.*l National Library Bibliothéque nationale
of Canada du Canada
Canadian Theses Service Service des thdses canadiennes
Mitawa, Canade
k1A ON4
NOTICE

The quality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

If pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full orin part of this microform is governed
by the Canadian Copyright Act, R.S.C 1970, c. C-30, and
subsequent amendments.

NL-33@ (r.88/04)c

AVIS

La qualité de cette microforme dépend grandement de la
quaiité de la thése sournise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

Sl manque des pages, veuillez communiquer avec
funiversité qui a contéré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées a l'aide d'un ruban usé ou si l'universié nous a fau
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme est

soumise a la Loi canadienne sur le droit d'auteur, SRC
1970, ¢. C-30, ot ses amendements subséquents.

- Canada

Dynamic Analysis of Rigid-Link Open-Chain Robot Manipulators
Using Cartesian Tensor Methods

Constantinos A. Balafoutis

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy at
Concordia University
Montréal, Québec, Canada

July, 1989

(© Constantinos A. Balafoutis, 1989

Bibliothéque nationale
du Canada

ional Lib
Bel CCre ™

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L’auteur conserve la proprieté du droit d'auteur
qui protége sa these. Ni la thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-51344-6

Canada

T W T a7 Y W TeemEe e | o T A

- il -

ABSTRACT

Dynamic Analysis of Rigid-Link Open-Chain Robot Manipulators
Using Cartesian Tensor Methods

Constantinos A. Balafoutis Ph. D.,
Concordia University, 1989.

This thesis is concerned with developing computationally eflicient algorithms for
solving some basic problems of robot dynamics. In particular, the following problems of
rigid-link open-chain robot manipulator dynamics are considered : 1) the problem of
computing inverse dynamics, 1) the problem of computing forward dynamics, and 27)
linearization of the equations of motion for the above mentioned class of robot manipula-
tors. Computationally efficient solutions of these problems are prerequisites for real-time
robot applications, and are therefore necessary for flexible automation in a dynamically
changing environment. The algorithms presented in this thesis can be used to solve in a
computationally efficient manner these fundamental problems of robotic manipulators.
These algorithms rely heavily on Cartesian tensor analysis. In this thesis, it is shown
that by exploiting the relationships between second order Cartesian tensors and their
vector invariants, a number of new tensor identities can be obtained. These identities
enrich the theory of Cartesian tensors and allow us to manipulate complex Cartesian
tensor equations effectively. Moreover, a geometric characterization for second order
skew-symmetric Cartesian tensors is provided which gives a physical interpretation and
a deeper insight into tensor algebraic equations in general and rotation tensors in partic-
ular. Thus, based on a new understanding of Cartesian tensor analysis, a conceptually
simple easy to implement and computationally efficient tensor methodology is proposed

in this thesis for studying classical rigid body dynamics.

Application of this tensor methodology to the dynamic analysis of rigid-link open-

chain robot manipulators is simple and leads us to an efficient formulation of the

- jv -

dynamic equations of motion. Moreover, the use of generalized and augmented links
enables us to devise modeling schemes which are very much suited for the dynamic
analysis of the aforementioned class of robot manjpulators, since they allow us to com-
pute as many as possible manipulator’s configuration independent dynamic parameters
off-line. By using Cartesian tensor analysis and the ideas of generalized and augmented
links, we propose algorithms for solving the problem of inverse dynamics, the problem
of forward dynamics, and the linearization of the equations of motion of rigid-link open-
chain robot manipulators which are computationally the most 2fficient non-customized

algorithms presently available.

To MY PARENTS

ANASTASIO AND GEORGIA

3TO0TS T'ONEIS MoOT

ANAXTAZIO KAl TEQPria

-vi-

ACKNOWLEDGEMENTS

1 would like to express my sincere gratitude to Professor R. V. Patel, for his con-
tinued guidance, suggestions and encouragement during the course of this research.
Professor R. V. Patel besides being a great teacher is also an excellent man. Working in

association with him has been a pleasant experience for me and I thank him for that.

I consider myself fortunate to have made the acquaintance of so many wonderful
people over the last few years. It is with great pleasure that I acknowledge the support
and motivation provided by my colleagues Pradeep, Murthy, Zheng, Mohamed, Nat,

Shahrokh and Babu.

Last but not the least, it is with pride that I acknowledge the support and
inspiration of my parents Anastasio and Georgia, my brothers Nick and Gianni and my
sisters Andrianna and Gianna — back home. Also, I would like to express my heartfelt
thanks to all my relatives and friends here in Montreal for their encouragement and

the good times I had with them.

This research was supported by the Natural Sciences and Engineering Research

Council of Canada under Grant No. A1345 awarded to Prof. R. V. Patel.

- vii -

TABLE OF CONTENTS

LIST OF SYMBOLS AND ABBREVIATIONSoociiviimriviirivieneerentnnrreenreneserinnressssannees X
LIST OF FIGURESc.ccutttiiieetentniintsessassetmriisesssenosstsasrssenssssnessosssssssse srearsensesssss xiii
LIST OF TABLESuvuuetiiiiiieeeeeeterreisnmiereaserseonearassesessassessaesasssesssossssnsassnsesssssssnsnssans Xiv
CHAPTER I: INTRODUCGTION ...utivvierinertenriireeiaiesrieiirsonsessessossersesnsnssersessssnsnn snssnes 1
1.1 Robot Manipulators : AN OVEIVIEWccocviriiiiiiiririiiriericieenrerriierareeresesenne 1
1.2 Basic Problems in Robot Manipulator Dynamicscccovvvmeiiiiiiiiiecinnennennes 3
1.3 General Remarks on Robot Manivulator Dynamicsc.cceceveviiiviienieiennnnnns 7
1.4 Objectives and MOtIVALIONcccvenin ciirriiiiiii e e eer e ecan s e s neeeens 9
1.5 Outline of the ThesiScoiiiiereriiniiiir et e bee e nnans 12
1.8 REIOTOIICES .iiieiuiniiririiinienriirirenerrearernrreettaesastsrarmiesteesanasasinessnannserrerressensensnre 16
CHAPTER II: PRELIMINARIEScccccoituniiiiiiiienieririenintaieeenssesnsessresesessanissssss e sesans 18
D2 WD Vo1 7:1 4 o + T P OOt 18
2.2 Rigid Bodies and their Finite Displacementoooiiiiiiiiiiiiiiecinennnn. 19
2.2.1 The Configuration of Points and Rigid Bodie
iN PhySiCal SPaCe .ovvvvviiiiiiii e e 19
2.2.2 On the Finite Displacement of a Rigid Bodyccocoeiiiviiiivinnnnnnn. 24
2.3 RODOt Manipulators oo et 29
2.3.1 Description of Robot Manipulatorscoceieviiiiiiiiniiiiiiiineeeen, 30
2.3.2 Geometric Description of a Linkcoooiiiiiiiiiiiiis e, 33
2.3.3 Description of Link Connections and the Configuration
of a Robot Manipulatorccooiiiiiniiiiiiiiee s v e e 34
2.4 RETETEICES .uuuiiiniiieiriieren i tieutae e ra e etreereesees s teteaetern e eaaaaeaearessaaneeasrtrenransnsannes 41
CHAPTER III: CARTESIAN TENSOR ANALYSIScccciiiiiiiiiiienieiiiiene e 43
R 7 B § 14 (o T¢ £ 1111 A Vo] | R O PP PO PP RPN 43
3.2 Second Order €Cartesian TeNSOTScviviiivrriiiririrecrenerirerroncreseiereressesessocrons 45
3.2.1 On the Definition of Second Order Cartesian
TTRIISOTS 1uuivuverenrrureorersetesronnannenriosresensonensenesonsssssmaessssssteesnersessnens sanness 45
3.2.2 The Linear Space Structure for the Second Order
CATteSIAN TENSOTS .iieeiverreerinrerinrrerearenirerrerertersernemmnsenranesersrrseeeseassenes 50
3.2.3 More Algebraic OPerationscccoevuiiiiiiiieinrieriiineeriieerriiecrsneeainnn: 53
3.3 Properties of the Second Order Cartesian TensSOrSc.ccceevrvviierinieeierennnnen 57
3.3.1 Isotropic €Cartesian TeNSOTSccoiaiiimiiiiieriiiniiniiirresrnreriomnseneesnerenn 57
3.3.2 Cartesian and Spectral Decomposition of Second
107 11 i W1 1o ¢ 2P U PRION 59
3.3.3 Tensor INVANADLS ..ocoviiniiniiiiiiiiiisiniieiiir e rierrieceresaeensreerseenasanenns 62

e dad a

| - vili -

3.3.4 A Geometric Characterization for the Seconc¢ Order

Skew-Symmetric Cartesian TehSOTS ..ovieuiieiiiiicveininesreerrreseenssensesness 68
3.4 Cartesian Tensor Algebraic Identitiesccccccceiiviiiiiiiiiiiiiiee e ee e 74
3.5 REMEIENCES ...cnuiiiiiii it ieciri et erttre e ranitrre e et s eseosss senneesseresesannsnsnennons 85
CHAPTER IV: CARTESIAN TENSORS AND RIGID BODY MOTION 87
4.1 INTPOAUCHION ..oornieiiieeiiiticin ittt ettt te e e er et e e ssssrseessanas ae nrnen 87
4.2 On the Kinematic Analysis of Rigid Body Motionccoocevviiiiiiiiiniennnnn. 8g
4.2.1 The Angular Y eloCity TeMSOT .cvueuiiuiiireiininiirneireernereeeesseeaeenaenee ses 00
4.2.2 The Angular Acceleration TeNSOT ..ccovvverienveiereererereereeeereeeereraeeeniens 92
4.2.3 Linear Velocity and Acceleration in Rigid Body Motion 094
4.3 On the Dynamic Analysis of Rigid Body Motionoooevviiineiiiiiiiiineenirnernes |
4.3.1 The Rigid Body Inertia TenSOT .c....covvveiieeiriiiiriiirnnreniieiieeienneesnsennnns 99
4.3.2 The Angular Momentum TeNSOT ...coivviivnininiiiiiieieteneereeeresseeseasnsenns 105
4.3.3 The T OTQUE T @ISO «eeiiinieiieiii ettt e ee s ettt e eeeeertasnserassnans 108
4.3.4 Computational Considerationsccovivvevnieiiriiiiinitiiierrrrerrerneneensrensns 112
4.4 REIBIOICES ..iuiriiiiiinratiiireieiiieeertioans caerisirettaarisaitireennaerseereesraeerererseieesesnerns . 114
CHAPTER V: INVERSE DYNAMICS OF RIGID-LINK O~EN-CHAIN
ROBOT MANIPULATORS ...cooovtiiiiiiieniiiie et ee et esse e e 115
70 D §114 ¢ o2« §1 (et 4 7o) | RO TP P U 115
5.2 Previous Results and General Observations on Inverse Dynamics 118
5.2.1 Formulations Based on Euler-Lagrange Equationsccooovvuenes 118
5.2.2 Formulations Based on Newton-Euler Equationsc...oocevvunn, 124
5.2.3 Formulations Based on Kane's Equationscccocvvviieiiiinnnnnns 127
5.2.4 Observations Concerning Computational Issues of the IDP 129
5.3 A Cartesian Tensor Approach for Solving the IDPccciiiiiniiiiiinnnn, 132
5.3.1 New Algorithms for Computing the IDPccccocoiiiiiniiiiiinniininnnnns 132
5.3.2 Implementation and Computational Considerations 147
5.4 The Use of Euler-Lagrange's and Kane's Formulations
In Deriving AlZOTItRIM 5.5 oo et eere s e e se e 153
5.4.‘1 The Euler-Lagrange FOrmulationccoocvviiiiiriiiiiiiriiiiiceiieesenaes 153
5.4.2 Kane's FOrmulationc.ccooiviiiiiiiiiiiiiiic et e e 157
5.5 Concluding ReMATKScoiiiiiiiiiiiiiiiiiee v vt ees e st s esereevn s s anesnnes 158
5.6 REIEIENCESoiiiiiiiiiiiiiitiiiiiiin ettt ctanteesbteese e arerteettsensensesrrrerssesssrnsrnons 160
CHAPTER VI: FORWARD DYNAMICS OF RIGID-LINK OPEN-CHAIN
ROBOT MANIPULATORS ...ccooivrniiiiiiniiienenieiiiiesestes s seesiaaeannns 184
6.1 IDEPOAUCTION .oeieiiiiiiiiien ittt e eeer et s ee e seescra e e eeebe e eerassaens 164
6.2 Previous Results on Forward DYRAMICScccievreeiriiiiiiiiiinenieninieernrenernnenes 165
6.3 The Generalized Manipulator Inertia TeNSOT ...occvvviiiiiiiirieierierreeerecresnenns 177
6.3.1 Generalized Links and their Inertia Tensorcccccccceeevivvnnrnnnnn 178
6.3.2 The Use of Newton-Euler Equations in Computing
the Manipulator Inertia TenSOT ..o iviiiiviiiiiiiie ettt eeaeaenees 181

e i Ade il

Leadiiasis %

- jx -
6.3.3 Tiie Use of Euler-Lagrange Equations in Compuung
the Manipulator Inertia TenSOrcccviiiiiviiiiimmiiieisrsreimn e 186
6.4 Implementation and Computational Considerationscccceviiiniiiininnnans 180
8.5 Concluding ReMATKScciiiiiiiiriuieiieniierieeniorirensienssrrasiesiereriermsisisiissisenssneesss 194
B.8 REICIEINCES ...evuirriierrniririereiiesreecssessernaressesessosnsasesnseseansesosancssosssassriossasssonsnses 195
JHAPTER VII: LINEARIZED DYNAMIC MODFLS FOR RIGID-LINK
OPEN-CHAIN ROBOT MANIPULATORSccoccoevrmreniirins cenvneenes 197
7.1 IDETOAUCTION couiiiriiiiniiiiiiiiiiiicreeennenesscernenanenireesssesesnsscnsesersasnnessineesrassanss sarons 197
7.2 Linearization TeChniQUeEscccoeevieiiiieiiiitiiiiiiiiirinieeiresresereincearrisnsnreessnenses 198
7.2.1 Global LineaTiZatiOncccuiieiiirinerniiiirreirernenerniesirmesncnrenasiisssssssossnnns 1990
7.2.2 Local LineariZAtiOn ...cociceuieeriiirnrerenirreenernernecarerriirercenrcnerenssssessssnnasns 200
7.3 Joint Space Linearized Dynamic Robot Modelscccevvvniniiiviinnnienininennn, 203
7.3.1 Joint Space Coeflicient Sepsitivity Matricescccoiiviiiiriennenennnans 204
7.3.2 Implementation and Computational Considerations 210
7.4 Cartesian Spacc Dynamic Robot Models and their Linearization 214
7.4.1 Cartesian Space Dynamic Robot Modelsccocoeeiiiiiiinininnn 214
7.4.2 Cartesian Space Linearized Dynamic Robot Models 216
7.5 Concluding REMATKS ..oiviiiiiiiiiein ettt etriieeiats aeetertriteretenennrrrrieraserensnsess 219
K T 3 05) 3 (oL T PP PPN 220
CHAPTER VIII: CONCLUSIONS AND FUTURE WORK coovvviiiiiiiieeeenn . 222
B.1 CONCIUSIONS ettt et et et e er e e s 222
=L QR EATE YIS o) o OO PU PP PPN 224
=20 T £ U (=) 1) 1 1] 1 R PSP TPUNt 230
APPENDIX A: RECURSIVE LAGRANGIAN FORMULATIONooooovvvieiininnannn, 231
ATCPENDIX B: ON THE CONTRIBUTION OF MOMENT VECTORS
TO GENERALIZED FORCEScovvoiiiviiiiniiivriireeeeerireeneesesan e 234
APPENDIX C: ON PARTIAL DIFFERENTIATION . .oooiiiiiiiiiner e eee e 237

LIST OF SYMBOLS AND ABBREVIATIONS

Number of degrees-of-freedom of a manipulator

Mass of the i -th link

Composite mass of links ¢ to n

The point which denotes the origin of the s-th link coordinate system

The point which denotes the center of mass (c.m.) of the 7-th link

The unity (identity) tensor

The inertia tensor of the f-th link about ¢; expressed in the k-th coordinate
system orientation

The pseudo-inertia tensor of the ¢ -th link about ¢; expressed in the k-th coor-
dinate system orientation

The inertia tensor of the ¢-th augmented link about o; expressed in the k-th
coordinate system orientation

The pseudo-ineriia tensor of the 1-th augmented link about o; expressed in
the k -th coordinate system orientation

The inertia tensor of the i-th generalized link about o expressed in the k-th
coordinate system orientation

The joint space generalized inertia tensor of a robot manipulator

The first moment of the 1-th augmented link about o, expressed in the i-th
coordinate system orientation

The first moment of the ¢-th generalized link about q, expressed in the {-th
coordinate system orientation

Force vector acting on ¢; expressed in the "-th coordinate system orientation

r(r)

wi (@)

o}

q(q.q)

X (x.x
T
A;

W,

dual (*)

<

DO

VO

PO

-xi -

Moment vector about ¢; expressed in the {-th coordinate systemn orientation

Position vector from o to c; expressed in the ¢-th coordinate system crienta-
tion

Posit.on vector from q; to o; expressed in the 1-th coordirate system orienta-
tion

The absolute velocity (acceleration) of vector r

Absolute angular velxity (acceleration) of the ¢-th coordinate system

expressed in the ¢ -th coordinate system orientation

The angular acceleration tensor of the ¢-th link, expressss in the ¢-th coordi-

nate system orientation

Joint space position (velocity, acceleration) vector
Cartesian space position (velocity, acceleration) vector
Joint space generalized force vector

The 3X3 coordinate (or the 4X4 homogeneous) transformation matrix from

the {-th frame to the (i - 1)-th frame

The 3X3 coordinate (or the 4:{4 homogeneous) transformation matrix from

the ¢-th frame to the base frame
A tensor-valued vector operator (or a vector-valued tensor operator)

Skew-symmetric tensor which denotes the action of the dual operator on a

vector v
‘The inertia force-acceleration sensitivity tensor of a linearized robot model

The centrifugal and Coriolis force-velocity sensitivity tensor of a linearized

robot model

The force-position sensitivity tensor of a linearized robot model

B

D

IDP

FDP

Denotes the end of a proof
Inverse Dynamics Problem

Forward Dynamics Problem

- xii -

Figure 2.1
Figure 3.1
Figure 4.1

Figure 5.1

Figure 6.1

- xiif -

LIST o7 FIGURES

Link Parameters and Link Coordinate SYStemsc...ccccvevereenrevecnnns 36
Relatively Oriented Planes and Skew-Symmetric Tensors 68
Position Vectors and Coordinate Systems

in Rigid Body MOUION ..uceiiiiiiviirenrneiinieruiiessrnsrmeiressssserssissrerssssenosssnn 05
(a) The 1 -th Generalized Link,

{(b) The t-th Augmented LIDK ..cocovvrrerimiriiriniiieir e veorern e erveneens 137
The ¢ -th Composite RIiZid BOAY ...ccovviereereerieiereereeseesrereeeressesesssesses 169

- xiv -

L1ST OF TABLES

Table 5.1 Operations Count for Implementing Algorithm 5.5cccccovieiivvevennnns 150
Table 5.2 Operations Count for Implementing Algorithm 5.5,

(VA FOT 71 22 2) ceeiviirrieiecenrisiseseeseesassessesesasssssnssssas snassessssssnasenns 151
Table 5.3 Comparison of Opearations Count for Algorithms

WHhich SOIVE the IDPccccceeeveeenririiriereinrruineennrreenisessasirensressescosnsersssnsns 152
Table 6.1 Operations Count for Implementing Algorithm 6.2c.cceevviiiiirennnnns 102
Table 6.2 Comparison of Computational Complexities of Several

Algorithms for Computing the Joint-Space Inertia Matrix 192
Table 6.3 Computational Cost for Solving Steps (i)-(iii) of the Forward

Dynamics Problem fOT 1 == Bcoooiiririiiiiiciiiit v eiveaae e 193
Table 7.1 Operations Count for Implementing Algorithms 7.1 and 7.2 212

Table 7.2 Operations Count for Implementing Equations (7.3.2),
{7.3.3) ANA (7.8.4) v e ee s s s rbe e s e e s e e e s 213

CHAPTER 1

INTRODUCTION

1.1 ROBOT MANIPULATORS : AN OVERVIEW

The science of robotics began less than thirty years ago, when the first computer-
controlled manipulator was demonstrated by Unimation Inc. Since that time, scientists
and engineers have designed hundreds of different manipulators and the study of robot-
jcs has become a highly complex and interdisciplinary fleld which encompasses a number
of topics taken from other ‘‘classical’’ flelds such as : mathematics, mechanical and
electrical engineering, computer science, etc. Today, with the advances made over the
last decade, robots have come to symbolize high-level automation in almost every aspect
of human activities. Applications of robots can be found almost everywhere : from
hazardous environments such as in space and oceans, to more pleasant home environ-
ment [1-5]. However, by far the majority of applications of robots to date has been in
the automotive manufacturing and metalworking industries {6,7). A few typical applica-
tions of the so called industrial robots include : spray painting, welding, material han-

dling, machine loading, assembly, etc.

Exactly what constitutes an industrial robot is still debatable not only from the
view point of social science experts, but even from that of robotics specialists. For exam-

ple, the Robot Institute of America defines [7] an industrial robot as :

“A reprogrammable multifunctional manipulator designed to move materials, parts,
tools or specialized devices through variable programmed motions for the perfor-

mance of a variety of tasks’’.

On the other hand, the Japan Industrial Robot Industry Association uses a broader

definition ¢f an industrial robot :

-9.

““An all-purpose machine equipped with a memory device and a terminal, and capa-
ble of rotation and of replacing human labor by automatic performance of move-

ments.”’

This debate on the definition of an industrial robot simply indicates the continuous evo-

lution which the field of robotics is undergoing year after year.

Independent of any specific definition, robotics speciaiists agree that a robot man--
pulator, which is the most important form of industrial robots, consists of the following
physical components : a mechanical system, sensors and a controller. In the mechanical
system the basic components are the arm, the end-effector and the actuating mechan-
tsms. The arm usually consists of six rigid-links connected together in an open kinematic
chain by revolute or prismatic joints, and aliows the robot to position the end-effector in
different locations in the workspace. The end-eflector (gripper, welding torch, electro-
magnet, etc.) provides the means of manipulating objects or performing various other
tasks in the workspace. The actuating mechanisms consist of power source(s), actuators
(electric, hydraulic, pneumatic) and drive mechanisms (chains, gears, etc.). The sensors
(visual, acoustics, force) measure and determine the state (positions, orientations, veloci-
ties) of the manipulator links and the end-effector. Furthermore, sensors measure and
determine forces and moments exerted by the manipulated object on the manipulator.
Finally, the controller is the device which supervises and regulates the programmed

motion.

From a mathematical point of view, the study of robot manipulators includes
topics such as : modeling and design; robot arm kinematics, dynamics and control; tra-
Jectory planning; sensors; robot vision; robot control languages; etc. Each of these topics
can be studied on its own in great depth, as part of the education of a robotics special-
ist, or as an application area in different aspects of engineering. However, although each
one of these topics is very important in robotics applications, a deep study of manipula-

tor kinematics and dynamics is the cornerstone of successful utilization of today's robots

-3-

and those which are going to be used in the future.

Robot manipulator kinematics deals with the geometry and the time-dependent
manipulator motion without consideration of forces and/or moments that cause the
motion. In other words, it deals with the spatial configuration of the manipulator in the
physical space. In particular, kinematics of robot manipulators is concerned with
configuration and motion kinematic analysis. Configuration kinematic analysis deals
with possible mathematical descriptions of the manipulator’s spatial configuration as a
function of time; and motion kinematic analysis deals with the first and second time
derivatives of these configuration functions. The dynamics of a robot manipulator deals
with the relation between actuator torques or forces and the manipulator’s motion, con-
sidering its mass and inertial properties. These relations define the dynamic equations of
molion of a robot manipulator which are fundamental to any robotic application. In par-
ticular, in the dynamic analysis of robot manipulators we deal with the following basic

problems.

1.2 BASIC PROBLEMS IN ROBOT MANIPULATOR DYNAMICS

As is well known, the dynamical performance of an n degrees-of-freedom system of
rigid bodies can generally be described by n second order, usually coupled nonlinear
differential equations which can be represented by a second order n -dimensional (n-D).
coupled and nonlinear, vector differential equation. These differential equations are

known as the dynamic equations of motion of the system and denote its dynamic model.

In a dynamic model of a system there are two main aspects with which one is con-
cerned : motlion and forces. The motion of a system is called its trajectory and consists
of a sequence of desired positions, velocities, and accelerations of some point or points in
the system. Forces are usually characterized as internal (or constraint) forces and ezxter-

nal (or applied) forces. The external forces are the ones which cause motion.

In robotics, & dynamic robot model usually describes relationships between robot
motion and forces causing that motion, so that given one of thesz quantities, we can

determine the other. There are, therefore, the following two problems to be considered.
i) Forward Dynamics

Forward or direct dynamics problem is one where the forces which act on a robot
are given and we wish to solve for the resulting motion. In its simplest form, the forward
dynamics problem (FDP) can be expressed symbolically as a vector differential equation

of the form
q = h(q, q, 7, manipulator parameters) (1.2.1)

where, q is the vector of generalized coordinates (joint variables), q and q are its
derivatives with respect to time, 7 is the (input) generalized force vector, i.e., the vector
of joint torques and/or joint forces and the ‘“manipulator parameters” are all those
parameters which characterize the particular geometry and dynamics of a robot manipu-

lator.

The importance of forward dynamics in robotics stems mainly from its use in
simulation [8]. Simulation of robot motion is a way of testing control strategies or mani-
pulator designs prior to the expensive task of working with the actual manipulator. In
general, as we shall see later, equation (1.2.1) is not a simple equation for which an ana-
lvtic solution can be provided easily. For a general robot manipulator, equation (1.2.1) is
very complex since it is highly nonlinear with strong coupling between the joint vari-
ables. Hence, the solution of (1.2.1) for q requires complex procedures for evaluating h
and for performing numerical integration. Fortunately, a solution for equation (1.2.1) is
rarely required in practical applications. More often, we are interested in the following

converse problem.
ii) Inverse Dynamics

The tnverse robot dynamics, or simply inverse dynamics problem, is one in which

we need to determine the generalized forces that will produce a known motion trajec-
tory. The inverse dynamics problem (IDP) can be described, mathematically, by an

equation of the form
r=1f (q, q, q, manipulator parameters) (1.2.2)

where, as in (1.2.1), the manipulator parameters describe the particular robot manipula-
tor, 7 is the vector of the unknown generalized forces and (q, q, q) is the given mani-

pulator trajectory.

Inverse dynamics is very important in practical robot applications because it
enables us to determine the profile of the generalized forces necessary to achieve a
desired robot trajectory. Efficient computation of the inverse dynamics becomes particu-
larly important when 7 has to be evaluated online. This can arise in several practical
situations, e.g., when the robot payload varies, or when the desired trajectory has to be
modified online (e.g. for collision avoidance). Also, inverse dynamics plays an important
role in many advanced robot contiol strategies where the inverse dynamics are used in
the feedforward or feedback paths and may need to be computed online [9]. Moreover,
to emsure convergence of the control scheme, the inverse dynamics computations may
have to be performed very frequently. Consequently, the formulation and evaluation of
these equations of motion affect the servo rate of the robot ccntroller and partially

determine the feasibility of implementing many control schemes online.

The forward and inverse dynamics problems are two problems which constitute
what is usually known [0,10) as robot manipulator dynamics. However, since both prob-
lems are described by highly nonlinear and dynamically coupled equations, it can be of
great assistance in many robotic applications if we have available the linearized dynamic
equations of the robot manjpulator. Thus, besides forward and inverse dynamics we may

also include the following linearization problem in robot manipulator dynamics.

iii) Linearized Robot Dynamics

As is well known, the linearized dynamics of a nonlinear system can be described

by the following first order vector differential equation (state-space form)
& = A (t)ox + B (t)bu (1.2.3)

where, the matrices A (t) and B (¢) are functions of time and éu and Ax denote small
perturbations in the input u and state x , respectively, about some nominal (given) tra-
jectory. Equation (1.2.3) describes the perturbed motion (for sufficiently small perturba-
tions) of a dynamical system and is usually derived from the actual nonlinear dynamic
equation (1.2.2) using a Taylor series expansion about a nominal trajectory (11,12]. The
Taylor series expansion is applicable to nonlinear robot dynamics because, as can be
easily shown, the nonlinearities in robot dynamics are analytic functions of their argu-
ments. Therefore, the derivation of (1.2.3) from a nonlinear dynamic robot model at
least in principle does not present any problems. However, applying the Taylor series
expansion to a nonlinear system which has the complexity of a general robot manipula-
tor is a challenging problem, especially if one attempts to derive eflicient computational

algorithms for determining the coeflicient matrices of the linearized model.

Linearized robot dynamics may be used in manipulator control. This is best illus-
trated by the following example. In ideal situations, equation (1.2.2) provides the gen-
eralized forces which will drive a manipulator along a desired trajectory. However, in
practice, because of perturbations resulting from modeling errors, unpredicted working
conditions or payload variations, this cannot be achieved without the application of
some control strategies, which are designed to compensate against these perturbations.
Currently, there are many well established control strategies in the linear systems area.
However, direct application of these linear control strategies t«> robotics is not possible,
since, as we have already mentioned, the dynamic robot models defined by equation
(1.2.2) are dynamically coupled and highly nonlinear. Therefore, one way in which these

linear control schemes can be used is by obtaining linearized robot dynamic models

e

Ly

derived from equation (1.2.2) [13]. Another application of linearized robot dynamic
models is in carrying out parameter sensitivity analysis of robot manipulator dynamics

for the purpose of efficient manipulator design [12].

1.3 GENERAL REMARKS ON ROBOT MANIPULATOR DYNAMICS

In principle, solving forward or inverse dynamics for rigid-link robot manipulators
presents no difficulty. A robot manipulator is just a system of rigid bodies, and the
equations of motion of such systems have been known for a long time. The real problem
in robot dynamics is a practical one, namely, that of finding formulations for the equa-
tions of motion that lead to efficient computational algorithms. To derive these equa-
tions, we can use well established procedures from classical mechanics [14,15] such as
those based on the eqnations of Newton and Euler, Euler and Lagrange, Kane, etc. How-
ever, the choice of a particular procedure determines the nature of the analysis and the
amount of effort needed to state the equations of motion in the form of a computational
algorithm. For example, in the Newton-Euler approach, the derivation of the equations
of motion is based on direct application of Newton's and Euler's laws, while in the
Lagrangian approach, the equations of motion are derived from two scalar quantities,
namely, the kinetic and potential energy. Moreover, in the Newton-Euler approach, phy-
sical coordinate systems (usually Cartesian) are employed to express the equations of
motion. Some of the coordinates may not be independent but related to others by
kinematic constraints which are employed simultaneously with the equations of motion.
In contrast, the Lagrangian approach usually employs linearly independent generalized
coordinates. Therefore, the analysis and, consequently, the effort needed to derive the
eqguations varies. Irrespective of the approach, the equations of motion for rigid-link

open-chain robot manipulators can be stated in the following forms :

In a closed-form formulation, the equations of motion are usually described by the

equation

1=D(q)q +C(q.9)+G(q) (1.3.1)

where 7 is the vector of generalized forces, (q, q, q) denotes the joint trajectories,
D (q) is the generalized inertia tensor of the manipulator, and C(q, q) and G (q) are
the Coriolis and centrifugal, and gravitational coefficient vectors respectively. A closed-
form representation, such as (1.3.1), can be used directly for solving the IDP, or it can
be adapted easily for the FDP by solving for q This is probably the most attractive
feature of closed-form formulations for the equations of motion of a robot manipulator.
But, since these formulations are computationally inefficient [9,10], it is preferable to use
more efflicient recursive formulations for the equations of motion in practical real-time

robot applications.

In a recursive formulation, the equations of motion of a robot manipulator are
expressed implicitly in terms of recurrence relations between quantities describing vari-
ous properties of the robotic system. Recursive formulations do not have the compact
representation of the closed-form one but they too soive the IDP directly and, what is
more important, they can be implemented in a very efficient manner. However, it is not
possible to solve the FDP with the same recursive equations, without major
modifications. But this is not a drawback, because even with major modifications we can
solve the FDP efficiently. From the foregoing, it is not surprising that most of the
research eflort for solving manipulator dynamics has been directed at deriving efTicient

recursive formulations.

From the work that has been done to date on developing algorithms for computing
manipulator dynamics it appears that there is a misconception that the computational
efliciency of the algorithms depends on the formulations used for their derivation. Thus
for example, it has been believed for some time that the algorithms derived from the
Newton-Euler formulation are computationally more eflicient than those derived using
the Lagrangian formulation. It is felt that this confusion results from a lack of deeper

understanding of the mathematical representations used to describe the equations of

motion. For example, in the Newton-Euler approach, the time variation in the orienta-
tion is generally represented by the angular velocity vector, and in the Lagrangian
approach it is represented by the time derivative of a rofation tensor. But it can be
shown [16], that the Lagrangian formulation will yield a similar algorithm to that
obtained using the Newton-Euler +5tmulation, if an equivalent representation of angular
velocity is emp’. -~ Obviously, this result should be expected because the Lagrange
equations can be derived from the Newton-Euler equations based on arguments of vir-

tual work.

Therefore, in computing efficient robot manipulator dynamics, the issue is not
which procedure from classical mechanics to use in the analysis. With proper analysis
we can derive [17) exactly the same computational algorithms for solving manipulator
dynamics. The real issue, in terms of computational efliciency, is which mathematical
representation to use for expressing various physical quantities, when the nature of the
quantities allows us to use more than one representation. Obviously, a particular
representation dictates a certain mathematical analysis which leads to descriptions of
the basic dynamic equations whose structure corresponds to that particular analysis
Then, since the implementation of an algorithm depends on such structure, it follows
that the computational efliciency of a particular algorithm will depend on the
mathematical representation used to describe these physical quantities. Therefore, in
searching for efficient computational algorithms to solve problems in robot manipulator
dynamics, we have to search for a mathematical representation of the basic physical

quantities of motion which will allow us to describe rigid body motirn more efliciently.

1.4 OBJECTIVES AND MOTIVATION

Among the problems of robot manipulator dynamics, the IDP is the more impor-
tant une. An eflicient solution of this problem is a prerequisite for real-time robot appli-

cations, which in turn is necessary for flexible automation in a dynamically changing

-10 -

environment. Therefore, the main objectives of this thesis are the analysis of the compu-
tational cost of solving the inverse dynamics problem and the development of algorithms

with significantly reduced computational complexity.

In the last decade, a large number of algorithms has been proposed for solving
inverse dynamics. The emphasis in most of these algorithms is placed on reducing their
computational complexity by using analytical organization procedures and customization
[18-20). However, particular analytical organization procedures and customization are
generally used in implementing the set of ¢juations of an algorithm and not for deriving
them. Moreover, in many cases, analytic procedures and customization are restricted to
robot manipulators with a specific geometry. In this thesis, the emphasis is placed in
improving the computational efliciency of the said algorithms through a more efTicient
formulation of the dynamic equations of motion and not through better implementation
of existing formulations. Thus, our intention is to devise a new methodology for analysis
and formulation of the dynamic equations of rigid body motion. The methodology has to
be conceptually simple, easy to implement, and computationally efficient. To this end,
we shall apply this methodology for solving in a computationally eflicient manner the
problems of inverse and forward dynamics of rigid-link, open-chain robot manipulators.
Also, the methodology will be used for the derivation of linearized robot dynamic

models in a computationally eificient manner.

In the dynamic analysis of rigid body motion we deal with relationships between
the motion of a rigid body and forces and/or torques which cause (or result) from the
motion. As we mentioned above, the representation of the physical quantities which are
involved in the formulationn of the equacions of motion of a rigid bodies system, deter-
mines the kind of mathematical analysis that will be used i1 deriving these equations.
Thus, in order to devise a new methodology, we must have a better understanding of
the mathematical representations used to describe basic physical quantities. For exam-

ple, in the classical Newtonian formulation of rigid body dynamics (which has been

applied successfully in deriving computational algorithms for solving inverse dynamics
[21]), vectors are normally used to represent most of the physical quantities and, there-
fore, vector analysis is used for deriving the equations of rigid body motion. However,
vector analysis, although powerful, has some major drawbacks. For example, one of its
basic vector operations, namely, the vector cross product, is not associative and this lim-
its our ability to manipulate effectively the equations of motion for more efficient solu-
tions. To free ourselves from such limitations, we have to abandon vector analysis in

preference to other more powerful mathematical procedures.

Vector analysis is imposed on classical Newtonian dynamics from the consideration
that angula~ rates (i.e., linearly independent rates of change of rigid body orientation)
constitute the components of a vector quantity, the angular velocity vector. This con-
sideration also assigns a vector character to other physical quantities which are defined
in terms of the angular velocity vector such as : angular acceleration, angular momen-
tum, external torque, etc. Therefore, in searching for other mathematical procedures for
describing classical Newtonian dynamics, we have to examine other alternatives in
represeniting angular velocity which is one of the basic physicai quantities involved in

rigid body dynamics.

As is well known [22], angular velocity can also be described by a second order
skew-synmetric Cartesian tensor, the angular velocity tensor. Obviously then, the tensor
representation of angular velocity calls for Cortesjan tensor analysis to be applied in
rigid body dyvnamics. However, application of Cartesian tensor analysis (within the
framework of the Newtonian approach) in rigid body dynamics requires that all the
other physical quantities which are deflned in terms of the angular velocity be treated as
Cartesian tensors instead of vectors. Thus, we have to examine if a Cartesian tensor
representation of hasic physical quantities such as : angular acceleration, angular

momentum, externa: torque, etc., simplifies the equations of rigid body motion.

12 -

The use of tensor analysis is obviously known in rigid body dynamics. Howeve:.
m~ ., of the time the analysis is performed in the configuration space of the rigid bodies
system which is generally a Riemanian space, i.e., a non-Euclidean manifold [23,24]. In
this thesis, we shall use tensors to analyze the motion of a rigid bodies system, but the
analysis will be carried out in Euclidean space instead of on nonlinear manifolds, i.e., we
shall use Cartesian tensor analysts [25,26). To do this, we shall need to review basic
results from Cartesian tensor analysis and, in particular, we shall need to understand
the relations between three dimensional vectors and second order skew-symmetric Carte-

sian tensois.

Finally, almost all existing algorithms which solve forward or inverse manipulator
dynamics have a structure which requires that all quantities involved in these algorithms
be computed online (except the configuration independent geometric and dynamic
parameters of the individual links). This obviously is a consequence of the underlying
modeling schemes which have been used to derive the algorithms, because the structure
of an algorithm depends on the underlying scheine. However, from a computaticnal
point of view it is desirable to devise algorithms which allow us to compute off-line as
many quantities as possible and at the same time, to keep the online computations as
simple as possible. Therefore, in order to derive computationally efficient algorithms for
solving the inverse and forward manipulator dynamics problems, we have to examine if
it is possible to devise a modeling scheme for the robot manipulators which allows us to
compute as many configuration independent kinematic or dynamic parameters of the

robot manipulator off-line as possible.

1.5 OUTLINE OF THE THESIS

This thesis presents a new methodology for the analysis and formulation of compu-
tationally efTicient algorithms for solving basic problems of robot manipulator dynamics.

The layout of the thesis is as follows : Chapter III is concerned with Cartesian tensor

-13-

analysis, based on which the new methodology is devised, and Chapter IV demonstrates
how this theory can be applied to rigid body motion. New algorithms for solving the
problems of inverse and forward dynamics of rigid-link open-chain robot manipulators
are proposed in Chapters V and VI, respectively, while Chapter VII deals with linearized

dynamic robot models. In particular, the main contents of each chapter are as follows :

Chapter Il : Preliminaries.

This chapter introduces the notation to he used throughout the thesis. The
configuraticn kinematic analysis of rigid bodies is briefly reviewed. Also, this chapter
presents some relevant robot manipulator terminology as well as a configuration

kinematic analysis of rigid-link open-chain robot manipulators.

Chapter IIl : Cartesian Tensor Analysis.

This chapter introduces relevant definitions and some basic algebraic Cartesian tensor
operations and outlines the structural symmetries of second order Cartesian tensors.
Also, based on tensor vector invariants, operators between vectors and skeiw-symmetric
Cartesian tensors are defined and a geometric characterization of second order skew-
symmetric Cartesian tensors is given. Furthermore, based on these operators, important

propositions are stated which establish some basic tensor identities.

Chapter IV : Cartesian Tensors and Rigid Body Motion.

Based on Cartesian tensor analysis, kinematic and dynamic aspects of rigid body motion
are considered in this chapter. In particular, the angular acceleration tensor is intro-
duced which together with the angular velocity tensor is shown to be a very powerful
tool for describing the motion of a rigid body. Then, by using these two tensors, a ten-
sor representation for the angular momentum and external torque surfaces naturally and
leads to a Cartesian tensor description for the Newtonian formulation of rigid body
motio. To this end, a tensor formulation for the generalized Euler equation, which

describes pure rotational motion, is derived. This new formulation of the Euler equation

-14 -

has the same simplicity as the classical vector formulation but can be implemented far

more efliciently.

Chapter V : Inverse Dynamics of Rigid-Link Open-Chain Robot Manipulators.

A brief survey of existing methods for solving the inverse dynamics problem for rigid-
link open-chain robot manipulators is followed by some observations and remarks on
various iIssues concerning the computational efficicncy of some ‘‘classical’’ algorithms for
solving this problem. It is then shown that by using the Cartesicn tensor description of
the Newtoniap formulation of rigid body motion and utilizing two different modeling
schemes, computationally efficient algorithms for solving the IDP can be devised. The
computational complexity of these algorithms is shown to be reduced significantly when
compared with other algorithms which are based on the classical vector formulation of
rigid body motion. Also, it is demonstrated that these algorithms can be cast in a form
where their computational efficiency is actually independent of the particuiar procedure

of classical mechanics which has been used for their derivation.

Chapter VI: Forward Dynamics of Rigid-Link Open-Chain Robot Manipulators.

The Cartesian tensor analysis and the modeling scheme which has been proven success-
ful in solving efliciently the IDP are used in this chapter to facilitate the solution of the
FDP for rigid-link open-chain robot manipulators. After a brief review of the composite
rigid body method {8], we introduce a new algorithm for computing the generalized iner-
tia tensor of rigid-link open-chain robot manipulators. By combining this algorithm with
algorithms for solving efliciently the IDP, we improve significantly the computational

efliciency of solving the problem of forward dynamics.
Chapter VII : Linearized Dynamic Models for Rigid-Link Open-Chain Robot

Manipulators.

This chapter is concerned with the linearization of the dynamic equations of motion for

rigid-link open-chain robot manipulators. Using a Taylor series expansion, we derive the

-15-

associated linearized dynamic robot models of the nonlinear dynamic models presented
in Chapter V. It is then shown that the coeflicient sensitivity matrices of these linearized
dynamic models can be computed efficiently based on appropriate Cartesian tensor for-
mulztions. Also, in this chapter Cartesian space descriptions of the equations of motion
for the rigid-link open-chain robot manipulators are reviewed and a method for deriving

their associated Cartesian space linearized dynamic models is proposed.

Chapter VIII : Conclusions and Future Work.

Basic contributions of the research described in this thesis are summarized in this
chapter. Also, possible extensions of the results to specific, or perhaps, new problems are
discussed. A brief section on topics that have not been treated in this thesis is included

as suggestions for those who might wish to contribute to this exciting area of research.

- 16 -

1.6 REFERENCES

[1]

(2]

(3]

(4]

(5}
(6]
(7]
(8]
(]
[10]

[11]

[13]

[14)
(15)

(16)

[17]

(18]

A. Cohen, and J. D. Erickson, *Future Uses of Machine Intelligence and Robotics
for the Space Station and Implications for the U.S. Economy’’, IEEE J. Robotics
and Automation, RA-1, No. 3, pp. 117-123, 1085,

A. K. Bejczy, and Z. Szakaly, “Universal Computer Control System (UCCS) for
Space Telerobots’, Proc. 1987 IEEE Int. Conf. on Robotics and Automation,
pp. 318-125, Raleigh, NC, March 31-April 3, 1987.

K. Edahiro, ““Development of Underwater Robot Cleaner for Marine Live Growth
in Power Station”, Proc. ‘89 ICAR Int. Conf. on Advanced Robolics, pp. 99-106,
Tokyo, Japan, Sept. 1983.

K. G. Engelhardt, ‘“Applications of Robots to Health and Human Services”, Conf.
Proc. Robots 9 : Current Issues, Future Concerns, pp. 14-48 to 14-65, Detroit,
Michigan, June, 1985.

G. N. Saridis, ““Robotic Control to Help the Disabled’’ Recent Advances tn Robot-
tcs, C. Ben and S. Hackwood, Eds., John Wiley, New York, 1985.

V. Shimon, Eds., Handbook of Industrial Robotics, John Wiley, New York, 1085.
R. K. Miller, Industrial Robot Hendbook, Fairmont Press, Indian Trail, NY, 1087.

M. W. Walker, and D. E Orin, “Efficient Dynamic Computer Simulation of
Robotic Mechanisms'’, ASME J. Dynamic Systems, Measurement and Control Vol.
104, pp. 205-211, 1982.

M. Brady et al., Eds., Robot Motion : Planning and Control, Cambridge, MA, MIT
Press, 1082,

R. Featherstone, Robot Dynamics Algorithms, Kluwer Academic Publishers, Boston
MA, 19087.

C. A. Balafoutis, P. Misra, and R. V. Patel, ““‘Recursive Evaluation of Linearized
Dynamic Robot Models”, IEEE J. Robotics and Automation, RA-2, pp. 146-153,
1986.

C. P. Neuman, and J. J. Murray, “Linearization and Sens™ivity Functions of
Dynamic Robot Mlodels”, IEEE Trans. Systems, Man, and Cybernetics, Vol.
SNIC-14, pp. 805-818, 1984.

P. Misra, R. V. Patel, and C. A. Balafoutis, ‘“Robust Control of Linearized
Dynamic Robot Models”, Robot Manipulators : Modeling, Conirol and Education,
M. Jamshidi, J. Y. S. Luh, and M. Shahinpur, Eds., North-Holland Publishing Co.,
New York, 1986.

H. Goldstein, Classical Mechanics 2nd Ed., Addison-Wesley, Reading, MA, 1081.

T. R. Kane, P. W. Likins, and D. A. Levinson, Spacecraft Dynamics, McGraw-Hill,
New York, 1983.

W. M. Silver, ““On the Equivalence of Lagrangian and Newton-Euler Dynamics for
Manipulators”, Int. J. Robotics Research, Vol. 1, pp. 60-70, 1982.

C. A. Balafoutis, R. V. Patel, and J. Angeles, **“A Comparative Study ¢/ Lagrange,
Newton-Euler and Kane's Formulation for Robot Manipulator Dynamics’ Robolics
and Manufacturing : Recent Trends in Research, Education, and Applications, M.
Jamshidi, J. Y. S. Luh, H Seraji, and G. P. Starr, Eds., ASME Press, New York,
1088.

J. W, Burdick, “An Algorithm for Generation of Efficient Manipulator Dynamic
Equations’, Proc. 1986 IEEE Int. Conf. Robolics and Automation, pp. 212-218,
San Francisco, CA, Apr. 1986.

[10]

(20]

[21]

(22]
(23]
[24]

[25]
[26]

-17 -

C. J. Li, “A Fast Computational Method of Lagrangian Dynamies for Robot Mani-
pulators”, Int. Journal of Robotics and Automation, Vol. 3, No. 1, pp. 14-20, 1988.

J. J. Murray, and C. P. Neuman, “Organizing Customized Robot Dynamics Algo-
rithms for Efficient Numerical Evaluation”, in IEEE Trans. on Systems, Man, and
Cybernetics, Vol. SMC-18, No. 1, pp. 115-125, 1988.

J. Y. S. Luh, M. W. Walker, and R. P. Paul, *“On-Line Computational Scheme for
Mechanical Manipulators”, ASME' J. Dynamic Systems, Measurement and Control,
Vol. 102, pp. 69-79, 1080.

O. Bottema, and B. Roth, Theoretical Kinematics, North-Holland Publishing Co.,
Amsterdam, 1978.

L. Brillouin, Tensors tn Mechanics and Elasticity, Academic Press, New York,
1864.

1. S. Sokolnikoff, Tensor Analysis : Theory and Applications to Geometry and
Mechanics of Continua, John Wiley & sons, New York, 1965.

H. Jefireys, Cartesian Tensors, Cambridge University press, Cambridge, 1961.

A. M. Goodbody, Cartesian Tensors : With Applications to Mechanics, Fluid
Mechanics and Elasticity, Ellis Horwood, England, 1982.

CHAPTER II

PRELIMINARIES

This chapter introduces the notation, presents some basic concepts from rigid body
kinematics, defines relevant robot terminclogy, and deals with the configuration
kinematic analysis of rigid-link, open-chain robot manipulators. The chapter has two
main sections : Section 2.2 contains results from rigid body kinematic analysis. In partic-
ular, the configuration of rigid bodies in the real world or physical space is defined and
the finite displacement of rigid bodies in this space is reviewed. Section 2.3 is concerned
with the geometric description of rigid-link open-chain robot manipulators and defines

the joinl and Cartesian space descriptions for their configuration.

2.1 NOTATION

Throughout the text, boldface lower case roman letters are used to denote position
vectors. Subscripts indicate, in order, the tail and the head of a position vector, and a
superscript indicates the coordinate system with respect to which the position vector is
expressed. Upper case boldface roman letters are used to denote second order tensors or
vectors of forces and moments. From the context it will be clear if a tensor or a vector is
considered. A second order skew-symmetric Cartesian tensor associated with a vector
will be denoted with a tilde (*) above the boldface lower or upper case roman letter
denoting this vector. Subscripts denote a point on a link with respect to which the ten-
sors (or the force and moment vectors) are defined, and superscripts denote the coordi-
nate system with respect to which the tensors (or the force and moment vectors) are
expressed. The superscript for tensors or vectors expressed in the base frame (inertial
frame) is omitted. The coordinate matriz, associated with a tensor or a vector, will be

denoted by the corresponding lower or upper case italic letter.

T S ARSIIAT Lyt IR TR TR T TR O T et T

-19-
2.2 RIGID BODIES AND THEIR FINITE DISPLACEMENT

The main objective in robotics is to manipulate objects in a static or dynamically
changing environment, and one of the basic requirements for achieving this goal is to
describe effectively, i.e., simply and accurately, objects such as points and rigid bodies
relative to some coordinate system. In this section, we deal with the conflguration
kinematic analysis of points and rigid bodies. In particular, we review some of the possi-
ble approaches for describing the location and displacement of points and rigid bodies in

physical space.

2.2.1 The Configuration of Points and Rigid Bodies in Physical Space

A description of the static or instantaneous location of an object in a space relative
to a reference coordinate system is referred to as the configuration of the object [1]. The
configuration is usually expressed as a function of a number of linearly independent vari-
ables which are known as generalized coordinates. The number of the generalized coordi-

nates defines how many degrees-of-freedom the object has relative to the reference coor-

dinate system.

In general, the complexity of the function, which defines the configuration of an
object in terms of the generalized coordinates, depends on the reference coordinate sys-
tem. The reference coordinate system characterizes the space where the object belongs
and can be linear or curvslinear. Usually, the configuration of an object, in a curvilinear
reference coordinate system is very complex, as opposed t~ a linear or Cartesian refer-
ence coordinate system where its configuration has usually a simpler form. In robotics,
it is of prime concern to describe the conflguration of objects in the real world and, to
our advantage, the real world or physical space can be modeled as a three dimensional
Euclidean space. This allows us to consider a Cartesian coordinate system as a reference
system relative to which, as we shall demonstrate later, the configuration of points or

rigid bodies assumes relatively simple forms.

-20-

The configuration of a point in a general space is completely specified by its point-
coordinates relative to a reference coordinate system. For points in the three dimen-
sional physical space, their point-coordinates are functions of three generalized coordi-
nates. Moreover, in the physical space which is a Euclidean space, we can identify
points with vectors, since in this space, transformations of point-coordinates are identi-
cal to transformations of vector components [10]. This identification allows us to specify
the configuration (i.e., the location) of a point in the physical space by using the com-
nonents of a vector. This vector is referred to as the position vector of the point under
consideration. Therefore, the configuration of a point in the physical space can be
described, in an orthogonal Cartesian coordinate system, by a three dimensional vector,

its position vector.

A description for the conflguration of a rigid body in the physical space is more
involved, compared to that of a point. As is well known [1-4], a rigid body in the physi-
cal space possesses six degrees-of-freedom. This implies that its configuration will be
described in a reference coordinate system in terms of six generalized coordinates. Now,
if we consider the configuration of a rigid body to be described by a vector (as we did in
the case of a point), this vector must have six independent components. It is obvious
then, that this six dimensional vector does not belo* 5 to the physical space. It belongs
to a six dimensional space which is not Euclidean and is known as the configuration
space. Therefore, by assuming a vector description for the configuration of a rigid body
we have to use a non-Euclidean space and hence curvilinear reference coordinate sys-
tems. This approach of describing the configuration of a rigid body leads us, in general,

to very complex functional expressions.

Conventionally, we overcome these difficulties by grouping the six generalized coor-
dinates, which describe the configuration of a rigid body into two sets. The first set con-
tains the generalized coordinates which describe the orientation of the rigid body. The

other set contains the remaining three generalized coordinates and they describe the

-21 -

configuration (position) of a point on the rigid body.

To implement this scheme, we first associate a frame with the rigid body. A frame
is a representation for a coordinate system so that the representation includes the possi-
bility that the coordinate system may be displaced (translated) and/or rotated with
respect to an other coordinate system. In other words a frame contains a coordinate sys-
tem whose orientation defines the “frame orientation” and is known as the frame coor-
dinate system, and a position vector, which defines the origin of the frame coordinate
system. The frame coordinate system is assumed to have a fixed relationship with the
rigid body. For that, sometimes, the frame coordinate system is refer to as the body
coordinate system. This allows us to identify the orientation of the rigid body with that
of the frame. Moreover, to simplify the description, we consider the frame coordinate
system to be an orthogonal Cartesian system. Therefore, it is obvious that the
configuration of the rigid body will be completely specified, relative to a reference coordi-
nate system, if we specify the orientation of an orthogonal Cartesian coordinate system

(the frame coordinate system) and its position vector.

As we noted above, position vectors can be described easily. Therefore, to complete
the description for the configuration of a rigid body, we need to describe the orientation
of a frame coordinate system relative to a reference one. This can be easily accomplished
by considering an intermediate coordinate system which has the same orientation as the
reference system, but whose origin is the same as that of the fra.ne coordinate system.
Then, we need only to describe the orientation of the frame coordinate system relative
to the intermediate one, i.e., we need to describe the relative orientation of two Carte-

sian coordinate systems with a common origin.

There are many ways of s~ecifying the orientation of a Cartesian coordinate system
relative to another one with a common origin. As is well known [1], the orientation of
two Cartesian coordinate systems with a common origin is described by a linear

transformation. Here, since the coordinate systems are orthogonal, the linear

f

-22.

transformation will be an orthogonal one. Moreover, from physical considerations (-the
coordinate systems represent orlentations of rigid bodies), the linear transformation is
proper (i.e., it has determinant equal to one) and so it represents a rotation. Therefore,

this results in the problem of how to describe a rotation.

One of the most common methods to be found in the literature [1-6] which
describes a rotation, is that of using a real orthogonal 3X3 matrix. The entries of this
matrix are the direction cosines which relate the axes of the two coordinate systems -the
referencz and the rotated one. A set of nine direction cosines completely specify the rota-
tion between any two Cartesian systems. Of course, the set of the nine direction cosines
does not form a set of independent generalized coordinates, since as is well known [1]
they satisfy six orthogonality relationships. However, the use of direction cosines to
describe the orientation of one Cartesian coordinate system with respect to another has
a number of important advantages. The most obvious is that they permit the use of
Cartesian coordinate systems in describing the orientation of a rigid body, therefore
avoiding the need for a curvilinear coordinate system for describing the configuration of
a rigid body.

As we mentioned above, the nine direction cosines of a 3¢ 3 real orthogonal matrix
have only three degrees-of-freedom which may be specifled in terms of three linearly
independent parameters. However, it i= a well known fact 5], that there is no 1-1 global
representation for a rotation matrix in terms of three independent variables (generalized
coordinates). Nevertheless, in many practical applications and for a restricted domain it
is possible to find three linearly independent variables, which can serve as generalized
coordinates to describe a rotation. These generalized coordinates can be chosen in a
number of ways. A common approach is to choose a particular sequence of rotation
angles (o, B, 7) about the axes of an orthogonal coordinate system. The roll, pitch and
yaw or the z -y -x Euler angles are examples of this approach. Finally, an alternative

way of describing rotations is to use more than three variables, which obviously will not

B Tace it e

v

gy oo e ANEa vaLde A mregs sme L 4

CLEl e o St Tk s

be line~rly independent and usually the description will not be 1-1. For example, we can
use quaternions, spinors, Pauli spin malrices, special unity 2X2 and 33 matrices [1-

8], geometric or frame invariants [9], etc.

‘When we use generalized coordinates to describe the conflguration of a rigid body,
for notational convenience, we somevimes consider the three “‘generalized” angles a ,8 4
which describe a rotation (over a restricted domain) as the components of an ‘“‘orienta-
tion vector’”. This “‘orientation vector’” is then combined with the wposition vector
[z y 2]T of a point to produce a six dimensional “vector” x =z y z ap~]T,
which describes the configuration of a rigid body. We usually refer to x as the Cartesian
configuration vector for the rigid body. The set of all Cartesian conflguration vectors

then defines the Cartesian (configuration) space for th. rigid body.

Remark 2.1 : As mentioned above, the ‘‘orientation vector” is created merely for nota-
tional convenience. It is not a valid representation for a rotation. Mathematically, a
rotation is a second order tensor which is not a skew-symmetric tensor. Therefore, It is
impossible to be represented by a vector, which is a first order tensor (see Chapter III).
Another, probably simpler way to see that the ‘‘generalized’ angles (a 8 ,7) does not
form the components of a vector is the following. The ccmposition (multiplication) of
finite rotations is known to be associative but not commutative. Now, the only vector
operations which produce a vector are addition and vector cross product. But vector
addition is commutative and the vector cross product is not associative. Therefore, it is
obvious that vectors do not represent finite rotations, because neither vector addition
nor vector cross product is compatible with the compositic ., of rotations. Hence, the
“orientation vector’” does not exist. Therefore, the Cartesian configuration vectors are
not ‘‘real’” vectors. This implies that the terminology ‘‘Cartesian space’ or ‘‘Cartesian

vector” is used in robotics in a broader sense of that used in linear algebra.

In the following section, we shall analyze briefly the relationships between the

configurations of the same rigid body in two different locations in the physical space.

-924-

2.2.2 On the Finite Displacement of a Rigid Body

As is well known, the difference between the position vectors for the same point on
a rigid body at two different locations of this body in the physical space is referred to as
the displacement of that point in space. In this thesis, we shall define displacement in a
broader sense to also include the difference between two orientations of the same rigid

body.

A finite displacement in the physical space is expressed mathematically as a
transformation of the 3-D Euclidean space E2 into itself, with the property that it

preserves the Euclidean distance. To elaborate, if W : E® — E2 is a transformation and
p =Wp (2.2.1)

denotes the action of W on a point p in E2? then W defines a displacement if
(-1)= (p —r)foralp and r in E3 Clearly, W has been defined as a point-
transformation, but since in an Euclidean space points are identified by their position

vectors, we can view W as a vector transformation of E® into itself.

It czn be shown [2] that displacements form a group. It is a subgroup of the group
of transformations and it consists of those transformations which leave the distance of
any two points invarianf. It can also be shown [2] that displacements are angle-
preserving transformations. In particular, right angles correspond to right angles. This
implies that not only the distance between two points but also the distance between a
point and a linear subspace, and the distance between two parallel subspaces are invari-
ant under displacement. Finally, if for a certain displacement W, a point p coincides

with its image p' , this point is called a fized point of W,

The concept of displacement is fundamental to rigid body kinematics. It provides
the mathematical apparatus for the study of rigid body motion. To see this, we notice
that a rigid body is defined as a system of mass points subject to the holonomic con-

straints that the distances between all pairs of points remain constant throughout any

-25-

motion. Now, since displacement is a distance and angle preserving transformation, it is
obvious that rigid body motion can be described, mathematically, as a displacement

between two distinct configurations of the rigid body.

A genera)] displacement or motion of a rigid body is best analyzed by considering

the following two special displacements.

Translation : The transformation Ty, which is defined by the equation
' A
p =Typ =p +d (2.2.2)

where d is a fixed vector, is obviously a displacement. It is the simplest displaccment
and is called a translation. The vector d in (2.2.2) is called the vector of translation. As
we can see from (2.2.2), if p and r are two points, then the vector w = p' -r not
only has the same length as w = p —r but is also parallel to it. Also, it is obvious
from (2.2.2) that translations form a commutative group, which is a subgroup of the
group of displacements. Moreover, from equation (2.2.2) it can also be seen that a trans-
lation is not a linear transformation (it does not map the origin of the space in to itself)

and has no fixed points.

The second special displacement is the familiar rotation which can be defined as

follows.

Rotation : A dispacement A for which a point o is a fixed point is called a rotation

about o.

It is well known [2], that rotations about a point o constitute a subgroup of the
displacement group. The rotation group is not commutative. Also, in contrast with

translations, rotations are linear transformations.

A rotation, in general, can be interpreted in two ways. First, we consider a rotation
A as an operator which acts on a vector p and produces another vector p' . This is an
active point of view. In this approach the space is described in an invariant coordinate

system, relative to which ail vectors are rotated. So, p and p' are two different

- 26 -

vectors, expressed in the same coordinate system. In the second approach, we consider
the same rotation A as a transformation which acts on a reference coordinate system
{ e } and produces a new reference coordinate system { e’ }. This is a passive point of
view. In this approach, the actual vector remains invariant and only the reference coor-
dinate system is rotated. An invariant vector is represcated by p relative to the old
coordinate system, and by p' relative to the new one. Both interpretations of a rotation
define the same action on a vector and both interpretations are described mathemati-
cally using the same algebra. We express the action of a rotation A by writing
p =Ap (2.2.3)
The dimension of the Euclidean space E", where a rotation is defined is fundamen-
tal to the analysis of rotations. Thus for n even there are in general no fixed points
different from o. For n odd (n = 2m + 1, m = 0, 1, ') we always have at least one
line of fixed points, the azis of the rotation. A consequence of the general theory of rota-

tions in odd dimensional Euclidean spaces is the following Theorem.

Theorem 2.1 (Euler) : If a rigid body undergoes a displacement leaving fixed one of
its points, o, then a set of points of the body, lying on a line that passes through o,

remains fixed as well.

A corollary of Euler’'s theorem, sometimes called Chasles’ theorem, states the following

result.

Theorem 2.2 (Chasles) : The most general displacement of a rigid body is a transla-

tion plus a rotation.

Proofs for these theorems can be found in any book on classical mechanics, e.g. see
[1-4]. An important consequence of Chasles’ Theorem is that a general displacement of
a rigid body can be written as

p =Ap +d (2.2.4)
where A is a pure rotation and d is the translation vector of a pure translation. Equa-

tion (2.2.4) is very important in rigid body kinematics. It expresses a general

-97 -

displacement explicitly in terms of a rotation A about a point o and a translation of o
by d. However, a compact representation for a general displacement, as that in equa-
tion (2.2.1) is more appealing, especially when one deals with a series of displacements,
as is often the case in robotics. To achieve a compact representation for a general dis-

placement, in terms of a rotation and a translation, we proceed as follows.

Let W be a general displacement, o an arbitrary point and o its image under

‘W . Now, if T4 is a translation with a vector d which transfers o into o , then Ty'W

is clearly a rotation A about o. Here, T denotes the inverse traaslation of Tyq. Now,
if we write T{'W = A it follows that

W =T4A (2.2.5)

i.e., a general displacement can be written as the product of a rotation and a transla-

tion. We usually refer to a transformation which may not only change the orientation

but also the origin of a coordinate system as a homogeneous transformation. From the

foregoing, equation (2.2.5) defines a homogeneous transformation. Obviously, the homo-

geneous transformation W as a product of a nonlinear and a linear transformation is a

nonlinear transformation.

Homogeneous transformations are best analyzed in terms of homogeneous coordi-
nates {11, 12}. The coordinates of a point, line or plane are called homogeneous if the
entity they determine is not altered when the coordinates are multiplied by the same
scalar. As is well known, a three dimensional vector p in a coordinate system has a
(3X1) column matrix representation. In a homogeneous coordinate system a three
dimensional vector has a (4X1) column matrix representation. The last entry of the
column contains a scaling factor which can be chosen to be equal to 1. With the scaling
factor equal to 1, the homogeneous coordinate matrix of p is given by [12]

p=|[p: Py P 1]T (2.2.6)

where p = [p; py P:]T is the coordinate matrix of p in three dimensional Euclidean

space.

- 928 -

A translation homogeneous transformation T4 with vector of translation d has a

(4X 1) matrix representation in homogeneous cocrdinates given by [12]

100 | %
o010 | d

T=|oo01 |d (2.2.7)
000 | ;

where d = [d, d, d,]7 is the coordinate matrix of d in three dimensional Euclidean
space.

Similarly, a rotation homogeneou:: transformation A has a (4x4) matrix representa-

tion in homogeneous coordinates given by

A 0
? — (2.2.8)

A =
where, A is the usual (3X3) matrix representation (via direction cosines) of a rotation,
and O is the three dimensional zero vector. Note that we use the same notation for the

(3x3) matrix and homogeneous matrix representations of a rotation. We shall rely on the

context to distinguish between the two representations.
Now, as we can see by using equation (2.2.7) and (2.2.8), the homogeneous transfor-

mation W, defined by (2.2.5), has a (4x4) homogeneous matrix representation given by,

A
or

d
_ (2.2.9)
1

W =

Equation (2.2.9) allows us to express the general displacement of a vector (i.e., equation

(2.2.1)) in homogeneous coordinates as follows.

| L
— - (2.2.10)
1

p' A

1 o7

Equation (2.2.10) is equivelent to the two equations

pl =Ap +d (2.2.113)

Bl i bl

-99-

1=1 (2.2.11b)
where obviously (2.2.11a) gives the matrix representation in the three dimensional space

of equation (2.2.4).

From the foregoing, we have two ways of analyzing a general rigid body displace-

ment transformation : either equation (2.2.4) or equation (2.2.1) can be used.

As we shall see in later chapters, equation (2.2.4), with a matrix representation
given by equation (2.2.11a), is suitable for kinematic analysis of rigid body motion when
computational issues are of main concern. Equation (2.2.1), with a matrix representation
given by (2.2.10), leads to compact representations, but with significantly higher compu-
tational complexity. The two representations are, of course, equivalent and equations

(2.2.10) and (2.2.11) provide the bridge between them.

Remark 2.2 : Besides describing general displacements, homogeneous transformations
are often used in robotics [12] to represent coordinate frames, i.e., relative configurations
of rigid bodies. Thus, for example, equation (2.2.9) can be used to define the homogene-
ous coordinate matrix representation for the configuration of a rigid body relative to

another reference coordinate system.

Based on these preliminaries, we can now introduce the physical system on whose

dynamic analysis this thesis is focussed.

2.3 ROBOT MANIPULATORS

As we mentioned in Chapter I, robot manipulators or robot arms are the most
important form of robotic systems in use today. The dynamic analysis of such robots is
therefore of practical importance. A general description for the physical components of a
robot manipulator has been given in Chapter 1. In this section, we provide in more
details a ‘‘geometric” description for the arm of a robot manipulator and introduce some

relevani terminology.

-30-
2.3.1 Description of Robot Manipulators

A robot manipulator is essentially a mechanical device that can be programmed to
automatically manipulite objects in physical space (the real world). The arm or articu-
late portion of a robot is usually constructed as a series of coupled bodies, known as
links, which together constitute what is called a kinematic chain. If every link is con-
nected to at least two other links, the kinematic chain is said to be closed, and such a
mechanism is called a linkage. If, however, some of the links are connected to only one
other link, then the kinematic chain is said to be open or serial-type and such a mechan-
ism is called a manipulator. Therefore, depending on their articulate portion, we can
have robots with closed or open kinematic chains. However, since the kinematic and
dynamic analyses of closed kinematic chains is moie involved [15-17], most industrial
robots have open kinematic chains i.e., a manipulator, with some form of end-effector
attached to the final link. Depending on the intended applications, the end-effector can
be a gripper, a weiding torch or other device. We usually refer to this class of industrial

robots as robot manipulators.

Although, in reality, all mechanical devices are flexible to a degree, the links of
present days industrial robot manipulators are made of quite heavy and rigid material
and are usually modeled as rigid bodies. This provides a realistic approximation which
allows us to simplify considerably their kinematic and dynamic analyses. However, in
receni years, some research has been directed towards modeling and analysis of robot
manipulators with flexible links [18-21]. Flexible link manipulators are made of light
weight material and may be useful for space applications but have not yet become popu-

lar in industry.

A kinematic pair is the coupling of two adjacent links. In current industrial mani
pulators the most frequently encountered kinematic pairs (and the simplest ones) are the
revolute pair, which allows only relative rotational motion about a single axis (the joint),

and the prismatic pair, which allows only relative translational motion along a single axis

-31-

(the joint). For these kinematic pairs since motion is allowed in a single direction only,
one pararneter (variable) is sufficient for specifying the relative motion between two
adjacent links. This implies that revolute or prismatic pairs are characterized by one
degree of freedom. The corresponding variable which measures the linear or rotational
relative motion of a kinematic pair is referred to as the generalized coordinate of that

kinematic pair or joint.

As we saw in Section 2.2, there are six degrees-of-freedom associated with the
conflguration of a rigid object. Therefore, if the links of a manipulator are connected by
only revolute and/or prismatic joints (as is the case with most current industrial mani-
pulators), then there must be at least six such links (and hence joints) if the manipula-
tor is to be capable of arbitrarily positioning objects in a three dimensional space. Oth-
erwise stated, any manipulator must have at least six degrees-of-freedom (links and/or
joints) in order for it to achieve arbitrary real world configurations. There are, however,
many manipulators that have fewer than six degrees-of-freedom because they are
des~ned to perform tasks which do not reqiire such freedom. Also, there are robot
manipulators which have been designed to have more than six degrees-of-freedom. Such
manipulators are called redundant arm manipulators. These manipulators are particu-
larly useful in environments where collision avoidance [22] is important. However, in
this thesis we shall be concerned only with the kinematic and dynamic analyses of non

redundant robot manipulators with rigid links.

To be able to identify the links and the joints of a robot manipulator, we number
the links (and implicitly the joints) from zero to n successively - zero being the first
link, which is known as the base, which is fixed and n the last one which corresponds to
the free end. With this scheme, the joint which connects the (1-1)-th and the i-th links
is referred to as the i-th joint. The end-effector (if it exists) is usually considered as the

(n +1)-th !ink which is rigidly attached to the n-th link with no joint between them.

-32-

Also, to be able to specify the configuration, of each link relative to an tnertial or
any other coordinate system, we associate with each link a frame which we denote by
e={x; y; 2,0 } 1 =012 ... n, and refer to as the ¢-th link frame. The ¢-th frame
is composed of the frame coordinate system, which we denote by ;= { x; y; %; }, and
refer to as the i-th link coordinate system, and the position vector of the origin of this
coordinate system relative to the inertial or any other coordinate system. The s-th link
coordinate system is rigidly attached to the s-th link, and so the 1-th frame defines the
configuration of the i-link relative to the inertial or any other reference system. The
frame which is associated with link O is often referred to as the base frame. When the
base frame is considered as an inertial reference frame (which is often the case) it serves
as a universal frame relative to which everything we discuss can be referred. On the
end-effector, we attach a frame to which we assign the number n+1 and which we call
the tool frame. Note that the tool frame has a constant configuration relative to the n-
th frame. The configuration of the tool frame, relative to an inertial frame, is usually
considered as the configuration of the robot manipulator. This is justified, since the
end-effector is that part of a robot which is desighed to make contact with the environ-
ment for the purpose of executing some task. However, in the actual kinematic and
dynamic analyses of a robot manipulator, we consider the configuration of its last link as
the configuration of the robot manijpulator. This is acceptable for two reasons : First,
the end-effector is always attached rigidly to the last link, and thus has a constant
configuration relative to that of the last link; and secondly, we want the analysis to be
general and not specific to a particular end-eflector. Moreover, to make the analysis
independent of a particular environment where the robot msy be used, we choose the
inertia: or reference coordinate system to be attached to the base of the robot. Thus, we
usually choose the basis frame { e, } to be the inertial or universal reference frame.
Therefore, in this thesis, unless indicated otherwise, we shall take the configuration of a

robot manipulator to mean the configuration of its last link relative to the base coordi-

-33-

nate frame { €, }. Also, when a quantity such as a vector or a coordinate system is
defined relative to the inertial reference frame, the term absolute will be used. When the

reference frame is another link frame, we shall use the term relative,

2.3.2 Geometric Description of a Link

To obtain the proper kinematic and dynamic equations for a robot manipulator, it
is important to know the exact geometric characteristic of each link. This will enable us
to define the absolute or relative configuration of any link in the articulated portion of a

robot manipulator.

A geometric description of a link is mainly concerned with what relationship exists
between two neighboring joint axes of a manipulator. Mathematically, joint axes are
defined by lines in the three dimensional space. Thus the joint axis { is defined to be the
line or vector direction in space about which the “-th link rotates or translates relative
to the (¢-1)-th link. Note that this definition for the joint axes implies that link 1
(¢ £ n) connects two joint axes, the #-th and the (i +1)-th. In particular the joint axis
1 about or along which link { moves is called its prozimal joint, and the joint axis (7 +1)

which connects link ¢ with link (i +1) is the distal joint associated with link ¢.

The relative location (configuration) of two axes in the three dimensional space is

defined by specifying the following two quantities :

Link length : For any two axes in the three dimensional space, there exists a well-
defined distance between them. This distance is measured along a line which is mutually
perpendicular to both axes. This distance always exists and is unique except when the
two axes are parallel, in which case there are many mutually perpendicular lines of equal

length.

As we have mentioned, the 1-th link is associated with the {-th and the ({ +1)-th
joints. Therefore, the mutually perpendicular line between the i-th and the (i{+1)-th

joints allows us to define what is called the length of the ¢-th link.

-34-

Link twist : Between two axes in the three dimensional space, we can always define an
angle. There are two cases to examine. In the first case, the axes are assumed to be
parallel, and we consider that a zero angle exists between them. In the second case, we
assume that the axes are not parallel and we define an angle between them as follows :
We consider a plane normal to the mutually perpendicular line which exists between the
two non-paralle]l axes. Now, by considering the projection of these two axes on the nor-
mal plane, we obtain two non-parallel lines on the plane. At the point of their intersec-
tion we can choose one of the four angles to be the twist angle of the two axes. Based

on this angle, we shall define the twist angle of a link in the next sectivu

2.3.3 Description of Link Connections and the Configuration of a Robot

Manipulator

The primary purpose of this section is to describe the ‘‘configuration’ transforma-
tion, which defines the relative displacement of two neighboring links of a robot manipu-

lator, as well as to derive a matrix representation for it.

A special description for the configuration transformation of two neighboring
members of a spatial kinematic chain, has been established over the years and is known
as the Denavit-Hartenberg (D-H) description or convention. The D-H convention has
proven to be very practical in robotics because it allows for a systematic description of a
spatial kinematic chain, in particular when it is of an open-loop structure. The D-H con-
vention was first introduced by Denavit and Hartenberg [23] (in 1055) for the purpose of
analyzing spatial linkages, and was specialized to open-loop spatial kinematic chain by
Kahn [25] (in 1969). The usual D-H convention, as originally designed for kinematic
analysis, has some disadvantages and can lead to ambiguities when it is used in robots
with links having more than two joints [26]. The scheme which we describe here is well
suited for open loop spatial kinematic chains and can be easily adapted for spatial

kinematic chains with tree or closed-loop structures (26].

- 35 -

The D-H convention associates a frame rigidly with every link (or joint). In partic-
ular, the {-th frame is associated with the {-th link and its coordinate system defines
the orientation of the ¢-th link (frame) relative to the {¢#—~1)-th link (frame). Also its
position vector defines the origin displacement of the i-th coordinate system relative to
the (1-1)-th coordinate system. In the D-H convention, to assign the 1-th coordinate

frame on the i-th link, we use the following two basic assumptions :

1) The z; basis unit vector of the ¢-th frame coordinate system is always parallel to

either the proximal or the distal axis of the {-th link.

#1) The x; basis unit vector of the ¢-th frame coordinate system is always parallel to

the mutual perpendicular between the 7-th and the (7 +1)-th joint axes

Based on these assumptions we define the ¢-th link coordinate system. We assume
that the z; basis vector is parallel to the proximal joint of the link, i.e., it is parallel to
the 7-th joint axis. The origin o; of the i{-th frame coordinate system is located at the
intersection of the 7-th joint axis and the mutual perpendicular between the ¢-th and
the (¢ +1)-th joint axes. When this point is not unique (in the case of parallel joint axes)
we choose the one which minimizes the relative distance between the origin of the (i -1)
and ¢-th coordinate systems. The x; basis unit vector is on the mutual perpendicular to
the axis z; and z ;. directed from the former to the latter. The y; basis unit vector of
the 1-th frame coordinate system is chosen as the unique perpendicular to both z;, and

x; at the point o;, which defines a right-hand oriented coordinate system.

In the D-H convention four parameters are needed to specify completely the rela-
tive conflguration of two neighboring frames. These parameters for the ¢-th frame are

defined as follows :
a; : The angle about x;_,, between 2;_; and z;.

a; : The distance along x;_,, between z;_, and z;.

-~ 38 -

d; : The distance along z;, between x;_, and x;.

6; : The angle about 2z;, between x;_, and x; .

and are shown in the following Figure

Jointi-1

Link i-1

Link ;2

0i-10] X..

Figure 2.1 : Link Parameters and Link Coordinate Systems

Remark 2.3 : The angle a; and the distance a;, are associated with the (i{-1)-th link,
and can be used to define the twist angle and the length, respectively, of this link. Since
these two quantities are associated with the (¢-1)-th link, some authors {13] use the
notation a;_; and a;_; iostead of a; and a;. We prefer to use «o; and a;, because, as we
shall see later, it leads to a uniform notation for the matrix representation of the

conflguration transformation between two neighboring links.

-37-

Each of the parameters defined above, can be used to define a pure translation or a
pure rotation displacement. We shall call these displacements elementary displacements,
since they occur along or about a coordinate axis, and we denote them by
Trans (axis , var) and Rot(axis , var) respectively, where ‘“‘axis” is the coordinate

axis of the displacement and ‘“‘var’’ denotes the variable of the displacement.

Now, using elementary displacement operations, we can describe [13] the displace-
ment of the i-th link reiative to the (i —1)-th link, which we denote by A; = '"'A;, as

follows
A; = Rot (x;_;,a;)Trans (x;_;,a; YRot (2; ,6;) Trans (z; ,d;) (2.3.1)

Since the displacement A; also defines the configuration of the ¢-th frame relative to
the (¢-1)-th frame, we refer to it as the ¢-th homogeneous (configuration) coordinate
transformation. Using equations (2.2.7) and (2.2.8), it is easy to see that the matrix
representation for the homogeneous transformation defined by (2.3.1), in terms of direc-

tion cosines, is given by

cos 6; - sin 8, 0 a;
cosa;sin §, cosa;cos f; - sina - d, sin a;
A; = | sina;sin 0; sina;cos@; cosa; d; cos a; (2.3.2)
0 o 0 1

and we refer to A; as the ¢-th homogeneous coordinate transformation matriz.

It is clear that, since the ¢-th joint has one degree of freedom, three of the four
parameters defined above will be constant and only one will be variable. The variable
parameter of the #-th joint is known as the i-th joint coordinate and is usually denoted
by g;. From the definition of the four parameters, it is obvious, that g; a 6;, when the
{-th joint is revolute and g; a d;, when the i-th joint is prismatic. Therefore, with the
appropriate definition for the joint variable ¢;, the transformation A, a A;(g),
defined by (2.3.1), describes completely the one degree-of-freedom displacement (motion)

of the i-th link relative to the (¢-1)-th link.

T —_—_—

- 38 -

As we mentioned in Section 2.2, a general displacement can be expressed as a pure
rotation and a pure translation. Thus, by comparing equations (2.2.9) and (2.3.2), we
can see that the rotation A; of the {-th link coordinate system relative to the (¢#-1)-th,

has a (3 X 3) matrix representation, in terms of direction cosines, which is given by

cos 6; - sin 6; 0
A; = | cosa;sinf; cosa;cos@; - sina; (2.3.3)
sin o;sin §; sin a;cos @; cos a;
Similarly, the origin displacement or position vector of the f-th coordinate system rela-

tive to the (§-1)-th coordinate system, has a (3x1) matrix representation which is given

by

a;
33:11',5 = —d; sin a; (2.3.4)
di COs Qi

Therefore, the homogeneous transformation A;, or the rotation A; together with the

translation T P completely describes the configuration of the i-th link relative to the

-]'

(f -1)-th link.
Now, we can use the relative configuration between two neighboring links to define

the absolute configuration of any link of a robot manipulator. We do that here in terms

of homogeneous transformations since this leads to a compact description.

It is well known [12] that, in general, if we post-multiply a homogeneous transfor-
mation representing a frame by a second homogeneous transformation describing a rota-
tion and/or a translation, we make that rotation and/or t anslation with respect to the
frame which is described by the first transformation. Thus, the homogeneous transfor-

mation
W = AGA (2.3.5)

describes the configuration of the (i +1)-th frame (link) relative to the (¢-1)-th frame.

Therefore, the absolute configuration of the #-th link is described by the transformation,

[t udind

THALER T W T R,

TR RS S X e T DO SRR M B R A T

-39 -

W, =W, = A,A, .. A
= W,_A; i=12,..n (2.3.6)

and obviously the absolute configuration of the manipulator (i.e., the configuration of

the n-th link) is given by W, .

As can be seen from equation (2.3.8), the homogeneous transformation W, is a
function of the joint coordinates ¢;, + = 1, 2, ... n. The joint coordinates ¢; are
linearly independent, and this allows us to view them as the components of an n dimen-
sional vector q, relative to some curvilinear coordinate system which describes the joint
space of the robot manipulator. The vector q is referred to as the joint space vector and
since W, 2 W, (q), the W, provides a joint space description for the cornfiguration of

a robot manipulator.

The joint space description for the configuration of a robot manipulator provided
by W, can be viewed as an ‘“‘internal” c}escription, since implicitly it contains the
configuration of all the individual links of the manipulator. Now, from section 2.2, we
recall that the configuration of a rigid body (and therefore that of the last link or the
end-effector of a robot manipulator) can be described in Cartesian space in terms of a
‘“‘Cartesian vector’” xt . The Cartesian space description for the configuration of a rohot
manipulator can be viewed as an “external” description, since it does not take into

account the configuration of the individual links in the manipulator chain.

Both, the joint ard Cartesian space descriptions for the configuration of a robot
manipulator are fundamental in robotics. The Cartesian space description is useful,
mainly to human operators, since it allows for an easy description of the motion of the
end-effector between two different locations in space. However, the motion of a robot
manipulator is realized in joint space and therefore a joint space description is necessary

for the robot controller. Hence, some of the basic kinematic problems in robotics deal

t Note that sometimes in robotics, more general spaces (e.g. the operational space (27})
are used to describe the configuration of a robot manipulator.

- 40 -

with transformations between joint space and Cartesian space descriptions for the

configuration of a robot manipulator.

Besia=s configuration kinematic analysis, motion kinematic analysis is also needed
for the dynamic analysis of any mechanical system. However, before we deal with
motion kinematics of robot manipulators we need first to develop a methodology which
will allow us to study motion kinematics in a simple and efflicient manner. Since this

methodology will be based on Cartesian tensors, the next chapter is devoted to Carte-

sian tensor analysis.

-41 -

2.4 REFERENCES

1)
[2)

[3]
4]
(5]
[6]
[7)
[8]

[¢)
[10]

[11]
[12]

(13]
[14]

[15]

[16]

[17]

18]

[16]

[20]

[21]

H Goldstein, Classical Mechanics , 2nd ed. Reading, MA:, Addison Wesley, 1981.

O. Bottema and B. Roth, Theoretical Kinematics, North-Holland Publishing Co.,
Amsterdam, 1978.

J. I.. Synge, ““‘Classical Dynamics’ Encyclopedia of Physics, S. Flugge Edit., Vol.
111, Springer-Verlag, Berlin-Gottingen-Heidelberg, 1960.

J. Angeles Spatial Kinematics Chains : Analysis, Synthesis, Optimization,
Springel-Verlag, Berlin-Heidelberg-New York, 1982.

J. Stuelpnagel *““On the Parameti.;ation of ihe Three-Dimensional Rotation
Group®' , SIAM REVIEW, pp. 422-430, Vol. 8, No. 4, October 1964.

J. Rooney “A Survey of Representations of Spatial Rotations About a Fixed
Point”, Environment and Planning B, pp. 185-210, Vol. 4, 1977.

D. Hestenes, ‘“Vectors, Spinors, and Complex Numbers in Classical and Quantum
Physics”, J. Math. Phys. Vol. 39, pp 1013-1027, 1971.

R. A. Wehage, “‘Quaternions and Euler Parameters - A Brief Exposition” Com-
puter Aided Analysis and Optimization of Mechanical System Dynamics, Edited by
E. J. Haug, Springer-Verlag, Berlin-Heidelberg, 1984.

J. Angeles Rational Kinematics, Springer-Verlag, Berlin-Heidelberg-New York,
1089.

D. Lovelock and H. Rund, Tensors, Differential Forms, and Variational Principles,
John Wiley & Sons, New York, 1965.

L. Brand Vector and Tensor Analysis, John Wiley & Sons, New York, 1947.

R. P. Paul, Robot Manipulator : Mathematics, Programming and Confrol, MIT
Press, Cambridge, MA, 1081.

J.J. Craig, Introduction to Rcootics : Mechanics & Control, Reading, MA:
Addison-Wesley, 1986.

W. A. Wolovich Robotics : Bastc Analysis and Design, Holt, Rinehart and \Wins-
ton, New York, 1987,

J.Y.S. Luh and Y .F. Zineng, ““‘Computation of Input Generalized Forces for Robots
with Closed KKinematic Chain Mechanisms”, IEEE J. Robotics and Automation,
RA-1, No 2, pp 95-103 , 1985.

T.R. Kane and H. Faessler, “Dynamics of Robots and Manipulators Involving
Closed Loops” , Theory and Practice of Robots and Manipulators , A. Morecki, G.
Bianchi ana K. Kedzior, Eds., MIT press, Cambridge, MA, 1085.

Y. Nakamura and M. Ghodoussi, “A Computational Scheme of Closed Link Robot
Dynamics Derived by D’'Alembert’s Principle’’, Proc. IEEE Int. conf. on Robotics
and Automat:on, pp. 1353-1360, Philadelphia PA, April 24-29, 1988.

Ww.J. Book, ‘Recursive Lagrangian Dynamics of Flexibie Manipulators”, Int J.
Robotics Research, vol. 3, no. 3, Fall 1084,

M. Geradin, G. Robert and Bernardin, “Dynamic Modeling of Manipulators with
Flexible M¢ ~bers” , Advanced Software in Robotics , A. Danthine and M. Geradin,
Eds., Elsevier Science Pub. Co., 1984.

H. Kanoh, S. Tzafestas, H.G. Lee and J. Kalat, ‘“Modeling and Control of Flexible
Robot Arms”, Proc. of 25-th CDC, Athens, Greece, Dec. 1086.

G. B. Yang and M. Donath, “Dynamic Model of a One-Link Robot Manipulator
with Both Structural and Joint Flexibility”, Proc. IEEE Int. conf. on Robotics
and Automation, pp. 476-481, Philadelphia PA, April 24-290, 1088.

(22)

23]
(24

(23]

[28]

[27]

- 42 -

A. Maciejewski and C. A. Klein, ‘“Obstacle Avoidance for Kinematically Redun-
dant Manipulators in Dynamically Varying Environments”, Int. J. of Robotics
Research, Vol. 4, No. 3, pp 108-117, 1985,

J. Denavit and R. S. Hartenberg, “A Kinematic Notation for Lower-Pair Mechan-
isms Based on Matrices”, ASME J. of Appl. Mechanics, Vol. 23, pp. 215-221, 1955.

J. J. Uicker, On the Dynamic Analysis of Spatial Linkages Using 4X4 Malrices,
Ph.D. Dissertation, Northwestern Univ. Aug. 1965.

M. E. Kahn, “The Near-Minimum-Time Control of Open-Loop Articulated
Kinematic Chains”, Stanford Artificial Intelligence Project, memo. AIM-106, Dec.
1969.

W. Khalil and J. F. Kleinfinger, “A New Geometric Notation for Open and

Closed-Loop Robots”, Proc. 1986 IEEE Int. Conf. on Robotics and Automation,
San Francisco, CA, pp. 1174-1179, 19886.

O. Khatib, **A Unified Approach for Motion and Force Control of Robot Manipu-
lators : The Operational Space Formulation”, IEEE J. Robotics and Automation,
VYol. RA-3, No. 1, pp. 43-53, 1087.

CHAPTER III

CARTESIAN TENSOR ANALYSIS

3.1 INTRODUCTION

As we mentioned in Chapter I, the representations of various physical quantities,
which are involved in the formulation of the equations of motion of a dynamic system,
effects the computational efficiency of these equations. We also pointed out there that a
Cartesian tensor representation for the angular velocity indicates that Cartesian tensors
can be used to describe the dynamic equations of rigid body motion. Cartesian tensor
analysis, being more general than vector analysis, is powerful and, if properly used, can
result in a tensor formulation for the equations of general motion of a dynamic system,
which may lead us in computationally efficient algorithms. That this is indeed the case
for the dynamic equations of motion of rigid-link open-chain robot manipulators, will be
demonstrated in Chapter V. In this chapter we provide an introduction to the theory of
Cartesian tensors. This theory is extended here by proving a number of propositions
which allow for easy algebraic manipulations of the equations of motion of a complex

dynamic system such as those of a robotic system.

Historically, the ideas and symbolism of tensor calculus originated in differential
geometry, and was invented by the Italian mathematicians Ricci and Levi-Civita [1].
Gradual introduction and assimilation of these ideas and symbols was greatly
accelerated by their use by Einstein in his general theory of relativity; and today tensor
analysis forms a well established fleld which provides the only appropriate language for
studying differential geometry (2,4] and related topics such as the theory of general rela-

tivity.

But if tensor calculus is a necessity for studying differential geometry, for applica-

tions in classical mechanics [5-10] it is a great convenience, because it enables one to

- 44 -

express geometrical or physical relationships of tensor entities in a concise manner which
does not depend on the introduction of a coordinate system. Moreover, even in cases
where we have to introduce coordinate systems, because measurements are required or
for other reasons, tensor equations are formally the same in all admissible coordinate sys-
tems. This fact will help us later when tensor equations have to be written in the vari-

ous coordinate systems used to derive dynamic models for robot manipulators.

In the general theory of tensor analysis, the space or environment where a tensor is
defined is a manifold [4] and it is characterized in terms of curvilinear coordinate sys-
tems. But, since the environment or physical space for physical systems is a Euclidean
space of three dimensions we are restricting our attention to the study of tensors in
Euclidean spaces. In a Euclidean space, orthogonal Cartesian coordinate systems are
sufficient for tensor analysis. Hence, we shall exclusively use orthogonal Cartesian coordi-
nate systems in our analysis. Tensors analyzed in an orthogonal Cartesian coordinate
system are referred to as orthogonal Cartesian tensors [14-18]. Therefore, unless indi-
cated otherwise, when we write Cartesian tensors, or simply tensors, we shall mean
orthogonal Cartesian tensors The use of orthogonal Cartesian systems will simplify our
analysis, since the distinction between covariant and confravariant components, which is
necessary in curvilinear coordinate systems, disappears in orthogonal Cartesian coordi-
nates. Also terms arising from curvafure are zero in the theory of Cartesian tensors since
the Euclidean space is a flat space. Finally, another important characteristic of Carte-
sian tensors is that when they are smooth functions of time, their time derivatives also

form again a tensor of the same order.

The outline of this chapter is as follows : In Section 3.2 second order tensors are
defined and some basic algebraic tensor operations are introduced. Section 3.3 outlines
the structural symmetries of second order tensors based on Cartesian and Spectral
decomposttions. Also, dual operators between vectors and skew-symmetric tensors are

defined, and a geometric characterization for ske.w-symme*ric tensors is given. Finally,

- 45 -

Section 3.4 contains important propositions which establish basic tensor identities.

3.2 SECOND ORDER CARTESIAN TENSORS

In this section, we define orthogonal Cartesian tensors of order 2. We also intro-
duce basic tensor algebraic operations which will be used later in algebraic manipula-

tions.

3.2.1 On The Definition of the Second Order Cartesian Tensors.

As we mentioned in Section 3.1, we restrict our attention to tensor analysis in
Euclidean space. We consider here three dimensional (3-D) Euclidean spaces, but the

extension of this theory to Euclidean spaces of higher dimensions is straightforward.

In general, tensor analysis is concerned with mathematical or physical entities
known as tensors which although of different nature have common chararteristics and
properties. These common properties, allow us to classify them into common classes and

refer to them with such names as scalars, vecfors or in general tensors of certain order.

There aie two basic approaches which one can take to define a tensor - or the

same, to define the class where a particular physical entity belongs.

In the first approach we analyze a physical quantity from a ‘“‘quantitative’” pcint of
view. We deflne a physical quantity to be a tensor of a certain order if it has the neces-
sary and sufficient properties which all the members of that class must have in common.
‘We can term these necessary and sufficient properties as infrinsic properties, since they
are independent of each other as well as of the environment, i.e., they characterize a
physical quantity independently of any observer. Definitions in terms of necessary and
sufficient properties are in general difficult to state, since one needs to know a great deal
about any entity before one is in a position to deflne it using only its intrinsic proper-
ties. The difficulties associated with Jefinitions based on this approach are obvious from

the following discussion.

- 46 -

Physical quantities termed ‘‘vectors” in textbooks on classical mechanics are

defined 113] in the 3-D linear space as follows.

Definition 3.1 : We use the term vectors for those quantities which for their complete
specification require the following necessary and sufficient intrinsic properties : magni-

tude, orientation (or sense) and direction.

This definition which has been accepted and used universally for years, fails to dis-
tinguish between the two kind of vector quantities, known as polar and arialf vectors.
We are able to distinguish (and eventually use) polar and axial vectors, but we do that
only in relation with the environment, i.e., only when we test them under space inver-
sion, which obviously are not part of the given deflnition. It seems that, although we
classify the direction as an intrinsic property of a vector, we do not fully ‘““understand”
it. We need the environment to characterize the direction and thus, we do not treat it

any more as an intrinsic property. As a consequence the deflnition of a vector fails.

Recently, Hestenes [25] came up with a proper understanding of the direction and
therefore with a proper algebraic definition of a vector. Hestenes gives a new interpreta-
tion and meaning to the word direction. According to him, direction contains the
geometrical notion of dimension or grade. Hestenes defines as a I-veclor or a vector with
direction of grade 1 what was commonly understood as a polar vector. To define an
axial vector he introduced the idea of direction of grade 2, as an intrinsic property of
areas (since axial vectors are used to represent area). An axial vector is then defined as a
L-vector or a bivector, i.e., a vector with direction of grade 2. Therefore, with this
extended meaning of the word direction we are able to deflne vectors based only on their

intrinsic propesties.

In the second and almost universal approach we analyze a physical quantity from

t Polar vectors are those vectors which under space inversion change their orientation
(sense), and axial vectors are those which keep their orientation under space inversion.
Usually, axial vectors are assumed to result from a vector cross product operation

-47 -

an “operational’ point of view and define the tensor character of physical quantities
based on their external or observed properties. These properties are determined by con-
sidering how a physical quantity is related to some environment and how this relation-
ship changes under controlled changes of this environment. This approach is, in general,
easier and overcomes difficulties associated with the first one. There are two ways to

proceed in this approach.

We can introduce first a frame of reference, i.e., a coordinate system, which
describes the environment and expresses (by considering a set of ordered numbers or
functions, known as components) the quantity at hand relative to that coordinate sys-
tem. Then we make a change (by considering a map) in the coordinate system and
analyze how the components of this quantity, relative to the old and new coordinate sys-
tem, are related. If the changes in the components follow a certain law we define the
quantity under consideration to be a tensor. This is a passive approach, since the tensor
quantities are actually unaware of the coordinate systems used to describe the environ-
ment and represent them. Under a change of coordinate systems it is their components
that change, not they themselves. Based on what we have said, we can give the follow-
ing definition.

Definition 3.2 : Suppose that the abstract object T is represented in an orthogonal
Cartesian coordinate system { e }, of a 3-D Euclidean space, by the set of components
t;;, where the subscripts ¢, are ordered and can take the values 1,2,3. Let t',-j be the
corresponding set of components representing T when it is referred to another orthogo-

nal Cartesian coordinate system { e }, which is related to {e} by an orthogonal

transformation A , ie., { € } satisfies the equation
le;); = ajle); =123 (3.2.1)

where aj; are the entries of the coordinate matrix A which represents the transforma-

tion A relative to the two coordinate sysiems { e } and { e }. Then if the equation

- 48 -

thy = ay a,; tij (3.2.2)
is valid, we say that T is a second order Cartesian tensor.

Remark 3.1 : In Cartesian tensor analysis the nomenclatures ‘‘order” or “rank’ are
used [17] to denote the exponent (r) to which the dimension (n) of the space, on which
the tensor is defined, must be raised to give the number of components (coefficients) of a
tensor. To put it in another way, the order of a tensor denotes how many copies of the
original Euclidean space we need to consider for producing the environment (space)
where the tensor is defined. In the case of the second order tensor T deflned on a 3-
dimensional Euclidean space, we must have 3%2 = 9 components and this is the case as
(3.2.2) indicates. We shall continue to use the word order with this meaning. Therefore,
according to what we have said, it is obvious, that order is not an intrinsic property of a
tensor. It depends on the space where the tensor is defined. However, with the word

rank, we shall associate an intrinsic property of a tensor, which we shall define later.

Finally, another way to proceed and deflne the tensor character of a physical quan-
tity is to consider the action of this quantity on its environment, i.e., we treat, in this
approach, the physical quantity as an operator. If the operator has certain properties,
then we are able to say that the quantity under consideration is a tcnsor. From this

point of view we can give the following definition [11] :

Definition 3.3 : We say that the linear vector transformation T is a second order ten-
sor if we can compute the action of T on any vector r and denote that action of T on
r by writing T(r)or T - r orsimple Tr.

Definition 3.3 is not complete as stated, since we have not mentioned explicitly the
domain and range of the linear vector transformation. The domain and range of a
second order tensor are obvious from the context. For example, in the equation
L. = I w the domain of the inertia tensor (I¢) is the space of angular velocities (w) and

its range is the space of angular momentum (L.).

- 40 -

Remark 3.2 : Although the terms “linear transformation' and ‘“tensor” in Definition
3.3 refer to mathematical functions of the same kind they are not completely
synonymous, because they have different connotations in applications. The term ‘‘ten-
sor’”’ is always used when describing certain physical quantities. Thus, we often say a
rotation tensor or a rotation transformation, but we never call the tnertia tensor, I,

“inertia linear transformation”, although it defines the linear transformation L, = I w.

As an example, of P~w we can use Deflnition 3.3 to deflne a tensor, let us consider

the following vector equation,

(udv)r =u(v-'r). (3.2.3)
1t is clear that (W®v)r is linear in r since
ulv-Op +Ar)l=MNu(v-r,)+Xlu(v-r, (3.2.4)

Therefore, the quantity T = u®v is said to be a second order tensor. Since the tensor

u®v is defilned by using the two vectors u and v it is called the fensor product of u

and v.

Remark 3.3 : Many authors prefer to write equation (3.2.3) as
(uv)r=u(v-r) (3.2.5)

In this case the tensor u v is called the dyad or outer product of u and v . The first vec-
tor in a dyad is called the antecedent and the second vector the consequent. According
to Gibbs [18), who developed the theory of dyadics (a dyadic is a sum of dyads), a dyad
or indeterminate product is a purely symbolic quantity which requires a determinate
physical meaning only when used as a linear operator. Therefore, by definition (3.3),
dyads are second order tensors. Therefore, to simplify the notation we shall identify the

tensor prcduct of two vectors u and v with their dyad and we shall write

uev =uv (3.2.6)

-50-

As is well known [19], in a 3-D Euclidean space, any linear vector transformation
can be written as the sum of dyads of which either the antecedents or the consequents,
but not both, may be arbitrarily chosen provided they are linearly independent. This
implies that to each tensor we can associate k¥ (k < 3) linearly independent directions.
Or, to use the approach of Hestenes’ [25], to each second order tensor in a 3-D Euclidean
space we can associate a direction of & dimensions (k < 3). Based on this, we can give

the following definition for the term *rank’’,

Definition 3.4 : We define the rank of a tensor to be the number of linearly indepen-

dent directions which a tensor possesses.

The deflnition of the rank as given here, coincides with what we call rank in linear
algebra. In particular, the rank of a tensor (or a linear transformation) T coincides with
the rank of the matrix T, which represents T in some coordinate system. This unifor-
mity in the meaning of the term ‘‘rank” is not possible if we identify rank with order as

is often done in textbooks on tensor analysis.

Remark 3.4 : Although in the general theory of tensor analysis scalars and vectors are
treated as tensors of order zero and one respectively, we continue to refer to them as
scalars and vectors and reserve the word ‘‘tensor” for tensors of second and higher

order.

3.2.2 The Linear Space Structure for the Second Order Cartesian Tensors

In order to use tensors in an efficient manner we have to define algebraic structures
on them by introducing basic algebraic operations. Thus, based on Dcfinition 3.3, we can

see that the following tensors and algebraic operations are well defined.

The zero and unity (identity) tensors are denoted and defined, respectively, by

ov=0 , Vv (3.2.7)
v =v s Vv (3.2.8)

The algebraic operations of addition and scalar multiplication can be deiined as usual.

- 51 -

Thus the addition of two second order tensors T and S is defined by
(T+S)yv=Tv +Sv , Vv (3.2.9)
and the multiplication of T by a scalar X is defined by
OT)yw =NTv) , V) (3.2.10)
Also, we say that two second order tensors T and S are equal if

T=8 << Tv =S8Sv YV v (3.2.11)

or equivalently
T=8S < v-Tu=v-Su V u,v (3.2.12)
It is now easy to see that the set of all tensors of the second order, together with
the two algebraic operations of addition and scalar multiplication, constitutes a vector
space over a scalar fleld, which is assumed here to be the fleld of real numbers. To find a
basis of the vector space for the second order tensors, defined on a 3-D Euclidean space
2.nd the components of a tensor T relative to it, let us consider an orthogonal basis {e }

= {e,, e, €3} of a 3-D Euclidean space. Then for any vector r we can write

Tr

I

T(re,+ 1.5+ rgey)
=r Te,++,Te,+ r3Te; [by the linearity of T]. (3.2.13)

But Te,Te, and T e, are vectors and therefore may be expressed in terms of the

Cartesian components as follows :

Te,=T"e1+ T2182+ T3,e3 (3214)
Te,=T,e,+ Tyhe,+ Tge, (3.2.15)
Teg=Tye,+ Toye,+ Tye, (3.2.16)

where, the coeflicients T';,,T,,,-*,T 33 can be computed by

T11=el'Tel
T21 ez'Tel

(3.2.17)

E3’Te3

T3

-52-

Now, using (3.2.14)-(3.2.16) in (3.2.13) and the equations

e;(e;-r)

rie;

e;e;(r),
for 1 ==1,2, 3, we get after a few manipulations

Tr =(Tpe,e,+ Tee,+ -+ Toeqgey)r. (3.2.18)
Therefore, since the vector r is arbitrary, we have from (3.2.18) that

T ="Tee,+ Tpee,+ Te.e,
+ Thege; + Tyeze,+ Toee,

-+ Tale 3e 1 -+ Tage 3e 2 -+ Tase 3e a- (3219)
or, if we use Einstein’st notation for the summation, we can write

T = Tjje;e;, 1,j=1,23 (3.2.20)

Now, it can be shown [11], that this representation of T is unique and that the set
of second order tenso"s {e e, e,e, "€ ze 3} form a basis for the aforementioned ten-
sor vector space. Relative to this basis the components of T are the coeflicients

T 3.+ T 33 defined by (3.2.17). These coefTicients can be put 1n a matrix form as

Tll T12 T13
T = T21 T22 T23 (3221)

T31 T32 T33

and we call T the coordinate matrix of T relative to the basis defined by the set
{e,e,. e,e,.e,e a}- Now, it is easy to see that there is a one-to-one correspondence
between the orthogonal basis {e } = {e ,.e ,e 3} and the basis of the tensor linear space
which is defined by the set {e ,e,, e ,e 5, - - ,e 3e 3}. Therefore, by slightly abusing the
notation, we shall refer to (3.2.21) as the coordinate matrix of the tensor T relative to

the Cartesian basis {e } = {e,, e, e} . With this in mind, we shall say that a second

t In Einstein’s notation any expression in which two or more indices t,7 are pach
repeated is to be interpreted as the sum of all the values which it can take, asz, 7, -
take the values 1, 2, 3.

- 53-
order tensor is defined in a 3-D Euclidean space instead of the 9-D linear space spanned
by the basis {e e, e e, - - ,ege,}.

As an example of the coordinate matrix of a tensor, let us find the ccordinate

matrix of the dyad uv . By using equation (3.2.17), wegetfori, j =1, 2, 3

[uv];j=e,--(uv-e,-)

=e ;- (uy;)
= U ‘Uj.
Therefore,
mv]=wuvT (3.2.22)

i.e., the coordinate matrix [uv] of the dyad uv is given by the usual outer product of

the coordinate matrices of the two vectors u and v .

3.2.3 More Algebraic Operations.

Besides the addition (or subtraction) and scalar multiplication defined above, there
are two other algebraic operations which one can deflne on tensors, namely, the tensor

product and contraction. These operations are defined [5,15] as follows :

Tensor product : Let T and S be two second order tensors whose components,
referred to a coordinate system {e }, are ¢;; and sy . Then it can be shown [15) that the

3* scalars
u,-jk, = t,'j Skt (3.2.23)

form the components of a tensor U , say, of order 4. We call U the tensor product of T

and S and we write U = T®S.

Contraction : Given a tensor of order r 2> 2, we may select a pair of indices and
replace them by two identical indices. This action by virtue of Einstein’'s convention
implies summation over the possible values of the identical indices. This process is
known as contraction and the quantities obtained by contraction constitute the com-

ponents of a tensor of order r — 2.

- 54-

Note : In the special case where r = 2, the contraction operator is synony..ous with
the familiar frace operator since, as we can see, the contraction of the two indices pro-
duces a tensor of order zero, i.e., a scalar. Note, also, that the algebraic operations of
tensor product and contraction can be performed on any tensor not necessarily Carte-
sian. Now, some other important algebraic operations, applicable to second order Carte-

sian tensors, are defined {16-17] as follows.

Transpose : Let T be the coordinate matrix of a seconda order tensor T relative to an
orthogonal Cartesian coordinate system. Then the familiar matrix transpose T T defines

a new second order tensor, waich we denote by T T and call the transpose of T .

The left and right dot product : Let T be a second order tensor and v be a vector,
with coordinate matrices T and v, respectively, relative to the same coordinate system.

Then the equation
u = T'.J. v; (3.2.24)

which is computed by considering first the tensor product of T and v and then con-
tracting the second index for the components of T' and the index for the components of
v defines the right dot product or post-multiplication of T and v . Similarly using the

equation :
5 TJ.,. (3.2.25)

we can deflne the vector w. Equation (3.2.25) defines the left dot product or pre-

multiplication of v and T . In tensor form, equations (3.2.24) and (3.2.25) are written as

u (2.2.96)

v v
‘T =vT (3.2.27)

I
< H

w

respectively. We can use the transpose operation to reorder the factors in the dot pro-

ducts defined above. Thus, for example, we can write

w=v-T=TT.v (3.2.28)

- 55-

In terms of their coordinate matrices, equations (3.2.26) and (3.2.27) are written as

u

Tv (3.2.29)
and

w =0ulT (3.2.30)
and they define the familiar nost- and pre- multiplications in matrix theory.

Finally, we can define two otier products between two second order tensors T and

S as follows :

The dot product : Let T and S be tne coordinate matrices, relative to the same

coordinate system, of second order tensors T and S, respectively. Then the equation
Uij == Tfl Slj (3.2.31)

defines the compone..«s of the second order tensor U which we call the dot product or

multiplication of T and S, and we write

U=T-8§S=TS (3.2.32)
In terms of their coordinate matrices equation (3.2.32) is written as

U=TS (3.2.33)
and agrees with the usual matrix multiplication.

The double dot or inner product : The double dot product of two tensors T and S

is given by
T:S =tr(T-S) (3.2.34)
where fr denotes the trace operator and produces a scalar.

Remark 3.5 : Strictly speaking some operations introduced above are defined by using
coordinate matrix representations of second order tensors and vectors. However, once
these operations have been established, the actual coordinate matrices used to represent

the tensors or vectors are of no consequence and we can speak of these operations as

- 56 -

being defined on the tensors themselves without any ambiguity.

The double dot product is a generalization of the familiar vector dot product, and
this allows us to define a norm for a tensor and the ‘‘angle” between two tensors. In

particular, we define the Frobenius norm of a tensor T as following
ITIr&VT:TT. (3.2.35)

This called the Frobenius norm since, when we use a coordinate matrix T of a tensor T

to evaluate equation (3.2.35), we end up with the familiar Frobenius matrix norm (31]
IT |r 2 Vir(rTT). (3.2.36)

Equation (3.2.36) follows from equation (3.2.35), by using equations (3.2.34) and (3.2.33).
Now, using the double dot product and the Frobenius norm, we can define the cosine of

the “‘angle’” 6 between two non-zero tensors, T and § as follows

T:S7T

cos(6) = 3 .
ITHrlS IF

(3.2.37)

Equation (3.2.37) is a generalization of the following familiar definition for the cosine of

the angle 6 between two non-zero vectorst and s

cos(d) = (3.2.38)

t-s
Ielisi
Actually, as we shall see in Section 3.3.3, equation (3.2.37) ir essentially identical to
equation (3.2.38) whr -~ it is applied to skew-symmetric tensors. Furthermore, based on
this definition for the angle between two tensors, we shall say that two tensors T and

S are orthogonal if and only if their double dot product is zero.

As we have mentioned above, the double dot product {and not the dot product)
between two Cartesian tensors is the generalization of the fimiliar dot product between
two vectors. The dot product between two second order tensors is not commutative as is
the case with the familiar dot product between vectors, but it is associative and distri-

butive over addition. This allows us to view the vector space of second order Cartesian

-57-

tensors, when supplied with this dot product, as a linear algebra. (This also follows from
Deflnition 3.3 which identifies second order tensors with linear transformations). This
algebra is isomorphic to the matrix algebra. Thus we can use the well-established
matrix algebra to carry out calculations for various operations with tensors. Since the
matrix elements are scalars, matrix algebra has the advantage of reducing all such calcu-
lations to addition and multiplication of real numbers. However, it has the disadvantage
of requiring that a basis be introduced (which defines an isomorphism between tensors
and matrices) and which may be quite irrelevant to the problem at hand and this often
obscures the physical or geometrical meaning of the tensor involved. Moreover, this

matrix representation may lead us to perform irrelevant and unnecessary calculations.

In the next sections, we analyze some bhasic properties of second order Cartesian
tensors which will allow us to perform algebraic manipulations with tensors without

resorving to their matrix representations.

3.3 PROPERTIES OF THE SECOND ORDER CARTESIAN TENSORS

In this section we analyze the structural symmetries of second order Cartesian ten-
sors by considering their Cartesian and Spectral decomposilions. Also, we define their
scalar and vector tnvariants. Moreover, for second order skew symmetric or pseudo ten-
sors, defined on a 3-D Euclidean space, very important dual correspondences between
them and vectors of the same 3-D Euclidean space are defined and a geometric charac-

terization is given.

3.3.1 Isotropic Cartesian Tensors.

As we mentioned in section 3.2.1, tensors themselves are independent of coordinate
systems; but the numerical values for the components of a tensor, in general, depend on
these coordinate systems. Therefore, if we use an orthogonal transformation A to

change the basis from {e } to {e' }, i.e., if

- 58 -

e =Ae; (3.3.1)

then the coordinate matrices T and T' of a tensor T, relative to the old and new

Cartesian bases respectively, are different. By Definition 3.2, they are related and this
relationship is given by

T' =ATAT (83.2)

A tensor which has the same coordinate matrix in all Cartesian coordinate systems,

or that is invariant under rotations is called an tsotropic tensor. An example of an iso-

tropic tensor is the Kronecker or delta tensor 8, with components

1ifi =3
§; = {0 if i o j (3.3.3)

relative to any orthogonal Cartesian coordinate system. Actually it can be shown (15]
that the Kronecker tensor is the only (apart from a scalar multiple) isotropic tensor of
order 2. We shall use the symbol 1 for the Kronecker tensor §, since this tensor in our

analysis stands for the unit tensor.

Although we are concerned with second order tensors, we mention here a 3rd-order
tensor which is also isotropic and which we shall use on some occasions. This is the
Levi-Civita or alternating tensor €. The components of € in any basis are defined by

-1 if(¢,7,k)is an odd permutation of (1,2,3). (3.3.4)

+1 if (2,5,k)is an even permutation of (1,2,3)
Cije = {
’ 0 if (¢,7,k) has any other set of values

With this definition the non-zero components of € are the following,

€123 = €g3) = €312 =1
€391 = €13 = €332 = — 1
Moreover, as we can see from the above discussion, the Levi-Civita tensor is skew-
symmetric (or antisymmetric) with respect to any two of its indices.
Now, a very important relation between the Levi-Civita tensor € and the

Kronecker tensor § is the following

-50-

€ijk €t = b 65, — 6;, 65, (3.3.5)
The truth of (3.3.5) may be established as follows.

If{ = j orr = s, the right-hand side of (3.3.5) is zero and the left-hand side also
vanishes by the definition of the Levi-Civita tensor. Consider the case when { 3 j and
r £ s. Without loss of generality we may choose ¢ =1 and j = 2. Using the

definition of the Levi-Civita tensor, the left-hand side of (3.3.5) then becomes
€121€r91 + €122€rs2 T €123€r53 = €y

The right-hand side of (3.3.5) becomes
81005y — 61465, = A.

where, A is a scalar. As 7 5 s, there are just the following possibilities to consider :

r = 3 in which case A = 0 for all s ;
8 = 3 in whichcase A = Qforall r ;
r =3, s =2, givingA =1,

r =2 8§ =1,givinga =-1,

Hence A = ¢,,4, and (3.3.5) is proved.

Furthermore, using equation (3.3.5) we can also show that

€ijk €rjk = 264 (3.3.6)

3.3.2 Cartesian and Spectral Decomposition of the Seconu Order Tensors.

In this section, we analyze second order Cartesian tensors in terms of their struc-
tural symmetries. Most of the results mentioned here are well known from the “heory of
linear transformations or from matrix theory. We state them here for later use in terms

of second order Cartesian tensors.

First, let us state the following important deflnitions. A second order tensor T is

said to be

- 60 -

(a) Symmetricit T =T 7
(b) Skew-symmetricit T =-T7T

(c) Singular if there exists a v 3£ Osuch that Tv =0

Now, an arbitrary Cartesian tensor T defined on an n-dimensional Euclidean space
may always be decomposed into the sum of a symmetric and a skew-symmetric tensor,

as follows
T=T, +T,, (3.3.7)

where, T, is symmetric and T,, is skew-symmetric. Both are given by
T,=%(T +TT) , T,,=%(T—TT). (3.3.8)

We shall refer to (3.3.7) as the Cartesian decomposition of a tensor. Now, some impor-
tant observations about the number of independent components for the tensors T, and
T,, are in order. Each of T, and T,, has n?- n off-diagonal ({ 5% j) components,

only half of which are independent numbers. The skew-symmetric tensor T,, has only

zeros on the diagonal and hence has just -;-n (n-1) independent components. The sym-

metric tensor T, contains the remaining %n (n+1) pieces of irformation given by the

n? components which form the original coordinate matrix T of the tensor T .

We saw earlier that se~ond order tensors constitute a vector space. It is easy to see
now that the set of symmetric tensors form a subspace of this space. The same is also
true for the set of skew-symmetric tensors. Obviously, these two subspaces are distinct.
This allow us to view, by using the Cartesian decomposition, the tensor vector space as
a direct sum of these two subspaces. Moreover, Proposition 3.13 (see Section 3.4) reveals
that these two subspaces are also orthogonal, relative to the double dot product, and so

one is the orthogonal complement of the other.

As we know, the tensor product of two vectors is a second order tensor. The sim-

- 61 -

plest, nontrivial example of a second order tensor which we can construct from the ten-
sor product of two vectors is the “projection ten:.-" [11]. A projection tensor is sym-

metric and can be defined as follows.

Given two vectors e and v, where e is a unit direction vector, the projection of v

on e is denoted and defined by

P.v=ee v =ele-v). (3.3 9)
The tensor
P, =ee (3.3.10)

which is defined as the tensor product (or dyad) of the unit vector e, is called the pro-
Jection tensor along the direction of e. From the theory of projections, or by direct

verification, we can see that the tensor
E.=1-P,

=l1(e-e)-ee (8.3.11)

is also a projection tensor which projects any vector v onto a plane perpendicular to e .
From the foregoing it is obvious that a vector v can be decomposed into the following

orthogonal components with respect to e

V”. = Pe L '4 (3.3-12)
v, =E.-v (3.3.13)
Now, given an orthogonal Cartesian coordinate system with basis vectors e ;, we

can define the projection tensors P; = P,'. t =1, 2, 3. It is easy to see that these pro-
jection tensors are symmetric and have the following properties [15)].

(a) orthogonality

P;:P; =0 if i3] (3.3.14)

(b) idempotence

P?=P; (3.3.15)

-82-

(¢) completeness
Pl + P2 + P3 = 1- (3.3.16)

Another important decomposition, for symmetric tensors, can be defined based on
projection tensors. As is well known (18], any symmetric tensor T has real eigenvalues
(N;) with a complete set of orthogonal eigenvectors. Therefore, if P, is the projection
tensor along the unit direction of the k-th eigenvector, we can write [15] for T the fol-

lowing canonical form or spectral decomposition
T =)\.P. = >‘1Pl + kzpz + X3P3 (33 17)

The spectral decomposition of a symmetric tensor, will allow us to give simple proofs for

some basic propositions in Section 3.4.
3.3.3 Tensor Invariants

a) Scalar Invariants

As we saw in section 3.3.1, except for isotropic tensors, the individual components
of a tensor are not invariant. They depend on the coordinate systermns. There are, how-
ever, a number of scalar invariants assoclated with every second order tensor, i.e.,
scalars which depend on the tensor itself, and not on the matrix representing it or its

individual components. These numbers are known as scalar tnvariants.

Functional expressions for the scalar invariant of a tensor can be wvitten in
different forms. Thus, for example, for a general second order tensor T, which has
matrix representation 7T relative to some basis, we can deflne [16] four scalar invariants

as follows.
iy I, =1t (3.3.18)
i.e., I, is the trace of the tensor T .

i) I, = tylgy— loglay + Laglyy — thala + tiatan — tialo (3.3.19)

- 83 -

i.e., I, is the sum of principal minors of the tensor.
1) Ja =ty tyotas + L1glogtsy + tiatosla;
— baatastag — Lot 3t 3y — Laglialy (3.3.20)
i.e., Iy is the determinant of T .
1v) I‘ =ty ty (3.3.21)
In the case of symmetric tensors, I, is not independent of I, I, I;. The three

independent scalar invariants of a symmetric tensor are also known as principal snvari-

ants and in terms of the eigenvalues (A;) of the symmetric tensor are given by

I,= XN+ X+ N=1r(T) (3.3.22)
12 - X1X2 -+ X2X3 + Xa)\l (3.3-23)
Is - >\1)\2)\3 (3.324)

Remark 3.6 : For a symmetric tensor T, we can define the scalar invariants without
resolving to the components of a matrix representation of T . It can be shown [17], that
the scalars F;, = tr (T), F,=tr (T ?), Fy; = tr (T?® are invariant. Obviously, these
scalar invariants are not independent from the principal invariants. It can be verifled

that
I,=F, I,= -;-(Ff ~F,) and I = %(21?3 +F?® - 3F,F,)
b) Vector Invariants and Relatively Oriented Skew-Symmetric Tensors

Besides scalar invariants, we can associate to any second order tensor, defined on a
3-D Euclidean space, a vector which belongs in the 3-D Euclidean space and is defined as

follows.

Let t,j be the components of a tensor T relative to a Cartesian orthogonal basis
{e } By considering the tensor product of €k and t,,j and contracting twice over the

two common indices we have

& = € bjo (3.3.25)

- 64 -

which, by using equation (3.3.4) for ¢ =1, 2, 3 gives

Equation (3.3.26) implies that t = 0, if T is symmetric, and t has components which

are numerically twice those of T , if T is skew-symmetric. Therefore, the vector
1
t" = '2—6,‘,* tkj (3.3.27)

is uniquely defined when the tensor T Is given. We denote this vector by writing
t = vect(T) = vect(T,) (3.3.28)

where, vect (-) denotes the tensor valued vector operator which is defined by equation

(3.3.27). The vector t is referred (23,24] to as the vector (geometric) invariantof T .

Now, as we can see from equation (3.3.26), the kernel (or null space) of the vect
operator is the subspace of the symmetric tensors, and therefore it is a non-empty set.
Hence, the vect operator in not a 1-1 operator. Therefore, if we are seeking a 1-1
correspondence between tensors and their vector invariants we have to consider the res-
triction of the vect operator onto the subspace of the skew-symmetric tensors. To do

this, we shall restrict our attention to the subspace of skew-symmetric tensors.

As we saw above to euch skew-symmetric tensor there corresponds a vector, its
vector invariant. Conversely, as we shall show, to any vector t in an 3-D Euclidean
space there corresponds a skew-symmetric tensor, which we shall denote by t . More-
over, the skew-symmetric tensor t has the important property that its vector invariant
is the vector t, from which the tensor t has been generated. To see this, given a vector
t , we define the tensor t by considering the tensor product of the Levi-Civita tensor €
with the vector { and contract the first index of € with that of t, i.e., we consider the

eqguation

- 85 -

tkj = 6"1‘* tl' (3.3.20)
The tensor t is skew-symmetric, since the Levi-Civita tensor is antisymmetric with

respect to the indices j and k. Moreover, if we multiply equation (3.3.29) by ¢,; and
use equation (3.3.6) we get

Erjk tkj = 26"' t‘-,

which, by using the definition of the Kroneker tensor §,;, can also be written as

1
t,. = ?erk tk) .
This equation is equivalent to equation (3.3.27) and therefore, t is indeed the vector

invariant of the skew-symmetric tensor t.

From the foregoing, we can see that by considering the restriction of the vect
operator onto the subspace of the skew-symmetric tensors, equation (3.3.27) (together
with equation (3.3.29)) deflnes a 1-1 correspondence between skew-symmetric tensors
and vectors. To express this 1-1 correspondence between skew-symmetric tensors and

vectors, we introduce the following tensor-valued tensor operator,

dual () L yect) (3.3.30)

{second order skew —symmetric tensors }

which is a 1-1 operator, as can be seen from equation (3.3.26).
The dual operator can also be deflned in a component-wise manner, as follows :

Definition 3.4 : The dual operator is a 1-1 tensor-valued tensor operator which has the
following property : when this operator is evaluated at a tensor of order one (i.e., a vec-
tor) we get a skew-symmetric tensor of order two, and when it is evaluated at a second
order skew-symmetric tensor we get a tensor of order one. We define the action of the
d:2l operator on a vector or a skew-symmetric tensor, component-wise, using the follow-

ing 1-1 correspondence

U, 0 -u; U,
Uqg <> Ug 0 - U B (3331)
ua ""2 Ux 0

- 88 -

Symbolically, we denote the action of the dual operator on a vector u by writing

a & dual(u), (3.3.32)
and, similarly

u & dudl(ia) (3.3.33)
denotes the action of the dual operator on a skew-symmetric tensor i .

It is important to note here that, for simplicity, we write dual(-) to denote poth,
the vector-valued and the tensor-valued dual operators. We shall rely on the argument
to distinguish between the two cases (i.e., the ‘‘direct” o1 the ‘‘inverse’ operator), and
we shall referred to the tensor @, defined by (3.3.32), as the dual tensor of the vector u.
Similarly, we shall refer to the vector u, deflned by equation (3.3.33), as the dual vector

of the tensor 1.

It can be verified that the dual vector u of the skew-symmetric tensor @ is simply
its vector invariant as defined by equation (3.3.27). Therefore, Definition 3.4 and equa-

tion (3.3.30), both introduce the same tensor-valued tensor operator.

Obviously, the 1-1 correspondence, which has been established above, is not the
only possible 1-1 correspondence between vectors and skew-symmetric tensors in a 3-D

Euclidean space. For example, if instead of equation (3.3.31), we consider the following

correspondence
U, 0 U3 - U2
Ug{ <> |-uy O u, |, (3.3.34)
Uy u, -u, 0O

we can deflne, as in Definition 3.4, another operator which also establishes a 1-1

correspondence between vectors and skew-symmetric tensors in the 3-D Euclidean space.

The tensor-valued tensor operator which describes, mathematically, this new 1-1
correspondence between vectors and skew-symmetric tensors will again be referred to as
a dual operator. But, to express it symbolically, we sha! use a different notation from

that used for the dual operator given by Definition 3.4. In particular, to denote the

action of the dual operator, which is introduced here by the correspondence (3.3.34), at a

vector or a skew-symmetric tensor, we shall write

g 2 (u)dual, (3.3.35)
and

>

u £ (7)dual, (3.3.38)

respectively. In the following, we shall rely on the notation or the context to make clear

which correspondence, i.e., (3.3.31) or (3.3.34), has to be used for the dual operator.

Now, as we can see from the correspondence (3.3.31), the coordinate matrix of the
skew-symmetric tensor i has the following structure,
0 —uzg u,
U = us 0 -—-1u,|, (3.3.37)
-—u, u; O
i.e., the signs of its components follow a special pattern. Similarly, from the correspon-
dence (3.3.34), we have that the coordinate matrix of the dual tensor U is given by the
following equation
0 U — Uy

U= [-u; 0 u,;l. (3.3.38)

u, —u; O
To emphasize the fact that the coordinate matrices of the tensors 1 and @ have special
sign patterns, we shall say that the tensors 1 and U are ortcnled relative to their dual
vector u, or simply, that they are relatively oriented. In particular, we shall say that the
dual tensor @t has a positive or a right-handed orientation relative to u . Similarly, we
shall say that the tensor U has a negative or left-handed orientation relative to the vec-
tor u. This terminology and characterization for the relative orientation will become
clear shortly when we assigh a geometric meaning to the skew-symmetric tensors 4 and
u.

Based on the relative orientation of the two tensors 4 and @, it would be more

informative if we call right dual and left dual the two dual operators which are defined

- 88 -

by the correspondence (3.3.31), and (3.3.34) respectively. We shall do this if we need to

emphasize which of the two dual operators is involved in the correspondence between
vectors and skew-symmetric tensors.
Remark 3.7 : A dual operator is a peculiar characteristic of 3-D> Euclidean space. This

follows from the fact that a skew-symmetric tensor of order two deflned in n-D

Euclidean space has 17n(n-1) independent scalar components. Obviously then, if we

view these scalars as the components of a vector, only when n = 3 does this vector

belong to n-D Euclidean space.

3.3.4 A Geometric Characterization for the Second Order Skew-Symmetric

Cartesian Tensors

It is well known, from spaiial intuition, that in three dimensional space an unambi-
guous distinction can be made between two orientations of a plane relative to a normal
vector. These are the positive or right-handed (or counter-clockwis) orientation and the
negative or left-handed (or clockwisej orientation.

Geometrically, we can describe these two oriented planes, relative to a normal vec-

sor, as follows.

(a) (6)

Figure 3.1 : Relatively Oriented Planes and Skew-Symmetric Tensors

- 80 -

and we shall refer to them as relatively oriented planes.

Now, as is the case most of the time, geometric ideas are more useful in applica-
tions if we describe them algebraically. Therefore, to describe algebraically what Figure
3.1 shows geometricaily, or to express in mathematical symbols the words ‘‘relatively

oriented plane’, we first note the following important points.

a) Any non-zero second order skew-symmetric tensor, defined in 3-D Euclidean
space, has rank 2 [18]. This implies (see Definition 3.4) that to any non-zero
skew-symmetric tensor we can associate two linearly independent directions, or

equivalently, a plane in the 3-D physical space.

) As we saw before, given a vector u, there correspond to it two relatively

oriented skew-symmetric tensors, namely, the tensorsia and U.

Therefore, just as we consider, vectors to represent the geometric notion of directed
line segments in vector analysis, we can consider in 3-D Cartesian tensor analysis, skew-
symmetric tensors to represent th. geometric notion oi directed plane segments or
directed plane areas. Moreover, we can use skew-symmetric dual tensors to represent
relatively oriented planes. In particular, given a vector u, we can use its right-handed
dual tensor @ to represent the positively oriented (relative to u) plane area shown in
Figure 3.1(a); similarly we can use its le.t-handed dual tensor U to represent the nega-
tively oriented (relative to u) plane area which is shown in Figure 3.1(b). Thus, accord-
ing to this convention, what Figure 3.1(a) describes geometrically, the correspondence
(3.3.31) describes algebraically. Similarly, the correspondence (3.3.34) is the algebraic
equivalence of Figure 3.1(b). Therefore, we shall denote the positively oriented plane in

Figure 3.1(a) by @, and similarly the negatively oriented plane in Figure 3.1(b) by @ .

The identification of dual skew-symmetric tensors with relatively oriented plane
areas reveals that the algebraic relationship which exists, between the vector u and the

skew-symmetric dual tensors i and @, is actually equivalent to the geonietric notion of

-70-

an orthogonal relationship. This identification implies that the vector u is normal to
both dual tensors 1 and T. Obviously then, the vector u remains normal, and thus
invariant, when the plane 1 (or U) rotates in space. Therefore, the terminology ‘‘vector

invariant’, which has also been assigned to the dual vector u, becomes clear.

Also, it is obvious from Figure 3.1, that a vector u, together with one of its rela-
tively oriented tensors can be used to define an orientation for the 3-D physical space or
the same, an oriented coordinate system for 3-D Euclidean space. In particular, the vec-
tor u and the dual tensor i deflne the right-handed orientation, as opposed to the vec-
tor u and the dual tensor @ which define the left-handed orientation. Moreover, as we
can see, the difference between the right and left handed coordinate system orientations
results from the relative orientation of the dual tensors 1 and @ . From the foregoing,
expressions from the nature language such as “right-handed’ or ‘‘left-handed’ coordi-
nate systems, which are usually used to augment the analytic algebra (which is a
mathematical language) of 3-D Euclidean space, are not necessary when a veactor and the

dual operators are used to define a coordinate system for the space. Now, since

a =aT, (3.3.39)

it is obvious that ty taking the transpose of a relatively oriented tensor, we actually
change its orientution relative to its dual vector. Therefore, geometrically. the algebraic
aperation of taking the transpose of a relatively oriented skew-symmetric tensor means
that we are changing the orientation of a reference coordinate system in the 3-D physi-
cal space. Now, as a consequence of this, we have the following. As is well known [23], a

rotation tensor in 3-D Euclidean space c~n be written *n the form
R =u®u + cos (0)(1 —u®u) + @ sin(6) (3.3.40)

where u is the axis of rotation and 6 is the angle of rotation. Then, since we can write

(see equation (3.4.14))

u®u =uu =1+101,

-71-

equation (3.3.40) can be written as
R =1+ (1-cos(@))au + asin(). (3.3.41)
Moreover, since the tensor 1 1 is symmetric, we have

RT =1+ (1-cos(d))uun +uTsin(b)
+

=1+ (l - cos (8)) @4 + Usin(d). (3.3.42)

Now, using the assigned orientation to the skew-symmetric tensors 1 and @', we can se2
that equation (3.3.40) defines a positive or right-handed rotation about the axis u, and
equation (3.3.42) deflnes a negative or left-handed rotation of the same magnitude
(angle) about the axis u. This result provides, obviously, a geometric explanation why

the transpose R T of a rotation tensor R is equal to R 7!, i.e., it is equal to its inverse.

As is well known, the usefulness of vector analysis in practical applications lies in
the fact that the introduction of a coordinate system gives to the abstract mathematical
notion of vectors a definite geometrical or physical substance; it makes a vector iso-
morphic to a directed line segment. By direct analogy, this has to be true for the skew-
symmetric tensor analysis. Therefore, let us see how we can introduce a practical coordi-
nate system in 3-D linear space of skew-symmetric tensors which will allow us to estab-
lish an isomorphism between skew-symmetric tensors and plane areas. Based on this iso-
morphism, one can give geometric representations to important algebraic tensor equa-

tions.

Let {e } = { e, e, e, } be a right-handed Cartesian orthogonal basis for the
3-D Euclidean vector space. Then, using the right dual operator we define the three
right-handeu dual tensors &,, &, and &, which deflne an orthogonal (see equation
(3.2.34)) basis for the linear space of the skew-symmetric tensors of order two. Ve
denote this rizht handed basis of the 3-D linear space of the skew-symmetric tensors by
writing { & } = { &, &, &, }. Now, by identifying dual skew-symmetric tensors with

relatively oriented plane areas, we can use the three linearly independent, mutually

-79.

orthogonal, and positively oriented planes €,, €, and &, to define a ‘right-handed”
orthogonal basis for the 3-D linear space of plane areas. It is true now that relative to

the basis { @ }, skew-symmetric tensors and plane areas are isomorphic entities.

The following diagram describes, in more technical terms, the algebraic and
geometric equivalence, as well as, the two isomorphisms which coordinate systems intro-
duce between vectors and oriented line segments, and between skew-symmetric tensors

and oriented plane areas.
{e}

{ vectors } ¢==—————3 {oriented lines segments }

dual (*) Fig. 3.1 (3.3.43)
{e}

{ dual skew -symmetric tensors } <+———— {relatively oriented planes }

Now, let us consider a vector u in the 3-D physical space. This vector relative to
the basis { e } can be written as
U = u,e, + Uz, Uzey,. (8.3.44)
and, as is well known, in vector analysis we use the coordinate matrix

U,
u= | usp (3.3.45)
Us

to represent the vector u relative to the basis {e } However, by applying the right

dual operator in equation (3.3.44), we get the following equation
= ulél+u2éz+1‘3é3. (3.3.46)

Equation (3.3.48) implies that the same coordinate matrix ¥ can also be used to
represent a plane area in the 3-D linear space of planes. Hence, the coordinate matrix u
can be used to represent the vector u, relative to the basis { e }, or the plane area 1,

relative to the basis { & }. Obviously, this has to be expected, since the two bases { e }

-73-

and { & } have the same dimension and therefore these two linear spaces are iso-
morphic. It is the particular physical or geometrical properties of their basis vectors that
allow one to distinguish the linear space of vectors from the linear space of planes. As
we can See, a basis vector from the basis { e } has rank 1 as opposed to a basis “vec-

tor” from the basis { @ } which has rank 2.

Surveying the applied literature, one can hardlyt find any reference to the linear
space of plane areas. Usually, plane areas are ‘‘seen” as a result of a definite relationship
between vectors, and not as independent quantities which can stand on their own and
form a linear space. For example, in applications of classi.al mechanics, one finds two
kinds of vectors, namely, the polar and the azial or pseudo vectors. The polar vectors are
used to represent oriented line segmen:s, and the axial vectors are used to represent
oriented plane areas [12]. But, although, polar and axial vectors represent different phy-
sical quantities, we consider them as belonging to the same linear space. This implies
that in the vector analysis of classical mechanics, we ‘‘see’ plane areas indirectly. We
consider the dual vector u, and not th: skew-symmetric tensor i, to represent a rela-
tively oriented area. However, as the following example shows, we caa study relation-
ships between plane areas directly in the linear space of planes, as we study relationships

between directed lines in the linear space of vectors.

In applications, where a measure for the angle between two planes it and Vv is
needed, we often use the cosine of the angle. To calculate the cosine of the angle

between the planes 1 and v, we usually consider the following equation

cos (0) = (3.3.47)

u-v
fu i fv]
where, u and v are the normal vectors to the planes @ and Vv, respectively, and 6 is

the angle between them. Equation (3.3.47), makes no reference to the linear space of

planes. It is defined by using the theory of the linear space of vectors. Alternatively, by

t One of the few exceptions is the work by Hestenes [25].

-74 -

considering that planes form a linear space too, we can deflne the same measure for the
angle between two planes directly without mentioning the linear space of vectors at all.
As we saw before, equation (3.2.37) defines the cosine of the “‘angle” between two ten-
sors. Therefore, for the angle between the two planes i1 and v we can write

a:v 7
fallrlvlr
Obviously, equation (3.3.48) has to be equivalent to equation (3.3.47). To show tha. this

cos (6) =

(3.3.48)

is indeed the case we need the following equation

g:vl=2u- v (3.3.49)
which is proven in Section 3.4 (equation 3.4.21). Now, equation (3.3.49) and the
deflnitions of the Euclidean vector norm (Ju | = vVu - u) and the Frobenius tensor
norm (equation (3.2.35)), imply that

la |rp=V2]ul]. (3.3.50)

Therefore, equation (3.3.48) follows on substituting equations (3.3.49) and (3.3.50) into

equation (3.3.47).

Our objective here was not to provide a complete analysis for the linear space of
planes. We simply wanted to point out a particular application which reveals that the
outlined geometric interpretation for skew-cymmetric tensors and their vector invariants
allow o.e to give a concrete physical interpretation to tensor algebraic equations. This is
important, since many practical problems are usually described, mathematically, in
terms of tensor equations. Thus, by providing a new physical insight into these equa-
tions, we may find ways to manipulate them in order to obtain more eflicient solutions

for practical problems.

3.4 CARTESIAN TENSOR ALGEBRAIC IDENTITIES

In this section we shall prove a number of propositions which define important ten-

sor equations. These equations will allow us to manipulate second order tensors very

-75-

efficiently as abstract objects, without the need to resort to coordinate bases [27,29].
Moreover, if needed, the transition from these tensor equations to the corresponding
coordinate matrix equations is effortless. This is so, because the basic tensor algebraic
operations, as defined in section 3.2.3, are formally the same as the basic algebraic

operations in matri- theory.
To prove most of the propositions, which are presented in this section, we shall use
the following well known equation [14,19,20]
uXv =1u-v (3.4.1)
which expresses the vector cross product of two vectors u and v as a right dot product
between the dual tensor i and the vector v.

In the following, unless mentioned otherwise, by a dual operator, we mean the right
dual operator. We shall state a number of propositions in terms of this dual operator.

Obviously, similar propositions can also be stated in terms of the left dual operator.

Proposition 3.1 : The dual operator is linear, i.e., it satisfies the following :

dual(ku)=¢ku (3.4.2)
dual(u +v)=1 +V (3.4.3)

where, k is a scalar and u, v are vectors.

Proof : The result follows from the corresponcence (3.3.31).]

Proposition 3.2 : The right dot product of a dual tensor with a vector satisfies the fol-

lowing equation,

a-v=-Vv-u (3.4.4)
Proof : The result follows from the anticommutativity of the vector cross product and
equation (3.4.1). |

Proposition 3.3 : The left and rigat dot products of a vector and a dual tensor are

anticommutative, i.e., they satisfy the equation

-76-

vl =-4-v (3.4.5)
Proof : The result follows from equation (3.2.28) and the fact that a dual tensor is

skew-symmetric. [

We can combine Propositions (3.2) and (3.3) to write get another tensor identity :
v-i =vV-u (3.4.8)

Note : Equations (3.4.3)-(3.4.6) allow us to reorder the factors of a left or right dot pro-
duct between dual tensors and vectors. This is often desirable when algebraic manipula-

tions are needec. for simplifying cther comnplex tensor equations.

Now, by viewing a skew-symmetric tensor as a linear operator, we can state the
following results.
Proposition 3.4 : The vector u provides a basis for the null space of its dual tensor @,
ie.,

G'u=u-a =0 (3.4.7)

Proof : The result follows from the fact that u Xu = 0. 0

Remark 3.8 : As we saw in Section 3.3.3, geometrically, the dual tensor i represents
a relatively oriented plane which is normal to the vector u . Now, we see that this ortho-
gonality relationship between the tensor i and the vector u is expressed algebraically,
by egnation (3.4.7). Moreover, it is easy to see, that for a non-zero tensor 1 and a non-

zero vector v, the equation
v =0 (3.4.8)

implies that the vector v is parallel to u and thus perpendicular to plane u . Therefore,
equation (3.4.8) can be used as the algebraic deflnition of the orthogonality condition

between a plane and a vector.

Proposition 3.5 : Giventl. . ~torsa, b, u, v and the dual tensors & and v we

can write the following identity :

Ay

- 77 -

(aXu)(bXv)=-a-av'b (3.4.9)
Proof : It is well known [12] that the vector identity
aXxXu‘x =a-uXXx

is valid for any vector x . This implies, that the identity is true and for x = b Xv.
Therefore, we can write
(aXu)(bXv)=a-(uX(bXv)

a-(a(-vb)

=-—-a-av-b 0

Proposition 3.8 : The dot product between two dual tensors can be written in terms of

their vector invariants (dual vectors), as follows :

4V =vu -u-vl. (3.4.10)

Proof : Using equation (3.4.1) we can write the double vector cross product
u X(v Xr)as
uX(vXr)=a-(v-r)=1u'v-r (3.4.11)

Also, the same double vector cross product can be written [12] as

uX(vXr)=v@u-'r)-(u-v)r

=(vu-u-vl)r (3.4.12)
Therefore, equating (3.4.11) with (3.4.12) we have
G-v'r=(wvVu-u-vlr (3.4.13)
from where the identity (3.4.10) follows, since (3.4.13) is true for every vectorr. [
Another useful form of equation (3.4.10) is the following

vua=1a:‘Vv +(v-u)l (3.4.14)

which expresses the tensor product or dyad of two vectors in terms of their dual tensors.

-78 -

Proposition 3.7 : The dual tensor dual (i - v) can be written as the difference of two

dyads or the difference of two tensor dot product as follows.

dual(it - v)=vu ~uv =iV - % (3.4.15)
Proof : To prove (3.4.15), we shall use the double vector cross product (u Xv)Xr.

From vector analysis it is known [12] that

(uXv)Xr=vu'r-uv:'r
=(vu -uv)r {(3.4.16)

Moreover, we can use the dual operator to write (u Xv)Xr as
(u Xv)Xr =dual(i-v)r (3.4.17)
Now, since (3.4.16) and (3.4.17) are true for every vector r we can state that
dugl(i-v)=vu -uv
Further, since
vu-uv=(vu-u-vl)-(uv -u-vl),
using equation (3.4.10) we get,

v —uv =01 Vv -v-q 0

Remark 3.9 : As is well known [26], the set of skew-symmetric tensors constitutes a
Lie algebra over the real field (or the complex field) with the operation of multiplication

defined as

@.v])=a0 v -v-u (3 4.18)
The multiplication, defined by (3.4.18), is referred to as the Lie bracket or commutator,
and satisfles the following conditions :
(@) [,V)islinearina and ¥

(b) [,4 j=0forald

-76-

(¢ [u,[v,®F]]+[F, [0,V]]+][V,[F,0]]=0

Condition (c) is usually referred to as the Jacobi identity. As we can see from (3.4.15)

and (3.4.18) the commutator can be defined as the dual tensor of a vector
dual(i-v)=[a,v]
i.e., we can use the dual operation to introduce the same Lie algebra.

Proposition 3.8 : The double dot product of two tensors 1 and v is related to the

dot product of their dual vectors u and v by the equation

[

1V =-2u-v (3.4.19)
Proof : By the definition of the double dot product (equation (3.2.34)) we have
Q:Vv =trfa-v)

Now, using equation (3.4.10) we can write,

trla-v]=trivu —u-vlj
=trvu]-u-vir{l
=u-v -3u-v

and this proves equation (3.4.19). |

Equation (3.4.19) can also be written as
G: v’ =2u-v. (3.4.21)

The following proposition enable us to reorder the terms in dot products between dual

tensors.

Proposition 3.9 :

@-Vv-a=v-u-0 +ﬁ-u-\'r-%tr[ﬁ-ﬁ]\'r (3.4.22)

Proof : The first two terms on the right-hand side of (3.4.22) can be written as

- 80-

<
&
e
+
o

‘v =V-(uu-uul)+d-(vu-v-ul) [by (3.4.10))
={"-uju -(u-u)¥ +(@-vu -(v-u)a
=-(@'v)u ~u-u)v +(@-v)u -(v-u)iz [by (3.4.4)]

=-(u-u)v —(v-u)ia

= %tr @-@]v -(v-u)a [by (3.4.20)]

Therefore, the right hand side of (3.4.22) becomes

v-u-a +ﬁ-ﬁ'i'r—%tr[ﬁ-fx]\'r=—(v u)a (3.4.23)
The left hand side of {5.4.22) can be written as
a-vV'id=td-(uv-v-ul) [by (3.4.10)]
=(@-u)v -(v-u)ia
= ~-(v-ula , |[since @:u =0 (3.4.24)

completing the proof. [

Proposition 3.10 : The dual tensor dual (1 - @ - v) can be written in terms of the dual

tensors t and v as
dugl(@-G-v)=-[V- -0 -0 +G -0 -v]+trja-alv (3.4.25)
Proof : The left hand side of (3.4.25) can be expressed as
dual(i-0-v)=dua(ia-{Q-v))

Using equation (3.4.15), the above equation becomes

dual(i-(d-v)=u-dudl(@-v)-duadd(i-v)
=4 @ v-v-a)-(a-v¥-v-a)u
=-2t-v:-a4+a2-4-v4+v-d-1

Finally, using equation (3.4.22), we can simplify the above equation to get (3.4.25). |
The following proposition is fundamental in the sense that it enables us to give
another formulation for the famous theorem of Euler on rotational rigid body motion.

This will be demonstrated in the next chapter.

- 81 -
Proposition 3.11 : Let I be a symmetric tensor. Then the dual tensor dud/(I: v),
where v is any vector, satisfies the following equation
dudl(I - v)=-[1-v +v 1]+ tr[Ilv (3.4.26)
Proof : Since I is a symmetric tensor, it has a complete set of eigenvectors [18]. Let us

denote the unit directions of those eigenvectors by x, y and z . Then, using equations

(3.3.10) and (3.3.17), we can write I in its spectral decomposition form as
I =XMxx +Myy + Msz2 (3.4.27)

where, \;, t =1, 2, 3 are the eigenvalues of I. Moreover, using equations (3.4.14) and
(3.3.22), we can write the spectral decomposition of I in terms of the dual tensor of its

eigenvectors, i.e., we can write
I =M% +0y"F +22-2 +tr[I]1 (3.4.28)
Then, the right dot prcduct I+ v becomes
I'v=AX"XV+XANYV TV +NZZ -V +1Ir]llv (3.4.20)

Now, using Proposition 3.1 and 3.10, we can write

duaI(I-v)=—{\7-[>\lic-i AT F FAEBZHNE R AT T+ Nz

!
&
——

+ (Mtr & X]+Nptr [y I+ Natr2-2])3 +tr I (3.4 30)
Then, from equation (3.4.20), for unit vectors we get
rix-x)|=trly - yl=triz-2)=-2
Therefore, we can write
dual(I-v)=-{\7~ [)\li-i FOAF T 4N B +tr[I]1]

from where, using (3.4.28), we get (3.4.26). [

-82-

Proposition 3.12 : Let I be a symmetric tensor and @ a dual skew symmetric tensor.

Then, vke tensor
I' =a-I-a (3.4.31)
is a symmetric tensor.

Proof : Since I is a symmetric tensor, we can write I in its spectral decomposition as

follows
I =Mxx +0yy +X22

Then, for the tensor I' = @ - I - @ we have

I' =Ml xx @ +X0-yy @ +M\i-2zz'0 (3.4.32)
Now, let us consider the term 11 - X x - 11 . As we can see

f-xx-4 =10-(x0®x) 0
=(ﬁ'X)®(X‘ﬁ)
=-(b-x)®@ x) by (3.4.4)]

and since the tensor product of a vector with itself is a symmetric tensor we have that

@1 - xx - U is symmetric. Therefore, I as a sum of symmetric tensors is symmetric. [

Proposition 3.13 : The doubl: dot product of a symmetric tensor I and a skew-

symmetric tensor S is always zero, i.e.,
I:S =¢trI-8S)=0 (3.4.33)

In other words, symmetric and skew-symmetric tensors, relative to the double dot pro-

duct, are always orthogonal.

Proof : Without any loss of generality we can assume that the skew-symmetric tensor

is the dual tensor 8 of a vector 8. Since I is symmetric, let
I =Mxx +XYyYy +A3z2

be its spectral decomposition. Then

Now, let us consider any term from that sum, say the term)x,xx - ®. Then, using

-~

equation (3.4.8) we can write the term x x - 8 as follows

xx -8 =x(X"-8)
=dual(Xx8) X +x-(Xx'8s)l (by (3.4.14)]
= dual(x - 8)-

e

since, x (X -s)=(x X) s = 0 by (3.4.7). This implies that

trixx-8)=tr|dual(x -8) X
=-2x - (X-8s)
=0

Therefore,

tril-8l=XMtrixx-8)+Xtrlyy -8)+Nirjzz-8)
=0 0
Proposition 3.14 : Let I be a symmetric tensor, and @4 and v dual skew-symmetric
tensors which correspond to the vectors u and v respectively. Then, the following equa-

tion

u-I-v=-trlan-J-v] (3.4.34)
where J =-1 + -:l';-tr 11, is valid.

Proof : Using equation (3.4.20), we can write the left hand side of equation (3.4.34) as

follows

u-I-v =--;-tr ﬁ-duaI(I'\'f)]

-

=—ltrLﬁ-[—I~\'r—v-I +tr[IIV]] (by (3.4.26)]
=--;—tr -a-I'v-a-7-1 +tr[I]1'x-\7]

+—;—tr[l]ﬁ-i']—%tr[—ﬁ-v-l +-;-tr[I]ﬁ-\'r .

i
i
l
s
|
=
i
&

(3.4.35)

-84-

Moreover, since tr [S: T] =tr[T - S, for any tensor S and T we have

trfu-v-I]l=tr[v-1I-1]
=tr((v-1-0)7)
=trla-1-v) (3.4.36)

Therefore, using equation (3.4.36) in equation (3.4.35) we have

u-l-v =—tr[-a~l-v +-;—tr[I]ﬁ-V}
=—tr[ﬁ- [~I +-;—tr[I]1}-€']
=—trjfa-J-v]

whereJ =~-1 + -;—tr['l]l and this completes the proof. |

With this analysis for Cartesian tensors at our disposal, we proceed, in the next
chapter, to describe in a tensor formulation the kinematic and dynamic equations of
rigid body motion. In Chapter V, this tensor description for rigid body motion will form

the base for the propcsed dynamic analysis of rigid-link open-chain robot manipulators.

-85 -

3. 5 REFERENCES

1]
[2]
8]
l4]
(5]
(6]
[7)

[]
[10]

11}
[12]
13

(14]
[13)

16)
(17]

18]
f19]
20}

21]
{22]

[23]
(24]

(25]

G. Ricei and T. Levi-Civita, Methodes de calcul differentiel absolu et leurs applica-
tions, (Paris, 1923). (Reprinted from Mathematische Annalen, tome 54, 1900).

1. S. Sokolnikoff, Tensor Analysis : Theory and Applications to Geometry and
Mechanics of Cecnlinua, John Wiley & Sons, New York, 1965.

D. Lovelock and H. Rund, Tensors, Differential Forms, and Variational Princi-
ples, John Wiley & Sons, New York, 1985.

R. L. Bishop and S. 1. Goldberg Tensor Analysis on Manifolds, The Macmillan
Company, New York, 1968.

J. L. Synge and A. Schild, Tensor Calculus, University of Toronto Press, Toronto,
1949.

S. F. Borg, Matriz-Tensor Methods tn Continuum Mechanics, D. Van Nostrand
Company, Princeton, New Jersey, 1063.

M. S. Smith, Principles & Applications of Tensor Analysis, Howard W. Sams &
Co., New York, 1963.

A. J. McConnell, Applications of Tensors Analysis, Dover Publications, New York,
1947.

A. 1. Borisenko and 1. E. Tarapov, Vector and Tensor Analysis With Applications,
Prentice-Hall, Englewood Clifls, New Jersey, 1968.

L. Brillouin, Tensors in AMlechanics and Elasticity, Academic Press, New York,
1964.

J. G. Simmonds, A Brief on Tensor Analysis, Springer-Verlag, New York, 1082.
L. Brand, Vector and Tensor Analysis, John Wiley & Sons, New York, 1947.

W. G. Bickley and R. E. Gibson, Via Veclor to Tensor, The English Universities
Press, London, 1962.

H. Jeffreys, Cartesian Tensors, Cambridge University Press, Cambridge, 1961.

G. Temple, Cartesian Tensors : An Introduction, John \Wiley & Sons, New York,
1960.

A. M. Goodbody, Cartesian Tensors: With Applications to Mechanics, Fluid
Mechanics and Elasticity, Ellis Horwood, England, 1982.

D. E. Bourne and P. C. Kendall, Vector Analysis and Cartesian Tensors, Thomas
Nelson & Sons, England, 1977.

J. Heading, Matrix Theory for Physicists, Longmans, London, 1958.
W. Gibbs Vector Analysis, Dover Publications, New York, 1960.

O. Bottema and B. Roth, Theoretical Kinematics, North-Holland Publishing Co.,
Amsterdam, 1978.

E. J. Konopinski, Classical Descriptions of Motion, W. H, Freeman and Company,
San Francisco, 1969.

J. Angeles, Spatial Kinematic Chatns : Analysis, Synthesis, Optimization,
Springer-Verlag, Ncw York, 1982,

J. Angeles, Rational Kinematics, Springer-Verlag, New York, 1089.

J. Angeles, “On the Numerical Solution of the Inverse Kinematics Problem”, The
International Journal of Robotics Research, pp. 21-37, Vo), 4, 1085.

D. Hestenes, New Foundations of Classical Mechanics, D. Reidel Publishing Com-
pany, Dordrecht, Holland, 1986.

- 886 -

[28] R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications, John
Wiley & Sons, New York, 1974,

[27) C. A. Balafoutis, R. V. Patel and P. Misra, “Efficient Modeling and Computation
of Manipulator Dynamics Using Orthogonal Cartesian Tensors’, IEEE J. Robotics
and Automation, Vol. 4, No. 6, pp. 665-676, 1988.

[28] C. A. Balafoutis, R. V. Patel and P. Misra, “A Cartesian Tensor Approach for
Fast Computation of Manipulator Dynamics”, Proc. IEEE Int. Conf. on Robotics
and Automation, pp. 1348-1353, Philadelphia, April 24-29, 1988.

[20] 1. J. Wittenburg, Dynamics of Systems of Rigid Bodies, B. G. Teubner, Stuttgart,
1077.

{30] T. Crouch, Matriz Methods Applied to Engineering Rigid Body Mechanics, Per-
gamon Press, Oxford, 1981.

[31] G. W. Stewart, Introduction to Matriz Computations, Academic Press, New York,
1973.

CHAPTER IV

CARTESIAN TENSORS AND RIGID BODY MOTION

4.1 INTRODUCTION

As we have mentioned in Chapter I, the representation of the physical quantities
which are involved in the formulation of the equations of motion of a rigid bodies sys-
tem, determines the kind of mathematical analysis that will be used in deriving these
equations. In the classical Newtonian formulation of rigid body dynamics, vectors are
normally used to represent basic physical quantities and, therefore, vector analysis is
used for deriving the equations of rigid body motion. In particular, vector analysis is
imposed on classical Newtonian dynamics from the consideration that angular rafes (i.e.,
linearly independent rates of change of a rigid body orientation) constitute the com-
ponents of a vector quantity, the angular velocity vector. This consideration also assigns
a vector character to other physical quantities which are defined in terms of the angular
velocity vector such as angular acceleration, angular momentum, external torque, etc.
However, as is well known [1-7, 14-19], angular velocity can also be described by a
second order skew-symmetric Cartesian tensor, the angular velocity tensor. Obviously
then, the tensor representation of angular velocity indicates that besides vector analysis,

Cartesian tensor analysis can also be applied in rigid body dynamics.

Application of Cartesian tensor analysis (within the framework of the Newtonian
approach) in rigid body dynamics requires that all the other physical quantities which
are defined in terms of the angular velocity be treated as Cartesian tensors instead of
vectors. Besides the angular velocity, tensor representations for the angular momentum
and the external or resultant torque have appeared in the literature since 1931 in the
work of Jeffreys [1]. Jeffreys introduced the angular momentum and torque tensors in his

Cartesian tensor description for the Newtonian formulation of rigid body motion. But

- 88 -

his formulation for the equations of motion felt short of producing any significant com-
putational advantages over the classical vector formulation. Therefore, in the Newtonian
approach to classical dynamics, Jeflreys work has been largely ignored, and almost
exclusively, the equations of rigid body motion are formulated following the vector
approach [9-13}.

Jeffreys approach did not succeed in improving the computational efficiency of the
equations of motion, mainly because he follows a component-wise approach in his
analysis and he did not use a tensor representation for the angular acceleration. This
resulted in rather complex expressions for the computation of linear acceleration and
torque vectors. In this chapter, following Jeflreys approach and using the angular velo-
city and angular acceleration tensors to simplify the differentiation, we shall provide a
Cartesian tensor description for rotational rigid body motion. To this end, a tensor for-
mulation for the Euler equation, which describes purely rotational rigid body motion, is
derived. This new formulation of Euler's equation has the same simplicity as the classi-

cal vector formulation but it can be implemented {ar more efficiently.

The outline of this chapter is as follows : Section 4.2 deals with kinematic aspects
of rigid body motion. In particular, we show that by using the angular velocity and
angular acceleration tensors, the velocity and acceleration of any point on the rigid body
can by computed very easily. Section 43 deals with dynamic aspects of rigid body
motion. In particular, an analysis of the rigid body inertia tensor is given and the vector
formulation of rigid body motion is reviewed. From this, the angular momentum and

torque tensors surface naturally and they lead to a new formulation for Euler’s equation.

4.2 ON THE KINEMATIC ANALYSIS OF RIGID BODY MOTION

The kinematic analysis of rigid body motion deals with motion without regard to
forces or moments that cause that motion. In particular, the kinematic analysis of rigid

body motion is concerned with configuration and motion kinematic analysis.

- 89-

Configuration kinematic analysis deals with possible descriptions of the rigid body spa-
tial configuration as a function of time, and motion kinematic analysis deals with the
first and second time derivatives of these configuration functions. We dealt with
configuration kinematic analysis in Chapter II. In this section we shall be concerned

mainly with motion kinematic analysis of rigid body rotational motion.

As we have outlined in section 2.2, the spatial configuration of a rigid body, rela-
tive to a Cartesian orthogonal coordinate system, is defined by considering the descrip-
tion of a position vector and the description of a rotation tensor where the latter defines
the orientation of the rigid body. Moreover, as is well known from Chasles Theorem
(Theorem 2.2), a general rigid body motion can be considered as the superposition of a
purely trauslational and a purely rotational rigid body motion. Therefore, obviously the
decomposition of the rigid body spatial configuration, as outlined above, implies that the
position vector and its time derivatives describe purely translational rigid body motion
and, similarly, the rotation tensor and its time derivatives describe purely rotational
rigid body motion. The latter follows also from the fact that a rotation tensor can be
used to describe a finite displacement about a fixed point (see Chapter II), which in the
3-D physical space is equivalent to finite rigid body displacement about a fixed axis.
Hence, a rotation tensor in the 3-D physical space, when it is considered to be a continu-
ous function of time, and its time derivatives are sufficient to study pure rotational rigid

body motion.

Therefore, for the kinematic analysis of a rigid body pure rotational motion we
need only to consider a rotation tensor R, which defines the rigid body orientation, and
its first and second time derivatives. In the following, we shall denote the time depen-
dent rotation tensor by R (¢). Also, for the absolute time derivatives (i.e., the time
derivatives relative to an inertia frame) of R = R (¢), we shall use the classical

dR : d’R 5

Newtonian notation, i.e., we write —— = R and ——— =
dt dt?

-00-
4.2.1 The Angular Velocity Tensor

It is well known [2-9] that the angular rates (or linear independent rates of change
of the rigid body orientation) constitute the components of a tensor quantity, the angu-
lar velocity tensor. But this is not reflected in the applied literature. Even in the cases
where the angular velocity tensor is mentioned, its vector invariant or dual vector, i.e.,
the familiar angular velocity vector, is used in applications instead of the tensor itself.
This does not mean that the angular velocity vector is more important than the angular
velocity tensor. On the contrary, as we shall see in this chapter, the angular velocity
tensor is more suitable for the kinematic and dynamic analysis of rigid body rotational

motion.

Perhaps the easiest way to introduce the angular velocity tensor is by using a

corollary of the following theorem (2].

Theorem 4.1 : Any diflerentiable orthogonal tensor Q = Q ({) satisfies the following

first order differential equation

Q =¢Q (4.2.1)

where, @ is a second order skew-symmetric tensor.

Proof : Since for any orthogonal tensor we have @ TQ = 1, we can write

Q =QQ7Q. (4.2.2)
Now, let

¢=QQT. (4.2.3)

Then, (4.2.2) can be written as (4.2.1). Therefore, Q satisfles a first order differential
equation. Now, we shall show that &, as defined by (4.2.3), is skew-symmetric. It follows
from the orthogonality of Q that

QQ7T+QQ7 =0

or

2QQT +QeQ|T =0

or

o+oT =o0

ie,

& =-o7
and this completes the proof. |
Now, since a rotation tensor is an orthogonal tensor, it satisfles Theorem 4.1 and we can

state the following corollary.

Corollary 4.1 : A rotation tensor R satisfies a first order differential equation given by

R = &R (4.2.4)

where, @ is a second order skew-symmetric tensor.

From this Corollary we can derive the deflnition of the angular velocity tensor as
follows : \When the rotation tensor R is defined in a 3-D Euclidean space, it describes
the orientation of a rigid body. In this case, we denote the skew-symmetric tensor & by
@, i.e., we write equation (4.2.4) as

R =aoR. (4.2.5)
and refer to @ as the angular velocity tensor [9). Equation (4.2.5), which is sometimes
referred to as Poisson’s equation, can also be written in the form

@ =RRT (4.2.6)
and can be used as the definition of the angular velocity tensor. Moreover, since the
skew-symmetric tensor @ is defined in a 3-D Euclidean space, it has a unique dual vec-
tor or vector invariant. The dual vector w, of @, is the familiar angular velocity vector.
Therefore, equation (4.2.6) and the dual tensor operator provide a simple definition for

the angular velocity vector.

A tensor representation for angular velocity has many advantages over the classical
vector representation. First of all, from a practical point of view, a tensor treatment for

angular rates allows us to relate the angular velocity to the total derivative of another

.92 -

tensor physical quantity, namely, the total derivative of the orientation tensor R as
expressed by equation (4.2.5). This is not possible when we describe the angular rates
with the angular velocity vector w, since it is well known [10] that there is no vector
physical quantity whose total derivative is related to the angular velocity vector. Also
from a theoretical point of view, the tensor representation for angular rates is not res-
tr.3ted to a 3-D Euclidean spacc. As we can see, by generalizing equation (4.2.5) from a
3-D to an n-D Euclidean space, the tensor @ becomes ®. Therefore, by analogy, we can
refer to the skew-symmetric tensor ¢ as the angular velocity tensor in an n-D Euclidean
space. The angular velocity tensor & is well defined in any n-D Euclidean snace. This
unfortunately is not true for the angular velocity vector which exists only in a 3-D
Euclidean space. This reveals that the angular velocity tensor @ is the “primitive” phy-
sical quantity which describes the angular velocity. Therefore, the proper mathematical
representation for the angular velocity is a tensor representation and this implies that
the proper mathematical description for rigid body rotational motion is provided by ten-

sor analysis instead of vector analysis.
4.2.2 The Angular Acceleration Tensor

Let us consider now the second time derivative R, relative to an inertial frame, of
a rotation tensor R . The functional relationship between R and R follows from the

following theorem.

Theorem 4.2 : Any differentiable orthogonal tensor Q == Q (¢) satisfies the following

second order differential equation

Q =VvQ (4.2.7)

where, ¥ is a second order tensor defined by

v =2+, (4.2.8)
& is the angular velocity tensor defined by (4.2.3) and ¢ = & & = .

Proof : Differentiation of (4.2.1) gives

- 93 -

Q =2Q +2Q

and substituting for Q we get

Q = (¢ +29)Q
where W = & + &2 This complete the proof. i

Corollary 4.2 : A second order rotation tensor R satisfles the following second order
differential equation

R =wR (4.2.9)
where, ¥ is a second order tensor defined by

V= + &%, (4.2.10)
@ is the angular velocity tensor which corresponds to R and &% = &®.

Theorem 4.2 and its Corollary are obviously valid for orthogonal tensors defined in
an n-D Euclidean space, but here we shall be concerned only with the particular case
where n = 3. In this case, i.e,, when n = 3, we introduce the notation { to denote the
tensor W and write equation (4.2.9) as

R =0R. (4.2.11)

Also, using the corresponding notation for the tensor &, we write equation (4.2.10) as

l=w +o@ (4.2.12)
and we refer to the tensor £ as the angular acceleration tensor. Obviously, using equa-
tion (4.2.9), we can also deflne the angular acceleration tensor Q2 by the equation

0=RRT (4.2.13)

where R is a rotation tensor in a 3-D Euclidean space.

The tensor 1 is neither symmetric nor skew-symmetric. Actually, since w is skew-
symmetric and && is symmetric, equation (4.2.12) represents the Cartesian decomposi-
tion of Q. Moreover, since the tensor @@ is symmetric we have from equations (3.3.28)

and (3.3.30) that

vect (Q) = vect (&) = dual(@) = & (4.2.14)

- 04 -

i.e., the vector invariant of the angular acceleration tensor £ is the familiar angular

acceleration vector. This obviously justifies the rame given to the tensor 2.

The angular acceleration tensor uas only recently [5,14,15,17] been reported in vhe
literature. This is probably due to the fact that a vector approach in analyzing rigid
body motion falls to establish a clear relationship between vector invariants and tensors
other than skew-symmetric tensors. In the case of the angular velocity vector and 2~gu-
laxr velocity tenmsor, a 1-1 relationship between them is obvious, since the angular *-elo-
city tensor is skew-symmetric. Thus, in this case, one representation is the dual of the
other. A similar dual relationship between the angular acceleration vector and angular
acceleration tensor does not exist because the angular acceleration tensor is not skew-
symmetric. The dual tensor of the angular acceleration vector defines only the skew-
symmetric part of the angular acceleration tensor and not the whole tensor. As we can
see from equation (4.2.12), to define the angular acceleration tensor we need to use not
only the angular ac:eleration vector but also the angular velocity vector. Therefore, the

transition from vector analysis to tensor analysis is not straightforward.

We shall conclude this section with applications of the angular velocity and angular
acceleration tensors in the computation of the linear velocity and acceleration of points

on a moving rigid body.

4.2.3 Linear Veloc.ty and Acceleration in Rigid Body Mction

The concepts of angalar velocity and angular acceleration tensors provides a power-
ful tool for describing the motion of a rigid body since they enable us to derive equations
with very simple structure. To see this, let us consider some arbitrary vector involved in
a mechanical problem, such as the position vector r of a point on the rigid body. Usu-
ally such a vector will vary in time as the body moves. Therefore, it is important that
its Jinear velocity and acceleration relative to au inertial coordinate system can be deter-

mined in a computational eflicient manner. To solve problems of this type, we proceed

as follows.

As is usually the practice in rigid body motion, w2 consider two coordinate sys-

tems. An inertial and a body coordinate system, which we denote by {e } and { e }

respectively. The body coordinate system is rigidly attached to the rigid body and so
moves with it. Suppose, now, that a point P on the body has a position vector r, rela-
tive to the origin o of the inertial coordinate system and a position vector r, relative 1o
the origin o of the moving coordinate system. Let also s be the vector from o to 0.

Then, as we can see in the following figure

Figure 4.1 : Position Vectors and Coordinate Systems in Rigid Body Motion

- 96 -

the three vectors are related by the equation

ry=8 +r, (4.2.15)
Moreover, let R be the rotation tensor which specifies the orientation of the moving
coordinate system relative to the inertial one. Then, if ré denotes the position vector of
the point P relative to o when it is expressed in the moving coordinate system, premul-
tiplication by the rotation tensor R expresses it relative to the inertial coordinate sys-
tem, l.e., we can write

r,=Rr, (4.2.16)
Therefore, equation (4.2.15) can also be written as

r,=s +Rr,. (4.2.17)
Now, as is well known, the vector of the absolute linear velocity of the point P is
defined to be the first time derivative of its position vector relative to the inertial coordi-
nate system. In other words the absolute linear velocity of the point P is given by the
vector r 1- To compute this derivative we shall use equation (4.2.17). Thus, we have

r,=s8 +Rr,, (4.2.18)
since the vector ré is time independent. Now, substituting for R from equation (4.2.5)

and using equation (4.2.18), we finally have for the absolute velocity of the point P

r,=8 +0ar, (4.2.10)
where & is the angular velocity tensor of the moving body. Also, the second time deriva-
tive of equation (4.2.17) defines the vector of the absolute linear acceleration of the point
P relative to the inertial coordinate system. Therefore, for the absolute linear accelera-
tion of the point P we have

F,=8% +Rr,
which can be simplified to

r,=s8 +(r, (4.2.20)
where {2 is the angular acceleration tensor of the moving body. Moreover, as we can see

from equation (4.2.16), the absolute time derivatives for vectors which are constant rela-

- 97 -

tive to the body coordinate system are computed by using the simple equations

r 2 =g~)r2 (4.2.21)

and

r,=0r, (4.2.22)

Let us recall at this point, that in the classical vector description of rigid body

dynamics, the vectors of th» absolute linear velocity and acceleration of the same point
P are computed from the following vector equations

r,=8 +wXr, (4.2.23)
and

l.'.1=g +J)Xr2+wX(le’2) (42.24)

respectively. Obviously, equation (4.2.19) is equivalent to equation (4.2.23) and the same
is true for equations (4.2.20) and (4.2.24). However, as we can see, the introduction of
the angular velocity and angular acceleration tensors enables us to derive a simple and
compact representation for the absolute linear velocity and acceleration of points on a
moving rigid body. In particular, equation (4.2.20) enables us to manipulate very
effectively equations involving the linear acceleration of various position vectors on the
same rigid body. From the foregoing, we see that the introduction of the angular velo-
city and angular acceleration tensors provides more efficient means for the analysis of
motion kinematics. Moreover, as we shall see in the following section, the angular velo-

city and angular acceleration tensors can be used to simplify motion dynamics as well.

4.3 ON THE DYNAMIC ANALYSIS OF RIGID BODY MOTION

In the dynamic analysis of motion, we deal with relationships between the motion
of a body and the forces and/or torques which cause or result from that motion. As is
well known from classical dynamics [9-13), for the dynamic analysis of rigid body motion

a number of schemes have been developed over the years such as those based on the

- 98-

equations of d’Alembert, Newton-Euler, Euler-Lagrange, Hamilton and others. The
chief value of all of these schemes is that they offer different ways of tackling the prob-
lem of describing motion. Thus a great variety of viewpoints is avaijlable and this can
help us to clarify what is essential for an efficient description of the equations of motion.
In this section we shall be concerned with the Newtonian formulation of the equations of

rigid body motion.

As we have mentioned before, a general motion of a rigid body can be considered
as resulting from the superposition of two independent motions; namely a pure transla-
tional motion of a point (usually its center of mass) and a puie rotational motion about
that point. The Newton-Euler procedure uses exactly this decomposition. In particular,
in the Newtonian formulation of the equations of rigid body motion, the translational
motion is described by Newton's equation (or Newton’s second law) which symbolically

is stated as follows

where F. is the total external (or resultant) force acting on the rigid body, m is the
mass of the rigid body and r. is the absolute linear acceleration of its center of mass.

The rotational motion is described by Euler’s equation which is symbolically stated as
Mc =L w+wXl, w (4.3.2)

where M is the total external (or resultant) torque about the center of mass, I is the
inertia tensor of the body about its center of mass and w ((:J) is the angular velocity

(acceleration) of the body.

Equations (4.3.1) and (4.3.2) are the fundamental equations which describe the
rigid body motion in the classical Newtonian formulation. As we can see, thesz two vec-
tor equations provide six differential scalar equations which, when the external force and
torque (with appropriate initial conditions) are given, can be solved to determine the six

degrees of freedom of a rigid body in the three dimensional physical space, i.e., the posi-

- 99 -

tion of its center of mass and its orientation.

It is obvious from equations (4.3.1) and (4.3.2) that the dynamic analysis of rigid
body motion in the classical Newtonian formulation, for both translational and rota-
tional rigid body motion, is based on vector analysis. In this section, as an alternative to
vector analysis, we shall use Cartesian tensors to analyze the rotational rigid body
motion. Since ip rigid body rotational motion, the inertia tensor of the body plays an

important role, we first review some relevant facts about the rigid body inertia tensor.

4.3.1 The Rigid Body Inertia Tensor

As is well known [9,10], the inertia tensor of a rigid body characterizes the mass

distribution of the body relative to a point, and is usually defined by the equation

Io=f(r'r1-rr)dm (4.3.3)

where o denotes a point of the body and r denotes the position vector of a point mass

relative to the point o.

The rigid body inertia tensor, as defined by equation (4.3.3), is used extensively in
the dynamic analysis of rigid body motion. Actually, it is the only definition which most
books provide for the inertia tensor, especially when a vector treatment of the
Newtonian dynamic analysis of rigid body motion is followed. For a treatment of the
dynamic analysis of rigid body motion based on Cartesian tensors, this definition for the
inertia tensor needs to be modified. As we shall see later, the proper definition for a
Cartesian tensor formulation of rigid body rotational dynamics is provided by the equa-

tion

Jo = fr rdm (4.3.4)

m
where o is a point on the rigid body, r is the position vector of a point mass relative to
point o and r r denotes the dyad or tensor product of r with itself. We shall refer to

the inertia tensor J, as the pseudo-tnertia tensor of a rigid body.

- 100 -

Obviously, the two inertia tensors I, and J, describe the same physical property
of a rigid body, and thus they have to be equivalent. To see this, we proceed as follows

[10]. First we note that equation (4.3.3) can be written in the form

L =- [t fdm (4.3.5)
m
if one uses the tensor equation (3.4.10). Then, starting from equation (4.3.4) and using

the tensor equation (3.4.14) we can write :

= [t-Fdm +1]- %tr [F - F |dm by (3.4.20)]

I
3
-

- F dm +—;—tr[-£i--i-dm]1

=-1, + -%—tr M)l [oy (43.5)

i.e., we have

J, = -;-tr M1l -1, (4.3.6)
Therefore, equation (4.3.6) provides the equivalence relationship between the two ten-
sors, Jo and I,. Similarly, it can be shown that the equation

I, =tr {J,]1-J,, (4.3.7)
is also valid.

Now, as is often the case with most mathematical definitions, in practical applica-
tions we cannot use these definitions for the computation of the inertia tensor. In prac-
tice, the inertia tensor of a rigid body is computed experimentally. Moreover, even in
experimental measurements, the direct computation of the rigid body inertia tensor
about any point o other than the center of mass, is in general very difficult. Therefore,
the body center of mass ¢ is used when the inertia tensor of a body is evaluated. Then,
in applications where the inertia tensor relative to points other than the center of mass

is required, and the inertia tensor about the center of mass is known, the parallel azis

-101 -

theorem is used. The parallel axis theorem for the inertia tensor which is defined by

equation (4.3.3) is usually stated in the following form
L =L +m(re rel-rere) (4.3.8)

where I is the rigid body inertia tensor about its center of mass, r. is the position vec-
tor of the center of mass relative to point o, and m is the mass of the body. Equation

(4.3.8) can also be written in a compact tensor form as follows
where equation (4.3.9) is derived from (4.3.8) using equation (3.4.10).

The parallel axis theorem for the inertia tensor I, is a basic theorem in rigid body
dynamics and its proof can be found in any book on classical dynamics (e.g. (9,10]).
Obviously, the parallel axis theorem is also valid for the pseudo-inertia tensor J,, which
is defined by (4.3.5). Since the application of the paralle] axis theorem for the tensor J,

is not well known, we provide here a formulation and a proof for it.

Theorem 4.3 (parallel axis theorem) : When the pseudo-inertia tensor Js of a rigid
body about its center of mass is known, then the pseudo-inertia tensor, J,, about any

other point 0, is given by
Jo =J; +mrgrg (4.3.10)

where ro is the position vector of the center of mass relative to point o and m is the
total mass of the body.
Proof : From the formulation of the parallel axis theorem in terms of the inertia tensor

I, L.e., from equation (4.3.8) we have that

trflo) =tr[Ic) + (Brg" ro —rg- re)m
or

trlIy) = tr Ic] + 2rg° rem. (4.3.11)

- 102 -

Now, using (4.3.8) and (4.3.11) we can rewrite (4.3.6) as follows

Jo = %{tr Ie] + 2rc- rcm}l -Is - (re rcl - rere)m

= %tr Il -Is + mrgrg.
Further, since equation (4.3.6) is valid for any point o, it is valid for the center of mass,

ie., we have

Jo = %tr)l -Xg (4.3.12)

Therefore, by substituting equation (4.3.12) to the last expression for J,, we get equa-
tion (4.3.10). [

The inertia tensor, like any other tensor, is described relative to a coordinate sys-
tem by a set of components which are known as the moments of tnertia and products of
inertia. These components define the coordinate matrix J, for the tensor I,. If J, is the
coordinate matrix of the pseudo-inertia tensor Jo relative to the same coordinate system
{ e }, then the equivalence which is established above by equation (4.3.6) or equation
(4.3.7) between J, and I, leads us to a component-wise relationship between the coordi-

nate matrices J, and J,. This component-wise relationship is expressed as follows :

(T Jip Jis
J0= J12 Jzz 2

1z Jos I
r—111'*‘122'*'133 -1,
2 -1y
I,-1 I
= -1, 1 ;2+ 2 - Iy (4.3.13)
-1 . Iy + Iy - I
2
or
Iy Iig Iyg
Io= 11y Iga Iy

Il3 I23 133

- 103 -

Jog+ sz =Jyo - Jis
= -Jiz Int+Jum - Jy (43.14)
- Jis ~Jou Ju+Jy

Now, depending on the coordinate system, the components of the inertia tensor can
be time-dependent or time-independent. In particular, relative to a coordinate system
which is rigidly attached to the rigid body, the components of the inertia temsor are
always time independent. However, when the rigid body is moving in space, the com-
ponents of the inertia tensor relative to an inertial coordinate system will be time-
dependent, and in this case it may be required to calculate their time derivatives. For
example, in practical applications it is usually required to know the first time derivative
of the inertia tensor I (or J;) relative to an inertial coordinate system. Therefore, in

the following, we provide a simple formulation for this derivative.

Let us consider the coordinate system { e } to be an inertial coordinate system.
Also, let us consider a body coordinate system {e' } whose orientation relative to the
inertial coordinate system is described by the rotation tensor R which is assumed to be
a continuous differentiable function of time. Moreover, let us denote by I, and I. the
rigid body inertia tensors relative to the inertial and body coordinate systems, respec-
tively. From the foregoing, it is obvious that the inertia tensor Ié is time independent
as opposed to the inertia tensor I, which is time dependent. We express the time depen-

dence of I by writing
I.=RLRT7T. (4.3.15)

Equation (4.3.15) allows us to derive the absolute time derivative (i.e., the time deriva-
tive in an inertial reference frame) of the inertia tensor I, of a rigid body in a simple
and concise manner as follows
I, =RLRT+RLRT
=oRIRT +RI;RTaT [by (4.2.5))
=al, + LaT

- 104 -

or, since & is skew-symmetric, we can write

I. =0l -1.@. (4.3.16)

Equation (4.3.18), is also valid if we consider the inertia tensor of the rigid body about

any other point o instead of that of the center of mass ¢. We can see this as follows :

Using the paralle]l axis theorem (equation (4.3.9)), we have

Io =Ic_m(;'ci.c +i‘c;'c)
which, by equation (4.2.21), can be written as
I, =1 - m(dual(@r.)fc + Fodual (@1).
Now, using equation (3.4.15), we get after a few manipulations

I, =1, -@ (micke) + (miche)@
= (Ig - micic) - (Ic - micic)@
or, finally

I, =0, -1I,0. (4.3.17)
Equations (4.3.16) and (4.3.17) are also valid if we use the pseudo-inertia tensor J,
instead of I,. To see this, we need only to notice that
I, =-1J, (4.3.18)
for any point o. Equation (4.3.18) follows from either (4.3.6) or (4.3.7), since the trace of
a tensor is a scalar invariant (see section 3.3.3) and thus is time independent. Then a
simple substitution in equation (4.3.17) shows that the absolute derivative of J, is given
by
Jo =al, - Jo@. (4.3.19)
In the following, we shall use the two inertia tensors I and J to compute other

basic physical quantities in rigid body motion such as the angular momentum xnd the

external (or resultant) torque.

- 105 -

4.3.2 The Angular Momentum Tensor

One of the most important physical quantities in rigid body dynamics is that of the
angular momentum or absolute moment of momentum. In the classical vectorial treat-
ment of rigid body dynamics the angular momentum is represented by a vector which is

defined [9] by the equation
Lo =8 X (8 +wXrg)m +roXsm +1;-w (4.3.20)

where o is the origin of the inertjial coordinate system, 0 is a point fixed on the rigid
body, s is the position vector of o relative to 0, ro is the position vector of the center
of mass relative 10 o , Io' is the rigid body inertia tensor about the point o and wis
the vector of the angular velocity. The expression for L, in equation (4.3.20) becomes
particularly simple if either the body fixed point o is also fixed in inertial space (5 = 0)
or the center of mass is used as the reference point o (ro = 0). In both cases the term
re X8 m vanishes. The first term then represents the angular momentum with respect
to o due to translation of the center of mass and the last term represents the angular
momentum caused by the rotation of the rigid body. In the following, we shall assume

that there is no translational motion (s = 0) and so equation (4.3.20) takes the form

L, =8 X (w)(rc jm + 15w (4.3.21)
Moreover, we shall assume that the inertial coordinate system has its origin at the point
o (8 = 0) and in this case we shall write

Lo=L w=lw (4.3.22)

0)bviously, when the center of rotation is at the center of .uass, equation (4.3.22)

becomes
L, =Lw. (4.3.23)

However, even when the center of rotation is different from the center of mass, it is use-

- 106 -

ful to write L, in terms of L. A.. expression of L, in terms of L, can be easily derived

by using Cartesian tensor analysis, as follows :

Using the paralle]l axis theorem, equation (4.3.22) can be modified as shown

L, = (I, - mf.Fcjw
=L; - mi;Fow
=Lc -+ mi'c(:)rc

=L, + mi.Fe. (4.3.24)

In a pure vector notation equation (4.3.24) takes the form
Lo =Lg + rgXrem (4.3.25)
The angular momentum can also be defined in terms of the pseudo-inertia tensor

Jo. To see this we need only to substitute I, in equation (4.3.22) by J,. For this, we

use equation (4.3.7) and get

Lo =~ Jow + tr [J5w. (4.3.26)

Besides its vector description, the angular momentum can also be described [1] by a
second order skew-symmetric Cartesian tensor. To see this, we need only apply the dual
operator on the angular momentum vector L,. This gives a dual skew-symmetric tensor
L, which we express by writing

L, = dual(L,). (4.3.27

We refer to the dual ske v-symmetric tensor L, as the angular momentum tensor about

the point o.

The dual operator provides an irdirect definition for the angular momentum ten-
sor. However, as the following theorem shows, it is possihle to define the angular
momentum tensor Lo directly in terms of the inertia tensor I, and the angular velocity

tensor @, i.e., without the need to first compute the angular momentum vector.

Theorem 4.4 : The angular momentum tensor of a rotating rigid body about a point

- 107 -

o, satisfies the equation
- T - -
Lo = (01) - (0L) + tr L)@ (4.3.28)
where I, is the inertia tensor of the rigid body about the center of rotation o and @ is

the angular velocity tensor.

Proof : Using equation (4.3.22) we can write equation (4.3.27) as
Lo = dual (I, @).

Further, since the inertia tensor I, is symmetric, by using Proposition (3.11) we get

-

Lo =- (e +al,) +tr @
= LaT -al, +trl, @
= (aIO)T -l +tr @

and this completes the proof. ||

Theorem 4.4 can also be written in terms of the pseudo-inertia tensor J,. First we

notice that from equation (4.3.7) we have
triIo] =2tr 3o 1. (4.3.29)

Therefore, if we substitute equation (4.3.7) and (4.3.29) in equation (4.3.28) we have

T
L, — [tr Jo)@ -oJo] - [tr Il -aJo] + 2t (T 1@

= -tr{Jolw + Jo@w ~ tr [Jol@ + @Jy + 2¢tr [Jo)

I

Jo@ + @l

or, finally

- T
Lo =J.@ - [Joa)] . (4.3.30)
Obviously, when the rigid body is rotating about its center of mass, the angular

momentum tensor is defined by the equation

Lo = (0L) - (@L) + tr Lo (43.31)

- 108 -

or the equation

Lo =J.@ - [Jca:]r. (4.3.32)

As we can see from equations {4.3.22) and (4.3.26), the angular momentum vector

has a simpler expression when it is written in terms of the inertia tensor I,. But this is
not true for the angular momentum tensor. Equations (4.3.28) and (4.3.30) show that
the angular momentum tensor has a simpler expression when it is expressed in terms of

the pseudo-inertia tensor J,.

In the following, we shall use the angular momentum, in its vector or tensor

representation, to describe the dynamic behavior of a rotating rigid body.
4.3.3 The Torque Tensor

As is well known [9], the absolute time derivative of angular momentum defines the
resultant torque or moment of force. This derivative expresses the basic law governing
the rotational motion of a rigid body and in vector form is written as

M, =L,. (4.3.33)
Obviously, when the point of rotation is the center of mass of the rigid body, equation
(4.3.33) takes the form

M, =: L. (4.3.34)

To shiow that equation (4.3.34) is equivalent to equation (4.3.2), we proceed as follows

M, = S(1-)
foow+ 1 @)
= (0L -L&) w+L-@ [by(s316)

=l w+ol,-w [by (3.4.7)]
=I; @+ wxl; w

Sometimes, in the literature on classical dynamics, equation (4.3.2) or equation (4.3.34) is
referred to as the generalized Euler equation for rigid body rotational motion. Here, we

shall refer to equation (4.3.2) as the vector formulation of the generalized Euler equation.

.

- 100 -

Now, as in the case of M, it can be shown that the vector M, satisfles the equa-

tion
My=1L w wlj-w (4.3.35)

when the center of rotation, i.e., the point 0, is any point other than the center of mass.
Moreover, the torque vector M, can be written in terms of the torque vector M, as fol-

lows
M, = Mc + re XFc (4.3.36)

where F is the total force caused at the center of the mass of the rigid body due to its
rotational motion. To see that equation (4.3.36) is equivalent to equation (4.3.35), we

write from equation (4.3.36),

Mo = Mc + mi'c;:c
== ,'*[c + m i‘cﬂl'c

=M, + m(fc(@ +@d)r,)

=M - m(Fotow + P Fcw) (4.3.37)

where equation (3.4.4) has been used in the last step. Now, from equation (3.4.22) we

have

and since @w = 0, equation (4.3.37) becomes
M, = M, - m(ffow + @FFow)
= (g -mict o+ (o - mist)w. [by (4.3.2)]
Finally, using the parallel axis theorem, we can see that the last equation is equivalen?
to equation (4.3.35).

Equation (4.3.35) has been stated in terms of the inertia tensor I,. If we use equa-

tion (4.3.7) to sutstitute for I, in terms of J,, equation (4.3.35) becomes

- 110 -

M, =~ (Jor 0o+ 0T, w) +trJlw. (4.3.38)

Similarly, for M, we can write

M=~ (Jgrwo+@Jc w) + tr[Jclw. (4.3.39)

Now, as with angular momentum, the torque can be described by a second order

skew-symmetric Cartesian tensor, which we shall refer to as the torque tensor . Using
the dual operator we define the torque tensor as follows

M, = dual (M,). (4.3.40)

This deflnition for the torque tensor requires the computation of the torque vector Mo.

Another deflnition for the torque tensor in terms of the inertia and the angular accelera-

tion tensors is given by the following theorem.

Theorem 4.5 : The torque tensor about the center of rotation o, is defined as the
absolute time derivative of the angular momentum tensor about the point o and

satisfles the equation

o T e
M, = (6,) -0, +tr|l (4.3.41)
where €1 is the angular acceleration tensor of the rotation and I, is the rigid body iner-

tia tensor about the point o.

Proof : By deflnition, we have

-~

d
M, = —L,.
(o] d‘ (e}
Further, using equation (1.3.28), we get

. . T g - T -
M°=[w1°+w1°] —[wlo+a)lo] +tr Lo,
since the time derivative of the scalar invariant tr (I] is zero. Now, using equation

(4.3.17), we have

~

T Y [.
M, — Io—d»IocD] - [w 1°+am°-o1°w] + il)

€
é
+
&
£

T - -
10] - [w I, +«::;,1°] +otr L)

I
=
bt

o}
+
&
€

- 111 -

=[nlo]r‘nlo+trllo]‘f’]

The torque tensor M, can also be defined in terms of the pseudo-inertia tensor J, and
the angular acceleration tensor f1. To see this, we can consider the time derivative of
equation (4.3.30) or use equation (4.3.7) to substitute for I, in equatijon (4.3.41). In both

cases after a few manipulations we arrive at the following equation

T
Mo = nJO - [njo) . (4.3.42)
Obviously, when the rigid body is rotated about its center of mass equations (4.3.41)

and (4.3.42) are written as

-

M

[aIC] T_al, +)5 (4.3.43)
and

M, =nJ. - (nJ;) T. (4.3.44)

respectively. We shall refer to equation (4.3.44) as the tensor formulation of the general-

ized Euler equation of a rigid body rotational motion.

As we can see from equations (4.3.2) and (4.3.39) the torque vector M. has a
simpler expression when it is defined in terms of the inertia tensor I,. But, as in the
case of the angular momentum tensor, the pseudo-inertia tensor J, leads to a simpler
equation for the definition of the torque tensor MC. This implies that for a vector for-
mulation of the equations of rotational rigid body motion, the proper defilnition for the
inertia tensor is givem by equation (4.3.3). But, when a tensor formulation for the equa-
tions of rotational rigid body motion is required, then the proper deflnition for the iner-

tia tensor is given by equation (4.3.4).

From the foregoing, to describe rotational rigid body motion within the Newtonian
formulation, we can use either vector analysis or Cartesian tensor analysis. The two
approaches are equivalent in the sense that the torque vector M, is the dual vector or

vector invariant of the torque tensor Mc. Therefore, we can use either approach for

s ARy I e R RTT

e

- 112 -

describing the resultant torque of a rigid body motion. But as we shall see in the follow-
ing, in practical applications a tensor description for the resultant torque is to be pre-

ferred since it is computationally more efficient.

4.3.4 Computational Considerations

In the following, we shall assume that the angular velocity vector, w, the angular
acceleration vector, w, and the angular acceleration tensor {1 are available and we shall
examine the computational cost of computing the vectors F; and M. which describe a

rigid body motion.

To compute the vector F. we need to evaluate equation (4.3.1). It is obvious that
the computational burden of evaluating this equation results mainly from the computa-
tion of the vector i"c. Froin a computational point of view, most of the times computirg
the vector i:c is similar of computing the vector i", which is defined by either equation
(4.2.20) or equation (4.2.24). Thus, to compute the vector ro we can use equation
(4.2.20) or equation (4.2.24). In the latter case we need to perform three vector cross pro-
duct operations and two vector additions and this requires a total of 18 scalar multipli-
cations and 15 scalar additions. In the former case we need to perform a matrix-vector
multiplication and a vector addition and this requires a total of 9 scalar multiplications
and 9 scalar additions. To compute the torque vector M, we can use equation (4.3.2) or
we can use equation (4.3.41) which computes the torque tensor M, and then from that
skew-symmetric tensor we can extract the vector M, by using the correspondence
(3.3.31). In the first approach, i.e., using equation (4.3.2), we need to perform two
matrix-vector multiplications, a vector cross product operation and a vector addition
which requires a total of 24 scalar multiplications and 18 scalar additions. In the second
approach, we can evaluate the torque vector M with only 15 scalar multiplications and
15 scalar additions. This is so, because there is no need to compute the complete

matrix--natrix multiplication, which is involved in equation (4.3.44), since the tensor

- 113 -

Mc is skew-symmetric, and the extraction of its dual vector requires no computations.

From the foregoing, when vectors are used to describe the Newtonian formulation
of rigid body motion, i.e., equations (4.3.1), (4.2.24) and (4.3.2) to compute the vectors
F. anf M, we require a total of 45 scalar multiplications and 33 scalar additions. On
the other hand, when Cartesian tensors are used to describe the Newtonian formulation
of rigid body motion, i.e., equations (4.3.1), (4.2.20), (4.3.44) and (3.3.31) we require a
total of only 27 scalar multiplications and 24 scalar additions for evaluating the same
vectors. Therefore, the tensorial treatment of rigid body motion which is presented in
this chapter is reducing the computational cost of evaluating the equations of rigid body
motion considerably. This, obviously, has very important consequences for many practi-
cal] problems of mechanics where rigid body dynamics plays an important role. In the
following chapters, we shall use this tensorial treatment of rigid body motion to solve in
a computationally eflicient manner the three problems of robot dynamics, namely, the
problem of inverse dynamics, the problem of forward dynamics, and the linearization of

the equations of motion of rigid-links open-chain robot manipulators.

AR ST e T YIRS T ¢

- 114 -

4.4 REFERENCES

1]
(2]

(3]
(4]
(5]
(6]
[7)
(8]
(9]

(10}
(11]

(12]
(13]
[14]

(15]

(18]

17)

(18]

(16]

H. Jeffreys, Cartestan Tensors, Cambridge University Press, Cambridge, 1061.

O. Bottema and B. Roth, Theoretical Kinematics, North-Holland Publishing Co.,
Amsterdam, 1978.

E. J. Konopinski, Classical Descriptions of Motion, W. H. Freeman and Company,
San Francisco, 19690.

J. Angeles, Spatial Kinematic Chains : Analysis, Synthesis, Optimization,
Springer-Verlag, New York, 1982.

J. Angeles, Rational Kinematics, Springer-Verlag, New York, 1980.
J. S. Beggs, Kinematics, Hemisphere Publishing Corporation, Washington, 1983.

T. Crouch, Matriz Methods Applied to Engineering Rigid Body Mechanics, Per-
gamon Press, Oxford, 1981.

S. F. Borg, Matriz-Tensor Methods in Continuum Mechanics, D. Van Nostrand
Company, Princeton, New Jersey, 1963.

1. J. Wittenburg, Dynamics of Systems of Rigid Bodies, B. G. Teubner, Stuttgart,
1977.

H. Goldstein, Classical Mechanics. 2nd Ed., Addison-Wesley, Reading, MA : 1980.

J. B. Marion, Classical Dynamics of Particles and Systems, 2nd Ed., Academic
Press, New York, 1970.

S. N. Rasband, Dynamics, John Wiley & Sons, New York, 1983.
L. A. Pars, A Treatise on Analytical Dynamics, Heinemann, London, 1965.

C. A. Balafoutis, R. V. Patel and P. Misra, “Efficient Modeling and Computation
of Manipulator Dynamics Using Orthogonal Cartesian Tensors’ [EEE J. Robotics
and Automation, pp 665-676, Vol. 4, No. 6, 1988.

C. A. Balafoutis, R. V. Patel and P. Misra, “A Cartesian Tensor Approach for
Fast Computation of Manipulator Dynamics’, Proc. I[EEE Int. Conf. on Robotics
and Automalion, pp. 1348-1353, Philadelphia, April 24-29, 1988.

C. G. Atkeson, C. H. An and J. M. Hollerbach, ‘““Rigid Body Load Identification
for Manipulators', 24th IEEE Conf on Decision and Control , pp. 996-1002,
December 1985.

J. Casey and V. C. Lam, “A Tensor Method for the Kinematical Analysis of Sys-
tems of Rigid Bodies'’, Mechanism and Machine Theory, pp 87-97, Vol. 21, No. 1,
1086.

W. M. Silver, *On the Equivalence of Lagrangian and Newton-Euler Dynamics for
Manipulators”, Int. Journal of Robotics Research, pp. 60-70, Vol. 1, No. 2, 1982,

C. A. Balafoutis, R. V. Patel and J. Angeles, “A Comparative Study of Newton-
Euler, Euler-Lagrange and Kane's Formulation for Robot Manipulator Dynamics’’,
Robotics and Manufacturing : Recent Trends in Research, Education and Applica-
tions, M. Jamsidi, J. Y. S. Luh, H. Seraji, and G. P. Starr, Fds.,, ASME Press,
New York, 1988.

CHAPTER V

INVERSE DYNAMICS OF RIGID-LINK OPEN-CHAIN
ROBOT MANIPULATORS

5.1 INTRODUCTION

Inverse dynamics is the calculation of the forces and/or torques required at a
robot’s joints in order to produce a given motion trajectory consisting of a set of joint
positions, velocities and accelerations. The principal uses of inverse dynamics are in
robot control and trajectory planning. In control applications it is usually incorporated
as an element in the feedback or feedforward path to convert positions, velocities and
accelerations computed according to some desired trajectory into the joint generalized
forces which will achieve those accelerations (e.g. see [1-4]). In trajectory planning,
inverse dynamics can be used to check or ensure that a proposed trajectory can be exe-
cuted without exceeding the actuators’ limits [5-7]. Also, using time-scaling properties of
inverse dynamics we can facilitate minimum-time {or near minimum-time) trajectory
planning [8]. Moreover, inverse dynamics are also taken into consideration in defining
manipulability measures of robot arms. (The manipulability is usually expressed as a
quantitative measure of robot arm manipulating ability in positioning and orienting its
end-effector. [0]). Finally, as we shall see in the next chapter, inverse dynamics is also
used as a building block for constructing forward dynamics algorithms which are useful

in performing dynamic simulations of robot arms.

Mathematically, the inverse dynamics problem (IDP) can be described by ar equa-

tion of the form

= f (q, q, q, manipulator parameters) (5.1.1)
where 7 is the vector of the unknown generalized forces, (g, q, q) denotes a given

manipulator trajectory and the “manipulator parameters” are all those parameters

- 116 -

which characterize the particular geometry and dynamics of a robot manipulator. Equa-
tion (5.1.1) is referred to as the dynamic model or the dynamic equation of a robot mani-

pulator.

To derive equation (5.1.1), we can use well established procedures from classical
mechanics such as those based on the equations of Newton and FEuler, Euler and
Lagrange, Kane, and others. Intuitively, one would expect that all the different
approaches of formulating this dynamic model should result in the same or equivalent
equations. This, in fact, is true. However, it Is understandable that the choice of a par-
ticular procedure is important because it determines the nature of the analysis and the
amount of effort needed to obtain these equations. But, otherwise, it is not important
which procedure we choose because, as we shall see in this Chapter, all procedures can

be formulated to lead to the same algorithm for solving the IDP.

It is known, (from experience) that independent of which procedure we use to
derive the dynamic model of a stmple mechanical system, the vector function f is usu-
ally simple and thus it is possible to express it explicitly in terms of the system
kinematic parameters (generalized position, velocity and acceleration). But, unfor-
tunately, this is extremely diflicult for mechanical systems of the complexity of a robot
manipulator for which the vector function f is known to be highly nonlinear and cou-
pled. Although, based on symbolic manipulations, some explicit formulations {or the
function £ have been proposed [10,11), usually the function f is obtained via a struec-
tured algorithm, i.e., the dynamic model of a robot manipulator is usually evaluated in
stages. The results of each stage are a set of values for intermediate variables which are
used in subsequent stages to evaluate other variables (or expressions). Depending on
what we consider as intermediate variables and how we represent them, we can derive

different algorithms for cvaluating the dynamic model of a robot manipulator.

The computational complexity for different algorithms varies enormously and these

differences are accounted for by the amount of calculations involved in evaluating the

-117 -

equations of motion via a prescribed set of intermediate variables. The key to eflicient
dynamics calculation is to find a set of common sub-expressions which will effectively be
the intermediate variables to be calculated by the algorithm. This eliminates most of the
repetition inherent in the equations of motion. Moreover, the representation of the inter-
mediate variables is .'so important because, based on their representation otier subse-

quent intermediate quantities may be formulated more efficiently.

As for the general structure of these algorithms it has been found that by formulat-
ing the motion dynamics recursively in terms of recurrence relations, we can produce
computationally eflicient algorithms for solving the IDP. In this approach the task is
first broken down into a number of partially ordered steps. In each step a number of
intermediate variables are evaluated. The value of each variable is determined by the
application of a formula to each link in turn. Wher» possible and appropriate, the for-
mula defines the quantity of interest for the link in question in terms of that quantity
for one or more of the link’s immediate neighbors, and in this case the formula is known
as a recurrence relation. At the end, these steps are stated together to forin a recursive

algorithm which solves the problem of inverse dynamics.

The outline of this Chapter is as follows : Section 5.2 contains a review of existing
methods for solving th. IDP; some ‘“‘classical’ algorithms which have been derived from
these methods are presented. Also, some observations are made about various issues con-
cerning the computational efliciency of these algorithms. In Section 5.3, two new algo-
rithms for solving the IDP are presented which are based on Cartesian tensors and use
two different modeling schemes. The computational complexity of these algorithms is
analyzed and compared with that of other algorithms in the literature. In Section 5.4 it
is demonstrated that the computational efliciency of an algorithm which solves inverse
dynamics, is actually independent of the particular formulation from classical mechanics

that is used for its derivation. Finally, Section 5.5 concludes this chapter.

- 118 -

5.2 PREVIOUS RESULTS AND GENERAL OBSERVATIONS ON INVERSE

DYNAMICS

ADn extensive literature exists on the subject of rigid-link manipulator dynamics in
general and on inverse manipulator dynamics in particular. In this section, basic contri-
buvtions on this subject will be mentioned and the ‘‘classical” computational algorithms

for solving inverse dynamics will be presented.

The usual methods for computing inverse dynamics are classified with respect to
the laws of mechanics on the basis of which the equations of motion are formed. Thus,
one may distinguish methods based on FEuler-Lagrange, Newton-Euler, Kane’s,
d’Alembert’s, and other equations. Among them, methods based on Euler-Lagrange and
Newton-Euler equations have gained early popularity and, as a consequence, there are
many algorithms available today that have been derived using these equations to obtain
inverse dynamics. The Euler-Lagrange equations are popular because they are conceptu-
ally simple and the methods based on them can lead easily to closed-form algorithms
which are attractive from both the dynamic modeling and control points of view. On the
other hand, the Newton-Euler equations became popular be_ause they led early to com-
putationally eflicient recursive algorithms which can be used for real-time control appli-
cations and simulation. But besides these two commonly used formulations, in the past
few years researchers have also successfully used Kane's dynamical equations in deriving

efficient recursive algorithms for computing inverse dyr .mics.
In the following, we present a brief survey of the methods for solving the IDP
based on the Euler-Lagrange, Newton-Euler and Kane’s equations.

5.2.1 Formulations Based on Euler-Lagrange Equations

In the Lagrangian approach, the Lagrangien of the manipulator is expressed in
terms of joint positions and velocities (which are the generalized coordinates and their

derivatives). This expression is substituted into the Euler-Lagrange equation which is

- 119 -

expanded by symbolic differentiation to give the generalized forces (joint forces and
torques) in terms of the generalized joint positions, velocities and accelerations. The
first result in this class of formulations was proposed in 1965 by J. J. Uicker for the
study of the dynamical behavior of joint-connected systems of arbitrary structure and
with an arbitrary number of closed-loop kinematic chains [12]. This method was later
modified by Kahn [13] to include open-loop mechanisms. The Uicker/Kahn method leads
to a closed-form algorithm which, as estimated in {14}, has o(n*) computational com-
plexity, where n is the number of links or the number of degrees-of-freedom for a
serial-type manipulator to which the algorithm is applied. In particular, for a 6 degrees-
of-freedom manipulator the evaluation of the generalized forces at a trajectery point
using the Uicker/Kahn algorithm requires 66271 scalar multiplications and 51548 scalar
additions. This led some researchers to consider simplifications in the dynamical equa-
tions, namely, ignoring the Coriolis and centrifugal forces (Paul {15}, Bejczy [16]). How-
ever, since simplifications of this nature are justifiable only for slow movements of the
manipulator [17], this approach was soon abandoned. Another approach to reduce the
computational complexity was consider by Albus {18] and Raibert [19]. They proposed a
table-look-up method, whereby all the configuration dependent terms in the dynamical
equations were computed in advance and tabulated for discrete points on the trajectory.
Because of the large memory requirements involved in this approach, Horn and Raibert
[20) proposed yet another method in which only the position dependent terms where
tabulated. However, besides memory requirements, tabular methods have other serious
limitations such as poor accuracy of the trajectory, due to interpolation between the
stored discrete points. Moreover, the requirement that the trajectory has to be known in
advance makes such methods unattractive becauise this obviously prevents their applica-

bility to robots working in a dynamically changing environment.

It was soon realized that inverse dynamics for open-loop manipulators with simple

kinematic chain structure, could be analyzed more effectively using recursive methods.

- 120 -

Waters [21] was the first to notice that the generalized forces, which in terms of homo-

geneous coordinates are defined [16] by the equation

"{j t a\Nfria\"fT] o
T‘ - 2 2 r aq,’ "OJ aq'_ qk

J=i‘k=1

i aw,; _. a*W7 AW, .
+ tr 234 J l(},,d, -m;g?T ’r".-}

.EEI[dg » 8q;dq 9 M

1t=1,2-' " ",n, (5.2.2)
could be written in the following form
n aW' . o8 aW' .
J T T J s .o

T = 12'- [tr[-aq,- Jé)w)] -m;g 6q,~ l‘j.j] , ¢t =1, ,n. (5.2.3)

Equation (5.2.3) allows one to take advantage of several kinematic recurrence relations
for efliciently computing the homogeneous transformations and their time derivatives.
Thus, Waters proposed a recursive algorithm for solving only inverse dynamics which
has computational complexity 0(n%). In terms of scalar multiplications and additions,
for n = 6, Waters' algorithm requires [14] 7051 multiplications and 5852 additions.
Later on, by introducing dynamic recurrence relations, Hollerbach [14] proposed
modifications in Water’s algorithm which led to a complete recursive algorithm for
implementing equation (5.2.3). Hollerbach’s recursive algorithm, formulated in the nota-

tion of this thesis, can be stated as follows :

ALGORITHM 5.1
Step 0: Initialization
W,=I, Wy=0, Wo=0, A,,;=0

end

Step 1: Outward Recursion:- 1 =1, n

W, = W_A; (5.2.4a)

OA;

W, = WA + W, —— 3 9 (5.2.4b)
OA; . & A, dA; ..

W; = Wi A +2 Wy —=4 + Wiy —=——§;% + Wi—{; (5.2.4¢)
a 8q,~ aqt’

end

Step 2 : Inward Recursion :- 1 =n 1

D; =J§ WF+ AiDiy (5.2.50)
cl'i = my rz i A -}-lc:jl1 (5.2.5b)
oW, oW,
T = if[: T —¢f (5.2.5¢)
ag;

end

For its implementation, Algorithm 5.1 requires 830n - 592 scalar multiplications and
875n — 464 scalar additions. Hence, Algorithm 5.1 has 0(n) computational complexity,
but is still computationally ineflicient for real-time applications, since for n = 6 it
requires 4388 multiplications and 3586 additions, respectively, for its implementation.
However, it was noticed by Hollerbach that the computational inefficiency of this algo-
rithm resulted frcm the fact that homogeneous transformations are used to describe gen-
eral rigid body displacements. Therefore, using rotation tensors and three dimensional
displacement vectors to describe rigid body displacements, he wrote equation (5.2.3) as

follows :

n Os,, .
= E.{"[i g * nj &)
7=)
oW, . . oW,
* 5e ch,WfT] -mig T 5 r.-'.,-}f , =1, .n (526
1 13

Based on this equation, he proposed another algorithm which has basically the same

t+ This form is different from equation (15) in Hollerbach’s formulation [14] and leads
to a slightly modifled analysis which is given in Appendix A. A consequence of this is
that equation (5.2.8c) in Algorithm 5.2 is different from the corresponding equation
(equation (13)) in Ref. [14].

-122 -

recursive structure as Algorithm 6.1 and can be stated as follows :

ALGORITHM 5.2

Step 0: Initialization

W,=I, W, =0, W,=0, &; =0
n."=msl'i‘.i, A,yy=0, e,;,,=0
end

Step 1: Outward Recursion:- =1, n

W, = WA (5.2.72)
OA;
W, = WA, +W,_—— o (5.2.7b)
o .. . aA‘ . aQA' . aA' .
W, =W A +2 W, —¢ + W, —'2:—9(2 + Wia——4; {6.2.7¢)
dgq; dg; dg;
R = i1 + w—ls:—l i (6.2.7d)

end

Step 2 : Inward Recursion :- i=n, 1

e, =e; ., +my 507; + n;‘r\’\’gr (5.2.8a)
D; = A; Dy + 811 psi4 + 0f & + I§ WT (5.2.8Db)
o = mrl; + M8l i+ AvaelH (5.2.8¢)

r OW,
dyg;

i
c;

S t,[_aw__‘_p. —g (5.2.84)
3 aqi 3

end
For iss implementationt Algorithm 5.2 requires 412n - 277 scalar multiplications and
675n - 201 scalar additions, which for n = 6 gives 2105 scalar multiplications and 1719

scalar additions, respectively, and this is a significant improvement over Algorithm 5.1.

Besides the representation of physical quantities, it was soon realized that the

structure of the kinematic and dynamic recurrence relations have a direct effect on the

t Note that the difference in equation (5.2.8¢c) does not change the computational re-
quirements of the original equation (equation (13) in Ref. [14]) when the (i +1)-th joint is
revolute. When the (#+1)-th joint is prismatic the implementation of equation (5.2.8c)
requires a few extra computations.

- 123 -

computational complexity of recursive as well as closed-form manipulator dynamics algo-
rithms. In particular, it was realized that the structure of the kinematic and dynamic
recurrence relations depends on the particular modeling scheme which is used for deriv-
ing the equations of motion and on the final formulation of these equations. As result of
this, modeling schemes based on the ideas of augmented and generalized links [22' or on
the idea of articulated bodies [48] have been proposed. An advantage of such modeling
schemes is that they lead to efficient recurrence relations for computing the generalized
inertia tensor of a robot manipulator. These modeling schemes are best utilized when
the Lagrangian formulation is described by the following closed-form equation

n n n
B0 =B dil+ B Dk +a i=L2 0 (20
J=1 J=1lk=1

where d; ; are the inertia coeflicients,

ad, ; dd;, 9d;
Cj.k(i)=-']— 2+ kL (5.2.10)

2| d¢ ag; dg;

are the centrifugal and Coriolis coeflicients, defined usirg Christoffel symbols, and g; are
the gravitational coeflicients. Thus, with this formulation and analvtical procedures for
better organization of the computations, many researchers, e.g. [23, 24, 48] have pro-

posed eflicient algorithms which are of complexity o(na). The latter resus's rom the
fact that the algorithms are in closed-form and thus there are -tls—n(2n2 +3n +7)

independent coeflicients to be computed {28]. Another efficient algorithm worth mention-
ing which uses the Lagrangian formulation and analytic procedures, but was originally
devised in conjunction with the Newton-Euler formulation, is the algorithm proposed
recently (1988) by Li [26]. Also, it is worth mentioning here, that a new method for
deriving the Euler-Lagrange equations of motion has been devised by Angeles and Lee
[27]. In this method the dynamic equations of motion are derived based on a natural
orthogonal complement of the velocity constraints equations of motion, instead of the

Lagrangian function. Application of this method in deriviag eflicient algorithms for

- 124 -

solving the IDP can be found in [28].

Finally, to reduce further the computational cost for solving the IDP, the particular
kinematic and dynamic structures of the manipulator were taken into consideration.
This effort resulted in a class of dynamic algorithms which are referred to in the litera-
ture as cusiomized algorithms. Customized robot dynamics algorithms are based on
mathematical models of individual manipulators rather than on general-purpose formu-
lations. Hence, cistomized algorithms can be systematically organized [29-31] and there-
fore such algorithms exhibit a significant increase in computational efficiency over
general-purpose algorithms. Within the Lagrangian formulation, customized inverse
dynamics algorithms have been proposed by Renaud (23], Burdick [25], Neuman and
Murray [29] and Ramos and Khosla {30]. Also some aspects of better manipulator design
for reduced dynamic complexity have been considered {32,33]. In this approach, the
kinematic structure and mass distribution of a manipulator arm are designed so that the
inertia of the manipulator becomes diagonal and/or invariant for an arbitrary arm
configuration. However, this approach leads to algorithms which are applicable to partic-

ular classes of manipultors with two and three degrees of freedom only.

5.2.2 Formulations Based on Newton-Euler Equations

In the Newton-Euler approach, the equations of motion (Newton’s and Euler’s) are
applied to each link and the resulting equations are combined with constraint equations
from the joints in such a way as to give the joint generalized forces in terms of the joint
acceleration. This method was originally developed for muiti-body satellite and space-
craft dynamics {34]. The first applications of the Newton-Euler dynamic equations to
robotic systems may be found, among others, in the work ui Stepanenko and Vucobrato-
vic [35]), Vucobratovic [36], Ho [37] and Hughes [38]. Hc wever, algorithms based on
theée methods, as in the case of the Uicker/Kahn method of the Lagrangian formula-

tion, are computationally very inefficient. These early formulations led to closed-form

S

- 125 -

algorithms which have computational complexity o(n®) or in some cases even o(n?

[14,24].

A more efficient method was proposed by Orin et al [30] by introducing link coordi-
nate systems. Using relationships of moving coordinate systems, they where able to
achieve more efficient kinematic recurrence relations for computing velocities and
accelerations and dynamic recurrence relations for computing forces and torques. Based
on these relations, they derived an algorithm which has computational complexity
o(n?). However, in this method, the basic equations of motion for each link are
expressed in the inertial coordinate system and this involves unnecessary coordinate
transformations. Thus, the number of scalar operations is not sufliciently reduced to
make the method implementable in real time. Luh, Walter and Paul [40], modified this
method by expressing the equations of motion in link coordinate systems instead the
inertial coordinate system. They proposed a recursive algorithm which for its imple-
mentation requires 150n - 48 scalar multiplications and 131n - 48 scalar additions, so
that for n = 6 this algorithm requires 852 scalar multiplications and 738 scalar addi-
tions [14).

This algorithm has o(n) computational complexity and is far more eflicient than
Algorithm 5.2 which also has o(n) computational complexity, but is derived based on
the Lagrangian formulation. The difference in the computational complexity of these two
algorithms, sparked a debate about which of the two formulations, i.e., the Lagrangian
or the Newton-Euler, leads to more efficient computational algorithms for solving the
IDP. For some time it was believed, due to lack of deeper understanding of the
mathematical representations used to describe the equations of motion, that the algo-
rithms derived from the Newton-Euler formulation are computationally more eflicient
than those derived using the Lagrangian formulation. Silver [41] resolved the jssue by
showing that both formulations are equivalent, in the sense that the Lagrangian formu-

lation will yield a similar algorithm to that obtained using the Newton-Euler formula-

- 126 -

tion, if an equivalent representation of the angular velocity is employed.

Currently, the method proposed by Luh, Walker and Paul is probably the best
method for deriving recursive algorithms to compute manipulator inverse dynamiecs.
This method can be outlined as follows : Based on moving coordinate systems, kinematic
recurrence relations are used to compute velocities and accelerations from the base of
the manipulator to the end-effector, link-by-link. Then dynamic recurrence relations are
used to compute forces and torques from the end-effector back to the base of the mani-
pulator. In this process, because of the nature of these recurrence relations, the general-
ized forces are computed by simple projections of vector quantities onto the joint axes.
From this outline, it is obvious that the computational efficiency of these algorithms
results from the fact that they compute efficiently, only that information needed to
characterize rigid-body movements. To illustrate this method further, we present below
a modified version of the algorithm proposed by Luh, Walker and Paul. In their original
algorithm, the link coordinate systems were assigned following a different convention
from that presented in Chapter II. Therefore, for notational convenience, we have
chosen the following algorithm which has been taken from Craig (42] and for which the

link coordinates are assigned as described in Chapter II.

ALGORITHM 5.3 ¢
Step 0 : Initialization
z;=]001)7
1 revolute #-th joint 6; revolvte i-th joint

oy = I
' 0 prismatic s-th joint d; prismatic 1-th joint

w,?= . ay =0, ;(go=“8r Ay =0

end

1 Craig's algorithm is st.ted for revolute joints only. Here the necessary modifications
are included for the algorithm to be also applicable in the presence of prismatic joints.

- 127 -

Step 1 : Forward recursion :- For { = 0, n-1 do

, T .
Wil = AL & + 008 i (5.2.10a)
i = AiTH & + 0444 [Aij-;-x W X2 Kl + zi‘-:'xléjin] (5.2.10b)

nh=Al, [’-‘b’: + ":’iiX‘ii.Hl + wiX (wiixﬂfi.i+1]]

+(1-0.) (2W£i+lxzii-:xléi+1 + 'i“:ll.q‘l'-f-l) (5.2.10c)
Toih = @R Xrid g + W R X @R X) + B (5.2.100)
Fotl = miiiith (5.2.10¢)
Mt = K + al Xl (5:2101)

end
Step 2 : Backward recursion :- For t = n, 1 do

fi= A iR+ FS (5.2.112)
ﬂ,‘i == MC’, -+ S,".,,',H XA;_H f"i.:.ll + r,-‘:,- XFC;' -+ A" +17]ii:11 (5.2.11b)
=00’ 2H) + (1-o)£ 1) (5.2.11c)

end

To improve further the computational efficiency of the algorithms derived from this
method, researchers have proposed a number of different ways of assigning the link coor-
dinate systems and various analytical procedures for organizing the computations [44-
44]. Also, as in the case of the Lagrangian formulation, different modeling schemes such
as thowe using augmented or articulated bodies have been used for deriving more
efficient recurrence relations [45-48]. Moreover, customized algorithms have also been
proposed for the Newton-Euler formulation [49-52]. Finally, to facilitate real-time imple-
mentation of advanced robot control strategies, parallel processing techniques have been
used [53-56] to implement many of the existing algorithms which compute inverse

dynamics.

5.2.3 Forr-.lations Based on Kane’s Equations

In Kane’s approach, one first describes the generalized active force and the general-

ized inertia force of a system in terms of generalized coordinates, generalized speeds,

- 128 -

partial linear velocities, and partial angular velocities. Then, the dynamic equations of
motion (IKane’s equations) are obtained by setting ¢he sum of these two forces equal to
zero according to the d’Alembert principle. Kane's equations were first introduced by
Kane for general nonholonomic mechanical systems [57] and were used, as the Newton-
Euler and Euler-Lagrange equations, in rigid multi-body satellite and spacecraft dynamic
analysis [68,50]. Huston and Kelly [60], were among the first to apply Kane’s equations
in robotics. However, they presented neither an explicit algorithm for inverse dynamics
nor a complexity analysis of their method. Kane’s equations were also used by Faessler
(61], who presented a method which leads to a closed-form algorithm for solving inverse
dynamics. Using analytical procedures, Faessler expressed the entries of the coefficient
matrices in symbolic form, but did not provide a complexity analysis of his method.
Kane and Levinson [62] also presented a customized algorithm for solving inverse
dynamics for the Stauford arm. But, although their procedure is conceptually simple, it
requires considerable experience with handling complex dynamical systems and involves
an extensive manual analysis for setting up a large number of intermediate variables,

which are not defined from recurrence relations.

A recursive algorithm for computing inverse dvnamics, based on Kane’s equations
has been proposed by Ma [63]. Using analytical procedures, Ma was able to derive from
Kane’s equations the following equations for the i-th component ({ =1,2, + * +, n)

of the generalized force 7:

i) When the ¢-th joint is a revolute joint,

T ==7;’.' l P> [Mé} +r;‘,ijji-'&j]] (5.2.13)
ii) 'When the ¢-th joint is a prismatic joint,

=1 [_Zﬂ)‘mj '!‘H,j) (5.2.14)

J=i

- 129 -

Equations (5.2.13) and (5.2.14) are identical to the equations derived by Silver [41] using
the Euler-Lagrange equations and therefore, as Silver has shown, they can also be
derived from the Newton-Euler formulation. Based on these equations and kinematic
and dynamic recurrence relations, similar to those introduced by Luh, Walker and Paul
[40], Ma proposed a recursive algorithm which is similar in structure to Algorithm 5.3.
For a “‘semi-custcmized” implementation this algorithm requires 109n - 109 scalar mul-

siplications and 95n — 108 scalar additions (where n > 2).

5.2.4 Observations Concerning Computational Issues of the IDP

Based on this brief survey, we can make the following observations concerning vari-

ous computational issues in evaluating manipulator inverse dynamics.

It is clear now, that for solving manipulator inverse dynamics, recursive algorithms
are computationally more efficient than closed-form ones, since in recursive algorithms
unnecessary computations (usually duplications) are avoided. Also, it is clear {64] that
the computational efficiency of an algorithm for solving the IDP is independent of the
particular equations of motion (Newton-Euler, Euler-Lagrange or Kane's) used to derive
it. The computational efficiency of these recursive algorithms, as Silver [41] has pointed
out depends mainly on ‘‘the structure of the computation and cheice of representation”
3nd the survey on inverse dynamics verifies Silver remark. To elaborate more on this
important remark, we restate it as follows : The computational efficiency of a recursive

algorithm for solving inverse dynrmics, depends mainly on the following factors :

(a) The part ~ular representation of various physical quantities appearing in the equa-

tions of motion.
(b) The underlying modeling scheme used for the manipulator.

(c) The organization of the computations and the degree of customization involved in

its numerical or symbolic implementation.

- 130 -

As is evident from the brief survey presented above, the organization of the compu-
tations and the degree of customization is actually the point where most of the existing
recursive algorithms differ. The large number of these algorithms reveals that many
alternatives have been considered in reducing the computational cost. However, particu-
lar analytical organization procedures and customization are usually used for the imple-
mentation of an algorithm and not for deriving it. Our basic objective in this thesis is
to improve the computational efficiency of algorithms for solving the IDP through a
better understanding of the mathematical representations used to describe the equations
of motion and not through better implementation of existing formulations. More infor-
mation on the latter aspect can be found for instance in [31] and in the ex*ensive list of

references cited there.

For the class of robot manipulators we are dealing with, namely, rigid-link, open-
loop, chain-like manipulators, the modeling scheme is simple and common to most of the
existing algorithms. Usually, each link is considered to be a rigid body and the manipu-
lator is modeled as an ideally connected (i.e, without friction or any backlash) open-
chain of rigid bodies. This chain is assumed to be a rigid structure when static force
analysis is required, as in the case of the Newton-Euler formulation. This modeling
scheme, as well as another one which utilizes the ideas of augmented and generalized
links will be used in the next section to demonstrate the effects of the underlying model-
ing scheme on the structure of a recursive algorithm. In particular we shall show that
the modeling scheme which is based on augmented and generalized links leads to algo-
rithms which have computational advantages, because they allow for some quantities to

be computed off-line.

Finally, the choice of representation is the most important factor which effects the
computational efficiency of the algorithms we are dealing with. From the survey, it is
clear that the debate about the Euler-Lagrange and Newton-Euler formulations, men-

tioned above, was actually an indirect debate about the proper representation (as far as

- 131 -

computational efficiency is concernecl) of the angular velocity. Theoretically, it is known
that the two formulations are equivalent. Therefore, the real question, although never
stated explicitly as such, was which representation for the angular velocity describes
more efficiently the angular motion of a rigid body. As noted by Silver [41], the angular
motion of a rigid body can be described equally well by either the angular velocity vec-
tor, which is used in the Newton-Euler formulation, or the derivative of a rotation ten-
sor which is used in the Lagrangian formulation. At tle time Silver’s work was pub-
lished, the algorithm by Luh, Walker and Paul in particular, and the theory of classical
dynamics in general, clearly indicated that the angular motion of a rigid body was
described more efficiently by the angular velocity vector. Thus, the vector representation
of angular velocity became standard in the dynamic analysis of robotic systems. Based
on the vector representation of angular velocity, all the other quantities which are
defined in terms of angular velocity are also represented by vectors. Thus, vector
representations and vector analysis have been used almost exclusively for deriving com-

putationally efficient algorithms for solving the IDP.

However, as we have shown in Chapter IV, the angular motion of a rigid body is
described more efliciently by using a Cartesian tensor representation for the angular
velocity. Obviously, this provides another possibility for describing efficiently the
dynamic equations of a rigid bodies system, in general, and solving the manipulator IDP
in particular. Therefore, the question which arises at this point is the following : Does
the tensor representation of the angular velocity lead us to recursive algorithms which
compute inverse dynamics more efliciently than those algorithms which are derived

based o.. the traditional vector representation of angular velocity ?

The answer to this question is in the affirmative as will be shown in the next sec-

tion.

- 132 -

5.3 A CARTESIAN TENSOR APPROACH FOR SOLVING THE IDP

As we mentjoned in the previous section, the method proposed by Luh, Walker and
Paul is the most suitable method for deriving computationally eflicient recursive algo-
rithms for solving the IDP. In this section, we shall use this method and Cartesian ten-
sor analysis to derive recursive algorithms for computing inverse dynamics, which are
computationally far more efficient than similar algorithms derived using vector analysis.
In particular, employing the methodology and basic theorems introduced in Chapter IV,
we shall reformulate Algorithm 5.3, which was presented earlier (in Section 5.2). We
shall do this by rewriting the basic vector equations of this algorithm in an equivalent,
but computationally more eflicient, tensor formulation. Moreover, to increase the com-
putatiopal efficiency of this algorithm further, we shall examine the underlying modeling
scheme for the class of robot manipulators we are dealing with. To this end, we shall
derive a second algorithm by using a modeling scheme which employs the ideas of aug-
mented a.d generalized links. Finally, numericral implementation and computational
complexity of these algorithms are considered and compared with similar algorithms

that can be found in the literature.

5.3.1 New Algorithms for Computing the IDP

In the Newton-Euler formulation, the dynamic equations for robot manipulators
are obtained by evaluating recursively the velocities and accelerations for each link fol-
lowed by applications of Newton's and Euler’s equations to each link. In the first step,
the recursions are performed from link 1 to link n. Then, using static force and torque
analysis, the joint actuator forces/torques are computed in the second step where the
recursions are applied from joint n to joint 1. These recursions can be stated in an

algorithmic form as was done for Algorithm 5.3.

In Algorithm 5.3, th= absolute linear acceleration of the center of mass of each link

is computed following the classical vector approach, where the absolute angular velocity

- 133 -

and acceleration are represented by vectors. Also, in this algorithm, the generalized
Euler equation is stated in its classical vector formulation in terms of the vector angular
velocity and vector angular acceler tion. However, as we have seen in Chapter IV, the
absolute linear acceleration of a point on a moving rigid body as well as the Euler equa-
tion can be described by the angular acceleraticn tensor instead of using the vectors of
angular velocity and acceleration. Therefore, in an effort to improve the computational
efficiency of Algorithm 5.3, we shall use Cartesian tensor analysis to reformulate most of
the recurrence relations in this algorithm. The basic tensor equations, proven in
Chapters III and IV, will make the process here straightforward and simple. We need
only to notice that the equations of motion in Algorithm 5.3 are written with reference
to link coordinate systems as opposed to Chapter IV where the equations of motion are
written with reference to an inertial coordinate system. However, as we mentioned in
Chapter III, Cartesian tensor equations are invariant under orthogonal coordinate
transformations. Therefore, all the equations which describe the rigid body motion and
which in Chapter IV are written relative to an inertial coordinate system, will be written
here relative to link coordinate systems by using appropriate orthogonal coordinate

transformations.

To derive a tensor formulation for Algorithm 5.3, we obviously have to abandon
Gibb’s classical vector cross product operation. As we have shown in Chapter IV, we
have to use the tensors @ and 11 = u.) + @@, written here with reference to appropri-
ate link coordinate systems. Using these two tensors, the equations of Algorithm 5.3 can
be modifled as follows :

Equation (5.2.10b) can be expressed as

wit+l - AT i+l 412 i +1
Wi =AW oy [wi' 2 Qi + 2 qi+1]- (5.3.1)

Also, equation (5 2.10c) can be written as

B =A% [90‘: + ﬂ:isii,i-n] +(1-0;4) (25’1"“2:"‘:11‘{.!“1 + szfij,-_,_d (5.3.2)

and equation (5.2.10d) can be written as

- 134 -

oo ‘ ‘ .o

form = e i + & (5.3.3)
Newton's equation, i.e., equation (5.2.10e) is very simple in its vector form and therefore
we do not modify it. However, Euler’s equation, ie., equation (5.2.10f), assumes a
simpler structure when it is written in tensor form and, in particular, when it is

expressed in terms of the pseudo-inertia tensor J(;":,’ Therefore, using equation (4.3.12)
to transfer the inertia tensor Ic'-,t,l to the pseudo-inertia tensor Jc‘;';‘, we first write

equation (5.2.10f) in the following tensor form

.. : . . . T
M =l 351 - (aihiel] (5.3.4)

and then we recover the vector Mé":l‘ from the skew-symmetric tensor Mé:ll by using

the dual operator. The dual operator has been introduced in Chapter III by equation

(3.3.33). Thus, in a tensor formulation the vector Mt g computed by the following

cu-H
equations,
i+1 1 i +1 i +1
Jénil = -2-”' [IévH]l - lcll-:l (53.53.)
L. T
}V{c‘:,:ll = ni'-rx!'lc'::,l - (nitfll-lé,-_t,l) (5.3.5b)
Mgl = dudl (Mg3}). (53.5¢)

In the second step of Algorithm 5.3, we need only to reformulate equation (5.2.11b)

which can be written in the form
ni=Md + &' fi + 15, FE + A (5.3.6)

Now, using equatijons (5.3.1)-(5.3.68), we can state Algorithm 5.3 in a new formulation as

follows :

ALGORITHM 6.4
Step O : Initialization
2i=(001]T
1 revolute {—th joint 6; revolute i-th joint

a'-= N q'-_"""_-

0 prismatic §—th joint d; prismatic i-th joint

- 135 -

; L@ =0, =0, 8&p=-g, Apy=0

0
38 = Lo - i
end
Step 1 : Forward recursion :- For § = 0, n-1 do
wh =A% O+ 0 ti i
o..g-i_:'ll = A,-TH u'.g" + Gy, [‘Z’s‘iﬂzc“:xléiﬂ + za"'-tqu.iﬂ]

S41 ___ f 41 ~ f41~ 141
0 =win +@i @,

(5.3.7a)
(5.8.7b)

(5.3.7¢)

it = AR [8 + 0sli |40~ 0000 (20521 + 8 8H0) (52.70)

PI+l __ itli+l i+l

Foi+1 =10 iv + Boiaa
i+1 w41

Fc,.,., = Mi41T0,5+1

[T+l — itipi+l _ SH+1Ti+1

MC--H =1, JC.+1 fn""l JC--H

Mt = dual (W31
end
Step 2 : Backward recursion :- For i = n, 1 do
f:‘i = Ai+1fii:11 + Fct,
=M +&), 00, + viFE + A it
i =oi(al 2+ (1 - o) - 2))

end

(5.3.7¢)
(5.3.71)

(5.3.7¢)

(5.3.7h)

(5.3.82)
(5.3.8b)
(5.3.8¢)

We shall be concerned with the numerical implementation of Algorithm 5.4 in the

next section. However, as we can notice here, the structure of this algorithm reveals that

for its implementation all the quantities (with the exemption of the pseudo-inertia ten-

sors) have to be computed on-line. Obviously, from a computational point of view it is

desirable to devise algorithms which allow us to compute off-line as many quantities as

possible and at the same time, to keep the on-line computations as simple as possible.

To see if this is feasible, we have to examine the underlying modeling scheme for the

class of robot manipulators we are dealing with, since the structure of an algorithm

obviously depends on it.

- 136 -

In general, the robot manipulator is modeled as an ideally connected, open-loop,
serial-chain of rigid bodies. When frictional forces at the joints are to be considered we
compute them based on the joint velocities and add them directly to the joint general-
jzed forces. This clearly justifies the idealization in the connections of the rigid links.
Now, utilizing this modeling scheme, kinematic and dynamic recurrence relations are
defined, based on which the recursive Algorithm 5.3 (or Algorithm 5.4) has been derived.
As is well known [42], the kinematic recurrence relations are deflned by analyzing the
velocity “propagation’ from link to link starting from the base of the manipulator to
the end-effector. The dynamic recurrence relations are defined based on a static force
and moment analysis. In particular, to derive the dynamic recurrence relations in Algo-
rithm 5.3, or in Algorithm 5.4, it has been assumed that the manipulator is locked at
the joints so that it becomes 2 structure which is “rigid" in static equilibrium, and that
static force and moment analysis has been performed for each link. However, in defining
these dynamic recurrence relations, the analysis for the static forces and moments can
be modified. For the static analysis, as long as we do not disturb the static equilibrium
position of the manipulator, we are free to merge links and thus to generate hypotheti-
cal “‘generalized” links or even to assume the presence of ‘‘fictitious’ links. In the fol-
lowing, using this ‘“‘unconventional’” static analysis we shall modify the dynamic
recurrence relations of Algorithm 5.4. Then, based on these modified dynamic recurrence
relations, we shall state a new algorithm which, when applied to most industrial robot

manipulators in use today, allows us to compute some quantities off-line.

To proceed, we need to int-oduce first the concepts of augmented and generalized

links, which are shown in Figure 5.1.

Definition 5.1 : An augmented link ¢ is a fictitious link composed of link ¢ and the
mass of links ¢ +1,§+2, - + - ,n, attached to the origin of the (i +1)-th coordinate sys-

tem.

- 137 -

This definition which can be applied regardless of the type of joint (i.e., revolute or
prismatic) is slightly different from the one presented in {22] in that the mass of the aug-
mented link is not the total mass of the system (here the robot manipulator). Note that
an augmented link is *‘rigid” (i.e., has fixed geometry) if and only If the (i+1)th joint is
revolute because, when the (1+1)-th joint is prismatic the position vector of the origin
of the (#+1)-th coordinate system relative to the origin of the i{-th coordinate system,

i.e., the vector a,-",,-.‘.,. Is not constant.

Definition 5.2 : A generalized link 7 is a composite link, consisting of links ¢ through

n treated as a single rigid body structure.

Linkn

(i +1)-th frame

i-th frame

Figure5.1: (a) Thei-th Generalized Link, (b) The i -th Augmented Link

- 138 -

For the modification of the dynamic recurrence relations of Algorithm 5.4 we need

to define the following moments :

(a) The O-th moment or mass of the #-th augmented or the ¢-th generalized link :

n
m; = Em,
J o=t

= m" + m.'.’_l (5.3.9)
where m; is the mass of the i-th link.

Also, the first and second moments with respect to the origin of the ¢-th coordinate sys-

tem of the augmented link ¢, expressed in the i-th link frame, are defined as follows:
(b) First moment of augmented link ¢ :

“;, =m; l'i'.,i + m; +13:'£.i+1- (5.3.10)
(c) Second moment or inertia tensor of augmented link 7 :

Kc';. = Ié. -m i'z‘.ii'ii,i - 777:‘+1§ii,i+1§ii,i+1 (5.3.11)
where Ié is the inertia tensor of link ¢ with respect to its center of mass expressed in
the ¢-th coordinate frame.

Note that when the (i-+1)-th joint is revolute, the first and second moments are
independent of the configuration of the manipulator and can be computed off-line. \We

also need the Arst moment about the origin of the ¢-th coordinate frame of the general-

ized link t¢. This is obtained as

(d) First moment of generalized link 1 :

U = _é_m,-r,-"_,-. (5.3.12)
J=i
In the equation above, Uc’;'. expressed in the ¢-th link frame, is configuration dependent,
and therefore m .t be calculated on-line. However, we can compute Ug" recursively as
the following lemma shows:

Lemma 5.1 : The first moment of the i -th generalized link satisfies the following recur-

sive equation

U, = “g, +A; L, U

O41°

Proof: From equation (5.3.12) we have

. " .

| .t

o, = I ML ;
j=i

> " .
—] 3
=mr;+ 3 mr;.
J=i+1
Si N ;s 1 — 1 |'+l
nce for >4, 1y ; =8, + A; I 1,5, we have

n n
Up =mrli+ 5 mialon+ 5 Auamrid;
J=i+1 J==itl
= Ml + a8 + Aiy 1Uc';.’:,1
= u.;'. + A‘-“Uc;"'::. 0

In the following, we shall analyze the rotational motion of an augmented link, say
the 1-th one. For the sake of simplicity we assume first that the ¢-th augmented link
has rigid body characteristic, i.e., the (¢ +1)-th joint is assumed to be revolute. Later we
shall extend the analysis to include augmented links for which the ({ +1)-th joint is of
prismatic type. We begin by reviewing the rotational motion of the ¢-th link about the
t-th joint since both the ¢-th link and the {-th augmented link have similar dyna-aic
analysis. In particular, both have the same angular velocity and angular aczeleration.

However, since the i-th augmented link has different mass from the :-th link, it has

obviously different dynamic characteristics.

When the f-th link experiences a rotational motion with center of rotation at the
origin of the i-th coordinate system and with angular velocity wf and angular accelera-
tion cq' a resultant torque or moment of force vector MD"' is developed with respect to
the center of rotation which, as shown in Chapter IV, satisfles equation (4.3.36). This
equation, expressed in link coordinate system orientation, is written here as

Mg =M{ +rf; xXFé (5.3.14)

where

M =Ld&' +of o (5.3.15)

N

- 140 -

is the resultant torque with respect to the center of mass and
FS = m;¥f; (5.3.16)
is the total force caused at the center of mass of the ¢-th link due to its acceleration.

Using equation (5.3.16), we can write equation (5.3.14) in the form
M‘;u = Mé‘ + my i.ii,i;i‘-,l" (5'3.17)

Equation (5.3.17) is the basic equation which describes the rotational motion of the ¢-th
link. Now, if instead of the ¢-th link, the s-th augmented link actually experiences this

retacional motion, then equation (5.3.17) needs to be changed to
=M+ m s a8 n (5.3.18)

where the term ﬁ‘+,§,‘,;+,'s,'~i.,-+, has been added to account for the torque which will be
caused due to the presence of a mass equal to ;4 at a point which has position vector
%‘.i-n relative to the center of rotation. Obviously, the resultant torque vector is now
denoted by a different vector, the vector p,-‘. Moreover, as we have shown in Chapter IV,
equation (5.3.17), which is actually another formulation for the generalized Euler equa-

tion, can be written in terms of the link inertia tensor as follows

Mg =L+ Iiwf (5.3.19)
where Ig. = I,:". - m i',"_,‘i-,":,- is the inertia tensor of the i-th link considered with respect
to the origin of the i-th link coordinate system. Therefore, by analogy, we can say that
equation (5.3.18) describes the generalized Euler equation for the 1-th augmented link,
when this is written with respect to the origin of the ¢-th link coordinate system. Obvi-

ously, as in the case with the ¢-th link, the generalized Euler equation can be written in

terms of the inertia tensor Kfi of the ¢-th augmented link and the vectors of the angu-

lar velocity w,-i and angular acceleration d)‘-", as follows
pi=Kidf + &K wf (5.3.20)

where the inertia tensor K,.-i of the t-th augmented link is defined by equation (5.3.11).

- 141 -

To see that equation (5.3.18) is indeed equivalent to equation (5.3.20), we proceed as fol-

lows. First we need to prove the following relations

Br =- [fii.ii'i‘.i‘:’i‘ + ‘T’iii‘ii.ii'ii.i“’ii] (5.321)
and
B a8 i = — [ﬁ',iﬂi’,iu@" + 5’."5.".:‘+nia".i+1""i‘]- (5.3.22)

To prove (5.3.21), we first note that since r;‘,.- is a constant vector, its absolute accelera-

tion satisfles the equation

i:ii,i = Or}; (5.3.23)
or

sef (6 i i) d

r; = (w,- <+ W, w;]l’,'"'

I Y| ~ i i
= P ; + @&;0;r;

= - Fld’ - @il 0f (5.3.24)

where equation (3.4.4) has been used in the last step. Therefore, we can write

% Bad SRR =i =1 °f = = §=1 [
F it = - (r;',-r,-.,-w; ~+ WL W,) (5.3.25)
Moreover, using equation (3.4.22) we can write
of = ied o~ imi ni sio=f =6 1, dod o4 i
T Wik ; == Wik ;T ; + T if W, - ?tf [r,-';r,-',-]U,'. (5‘3.26)

Then, by substituting equation (5.3.26) into equation (5.3.25) and since @/w’ = 0, equa-
tion (5.3.25) becomes equation (5.3.21). Also, since the (Z+1)-th joint has been assumed
to be of revolute type, the vector s;‘_,-_,,, is constant and so, we have

Q."

Bl = 08, (5.3.27)

Therefore, Equation (5.3.22) can be proved following the same arguments as in the proof
of equation (5.3.21). Now, substituting equations (5.3.15), (5.3.21) and (5.3.22) into equa-

tion (5.3.18) and using the definition of Kg. from equation (5.3.11), we get equation

{5.3.20).

- 142 -

In this analysis, the generalized Buler equation for both the 1-th link and the {-th
augmented link has been stated in its vector form. However, as we have seen in Chapter
IV, the generalized Euler equation can also be stated in its tensor formulation. Moreover,
the tensor formulation of the generalized Euler equation assumes a simpler formulation
when it is stated in terms of the rigid body pseudo-inertia tensor. Therefore, for a simple
tensor formulation of equation (5.3.20) we need to define the pseudo-inertia tensor of the
§-th generalized link. This can be done easily, if one uses equation (4.3.12) which
transforms the rigid body inertia tensor into the pseudo-inertia tensor. Thus, we shall

use the symbol Kc;: to denote the pseudo-inertia tensor of the ¢-th augmented link and

we deflne it as follows
Rg = %tr [Ko"‘] 1-Kg (5.3.28)

where Kg" is the inertia tensor of the i-th augmented link. Using this pseudo-inertia

tensor, we can state the generalized Euler equation of the f-th augmented link in a ten-

sor form as follows,
. L. . .17
K=K, - [ﬂ,-’Kc',,] : (5.3.29)

where n:' is the angular acceleration of the i-th augmented link. Obviously, from the
rkew-symmetric tensor ig‘, we can recover the vector invariant p,"‘ by using the dual

operator, i.e., we can write

pl = dual (i').
From the foregoing, the dynamic analysis for the ¢-th augmented link, when the
(i +1)-th joint is revolute, is very simple. However, this analysis has to be modified when
the (f +1)-th joint is prismatic because, in this case the i-th augmented link is not a
rigid body. As we have mentioned above, the vector s;",-+, is not constant in this case
and therefore, the vector 's',—""-dr1 is not equal to 0,‘5,‘_;+,. The correct expression for the

vector 's}"_;“ follows from equation (5.3.7d) and is the following.

- 143 -
80 =0, 0+ 2020 140 + 2000y (5.3.30)
or,
B i =080+ (1- 0,060 0 (5.3.31)
where
f-‘i.:'-i-l = 2024041 + z:‘i+12].s'+1- (5.3.32)
and

1 if the (f41)-th joint is revolute

0,‘+1 = { . (5.3.33)
0 if the (s+1)-th joint is prismatic

Therefore, when the (#+1)-th joint is prismatic we have to modify equation (5.3.20). In
this case, we denote the resultant torque by the vector v,", i.e., we write equation (5.3.18)
as

vi= M+ mef i 4 BB (5.3.34)
Now, following an analysis similar to that applied to equation (5.3.18) and using equa-
tion (5.3.31) instead of equation (5.3.28), we can show that equation (5.3.34) can be writ-
ten as

vl = Kg & + /K4l + M08 sl

= 4 + Wb s (5.3.35)

From the foregoing, the resultant torque vector at the origin of the i-th coordinate
system, due to the rotational motion of the f-th augmented link can be described by a
single equation as

B+ (= o) B sl in = ME + myef ¥+ miwfinslig (5.3.36)
where 0; ., is defined by equation (5.3.33).

With this preliminary result, we now assume that the links are augmented links
and we proceed to modify Algorithm 5.4 so as to make it applicable to manipulators
whose modeling scheme utilizes the ideas of augmented and generalized links. Since the
kinematic analysis of an augmented link is the same as that of the corresponding actual

link, only the dynamic recurrence relations need to be modified. Thus we proceed by

- 144 -

reformulating the recurrence relation for the moment vector 1;,-‘, which is exerted on link

1 by link { -1. To do this, we first write (5.3.8a) in {ts expanded form i.e., we write

3 ")
f{= T Fg, (5.3.37)

j=i

where, from (5.3.7¢), Fé) = m; i-'o’:j. Now, since ;o",_,- = so’. + i",-‘_i for j > i, we have

: n oo g ees
1= X mi(mtr;)
J=i
n .l" n se
= Y migi+m;r;
j=i j=i
.‘i

= i g +Ud (5.3.38)
where 77i; is defined by (5.3.9) and

*e n L
U‘;‘ = E mjr,-"j. (5'3-39)
Je=i

Equation (5.3.39) is 4 consequence of (5.3.12). However, we do not need to use equation

(5.3.39) for computing the vector Ug The vector Uo' can be computed recursively as

the following lemma shows.

Lemma 5.2 : The absolute derivative of the first moment of the i-th generalized link

satisfles the following recursive relation

“ 1ere 0; ., is defined by equation (5.3.33), 77, ., is the O-th moment of the (i +1)-th gen-

eralized link and ¢/, ., is defined by equation (5.3.32)
Proot: From equation (5.3.12) we have
e . n I3
; i .
UO, == m,-ri',- -+) 2 mjri,j
J=1+1
Now, since for j >1, i",-",,- =8+ A.-Hi:,-"_,'f,‘,,-, we have

n n
" — 00.' .‘.l'. ..'.'*'l .
Up =mrs + 3 misii+ Ay 3 ming;

je=i+1 j=i+1
ey — ..“ e .+l
=mr; + M8 i+ Ai+1Uc;,+, (5.3.41)

Further, using equations (5.3.23) and (5.3.31) we can write

- 145 -

m; ;ii.i + ml'-i-l;s".,i«l-l =0/ [m,- rs"‘,i + ﬁi-}-lsii,i +1] +(1- ai+1)7-ﬁl'+1§ii,i+l
= ﬂ"“c;' + (1= 03) 116

"c; + (1 = 04) 1A a6 T4 (5.3.42)

where, in the last step, equation (5.3.10) has been used. Finally, equation (5.3.40) follows

on substituting equation (5.3.42) into equation (5.3.41). [

Now, for the vector q,-‘, we have from (5.3.8b)

n = Mé,’*‘ r:,sF + 8 A I+ A’
= Mé" + mEfTe + la‘.s'+1[m:'+x’r,\.£+1"‘Uo,+,] + A
== Mé, + m; f’i‘ilgoii + i":".i] + ’-ﬁi+1§i‘.i+1[.33-.i + ;ii,i+1]

=i 17 i+1
+8inl,,t+ At+1'h+l

= Mc‘ + m; ¥ ,r, P+ s ,+,s, 41

+ [m B + a8l + s:',:'+1Uo,+, + A ani
Further, using (5.3.10) and (5.3.36), we can write
'1' = l‘z + (- °:+1)’"x+1sx :+1§: i+ T uo so i t§ s+1Uo aT A:‘+1'7i£:11

= u' + ﬁO.s‘J-i + 8 [UO at - °'|'+1)mi+1§i.i+1] + A:+1'h’:11 (5.3.43)

We can see from (5.3.43) that in computing the vector 1),-" we do not use the vectors ch,

and f,": Therefore, we do not need to compute equations (5.3.7¢) and (5.3.8a). In their

place, we use equation (5.3.40). Also, we do not need to compute the vector Mél since in
(5.3.43), we use the vector p,-‘.
We are now in 1 position to formally outline an algorithm which efficiently com-

putes the joint actuator torques for a rigid-link open-chain robot manipulator.

ALGORITHM 5.5

Step 0 : Initialization

zf=1001]7
1 revolute i~th joint 6; revolute i-th joint
d’. = ! qi = N . .
0 prismatic ?#-th joint d; prismatic 1—th joint

w=0, @=0, N, &Ho=-g, Ay =0

- 146 -

end

Step 1 : Backward recursion :- Fori=n, 1 do

W, =m + (5.3.442)
ﬁg, =m i'ii.i + ’_7‘-5+1'5ii.i+1 (5.3.44b)
K =18 -mel it - @idfindlin (5.3.44c)
R§ = %tr [K;"] 1-K¢ (5.3.44d)
end
Step 2 : Forward recursion :- For { = 0, n-1 do
g wii:xl = Ai’-;-x w‘i + Ui+1zii-:11éi+1 (5.3.452)
k “.Ji'.-tll = Aiil “:’ii + i [a’iiﬂzii:xléi at zii-;"xldwl] (5.3.45b)
5 nii-:-ll = “-’ ."Ix‘ + Q;‘Ix‘@siff (5.3.45¢)
% s‘s‘,Tl; = (1 -0;4,) (25%‘“2:“-?110'{“ + zi‘-:ll'q.f-l-l) (5.3.45d)
% B =A% [80 + n;‘s.‘..-ﬂ] +(1- 0,060 1 (5.3.45¢)
‘ Wi = ainkgn - [oinren]” (5.3.450)
i uid) = dual (§'7} (5.5.45g)

end

Step 3 : Backward recursion :- For i = n, I do

Us = Qfug + Ay, [Uc;.j,‘ +(1- a,-ﬂ)ﬁ,-ﬂg,-"}i,] (5.3.46a)
' 7' = pl+0leg+ 84, [Ug,ﬂ'*' (1- C'i+1)mn‘+1§ii.i+1]+As‘+x'7ii-:11 (5.3.46b)

no=oi(n 2 + (-0 ImE + 0F) (5.3.46¢)

end

As we can see, in Step 1 of Algorithm 5.5, we compute the dynamic parameters for
the augmented links. These parameters are configuration independent when the aug-
mented links have rigid body characteristics and in this case can be computed off-line.
An augmented link, say the {-th, is not a rigid body only when the (f+1)-th joint is a
prismatic joint. Thus, for robot manipulators which have all joints of revolute type, e.g.,

a PUMA type robot, Step 1 of Algorithm 5.5 can be computed off-line. Even for robot

e e

- 147 -

manipulators with one prismatic joint, e.g., a Stanford-arm type robot, Step 1 of Algo-
rithm 5.5 can be computed practically ofl-line, because for this type of robot manipula-
tors only minor modifications are needed and these can be easily incorporated in the on-
line computations. Therefore, since almost all industrial robot manipulators are either of
PUMA or of Stanford-arm type, we can say that Step 1 of Algorithm 5.5 can be com-

puted off-line for almost all industrial robot manipulators in use today.

In the following, we shall consider the numerical implementation of the algorithms
derived in this section. In particular, first some observations will be made about the
most comput:‘ionally intensive operations appearing in these algorithms. Then the
implementation of Algorithm 5.5 will be looked at in more details when it is applied to
robot manipulators which have all joints of the revolute type. We examine this case in
more details since, as is well known, solving inverse dynamics for robot manipulators of
this type is computationally more intensive than for robot manipulators which have

some joints of prismatic type.

5.3.2. Implementation and Computational Considerations

In this section, we shall demonstrate how the algorithms developed earlier can be
implemented efficiently. We consider two cases; robot manipulators with a general
geometric structure and those for which the twist angle is, by design, either 0 or 80
degrees. We consider the latter case, since in most industrial robots manipulators the

twist angles have this characteristic.

In the following, we are concerned with the numerical implementation of Algo-
rithms 5.4 and 5.5. Therefore, to be technically correct we have to rewrite these Algo-
rithms in terms of the corresponding coordinate rmatrix equations. However, as we men-
tioned in Chapter III, a tensor equation and its corresponding coordinate matrix equa-
tion (with respect to a Cartesian coordinate system) are formally the same. Therefore, in

a coordinate matrix form these two algorithms have the same structure and appearance

- 148 -

and therefore there is no need to actually rewrite these algorithms in a coordinate
matrix form. Based on this observation, by a slight abuse of the notation, we shall refer
to the computation of the coordinate matrix, say n,-", relative to the ¢-th link coordinate

system, of the tensor n,-" as the computation of the matrix n,-".

From Algorithms 5.4 and 5.5, it is clear that the maximum number of operations
required to implement theimn results from various matrix-vector or matrix-matrix multi-
plications. These matrix operations can be implemented in a straightforward manner by
using genera] purpose standard subroutines. However, the structure of these matrices
(e.g., symmetric or skew-s¥zametric) are standard and common for all robot manipula-
tors that we are dealing with. Therefore, for efficient implementations, the structure of
the matrices should be taken into account. Obviously, this approach does not restrict

the applicability of these algorithms to a general robot manipulator.

The matrix-vector multiplications which are involved in Algorithms 5.4 and 5.5 can

be categorized in the following classes.

Class (a) : consists of those operations where the matrix under consideration is a ccordi-

nate transformation matrix.

Class (b) : consists of those operations where the matrix involved is a skew-symmetric

matrix.
Class (c) : consists of those operations where the matrix involved is the matrix .

For a general manipulator, to implement a matrix-vector multiplication of class (a),
we need 8 scalar multiplications and 4 scalar additions. For the case ¢ inanipulators,
when the twist angle « is either 0 or 90 degrees, we need only 4 multiplications and 2
additions. A matrix-vector multiplication of class (b) can be implemented in 6 scalar
multiplications and 3 scalar additions; and finally, for the multiplication of class (c), we

need 9 scalar multiplications and 6 scalar additions.

Also, the following observations are important for an efficient implementation. To

- 149 -

compute the matrix n,-":,‘, we require a matrix-matrix multiplication. Moreover, since

the product @;fl@ff! is symmetric, and the matrices @ ! and @ 7} are skew-
symmetric, we can do this with 6 scalar multiplications and 9 scalar additions. Simi-

larly, since the matrix &', (or Mé,::) is skew-symmetric, only three of its elements

need to be computed. Thus, by taking into account the symmetry of Kc’;":l‘, we can
compute the skew-symmetric matrix iq"_;*ll with only 15 scalar multiplications and 15
scalar additions. Moreover, for implementing the dual operator, we do not need any
computations because of the one-to-one correspondence between a skew-symmetric
matrix and its dual vector or vector invariant. Finally, since z,-‘ = [00 1]T, evaluating

the scalar torque (or force) 7; does not require any operations for Algorithm 5.4. In

Algorithm 5.5 we need only 1 multiplication and 1 addition if the joint is prismatic.

Besides these general observations, for an even more efficient implementation of
these algorithms we note the following : For most of the equations, the initial conditions
are zero. Therefore, the first cycle (iteration) in Steps 2 and 3 can be computed with
almost no computational cost. For example, since Q? = 0, the functional expression for
the vector 3011 can be easily defined, specially when the gravity vector ncs only one non-
zero component. Thus, with proper initial conditions for the recursive equations, the
computational cost of implementing these algorithms is reduced considerably. This is
obviously also true for other algorithms solving inverse dynamics. However, for these
particular algorithms, the effort for performing the first cycle (or even the second) by
hand is tolerable. Also, as we have mentioned above, the general organization of the
computations is important for an efficient implementation. Thus, for example in Step 3,
when evaluating n," for i1=-1, only the last component of that vector needs to be
evaluated. Finally, knowledge of the geometry (zero components of various vectors or
matrices) of a particular class of robot manipulators can reduce considerably the cost of

computation.

- 150 -

A breakdown of the number of ccalar multiplications and additions required by

each equation of Algorithm 5.5, when this algorithm is applied to a2 robot manipulator

which has all joints of revolute type, is given in the following table.

Steps General Manipulator with

28 3 manipulator a=0° or 90°
Equation Multiplications Additions Multiplications Additions
5.3.45a 8(n -1) 5(n -1) 4(n -1) 3(n -1)
5.3.45b 10(n - 1) 7(n -1) 6(-1 5(n -1)
5.3.45¢ 6(n -1)+1 9(n -1) 8(r r1 9(n -1)
5.3.45¢ 17(n - 1)+3 13.. -1) 13(n . 11(n-1)
5.3.451 15(n - 1)45 15(n - 1)+3 15(n - 1)+5 15(n - 1)+3
5.3.45g 0 0 0 0
5.3.46a 17(n - 1)49 13(n - 1)+6 13(n - 1)+9 11(n - 1)+8
5.3.46b 20{n - 1)+6 19(n ~ 1)+6 16(n - 1)+6 17(n - 1)46
5.3.46¢ 0 0 0 0

Total 93(n - 1)+24 81(n - 1)+15 73(n - 1)+23 71(n - 1)+15

n =6 i 489 420 388 370

Table 5.1 : Operations Count for Implementing Algorithm 5.5.

For this implementation of Algorithm 55 we have assumed, as is usually the prac-
tice, that the equations 1n the forward and backward recursions for { = 0 and i = n,
respectively, are computed outside the main loops. Therefore, there are only n — 1 cycles
to be performed in the actual implementation. For these iterations no effort has been
made to reduce furtier the computations, since we wish to keep customization at a
minimum. However, some saving in the computations are obvious and can be easily

taken into account for a more efficient implementation. Thus, for example, in Step 2:

a) in computing w.f, we can save 4 multiplications and 4 additions, since
wxl = [0, 0, él]T'
b) in computing c, we can save 5 multiplications and 4 additions, since
&' =100,0, 7,7, and
c) in computing 87, , we can save 5 multiplications and 5 additions, since
- ‘}12 = ‘11 0

ﬂ,1= ;j1 0
o o O

- 151 -

Also, as we mentioned above in Step 3, to compute 7, we do not need to compute all the
entries in the vector 1)‘1. Only the last entry is needed. Thus we can save 9 multiplica-
tions and 9 additions in equation (5.3.46a), since we need to compute only the term

"J‘ﬂ = A,-“ﬁg":“, and 12 multiplications and 12 additions in equation (5.3.46b).

A breakdown of the number of scalar multiplications and additions required by
each equation of Algorithm 5.5 for this ‘“‘semi-customized” implementation, which is

valid for n > 2, is given in the following table.

Steps General Manipulator with
283 manipulator =0° or 90°
Equation Multiplications Additions Multiplications Additions
5.3.45a 8n-12 Sn-9 4n -7 3n-5
5.3.45b 10n -15 7n -11 6n -10 5n-8
5.3.45¢ 6n -5 on -g¢ 6n -5 gn -9
5.3.45e 17n -19 13n -16 13n -16 1in -14
5.3.45f 15n -13 15n -14 15n -13 15n -14
5.3.45¢g 0 0 0 0
5.3.46a 17n -17 13n -16 13n ~13 11n -3
5.3.46b 20n -27 19n -25 16n -20 17n -22
5.3.46¢ 0 0 0 0
Total 93n -108 81n -100 73n -84 71n -75
n =6 450 386 354 351

Table 5.2 - Operations Count for Implementing Algorithm 5.5, (" wid for n 2> 2).

The figures, in T'ables 5.1 and 5.2, represent the operations count for steps 2 and 3
of Algorithm 5.5 for computing all the joint actuator torques for a particular point along
a trajectory. It may be noted that the computational efliciency of this algorithm results,
mainly, from the use of the tensor Q in evaluating linear accelerations and Euler’s equa-
tion. For example, the implementation of Euler's equation in Algorithm 5.3, 1.e,, in its
traditional vector formulation, requires 24(n-1) + 8 scalar maultiplications and
18(n ~1) + 6 scalar additions whereas the corresponding computations in Algorithms 5.4
and 5.5, where Euler’s equation is stated in its tensor formulation, require 15{n-1) + §

scalar multiplications and 15(n-1) + 3 scalar additions. This clearly ind.cates that the

- 152 -

tensor representation for the angular velocity leads to a . usor description for the rigid
body angular motion (Euler’s equation) which is computationally far more efficient that
the classical vector description. Therefore, the question which has been raised in the pre-
vious section and is concerned with the computational efficiency of possible descriptions

of rigid body angular motion has been answered here in the aflirmative.

For the sake of comparison, we have given in the following table the operations
counts for a number of algorithms reported in the literature for solving thz problem of

inverse dynamics.

Algorithm Multiplications Additions
Hollerbach (4X4) {14] 830n - 592 (4388)} 675n -464 (3586)
Iiollerbach (3 X3) (14] 412n -277 (2195) 3207 - 201 (1719)
Vucobratovic et al. [24] -g-n3+-32in2+9n -16 (992) %—n3+2—23-n2+—?—n -28 (776)
Luh et al. [14] 150n - 48 (852) 131n-48 (738)
Craig [42] 126n - 99 (657) 106m-92 (544)
Khosla and Neuman [52] 123n - 60 (678) 96n -55 (521)
Li [26] 120n- 104 (616) 98n -84 (494)
Ma [63] 109n - 109 (545)t% 95n -108 (462)
Khalil et al. [50) 105n - 92 (538) 94n -86 (478)
Alg. 5.4 in this thesis 96n -77 (499) 84n -70 (434)
Alg. 5.5 in this thesis 93n -6¢ (489) 81n -66 (420)
Alg. 5.5 in this thesis 93n-108 (450)14 81n -100 (386)

! Number of Operations for n 6 , ' Implementation Valid for n >2

Table 5.3 : Comparison of Operations Counts for Algorithms Which Solve the IDP.

The computational effort required for a particular algorithm, shown in the above
table depends on the degree of optimization in the operations involved in its implemen-
tation. Therefore, for an accurate comparison of the relative performance of these algo-
rithms it is required that they be implemented fairly. Thus for example, the algorithm
by F.halil, Kleinfinger and Gautier which is included in Table 5.3 is implemented based

on a recursive symbolic procedure and on an analysis of the inertial parameters of the

- 153 -

links, both of which help to reduce the number of operations. However, despite such
specialized features in some of the other algorithms presented in Table 5.3, the algo-
rithms derived in this thesis have a significantly higher computational efficiency. This
has been obtained primarily through the tensor representation of the angular velocity
and thus a tensor description for the angular rigid body motion, and not because of a

specialized implementation.

5.4 THE USE OF EULER-LAGRANGE’S AND KANE'S FORMULATIONS

IN DERIVING ALGORITHM 5.5

In this section, we shall demonstrate that the computationally eflicient algorithm
(Algorithm 5.5), which jn the previous section is derived based on the Newton-Euler
equations, can also be derived by using the Euler-Lagrange or Kane’s dynamic equations
of motion. This demonstration will make clear that the computational efficiency of an
algorithm for solving inverse dynamics is indeed completely independent from the par-
ticular procedure of classical mechanics which has been used to derive that algorithm.
For the sake of simplicity in this demonstration we consider manipulators with revolute

joints :,nly. However, the analysis can be easily extended to include prismatic joints also.

5.4.1 The Euler-Lagrange Formulation

As we mentioned in Section 5.2, a number of algor:ithms for solving inverse dynam-
ics have been derived based on the Euler-Lagrange formulation and among them is the
recursive Algorithm 5.2. This algorithm has been devised by Hollerbach (14] who was

aiming to implement ~fliciently the following equatijon

n On ; .. 8 owW; ...
=3 {tr [mﬂ, —a%’-soT +m (rJ J)TWT+ M)~ 57 rj,ao.TJ

W, . e 3W .
-+ —’—JC{JWJ-T} -m;g -—-——r’,,} ,

t =1 - - .,n (541)
ag; dg;

2

- 154 -

which has been derived from the Euler-Lagrange dynamical equations of motion. How-
ever, If we can show that the right-hand side of the equation (5.4 1) is exactly the same

as the right-hand side of the equation
1..' = zi‘) ni‘. ' i =1, - - ', (5-4.2)

which is simply equation (5.3.46¢) of Algorithm 5.5 (stated here for revolute jc.nts only),
then it is clear that the Algorithm 5.5 can be derived from the Euler-Lagrange equations
instead the Newton-Euler ones. Therefore, our aim in this section is to show that equa-

tion (5.4.1) can assume the same formulation as equation (5.4.2). We proceed as follows

Cur first bjective is to eliminate from equation (5.4.1) the term which contains the
effects of gravity. To achieve this, we notice that from a simple comparison of equations

(A.7) and (A.10) in Appendix A, we have

AW, . os,; AW, .
T = At + Lri;
9g; 9¢; 9gi

Therefore, using the fact that the dot product of two vectors a and b satisfies the

equation

a'b =tr[ab7], (5.4.3)

we can write the term which contains the gravitational effects in equation (5.4.1) as fol-

lows,

oW, .
m,-g T_a—q;—r""" = {r
)

s, ; IW;
m; -%"’—g T} + tr [m, 7a. —r/.g T] (5.4.4)

Now, substitution of equation (5.4.4) into (5.4.1) yields

a a S . LX)
E tr [m, EP . —L(ay,; - g)T + m; s;" (rj.,-)TW,-T
1)

Jsl

aw
+ m; 3 "JJ("O: -g)7 + c;',WjT} , f=1 - .n

O

& - 155 -

n a%' s oo a%' : . o
=Xt ['":“'5;."‘ 5+ m e (r] ;)T WS
i

owW; . .. oW; _ . . ‘
+ my—2Lr] g + —2 Jgjwf] i=1 - ,n (5.4.5)

m 3
’ 8¢ dg;
where the initial condition 'a;,’o for the vector soJ is now equal to - g, instead of being
zero as is usually done in the Lagrangian formulation. Furthermore, since
T =erj'j and Toj =8, +T;;,

equation (5.4.5) can be simplified to

" Bey ; . oW, . .. W, . .
7 = 2ir|m;—2rT: + m; —tr .8l + LISWIL, ¢ =1, 5.4.6
=l N A Pt E A T (540

Moreover, as we have shown in Appendices B and C, we can write

- =18 (5.4.7)

- = 2, W, (54.8)

W, o
tr[.J JO)WJ'T] =1z; - M,

(5.4.9)

7

Therefore, using equations (5.4.7)-(5.4.8) and equation (5.4.3), equation (5.4.56) can be

simplified further to yield

T = E m,-'z,-s,-,,- - 'r'ol,- + mjiirj.,- : ‘3.0‘,' + z; - Mo , t =1 "n (5.4‘10)
4 /)

Finally, since for any vectorsa , b and ¢ we have
acb =a-eb,

eguation (5.4.10) can be written as

n
=12 _2_{’":‘5.'.1'1'0.; +tm;T; %, +Mo,} , i=1 0,
J=i
from which we get
3 n k3 Yy » el . N
n=z .2.{’":'3-".1"'0'.:' +m; ¥ 8 +M$,} ,oi=1, - n (5411)
J =1

- 156 -

since the dot product is invariant under coordinate transformations.

Now,for¢ =1,2, - - * ,n,let us define the vectors

. n > eeg -y seg :
vl = 2_{ m;& %o + m; ¥ ik, + Mo } (5.4.12)
i

‘We shall show that for § =1, + - - ,n, the vector v,—‘ is equal to the following vector

.

ni=upl+ ﬁc';,;of.i + i»“.iﬂch,ﬂ + %4 (5.4.13)

which results from equation (5.3.46b) of Algorithm 5.5 when the (1 +1)th joint is

assumed to be of revolute type.

First, since for any { the vector 8'; is equal to zero by deflnition, we notice that
the vector u,-‘ can also be written as
] - . . n 3 .
S =1 [=1 =1 pag | =1 %% 1
vl=milis; + Mg + D {mj [si.i-H + 3i+1.j]"0,j + m;t; 8 + Mo,}
j=i+1
- » » . n . .
- . $ -1 .
= m;T;8%; + Mo, + 854 3 mirg; + vl (5-4.14)
j=i+1
Moreover, since

n n

Ol" _ .l" ll" Qo"
2 mir ;= 33 mpy (So,i +8 4+ N)
J=i+1 j=i+1
1) . n .
ey Y o
= M8, + M8 43 + Y MiTiyy;
j=i+1

= ;4800 + g8 4y + U .0 (5.4.15)

equation (5.4.14) can be written as
vl =(m Bl + W®)80 + MO, + TipB il i 800 +uia (5.4.16)
Now, using equations (5.3.10) and (5.3.18) we can write

-

| S =1 o= =
U == mM;T;; + 4184

and

s i = &I sof
B = Mg + ;18 i 4180 +10

- 157 -

respectively. Therefore, equation (5.4.18) can be written in the following form

of = a5 +wf + 80U+ v (5.4.17)
which shows that indeed v.-i = 1;,-" fori =1, - - - ,n. From the foregoing, equations

(5.4.1) and (5.4.2) are equivalent and this shows that Algorithm 5.5 can also be derived

by using the Lagrangian formulation instead of the Newtcn-Euler equations.

5.4.2 Kane'’s Formulation

In this section, we shall show that, as with the Lagrangian formulation, Algorithm

5.5 can also be derived using Kane's equations.

As we mentioned in Section 5.2, Ma has shown [63] that, based on Kane’s equa-
tions, we can determine the actuator torques 7; for a robot manipulator with all joints

of revolute type from the following equation

. n k3 . PP N
T, =12 E{Mé, +mji~,-'_,-ro’,j} , 1=1, - ,n (5.4.18)

j=i

To evaluate equation (5.4.18) Ma has proposed an algorithm which has the same struc-
ture as Algorithm 5.3. As with the Euler-Lagrange case, we shall show that equation

(5.4.18) is equivalent to equation (5.4.2). To do this let us define the following vector for

1 =1, N
{ n ; § e
h !-‘ = E{MC’, + m; !""jl‘o.j}. (5.4.19)
J=i
As before, our aim is to show that h =g for all i, § =1, - + - ,n, where n is

defined by equation (5.4.13). By expanding the summation in equation (5.4.19), we

obtain the following equation after a few manipulations

. PR - n e g '
hi=MS +mElirg; +8i4 3 myrg; +hfy,.
F=t{+41

Furthermore, using equations (5.3.10), (5.3.18) and (5.4.15), the above equation may be

"

- 158 -

simplified to
hi=pi+udug; +55 008, +b/y (5.4.20)

which obviously shows that h / = 5 for all . Thus, Algorithm 5.5 can also be derived

from Kane’s equations.

From the foregoing, starting from the Euler-Lagrange or Kane’s equations and fol-
lowing a proper analysis we can derive not only equivalent but exactly the same formu-
lations for the vector of the generalized forces, namely, equation (5.4.2). This equation
was derived earlier (in Section 5.3) from the Newton-Euler formulation. Therefore,
independently of which approaches from classical mechanics are used to derive the
dynamical equations of motion, we can devise the same computational algorithm for
their implementation. This result clearly indicates that apart from personal preference or
experience there is nothing to be gained, in terms of computational efficiency, by choos-
ing one approach over another for solving the manipulator IDP. However, it should be
noted that the choice of a particular approach is important because it determines the
nature of the analysis and the amount of effort needed to devise an algorithm for solving
the IDP. Moreover, the availability of various approaches for deriving the dynamic
equatjons of motion results in a greater variety of viewpoints. When properly used, this
may help in clarifying what is essential for an eflicient numerical implementation of the

equations of motion.

5.5 CONCLUDING REMARKS

In this chapter, the Cartesian tensor methodology, developed earlier in chapter 1V,
has been used to analyze the dynamics equations of motion of rigid-links open-chain
robot manipulators. Also, the ideas of augmented and generalized links have been used
in the underlying modeling scheme for the said class of robot manipulators. Based on
this modeling scheme, we proposed an algorithm for computing the problem of inverse

manipulator dynamics which allows us to compute several conflguration independent

mRSe— |

- 159 -

parameters of the manipulator ofl-line. The same time, the Cartesian tensor formulation
for the quantities to be computed on-line enables us to propose implementations for this
algorithm which are computationally very efficient. In fact, we have shown, by compar-
ing the computational complexity of his algorithm with that of other existing ones, that
the proposed algorithm is computationally the most efficient non-customized algorithm
which is available today for solving the problem of inverse manipulator dynamics. The
computational efficiency of this algorithm has been achieved mainly because a tensor
representation, instead of a vector one, has been used for the angular velocity. Finally,
in this chapter, we have shown that the Newton-Euler, Euler-Lagrange or Kane's formu-
lations of robot dynamics, with proper analysis, can lead us into the same computational
algorithms. Thus, we have established that from an algorithmic point of view, the solu-
tion of the inverse dynamics problem does not depend on which of these formulations is
used for deriviug the equation of motion. This result clearly indicates that apart from
personal preference or experience there is nothing to be gained, in terms of computa-
tional efficiency, by choosing one approach over another for solving the problem of

inverse dynamics for rigid-links open-chain robot manipulators.

- 160 -

5.6 REFERENCES

[1)

(2]

[3)

(4]

[s)

(6]

7)

(8]

[10]

11}

[12]
(13)

[14)

(15]
[16]

(17)

O. Khatib, “Dynamic Control of Manipulators in Operational Space”, 6th
IFTOMM Congress on Theory of Machines and Mechanisms, New Delhi, Dec. 15-
20, pp. 1-10, 1983.

T. Yoshikawa, “Dynamic Hybrid Position/Force Control of Robot Manipulators
Description of Hand Constraints and Calculation of Joint Driving Force”, Proc.
1986 IEEE Int. Conf. Robotics and Automation, San Francisco, CA, pp. 1393-1398,
Apr. 1986.

P. Misra, R. V. Patel and C. A. Balafcutis, “Robust Control of Robot Manipula-
tors Using Linearized Dynamic Models’’, Recent Trends in Robotics : Modeling,
Control and Education, M. Jamshidi, J. Y. S. Luh and M. Shahinpoor, Eds.,
North-Holland, Elsevier Science Publishing Co., Inc., New York, 1086.

P. Misra, R. V. Patel and C. A. Balafoutis, ‘Robust Control of Robot manipula-
tors in Cartesian Space”, Proc. American Control Conference, pp. 1351-13586,
Atlanta, Georgia, June 15-17, 1988.

M. W. Spong, J. S. Thorp and J. M. Kleinwaks, ‘“The Control of Robot Manipula-
tors with Bounded Input’’, IEEE Trans. on Automalic Control, Vol. AC-31, No. 6,
pp. 483-490, 1986.

K. G. Shin and N. D. Mckay, “A Dynamic Programming Approach to Trajectory
Planning of Robotic Manipulators”, IEEFE Trans. on Automatic Control, Vol. AC-
31, No. 6, pp. 491-500, 1986.

H. H. Tan and R. B. Potts, “Minimum Time Trajectory Planner for the Discrete
Dynamic Robot Model With Dynamic Constraints™, IEEE J. of Robotics and Auto-
mation, Vol. RA-4, No. 2, pp. 174-185, 1988.

J. M. Hollerbach, “Dynamic Scaling of Manipulator Trajectories”, ASME J. of
Dynamic Systems, Measurement, and Control, Vol. 106, pp. 102-106, 19084,

T. Yoshikawa, “Dynamic Manipulability of Robot Manipulators”, Journal of
Robotic Systems, Vol. 2, No. 1, pp. 113-124, 1985.

J. J. Murray and C. P. Neuman, “ARM : An Algebraic Robot Dynamic Modeling
Program®, Proc. 1st Int. IEEE Conf. on Robolics, pp. 103-114, Atlanta, GA, Mar.
13-15, 1084.

A. P. Tzes, S. Yurkovich and F. D. Langer, “A Symbolic Manipulation Package
for Modeling of Rigid or Flexible Manipulators”, Proc. 1986 IEEE Int. Conf.
Robotics and Automation, Philadelphia, PA, pp. 1526-1531, Apr. 1988.

J. J. Uicker, On the Dynamic Analysis of Spatial Linkages Using 4 X4 maltrices,
Ph.D. Dissertation, Northwestern University, August 1965.

M. E. Kahn, The Nea: Minimum Time Control of Open Articulated Kinematic
Chains, Ph.D. Thesis, Stanford University, 1969.

J. M. Hollerbach, “A Recursive Lagrangian Formulation of Manipulator Dynamics
and a Comparative Study of Dynamics Formulation Complexity”, IEEE Trans. on
Systems, Man, and Cybernetics, Vol. SMC-10, no. 11, pp. 730-736, 1980.

R. Paul, ‘“Moueling, Traje.tory Calculation, and Servoing of a Computer Con-
trolled Arm’’, A. I. Memo. 177, Stanford Artificial Intelligence Lab., Sept. 1972.

A. K. Bejezy, “‘Robot Arm Dynamics and Control’’, Memo. 88-669, Jet Propulsion
Labs. Tech. Feb. 1974.

M. Brady et al, Eds., Robot Motion : Planning and Control, MIT Press, Cam-
bridge, MA, 1982.

(18]

(19]

(20]
[21]
[22)

(23]

[24]

[25]

(26]

[27]

28]

[20]

[30]

(31]

[32]

[33]

[34]

{35]

- 161 -

J. 8. Albus, A New Approach to Manipulator Control : The Cerebellar Model
Articulation Controller (CMAC)”, IEEE J. Dynamics Systems, Measurement, Con-
trol, Vol. 97, pp. 270-277, 1875.

M. H. Raibert, “Analytical Equations vs. table Look-up for Manipulation : A Uni-
fying Concept”, Proc IEEE Conf. Decision and Control, New Orleans, pp. 576-578,
Dec. 1977.

B. K. P. Horn and M. H. Raibert, “Conflguration Space Control”, The Industrial
Robot, pp. 69-73, Juue, 1978.

R. C. Waters, “Mechanical Arm Control’”’, M.I.T. Artificial Intelligence Lab.
Memo. 549, Oct. 1979.

1. J. Wittenburg, Dynamics of Systems of Rigid Bodies, B. G. Teubner, Stuttgart,
1977.

M. Renaud, “An Efficient Iterative Analytical Procedure for Obtaining a Robot
manipulator Dyonamic Model”, Proc. of First International Symp. of Robotics
Research, Bretton Woods, New Hampshire, pp. 749-762, 1983.

M. Vucobratovic, S. Li and N. Kircanski, “An Efficient Procedure for Generating
Dynamic Manipulator Models’’, Robotica, Vol. 3, No. 3, pp. 147-152, 1985.

J. W. Burdick, “An Algorithm for Generation of Efficient Manipulator Dynamic
Equations, Proc. 1986 IEEE Int. Conf. Robotics and Automation, San Francisco,
CA, pp. 212-218, Apr. 1986.

C. J. Li, “A Fast Computational Method of Lagrangian Dynamics for Robot Mani-
pulators”, Int. J. of Robotics and Automation, Vol. 3, No. 1, pp. 14-20, 1988.

J. Angeles and S. K. Lee, “The Formulation of Dynamical Equations of Holonomic
Mechanical Systems Using a Natural Orthogonal Complement”, ASME J. of
Applied Mechanics, Vol. 55, pp. 243-244, 1088,

J. Angeles and S. K. Lee, “Dynamic Modeling of Holonomic Mechanical Systems
T’sing a Natural Orthogonal Complement, Part 1 : Formulation, Part II : Applica-
tions,” Proc. 9th Symposium on Engineering Applications of Mechanics, pp. 615-
630, London, Ontario, May 29-31, 1988.

C. P. Neuman and J. J. Murray, “The Complete Dynamic Model and Customized
algorithms of the Puma Robot”, JEEE Trans. on Systems, Man, and Cybernetics,
Vol. SMC-17, No. 4, pp. 635-644, 1087.

S. Ramos and P. K. Khosla, “Scheduling Parallel Computation of Inverse Dynam-
ics Formulation” Robotics and Manufacturing : Recent Trends in Research, Edu-
cation, and Applications, M. Jamshidi, J. Y. S. Luh, H. Seraji and G. P. Starr,
Eds., ASME Press, New York, 1988.

J. J. Murray and C. P. Neuman, “Organizing Customized Robot Dynamics Algo-
rithms for Efficient Numerical Evaluation”, IEEE Trans. on Systems, Man, and
Cybernetics, Vol. SMC-18, No. 1, pp. 115-125, 1088.

K. Youcef-Toumi and H. Asada, “The Design of Open-Loop Manipulator Arms
With Decoupled and Configuration-Invariant Inertia Tensors”, Proc. 1986 IEEE
Int. Conf. Robotics and Automation, San Francisco, CA, pp. 2018-2026, Apr. 1986.

D. C. H. Yang and S. W. Tzeng, “‘Simplification and Linearization of Manipulator
Dynamics by the Design of Inertia Distribution’, The Int. Journal of Robotics
Research, Vol. 5, No. 3, pp. 126-128, 1086.

W. W, Hooker and G. Margulies, ‘““The Dynamical Attitude Equations for an n-
Rody Satellite”, J. Astronautical Sciences, Vol. 12, No. 4, pp. 123-128, 1065,

Y. Stepanenko and M. Vucobratovic, ‘Dynamics of Articulated Open-Chain Active
Mechanisms'’, Mathemat.cal Biosciences, Vol. 28, pp. 137-170, 1976.

R

[36]
137
[38]

[36]

[40]

[41]
[42]

[43]

[44]

[48]

[46)

(47]

(48]

[49]

[50]

[51]

[52]

(53]

- 162 -

M. Vucobratovic, ‘‘Dynamics of Active Articulated Mechanisms and Synthesis of
Artificial Motion", Mechanism and Machine Theory, Vol. 13, pp. 1-56, 1078.

J. Y. L. Ho, “Direct Path Method for Flexible Multibody Spacecraft Dynamics’’,
AIAA J Spacecraft and Rockets , Vol. 14, No. 2, pp. 102-110, 1977.

P. C. Hughes, “Dynamics of a Chain of Flexible bodies”, J. Astronautical Sciences,
Vol. 27, No. 4, np. 359-380, 1979.

D. E. Orin, R. B. McGhee, M. Vucobratovic, and G. Hartoch, “Kinematic and
Kinetic Analysis of Open-Chain Linkages Utilizing Newton-Euler Methods",
Mathematical Biosciences, Vol. 43, No. 1/2, pp. 107-130, 1979.

J. Y. S. Luh, M. W. Walker, and R. P. Paul, “On-Line Computational Scheme for
Mechanical Manipulators”, ASME J. Dyn. Syst. Meas. and Contr., Vol. 102, pp.
60-79, 1080.

W. M. Silver, *“On the Equivalence of Lagrangian and Newton-Euler Dynamics for
Manipulators”, Int. J. Robotics Research, Vol. 1, pp. 60-70, 1982,

J. J. Craig, Introduction to Robotics : Mechanics & Contrul, Addison-Wesley,
Reading, MA, 19086.

K. Kazerounian and K. C. Gupta, ‘‘Manipulator Dynamics Using the Extended
Zero reference Position Description’, IEFE J. Robotics and Automation, Vol. RA-
2, No. 4, pp. 221-224, 1986.

L. T. Wang and B. Ravani, “Recursive Computations of Kinematics and Dynamics
Equations for Mechanical Manipulators”, JEEE J. Robotics and Automation, Vol
RA-1, No. 3, pp. 124-131, 1985.

W. Khalil and J. F. Kleinfinger, “Minimum Operations and Minimum Parameters
of the Dynamic Models of Tree Structure Robots”, JEEE J. Robotics and Automa-
tion, Vol. RA-3, No. 6, pp. 517-526, 1987.

C. A. Balafoutis, P. Misra and R. V. Patel, ““A Cartesian Tensor Approach for
Fast Computation of Manipulator Dynamics’, Proe. 1986 IEEE Int. Conf. Robot-
tcs and Automation, Philadelphia, PA, pp 1348-1353, Apr. 1088.

C. A. Balafoutis, R. V. Patel and P. Misra, “Efficient Modeling and Computation
of Manipulator Dynamics Using Orthogonal Cartesian Tensors”, IEEE Journal of
Robotics and Automation, Vol. 4, No. 6, pp. 665-676, 1988.

R. Featherstone, Robot Dynamics Algorithms, Kluwer Academic Publishers, Boston
MA, 1087.

M. Renaud, “‘Quasi-Minimal Computation of the Dynamic Model of a Robot MNani-
pulator Utilizing the Newton-Euler Formalism and the Notion of Augmented
Body’’, Proc. 1986 IEEE Int. Conf. Robotics and Automation, Raleigh, NC, pp.
1677-1682, Apr. 1987.

W. Khalil and J. F. Kleinfinger, and M. Gautier, “Reducing the Computational
Burden of the Dynamic Models of Robots”, Proc. 1986 IFEE Int. Conf. Robolics
and Automation, San Francisco, CA, pp. 525-531, Apr. 1986.

B. Armstrong, O. Khatib, and J. Burdick, “The Explicit Dynamic Model and Iner-
tia Parameters of the PUMA 560 Arm”, Proc. 1986 IEEE Int. Conf. Robotics and
Automaltion, San Francisco, CA, pp. 510-518, Apr. 1986.

P. K. Khosla and C. P. Neuman, *“‘Computational Requirements of Customized
Newton-Euler Algorithms”, J. of Robotic Systems, Vol. 2, No. 3, pp. 309-327, 1985.

H. Kasahara and S. Narita, ‘“Paralle]l Processing of [lobot-Arm Control Computa-
tion on a Multimicroprocessor System’’, IEEE J. Robotics and Automation, Vol.
RA-1, No. 2, pp. 104-113, 1985.

[54]

[55]

[56]

57}
(58]
(59]

[60)

[61]

(62]
[63)]

[64]

- 163 -

R. Nigam and C. S. G. Lee, “A Multiprocessor-Based Controller for the Control of
Mechanical Manipulators”, JEEE J. Robotics and Automation, Vol. RA-1, No. 4,
pPp. 173-182, 1985,

C. S. G. Lee and P. R. Chang, “Efficient Parallel Algorithm for Robot Inverse
Dynamics Computation”, JEEE Trans. on Systems, Man, and Cybernetics, Vol.
SMC-186, No. 4, pp. 532-542, 1986.

M. Vucobratovic, N. Kircanski and S. G. Li, “An Approach to Parallel Processing
of Dynamic Robot Models'’, The Int. Journal of Robotics Research, Vol. 7, No. 2,
PP. 64-71, 1088,

T. R. Kane, “Dynamics of Holonomic Systems”, ASME J. Applied Mechanics, Vol.
28, pp. 574-578, 19661,

T. R. Kane and C. F. Wang, “On the Derivation of Equations of Motion”, J. Soc.
Jor Ind. and Appl. Math., Vol. 13, pp. 487-492, 1965.

R. L. Huston, C. E. Passerello and M. W. Harlow, “Dynamics of Multirigid-Body
Systems’’, ASME J. Applied Mechanics, Vol. 45, pp. 880-894, 1978.

R. L. Huston and F. A. Kelly, “The Development of Equations of Motion of
Single-Arm Robots”, IEEE Trans. Systems, Man, and Cybernetics, Vol. SMC-12,
No. 3. pp. 259-266, 1082.

H. Faessler, ‘Computer-Assisted Generation of Dynamical Equations for Multi-
Body systems”, The Int. Journal of Robotics Research, Vol. 5, No. 3, pp. 129-141,
1986.

T. R. Kane and D. A. Levinson, ‘“The Use of Kane's Dynamical Equations in
Robotics”, The Int. Journal of Robotics Research, Vol. 2, No. 3, pp. 3-21, 1983.

O. Ma, “Dynamics of Serial-type Robotic Manipulators”, Master Thesis, Depart-
ment of Mech. Eng., McGill University, Montreal, 1987.

C. A. Balafoutis, R. V. Patel and J. Angeles, “A Comparative Study of Lagrange,
Newton-Euler and Kane's Formulation for Robot Manipulator Dynamics’ Robotics
and Manufacturing : Recent Trends in Research, Education, and Applications, M.
Jamshidi, J. Y. S. Luh, H. Seraji and G. P. Starr, Eds., ASME Press, New York,
1088.

_—

RN TR e SR

CHAPTER VI

FORWARD DYNAMICS OF RIGID-LINK OPEN-CHAIN
ROBOT MANIPULATORS

8.1 INTRODUCTION

The problem of evaluating forward or direct dynamics involves the calculation of
joint accelerations (and through integration, joint velocities and positions) given the
actuator torques/forces and any external torques/forces exerted on the last link of the
manipulator. Forward dynamics is used primarily in simulation, so that, it is not so
important for forward dynamics to meet the stringent speed requirements of inverse
dynamics applications unless real-time simulation is required in which case computa-
tional efliciency is an important issue. Real-time simulation is often desirable since it
provides more powerful, flexible, and economic ways of developing new robot designs
and new control algorithms. Also, as fast 3-D computer graphics is becoming more
easily available, robot kinematic motions have begun to be displayed on graphic work
stations. Therefore, to study robot motions completely, real-time dynamics of robot

manipulators need to be included in computer simulation of robotic systems.

Mathematically, the problem of forward dynamics can be described by a vector
differential equation of the form
q(t)=h(q(t), q(t), 7(t), manipulator parameters, k (¢)) (6.1)
where, q () is the vector of generalized coordinates (joint variables), q (t) and q (¢t) are
its derivatives with respect to time, 7(¢) is the (input) generalized force vector, i.e., the
vector of joint torques and/or joint forces, “manipulator parameters” are all those
parameters which characterize the particular geom~try and dynamics of a robot manipu-
lator, and k (t) is the vector of the external torques/forces. In general, equation (6.1) is

not a simple equation for which an analytic solution can be provided easily. For a gen-

- 165 -

eral robot manipulator equation (6.1) is very complex since, it is highly nonlinear with
strong coupling between the joint variables. Hence, to solve equation (6.1) for q,
requires complicated procedures for evaluati. ' and for performing numerical integra-
tion. These procedures, as in the case of inverse dynamics, are defined by structured

algorithms which are evaluated in stages.

In this chapter, we shall review the basic approaches taken to solve forward
dynamics and, by introducing a new algorithm, we shall improve upon the computa-
tional efliciency of one of these methods, namely, the composite rig:1 body method which
is the most efficient one, currently available, for solving forward dynamics. The outline
of this chapter is as follows : Section 6.2 contains a review of existing methods for solv-
ing the forward dynamics problem (FDP). In Section 8.3, a new algorithm is devised for
computing efliciently the generalized inertia tensor of a robot manipulator, which is a
basic ingredient of the composite rigid body method. In Section 3.4 the computational
complexity of this algorithm is analyzed, and the computational cost of the composite
rigid body method i:. examined, when algorithms derived in this and the previous
chapter arc used to solve basic subproblems associated with this method. Finally, Sec-

tion 6.5 concludes this chapter.

6.2 PREVIOUS RESULTS ON FORWARD DYNAMICS

In the past few years, two basic approaches hiave been taken for solving the FDP,

which may be outlined as follows :

t) Obtain and solve a set of simultaneous equations in the unknown joint accelera-

tions oy,
#1) Calculate, recursively, the coeflicients which propagate motion and force con-

straints along the mechanism allowing the problem tc be solved directly.

Most of the published algorithms for solving forward dynamics adopt the first approach

which involves the composite rigid body method. Algorithms which are derived based on

- 166 -

this approach can achieve o(n>) computational complexity, as oppose to o(n) which
can be achieved by the second approach. This is so, since in the first approach, a set of
n simultaneous equations has to be solved. However, these algorithms can be computa-
tionally very eflicient for small values of n, since the coeflicient of n in the measure of

complexity is very small.

In the framework of the first approach, a well defined scheme for deriving algo-
rithms for computing forward dynamics has been proposed by Walker and Orin [1]. To

define the algorithms, the dynamic equations of motion of a robot manipulator are writ-

ten in a vector form as
7=D(q)d +C(q.9)+G Q)+ J(q)'f (6.2.1)
where 7 is the vector of the applied joint torques/forces, D (q) is the n X n positive
definite generalized inertia tensor of the robot manipulator, q (q.q) is the vector of the
joint positions (velocities, accelerations), C (q ,c';) is the vector of Coriolis and centrifu-
gal forces, G (q) is the vector of the gravitational effects, J(q) is the n Xn Jacobian
tensor and f is a vector of external forces. Equation (6.2.1) can be written in a more
compact form as
7=D(q)q +b(q.q.g.f) (6.2.2)
where b is a bias vector containing the gravity, centrifugal, Coriolis and external forces,
ie.,
b=C(q.q)+Gq)+J(q)Tf. (6.2.3)
Now, based on equation (6.2.2), the solution of forward dynamics can be derived by
solving the following subproblems :
(i) Computation cf the generalized inertia tensor : D (q).
(ii) Computation of the bias vector : b(q,q, g, f)

{iil) Solution of the linear system of equations : D (q)q = (r-b)

- 167 -

(iv) Solution of # set of ordinary differential equations.

From the foregoing, for the dynamic simulation of a robot manipulator one has to solve
problems directly related to manipulator dynamics (steps (i) and (ii}) and problems from
numerical analysis (steps (iii) and (iv)). Therefore, since from a dynamic analysis point
of view, one is concerned with the problems in steps (i) and (ii), we shall review methods
for solving these two problems only. The problems of the type (iii) and (iv) have been
extensively studied in the numerical analysis literature and efficient methods of solving

them exist, e.g. see [18-20].

To solve part (ii), one can use non-recursive inverse dynamics algorithms, which
explicitly calculate the terms of the bias vector b as is shown in equation (6.2.3). How-
ever, as it t.rns out, this approach is not computationally eflicient. Walker and Orin
[1], have proposed another more efficient method for computing the bias vector b. In
this method, a recursive inverse dynamics algorithm is used to solve for the actuator
torques/forces, assuming that the accelerations are zero, i.e., q = 0. As is obvious from
equation (6.2.2), since the vector of the generalized forces 7 is equal to the bias vector b,
an inverse dynamics algorithm suffices for solving problem (it). Moreover, with
significant improvements in the computational efliciercy of algorithms for solving the
inverse dynamics problem (see Chapter V) the soluon for the bias vector b, by this
medchod, can be computed very efficiently. Furthermore, to improve further the compu-
tational efficiency of this method, we can formulate a specialized version of an inverse
dynamics algorithm, with the assumption q = 0 built in. Therefore, using inverse
dynamics algorithms, this subproblem of forward dynamics can be solved ir an efficient
manner.

Solving the first problem, i.e., computing the manipulator inertia tensor D (q) is
the point where most of the existing algorithms for solving the FDP, by using the first
approach, really differ. Walker and Orin [1] considered three methods for computing the

inertia tensor D (q). The first two methods are based on an algorithm v/hich solves the

- 168 -

inverse dyramics problem and from which all the velocity terms, the gravitational effects
and the effects due to the external forces and torques have been eliminated. In this
approach, as we can see from the equation (6.2.2), the columns of the inertia matrix D,
which represent the generalized inertia tensor D in joint space coordinates, are com-
puted by applying a unit vector acceleration to the joints. That is, for the t-th column

of D we have
di =(T-b)|g 0. 0o (6.2.4)

where the 1 is the i-th component of q By repeating the above process n times (not
necessarily recursively), all the components of D may be computed. The first two
methods are basically the same, with the exception that in the second method, since D is
symmetric, only the 1iagonal and the bottom half of the ofl-diagonal elements of D are
computed. However, as Walker and Orin have shown in their computational complexity
analysis, this approach for computing the manipulator joint space inertia matrix is com-
putitional expensive. The third method by \Walker and Orin has been known as the
composite rigid body method and is, computationally, more efficient than their previous

two methods. The basic idea in the composite rigid body method is as follows :

As in the first *wo methods, we assume that unit acceleration is applied to a joint
(for instance ¢; = 1 at joint 7) with all joint velocities and other joint accelerations
equal to zero. Under this action the manipulator chain is divided into two sets of compo-
site rigid bodies with one degree of freedom between them. The lower composite body,
i.e., links 1 to $-1 is stationary and the upper composite body, which is composed of
links § through n and to which we shall refer to as the ¢-th composite rigid body,
moves as a single rigid body with a composite mass (7;), composite cenler of mass
(R,*"_,-), relative to the origin of the i¢-th coordinate system, and composite moment of

inertia or inertia tensor (E(f.;), with respect to the composite center of mass. A diagram

for the 1-th composite rigid body is shown in the following figure.

- 169 -

Linkn
Linki+1
A Loyl G 77.2-134'1
i
Sl

Figure 6.1 : The ¢-th Composite Rigid Body

- 170 -

Due to the motion of the f-th composite rigid body, forces and moments will be
developed at the joints 1, - -, which can be computed as follows : The force and
moment at the ¢-th joint can be computed by applying Newton’s and Euler’s equations,
respectively, to the 1-th composite rigid body. Moreover, since the acceleration at the
joints 1, - - - ,i-1 is assumed to be zero, the forces and moments at these joints result
only from the propagation down the chain of the forces and moments of the 1-th joint.
Now, having compute these forces or moments, to define the elements of the joint space
inertia matrix D, we simply need to consider their projections onto appropriate joint

axes of the manipulator.

From this computational scheme, it is obvious that the computation of m,, R,i,i
and Eé is important (as far as computational efliciency is concerned) for the determina-
tion of the generalized inertia tensor D . To achieve computational efTiciency for these

quantities, Walker and Orin proposed linear recurrence relations. These relations, for-

mulated in the notation of this thesis, can be stated as follows :

m" = 171"'_*_1 + m; (6 2.5)
. l . —_— . .
R}y = —I[mir}; + (s i 01 + A R) (6.2.6)
ny

i =1, +m [- REGH - RIDL- (s - RN - REDT |
+ 7 44 [(sii,|'+l + R:‘+1.i+1 - R,-",,)'(sli.i-rl + Rii+1.i+1 - Rii,i)l
- @it Riin RIS+ R0 -RIT]

+ Ai+1Eé.-.t,lAi£1- (6.2.7)

Bascd on these equations and using the Newton-Euler equations to analyze the compo-
site rigid body dynamics, Walker and Orin proposed an algorithm for computing the
upper triangular part of the symmetric joint space inertia matrix D which, in the nota-

tion of this thesis, can be stated as follows :

- 171 -

ALGORITHM 6.1
Step 0 : Initialization

- n _ n+l _
fil,., =0, Rl,nn=0, E

Catl
A,a=0, z=[001]T
1 revolute ¢-th joint
o; = {

O prismatic §-th joint
Step 1: Fori=mn, 1 do

=iy, +m;

Rl.‘-,l' = _’[m rl i + mn +1(ss i+1 + An+lRt+1 x+1)]

zl

&=L +m [(rii,n' ~RED -REDL - (0fs -REN0S, "Rii.i)T]
+ w4, [(sii.i-ﬂ + Ri‘+x,i+x - R,-‘._,«)-(s,".','.,_, + Rii+1,i+1 - Rii,i)l

- (Bi‘,i+x + Ri‘+1.x‘+l = R,-':,-)(s,-".,'ﬂ + Ru".+1.i+1 = Rii.z‘)T]

+ A, ,E ‘HAIH

LR

F = o0;(z/¥W R) + (1 - 0)(; 2,)

M{, = o, (Ed z))
i, =F¢,
0l =MS + R/ XFd
dii = o;(ni52) + (1 -0,)£, 2))
For j = i-1,1 do

fJ i —AJ+lfJ+II

7’;, —A;-Hﬂj-rlt +81]+lej+]l
d

end

end

pi =0;(nfizd) + (-)£

(6.2.82)

(8.2.8b)

(6.2.8¢)
(6.2.8d)
(6.2.8¢)
(6.2.81)
(6.2.8g)
(6.2.8h)

(6.2.9a)
(6.2.9b)
(6.2.9¢)

For its implementation, Algorithm 6.1 requires (see Table 6.2) 12n2 + 26n + 27 scalar

multiplications and 7n? 4+ 67n - 56 scalar additions, which for n = 6 amounts to 741

scalar multiplications and 601 scalar additions, respectively. Featherstone has shown [2]

that based on the composite rigid body method and using spatial notation to combine

-172 -

the representation of rotational and translational quantities, and spatial algebra to
manipulate eflficiently these quantities, another more eflicient algorithm can be devised
which requires 10n2 + 317 - 41 scalar multiplicatiors and 6n% + 40n — 46 scalar addi-
tions. For n == 6, these give 505 scalar multiplications and 410 scalar additions, respec-
tively. However, the computational efliciency of Featherstone’s algorithm results, from
the special purpose spatial arithmetic package which he developed to handle spatial

operations efliciently.

Walker and Orin also describe another method for calculating q which by-passes
the need to calculate D explicitly (method 4 in (1]). This method uses an iterative tech-
nique, namely, the conjugate gradient technique for solving the linear system in step
(#11). Based on an initial estimate for the joint acceleration she method uses successive
adjustments to these variables until they converge to the correct solution. If there are no
round-off errors, the solution for q can be achieved in a maximum of n iterations. The
complexity of this method is 0(n?), but the coeflicient of n? is large enough that it ends
up being less efflicient for all but very large values of n (n > 12) than the composite

rigid body method, which has o(n3) computational complexity.

Following a similar decomposition of forward dynamics into subproblems, as sug-
gested by Walker and Orin, Angeles and Ma (3] have proposed a method for computing
the generalized inertia tensor D which in terms of computational efficiency is compar-
able to the composite rigid body method. The basic idea in Angeles and Ma’s approach

is as follows :

First the 6n -dimensional vector of generalized twist
t=t7 - t07 (6.2.10)
and the 6n X6n block aiagonal tensor of generalized extended mass

M=diag M, - "M,) (6.2.11)

are defined, where t; is a 6-dimensional vector representing the twist of the ¢-th link,

- 173 -

namely,

=2

and M ; is a 6 X6 tensor defined as
I
M, = [8‘ m?l) (6.2.13)

in which 1 is the 3X3 identity tensor and O is the 3X3 zero teasor. Then, from the

linear transformation

t=Tgq (6.2.14)

the 6n Xn tensor T is defined. (The tensor T is referred to as the natural orthogonal
complement since, as shown in [4], it is an orthogonal complement of the tensor which
defines the kinematic constraints of the manipulator). Moreover, from kinetic energy

considerations the generalized inertia tensor D may be defined as
D(q)=TTMT.

Furthermore, the tensor M can be factored as M = N TN since it is symmetric and
positive definite. From the foregoing, the generalized inertia tensor D can be decom-

posed as
D=PTP (6.2.15)

where P = N T is a lower block triangular tensor. Based on this analysis, Angeles and
Ma proposed an algorithm for computing the generalized inertia tensor D which, as we
mentioned above, (see also Table 6.2) has almost the same comp» ‘ional complexity as
Algorithm 8.1. Angeles and Ma, also proposed another method which avoids the deter-
mination of the generalized inertia tensor D . In this method, based on equation (6.2.15),

the linear system

Dq=7-b (6.9.16)

-174 -

is decomposed as follows,

PTx =7-b (6.2.172)
Pqg =x (6.2.17b)

where x is a 8n-dimensional vector. Equation (6.2.17a) represents an underdetermined
system (n equations with 8n unknowns) and equation (6.2.17b) represents an overdeter-
mined system (6n equaions with n unknowns). Based on these equations, Angeles and
Ma have shown that the vector q can be computed as the least squares approximation
to equation (6.2.17b), if x is computed, first, as the minimum norm solution of equation
(6.2.17a). The computational efliciency of this second method, by Angeles and Ma, is

comparable (see [3]) to that of their first method.

As we have mentioned above, an approach for solving the forward dynamics prob-
lem is to calculate, recursively, the coeflicients which propagate motion and force con-
straints along the mechanism allowing the problem to be solved directly. However,
although is theoretically more sound, currently few methods adopt this approach. This
is because first, it requires an extensive analysis and second, and more important, algo-
rithms derived from this approach are computationally expensive despite the fact that
one can usually achieve o(n) computational complexity. This is so, since the coeflicient

of n in the measure of complexity is quite large.

Probably, the best known method in this approach is the arficulaled-body method
proposed by Featherstone [2]. The basic idea in this method is to regard the robot as
consisting of a base member (whose motion is known), a single joint, and a single mov-
ing link which is in fact an articulated body (i.e., a collection of rigid bodies connected
by joints) representing the rest of the robot. The forward dynamics problem for thic
one-joint robot is easily solved once the apparent inertia of the moving link is known.
Having found the acceleration of the first joint, the articulated body itseif can be treated
as a robot and the same process applied to obtain the acceleration of the next joint, and

so on. So the articulated-body method consists of the calculation of a series of

- 175 -

articulated-body inertias which are used to solve the forward dynamics problem one
joint at a time. Thus, this approach leads to algorithms which have 0(n) computational
complexity. To facilitate the analysis of his method, Featnerstone introduced a spatial
notation which provides a uniform combined representation of rotational and transla-
tional quantities and developed a spatial algebra for manipulating these spatial quanti-
ties. Also, to implement his algorithm efliciently (see Table 6.3), Featherstone developed
a spatial arithmetic package with special-purpose arithmetic functions to operate on

these compact spatial representations.

Other examples of methods which solve the FDP by tlIe constraint propagation
approach are described by Armstron {5], Rodriguez (6] and Rodriguez and Kreutz (8]. In
particular, Armstrong’s method also achieves o(n) complexity, and uses recursion
coefTicients playing a similar role to articulated-body inertias This method, in its basic
form, is applicable to robots with spherical joints but a modification applicable for revo-
lute joints is outlined in one of the appendixes in Armstrong's paper. However, this
modification increases the computational requirement significantly, although the method
remains 0(n). Rodriguez and Kreutz [8} have developed a two-step algorithm for com-
puting forward dynamics which has o(n) computational complexity. Based on a linear
operator approach for formulating and analyzing the manipulator dynamics developed
by Rodriguez [6,7], the two-step algorithm by Rodriguez and Kreutz first computes and
subtracts out the Coriolis, centrifugal, gravity and contact force bias terms, exactly as in
Walker and Orin’s approach, to obtain a ‘‘bias-free’’ robot dynamic equation. Then, in
the second step, using techniques for solving linear operator equations by operator fac-
torization, the joint space accelerations are obtained in o(n) iterations. Also, based on
certain operator identities, they proposed aliernative algorithms for which the need for a
preliminary bias vector computation and subtraction is avoided. The dynamic analysis
of these algorithms, as in Featherstone’s approach, is based on spatial notation and spa-

tial algebra. The approach by Rodriguez and Kreutz is important because it provides a

- 176 -

method to formulate, analyze and understand spatial recursions in multibody dynamics.
This analysis leads them to a simple factorization of the generalized inertiz tensor D
from which an immediate inversion of D is readily available. In particular, they esta-
blished the following factorization for the generalized inertia tensor D and its inverse :

D= (1+HaL)D (1+HeL)}T (6.2.18)
and

D¥= (1-H¥L)TD'(1-HvL) (6.2.10)

where H and & are given by known geometric ilink parameters, and L, ¥ and D
are obtained recursively by a spatial discrete-step Kalman filter and by the correspond-
ing Riccati equation associated with this filter. The factors (1 +H L) and
(1 -H VL) are lower triangular tensors which are inverses to each other, and D is
a diagonal tensor. This anal;tic factorization and inversion is obviously important
because it avoids aumerical triangular decomposition and inversion and with that it
avoids problems such as round-off errors or ill-conditioned problems. However, in Rodri-
guez and Kreutz’'s report a computational complexity analysis of these algorithms has

not been included and this makes a fair comparison of their method with others difficult.

Finally, an approach for solving the FDP which is quite different from those
presented above has been proposed by Chou, Baciu and Kesavan (0,101 In this
approach, the problem is [ormulated as a graph-theoretic system theory problem. This
formulation uses graph-theoretic models for the joints and the open-loop kinematic
chains of rigid bodies, and Euler parameters instead of the conventional direction cosines
to describe relative orientations. The final mathematical model derived by this formula-
tion is a large system (20n scalar equations with 202 unknowns) of differential and
algebraic equations. A complete computational complexity analysis has not been pro-

vided for the method. However, because of the large system of equations that have to be

solved, the approach is almost certainly very expensive computationally.

Concluding this review on forward dynamics computation, it is worth mentioning

that, as with inverse dynamics computation, to impro ¢ the computational efliciency
parallel algorithms and special architectures have been proposed. For example, parallel
processing techniques have been proposed by Lee and Chang [11] and systolic architec-
tures have been useu by Javaheri and Orin [12]. Aiso in [13], Han has examined possible
applications of parallel and pipeline processing, as well as, VLSI systolic array proces-

sors, for solving forward dynamics in real-time.

6.3 THE GENERALIZED MANIPULATOR INERTIA TENSOR

As we mentioned in section 6.2, one of the methods which may be used for the
computation of the generalized inertia tensor D is the composite rigid body method.
This method leads to algorithms (e.g., Algorithm 6.1) which compute efficiently the
manipulator inertia tensor D by utilizing recurrence relations for some of its basic equa-
tions. However, a drawback of this method is that it leads to algorithms which require
all the quantities to be computed online. Moreover, as we shall see in this section, the
recurrence relations on which these algorithms are based can be stated in, computation-

ally, more efficient formulations.

In order to reduce the computational complexity of the said algorithm two other
methods are proposed in this section. The first method is similar to the third method
proposed by Walker and Orin [1]. In particular, a similar decomposition, i.e., a set of
stationary and moving links, is used as the underlying modeling scheme and the
dynamic analysis is based on the Newton-Euler equations. However, the dynamic
analysis of the moving set of links in this method uses the concepts of generalized and
augmented links instead of that of the composite rigid body alone. The concepts of aug-
mented and generalized links have been introduced in Chapter V to facilitate more
efficient solutions of the inverse dynamics problem. Here, as in the case of inverse

dynamics, these concepts will allow us to devise an algorithm which is applicable to gen-

™ W

cucie’y

TR TR A A TP ART LV

- 178 -

eral robot manipulators and, in almost all cases, its computational burden may split into
computations which can be performed off-line and computations which have to be per-
formed online. Moreover, based on these concepts and using Cartesian tensor analysis,
computationally more efficient recurrence relations will be devise to facilitate the online
computations. The second method, also utilizes the concepts of augmented and general-
ized links and Cartesian tensor analysis, but the dynamic analysis is based now on the

Buler-Lagrange equations instead of the Newton-Euler ores.

As we shall see, both methods lead to the same algorithm for computing the gen-
eralized inertia tensor D of a robot mar lator. Thus, from an algorithmic point of
view, it may seem c¢hat this duplication in the ana'ysis is unnecessary, and this is
definitely true. However, the main reason for that duplication is to show, as we did with
inverse dynamics, that apart from personal preference or experience there is nothing to
be gained, in terms of computational efficiency, by choosing one cr the other set of

dynamic equations in our analysis.

6.3.1 Generalized Links and their Inertia Tensor

A generalized link has been defined in Chapter V (see Definition 5.2). It is obvious
from this definition that a generalized link is simply a composite rigid body as deflned
by Walker and Orin. However, since the analysis to follcw is diflerent from that
presented by Walker and Orin we shall continue to refer to the set of moving links as a
generalized link. Basically, the anaiysis here is different from that of Walker and Orin in
that all moments concerning a generalized link are considered about the origin of one of
the link coordinate systems instead of its center of mass. This modification allows us to
use the inertia tensor of an augmented link (which, can be computed off-line for most
industrial robo's) for a computationally more efficient formulation of the inertia tensor

of a generalized link.

The deflnition for an augmented link has been given in Chapter V (see Definition

- 179 -

5.1). Also, in Chapter V, the definitions for the first and second moments for augmented
links, as well as, the definition for the first moment of generalized links have been given.
Here, fur quick reference, these definitions are repeated and the list of these definitions is
completed with the definition for the second moment (inertia tensor) of a generalized
link. These deflnitions, for the ¢{-th augmented and ¢-th generalized link may be stated

as follows :

(1) First moment about the origin q;, of the ¢-th link coordinate system, of the 1-th

augmented link :

U = mr; + W8l (6.3.1)

(2) Second moment (inertia matrix) about o; of the ¢-th augmented link :

Ko, =1Ig, - m {7 - M 18/ 14:8 i 11 (6.3.2)
{3) First moment about o; of the ¢-th generalized link :

. ”]
))
Us, .E.m,ru.
j=i

=ud +A4;, UL (6.3.3)

1+1

where the last step follows from Lemma 5.1, and

(4) Secord moment (inertia matrix) about o; of the :-th generalized link :
. n . . .
1 -~ -
Eo’ = kz ,[Iék—mk l‘("k l‘,'"k]. (6.3.4)
=4

Also, as we may rvecall from Chapter V, the zero-th moment, or mass of the ¢-th aug-
mented link which is equal to the zero-th moment of the t-th generalized link is defined

to be
Tle formulation of equation (6.3.4), which defines the inertia tensor of the i-th
generalized link, is important because it provides physical insight into the structure of

this inertia tensor. However, this formulation is obviously computational very expensive

- 180 -

for any use in practical applications. Therefore, to be able to use generalized links
eflectively, we have to define their inertia tensor by using a computationally more

eflicient equation. This equation is provided by the following lemma [17].

Lemma 6.1: The icertia tensor of the ¢-th generalized link with respect to the origin

o; of the 7-th link coordinate system may be defined by the following recurrence equa-

tion :

EC;.. == KO'. = [E'i'i+1ﬁoi'+l + fjg'+l§ii'i+1] -+ A,‘ +1E '-+1A“7,;_1 (6.3.6)

s Oy 41

where K‘;.' is the inertia tensor of the i-th augmented link with respect to the origin o,
§,—"',.+1 is the dual tensor of the position vector of q; ., relative to o; and I‘ng is the dual

tensor of the first moment about o; ., of the (¢ +1)-th generalized link.

Proof : Since, for k >i , ¥/, = 's,-"',-_H + Ty1.6 We have

§fosf __ =i =i o o o S
PieTik = Biin8i i1+ 8 ipTivrk TP kSii1 + FivneTivrs,
equation (6.3.4) can be written as

. . - . n . :
1)% 8 8
Eo, =1Ic, -mv/;v;i - 3 me8/; 108/ ;01
k=1+1

n . . . ; "]))

-) =1 ol : P! P}

D M LMY CHENRT FARWIE o SRS Ry Lo DI A 70 FIPS Sy
k=i+1 k=i+1

— 1 LS S A S-S SR S B § £ (13 &5,
—‘Ic,"m:rt.xrx.i My 485 aaf a1 — B4 o,+,+Uo.+,sx,a+l]

n
f+1 i+l = 141 T
+Ain X [Ic, - m BT A
k=i+1

=K, - [-él".t' +1ﬁ<;,+, + ﬁé,ﬂ-si'.iﬂ] + A, LESTIAT,

Oy 41

where the definitions of the inertia tensors for the ¢-th augmented and ¢-th generalized
links have been used in the last step. Thus, equation (6.3.6) is valid and this completes
the proof. |

As we mentioned above, a generalized link is another name for the concept of the
composite rigid body. Therefore, it is obvious that equations (6.2.6) and (6.2.7) which

define the composite center of mass and the composite inertia tensor, respectively, of the

- 181 -

1-th composite rigid body are closely related to equations (6.3.3) and (6.3.6) which define
the first and second moments, respectively, of the ¢-th generalized link. To see this, by

substituting u‘;" from equation (6.3.1) into equation (6.3.3), and using equation (6.2.6) we

can write the first moment of the {-th generalized link as follows :
U = @R, (6.3.7)

where R,-",,' is the position vector of the center of mass of the i-th composite rigid body
(or the ¢-th generalized link) with respect to the origin o; of the ¢-th link coordinate
system. Note that, based on physical considerations, we could use equation (6.3.7)
instead of equation (6.3.3) as the definition of the first moment of the 7-th generalized
link with respect to the origin o; of the i-th link coordinate system. However, the
chosen definition provides physical insight which facilitates the analysis of the dynamic
equations of motion. Similarly, using the parallel axis theorem, the inertia tensor of the

¢-th generalized link Eg" with respect to the origin o; can be defined by the equation

E; =E¢ - mR/R{; (6.3.8)

where Eé. (see equation (6.2.7)) is the inertia . sor of the i-th generalized link with
respect to its center of mass, and R,-",,- is the dual tensor of the position vector R,".,.

Now, using these moments of the augmented and generalized links, we can proceed
to derive an algorithm for computing efficiently the joint-space matrix D of the general-

ized inertia tensor D of a rigid-link open-chain robot manipulator.

6.3.2 The Use of Newton-Euler Equations in Computing the Manipulator

Inertia Tensor

To simplify the analysis we shall assume that all joints are of revolute type. How-
ever, the final equations in Algorithm 6.2 have been modified to make the algorithm
applicable to both revolute and prismatic joints. These modifications are simple and self

explanatory.

-182 -

Following the approach by Walker and Orin, let us assume that unit acceleration is
applied at the 1-th joint of a robot manipulator with all joint velocities and other joint
accelerations equal to zero. Under these assumptions only the i-th generalized link
moves. To describe the motion of the 1-th generalized link, we shall use Newton's and

Euler’s equations.
As is well known, Newton’s and Euler’s equations describe the motion of a rigid

body relative to an inertia frame and are given by the equations [14]

Fo=mr, (6.3.9)
M=l v+l w (8.3.10)

respectively, where m is the mass, 'x:c is the absolute acceleration of the center of mass,
I, is the inertia tensor of the rigid body about its center of mass and w (w) is the abso-

lute angular velocity (acceleration) of the motion.

In the case of the #-th composite link , equations (6.3.9) and (6.3.10) take the form

FC: = iﬁ,-ﬁo',- (6.3.11)
and
MC. = Ec' * (:J' ~+ (D, EC'. OJ, . (6.3-12)

Note that, (6.3.11) and (6.3.12) are expressed in the base frame orientation. However,
since by assumption the links 1 to :-1 are stationary, we can assume that the origin of
the inertia frame is at the same position as the origin o; of the i-th link coordinate
frame. This implies that l.?.,o,,- = I.i,-,;. Therefore, using equations (6.3.7) and (6.3.8) we

can rewrite equations (6.3.11) and (6.3.12) in the following form

Fo, =T, (6.3.13)
and
Mc, = Eo" (:),' + @ Eo.' w; + "_E— [ﬁo'ﬁo' . .,' + (:I,'ﬁo'fjo.' w;] (6.3.14)
m;

Moreover, under the assumptions made above, we have

- 183 -

w; =0 end w; = 1;. (8.3.15)

which implies that @; = %; for all j > ¢. Therefore, using Lemma 5.2, we can show

that
U, =50, (6.3.16)
From the foregoing, equations (6.3.13) and (6.3.14) can be written as
Fgo, =1 U, (6.3.17)
and
M =Eq- 2 + -n"Lz,-'ﬁ°'ﬁ°'z‘ (6.3.18)

respectively. Moreover, equations (6.3.17) and (6.3.18) as tensor equations are invariant
under coordinate transformations. Therefore, following the usual approach in the

Newton-Euler formulation of robot dynamics, we express them in the 7-th frame orien-

tation as
F¢, = z/Uj (6.3.19)
and
M¢, = Eg 2+ '_l—ﬁé.ﬁci z; (6.3.20)
m;
respectively.

Now, due to the motion of the 7-th joint, forces (fj".,-) and moments (n,j,,-) will be
developed at all joints j for j < ¢ . These forces and moments are the inter-link con-
straints which keep the links in the lower part of the manipulator fixed with respect to
each other. Projections of these forces or moments onto the joint axes are just the ele-
ments of the desired joint-space inertia matrix D of the generalized inertia tensor D .
To determine these constraint forces and moments we use a backward recursion from
joint ¢ through joint 1. At the initial step of this recursion, i.e., for j =1, f‘-".,- and q,".;

can be determined by simply resolving Fé| and Mé' to the origin of the i-th coordi-

- 184 -

nates. Thus we have

i, =F{ (8.3.21)

and
i =MS +RIFS (6.3.22)

Further, by using (6.3.19) and (6.3.20), equation (86.3.22) can be written as

o . o 1 . . N PR .
ni= Eé.' z) + -;n_— (;' c;' 2 + R/; Z,"Uo'l (6.3.23)
i
and finally, since i,-"U(;" = - I-Jg‘ z} and R}; = —Ug . we have
m;
").'i,.' = ES zf. (6.3.24)

In the rest of the recursion, i.e, for j < ¢, the constraint forces and moments are

computed by using the equations

S +1
f},i = Aj+1f1+l.i

= £l (6.3.25)
and

’7:J-i = Aj+1’7],:xl.i + gj’.j +1Aj+1f;’1:11,:’
j aJtl f+1
= A, [’71’:11.1' + 8] Tt] (6.3.26)

Note that these equations can also be derived from a compatible inverse dynamic algo-
rithm, say Algorithm 5.4, when the accelerations at the j-th joints, for j 5% 1, are
assumed to be zero. Finally, the elements of the symmetric joint-space inertia matrix D

of the generalized inertia tensor D are determined by using the following equation
di; =nj; zj. (6.3.27)

Based on the above equations, we can state the following algorithm for computing

the elements of the joint-space inertia matrix D.

- 185 -

ALGORITHM 6.2
Step 0 : Initialization :

=0, z=[001]7

fipg1 =0, Apy=0, U, =

1 revolute ¢-th joint
g;= {

0 prismatic ¢-th joint

Step 1: Fori=n, 1, do

m; =m; + ;.
i i - i
Up = M;T;; + M 18 i1

i yi wiai = ai =i
Ko =1g, -me) ;%) -8 080 14

Step 2: For i = 1, 1, do

D | f+1
UoI — uo' + A"+1Uo'+l
i+1 T ¢

8 i1 =A;18 i1

O, 41 0, +1 0,4

Et; =KJ + Ai+1{E 31 - [giifiin“ + @ 1,007] }A.-TH

i = 0,208 + (1 - o)), 2}
0 =0,E{ 2}
dii = oi(nizd) + (1 -0;)(fi2)

Step 3: For j = i-1, 1, do

£ =A;afifL
i = A [ijix f74 + ﬂ;j-:ll,i]
dii =o;(nii 2y + (1 -0;)f]; 1))
end

end

(6.3.282)
(6.3.28b)

(6.3.28¢)

(6.3.292)
(6.3.20b)

(6.3.29¢)

(6.3.20d)
(6.3.20¢)
(6.3.20f)

(6.3.30a)
(6.3.30b)

(6.3.30c)

Note that since the joint-space inertia matrix D is symmetric, Algorithm 6.2 computes

only the upper triangular part of it. Also, as we mentioned above, certain equations of

this algorithm have been modified to be applicable for both revolute and prismatic

joints.

- 186 -

8.3.3 The Use of Euler-Lagrange Equations in Computing the Manipulator

Inertia Tensor

In this section we demonstrate how the Euler-Lagrange equations can be used to
derive Algorithm 8.2. To simplify the derivation we consider revolute joints only. How-
ever, with slight modifications the analysis can be extended to include prismatic joints

as well.

In the Euler-Lagrange approach, we first compute the Lagrangian of the manipula-

tor, which is defined by
L=v-9% (6.3.31)

where W is the kinetic energy and @ is the potential energy of the manipulator. Then to
derive the generalized torques (i.e., forces and torques acting at the joints), we use the

Euler-Lagrange equations

=222 %2 =12 ..,n (6.3.32)

where, g; (g,) are the generalized coordinates (velocities) of the manipulator. Perform-
ing the differentiation, involved in (6.3.32), we can write the equation for the generalized

torques (when there are no external forces acting on the manipulator) in vector form as
r=D(q)q + C(q.q)+ G(q) (6.3.33)

where, D (q) is the generalized inertia tensor of the manipulator, C (q .q) is a vector
which contains Coriolis and centrifugal forces and G (q) is the vector of gravitational

forces.

Since the potential energy is independent of the joint velocities, it is obvious that
the generalized inertia tensor D (q) results from the kinetic energy only. Actually, if we

write the kinetic energy of the manipulator in the form

v = %d TH (q)q (6.3.34)

- 187 -

where H (q) is the kinetic energy tensor, we can compute the generalized inertia tensor

D (q) directly by setting

D(q)=H(q) (6.3.35)

j.e., the generalized inertia tensor of a manipulator is simply the kinetic energy tensor.
Therefore, to compute the tensor D (q), we have to derive the kinetic energy of the

manipulator in the form given by equation (£.3.34).

Kinetic energy is one of the most important physical quantities in rigid body
dynamics and is defined by a number of equivalent equations [14]. Here, to define the

kinetic energy of the k-th link of a2 robot manipulator, we use the following equation {14]
1 . . 1
v, = -Q-mk Tok Tok + —Q—wk : IC,‘ Wy (6.3.36)

where the first term defines the translational kinetic energy and the second term defines
the rotational kinetic energy of the k-th link. Now, using the superposition theorem, we

get the total kinetic energy of a robot manipulator as

Vo=

0| =

n
S mergg-Top + Wi Lo, wpl (6.3.37)
k=1

The absolute linear and angular velocities of the k-th link can be defined explicitly by

the following equations

k
Tokx = Y (2; Xr;) (6.3.38)
i=1
and
* -
W = 3%2;¢;. (6.3.39)
fa=1

Now, by substituting (6.3.38) and (6.3.39) in (6.3.37) and noticing that from equation

(3.4.9) we have

(2; XTj) (B XTi)=~ 2 FjaFis- 2

- 188 -

we can write (6.3.39) as

v

Q. .. .
?kE 2 [’j‘ Toy —me®; %) 2]9; g; - (6.3.40)
=14,5=1

Finally, the permutation of the two summation symbols in (6.3.40) gives

n n
3 by ['f' (o, - me¥5 4% 4) 2] 2,95 (6.3.41)

J=1k=mez(i.j, ~

4

Il

L
2;
Therefore, from (6.3.34), (6.3.35) and (6.3.41), we have that the elements of the joint-

space inertia matrix D of the generalized inertia tensor D (q) satisfy the following equa-

tion,

n
dj; =12;" 3 e, ~meFj, i'i.k)]' z; (6.3.42)

k=max(i.j)

Equation (6.3.42) can be simplified if one uses equations (6.3.3) and (6.3.4) and Lemma
6.1. To see this, let us assume that j < i, then since by definition r; ; =8, ; +r, ;,

we have
n n
.. : L -
Yo, ~mebje¥ipl= e, ~mu B, 0] - 3 m8, 7,
E=i F=s

=E;, -8;;U, (6.3.43)
Therefore, we can write equation (6.3.42) as
dj; =12; [Eo‘ -a,,,-flol]- z; (6.3.44)
Moreover, equation (6.3.44) as a tensor equation is invariant under coordinate transfor-
mations. Therefore, it can be written in the y-th frame orientation as
dj; =zj [Eo’ -8/, o’] z/ (6.3.45)

Now, we shall show that (6.3.45) is equivalent to (8.3.27). First we note that the vector

7/ ;. defined by (6.3.26), can also be written as

- 189 -

nii = [Eo{ ~5/,04] 27 (6.3.46)
To see this, we write equation (6.3.26) in its expand form as
’7;’,;' = Aj+1’b’:11.i + 8] fj',i

=8l +8 48]+ - +8L0] + Edz/

=38];f]; + Ed2/
and since, f,j_,- =12/ Uo’: = - fJg; 2/ , we get equation (6.3.46).

From the foregoing, equations (6.3.26) and (6.3.46) are equivalent. Moreover, since
s,"',- = 0 for all 7, it is obvious that equation (6.3.46) contains equation (6.3.24). Thus
the joint-space inertia matrix of a robot manipulator can be computed using either
(6.3.27) or (6.3.45). Therefore, Newton-Euler and Euler-Lagrange formulations both lead

to the same equations for defining the generalized inertia tensor of a robot manipulator.

6.4 IMPLEMENTATION AND COMPUTATIONAL CONSIDERATIONS

In this section, we shall demonstrate how Algorithm 6.2, can be implemented
numerically in an eflicient manner. Similar observations as those made in the numerical
implementation of Algorithms 5.4 and 55 in Chapter V, can be made here. Thus, for

example, when we talk about the computation of the matrix Eé. we actually mean the
computation of the coordinate matrix Eé' of the tensor Eél. Moreover, since most

robot manipulators have only one prismatic joint we shall assume that the moments of
an augmented link, i.e., Step 1 of Algorithm 6.2, can be computed off-line. Therefore, in
the following, we shall be concerned with the numerical imple:nentation of the second
and third steps of Algorithm 6.2, and we shall consider two cases : robot manipulators
with a general geometric structure and robot manipulators for which the twist angle is,

by design, either O or 90 degrees.

- 190 -

From the structure of the equations in these two steps, it is clear that the max.
imum number of operations required for implementing Algorithm 6.2 results from vari-
ous matrix-vector and matrix-matrix multiplications. As we mentioned in Section 5.3.2,
for a matrix-vector multiplication where the matrix under consideration is a coordinate
transformation matrix, we need % scalar multiplications and 4 scalar additions. When
the twist angle a, in the transforr.ation matrix, is either O or 90 degrees, we need only 4
scalar multiplications and 2 scalar additions. For a matrix-vector multiplication where
the matrix under consideration is a skew-symmetric matrix, we need 6 scalar multiplica-
tions and 3 scalar additions. Finally, the implementation of the product of two skew-

symmetric matrices requires 9 scalar multiplications and 3 scalar additions.

Now, as we can see from Algorithm 6.2, computationally, the most intensive equa-
tion is equation (6.3.29c) which computes the inertia tensor of a generalized link. For a
computationally eflicient implementation of this equation we notice the following : The

symmetric matrix [(E,-i_,*ixﬁc"jl’ +(§,~‘.f’ilﬁ‘§|:l’)7‘] can be implemented with only 9

scalar multiplications and 9 scalar additions. Moreover, it can be shown that by using

the following trigonometric identities :

a) sin (20) = 2sin (f)cos (6)

b) cos () = 2L C;S-(-r’i))—
c) sin 2(0) = _II—_CS_S_@

the transformation of a symmetric matrix from one coordinate systemn to another can be
implemented very efficiently. Thus, it can be shown that when the twist angle of the
transformation matrix A; is different from O or 90 degrees, for the transformation of a
symmetric matrix we require 21 scalar multiplications and 18 scalar additions. ZWhen the
twist angle of A; is equal to 0 or 90 degrees, we need 11 scalar multiplications and 11
scalar additions. Thus, to implement equation (6.3.29¢), in the general case, we nec¢1 30

scalar multiplications and 39 scalar additions.

iasha St Saiadihatedur SECER da ot/

TR TR AT L

- 191 -

Based on these geneial remarks, we shall now analyze the implementation ¢i Algo-
rithm 8.2, when this algorithm is applied to a robot with all revolute joints. We first
notice that since z,-"= [001]T, equations (6.3.29d)-(6.3.29f) and (6.3.30c) do not
require any computations for their implementaticu. To impiziient equation (6.3.20b) we
can avoid the matrix-vector multiplication, since, as we can see from equatjons (2.3.3)
and (2.3.4), the vector 8 71, can be defined as

i a; cos (g; 41)

8/ ir1— |- ¢ stn (g;41)
d;

where a; and d; are known link parameters. Thus, we can implement equation (6.3.20b)
with only 2 scalar multiplications. Moreover, for ¢ = n, since A, , = 0, we have
Ug" = ug, and EJ = Kg,.

From the foregoing, no computations are involved in Step 2, when { = n. Also,
since d,, is the (3X3) entry of the matrix E‘l, when i = 1 we need to compute only
the (3 3) entry of EJ and not the complete matrix. This also implies that Uj, need
not be computed. In Step 3, equations (6.3.30a) and (6.3.30b) each need to be evaluated
n(n-1)/2 times, since there are n(n-1)/2 ofl-di~>onal elements .. the upper triangular
part of the joint space inertia matrix D. However, when § = 1, there is no need to com-
pute the vector f!; (since it is not used any-where) and from the vector 7;}; we need
only to compute its last entry. Thus, some saving can be made in computing the n-1
elements d,; of D in Step 3 of the algorithm if these considerations are taken into

account.

Following the observations made above, a breakdown of the number of scalar mul-
tiplications and additions required for the online implementation by each equation of
Algorithm 6.2 is given in Table 6.1. The total figure represents the operations count for
computing the inertia matrix (upper triangular part) of a robot manipulator with all

joints of revolute type, and is ~alid for n 2> 2.

- 192 -

Step General Manipulator with
28 3 manipulator a=0° or 90°
Equation | Multiplications Additions Multiplications Additions
6.3.29a 8n- 16 n- 10 4n- 8 Sn- 10
6.3.20b 2n- 2 0 2n- 2 0
6.3.29¢c 30n - 42 39n - 52 20n - 25 32n - 42
6.3.20d 0 0 0 0
6.3.20¢ 0 0 0 0
6.3.29f 0 0 0 0
6.3.303 an®-12n+8 2n2-6n+4 2n%- 6n +4 n2-3n+2
6.3.30b 7n%-17n 16 3.5n%-7.5n +4 5n%-13n +8 2.5n%-5.5n +3
6.3.30¢C 0 0 0 0
Total |11n%+4 11n -42|55n%+32.5n -54|7n+ 7n - 23 |3.5n° +28.5n - 47
e
n =0 420 3390 271 250

Table 6.1 : Operations Count for Implementing Algorithm 6.2.

For the sake of comparison, the operations counts for a number of algorithms

reported in the literature for computing the inertia matrix of a robot manipulator is

given in the following table :

Authors

Remarks

Multiplications

Additions

Walker and Orin

Composite rigid bodies

120+ 56n - 27

(741)t

7112+ 671 — 56
(601)

Angeles and Ma

Natural Orthogonal

Complements

n3+ 17n°- 15n+ 8

(746)

n3+ 14n% 160+ 5

(620)

in this thesis

sugmented links

(420)

Featherstone | Composite rigid bodies | 10n%+ 31n-41"* 6n 3+ 40n - 46°
(505) (410)
Alg. 6.2 Generalized and 11n%+ 11n- 42 5.5n%4 32.5n — 54

(330)

(.)} Number of operations for n = 6.

* A spatial arithmetic package has been used for this implementation.

Table 6.2 : Comparison of Computational Complexities of Several Algorithms

for Computing the Joint-Space Inertia Matrix.

P A L A

WJMW‘:‘;-M{VL T e T

- 193 -

From Table 6.2, it is obvious that the proposed algorithm is computationally more
efficient than other well known algorithms reported in the literature. The significantly
higher computational efliciency of Algorithm 6.2 is obtained primarily through appropri-

ate modeling and use of tensor analysis in the formulation of its basic equations.

Finally. as we mentioned in Section 6.2, one of the basic approach for solving the
forward dynamics problem, is to obtain and solve a set of simultaneous equations in the
unknown joint accelerations, i.e., steps (¢)—(#17) in Walker and Orin’s approach. Follow-
ing this approach, one can use Algorithm 6.2 for computing the joint space inertia
matrix D in step (1), Algorithm 5.5 for computing the bias vector b in step (11) and any
standard method [18-20] for solving the system of linear equations in step (iiz). The
total computational cost for solving these three subproblems of forward dynamics is
given in the following table. Also, for the sake of comparison, the following table con-
tains the computational cost of computing the joint accelerations by other similar

methods repoited in the literature.

Authors Remarks Multiplications | Additions

Kazerounian and Gupta Zero reference positi_o—I:-IL 2468 18790
Walker and Orin Composite rigid bodies 1627 1261
Wang and Ravani Modified W-iker and Orin’s 1659 1252
Featherstone Articulated bodies 1533 1415

in spatial notation
Featherstone Composite rigid bodies 1303 1019

in spatial notation
Angeles and Ma Natural orthogonal 1353 1165

complement
(i) Alg. 6.2 in this thesis Generalized and

Lii) inverse dynamics (Alg. 5.5) augmented links 056 700

iii) Sol. of a linear system [19]

Table 6.3 : Computational Cost for Solving Steps (i)-(iii) of the Forward

Dynamics Problem for n = 6.

- 1904 -

6.5 CONCLUDING REMARKS

In this chapter, we have presented a new aigorithm for computing the joint space
inertia matrix D of the generalized inertia tensor D of a robot manipulator. We have
shown that this algorithm can be derived based on either Newton-Euler or Euler-
Lagrange formulations of robot dynamics. Thus, we have established that from an algo-
rithmic point of view, the solution of the forward dynamics preblem does not depend on
which of these formulations is used. A comparison of the computational complexity of
this algorithm with that of other existing ones shows that the proposed algorithm is
significantly more eflicient. This efficiency is achieved mainly because the underlying
modeling scheme used here for the dynamic analysis allows us to compute several quan-
tities off-line. Moreover, the computational efficiency is improved since the tensor formu-
lation for the equations to be computed online is computationally more efTicient than the
traditional vector formulation. Finally, we have shown that by using inverse dynamics
algorithms from Chapter V to evaluate the bias vector b, and the proposed algorithm
to evaluate the generalized inertia tensor D, the computational cost for solving the for-

ward dynamics problem can be reduced considerably.

- 195 -

6.6 REFERENCES

(1]

(2]
(3]

(4]

(8]

(6]

(8]

)

[10]

(11]

12}

[13]

[14]

[15]

16]

M. W. Walker and D. E. Orin, “Efficient Dynamic Computer Simulation of
Robotic Mechanisms'', ASME J. Dynamic Systems, Measurement and Control, Vol.
104 pp 205-211, 1982.

R. Featherstone, Robot Dynamics Algorithms, Kluwer Academic Publishers, Bos-
ton, MA, 1087.

J. Angeles and O. Ma, “Dynamic Simulation of n-Axis Serial Robotic Manipulators
Using a Natural Orthogonal Complement’, Int. Jeurnal of Robotics Research, pp.
32-45, Vol. 7, No. 5, 1988,

J. Angeles and S. K. Lee. ““The Formulation od Dynamical Equations of Holonomic
Mechanical Systems Using a Natural Orthogonal Complement”, ASAME J. of
Applied Mechanics, Vol. 55, pp. 243-244, 1988.

W. W_ Armstrong, ‘“Recursive Solution to the Equations of Motion of an n Link
Manipulator”, Proc. 5th World Congress on the Theory of Machines and Mechan-
isms, pp. 1343-1346, Vol. 2, Montreal, July, 1979.

G. Rodriguez, ““Kalman Filtering, Smoothing and Recursive Robot Arm Forward
and Inverse Dynamics”, IEEE Journal of Robotics and Automation, Vol. RA-3, No.
6, pp. 624-639, 19087.

G. Rodriguez, ““Recursive Forward Dynamics for Multiple Robot Arms Moving a
Common Task Object” Robotics and Manufacturing : Recent Trends in Research,
Education, and Applications, M. Jamshidi, J. Y. S. Luh, H. Seraji and G. P. Starr,
Eds., ASME Press, New York, 1988.

G. Rodriguez and K. Kreutz, ‘“Recursive and Mass Matrix Factorization and
Inversion : An Operator Approach to Manipulator Forward Dynamics”, JPL Pub-
lication 88-11, March 1988.

J. C. K. Chou, G. Baciu and H. K. Kesavan, “Graph-Theoretic Models for Simu-
Jating Robot Manipulators”, Proc IEEE Int. Conf. on Robotics and Automation,
Raleigh, NC, pp 953-059, 1987,

J. C. K. Chou, G. Baciu and H. K. Kesavan, “Computational Scheme for Simulat-
ing Robot Manipulators”, Proc. IEEE Int. Conf. on Robotics and Automation,
Raleigh, NC, pp 961-966, 1987.

C. S. G. Lee and P. R. Chang, “Eflicient Parallel Algorithms For Robot Forward
Dynamics Computation’, Proc. IEEE Int. Conf. on Robotics and Automation,
Raleigh, NC, pp 654-659, 1987.

M. Amin-Javaheri and D. E. Orin, “A Systclic Architecture for Computation of
the Manipulator Inertia Matrix”, Proc. IEEE Int. Conf. on Robotics and Automa-
tion, Raleigh, NC, pp 647-653, 1987.

J. Y. Han, “Computational Aspects of Real Time Simulation of Robotic Systems’’,
Proc. IEEE Int. Conf. on Robotics and Automation, Raleigh, NC, pp 967-972,
1087.

J. Wittenburg, Dynamics of Systems of Rigid Bodies, Stuttgart : B. G. Teubner,
1977.

K. Kazerounian and K. C. Gupta, “Manipulator Dynamics Using the Extended
Z:ro Reference Position Description’, IEEE Journal of Robotics and Automation,
Vol. RA-2, pp 221-224, 1986.

L. 'T. Wang and B. Ravani, ‘Recursive Computations of Kinematic and Dynamic
Equations for Mechanical Manipulators”, IEEE Journal of Robotics and Automa-
tion, Vol. RA-1, pp 124-131, 1985.

17]

18]
[19]
[20]

- 196 -

C. A. Balafoutis and R. V. Patel, “Efficient Computation of Manipulator Inertia
Matrices and the Direct Dynamics Problem”, to appear in JEEE Trans. on Sys-
tems, Man, and Cybernetics, September, 1989.

G. W. Stewart, Introduction to Matriz Computations, Academic Press, N.Y., 1973.
J. J. Dongarra at al.,, LINPACK : user’s guide, SIAM, Philadelphia, PA, 1973.

R. L. Burden, J. D. Faires and A. C. Reynolds, Numerical Analysis, Prindle,
Weder & Schmidt, Boston, MA, 1978.

CHAPTER VII

LINEARIZED DYNAMIC MODELS FOR RIGID-LINK
OPEN-CHAIN ROBOT MANIPULATORS

7.1 INTRODUCTION

As is well known, our modeling approach to the real world is based on idealizations
and usually the working conditions are not the predicted ones. Therefore, in practice,
one has to take into account the effects of perturbations on the applications being con-
sidered. For example, let us consider the trajectory tracking problem : In this problem,
an important objective is to ensure that the end-effector of a manipulator tracks a
desired *‘nominal” trajectory as closely as possible. Under ideal conditions a dynamic
robot model, such as these presented in Chapter V, will provide the generalized force 7
which will drive the end-effector of a robot manipulator along the desired trajectory.
However, in practice, if only feedforward control signals (calculated from a nonlinear
dynamic model) are applied, the end-effector will not necessarily track the nominal tra-
jectory. This is due to factors such as modeling uncertainties, gear backlash and fric-
tion, actuator and sensor errors, payload variations, etc. which are not taken into
account in the dynamic model. Therefore, a feedback/feedforward control system is

needed to remedy this situation.

In general, manipulator control is a challenging problem since, as we showed in
Chapter V, a dynamic robot model is described by equations which are highly non-linear
and dynamically coupled. Obviously, for these inherently nonlinear dynamical systems
much of the well established linear control theory is not directly applicable. However,
many proposed solutions to the manipulator control problem {1-8] involve the use of
methods from linear control theory. For example, in the aforementioned trajectory

tracking problem, a control strategy which allows linear control methods to be used can

- 108 -

be outlined as follows : First, feedforward control signals are applied to drive the mani-
pulator along a desired nominal trajectory. Then, a correction term for the feedforward
signals is generated by feedback of the perturbations (errors) in the physical state-
variables (vositions and velocities) from their nominal values. This is done using a con-
trol algorithm designed for the linearized dynamic equations of the manipulator -hen-
ceforth called the Iinearized dynamic robot model. Thus, linearized dynamic robot
models which can be obtained in a computationally eflicient manner are important in
manipulator control. Furthermore, linearized dynamic robot models may be used in
other aspects of robotics as well. For example, linearized robot models lead naturally to
trajectory sensitivity functions [7-9] which characterize the sensitivity of the manipulator
motion (along a nominal path) to fixed kinematic or dynamic parameters. Among other
applications, these functions can be used [8,10] to describe the variations in a

manipulator’s trajectory introduced by an unknown pay-load.

The outline of this Chapter is as follows : In Section 7.2 we briefly discuss some
basic approaches taken to linearize the dynamic equations of robot manipulators. In Sec-
tion 7.3 we present a procedure for deriving joint space linearized robot models in a
computationally efficient manner. In Section 7.4, we introduce the Cartesian
configuration space description for the dynamic equations of robot manipulators and

propose a method for their linearization. Finally, Section 7.5 concludes the Chapter.

7.2 LINEARIZATION TECHNIQUES

In this section, we briefly discuss various linearization techniques that have been
employed to linearize the dynamic equations of a robot manipulator. Broadly, these
techniques may categorized as global linearization techniques and local linearization tech-
niques. As the name suggests, in global linearization the resulting linearized dynamic
robot model is valid over the whole domain where the nonlinear model itself is valid.

Alternatively, in local linearization the resulting linearized dynamic robot model is valid

- 199 -

only at a particular point of a given trajectory which is known as the nominal trajec-
tory. In local linearization, if the manipulator does not operate over a small range of its
variables, then as the manipulator moves the operating point has to be moved along
with it and so, in this case, at each new operating point a new (local) linearization has
to be performed. Briefly, global and local linearization can be achieved by using the fol-

lowing methods.

7.2.1 Global Linearization

Global linearization resulted from efforts to control nonlinear systems, and can be
achieved by using either feedback action alone or feedback action combined with coordi-

nate transformations.

In the first approach, i.e., when feedback action alone is used, the main idea is to
‘‘cancel” the nonlinearities in the nonlinear system by using an appropriate feedback law
which makes the overall closed-loop system to behave as a linear system. The resolved
acceleration technique [5] is probably the simplest and most common technique used for
achieving ‘'feedback linearization™ of a robotic system. Also, another interesting feed-
back linearization technique is described in [6]. In these methods, under the feedback
action, the closed-loop response of the system (which may be error signals or end-effector
position variables) is described by a linear second order differential equation which is
viewed as the linearized dynamic robot model. The computational complexity in this
‘Jinearizing control” approach varies with the method and the particular feedback law.
However, in general a Jarge amount of computation is required which in some cases
includes matrix inversion in real-time {5]. Moreover, besides the complexity, a practical
difficulty with this approach is that inexact cancellation of the nonlinearities can result
in a ‘linearized’ model which gives very poor stability performance for the closed-loop

system.

The feedback and coordinate transformation approach for linearizing robot mani-

e

- 200 -

pulators resulted from advances made in the past few decades in the differential
geometric system theory. The main idea in this approach, is to use a diffeomorphict
feedback-transformation (which includes state space change of coordinates, additive
feedback and control (input) space change of coordinates) and transfer the nonlinear
dynamic robot model to an equivalent linear and output decoupled system. In general, a
diffeomorphic feedback transformation of this type exists under certain necessary and
suflicient conditions for a class of nonlinear systems [11-12]. Necessary and sufficient
conditions for the existence of a diffeomorphic feedback-transformation applicable to
dynamic robot models and a method for constructing it have been given in [13]. At first,
this methcd of linearization is attractive because it guarantees exact linearization. How-
ever, it requires an extensive analysis and the feedback transformation law is quite com-
plex. Thus, the algorithms which compute this control law are computationally expen-
sive and, in practical applications, this offsets the advantages gained from the exact

linearization.

7.2.2 Local Linearization

In this approach, fundamental to linearizing a nonlinear system is the concept of a
nominal trajectory which will be denoted here by (q°(t). q°(t) q°(t)). Also,
corresponding to the nominal trajectory there is a nominal generalized force vector 7°(t)
which can be computed by using any of the nonlinear dynamic robot models of Chapter
V. In the foilowing, for the sake of notational simplicity, we shall drop the time parame-
ter t from all the time dependent terms.

Local linearization is based on the Taylor series expansion of the nonlinear dynamic
equations about a nominal trajectory. The Taylor series expansion is applicable to these

equations since they are analytic functions of their arguments. The approach is concep-

t A diffeomorphic transformation is a one-to-one onto C®° transformation between
two manifolds such that its inverse exists and is also C%.

TR SR

C ok

o

- 201 -

tually simple. We assume that the perturbations are small and we consider the first
order approximation to this expansion. To this effect, the nominal portion of this expan-
sion is cancelled algebraically and the terms which are linear in the perturbation quanti-
ties are retained and define the linearized dynamic equations. Following this procedure,
we can express the linearized dynamic equations of a robot manipulator by a closed-form
linear vector equation or by a recursive algorithm which has the same structure as the

recursive algorithms which solves the IDP.

A closed-form linearjzed dynamic robot model, which can be derived by applying
the Taylor series expansion to one of the recursive dynamic robot models of Chapter V,

is written in the form
§r= D%6q + V°6q + P°éq (7.2.1)

where 67, 6q,6q ,6q € IR " are small deviations about some nominal torque and nomi-
nal joint space trajectory. The coeflicients in equation (7.2.1) are known as the
(coefficient) sensitivity matrices of the linearized model. These, are functions of the
nominal trajectory (q°,q°.q°) and are independent of the perturbations. Here, follow-
ing the established terminology, we call the coeflicients in equation (7.2.1) “‘matrices”,
although actually they are 2nd order tensors. The tensor character of these quantities

is obvious from their definitions which are presented next :

D° The inertial force-acceleration sensitivity matrix is the Jacobian of the gen-
eralized force vector 7 with respect to q evaluated about the nominal trajec-

tory i.e., D’ = Vii"(q'.&’.ii')'

V°® The centrifugal and Coriolis force-velocity sensitivity matrix is the Jacobian
of T with respect to q evaluated about the nominal trajectory i.e.,
Vo= vimhqe a4y

P? The force-position sensitivity matrix is the Jacobian of 7 with respect to q

. . y 3 0 —_— . .
evaluated about the nominal trajectory i.e., P°= vq1'| Q°.a°.g°)

- 202 -

To derive a recursive linearized dynamic robot model we again apply the Taylor
series expansion to a nonlinear recursive dynamic robot model. But in this case, the
joint space perturbations 87 of the generalized force vector 7 are computed component-
wise by a recursive algorithm which has the same structure as the recurcive algorithm
which computes the nonlinear manipulator dynamics. The only difference is that now
instead of propagating the actual velocities, accelerations, forces, etc. from link to link
we propagate the perturbations of these quantities about the operating point of a2 nomi-
nal trajectory. Thus it can be shown {9] that recursive linearized dynamic robot models
retain the o(n) computational complexity of a recursive nonlinear dynamic robot model.
However, recursive linearization has limited applications in manipulator control, since it
is difficult to derive the stale-space representation (which is used for the time domain
analysis and control) of the linearized manipulator dynamics directly from a recursive
model. On the other hand, the state-space representation of the linearized manipulator

dynamics can be derived easily from a closed-form linearized dynamic robot model.

Thus, for example, since the force acceleration matrix D° € IR"*" is positive

definite [14] its inverse always exists and this allow us to write equation (7.2.1) as

6(.] — On ln 6q + 0
6";' - (Do)—lpo _ (Do)—lvo &'1 (Do)-l

where 0, and 1, are the zero and unity n Xn matrices, respectively. Equation (7.2.2)

or (7.2.2)

is in the standard state-space form
x(t)= Ax(t)+Bu(t) (7.2.3)
where x (t) (= [6q T(¢)6q T(¢)) ER>®, and u (t) (= ér(t)) ER".

To compute the coeflicient sensitivity matrices of a closed-form linearized dynamic

robot model we can use one of the following methods.

a) parameler identification techniques : In this method, a discrete-time version of the

linearized model is considered first and then an iterative scheme, such as the least-

- 203 -

squares parameter identification algorithm, can be used to evaluate the unknown param-
eters in the sensitivity matrices. This approach has been used in [4] to calculate directly
the coefficient matrices A and B of the state space linearized robot model (7.2.3). Hovi-
ever, it should be noticed that identification schemes can be used effectively only when
the parameters of the system are slowly lime-varying. Also, even in slowly time-varying

systems the convergence of the iterative algorithm may present a problem.

b) analytic or recursive formulations : In this approach we first obtain analytic or recur-
sive expressions for the elements of the Jacobians, and then devise algorithms which
evaluate them numerically or symbolically along points on the nominal trajectory. In
this approach, we do not face the aforementioned restrictions of the parameter
identification techniques, but this method can lead us to computationally expensive algo-
rithms. Linearized robot models based on this approach have been proposed in [8,15]. In
both cases, the 4x4 Lagrangian formulation of robot dynamics has been used, and this
results in linearized robot models which are computationally ineflicient since they inherit
the computational complexity associated with the 4x4 formulati.u of the Lagrangian
dynamic robot model. Also, in [14] the linearization of the Newton-Euler formulation of
robot dynamic models has been derived in parallel with the nonlinear dynamic equa-
tvions. This approach is also computationally inefficient since, as has been estimated in
[14], one has to evaluate 3 + 2n? terms in order to ohtain the coefficient sensitivity

matrices.

In the following, using recursive formulations, we propose a new method for deriv-
ing the Jacobians which define the cocflicient sensitivity matrices of a linearized
dynamic robot model, and devise algorithms for evaluating these Jacobians in a compu-

tational eflicient manner.

7.3 JOINT SPACE LINEARIZED DYNAMIC ROBOT MODELS

The application of the Taylor series expansion to the joint space nonlinear dynamic

- 204 -

equations of a robot manipulator, at least in principle, does not present any problem.
However, the complexity of these nonlinear equations makes that task a challenging
problem, specially if one attempts to derive eflicient computational algorithms for deter-
mining the coeflicient sensitivity matrices of the closed-form linearized dynamic robot
mode] such as that of equation (7.2.1). In this section we shall address this problem and
demonstrate how the various coeflicient sensitivity matrices in equation (7.2.1) can be

evaluated in a computationally eflicient manner.

7.3.1 Joint Space Coefficient Sensitivity Matrices

By definition, the coefficient sensitivity matrices D°, V° and P’ of a join! ..pace
linearized dynamic robot model are the Jacobians of the generalized force vector 7 with
respect to the generalized coordinates q , q and q, respectively, evziuated at a point of
a nominal trajectory (q° ,c';" q °). Thus, for example, if the generalized force vector 7 is
defined component-wise by equation (5.3.8c) of Algorithm 5.4 in Chapter V, we can com-

pute the elements of the sensitivity matrix D’ by using the following equation,

do=20,
J a-q-j @°.9°.q°)
on’ af .
. = 0; ——aql 'Z, ll(q.'&g'ao)-f-(l—o,')[-—-a_q'j 'z,ll(qp'&g'-q-o) (7.3.1)

where o; is equal to one when the t-th joint is revolute and zero when the z-th joint is
prismatic. The elements of the sensitivity matrices V° and P’ are defined in an analo-
gous manner. Therefore, it is o*vious that if we have avajlable the various partial
derivatives of the vector functions n,-" and f,"', we can easily compute the joint space sen-
sitivity matrices D°, V° and P° for robot manipulators with revolute and /or
prismatic joints. In this section, in order to derive a procedure for computing the
coeflicient sensitivity matrices of joint space linearized robot models, we shall consider
manipulators wi.n revolute joints only. In the case of manipulators with some prismatic

joints, the equations are valid with minor modifications. Moreover, for the sake of

B . e

P —

e ah o

- 205 -

continuity, oniy the main results will be presented in this section. Talfent steps (such as
partial differentiation of various vector functions) for arriving st these results are out-

lined in Appendix C.

In the following, we shall assume that the generalized force vector 7 is deflned by
equation (5.3.46¢) of Algorithm 5.5, and that thi= algorithm is applied to manipulators
with revolute joints only. As we have shown in Chapter V, the tensor formujation of
Algcerithm 5.5 makes its implementation computationally very efficient. Therefore,
Cartesian tensor analysis will by used here as well and the basic equations will be stated

in a tensor formulation.

Based on the definition of the appropriate Jacobians, the expressions for the ele-

ments of the sensitivity matrices D%, V° and P° may be determined as given below :
i) Inertial Force-Acceleration Sensitivity Matriz D°

By definition, we can write the (¢,)-th elemert of D° as

87',-
a5 = ol andy
aq_,-

i
= [z‘j__a_"?‘)I(qo {]uaa)
an q°

which may be simplified (see Appendix C) to

(B-TER)H o

2*W; (B4 -8/;05 12f) I >

z,-‘- (Eg.—tjoi‘ i;.‘,')'!;-. J S i

={ ‘ ‘ . (7.3.2)
3/ (Bd-87;0f)2f 1 > ¢

where the last step follows from the fact that the dot product is invariant under coordi-

nate transformations.

- 206 -
i1) Centrifugal and Coriolis Force-Velocity Sensitivity Matriz V°

The elements cf the sensitivity matrix V° are defined by considering the following Jaco-

bian,

ar;
dq;

3
= lzgi'—a-."'"]l(q- arE)
aqj Q

which, on simplification (see Appendix C), gives

ij |(q *4°.4°)

(of (B - U5 8),) if ol LI+ 0L 8f0) 2 ; <
v =2y . o

5 W (B -8/, 1) - oA L7 + 37,)2j) 5 >
(2 (Bo-Uo, 8js)if -2 (Li+ 05 8))) 5 <
(7.3.3)

I
b

2/ (B -8/,04)i/ -2/ (Lj+8/;W)2 7 >4
where

Li=a/ Kg;, + [5:".:'+1Uc‘a at ﬁé,.ﬂé: i+ + A +1L|':11Ai£v

and Kc';' is the pseudo-inertia tensor of the ¢#-th augmented link which is defined by

equation (5.3.4.4d).
iii) Force-Positicn Sensitivity Matriz P°

As in the case of the elements of D° anud V*, we can write

_61’,
Pij"‘aq l(cl 4a°9°)

6*:.
"' ‘(q 4°.9°)

which may be simpliﬁed (see Appendix C) to

i W; ([B]-8/;04 1ij-2[L j+8/ ;W)2/+[04 8J;-87,0 -7 /12j) 7 =9

- 207 -

[Eo —-U' 8} 1) - 225 [L; +'U' ,-]-if+z;"['Ugl 's'o‘:,-]-z}' j <i
z,j-[Eg;-i;’:jﬁo’;]-'z',"'—2z,«’-[LJ’+§, ,,-Q;'J]-z, [U’ 's'o.,-s, JUC{ -jf)2f j >i

(7.3.4)
Note that for notational convenience, the explicit dependence on the nominal variables

has not been shown in ejuations (7.3.2), (7.3.3) and (7.3.4).

At a first glance, these equations look very complex. However, a closer examination
shows that most of the terms are common. This reduces considerably the computational
burden in their implementation. Also, in these equations we can identify the first
moment U(;" and the second moment Ec';' of the 1-th generalized link which, as we men-
tioned in Chapter VI, can be computed recursively by using equations (6.3.3) and (6.3.6),
respectively. Also, as we shall see later, terms such as z}, z,‘ s}_,-, etc. can be computed
recursively. Moreover, the formulation of these equations gives us a valuable insight into
the structural characteristics and properties of the coeflicient sensitivity matrices D?,
V° and P°.

I. is worth noticing that at a point on the nominal trajectory, equation (7.3.2) is
equivalent to equation (6.3.45) which defines the joint space generalized inertia tensor of
a robot manipulator. This is to be expected, since in a closed form representation of a
nonlinear dynamic robot mode! the generalized force vector 7 is linear in the joint
acceieration g, with the generalized inertia tensor D as coeflicient of linearity. There-
fore, the force-acceleration sensitivity matrix D° exhibits the properties of the general-
ized inertia tensor D, i.e., it is symmetric (which can also be seen from equation (7.3.2))
and positive definite. The former property of D° is obviously important in computa-
tional considerations. The latter is important in controller design since it implies that
D’ is nonsingular and thus its inverse exists for all the points along a nominal trajec-

tory.

Unfortunately, symmetry is not preserved in the coeflicient sensitivity matiices V°

and P°. However, they have other important characteristics which may be used to

- 208 -

simplify their evaluation at points along a nominal trajectory. For example, in (8] it has
been shown (following a different analysis) that the element v, , of V° is zero for any
configuration of the manipulator. This also follows from equation (7.3.3), if we notice the

following : When § = j = n, we have,

n__n
o-— o.
n__ ~n_n
8, =W, 2,

n o__:n __

Byn =8, , =0

and

= Ll 0r-amKe .

Therefore, for i = j = n equation (7.3.3) implies that

van =20 [KEa7 + @K - Lor [Kg:]a;,,") -
which, by using the tensor equation (3.4.25), can be simplified into

Vn.n = - 2, dual (Kg &7} 2,7
= 2,2, (Kg, &)
=0 (7.3.5)
where the first step follows from equation (3.4.4) and the last has been derived by apply-
ing equation (3.4.7).

Another important observation, concerning the formulation of the elements of the
first column of the sensitivity matrices V° and P’, is the following : Since the angular
velocity vector is always parallel to the first revolute joint of the manipulator, i.e., the
vector w;! is parallel to z,! (we assume here, as is usually the case, that the first joint is
revolute), then according to Remark 3.8 of Chapter III, we can write the following equa-
tion

a’]“zll =0 (7.3.6)

which implies that

- 200 -

Furthermore, since equation. (7.3.68) is invariant under coordinate transformations, we

can write

ill. = (Dl'.'zli
=0 (7.3.7)
for all 1. Also, using the same arguments, it can be shown that the vector 'z',‘ is zero for

all ¢, i.e., we have

= (7.3.8)
Therefore, by using equations (7.3.7) and (7.3.8) in equations (7.3.3) and (7.3.4), we can

simplify the formulations for the elements of the first column of V° and P°. Moreover,
in the case where the first joint of the manipulator rotates about an axis which is paral-
lel to the gravity fleld the first column of the sensitivity matrix P° becomes equal to
zero. This is true since, by assuming that the vector zll is parallel to the gravity vector
8 = Bg;, we have

s 012 =0 (7.3.9)
which follows from equation (3.4.8) (see Remark 3.8). Now, as with equation (7.3.6), in

the ¢-th coordinate system we have

.s'o..'l'zli= 0 (7-3.10)
and this, together with equation (7.3.6), implies that the first column of the coeflicient

sensitivity matrix P° is zero in the case where the first revolute joint of the manipulator

is parallel to the gravity fleld. An alternative proof of this result can be found in (8].

With these observations on the structural characteristics of the sensitivity matrices
D?. V° and P° we proceed to analyze the numerical implementation of equations

(7.3.2)-(7.3.4).

- 210 -

7.3.2 Implementation and Computational Considerations

As with the numerical implementation of various tensor equations in Chapters V
and VI, the same observations and terminology will be applied in this section for the
numerical implementation of equations (7.3.2)-(7.3.4). Moreover, for the implementation
of these equations, we shall assume that the nonlinear dynamic robot model which is
described by Algorithm 5.5 is available. This assumption is justified since in control
applications the generalized force vector 7 is an integral part of most control laws. Thus,
quantities such as : uc‘;', 6),-‘, nj, 's'o{' i Kc';' and Kg) are assumed to be available from
Algorithm 5.5. From the foregoing, only the quantities which are computed in the fol-
lowing two algorithms are needed to be known for the evaluation of equations (7.3.2),

(7.3.3) and (7.3.4).

ALGORITHM 7.1

Step 0 : Initialization :- j=1, n -1

j. . =8f.=0 (7.3.11)

j= T .j:="jj"j= %) /
2 [001]7, 2/ =d)z], z; z], 8] ; J.J

Step 1 : Forward Recursion :- i =j+1,n

2f = ATz (7.3.122)
i = AT;- .3.
j=Al:" (7.3.12b)
Zf = AT (7.3.12¢)
e Teoi—
805 = A8, (7.3.12d)
sl =AT [5} i sii—_ll.i] (7.3.12¢)
8fi = AT [54531-1 + Gi’.-llsii:ll.i] (7.3.12f)

end.
ALGORITHM 7.2

Step 0 : Initialization :- 1=n

US =ug, U2 =aMd, B =K&, L=a/Rg (7.3.13)
Step 1 : Backward Recursion :- i=n-1,1
Us =ud + AU % (7.3.14a)

- 211 -

U = afud + A U5 (7.3.14b)
Ed =K -m.ﬂ{*r:o el (RS RVAl }A‘.a, (7.3.14¢)

O+ Oy +1

Li= /RS + Arna{Lif + [s::‘:,u'“wuu'“a::‘il Jjals e
end.

Let us consider first the numerical implementation of Algorithms 7.1 and 7.2. As in
Chapters V and VI, we shall consider two classes of robot maripulators, namely, robot
manipulators with a general geometric structure and robot manipulators for which the
twist angles are, by design, either O or 90 degrees. In the following, when we refer to

multiplications or additions we mean scalar multiplications or scaiar additions.

As we can see, the structure of the equations in Algorithm 7.2 is the same as that
of the equations in Algorithm 6.2. In particular, equations (7.3.14a), and (7.3.14c) are
exactly the same as equations (6.3.29a) and (6.3.29c), respectively. Therefore, observa-
tions made in Section 6.4 can also be used here. For example, to implement equation
(7.3.14c) in the general case (i.e., when the twist angle is different from 0 and 90
degrees), we need 30 multiplications and 39 additions. Also, using the trigonometric
identities of Section 6.4, it can be shown that the coordinate transformation
A; LiHAT, can be implemented with 36 (18) multiplications and 32 (20) additions
when the twist angle is different from (equal to) O or 90 degrees. Moreover, since we need
© multiplications and 3 additions for the multiplication of two skew-symmetric matrices,

we require 18 multiplications and 15 additions to compute the matrix

5,’;'"_},,Uc§':: + U';:é,‘ﬁl). Finally, to implement the term (D,-’.Kci we need another 15

multiplications and 9 additions. Therefore, to implement equation (7.3.14d), we need 69

scalar multiplications and 74 scalar additions in the general case.

The implementation of Algorithm 7.1 is straightforward. Each equation needs to be

evaluated n(n - 1)/2 times. However, if equations (7.3.7) and (7.3.8) are taken into

-212-

account, the terms ij and z; need to be evaluated (n — 1)(n - 2)/2 times. Moreover,
when the first joint is parallel to the gravity fleld, the vector 's'o': 1 is a scalar multiple (by

= 9.81) of zf and this simplifies the computations. Also, as we mentioned in Section
6.4, some saving in computations can be made in computing the vectors

i+1 _ AT _J ; ; +1
8/7+1=A 8] ;41 The same is obviously true for the vectors z] **.

Based on these observations, a breakdown of the number of scalar multiplications
and additions required for the implementation of each equation in Algorithms 7.1 and
7.2 is given in Table 7.1. The total figure represents the operations count for computing

these equations when all the joints of a robot manipulator are of revolute type.

Manipulator with Manipulator with
general twist angles twist angles equal to 0° or 90°
Equation { Multiplications Additions Multiplications Additions
7.3.12a 4n%2-10n + 6 2n?—-6n + 4 2n?-6n + 4 n?-3n +2
7.3.12b 4an2-12n + 8 2n?-6n + 4 2n?-6n + 4 n2-3n +2
7.3.12c 4n%-12n + 8 2n?-6n + 4 2n?-6n + 4 n%-3n + 2
7.3.12d 4n%- gn + 5 2n%-6n + 4 2n?-3n +1 n%-3n +2
7.3.12¢ an?_-10n + 8 3.5n2-11.5n + 7 2n2-6n + 4 25n%-75n + 5
7.3.12f n%-7n 5n%—-5n 5n% —5n 4n? - 4n
7.3.14a 8n -8 n -7 4n ~ 4 5n -5
7.3.14b 14n - 14 10n - 10 10n - 10 8n -8
7.3.14c¢ 30n - 30 39n -39 20n - 20 32n - 32
7.3.14d 68n - 69 74n - T4 5in - 51 63n - 63
Total 27n% + 61n-88 [16.5n% + 100.5n- 107 | 15n? + 53n - 68 |10.5n2 + 84.5n ~ 95
n =6 1250 1090 790 790

Table 7.1 : Operations Count for Implementing Algorithms 7.1 and 7.2.

Now, for an efficient implementation of equations (7.3.2)-(7.3.4) we can make a
number of interesting observations. For example, in implementing equation (7.3.2), since
the matrix D° is symmetric, we need to compute only its upper (or lower) triangular
part. Also, some terms are common to all three matrices. Moreover, in most dot pro-
ducts one of the vectors involved, namely the vector g/, is a unit vector and thus we do

not actually need to perform any computation for implementing such operations. In

-213 -

particular, based on these observations, we can compute the diagonal elements of these
matrices with almost no computational cost since we have s; = 8/ ; = 0. Also, in com-
puting the first sub-diagonal (or super-diagonal) of these matrices we can assume that
terms such as i;‘,,-*},,f)c';;’l, i;‘_?i,ég";‘, and Uc';;‘lg,-"}l, are known from Algorithm 7.2.
Finally, equations (7.3.7), (7.3.8) and (7.3.10) may be taken into consideration for a more
efficient implementation of equations (7.3.3) and (7.3.4). Based on these observations, an

estimate of the number of scalar operations involved in the numerical implementation of

equations (7.3.2), (7.3.3) and (7.3.4) is given in Table 7.2.

Manipulator with general twist angles
Equation Multiplications Additions
7.3.2 9n%-18n + 8 on?-12n + 3
7.3.3 15n2 - 30n + 34 14n2-15n + 25
7.3.4 16n%-53n + 60 13n2 — 43n + 46
Total 40n2 - 101n + 102 36n? - 70n + 74
n==~6 936 950

Table 7.2 : Operations Count for Implementing Equations (7.3.2), (7.3.3) and (7.3.4)

As we can see from Tables 7.1 and 7.2, we need approximately 2186 scalar multipli-
cations and 2040 scalar additions to compute the joint space sensitivity coeflicient
matrices of a linearized robot model at a point of the nominal trajectory. This estimate
is valid for a manipulator with all joints of revolute type and arbitrary twist angles. As
is well known, this case is computationally the most expensive one since when prismatic
joints are present some rotational transformations are not needed. For manipulators
with simpler geometric structure, i.e., with twist angles O or 90 degrees, the computa-
tional cost for the same operations is reduced to 1726 scalar multiplications and 1740

scalar additions.

For the sake of comparison, we mention here that to compute the closed-form

linearized robot model in joint space, with the procedure which is proposed in {15], will

- 214 -

require 7400 scalar operations. Also, in [8] it has reported that to generate, symbolically,
the joint space linearized robot model will require approximately Vn times more scalar
operations than the symbolic generation of the associated nonlinear dynamic robot
model. However, the same authors in [{17] have been estimated that this nonlinear
dynamic robot model will require 2687 (4X4) matrix-matrix multiplications and 196 trace
operations and vector-matrix-vector multiplicztions (for a 6 degrees-of-freedom manipu-
lator) which results in more than 15000 scalar multipiications. Therefore, the procedure
which is proposed here for obtaining the coefficient sensitivity matrices of a joint space
linearized dynamic robot model has significantly higher computationally efficiency when

compared with other approaches available today.

7.4 CARTESIAN SPACE DYNAMIC ROBOT MODELS AND THEIR LINEARIZATION

As is well known (18], it is possible to describe the dynamics of a robot manipulator
by using other sets of variables besides joint space variables. These variables are known
as operalional space variables, and among them, the Cartesian configuration space vari-
ables or simply Cartesian space variables are probably the most important. For example,
in many cases, such as for end-effector motion and force control it may be desirable to
express the dynamics of a manipulator in terms of ‘“external” variables for direct, and
thus better, measurements. In these cases, Cartesian space variables are obviously
appropriate. Briefly, dynamic robot models described in terms of Cartesian space vari-
ables -henceforth called Cartesian space dynamic robot models can be introduced as fol-

lows.

7.4.1 Cartesian Space Dynamic Robot Models

As we mentioned in Chapter II, for nonredundant manipulators, the Cartesian
space variables x are defined to be the independent configuration parameters which

specify the position and orientation of the end-effector relative to the inertia coordinate

e gt

BTN TPV PR T

- 215 -

system. These Cartesian variables are functions of the joint space coordinates and this is

usually expressed by a ‘‘geometric” equation of the form
x = h(q). (7.4.1)

In general, the vector function h is not one-to-one. However, in a restricted domain of
the joint space, h can be assumed to be one-to-one. In this case the Cartesian space

dynamic model of a robot manipulator can be defined [1,18] by the following equation
f =D,(q)x + Cyla,q) + G,(q) (7.4.2)

where £ is an n X1 force-torque vector acting on the end-effector of the robot, and x is
a Cartesian space vector which describes the position and the orientation of the end-
effector. The o her terms in equation (7.4.2) are defined as follows : Dx(q) is the n Xn
Cartesian space generalized inertia tensor, Cx(q, q } is the n X1 Cartesian space vector
of centrifugal and Coriolis terms, and Gx(q) is the n X1 Cajr“~sian space vector of
gravity terms. Obviously, all these (T artesian terms are implicit functions of the joint
space coordinates. Actually, it can be shown [18] that if a closed-form joint space

dynamic robot model is given by the equation

r=D(q)g +C(q.q)+ G(q) (7.4.3)

where D(q) is the n Xn join. space generalized inertia tensor of the manipulator,
C(q, t';) is the n X1 joint space vector of centrifugal and Coriolis terms, and G(q) is
the n X1 joint space vector of gravity terms, then the aforementioned Cartesian space

quantities are related to their joint space counterparts by the following equations :

D,(q)=J"T(q)D(q)I q) (7.4.4a)
C,(q,4)=J"T(q)(Ca, a)-D(a)I*q)lq)q) (7.4.4b)
G,(q)=JT(q)G(q) (7.4.4c)

f =JT(q)r (7.4.4d)

where J(q) is the manipulator Jacobian which has been assumed here to be nonsingular.

When the Jacobian is locally singular, it is still possible ['8] to deflne equation (7.4.2) by

- 216 -

considering the manipulator to be a redundant manipulator locally. However, since in
this thesis we are dealing with nonredundant manipulators, we shall assume that the

manijpulator Jacobian is nonsingular.

Now, since in practical applications we cannot actually cause a Cartesian force (0
be applied to the end-effector of a manipulator, we use equation (7.4.4d) to transfer the
Cartesian force vector f to an equivalent joint torque vector 7 which effectively will
cause the end-effector to follow the required motion. Therefore, instead of computing
first the force vector f and then transferring it to 7, we may compute directly the joint
torque vector 7. To achieve this, we combine equations (7.4.2) and (7.4.4d) and write the

following Cartesian configuration space torque equation.
r=D,q)x +C,(q.q) + G,(q) (7.4.5)

which defines directly the vector of the joint torques 7 when the dynamics of a robot are

expressed in terms of the Cartesian space variables x.

From the foregoing, as we can see, it is possible Lo define the generalized force vec-
tor 7 in terms of either joint or Cartesian space variables. Therefore, it may be required
in practice (e.g., for Cartesian based control applications) to be able to define the pertur-
bations 67 of 7 in terms of periurbations of the Cartesian space variables, i.e., to be able

to define Cartesian (configuration) space linearized dynamic robot models.

7.4.2 Cartesian Space Linearized Dynamic Robot Models

Direct application of the Taylor series expansion to the nonlinear equations of a
robot manipulator written in terms of the Cartesian space variables, as in equations
(7.4.2) or (7.4.5), is rather difficult because it involves implicit differentiation in terms of
the joint space variables. To avoid this complex differentiation, we can follow a similar
approach as that used to derive Cartesian space nonlinear dynamic models from the
joint space ones. In particular, in this approach, to define Cartesian space linearized

dynamic robot models we define first a joint space linearized dynamic robot model and

- 217 -

then, by expressing the joint space perturbations in terms of the Cartesian space per-
turbations, we manipulate algebraically the joint space linearized dynamic robot model
to a Cartesian space one, Therefore, in order to derive a Cartesian space linearized
dynamic robot model we shall assume that cvhe joint space linearized dynamic robot

model of equation {7.2.1) is available.

As we mentioned in Section 7.4.1, the end-effector Cartesian space coordinates x of
a nonredundant manipulator can be considered as (Cartesian space) generalized coordi-
nates which are related to the joint space generalized coordinates q by the nonlinear
equation (7.4.1). As is well known, the time derivatives of these two sets of generalized

coordinates are related by the equation
x = Jq)q (7.4.6)

where J(q) is the manipulator Jacobian. For general operational spaces the manipulator

Jacobian is defined by the equation

oh(q)

J(q) = 3

(7.4.7)

where h is defined by equation (7.4.2). Urnfortunately, this is not true for the Cartesian
space variables since there is no 3X1 orientation vector whose derivative is the vector of
the angular velocity. However, in the case of Cartesian space variables the manipulator
Jacobian can be easily extracted from the equations which define the linear and angular
velocity of the end-effector. Based on these equations, several methods for defining the

manipulator Jacobian have been proposed in (18].

Equation (7.4.6) implies that infinitesimal Cartesian displacements or small pertur-
bations of the end-effector Cartesian vector x are related to the joint space perturba-

tions 6q by the equation
bx = J(q)éq . (7.4.8)

Furthermore, by differentiating equation (7.4.8) we get

thsv“

- 218 -

5% = J(q)éq + 3(q)6q (7.4.9)
and
8% = J(q)éq + 23(q)6q + J(q)54 . (7.4.10)

Now, since in the definition of the Cartesian space nonlinear dynamic equations we have
assumed J(q) to be nonsingular, J™! exists and therefore we can solve equations (7.4.8)-

(7.4.10) for §q , 6q and &g to get

§q = J'x (7.4.11)
6q = Jl6x - J1J I 16y (7.4.12)
64 = J6% - 2J1J I 6y - [J“:f Il - 231 3y J“’]J,v. (7.4.13)

Expressions (7.4.11)-(7.4.13) can be used in (7.2.1) to yield

br= [D*3 s + [Vea - 2D gii s
+ [P" I oVt oDpe (33 37 - 230 3 5]6x. (7.4.14)

or, if we define

D= D°J! (7.4.15)

V= (V° -2D/J)J (7.4.16)
and

Pe= (P° -V -D2J)J7, (7.4.17)

equation (7.4.14) can be written in a compact form as
6r = D 26X + V. 26x + P,léx. (7.4.18)

Equation (7.4.18) defines the perturbation in the vector of joint torques 7 as a result of
perturbations in the vectors of Cartesian space positions, velocities and accelerations,
i.e., it defines a Cartesian space linearized dynamic robot model. Moreover, by analogy
with joint space linearized dynamic robot models, we may refer to the matrix coeflicients

of equations (7.4.18) as the Carlesian space coefficient sensitivity matrices.

- 219 -

Now, as we can see from equations (7.4.15)-(7.4.17), most of the quantities which
are involved In the definitions of the Cartesian space coefficient sensitivity matrices
D;, V. and P} may be considered to be known, since they are available either from the
joint space linearized dynamic robot model or from the Cartesian space nonlinear
dynamic equations (e.g., see equation (7.4.4)). Therefore, the implementation of equa-
tion (7.4.18) requires only a few extra computations. Thus, following this approach, we
can derive both joint and Cartesian space linearized dynamic robot models with almost

the same computational cost.

7.5 CONCLUDING REMARKS

In this chapter, the linearization of the dynamic equations for rigid-link serial-type
robot manipulators has been considered. Based on the Taylor series expansion and using
Cartesian tensor analysis, we have proposed a new procedure for obtaining the elements
of the joint space coeflicient sensitivity matrices. Also, we have shown that this pro-
cedure leads to algorithms which can be implemented numerically more efficiently than

other similar algorithms existing in the literature.

The problem of obtaining Cartesian space linearized dynamic robot models has also
been addressed in this chapter and, to the best of our knowledge, this is the first time
where Cartesian space linearized dynamic robot models have been considered. To sim-
plify our analysis, we have assumed that the manipulator is operating in a region of the
work space where the Jacobian is nonsingular and we have shown that in these singular-
ity free Cartesian conflguration spaces, linearized dynamic robot models can be readily

obtained from the joint space ones and the manipulator Jacobian.

- 220-

7.6 REFERENCES

1]
[2]

(3]

4]

(5)
le]

{7]

(8]

(0]

(10]

(11}

(12)

{13}

(14}

(15]

(16]

(17]

(18]

J. J. Craig, Introduction to Robotics : Mechanics & Control, Addison-Wesley,
Reading. MA 1986.

P. Misra, R. V. Patel, and C. A. Balafoutis, “Robust Control of Linearized
Dynamic Robot Models”, in ‘Robot Manipulators: Modeling, Control and Educa-
tion’, M. Jamshidi, J.Y.S. Luh and M. Shahinpur, Eds., 1086.

P. Misra, R. V. Patel and C. A. Balafoutis, in ‘“‘Robust Control of Robot Manipu-
lators in Cartesian Space”, Proc. American Control Conf., pp. 1351-1°78,
Atlanta, Georgia, June 15-17, 1988.

C. S. G. Lee and M. J. Chung, “An Adaptive Control Strategy for Mechanical
Manipulators', in Tutorial on Robotics, C. S. G. Lee, R. C. Gonzales and K. S,
Fu, Eds., IEEE Computer Society, 1983.

J. Y. S. Luh, M. W. Walker and R. P. Paul, ‘“‘Resolved-Acceleration Control for
Mechanical Manipulators’, J. Dyn. Sys., Meas., & Cont., Vol. 102, pp. 69-76, 1980.

E. Freund, ‘“Fast Nonlinear Control with Arbitrary Pole-Placement for Industrizi
Robots and Manipulators’’, Int. J. Robotics Research, pp. 85-78, Vol. 1, 1082.

P. M. Frank, Introduction to Sycte.n Sensitivity Theory, Academic press, New
York, 1978.

C. P. Neuman and J. J. Murray, ‘‘Linearization and Sensitivity Functions of
Dynamic Robot Models’, JEEE Trans. Syst. Man and Cyber., SMC-14, pp. 805-
818, 1984.

J. J. Murray and C. P. Neuman, ‘‘Linearization and Sensitivity Modeis of the
Newton-Euler Dynamic Robot Models™, J. ©2.n. Sys. Mieas. & Contr., Vol. 108,
PD. 272-276, 1986.

C. P. Neuman, and P. K. Khosla, “Identification of Robot Dynamics : An Applica-
tion of Recursive Estimation,” in Adaptive and Learning Systems : Theory and
Applications, K. S. Narendra, Eds., Plenum Publishing Corporation, New York,
1986.

R. Su, “On the Linear Equivalents of Nonlinear Systems’ in Systems and Control
Letters, Vol. 2, No. 1, pp. 48-52, 1982,

L. R. Hunt, R. Su, and G. Meyer, ‘“Global Transformations of Nonlinear Systems’’,
in IEFEE Trans. on Automatic Control, Vol. AC-28, No. 1, 1983.

Y. Chen, Nonlinear Feedback and Computer Control of Robot Arms, Ph. D. Thesis,
Washington University, St. Louis, MO, 1984.

M. Vukobratovic, and N. Kircanski, Scientific Fundamentals of Robotics 4 : Real-
Time Dynamics of Manipulation Robots, Springer-Verlag, Berlin, 1985.

C. A. Balafoutis, P. Misra, and R. V. Patel, ‘‘Recursive Evaluation of Linearized
Dynamic Robot Models”, in JEEE J. Robotics and Automation, RA-2, pp. 146-
155, 1986.

C. A. Balafoutis and R. V. Patel, “Linearized Robot Models in Joint and Cartesian
Spaces”, in Proc. 9th Symposium on Engineering Applications of Mechanics :
Current and Emerging Technologies, London, Ontario, May 20-31, pp. 587-504,
1988.

J. J. Murray and C. P. Neuman, “ARM : An Algebraic Robot Dynamic Modeling
Program’’, in Proc. IEEE Conf. on Robotics, pp. 103-114, Atlanta, CA, Mar. 13-
15, 1984.

O. Khatib, A Unified Approach for Motion and Force Control of Robot Manipu-
lators : The Operational Space Formulation”, in IEEE Journal of Robotics and
Automation, Vol. 3, No. 1, pp. 43-53, 1087.

- 221-

(18] D. E. Orin and W. W. Schrader, “Efficient Computation of the Jacobian for Robot
Manipulators”, in Int. J. Robotics Research, Vol. 3, pp. 66-75, 1984.

CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

8.1 CONCLUSIONS

This thesis does not represent the start of a new fleld nor the culmination of an
existing one, It is a contribution to the significant effort that has been made and is being
made by a number of researchers to make flexible automation an every day reality. Our
goal in this thesis has been to derive easy-to-use and computationally eflicient algo-
rithms for solving some basic problems of robot dynamics. In particular, we have con-

sidered the following problems of rigid-link open-chain manipulator dynamics :
t) the problem of inverse dynamics,
t1) the problem of forward dynamics, and

t11) the linearization of the equations of motion for the above mentioned class of mani-

pulators.

These problems are chosen from practical considerations since, as we have discussed in
this thesis, their solution in a computationally efficient manner is a prerequisite for real-
time robotic applications, which in turn is necessary for flexible automatjon in a dynami-
cally changing environment. The main drawback in solving these problems with many of
the existing efficient algorithms in the robotics literature is that they are based on cus-
tomization which restricts their applicability to manipulators with specific geometry.
The main feature of the algorithms presented in this thesis is that they are computa-
tionally very efficient without requiring customization, and therefore they can be applied

to almost all general purpose industrial robots.

The computational efficiency of these algorithms has been demonstrated through

comparison with other algorithms in the literature and has been achieved mainly

P e ey

L e S et

- 223 -

through a more eflicient formulation of the dynamic equations of motion. A deeper
understanding of the mathematical representations used to describe basic physical quan-
tities of motion, has guided us in developing a new methodology for the analysis of the
dynamic equations of rigid body motion and has resulted in an efficient formulation of
these equations. Also, the use of generalized and augmented links has enabled us to
devise underlying modeling schemes which are very much suited for the dynamic
analysis of rigid-link open-chain robot manipulators, since they allow us to compute as
many as possible manipulator’s configuration independent dynamic parameters ofl-line.
Thus, by using Cartesian tensor analysis and the ideas of generalized and augmented
links, we have proposed in this thesis algorithms which are computationally the most
efficient non-customized algorithms presently available for solving ilie three problems

mentioned above.

However, during the course of this research, contributions have been ma le not only
in the field of robotics (which was our main goal) but also in the fields of Cartesian ten-
sor analysis and multi-body dynamics. Briefly the contributions that this thesis has

made in the latter flelds are as follow:, :

In Cartesian tensor analysis, by :vvloring the relationships between second order
Cartesian tensors and their vector invariants, new simple coordinate-free proofs are
given for some well known tensor-vector equations and a number of new propositions
have been stated and proved. These propositions define important tensor identities
which allow us to manipulate second order Cartesian tensors very efficiently as abstract
objects without the need to resort to coordinate bases. Also, a geometric interpretation
for the second order skew-symmetric Cartesian tensors has been given which allows for
an easy description of (relatively) oriented plane areas and a simple mathematical
analysis of the linear space of planes in three dimensional Euclidean spaces. This
geometric characterization and analysis of skew-symmetric tensors and planes gives a

concrete physical interpretation and a deeper insight into tensor algebraic equations

- 224 -

which may result in more efficient solutions to practical problems.

Based on this new understanding of Cartesian tensor analysis, a new methodology
for studying classical rigid body dynamics has been proposed in this thesis which is con-
ceptually simple, easy to implement, and computationally efficient. In particular, by
introducing the angular acceleration tensor, a new tensor formulation has been given to
one of the basic equations of rigid body motion, namely, the Euler equation. This tensor
formulation of Euler's equation, retains the simple structure of its classical vector formu-
lation but is computationally far more eflicient. Moreover, it has been demonstrated
that the use of the angular acceleration tensor also simplifies the computation for the
linear acceleration of various position vectors which are important in studying rigid
body motion. Thus, based on this new tensor methodology we have provided a new

approach to the study of classical Newtonian mechanics.

8.2 FUTURE WORK

It is in the nature of research that the solution of one problem often gives rise to
many new questions or problems. In the case of the research which is presented in this

thesis, the following questions surface naturally.

1) Parallel computations : The rxecution of the proposed algorithms is assumed to be
done in a sequential fashion using a single processor. Therefore, in order to reduce
further the time required to carry out the computations involved, it would be interesting
to examine possible scheduling srhemes in which many of the ‘primitive’ operations
(matrix/vector arithmetic operations) can be executed in parallel using a number of pro-
cessors. Moreover, it would be useful to develop schemes for implementing these compu-
tations on a commercially available parallel computer architecture such as the Hyper-
cube {1-2].

ii) Kinematic and dynamic analysis uf losed-chain mechanisms (e.g., manipulators,

dextrous har s, multirobots, etc.) and flexible link manipulators . As we have mentioned

- 225 -

in this thesis, the articulated part in most industrial robots is an open-chain manipula-
tor with rigid links. However, in recent years some effort has been directed towards
alternative manipulator designs which require the study of closed kinematic chain
mechanisms or structural flexibility. Closed kinematic chain rigid-link manipulators
have potential applications where the demand on workspace and maneuverability is low
but the dynamic loading is severe and high speed and high precision motions are of pri-
mary concern. On the other hand, the use of large-scale light-weight man:pulators, with
inherent structural flexibility is very attractive in space applications where the size of
the workspace and the amount of power which is required to operate the robot are criti-

cal factors.

The kinematic and dynamic analysis of rigid-link robot manipulators with closed-
chain geometry or those with flexible links is more difficult than that of open-chain
rigid-link robot manipulators and has not been as extensively studied. For example,
present formulations for the dynamic equations of motion of robot manipulators with
closed kinematic chains pertain to the particular method (Newton-Euler, Lagrange,
Kane's, etc.) which is used to derive them and, in general, different methods result in
different forms of the equations of motion. Also, it is not clear if recursive formulations,
like those proposed for open-chain manipulators, can be found for manipulators with
closed-chain geometry. These and other problems in the kinematic and dynamic analysis
of closed-chain manipulators may benefit from the physical insight that dynamic
analysis of rigid body motion based on Cartesian tensor analysis can provide. Also,
techniques from rigid body dynamic analysis can be used for the dynamic analysis of a
flexible link manipulator since the latter can be modeled, for example, as a chain of rigid

sublinks interconnected by elastic joints.

ii) Manipulator control : This is a very active fleld of research in robotics and many
problems in position and/or force control have yet to be solved with adequate degree of

robustness so that real-time flexible automation can be achieved. Towards this goal, the

- 228 -

computational algorithms which solve the problem of inverse dynamics, presented in this
thesis, provide new efficient ways for implementing ‘‘computed-torque” type control
methods. In particular, since the computational cost of these inverse dynamics algo-
rithms is relatively small, jt may be possible now to design real-time manipulator con-
trollers based on more advanced techniques of linear control theory (e.g., robust ser-
vomechanism techniques [3] and robust control [4]) instead of using simple PD or PID
controllers which are usually employed with computed-torque control methods. If such
robust controllers can be implemented in real-time, then the computed-torque based
controllers, may become effective means of controlling rigid link robotic manipulators.
Also computed-torque based controllers augmented with simple adaptive controllers (as
proposed by Craig et al. [5]) which will compensate for unmodeled dynamics or varying
pay-loads may then also provide an efficient and economic solution to manipulator con-
trol problems. Finally, the joint or Cartesian space linearized robot models which have
been proposed in this thesis provide us with an alternative way of using linear control

theory in designing simple manipulator controllers.

iv) Geometric characterization of rotation tensors and Cartesian tensor analysis : The
problem of describing uniquely, with the minimum possible number of independent vari-
ables, a rotation tensor defined in a 3-D Euclidean space has been of interest since the
middle of the 18-th century, when Euler first showed that a rotation tensor possesses
three degrees-of-freedom. The extensive literature on the subject indicates the impor-
tance of this problem. Over the years, a number of solutions have been proposed for this
problem. Among them the most familiar are those which are based on concepts involv-
ing a set of three linearly independent scalar vartables (usually three successive angles),
quarternions, special unitary 2X2 and 3X3 matrices, Pauli spin matrices, etc. Although
sufficient for practical purposes, all these solutions are not free from limitations or other
problems. For example, solutions which are based on three linearly independent scalar

variables are not free from singularities while the so-called ‘“‘quarternion methods’ are

- 227 -

1-2 ways descriptions. On the other hand, it is well known {8] that topologically it is
impossible to have a global 3-dimensional parametrization for the rotation group
without singular points and that five is the minimum number of scalar parameters
which suflices to represent the rotation group in a 1-1 global manner. At first glance,
this appears to be a paradox since, as we have mentioned, a rotation tensor possesses
three degrees-of-freedom, so that it is natural to evnect that three linearly independent

variables can be associated with them globally.

Examination of all existing descriptions of a rotation tensor reveals that to a
degree-of-freedom of a rotation tensor, we associate a 1-dimensional scalar variable (i.e.,
a real number). Thus, for example, when we describe a rotation tensor by using three
successive angles, conventionally we consider an angle to be described by a (1-
dimensional scalar) variable which measures the length of an arc and is associated with
one direction, the axis of rotation. However, an angle is more than a scalar. Actually, an
angle expresses a relation between two directions and this implies that an angle is associ-
ated with two directions, i.e., an angle is associated with a plane area. Therefore, the
‘“correct” description of an angle is not by a 1-dimensional variable but by a 2-
dimensional variable which defines a plane area. This approach of describing the
degrees-of-freedom of a rotation tensor is also supported from the following considera-

tions :

First, as is well known {7], an orthogonal tensor R defined in the n-dimensional

Euclidean space can be written in the form

R=@0+N)1-N)!
where N is a skew-symmetric tensor. Now, since a skew-symmetric tensor defined in an
n -dimensional (oriented) Euclidean space has —;-n (n-1) linearly independent variables it
follows that the tensor R can be described in terms of %—n (n-1) linearly independent

variables. On the other hand, in an n-dimensional (oriented) Euclidean space the

- 228 -

number of ways of choosing 2 different directions (i.e., oriented plane areas or oriented

angles) out of n is given by

n!

n
()= Fmn

= -;—n(n-—l)

which is equal to the number of linearly independent variables which an orthogonal ten-
sor (and thus a rotation tensor) possesses. Secondly it can be shown [8] that we can

define the components of the angular velocity vector by the following integrals

w; =:‘; 6;dc (i =1,2,3)

where, d o is the area of a differential element and 6; are angles introduced in a certain
manner (see [8]). This fact, and the close relationship which exists between a rotation
tensor and its angular velocity tensor indicates that the degrees-of-freedom of a rotation

tensor have a close relationship with plane areas.

From these considerations, it seems that the primitive and thus *‘proper’ descrip-
tion of a degree-of-freedom of a rotation tensor is provided by a 2-dimensional variable
which may define a plane area. If this is true, it implies that we may be able to describe
a rotation tensor by three linearly independent variables in an 1-1 global manner by
using three linearly independent planes or three linearly independent 2-dimensional vari-
ables. To see if this is possible and how it can be done, we need to have a deeper under-
standing of Cartesian tensor analysis in general and, in particular, we need to be able to
work effectively in the linear space of planes which has been introduced in Chapter IHI of

this thesis.

However, besides applications to this ‘“‘unconventional’’ description of rotation ten-
sors, Cartesian tensor analysis can be used in other ways too. For example, as we have
shown in Chapter III of this thesis, Cartesian tensor analysis provides a geometric expla-

nation of why the transpose of a rotation tensor is equal to its inverse. Furthermore,

Ta A T TR

R o T 4w T

- 229 -

relatively oriented skew-symmetric tensors provide a mathematical representation of
expressions in the nature language such as “right-handed” or *‘left-handed’’ rotations,
Moreover, Cartesian tensor analysis enables us to extract the correct angle 8, for
0 < 0 < 2m, from a rotation tensor when its axis of rotation is known. This follows
from the fact that for a rotation R, with axis of rotation r, its angle @ satisfies the fol-

lowing equations

cos (8) = -12-(tr[R] —1)

and

sin{f) = —l——R 7T

2|r |
the derivation of which is simple and will be reported elsewhere [9]. Therefore, Cartesian
tensor analysis is shown to be a powerful mathematical language for the analysis of rota-
tion tensors. This may help us to derive unique solutions for problems where, by tradi-

tional methods, we end-up with multiple solutions (e.g., inverse manipulator kinematics).

- 230 -

8.3 REFEF :NCES

f1]

(2]
(3]
l4}

[5]
[6]
7)
8)
fol

A. J. Laub and J. D. Gardiner, ““Hypercube Implementation of Some Parallel Algo-
rithms in Control”, in Advanced Computing Concepts and Techniques in Control
Engineering, Edited by M. J. Denham and A. J. Laub, Springer-Verlag, NY, 1987.
O. A. McBryan and E. F. Van de Velde, ““Hypercube Algorithms and Implementa-
tions™, SIAM J. Sci. Stat. Comput., Vol. 8, pp. 227-287, 1987.

R. V. Patel and N. Munro, Multivariable System Theory and Design, Pergamon
Press, Oxford, 1982,

M. W. Spong and M. Vidyasagar, ‘“Robust Linear Compensator Design for Non-
linear Robotic Control”’, IEEE J. Robotics aund Automation, Vol. RA-3, No. 4, pp.
345-351, 1987,

J. J. Craig, P. Hsu and S. S. Sastry, “Adaptive Contro! of Mechanical Manipula-
tors”, Int. J. Robotics Research, Vol. 6, No. 2, pp. 16-28, 1987.

J. Stuelpnagel, “On the Parametrization of the Three-Dimensional Rotation
Group”’, SIAM REVIEW, pp. 422-430, Vol. 6, No. 4, 1064.

O. Bottema and B. Roth, Theoretical Kinematics, North-Holland Publishing Co.,
Amsterdam, 1978.

T. R. Kane, P. W. Likins, and D. A. Levinson, Spacecraft Dynamics, McGraw-Hill,
New York, 1983.

C. A. Balafoutis, and R. V. Patel, “On the Orientation and Representation of Spa-
tial Rotations About a Fixed Point’’, in preparation.

APPENDIX A

RECURSIVE LAGRANGIAN FORMULATION

In a dynamical system, the Lagrangian L. is defined as the difference between the
total kinetic energy of the system, K , and the total potential energy of the system, H,
assuming no dissipation of energy, that is,

L=K-H (A1)

and the corresponding Euler-Lagrange equations are written as

d (oL JdL .
=L (oY% = -, A2

where 7; are the generalized forces, ¢; are the generalized coordinates, and g; is the gen-

eralized velocity.

Now, following an analysis similar to that used by Hollerbach in {14}, we can show

that the total kinetic energy of the manipulator is given by the equation

l n . . T M o T . .

=g 2 "{mj 8,;8%,; + 2W,n/s; + W; Jg)wf} (A.3)
j=1

where m; is the mass of the j-th link, eDJ is the absolute velocity of the origin o; of

the j-th link coordinate system, n,j= m;r] ; is the first moment of the j-th link

about o; expressed in link coordinate system orientation, W,- is the absolute derivative

of the orientation tensor of the j-th link coordinate system and Jc;'; is the pseudo-
inertia tensor of the j-th link about o;, expressed in link coordinate system orientation.

The total potential energy H is equal to the sum of the work required to transport

the mass center of each link from a reference plane, i.e.,

n
— T
H = constant - 33 m;g " To,;
1=1

n .
= constant — E m;g T (%.J + \erJJ.}') , (A.4)
j=1

- 232 -

where g is the acceleration due to gravity, with reference to the base coordinate system.
This form for the potential energy is different from equation (A6) in Ref. [14] and leads
to the modified analysis which is presented in this Appendix. Since the potential energy

is position dependent only, equation (A.2) can be written as

t==1, +--,n. (A.5)

d(oK) 9K _H
aq.-) dg; 9dg;’

Moreover, as in [14], we can write

9K) 9K n Ofj wr O8; .poeerp
-— — S:t M — -+ . J W
dt 3 | 9g jalr[AT AT (i)W
a»»: . a»»' . .0
jurl —_—1 7 T
+ g W+ Jolw,]. (A.6)

For the partial derivative of the potential energy we have from equation (A.4)

oH " 1 910,
— I m. m————
aqi j§1 i8 6qi
n Oy W,
—_— m: -+ r’ (A7
jz-_—_zl ! g aql aql 7)

Moreover, since for j 2 ¢ we have

Os, ; oW, .

683;1 - aq; i 49
and

dW; oW,

dg; g Wi (4-9)

equation (A.7) cau be written as

8H r W, X
ST S b s+ Vil
oW, = ;
T } i
=g —— m;r; ;. (A.lO)
dy; j§l T

Now, using (A.6) and (A.10) we can write equation (A.5) as follows :

e 0%, r O%; sryor, OWi i.r
E {tr[m, P ——8&,; + 3. ——(n])" W; + P n; & ;

D e A 5 DI L IR

e v

> sy x YT

—— .

- 233 -

oW, r W, ,
-+ Bq,- JJJWJ]—mJg -571,»—1.""'}' t =1, -+, n . (A.ll)

Moreover, if we use equations (A.8) “nd (A.9), we can simplify equation (A.11) as follows

oW, n . ae . . e R -
T "{'5717",-2, [y 557 + 8 AT WF + Wy i
s , e oW n .
+’WngWjT] —gT—-'-Emjr,-’J-, =1 --,n. (A12
! 9g; o '

Now, following Hollerbach’s approach [14], the first summation term on the right-hand

side of (A.12) can be computed by the recurrence relations

n - Py 3 . .o - > ee . . .0
D; =% [m,-s,-',,-so?,- +8 ;@AW +iW;n gl + W, Jg,ij]
j=1
= A Dis1 +8 i€ 4+ 0/ 307; + Jc:,VVa'T (A.13)

where

n X .
e =3 [m,-so?‘j + (n,’)TWjT]
=1

m;goy + (nHTWT + e; ;. (A.14)

Similarly, the second summation term can also be computed by a recurrence relation.
However, the recurrence relation presented here is different from the equation (13)
derived by Hollerbach in Ref. [14]. We proceed as follows :
3 n 3
c," == 2 mjr,-’,j
i=1

n
_ i i i+
=mr;+ 3 m [st.i+l + A
J=1+1

3 , n n)
=mrl; +85 0 B m+ A B ominl;
j=141 j=1+1
=mrd. 4+ .8+ At (A.15)
2 i+18 i 41 i+1% +1 .
Substituting equations (A.13) and (A.15) into equation (A.12) we finally get Hollerbach’s
recurrence equation

oW, ovw; .
=t 5% Ds] gl i=1 (a.16)

APPENDIX B

ON THE CONTRIBUTION OF MOMENT VECTORS
TO GENERALIZED FORCES

As is well known, due to the rotational motion of a manipulator link, say the j-th
one, forces and moments will be developed at all joints ¢ for i < 7. In this appendix we

analyze the contribution of these moment vectors on the generalized force vector 7.

From the Newton-Euler formulation of the equations of motion of a robot manipu-
lator it is known that when the j-th joint is of rovolute type, then as a result of the

rotation of the j-th link, a moment vector Mc,J is developed with respect to the center

of rotation which is defined by the equation

MO; -=IOJ Tw + GJJ-IOJ Cwj (B.1)
where IOJ is the inertia tensor of the j-th link with respect to the origin 0, , expressed in
base frame orientation, and w; (a')j) is the angular velocity (acceleration) of the j-th
link. The contribution of this vector on the j-th component of the generalized force vec-
tor is denoted and defined by the equation
. =12 'MO (B.2)
where z; is the unit vector which is parallel to the J-th axis of rotation. Moreover,
from the structure of the recurrence equation (5.3.8b) of Algorithm 5.4 (or equation

(5.3.46b) of Algorithm 5.5), the moment vector Mo, will also contribute to all com-

ponents 7;, for § < 7, of the generalized force vector 7 and this contribution is given by

?'_ - z', - MOI (B-3)
From the foregoing, in the Newton-Euler formulation, the contribution of the

moment vector Mo, on the generalized force vector 7 is explicitly defined by equations

(B.2) and (B.3). However, this is not explicit or obvious, in the Lagrangian formulation

of the dynamic equations of motion of a robot manipulator. In the following we shall

PV Eht FETOET R

R A R

4 - 235 -

show that

OW: . «
cy; = tr[_’ Jd W,-T] (B.4)

where W; is the rotation tensor which specifies the orientation of the j-th link with

reference to the base frame and Jd’; is the pseudo-inertia tensor of the js-th link with

reference to o; . Equation (B.4) is important since, by using the physical interpretation of
the left-hand side of equation (B.4), we can gain a valuable insight into the structure of

the Lagrangian formulation. To derive equation (B.4) we proceed as follows.

First we notice that, from equation (4.2.11), the rotation tensor VV, satisfies the

equation

W; =a;W;
= (w; +@;@; JW;. (B.5)

Moreover, for the partial derivative of the rotation tensor Wj , We can Wwrite

oW,
—_— =5 W, B.6
aq,- o J ()

Now, using equations (B.5) and (B.6) we can manipulate the right-hand side of equation

(B.4) as follows

OW: oWT
ir {—-.LJJWT] tr Wch{J aq: }

I

By .
tr] (w; +@;@;)ijéw,-Ti,T]

= Ir (E)J JoJiiT] + tr [GJ}EJJJOJ.i,T] (B7)

b

Further, since the inertia and the pseudo-inertia tensors of a link satisly equation {1.3.8),

i.e., they satisfy the equation

Jo, =-1, + %—tr 1,11

we can use Proposition 3.14 of Chapter III to write

- 236 -

ir [(E)J JOJ i,-T] = (:J’ * IO

, B (B.8)
Also, since from equation (4.3.19), we can write
&’)onJ = Jol + JOJ(IJj,
the second term on the right-hand side becomes
R =T __ -~ T =T - -~ =T
tr [ijonJz,-] = tr[ijolz,-] + tr [ijojwjz;]
But, from Proposition 3.12. the tensor @ on,‘:’ i is a symmetric tensor and therefore, by
Proposition 3.13 we have
ir [‘-‘.’; Jo,a’j i;r] = 0.
Thus, we can write
o0 37| = r. J =T
ir NJ(JJ OJZ‘- —trlw, o}zi
which, on using Proposition 3.14, may be simplified to yield

ir [6) -(:)J'JOJ.Z,'T] = W; - IO

J i , i 7 (Bg)

Therefore, by substituting equations (B.8) and (B.9) into (B.7), we get

OW. _ .
tr[234

aq. JW)'T] = [(;)J . IO; + (4)] ' iol] * %3 (BIO)
3

Moreover, since I°; and Io) are symmetric we can write equation (B.10) as follows

OW: . e
tr[234 w}} =

og; I°"‘b"+l°l'w"]'z"

Lo

I,
=M°

J

|
= {r b+ (@51, -~ Lo, @) -w,-] ‘% by (43.17)
[, 9+ @5, ""j] " (by (3.4.7))

which is equation (B.4).

APPENDIX C

ON PARTIAL DIFFERENTIATION

To derive the Jacobians which define the joint space coefficient sensitivity matrices
D?, V° and P° of a linearized robot model, we need to compute the partial derivatives
for a number of tensor and vector functions involved in the definition of the non-linear
robot model. In this appendix, the partial derivatives of tensor and vector functions

appearing in Algorithm 5.5 are defined and some important lemmas are proved.

First to compute the partial derivatives of the angular velocity and angular
acceleration tensors u'.v,-i and n,-‘, we can use either the recursive equations (5.3.45a)-

(5.3.45¢) or the fellowing equations

@f = WTW; (€.1)
and
o/ = WW, (C.2)

which define these tensors (see Chapter IV) in terms of the orientation (transformation)
tensor W; = AjA, ' -+ A;. Here we shall use equations (C.1) and (C.2). Before we
proceed to define these partial derivatives we need to state the following simple facts.

First, for j < 1, the following equations are obviously true :

W, = W;’W, (C.3)

V.V‘- = Wj jm + W,- j\.V" (C.4)

W, = W, /W, + 2W,;IW; + W, /W, (C.5)
where W, = A1 Ajie -0 A;. Furthermore, from (C.1), (C.3) and (C.4) we have

@f = WTW,; IW; + W; /W)
IWTa W, + IWTTW,
@)+ TWTW,

- 238 -

which implies that for § < { we can write
IWHW, = o} -] (C.6)
Similarly, from (C.2), (C.3) and (C.5), for j < i , we have

af = WTW, I W, + 2W; W, + W, /W)
fwT(wfw YW, + 2WIWIW, W, ((WTIW,) + IWTiW,
w+ oo} +wl@f-af) + TWIIW,
= w, - a;o; + 2@ jaf + TWTIW;
=-0i" + 20}0f + 'WTIW,,
which finally gives,

IWTW; = af + i - 20ja/, (c.7)

Furthermore, since z,j is constant relative to the j-th frame, its absolute derivative

satisfles the equation

2
z;

g d

@ z,.

which in the ¢-th frame orientation is simply written as

1= z_,' (C.8)

Similarly the absolute acceleration 'z'Jj of zjj, written in the {-th frame orientation,
satisl, :s the following equation

ot
zJ—ﬂz

;,’ = dual(&jz;
= ;1] -1j0] (C.9)
and
;; = dual(w, z}) + dual(d)" ‘zJ‘). (C.10)

Now, using equation (3.4.15) and (3.4.25) and some algebraic manipulations, equation

TR

- 239 -

(C.10) can be simplified as follows :

i) = wf-ojoll)-zjw)+@jol)+ir@foi]
= -0} - zja} + tr ()] (C.11)

since tr [n}'] = tr [j@]).

After these preliminaries, we are in a position to prove the following lemmas.
First, due to the nature of the transformation tensors A; and W;, the following two

results can be easily shown :

Lemma C-1 : The partial derivatives of A;, A,— and A, with respect to the general-

ized coordinate ¢; and its time derivatives ¢;, g, satisfy the following equations :

{ = = = A%/
) 94 ag; aq; H
dA; . _, BA; -
u)-é—'——A,-.. "('97_ id
i) EYN 2aA,-
nm =
gi g

Lemma C-2 : The partial derivatives of W; and its time derivatives W; and W, , with
respect to the generalized coordinate ¢; and its time derivatives ¢;, ¢; satisfy the fol-

lowing equations :

1) —— — =
og; 0 q; aQJ
ey OW oW;
1) —_—= 2
g; dg;

The proofs of these two lemmas are straightforward and are therefore omitted.

Lemma C-3 The partial derivatives of the transformation matrix W,; and its time

- 240 -

derivatives VV, and \rV,, with respect to the generalized coordinate ¢;, satisfly the fol-

lowing tensor equations :

W, Wiz} j <
Rl Poaes

9j 0 i >

ow, [W[H el s s
) ——=

9¢; 0 j >4
o, [WlEealeal] o<
M) ————=<

ag; 0] >

Proof (outline) :

i)For j <1 ;since W;=W; IW; and ‘W, is independent of g;j, we have

A oW, .

(9qJl = Bq; Wi
=, B,
= W,z /iW,
=W,/

#) For § <1 ;from V'V,-=Wj W, +W; ’VV, and since

aW;, . 9A; A

—_— = W, e + W, —
an' s aq, - an

=Wj-21j,

we have
oW, . . s
= = Wiif'W + W;a'W,

9;

= W, Wz} + W2}/ WTiW,.

CALL A

S il

- 241 -

Now since Wj = W; d':,f , using (C.8), we can write

aw;

For = Wi W] + Wi (af -)
=W, [";i;'-i;a;ﬁ;w,']
=W, [dual(w' i)+ 1)@ ']

3 “,' [ZJ +i;(b:]

1) For j < ¢ ;from VV, =W,-WV,- +2W,~-"VV,~ +Wjj\;\",- , and since

oW, v .

—I1 = W;z/, we have
oW, .. . e
—aTJ——W VV,~ +2W;3/7W; + Wz /W,

Also, since W, =W; nj and W; = W; o Jj , the above expression becomes

3W . e
Sh= W, 0/2W; + 202/1W; + 3/1W,]
9;

=W, [3} + 202 WTIW; +32 "WTJW]

Moreover, using (C.6) , (C.7), we have

OW; | |
_—Bq-' =W [n;i; + 20,1} (GJ,‘ -w}] + 2[00 + Q}r - 20,0}]
J
- T il il e _
=W, [afs] + 20f" -a0fsia] + 202} -3jofiai+inl]. (can

;- - 2w’“ '(:J; may be simplified as follows : Using the rela-

-a-t-—' t i~ IR
-@j z_,-z,w_, O+ tr (@)@]zl

= - ﬂj 'z- - z,ﬂ' + tr [ﬂ']z‘
(C13)
where the last step follows from (C.11). Therefore, using (C.9) and (C.13), equation

(C.12) can be written as

aw;

— =W, (z, + 21

dq;

and this completes the proof

Lemma C-4

ALA

') wlTaq
J

rOW; _

i) W, 34,

.o

rOW;
6q,

i) W;

l- .
jWi +

- 242 -

)

0 J

\

Proof : Follows from Lemma C-3 (.

Now, we can evaluate the partial derivatives of the angular velocity and angular

acceleration tensors (IJ,-" and n,-‘ with respect to the generalized coordinates.

Lemma C-5 The partial derivatives of the angular velocity tensor a:,", with respe.i to

the generalized coordinates g;, §; and g¢; are given by,

Proof (outline) :

j <t
J >t
Jj <t
J >1
for all §

i

Dbt B A<

[

e TR L VU e

- 243 -

{)For § <1 ;since af: W,W', , we have

dal AW, .. AW,
— ——-) W. +wT_._
oW, . OW;
= T__; Tw.Tw. W'T '
(wl aq))- 1} 1 + | 3 an
= - gjo} + 2} + 2jo!
= i

it) For j < i ; we have

E‘i’i: w‘T_a_w;
aq_,- aq,
— wrdW
3 aqj

Lemma C-6 : The partial derivatives of the angular acceleration tensor n"", with

respect to the generalized coordinates ¢;, ¢; and g; are given by,

Proof { outline) :

i)for j <1 ;since ﬂ,-"=VV,-\X’,- , we have

iAW . .. aW.
92'_-_—_ —)Tw, + WT—-
aq,- aqj aqj
OW; . aw,;
= (WF—)T WIW, + W —
aq,' an

-~ 244 -

= - §/0/ + 1 +28/0/ + 2 af

R

1) for j <1 ;we have

o0l _ ¥

8q,~ aq,
OW;
qu

= 2[z} + 2}@/].

tit) for j < i ; we have

an W,
—= W, —
ag; dq;
oW:

=wT—L
=z .

Furthemore, by using Lemma C-8, we can derive formulas for computing the partial
derivatives ot the dual tensor of the anygular acceleration vector a';,-‘ with respect to the

generalized coordinates.

Lemma C-7
a5 "z-'j+dua1(;jw;i) j <1
,') ___'_=
3, l 0 j o>
ac ’2;;' + dual(i}w,i) J L9
i) ——=
a‘;-')_.' i; J <
i) ——= |
ag; 0 j >

Proof (outline) : Follows from the equation

- 245 -

i iT
.. LYo %
w.-'= -n—‘—_.——
2
and Lemma C-6 [
Note that the partial derivatives, with respect to the generalized coordinates, of the

angular velocity and angular acceleration vectors with respect to the generalized coordi-

nates are readily avajlable from Lemmas C-5 and C-7.

Ncw, from Algorithm 5.5, it is obvious that to compute the Jacobians which deflne
thz coeflicient sensitivity matrices D°, V° and P°, we need to compute the partial
derivatives (with respect to the g-aeralized coordinates qJ dj and 4;) of the vectors

7! (for revolute joints) which are deflned by (5.3.46b). Equation (5.3.46b), for
i < j £ N, can also be written as

i i ko o=k vk IR £1] i '
ni= 2 'Wilw + U, 80 +8ipaUs,) +"W;nj. (C.14)

k=i

Therefore, to compute the partial derivatives of the vectors r),‘, we need to compute the
partial derivatives of various vector functions which appear in equation (C.14). These

partial derivaiives are derived as follows.

Lemma C-8 : The partial derivatives, with respect to the generalized coordinates. of

the vector function p,‘ are given by :

i rKc;.l!' | <
M T =
i) —o =
9¢; 0§ >i
o [T o<
) — =
aq; o j >
o |wdE-eLE o<
i) _ai"_=4
ag; (] j >

where Kg is the inertia tensor of the i-th augmented link, L'=®/Kj and

- 246 -
Kg‘_ = —;-tr [K,;"]I -Kg‘.

Proof (outline) : As we have shown in Chapter IV, the vector function p,-‘ may be

definzd by the equation
w=KJ o + o/ KJ wf
Now, since the inertia tensor of the i-th augmented link Kc‘," is independent of the gen-

eralized coordinates, (note that we assumed revolute joints only), we have the following :
i) follows from Lemmas (C-5) and (C-7).
1) is obvious for § > i. For j < 1, by using Lemmas (C-5), (C-7) and the tensor

equations (3.4.4) and (3.4.25), we get

aiq‘f- — K 28] + (o)) + 3(KE) + 0/KE 2]
=2KJ 2] - Ki @z} - dual (K wi)z] + @K$z) by (3.4.4)
= 2KC';' z_,' +[- Ko'.‘d),-" - dual (Kc‘;'w,i) + d’lch';']zj
= 2Kg 2} + [2w/K$ - tr (K)a/)z) by (3.4.25)
= 2KJ 2} - 20/R¢
— oK& 5 - i)

where, i,-‘ = &),ng' and Kg' = -;Ttr (Ké‘)l - K(;".
111) the proof is similar to that of #7) [.

Lemma C-9 : The partial derivatives with respect to the generalized coordinates of the

vector function UC‘;‘ are given by :

uoi

i /U +22/08 i <i
RIETI T T
et [00 S o<
A 2EfUL +8/0L) § >

- 247 -

oty |l J <
i) ——e =1
9g; BfUS 5 >
. . N
Proof (outline) : From equation (5.3.46a), we have Ug. = 3 'W, m"uc’,; , Which,
k=1
o0 , j'l . . LT
for § < j ,can be written as Uy = ‘W, n,"‘ucf‘ + "W;Ug . Then,
k=i

1) from Lemma C-6 and the fact that uc‘;. is independent of the generalized coordinates

(for revolute joints), we have

X N ant
W, k
e , k u])
ay, IE.‘ dq; IS
— = el .
4 IWi 63 4+ w, T 5
N W, (5 + 240 u X 2/U! + 2208
.. B Phin = z; 22;U
auy Z (25 + 22j@¢luo, = 2;Uo + 22,0, j £

t1) and ¢ii) can be proved in a similar manner .

To compute the partial derivatives of 's'o‘:,- , we need the following results.

Lemma C-10:

.z.}si'.:’-u + Qijéii.iﬂ J <i

i) 8 im _
dg; 0 j >i
i) 63,-‘_,-+1 _ 2[5}.53,”1 + i;é:’i.iﬂ] Jj <
ag; o j o>

oy OB

) ———
ag; 0 i >

Proof : The results follow from the relation 's',-",,-_;.l = ﬂ;is;i_;+1 and the partial deriva-

tives of ﬂ,-" 0.

- 248 -

Lemma C-11 :: The partial derivatives, with respect to the generalized coordinates of

the vector function 84; are given by :

g zjsf; +22j8). -2fsg; j <1
N = {

aQJ 0] >
o b [HEeraa g

94; 0] >

a‘s‘o".’. i,’:s}",- j £
1) — = = |

dg; Y ;] >

Proof (outline) : For j < 1 we can write

e 2 .o & . - T" ‘_ T.¢
80",' =BO‘,J’ +B}',‘ = U ”W 1'l" Z}"W Sk k41

i) From Lemmas C-1 and C-8, we get

d8g ¢

-1 e
R <k k
o = iw, Tz] AT+ w7 [z,sk k41 228 k4]
q9; k=j

=- 23} i gigi.
= - Z,3;; + 2z,s;,, + 285 ;
1) and ¢) can be proved similarly J.

Now, we are in a position to derive the partial derivatives, with respect to the genecral-

ized coordinates, of the vector 1),-" defined by equation (C.14).

Lemma C-12 :: The partial derivatives, with respect to the generalized coordinates, of

the vector function 17,-‘ are given by :

IE U‘-"]z J L

i) 312;
04 |'W;IEd -3/,0512/ j >
an S -U5 8faif - Wi+ 05 8505 j <
t) — =
%4j "W, (B, -87;0512] - ILf +8/,Uglef) 7 =

- 249 -

8o [Es, - Us, 8] ,18f — 2L+ U; 8,12] + U5 84 ;2] i<i
]

W; (B4 - 87,04 15/-2lL] + 87,04 18/+04 84;- 87,04 - 7 fiaf) 5 >i

where Eg’ (Ug‘) is the second (first) moment of the ¢-th generalized link, and the tensor

L/ satisfies the equation

-~

Li=1L+ iU 4, + O 8l + A nLiFAL, (C.18)

Proof (outline) : Using Lemmas C-8, C-9 and C-11, the partial derivarives of r);‘ are
derived as follows :
) There are two cases :

a) For j < 1, we have

ani N . apt ., ouk aUk
—_—= E"Wl: f— + 04 qo'k +8f k0 qm]
i i

= VW, KErzr+ulk zlst, +8), 2FUf
k5o, & o 2;%;, k& +125 Yo

]

Pyudf & +1
N k ko k Efrk yiwT
i -k oo = i !
= kE_ W, Ko, -tg, 87 ~8:k11Us,,)" Wi2] by (C -3).
=i

Now, for <i{ <k BJ"',‘ = 5}‘,,- + E,’fk . Therefore, we have

ay} N . . . N .
wk _ =k 2k -k k T - ka
Fr kE "W Xs, -0, 885 - 855,08 W2) - SSiW iad sk, 'wiz)
) =i k=i
= [Bo, - g, §8;;lzf
where,
i N k E ook Eofrk yiwT
3 H -~ -~ -
EO. = Evvt [Ko, ~Ug, Bk “‘5k.k+1Uo,+,]’wk (C.186)
=i

is the inertis tensor of the i-th generalized link, and

N
. ki
U = 3 ‘Wiad ‘W

(C.17)
k=g

is the dual tensor of the first moment of the 1-th generalized link. To see that Egl is the

inertia tensor of the i-th generalized link, we shall show that equation (C.16) is

- 250 -

equivalent to equation (6.3.6). Since i,-"; == 0, we have

Eo, Ko 5: |+1 ,.,.,

‘ k = k= k =k = & T
+ E ‘Wi Ko, — o, (8541 + 8510) = Bk x4y oH,,]'W
ka4l

N
=K] b=k iwT +1
Ko - 5: c+1 .+1 T W, Uo, B i W + Ai+1E' A- +1

O,
ki1 ™
=Ko -8/:1Us , - G _,.,ia i+ + Ai-HE(;t:Al-H
which implies that indeed equation (C.16) is equivalent to equation (6.3.6). Thus, case a)

of part {) has been proved.

b)For § > i , we have

..k .
an} i-1 aut , ded, Us . on/
— = D Wi + 05— + 8]+ W
9g; k=i 9g; dg; q; aq;

{ l-Uk H a"!
2 W; &1, £+12; 0o) +'W;
k=§ 691
="W;[-8/;02/] + 'W;[EJ -UJ5];lz/ (by part 2)
= iWJ [Eg; - 's,-’:j ~5';}zj", since EJj,j =0

17) As in part 1), we have two cases.

a)For j <1{,from Lemmas C-8, C-9 and C-11, we get

an} -
2 niw, {omaf - Le
an k=3

k
+ 2“0‘ [z] 7.k + z] J. k] + 28; k+1[szO,ﬂ bUOH., }

P E
= 22} ‘W, KE -ag 8}y - 880,05, Wz)
t=n
l - - c-
' EL oo kIk L =k EoyiwT, i
- 2*2_'“’1: L + 06,8,k + 854U o,) Wiz}
=3

- 2k2 ‘wk [“o, J ;],

=2([B4 - 04 8 :13) - L+ U 8),12)

- 251 -

S . . : .
where L} = P"w,, L+ i‘xcf‘s,-".k + i,,".,,“U <;“'H]'W,,T. To see that L satisfles (C.15)
=t

we proceed as follows :

Since 8/; = 0, we have

L=]-fi + iii,l'+l‘U oi,.ﬂ
N . - - . .
+ R 3 W, [Ltk + ﬁg,(si'fn‘-n + 5:‘k+x,k) + sl:k,lc +1U ciH]'WkT
=i+l
= Lti + ii.,i-HU c';,.,., + 2 ‘wk “o,s; J+1 wlc + A, +1L: +1 A; +1

k=i+1

=L+ [8/; .U c:..“ + ﬁc:,“éi'.iﬂ] + A:‘+1Ls"+1 A1+l
Therefore, case a) of part 41) has been proved.

b) For j > 1 , using (C.14) we get

I, an "
'.’._22 W, s} ,,+1(sz(1 +z"U")+'W
aq; k=i dq;

= 2'W;[-8/; U2/ -3/ U’zj]+2W[Eo 2} -Ljz]|

= 2iwj ([EOJ, - EIJ:J.UOJ;]iJj— [LJj + iij:onjJ]zJj)

which completes the proof of part 7).

111) As before using Lemmas C-8, C-9 and C-11, we have

a)for j <1
k
a.n; l_é)_’.‘_.*"_+“"“‘)k +g" .‘?.Hoﬁﬂ.]
an = a J 0‘ a J k.k+1 aq’

k = & =& E yiwT o
== 2 ’wk [KO “0, ‘) . N .k+1UO‘+l]‘wk z;

k=i

"z'w LE+ukst, +8t H,U o JWiz) + E'Wk [l 8¢, Wz

k=1

oo‘

— [E‘;.‘ —ﬁ' i; sl ~ 2[[4,"'}- ﬁo" é;_,]i; + ﬁg' .B.O',JZ;

b)for j > 1,

- 252 -

a'h i1, w k a‘ok k a.'“."ktﬂ ai“i i iy 9N
—_— +8 + J 4 W, L
an kg. f 3 [qJ O‘. a k.k+1 a] aqj 'Ij J aqj

‘ - . See ¢ o - o TS - . R » .
='W;[-8/,0J3]-287,Udi] -3/;UJ1]]
+W;zin] + W, [Eo ~2Ljz] + ch; 55,2/

='W; (B, -8/;0J 12/ - 2lL] +8/;Ud |2/ + (U &; - &/ Ud - flzf)

and this complete the proof of Lemma C-12 [

