1 1 2 3 2
2 2 4 6 1
3 3 6 2 3
4 4 1 5 1
5 5 3 1 3
6 6 ) 4 2

Discrepancy 0.3581
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Chapter 4

Conclusions and Directions for
Further Research

4.1 Concluding Comments

It is no exaggeration to say that a necessary condition for a new method or
model to receive widespread application is for it to be convenient and easy-
to-use. By summarising the advantages of uniform designs, we can see that

the uniform designs provide many more flexibilities and economies for CA:

1. Uniform design is a new alternative tool for coping with large numbers
of attributes and levels within attribute. For example, one may arrange
large numbers of attributes, say more than 6 or 10, and large numbers

of levels up to 31.

S

Uniform designs use the regression model which estimates the single co-
efficient for every attribute so that the number of combinations (stim-
ulus) is reduced dramatically. e.g., it falls from OA’s N > ¢* to UD’s
N = q. It can be a single part-worth (i.e., regression coefficient of linear

term) that is multiplied by the level’s value, and the quadratic terms,
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the interaction terms (the coeflicient of cross term), etc. It allows us

to predict the total worth.

3. It is easier to use various existing software of the regression for the

analysis of UD, where no more tools are required.

4. When the true environmental correlations are high, uniform design
in conjoint analysis may avoid some infeasible attribute combinations

e.g., low-priced luxury cars; very powerful, low-wattage air condition).
g g

5. UD also can provide some designs with mixed levels, that is, UD allows
different attributes to have different number of levels, especially, while
few attributes may have larger number of levels and others may have

less.

On other hand, the PAD also can be applied in a variety of situations of
CA:

1. There is one factor which includes more levels than other factors but

there does not exist a suitable orthogonal array to use.

2. The number of experimental combinations must be smaller than the

existing OA for some reasons.

3. The survey needs to be separated by two stage designs, or after com-
pleting a set of experiments, some extra levels in one of the factors need

to be compared statistically with former levels of the factor.

Universally optimal PADs and UG-type optimal designs are proposed
as new designs for conjoint analysis in this thesis. Like any new technique

in its infancy, there is a lot of room for improvement. First, coping with
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larger numbers of attributes and levels with different levels still is a big
challenge. For example, when two attributes have twelve levels while the
remaining two or more than two attributes have three levels, we have not yet
provided related design, such as UG-type optimal designs or PAD. Second,
Designs as described in this thesis are used for fixed effects linear model and
Var(Y) = 0?1, the questions are whether the same optimality holds when

the Var(Y) = 2% for £ > 0 or under mixed model?

In section 4.2 and 4.3, we will briefly discuss optimality for experimental
designs under mixed model, and highlight two new analytic methods for CA

under mixed model.

4.2 Optimal Designs in Mixed Model

In CA, it is not unusual that the levels of some attributes come from a large
population and our interest is in this population, not in specific levels. Then,

we need mixed model:
Y =XB+e, e=Ui +... + U =UE,

where Y is an n-vector of observable random variables, X, the design matrix,
and U;,7 = 1, ..., r, are known matrices, 3 is an m-vector of fixed parameters,

and &;,7 = 1,...,r are unobservable structural random variables such that
i ~ (0,0’2[",,'), Cov(é.izgj) =0t # 7,

and
g~ (0,02V, + ...+ 02V,), Vi=UU;.

When some attributes are considered random variables, we have one or more

additional sources of information for estimating treatment effects. If the
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analysis is based on an appropriate mixed model, in most cases, we shall
attempt to show that a design which is optimal under the fixed effects model
continues to remain so under the mixed model. These results are non-trivial
because the comparative position of two given designs with respect to a given
criterion such as A- or D-optimal may not remain the same under the two

models (Shah and Sinha, 1989).

It is important to recognize that the analysis of a mixed model is based
on the estimation of the variance components and that the estimates of the
treatment effects are affected by the errors in the estimation of these variance
components. Shah and Sinha (1989) ignore these errors, i.e., they regard the
variance component as known up to a scalar multiplier for the purpose of
optimality. Then the primary interest is in optimality results which hold for
all values of the unknown variance components. Thus, the optimality with
respect to the fixed effects model is indeed an apriori necessary condition for
optimality with respect to the mixed model. For this reason, even though
the designs which are disconnected in the fixed effects model are connected
in the mixed model, these could not be optimal for all values of the variance

components and hence need not be considered.

Optimality of block designs under the mixed model was first considered by
Sinha (1980). Then, several authors established optimality of certain designs.
For instance, the Balanced Block Designs (BBDs) is universally optimal in
the extended sense with respect to the mixed model. Work in this area is
still in the early stages and many important problems yet remain unresolved
(Shah and Sinha, 1989). Little is currently known about the optimality based

on factorial and fractional factorial designs in the mixed model.



4.3 Disaggregate Level Analysis

We propose a mixed model as an alternative of part-worth function model,
which involves limiting assumption of fixed effects. Two examples are used to
illustrate how the results based on ANOVA II (mixed) model are congruent
with that of traditional procedure.

Example 4.1 One may try to decide what attributes affect choice in the
canned dog food market (Hair, Jr. et al, 1992). The three attributes (fac-
tors) selected with two values (levels) each as affecting the purchase decision

are as follows:

Factor Level

Brand name | Arf versus Mr.Dog

Ingredients | All meat versus meat and fiber supplements
Can size 6 ounce versus 12 ounce

Following table lists the range of the part-worth estimate based on re-

spondent 1 (Hair, Jr. et al, 1992) and the order of importance.

size ingredients brand
range 1.512 3.022 0.756
% 29 57 14
order 2 1 3
MINQUE | 2.00 8.00 0.5

Suppose we consider these three factor effects as random effects and run a
variance component analysis. Estimates of these three factors are displayed
in the last lines of the table. The order of importance for three factors is
exactly same as the order in part-worth analysis, i.e. ingredients, size and

brand.
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Example 4.2 In Chapter 2, we compared a PAD with a complete design
based on the simulation study data set. Here we assume all the six factors

are random. Table 4.1 shows the estimates of variances.

Table 4.1 The results of variance component analysis
for the study of Nandakumar et al

Source E(MS) Estimate Order
A (Corrtype) | Var(e)+112 Var(Corrtype) 11.44 6
B (Item) Var(e)+ 32 Var(Item) 97.59 4
C ) Var(e)+112 Var(J) 46.47 5
D (Loading) | Var(e)+112 Var(loading) 101.59 3
E (N) Var(e)+112 Var(N) 154.93 2
F (p) Var(e)+112 Var(p ) 455.20 1
error Var(e)+112 Var(error) 29.49

Comparing the six estimates of variances with error variance, only the
variance of factor A, i.e. correlation type, is less than error variance. This
means that we may ignore the difference between these two types of corre-
lation in terms of their power. This conclusion is almost the same as Nan-
dakumar et al (1995) (see Table 2.4). According to the order of variances

estimates, the importance of the factors, are: p, N, loading, item and J.

4.4 Aggregate Level Analysis

The general conjoint segmentation model is formulated by Hagerty (1985)

as:

YP(P'P)'P'= XB+E



where

t = the consumers, 1,2,...N;

7 = the profiles, 1,2, ...n;

k = the conjoint design variables, 1,2,...Kj;

s = the segments, 1,2,...5;

X = a (n x K) matrix containing the K conjoint design dummy variables
for the n profiles;

Y = a (N x S) matrix containing the responses of the N consumers to the
n profiles;

P = a (N x §) matrix representing a general partitioning scheme for assign-
ing consumers to segments;

B = a (K x N) matrix of regression coefficients; and

E = a (n x N) matrix of random error (Vriens, et al 1996).

This equation accommodates individual-level analysis (S = N), segment-
level analysis (1 < § < N), and aggregate-level analysis (S = 1). Since
economists have generally been most interested in the aggregate implica-
tions of multi-attribute utility structures and less considered with estimation
of individual utility function per se {(Green et al, 1978), we shall use a general
method for analyzing data of covariance structures at the aggregate level in

CA.

Joreskog (1974) describes a general method for analyzing data according
to a general model of covariance structures. The model assumes that the
population variance-covariance matrix X(p x p) = (0oi;) of a set of variables

has the form
Y = B(A®A + ¥2)B' + @2 (4.1)

where B(p x p) = (Bix), A(g X 7) = (Akm ), the symmetric matrix ®(r xr) =
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(¢mn), and the diagonal matrices ¥(g x ¢) = (éri¥x) and @(p x p) = (4;;6:)
are parameter matrices (4;; denotes Kronecker’s delta). It is assumed that the
mean vector of the variables is unconstrained so that the information about
the covariance structure is provided by usual sample variance-covariance ma-
trix S(p x p) = (s:j), which may be taken to be a correlation matrix if the
model is scale free and if the units of measurements in the variables are ar-

bitrary or irrelevant.

The covariance structure of equation (4.1) arises when the observed vari-

ables x(p x 1) are of the form

x=u+ BA£ + B( + e, (4.2)

where £(r x 1), (g x 1), and e(p x 1) are uncorrelated random latent vectors,
in general unobserved, with zero mean vector and dispersion matrices ®, ¥?2,

and @2, respectively, and where p is the mean vector of x.

To determine the estimates of the unknown parameters, two different
methods of fitting the model to the observed data may be used. One is the

generalized least squares method (GLS) that minimizes
G=tr(I-S"1%)% (4.3)
the other is the mazimum-likelihood method (ML) that minimizes
M = log|Z]| + tr(SZ7!) — log|S| — p. (4.4)

In a large sample of size N, (N — 1) times the minimum value of G or M
may be used as a x? to test the goodness of fit of the model and for both

methods, approximate standard errors may be obtained for each estimated
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parameter by computing the inverse of the information matrix.

Wiley, Schmidt and Bramble (1973) suggested the study of a general class
of components of covariance models. This class of models is a special case
of Equation (4.1), namely, when B is diagonal, A is known a priori, ® is
symmetric and positive definite, and ¥ or @ are either zero or diagonal.

The covariance matrix X will then be of the form

T = AAPA'A + @2 (4.5)
or
S =AAPA' + TA. (4.6)

The matrix A(p x k) is assumed to be known and gives the coefficient of the
linear functions connecting the manifest and latent variables, A isa p x p
diagonal matrix of unknown scale factors, ® is the k x k symmetric and
positive definite covariance matrix of the latent variables and ¥2 and @2 are

p X p diagonal matrix of error variances.

Within this class of models eight different special cases are of interest.

These are generated by the combination of the following set of conditions:

A =1
ond : A #I;}

& is diagonal

on® : ® is not diagonal;
PT2or@2 =%l
2 @z .
on¥or@ : W2or@2 general diagonal. }

Selection of these eight combinations depends on the scale of measurement

and the homogeneity of variance.
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Joreskog (1974) introduced an example taken from Wiley, Schmidt and
Bramble (1973). This example was reanalyzed through LISREL. The data
consist of 51 education students on a test designed to assess teachers’ judge-
ments. The items used were designed according to three factors: Grade Level
(G), Teacher Approach (T) and Teaching Method (M), which were hypoth-
esized to influence learning and teaching. We use this example to CA for
purpose of explaining basic idea associated with aggregate analysis. There
are two levels for each factor. In this case, the observed variables x(p x p)

are of the form:

x, =u+Au, +e,, (4.7)

where p is the mean vector and e, is a random error vector both of the same

form as x,. The variance-covariance matrix of x, is
T =APA' + @2 (4.8)

where A is a design matrix based on factorial designs which has one random

way of classification v = 1,2, ..., N, for aggregate level analysis in CA.

A 23 factorial design

/(1 1 1 1
1 1 1 -1
1 1 -1 1
1 1 -1 -1
A= 11
1 -1 1 -1
1 -1 -1 1
\1 -1 -1 -1

can be used. The N = 51 respondents would then be asked either to rank or

rate eight stimuli.
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In equation (4.8), ® is general diagonal, or ® = (¢;;) is a square matrix,
and @2 is general diagonal or @2 = ¢%I. By the sample covariance matrix
S for these data, A = I was considered appropriate. Then the data were
analyzed under each of the four remaining cases (Joreskog, 1974). Table
4.2 shows the x? values and their degrees of freedom. In the margin of this
table, x? values are given for testing the hypotheses of uncorrelated compo-
nents and of homogeneous error variances. It appears that these hypotheses
were both rejected by the tests. The only model that seems reasonable is
the one that assumes both correlated components and heterogeneous error
variances. The maximum-likelihood estimates of variances and covariances of
the components and their error variance, éogether with their standard errors,
are also given in the Table. The value 9.16 in & shows that the variance of
subjects is the largest one and factor M (teaching method) is another major

source (5.21).

Table 4.2 x? for testing the fit of four models

02 =0?] 0O%?#o%]
® diagonal X2, = 6825 x2, =46.16 xZ=22.09
® not diagonal x3; =51.00 x3; =25.98 x2=25.02
2=17.25 X2 =20.18

Maximum-Likelihood Estimates of ¢ and 62

(Standard Errors in Parentheses)

9.16(1.95)

0.75(0.48)  0.70(0.34)

0.63(0.43) —0.05(0.33) 0.43(0.91)
—0.62(1.10) —0.51(0.81) 1.13(0.51) 5.21(1.58)

é =

62 = diag(1.52(0.83),4.95(1.41),8.25(1.88), 5.58(1.60), 1.95(0.96), 5.76(1.21), 2.52(0.9
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Although the data is from an educational study, one of the purposes of
the study is to identify the most important factor(s) which is/are the same
as in conjoint analysis. The author suggests applying structural equation

modelling (SEQ) or structural analysis of covariance matrices to aggregate

level analysis in conjoint analysis.
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Appendix A

UG-type Designs with
Uniformity and Optimalities

Effective columns under
Name of | No. of giving number of factors
design factors | Papu Ppu Pap Pu
Us(4%) 2 1,2
Us(5%) 2 1,4 1,2
3 1,2,4
Uz (6°) 2 1,3
3 1,2,3
U-(7°) 2 1,3
3 1,2,3
4 1,2,3,6 | 1,2,4,6
Uz (8%) 2 1,3
3 1,3,5
Us(9°) 2 1,3
3 1,3,5
4 1,2,3,5 | 1,24,5
Uro(109) 2 1,7
3 1,5,7 1,3,5
4 1,2,5,7
5 1,2,3,5,7
Uy (1119) 2 1,5 1,7
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Effective columns under

Name of | No. of giving number of factors
design | factors | Papu Pou Pap Pu
U1 (1119) 3 1,5,7
4 1,2,5,7
5 1,2,3,5,7
6 1,2,3,5,7,10 | 1,2,4,5,8,10
12(1212) 2 1,5
3 1,3.9
4 1,6,8,10
5 1,6,8,9,10
6 1,2,6,8,9,10
Uia(13'2) | 2 1,6 1,5
3 1,6,10 1,34
4 1,6,8,10
5 1,6,8,9,10
6 1,2,6,8,9,10
7 1,2,6.8,9, 1,2,3,4,
10,12 6,8,12
Un(148) | 2 |16
3 1,3,4
4 1,3,4,7
Us(158) 2 1,6
3 1,3,4
4 1,3,4,7
5 1,2,3,4,7 1,2,3,5,7
s (1619) 2 1.4 1,10
3 1,10,15
4 1,10,14,15
) 1,2,4,5,11 1,4,10,14,15
6 1,2,4,5,10,11 | 1,4,6,10,14.15
7 1,4,6,9,10,14,15
8 1,4,5,6,9,10,14,15
Ui7(17'€) 2 1,11 1,10
3 1,10,15
4 1,10,14,15
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Effective columns under

Name of | No. of giving number of factors
design | factors | Papu Ppu Pap Pu
Uy7(17%9) 5 1,4,10,14,15
6 1,4,6,10,14,15
7 1,4,6,9,10,14
15
8 1,4,5,6,9
10,14,15
9 1,4,5,6,9, 1,3,5,9,10
10,14,15,16 | 11,13,15,16
Urg(188) 2 1,8
3 1,7,8
4 1,6,8,14
5 1,6,8,14,17 | 1,2,4,8,16
6 1,6,7,8, 1,6.8,10,
10,14 14,17
7 1,2.4.7,8, 1,6,7.8,
13,16 10,14,17
8 1,3,6,7,8,10
14,17
9 1,3,4,6,7.8
10,14,17
U19(198) 2 1,6 1,8
3 1,6,14 1,7,8
4 1,6,8,14
5 1,6,8,14,17
6 |1,6,810,14,17
7 1,6,7,8,10,14,17
8 1,3,6,7,8,10,
14,17
9 1,3,4,6,7.8,
10,14,17
10 1,3,4,6,7,8, | 1,3,5,6,10,11,
10,14,17,18 | 12,15,17,18

83




Bibliography

(1

2]

Allenby, G. M.., Arora, N. and Ginter, J. L. (I995), Incorporating prior knowl-
edge into the analysis of conjoint studies, Journal of Marketing Research, 32
(May), I56-62.

Batsell, R. R. and Louviere, J. J. (1991}, Experimental analysis of choice,
Marketing Letters, 2 (August), 199-214.

Blais, J., and Laurier, M. (1995), Methodological considerations in using
DIMTEST to assess unidimensionality. Paper presented at annual meeting
of the American Educational Research Association, San Francisco, CA.

Bundschuh, P. and Zhu, Y. C. (I993), A method for exact calculation of the
discrepancy of low-dimensional finite point sets (I), Abhandlungen aus dem
Math. Seminar der Univ. Hamburg, Bd. 63.

Camilli, G. (1995), The effects of dimensionality on equating the law school
admission test, Journal of Fducational Measurement, 32, 79-96.

Carroll, J. D. (1969), Categorical conjoint measurement, paper presented at
Meeting of Mathematical Psychology, Ann Arbor, MI, (August).

Carroll, J. D. (I973), Models and algorithms for multidimensional scaling,
conjoint measurement, and related techniques, in Multiattribute Decisions in
Marketing, Green, P. E., Wind, Y. eds. Hinsdale, IL: Dryden Press, 335-37;
341-48.

Carroll, J. D. and Green, P. E. (1995), Psychometric methods in Marketing
Research: Part I, Conjoint Analysis, Journal of Marketing Research, 32, 385-
3910

Carson, R. T. et al. (1994), Experimental analysis of choice, Marketing Let-
ters, 5 (October), 351-68.

84



(0]

[T1]

[r2]

[13]

[20]

[21]

[22]

[23]

Cattin, P. and Wittink, D. R. (1982), Commercial use of conjoint analysis: A
survey, Journal of Marketing, 46, 44-53.

Cheng, C. S.(1978), Optimal designs for the elimination of multi-way hetero-
geneity, Ann. Statist. 6, 1262-1272.

Cheng, C. S. (1980), Orthogonal array with variable numbers of symbols,
Ann. Statist. 8, 447-453.

Clarke, D. G. (1987), Marketing Analysis and Decision making: Tezt and
Cases with Lotus 123, Redwood City, Calif.: Scientific Press.

Davidson, J. D. (1973), Forecasting traffic on STOL, Operational Research
Quarterly, 561-69.

DeSarbo, W. S.,Oliver, R. L. and Rangaswamy, A. (1989), A simulated an-
nealing methodology for clusterwise linear regression, Psychometrika, 54 (4),
707-36.

Ding, Y., Lin, J. G. and Zhou, J. X. (I975), Methods of Orthogonal Ezperi-
mental Designs, Shanghai: Shanghai People’s Press.

Ding, Y. (1986), An exploration of optimality of uniform design, Journal of
Applied Probability and Statistics, 2, 153-160.

Ding, Y. and Chaubey, Y. P. (1997), Optimality of partially augmented de-
signs, Technique Report, 2, Dept. of Math. and Stat., Concordia University.

Donoghur, Holland, and Thayer (I995), A Monte Carlo study of factors that
affect the Mantel-Haenszel and standardization measures of differential item
functioning. In P. W. Holland and H. Wainer (Ed.), Differential Item Func-
tioning (ppl37-166), New Jersey: Hillsdale."

Fang, K. T. (1980), The uniform design: application of number-theoretic
methods in experimental design, Acta Math. Appl. Sinica, 3, 363-72.

Fang, K. T. and Li, J. K. (I994), Some new results on uniform design, Chinese
Science Bulletin, 39, 1921-4.

Fang, K. T. and Hickernell, F. J. (I995), The uniform design and its applica-
tions, paper presented at meeting of ISI, 26-42.

Fang, K. T. and Wang, Y. (1994), Number-theoretic Methods in Statistics,
Published by Chapman & Hall, London.

85



[24]

[25]

[26]

[27]

(28]

[29]

[30]

33]

[34]

[35]

(36]

Geramite, A. V. and Seberry, J. (1979), Orthogonal Designs, Quadratic forms
and Hadamard matriz, Marcel Dekker Inc. NY.

Gessaroli, M. and De Champlain, A. (I996), Using an approximate Chi-square
statistic to test the number of dimensions underlying the responses to a set
of items, Journal of Fducational Measurement, 33, I57-179.

Goldberg. S. M., Green, P. E. and Wind, Y. (1984), Conjoint analysis of
price premiums for hotel amenities, Journal of Business, 57 (January), STITI-
S1132.

Green, P. E. (I974), On the designs of choice experiments involving multifac-
tor alternatives, Journal of Consumer Research, 1 (September), 61-8.

Green, P. E. (1984), Hybrid models for conjoint analysis: an expository re-
view, Journal of Marketing Research, 21 (May), 155-69.

Green, P.E. and Carmone, F. J. (1970), Multidimensional scaling and related
techniques in marketing analysis, Boston: Allyn and Bacon.

Green, P.E., Carroll, J. D. and Carmone, F. J. (I978), Some new types of frac-
tional factorial designs for marketing experiments, in Research in Marketing,
1, J. N. Sheth, Greenwich, ed. JAI Press, 99-122.

Green, P.E., Carroll, J. D. and Goldberg, S. M. (1981), A general approach
to product design optimization via conjoint analysis, Journal of Marketing,
45 (summer), 17-37.

Green, P. E. and Krieger (1993), Conjoint analysis with product-positioning
applications, in Handbooks in OR & MS, 5, Eliashberg J. and Lilien G. L.,
eds. New York: Elsevier Science Publishers.

Green, P. E. and Rao V. R. (1971}, Conjoint Measurement for quantifying
judgmental data, Journal of Marketing Research, 8 (August), 355-63.

Green, P. E. and Srinivasan, V. (I978), Conjoint analysis in consumer re-
search: Issues and outlook, Journal of Consumer Research, 5, 103-23.

Green, P. E. and Srinivasan, V. (1990), Conjoint analysis in marketing: New
developments with implications for research and practice, Journal of Market-
ing, 54 (October), 3-19.

Green, P.E. and Wind, Y. (I975), New way to measure consumers’ judgement,
Haverd Business Review, July-August, 107-117.

86



(37]

[38]

(39]

[40]
[41]

[42]

[48]

[49]

Hagerty, M. R. (I985), Improving the predictive power of conjoint analysis:
the use of factor analysis and cluster analysis, Journal of Marketing Research,
22 (May), 168-84.

Hair, J. F. Jr., Anderson, P. E., Tatham, R. L. and Black, W. C. (1992),
Multivariate Data Analysis with Readings, Macmillam Publishing Company,
New York.

Hlawka, E. (I962), Zur angenaherten Berechnung mehrfacher Integrale,
Monatsh, Math., 66, 130-151.

Hua, L. K. (1956), Introduction to Number Theory, Science.Press, Beijing.

Joreskog K. G. (I974), Analyzing psychological data by structural analysis
of covariance matrices, in Contemporary Developments in Mathematical Psy-
chology, Atkinson, R. C., Krantz, D. H., Luce, R. D. and Suppes, P. eds. San
Francisco: Freeman, 1-56.

Johnson, R.M. (1987) Adaptive Conjoint Analysis, in Sawtooth Software Con-
ference on Perceptual Mapping, Conjoint Analysis and Computer Interview-
ing, M. Meterrano, ed. Ketchum, ID: Sawtooth Software, 253-65.

Kamakure, W. (1988), A least squares procedure for benefit segmentation
with conjoint experiments, Journal of Marketing Research, 25, 157-67.

Kiefer, J. (I959), Optimum experimental designs, Journal of Royal Statis-
tics(B), 21, 272-319.

Kiefer, J. and Wolfowitz, J. (1960), The equivalence of two extremum prob-
lems, Canad. J. Math., 12, 363-366.

Kiefer, J. (I1974), General equivalence theory for optimum designs (approxi-
mate theory), The Annals of Statistics, 2, 849-879.

Kiefer, J. (1975), Construction and optimality of generalized Youden designs,
A survey of Statistical Design and Linear Models (ed. by J.N. Srivastava),
333-353, North-Holland Pub. Co, Amsterdam.

Korobov, N. M. (1959a), The approximate computation of multiple integrals,
Dokl. Akad. Nauk. SSSR, 124, 1207-1210.

Korobov, N. M. (1959b), Computation of multiple integrals by the method
of optimal coefficients, Vestnik Moskow Univ. Ser. Mat. Astr. Fiz. Him., 4,
19-25.

87



[50]

[51]

(60]

[61]

Kruskal, J. B. (I965), Analysis of factorial experiments by estimating mono-
tone transformations of the data, Journal of the Royal Statistical Society,
Series B, 27, 251-63.

Lenk, P. J., DeSarbo, W. S., Green, P. E. and Young, M. R. (1994), Hier-
archical Bayes conjoint analysis: recovery of part-worth heterogeneity from
incomplete designs in conjoint analysis, working paper, School of Business
Administration. University of Michigan.

L, H. H. and Stout, W. F. (1995), Assessment of unidimentionality for mixed
polytomous and dichotomous item data: Refinements of Poly-DIMTEST. pa-
per presented at the annual NCME meeting, San Francisco, CA.

Louviere, J.J. (1988) Analyzing Decision Making: Metric Conjoint Analysis,
Newbury Park, Calif.: SAGE Publications.

Louviere, J.J. and Woodworth, G. G. (1988), On the design and analysis
of correlated conjoint experiments using difference designs, in Advances in
Consumer Research, 15, ed. Michael J. Houston, Provo, UT: Association for
Consumer Research, 510-517.

Luce, D. R. and Tukey, J. W. (1964), Simultaneous conjoint measurement: A
new type of fundamental measurement, Journal of Mathematical Psychology,
1, I-27.

Montgomery, D. B. (1985), Conjoint calibration of the customer/competitor

interface in industrial markets, Marketing Science Institute Report, 85-112.

Moore, W. L. (1980), Levels of aggregation in conjoint analysis: an empirical
comparison, Journal of Marketing Research, 17 (November), 516-23.

Moore, W. L. and Pessemier, E. A. (1993), Product Planning and Manage-
ment: Designing and Delivering Value, New York: McGraw-Hill Series in
Marketing, 160-174.

Moore, William L. and Holbrook, M. B. (1990), Conjoint analysis on objects
with environmentally correlated attributes: the questionable importance of
representative design, Journal of Consumer Research, 16 (March), 490-497.

Nandakumar, R., Yu, F., Li, H. H. and Stout W. (1995), Assessing unidimen-
sionality of polytomous data, working paper, University of Delaware, Newark.

Neter, J., Kutner, M. H., Nachtsheim, C. J. and Wasserman, W. (1996),
Applied Linear statistical Models. (4th Ed.). Chicago: Irwin.

88



[62]

[63]

[64]

Niederreiter, H. (I977), Pseudo-random number and optimal coefficients, Ad-
vances tn Math., 26, 99-181"

Ni, G. X. and Ding, S. L. (1984), The Generalized Optimality of Orthogonal
Array with Any Order Interaction, KeXue TongBao, 29, 452-453.

Robinson, P. J. (1980), Applications of conjoint analysis to pricing problems,
in Market Measurement and Analysis: Proceedings of the 1979 ORSA /TIMS
Conference on marketing, Montgomery D. B. and Wittink D. R. (eds.), Cam-
bridge, Mass.: Marketing Science Institute, 183-205.

Roskam, E. C. 1. (1968), Metric analysis of ordinal data in Psychology, Nether-
lands: Vam Voorschoten.

Searle, S. R. (1982), Matriz Algebra Useful for Statistics, John Wiley & Sons,
Inc.

Shah, K. R. and Sinha, B. K. (1989), Theory of Optimal Designs in Lecture
Notes in Statistics, 54, Berger, J., Fienberg, S., Gani, J., Krickberg, K. and
Singer, B. (eds.), Springer-Verlag Berlin Heideberg.

Sinha, B. K. (1980), Optimal Block Designs, unpublished seminar notes. In-
dian statistical Institute, Calcutta, India.

Steckel, J. H., DeSarbo, W. S. and Mahajan, V. (I99I}, On the creation of
feasible conjoint analysis experimental designs, Decision Sciences, 22, 435-
442.

Taguchi, G. (I987), Ezperimental designs, Mechanical Industry Press, Beijing.

Vriens, M., Wedel, M. and Wilms, T. J. (1994), Metric conjoint segmentation
methods: A Monte Carlo comparison, working paper, Faculty of Economics,
University of Groningen.

Wang, J. C. and Wy, C. F. J. (1992), Nearly Orthogonal Arrays with Mixed
Levels and Small Runs, Technometrics, 34, No. 4, 409-419.

Wang, Y. and Fang, K. T. (I981), A note on uniform distribution and exper-
imental design, Kezue Tongba, 26, 485-489.

Wang, Y. and Fang, K. T. (1990a), Number theoretic methods in applied
statistics, Chinese Ann. Math. Ser. B, 11, 41=55.

89



[75]

[76]

Wedel, M. and Kistemaker, C. K. (I989), Consumer benefit segmentation
using clusterwise linear regression, International Journal of Research in Mar-
keting, 6, 45-9.

Wedel, M. and Steenkamp, E. M. (1989), Fuzzy clusterwise regression ap-
proach to benefit segmentation, International Journal of Research in Market-
ing, 6, 245-58..

Wiley, D. E., Schmidt, W. H. and Bramble, W. J. (1973), Studies of a class of
covariance structure models, Journal of the American Statistical Association,
68, 317-23.

Winker, P. and Fang, K. T. (1995), Application of threshold accepting to the
evaluation of the discrepancy of a set of points, Technical Report Math-067,
Hong Kong Baptist University.

Wittink, D. R. and Cattin P. (1989), Commercial use of conjoint analysis: An
update, Journal of Marketing, 53 (July), 91-6.

Wittink, D. R. and Montgomery, D. B.(1979), Predictive validity of tradeoff
analysis for alternative segmentation schemes, in AMA Educators’ Conference
Proceedings, 131-8.

Wittink, D. R., Vriens, M. and Burhenne, W. (1994), Commercial use of
conjoint in Europe: results and critical reflections, International Journal of
Research in Marketing, 11, 41-52.

Young, F. W. (1972), A model of polynomial conjoint analysis algorithms, in
Multidimensional scaling: Theory and applications in the behavioural sciences,
1, Shepard, R. N., Romney, A. K. and Nerlove, S. eds. New York: Academic
Press, 69-104.

Zufryden, F. S. (I977), A conjoint measurement-based approach for opti-
mal new product design and market segmentation, in Analytic approaches to
product and market planning, A. D. Shocker, ed., Cambridge, MA: Marketing
Science Institute, 100-113.

90



