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This thesis is'concerned with the nonlinear elastic and inelas-

tic dynamic response of both symmetrlc and unsymmetr1c structures. The

‘study is performed in two separate but closely related stlages.

In the f1rst‘stage, the work is cqnfined to dynamic tnstability

in the torsional response of both single- stcry-symﬁetrfC‘and‘eccentriC”*Jﬁ

bu1]d1ngs arising from the non11near ‘elastic behav1our of res1st1ng

e]ements subjected to harmonic ground excitation. Ear]1er stud1es

‘ are extended to examine the importance of tors1ona1 damping, as well

as the distribution and geometric arrangement of lateral load-resisting

A '

e]éments.‘ qua]]y 1mportapt, the relationship between the two sets of
ét%bi]ity diagrams dérived in previous studies with.potential1y_conf11ct
ing stgbi]ity iqterpretation§ is clarified. The ;esults for suscep-
Libility to non]ingar iorsiona] coupling are presented in the form of

generalized stability diagrams and critical torsional damping which are

"applicable to quite gehera1 structures with different distributions of,

t

load-resisting E]ements. Both torsional stability bbunds as well as
critical torsional ‘damping afe found to be inf1benceq by vaﬁious systems

parameters.
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" The se‘cond stage of this study is concerned with ‘the 1ne1as-

) 'ﬁ, tic response of ,smg]e story monosymuetmc structures for s1nuso1da1

' ground motmn where couphng arises from eccentr1c1ty, here behaviour

of res1st1ng e]ements is- 1gea11zed as either fully b1'|1near or pinched
oy

A steady state harmomc response - frequency
-

sweep an‘a]/yS’ns is performed us;ing the weH known method of averaging

bilinear hysteret1c
popularly referred to as the Kry]off Bogoliuboff method. It is found
that l;oth the system and res1st1ng element d15p1acements for fully

f-
bilinear behaviour are stab]e even in the absence of viscous dampmg
The influence of eccentricity on peak ductility demdnd is found to be

more significant than prfev,iouﬁs]y reported by other investigators. The

pinched-hysferetic structures, on thke other hand, experience insta-
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bility of the so-called "jump phendmenon" type within a certain range.

of frequencies.

Finally, a comparison of Qérformange:fgrdliﬂted
number o.f idea]ized"hystereti’c_ systems representative of coriu;lon struc-
tura1 ;system.: reveals -that pinched elasto-plastic behaviour typical of
steel ’cross-braced frames will experience ohe highesf degree of tor-

sional instability.
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principal axes

bilinearity parameter in ‘inelastic system,.

O0<a < 1.0. ' .

N

parametric constants defined in Equdtjon

(2.8) ‘.

geometric parameter of L-shaped building;
also stiffness ratio of resisting element

(kzxyklx) !

«

~

-

normalized plan dimension of building (a/T)

. .
-mass’ radius of gyration of total mass of dia- .

RyplRyy)

cX1s

phragm with respect to a vertical

through centré of mass

‘geometric parameter of ‘L-shaped building;

also strength ratio of resisting element

normalifed plan dimension of building (b/T)

phase angle differences (x-¢) and (x-¥);

respectively
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'.'m,

in-plane displacement of a typical resisting

-, element

reference displacement for resisting eleftents

reference displacement for dynamic and static

normalizations, respectively |

in-plane displacements of resisting elements

reference translational d{sp1acement required
for nondimensionalization of translat}onal
displacement 1in x-direction for nonlinear
elastic system (Eq&ation (A1))

yield trans]ationa]'disb]acgment of resisting
element; also reference y-displacement for *
normalization in nonlinear elastic systems
(Equation (F1)) ‘ |

reference torsional displacement required

for nondimensionalization of torsional dis-

placement for nonlinear elastic system

(Eqnia[t)v’n (A1),
X 3 -

nonlinearity parameter defined as /6%

coefficient matrix of Hathieu-Hi]1 equation

given‘in Equation (3.28) and Appendix C

uncoupled translational and torsional viscous

damping coefficients for x-, y- and

Y
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p¥*,  i=3,4
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and (5.2) for fully bilinear and pinched

4
!
t
ey

e xix - T - ¢ ; ‘
* 1
i
: . . |
s 6-directions, respectively; and Sl Sl N i
. . 1
. . ) N ' ?
\ . . . ' . ' j
, Critical torsional. damping ratio for non- - §
linear coupling . 1
generalized critical torsional damping ratio
for nonlinear coupling
AN . 3
unbalanced stiffness factor as a measure of '

‘eccentricity ' /

i

rotational displacement, velocity and accel-

i
}

!ration'response, respective]jp, of mass centre

about vertical axis ‘

angle of sinusoidal response of resisting

elements defined as QT+5}

cyclical angle defined in Equations (4.28)
and (5.1) for purely bilinear and pinched

bilinear systems, respectively

~cyclical angle defined in Equation (5.1f)

for pinched belinear system

cyclical angle defined in Equations (4.29)

9

bilinear systems, respectively

cycYical angle defined in Equation (5.2f)

for pinched bilinear system
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initial yield torsional /displacement of

/ : ‘

structure

)‘
/

fraction of critical torsional damping for

nonlinear coupling (0 < « < 1.0)

. . { . : .
nondimensional/translational response dis-
placement, ve{;city and acceleration, res-

pectively, of mass centre in x-direction

nondimensional transliational response dis-
placement, velocity and acceleration, res-

pectively, of mass centre in y-direction

nondiﬁensional torsional response dis-
placement, velocity and acceleration, res- -
pectively, of mass centre about a vertical
axis

nonlinearity coefficient

.

nonlinearity coefficients for static and

dynamic normalization, respectively

function of apparent torsional frequency

defined in Appendix D

-,

nondimensional displacement perturbations

nondimensional:tim .
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8(1), ¢;(x) ) slowly varying phase angle for transia-
\

\ ®

- tional response of mass centre in x-di-
rection
AN

b, & average phase angle for trang]ationa] res-

R ponse of mass centre in x-direction

d,(t)sx(1) - slowly varying phase angle of torsional
T _ C. response o0f mass centre about vertical

axis

- = % X .
ds, X average phase angle of torsional response

! of mass centre about vertical axjs

!

o3(t),s oy(1) s10w1& varying phase angles of translation

: o al response of resisting elements 1 and 2,

‘
.
5
1
i
[
‘
i
i

respectively, in x-direction

d3, oy average phase angles of translational-res-
ponse of resisting elements 17and 2, res-

pectively, in x-direction

®15 X1 anglf of sinusoidal system response defined

as ot+o(t) and Qr+y(t), respectively,

¢

¥(t), ¥ slowly varying and average phase angles,
respectivé]y, of translational response of

- mass centre in y-direction

/

- Q ' normalized ground excitation frequency ,

| (w/m;) - . .
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apparent torsional frequency of the system

coupled lateral and torsional normalized

frequencies of structure, respectively’

~

normalized uncoupled trans]étionaT\(:s:

quency (wy4wx)

normalized uncoupled torsional frequency

(wg/uy)
T8
generalized excitation frequency (%/E)

. . 3

generalized torsional frequency (Qe/E)

~uncoupled fundamental transliational and
.torsiona1 fregencies of structure,: res-

pectively
frequency of sinusoidal ground excitation’

coupled lateral and torsional natural

frequencies of structure

-
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CHAPTER I .
X ~ -
: ~ INTRODUCTION
. " , 1.1  BACKGROUND OF THE PROBLEM

éngineering structures. are frequently exposed to complex dynamic
1 environments where a variety of nonlinear coupled responses is expe;-
\\?ngfed, such as coupled flexural modes in shell vibration [1-3], buck-
ling of columns due fofdynamic axial force [4], and\}atera]-torsiona]
oscillations of building structures {5-15]. |
B Ge;erally, a1 buildings are torsionally unbé]anced to some ex-
\?éht'ang any forﬁ of translational excitation will therefore cause
torsional response associated.wifh lateral vibration. Field observa- '
tiéns gjkeﬁ?thquake damage show numerous examples of structural fail-
'ure‘aue to such simd]tangous torsional motion. N
Earthquake‘response of Tinear elastic building structures where
the centre of mass is eccentric to the centre of resistance has been
the subﬁect of numerbus studies [16-24] during the past two decades.
Some of these studies [15,23,24] have pointed out the inadequacy of
’ torsion$1 provisions in current codes of practice. An extensive 1ist s
of publications on this subject can be found in Reference. 25.
It has also been discovered that strong modal coupling can occur
) in'a rectangular building with a uniform distribution of columns in
v pfan if ;He eccentricities and trans]ationa]-totsioﬁal ffeguency dif-
ferences are small [16]. -Moreover, coupling between lateral and tor- —

sional motions induces torsion and geng{aljy reduces the base shear

[17]. - Torsional vibration can even be induced in symmetric structures

t‘y!.
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. motion of the symmetric system into Mathieu-Hill fbrm.
. » .

.
In recent years numerous studies concerned.with the elastic res-
ponse of symmetric Etructu}es have emphasized the efgéct of nonlinear
coupling. Evensen [1,2], while study1ng the flexyral vibration of a
geometrically nonlinear th1n circular r1ng, concluded that two coupl- ‘
ed‘bending'modes can exist due to elastic nonlinearity of the soften-
ing type. With the aid of the method of averaging, a set of coupled
non11near a]gebra1c equat1ons Was estab11shed to def1nexthe average
For a

’

stable system this amplitude is of finite magn1tude otherwise, the -

response amplitude as a functlon of the exc1t1ng frequency.

solution fails thus *indicating 1nstab1]1ty. Later, E1-Zaouk and Dym

[3] reported ﬁim11ar coupling in the_vibration of orﬁﬂbtropﬁc shells.
The we]]-knéwn work of Bg]otinr[n], on the other hand, déals exten-
sively with the. stability criterion of the Mathieu-Hill equafion des-
cribing the transverse vibration of a rpd,suﬁjectéd to 19ngituﬂfna]

periodic forces. : L B

By means of -numerical time-history analysis, Tso and,Asmis [8]
sthed‘that tbrsiona} motion of a sxnnetric building structure subjéct;
ed only to ]afera] ground motion is possible as a result of nonlinearity
in‘the force-displacement relation of the resisting elements. Ina .- .
separate paper, Tso [5]*successfully ca§t th% tor%iona] eduatiop of
The likelihgod

of induced torsional response was then studied-fﬁ terms of "instability

L - 2 =
. , . .
'by the rotationa] component of ground motion. which accompanies the two
v . . . ,’ )’.
horizontal components [26]. kg ﬁ{\{; .ot
. ' ) ' N w
1.1.1 Review of Nonlinear Etastic Problems '

.
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" even in a symmetric structure due to nonlinearity of the Ramberg-

- regions in frequency parameter spaée. In References 27, 28, 30 this ép-

s 5\

proach was subsequently applied to both nonlinear symmetric and unsym-

metric structures. The procedure yielded results similar to those

found by Tso [5], but with some corrections. The same corrections

e i
“were lafer also reported by Antonelli et al [6].

\

1.1.2 Review of Coupled Inelastic Problems

a ‘»
v . K
e

OnTy recently has attention beén focused on the coupled torsiond]-

transldtional response of siﬁp]e systems [7-15] with inelastic re-

sisting elements subjected to sinusoidal ph]se; harmonic or earth-
quake-type ground excitation and analyzed by means of time-history

numerical integration.” Shibata et al [7], while studying the nonlinear
response of sing]e-stOﬁy unsymmetric building models with bilinear

restoring force and subjected to idealized one to three half-sine

pulse ground motion, observed that the rotationa1‘disp1acement in the j"

nonlinear range with strength proportional to stiffness is much great-

er than for constant strength irrespective of stiffness. Tso and Asmis

X .
- [8], on the other hand, found that torsional motion can be initiated

N

0sgood fype with hysterétic slip under earthquake excitation, causing
"significant increase in lateral displacement of‘elements located ét‘ .
the periphery of the building. N

Kan Fnd Chopra»[9-11] studied the effect of torsional cgup1ing on
the lateral-torsional deformation of a single-story building model sub-
jectgd to éarthﬂuake excitation. They concluded that, due to the in-

fluence of .force interaction on the yielding behaviour of e]aspic}per—

fectly plastic resisting elements, torsional deformation is prbportiona]

v . \
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s
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to the nondimensional eccentricity, with no dynamic amplification when =
the uncoupled torsion to translation frequency ratio is greater than

2. They also observed no discernible trend-in e]ement‘defo}mition due

td torsional coup]iﬁg at‘ﬁma11 frequency ratio.§~lﬁ a similar study,.

Irvine and Kountouris [12,13] obsérved no strong correlation between

the peak ductility demand and eccent}ickty, and ‘therefore concluded

that the difference in ductility demand between eccentric and symmetric
structures is small. .Alsp, for a wide range of.other parameters the
peak ductility demand was found to vary-roughly Tinearly with the °
level of excitation.

Finally, Tso and Sadek [14] found thaf the influence of eccentri-
city on the ductility demand is larger than that reported by Irvine
énd Kountour%s'[12,13]. Tﬁey'also noted that an eccentric system
does not respond pri;arily in translation when excited well into the
inelastic range, as was concluded previously by Kan and Chbpra [9-11].
In addition, they proéosed approximage bounds té relate the ductility
demand to the excitation level. | ‘

Awad [15], while.studying inelastic responées 6f a sing]e-stor;.
building model to both trans]ﬁtibnal and rotational components of
earthquake ground motian,iobservedwthat inelasticity can cause a re-
duction in rotational resporise of the system. Moreover, the d&ctiiity.
demand in inelastic systems is not the same és the force reduction

factor used in determining the strength, and at times may, be much

higher.

’

1.1.3  Summary of the Problem

The preceding studies of induced toﬁsiona] motion in symmetric

S
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structures [5,6,8] due to nonlinear elastic coupling produced stability

curves but did not allow for torsional damping. In addition, two sets

“of stability interpretations were derived, based on different defini-

‘tions of reference parameter for the force-displacement relationship

of the resisting elements [6]. Moreover, only simple cases of perip-
heral and two-element disfributions of structural stiffness in the

v

building plan were considered. Also, earlier studigf of linear un-
symmetric‘and nonlinear symmetric structures may‘not b; directly ap-
piicab]e in predicting the‘Behaviqur of structures that are botﬁ non-
linear elastic and unsymmetric. . .
In an effort to undefstand the inelastic behaviour of torsionally
coupled single-story buildings under strong earthquake excitation,‘a]1
earlier studies employed step-by-step time-history integration of the
equations of motion.' Any consistent relation between the Eredominant
system parameters and the resu]tiﬁé coupled hyste;etjc resbonse is dif;
ficult to establish from fhesg studies. Moreover, a fomparison-of the
structural performance to be expected for systems having different
hysteretic behaviour is still lacking. A steady state harmonic. res- _

, X
ponse analysis could, however, provide .important insight into the dyna-

mic response characteristics of such structures.

1.2  SCOPE AND QBJECTIVE OF THE PRESENT STUDY

!

. , .
‘The objective of the present study is to investigate the dynamic

effect of coupling between the torsional and fféns]ationa] displace-

ments of a simple .single-story building model for both nonlinear

elastic and inelastic hysteretic behaviour. The scopg&of the work is

-

9
) -

i
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1imited to- identifying the basic system parameters influencing coupled

N response and to evaluating the effect of the important parameters on . |

the stability and displacements of the system as a whole, as well as

on the deformations of the individual resisting elements. ' . :

f ‘Thus, thig study consists of’two closely related but essentia]]y
indepeqdent‘parts.' The first part of the study is concerned with'a‘

system in which torsjona] coupling arises fronythe nonainearielastic i
behaviour of the resisting elements. The second part deals with the

inelastic response of a single-story system, .where coupling arises

e e e b—

from eccentricity and element behaviour is inelastic hystggetic. The
. inbui ground motion, for both phases of the study, is assumed to be
* .sinuseidal and uniform over the base of the structure and céntajns". r

no rotational components. ) ’ et

1.3 ORGANIZATION OF THE THESIS ° . . oo

The work concerning the nonlinear elastic analysis is presented

[P

. 1

in Chapters II and iII, whereas the inelastic behaviour is described

-
T

in Chapters IV and V. . _ . ;
Chapter Il is confined to the symmetric building model. To ex- '
tena the earlier studies beyond the aforementioned simple systgms, B "
' the distribution” and geometric arrangement of the lateral Jload re;‘

sisting elements are included in the analysis. The importance of f

. torsional damping on ~induced coupiing in symmetric structures is also
studied. Equally impgrtant, the relationship between the two’sets
of stability diagrams produced in previous studies is clarified. The

o results are presented in the form of generalized stabiQity diagrams

. . v . . - ' ' O
‘ . ] .
R . i !
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which are applicable to quite general structures with different dis-
tribution of. 1oad resisting elements. .

In Chapter 111, the study is extended by introducing both single -

and double eccentricities in the model of Chapter II. Here too,.the

_importance of torsional damping on induced coupling is investigated

 with the resu]%g pré{ented\aé stability diagrams in frequency’paré_

metex space. \ . ’ .o
In Chapter IV4/ihe coupled inelastic respoﬁse characteristies
for single-story unsymmetric buildings are exﬁmined. The resisting

-

elements are considered to be bilinear hysteretic, for which elastic

'ané-pure e]dptib-p]aStic behaviour are two special cases. The impor-

tant parameters controlling the response amplitudes are identified

and the results are presented in the nondimensional amplitudes (i.e.,
ductility) versus frequency domain.

Chapter V extends the analysis formu]ated in Chapter IV to resist-
ing elements with pinched bilinear hyséeretic behaviour. As was done
in the bilinear hysteretic study, the results are presented in the
same nondimenéiona] amplitude versus frequency domain. The possible

occurrence of instability is examined and the predominant system para~

_ meters causing the instability are identified. Finally, a comparison

. of performance among several commonly used structural systems, describ-

ed by the associated hysteretic behaviour, is made.
Finally, in Chapter VI a brief sbmmary of the major conclusions

of "this study ts presented. The implications of the latter on the

o)
. design of structures, as well as future research needs’, are also dis-

cussed in this chapter.

f

\

e s i

.
PP

2 o i Y e i wepmcnbns



0 ;. .. . “" ) ‘
o | R |
~' 1 . -,.. ! . v V"
’ - . CHAPTER II | o
- S
_ o INSTABILITY IN NONLINEAR ELASTIC ‘ e ]
v SYMMETRIC "STRUCTURES \ ;

o 2.1 INTRODUCTION

In all the earlier studies of lateral-torsional coupling of non-
B

1inear elastic systems [5,6,8] a single-story symmetric building model

+xd wdeidat .

has been used. Even for studies of linear elastic behaviour [16-18,
. !, . “
21,22] similar single-story models were employed. In particular,

wn .

several previous studies of linear structures [16,22,26] have indicat-

s

ed that the susceptibility of symmetric bui]dfngs to induced forsion-
al response is influenced to'a significant degree.by the distribution

! ’ of the resisting elements within the plan area of the builging.
i | " In this chapter, a single-story building model, similar to that
3 ' . employed in earlier studies but with resiéting e]ements.raﬂﬁomay dis-
‘ tributed over the plan area, is adopted for study. Since the preéea-
, » ing studies [5,6,8] did not allow for torsional damping, the present

study investigates the importance of torsional damping on induced

" coupling in symmetric structures. ///’\\

¥

[FRR TSR

g

The behaviour of resisting elements, as in\grevious studies, is
taken to remain nonlinear elastic. The influence of the distribution
and geometric arrangement of the lateral load resisting elements on

the stabi]ity curves is investigated in detai]. It should be noted o]

that two sets of stability diagrams, WIth potentially conflicting

stabiTity interpretations, were derived fn the earlier stud1es [5,6],

.
. ) f . !
¢ 1 . /' . by
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based on two different definitions.of the reference'parameter for the
force-displacement relationship of resisting élements. Thus, in the
present study the relationship.between these two sets of stability
diagrams is clarified. Attention is directed toward identifying the
basic systeh parameters governing the susééptibi11ty to induced tor-
sional response of symmetric strﬁctures with nonlinear resisting

N

elements. ' .

-

Results are presented in the form of stability curves showing
the effects of various systems parameters, such as building plan as-

pect ratio, torsional and translational damping coefficients, arrange-

“ment of load yesisfing elements on the induced torsional coupling in

-

these nonlinear but otherwise symmetric structures. Finally, the sus-

_ceptibility to nonlinear coupling is summarized in the form of general-

ized criteria, for both critical campipg and the size of the regions
of torsional instability, which are applicable to quite general con-
figurations of load-resisting elements encountered in symmetric struc-

tural systems.

2.2  DERIVATION OF THE STABILITY EQUATION

» The simple structure employed in earlier studies [5,6] is shown
in Figure 2.1. It consists of a simple single-story symmetric build-
ing with/rigid diaphragm and coincident centres of mass and resis-

tance. The driving force is assumed to be sinusoidal support . .

“~
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excitation in only the x-direction. Letting kix and ~k1‘y represent

h resisting element in the x-

and y-directions respectively, the total translational- stiffness

- K»K, and the torsional stiffress of the structure K, are given by

Ke = kiy - ~ (2.1a)
Ky = I kiy ’ o (2.1b)
. - 2 2

8
The load-displacement relationship of resisting elements is-as-

sumed to be elastic, weakly nonlinear and of the softening type with

cubic nonlinearity expressed as

R(8) = ks [1~1(8/80)2] ' o (2.2)

L

in which & 1is the displacement of a typical resisting element, &,

~is a reference displacement, A is a measure of the softening and

k 1is the initial tangent stiffness.
The fact that horizontal response may accompany nonlinear resis-

tance was first demonstrated analytically by Tso [5] as follows. 'The
o~ . \'\

corner displacement, 6. (see Figure 2.1) may be expressed in terms -

J
.of mass centre lateral displacements u and v and rotational dis-

]
placement o by the followidg relations
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8, = U - bo l B v (.2.3a)
§, = u+ be ' ' _ (2.3b)
f’f . " "
§3 =V - ag o ' - {2.3c)
§, =-V + ao ' ‘ (2.3d)

It is now assumed that the restoring forces RX( ) and Ry(dj) are

5,
) J
antisymmetric (cubic) functions about ‘the origin. Expanding one of
the restoring functions, say RX(61) » in the form of Taylor series
about equilibrium position RX(O) yields . -

v R |||(0) . .
R, (61) = R)'((O)(u—be)+——x—-—— (u-be)d + . ..-~ (2.4)

3!
For a 1inear load-displacement relationship, R)'((O) represents the
linear stiffness of the resisting element and motions u and & are

uncoupled. However, if the resisting elements are nonlinear, Equa-

tion. (2.4) shows that torsional motion becomes coupled to the primary -

lateral response.

To approximate earthquake effects, the structure is subjected to

sinusoidal ground acceleration in the x-direction of magm’tdde

Ug' = U cos wt ' ; (2.5)

Initially, the nonlinear system has three degrees-of-freedom
(uyv and 6 1in x-, y- and 6- directions, respectively). Since

ground excitation.exists only in the x- direction, v 1is zero and

. o \
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the system is goverfhed by the following two equations of motion

@
u + 200, u+ wi»u = -U cos wt + cw? u(u? + 3b252) (2.6)
0 * 20 w, 6+ wez 8 = e6(aju? + a,62) o (2.7)
_ where ' i )
r=*a/b‘ " k S  (2.8)
. - 'x/ao;' ' o °  (28)
ay = (9 kyys2) / {M(a? % b2); SR (23
0y = I:I(b2 I kixyf + a2 f kiyxiz) / {M(a? + b2)} (2.8d)
and wosw, Aare the uncoupled trans]at{Bna1 and torsional frequencies

of the systém as defined in Appendix A, M denotes the total mass
and a, b are the building dimensions.

Equations (2.6) and (2.7). are identical to Equation (5) of
Antone]li et al. [6] and thations (15) and (16) of Tso [5], but the
expressions for «; and o, in. the present investigation are more
general in the sense that they accommodate anv type of stiffness dis-

tributjon over the plan area of the building.

The definition of &§p 1in Equation (2.2) may be taken as the

~
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lateral static displacement inducéa by the maximum ground acceleration

expressed as

e O R SOOI J Y
»

B o = U2 ' (2.9)

However, the fotlowing alternative definition for &, (suggested by o

. _ An%one]]i et d1. [6]) related to the forcing frequency . )
. . , ) - ‘ ]
8 4 = UD/w,2 | . (2.10)

’

\

1n which D is thé dynamif amplification factor for a sing]e'degree-

~ of-freedom system given by | | |

0= [11 - (w/u)2)? + (2ew/u )2l e
[ B
Thus, in Equations (2.9) and (2.10),'subséripts s and d are at-
5 tached to 8, to distinguish between the above static and dynamic
reference displacements. In ordef to work with unique load-displace-

ment characteristic for the system described by Equation (2.2), ex-

o . pressions (2.8b), (2;2) and (2.10) lead to the following important
' relation
f - 2 -
K Ag Ad/D | | . (2.12)

‘ where nonlinearity parameter A also carries subscripts s and d

to denote static and dynamic normalization, respectively.

Q—W.
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It is convenient to express Equations (2.6) and (2.7) in nondi- i
mensional form as follows %
A * f) Ax + fan, - (f3n 3 + fsh A 2) = - cos Ot (2.13) -
. o ' 4
hy + hlj'\e * hphg = {hahn 2+ (hL++h6)Ae3}[= 0 (2.14)
2 ]
,/
where 1 = th and displacments Ax and /(e, ‘as well as coefficients ;
fi’hi are normalized quantities defined in Appendix A. It should . \
also be noted that frequencies are normalized with respect to the
structure's translational frequency Wy s i.e., Q= we/wx and
Q= w/mx P
The general form of the foregoing nondimensionalized equations -

of motion remains unchanged irrespective of whether the static or dy-

namic reference displacement is used,although coefficients f‘i and

h]. have magnitudes according to the'actua1 form of normalization

(Appendix A}).

2.2.2 Approximate Solution for Nonlinear Amph'tudes /

Equations (2.13) and (2.14) can be solved by applying the method
N of averaging, 1'.(e., the method of slowly varying amplitude popu]ar]_y
known as the Kryloff-Bogoliuboff method [29]. This method has been s
successfully applied by Evensen [1] and El-Zaouk and Dym [3] in re-
lated problems involving vibration of circular m"ngs and shells.

Following this technique, it is assumed that the solution for




ﬂé ‘l‘:',\ ' ' - ]5 = —
~ A, and 4, exist in the following fom {
P ‘ Ax(‘t) = P(x) cos [at + a(1)] ) e (2.15a)
% . (4

Ae('t) = R(t) cos [at + x(1)]. (2.15b)

where P, R, ® and x are. taken to be slowly varying functions of " - i
1. Substituting the foregoing expressions into Equations (2.13) and ;

b

(2.14), the averaging method [29] (Appendix B) leads to the follow-

N~
ing four nonlinear coupled algebraic equations

+

(Fp-02) P - 2y P3 - 4f P RY(142 cos2 T,) = - cos & - (2.16a)

. f, aP - &fs P-R2 sin 24, = sin, ¢ (2.16b)
[ L . o . )
(hy-02) R~ thy R P2(142 cos? &,) - 2(hythg) R =0 (2.16c)
' e
' » - "
hy o R+ zh; R P2 sin 2B, = 0 . (2.164)
RN

Here P(t), R(t), ¢(t) and .x(tr) have been replaced by values a’veraged -
over one cycle, denoted by P, R, % and Y,l respectively. The symbol

&, is the average phase difference

Az=.)-(.'$‘ ) ' '

(2.17)

Sy : '
* El#minating phase angles from the Equations (2.16) and (2.17)

IR ——
T e ———

|
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&
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. U = o
) results in the following two ’simultaneous coupled nonlinear algebraic

= — 1

. eqdatjons in P and R

. . . . . fs . : fs .42 .
{'(fz-o@) P2 -3 P* - A (ha-02) RZ + & = (hy+hg) Tl“} :
. » . . 3 A :
+ 1 n'P'Z #E‘ hnﬁ‘ﬂ2 B Y { .(2 18a)
- . [ R ,- hy 1 Y .
. , : SN LTy e R
. .. 5> h 4(h,-02) -3(h +h_) ),. . .
- . 1 2 b6 5o : :
; § — @) 4 —F—— -~ 2P2 - Ry =p+ - (e
R R s S e et AT AR O )

4 ’ > »

" Equation (2.18) can readily be solved by standard numerical techniques'

1 < [31] and the stability '0_5; response R can .then be examined in the

o ' amp]itud?-frequency (i.es, R-) parameter space.
/‘ . ’ L4
v ‘\\'_/‘ - 4 .
» \ N , o - s
<" .+ 2.2.3 (Condition for’ Torsidnal Coupling N \
, P Y o "

-

The stability of the,coupled\responsé is examined b} introducing

e

3

small perturbations in the;solutions éxpves§ed by Equations (2.15a,b),

say of magnitude £ (r) and £.(t). 'Hence ,
' sX 8 ‘

q

lt v . ) . _ N . \\ o J -
- L AX(T).= F-COS (R + ¢) + EX(T) o, - . (2.19a) - -
G gl R (e ) gl ~ (29)
. “e\ . ' . ' ) . oo . ) K , \

' Sgsbtitutipg these perturbed,sb]utions into the npnd1mensiona1izéd.differ-
* 'entiéi‘equations of mo;?on (Equations (2.13) -and (2.14)). and retain-.

i anﬂonIy the first order terms in &y and 56',1eads to the fb]loWingj“

" ' ¢ -
» * . ks é

1

< . .
« “ N ) ‘ "' . o
. . o *n .
‘ . . !
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‘ ~ set of darped coupled Mathieu-Hi1l variational equations.

i+ [E-3A-3Bcos2] 6=0 (2.20)

'
»

rm

. ce+2¢C
£l

for which details ofethe derivation and definitions of the coefficient
‘matrices C, €, gﬁ A and B are available in Appendix C. .
The principal region'df instability of the above equation is )

, - approximated by fhe criterion established by Bolotin [4] which yields-

the determinantal equation .

i

-
2

E - %A + 3B -.02C " 20 C=e

. ©2ale - . E-3A- 1B - 02
\ e oo S
for whith. expansion woulg result in a fourth order algebraid equation

N TLINY 4 3 e pomreg s e
“
~
¢
1}
o
« —
Ny
.
~n
-
~—

AY

S b

o

- SRR P

in Q2.
" Setting the second diagonal term of the above determinant to

T zero. provides a first order approximate value of @. Upon substitut- -

F" * -
: ing this value into all the elements of determinantal Equation (2.21)

. ' . .
ol . except the second and fourth elements of the principal diagonal, the

 expanded form becomes

v




- . \l
"-18 -
t
N ‘ /
/ :
/ 2 ) ‘
(]_3511_&3_) -3.‘.\.12 '_Q_efl 0
f2 fz FZ- fz L -
p) . .
N ‘
. 4 , .
N ( -1 Ao (]_;Aﬁ_ﬁz_) 0 - ___thl ,
hy ha h; hy . ,
=0
Q9
~. 2 .
%" 0 . (1-3 A . iﬁ_) -3 Mz
fa | fa  fz2 T
" } :r ¢
) }n . ) QBhl. ] A21 . (11 'A22 ) 9—)
B s I W, W,
: ‘ ,
. s (2.22)
§ < .
i . where the expressions for Aij are given in Appendix C.
‘ The fo%egoin’g equation is expanded and, after neglecting terms of
higher than the second order in f; and h;, the foi]owing quadratic
«
tlaquation results
2! .Pis. Ey. Eﬁi& 2 ’
= - ('Hz ¥ H1)Z ' (H1H?_+'H5 )= 0 ’ \ (2.23) : .
in which ‘
A a2
, =111 _ 8
. £ Hy=1 77, f, (2.24a)
N ) .
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3Ry, .2 '
Ho = 1 = 7o = =0 . ) 2.24b) -
2’ Eral | (. )
C9AL A ; -
Hy = —-H 12 21 2.2
3 ( ) 2. TE_?Z—FZT | 0 (2.24c)
A, A . . ‘ '
_ M2 Ay :
I T 2 Tl ‘ (2.249)
/ . thl ’ . N
He = (———— . 2.24
5 ( h, _ ; ( e)
"
A ) \
2 =1 - g - %; | . . (2.24f)
"The solution of Equation (2.23) can be éxpréssed as
A H
- el -22oh, 4 (H £ [{3 (H » i - h2itnt
(2.'25‘)‘

Equation (2.25) is now th stability equation which will be use& to
determine the influence of torsional damping and to study the poten-

tial for torsional coupling of various structural systems.

2.3 CRITICAL TORSIONAL DAMPING

In the preceding, an expresé?on (2.25) has been formulated to
/ determine the condition for ;orsiona] coupling in a symmetric system.
Th}s expression involves a variety of system parameters such as plan
aspect ratio r, tgrsiona] frequency de’ non]ine§r1ty parameter

A, translational and torsional damping coefficients Lyskg and

/ . ...
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system parameters E and F (Appendix A, Equation A4) reflecting the

Ao

arrangement of reg{sting elements to be discussed separately.

Equation (2.25) may give rise to complex boundhry frequencies

v if the torsional damping coefficient Ly is taken into consideration,
since the quantity within the inner radital becomes negative under

certain circumstances. It should be noted that t, appears as part

L St B it 6, ot 5 T e o2

bf only the inner radical term, i.e., in Hgs defined by Equatibn

(2.24e) where hy = 2 L% (Equations A5 and A6.of Appendix A). J

Since the system under consideration is a physical one, the existence
_ of complex frequencies is impossible. Thus, in order to ensure that

frequencies remain real, the term within the inner radical must be

1 o Ann A A TR A bt B

positive or at least zero. Imposing this condition provides an ex-

| pression determining the maximum torsional damping Lo cr for which
b4

induced dynamic torsional coupling is_possible. This means * . ‘
o j

n

A ’ A

(...3. H_:) = Hs : _ (2.26‘)

i 3 n

Ihis'1eads.to thg magnitudé of critical tops%ona1‘damping given by -

_ haP2 _ 3(hy + he o ‘
to,cr 8 2,2 B q, 2‘)=f' + 0(A2) ‘ . (2.27)

where second order form O0(A2) can be neglected.

In the above equation, approximations for the average transla-

* tional and torsional amplitudes P and R are necessary to evaluate

Ty cp: Equations (2.18a) and (2.18b), a set of algebraic equations

found by the method of averaging, may be used to estimate these
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amplitudes. !

Since the structure is symmetric, one is interested only in the
onset of torsional motion and R may therefore by assumed to be small.

Consequently,. only first order terms in ﬁk nded to be retained in

these equations. Similar first order approxjmation allows the non-
Jinear terms in P to be neglected. With these approximations, —— %
Equations (2.16a) through (2.16d) become a set of linear algebraic g

equations yielding the following approximéte values of P and R
' 1

P

[0 - 02)2 + (2 ¢, 2)2]"? (2.28a) s

o i
] )

(2.28b) -

=
it
)

=~

Tso [5] arrived at simi]érzapproximations directly fram Equations
(2.6) and (2.7) without resorting.to the averaging method. However,
the genera]iforhu1ation presented here allows the possibility of
h%gher-order analysis in P and R. In addition, when,unsymmetric
structures with known eccentricity between the centres of stiffness -
and mass are involved (Chapter III), tht magnitude of torsional re- -

bonse cannot be-neglected as in Equation (2.28b) and estimates of

amplitudes, such as provided by Equatioﬁs (2.18a) and (2.18b), are

requ?red. Substituting the approximate values of P and R from

Equations (2.28a,b) into Equation (2.27) leads to the following .

expression for critical torsional damping
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T Zeer B a7 (2.29)

13

P=D " (2.30)

In static normalization, substituting for hz (Appendix A, Equation
A5) and P (Equation 2.30) yields_the specialized expression for cri-

tical torsional damping

X gx_E2D2 )
4 = = (2.31)
g,cr 81 +~r25092 :

Equation (2.31) inﬁo]ves; along with the usual system variables, the
"parameter E characterizing the structural geometry;

Figure 2.2a represents the plotting of Equation (2.31) showing
the effect of input frequency & on critical torsional damping.for
a typical system. Points falling on the curve'indicate the magnitude
of torsional damping ratio Zg,cr requi}ed to prevént the initiation

_of torsional oscillation. For each curve shown, the area below the

/ curve represents thoi torsiona]ly'unstable zone and the av“above

denotes stable (unéoup]ed) translational response. It is noted that,

in the neighbourhood of @ = 1, higher torsional damping is necessary
to ensure stability against torsional coupling compared to that re-
quired for other values of o for given system frequency 24 .‘It is also
observed from these curves that, at a varticular value of o , torsion-

al response may be avoided at lower torsional damping when the torsional

.

o by i =
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frequency of the structure increases.

Considering dynamié‘norma]ization, Equation (2.29) may be cast

into the following form after substituting the corresponding expres-

sion for hy (Appendix A, Equation A6)

2
Nyt

It is worth notfng that Equation (2.31) could have been obtained by
simply substituting Equation (2.12) into Equation (2.31).

Dynamic norma]%zétion has an advantage over the static normali-
zation procedure in the sense that, while Equatioh (2.31) will repre-
sent the curve for a particular static nonlinearity parameter As’
Equation (2.32) represents the curve for any value of AS provided
dynamic parameter Ad remains constant. Thus figure (2.2b), repre-
senting the plotting of Equation (2.32) shows the behaviour of the
system for the whole range of static nonjinearity. In both equations,

it is observed that the magnitude of critical torsional damping Lo cr

increases directly with nonlinearity parameter A and decreases
with aspect ratio r of the system. The latter indicates that non-

linear torsional coupling is more critical for the short direction

~

of a building structure.

Figure (2.2b) also demonstrates the relationship bgtween static

and dynamic normalizations. A typical curve of ,Ce,cf versus

2 (r=1.0, Ay T 0.1) represents an énsemb]e of structures with an

TS —— g o i ko
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infinité number of values for traﬁs]ationa] démping Zys input ‘fre- K
quency @ and static nonlinearity As; i.e., the same curve can be
traced for constant g, = 0.02 with o and A combinations of 0.2
and .0922, 0.6 and 0.041, 1.0 and 0.00016, 1.4 and 0.0925, and 1.8
and 0.502, and so on. Thus, a single curve for given A represents
behaviour for an infinite array of structures with different physical
properties defined by gx,xs and variable excitatipn frequency .

' Figure 2.3 shows the effect of aspect ratio r on the critical
torsional damping for stabi]ify, using Equation (2.31). Again, the
area under each.curve is defined as the unstable zone which is seen

to decrease with increase in aspect ratio.

2.4 REGIONS OF INDUCED TORSIONAL COUPLING

Ip the foregoing, the general criterion for torsional instability
of damped systems has been formulated resulting:in Equation (2.25).
The critical magnitude of torsional damping has also been established
(Equations (2.31) and (2.32)) for torsiong] damping less than this

critical value. Equation (2.25) will give rise to two equations

describing the upper and lower instability bounds.

2.4.1 Torsionally Undamped Structures

If'torsional damping is neglected entirely, Eqdatioﬁ (2.25) .

yields the following respective uppgr~and Tower bounds

p2 n2
9f5h3 P< R

3 — v —,
Q2 = %7{hy P2 + 3(hy+he)R2} + - (2.33a)

4(1- 3 £,72 - 2FeR2 - a2)

T v s A A Lt R

Tk et rmnn
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« . o , ; o . fh, P2 R . ;
o %= 0 AP 3he ) ¢ gy (9
\ L With the estimation of P and R given'by Equations (2.28) and

* (2.30), these transform into

et Aok $0 T Sl

\
. 3h, D2 -
ng = Q2 + 7 (2.34a)
. :
, , h3 D2 ;
e = a + 3 §2.34b)

Foﬁlowing the static nqrmalization procedure described,'substit-

"R R At e S

; . ‘ uting the expression for hy (Appendix A, Equation (A5)) gives* - ‘ ;
. . _ 2 27x, E2? S -

. 2 -

’ Qe Qe + —-(TT?ZT ' . ] (2.35a)

, 91, E2D2 )

in which D and E are defined by'Equations (2.28a), (2.30) and (A4).
Equations (2.35a,b) are plotted in Figure 2.4 sHowing the region
oflinduced'torsionél coupling for stiffness distributed along the ° L
boundary. It is noted that the region of insfqbility becomes more'
pronounced for o values between 0.8 and 1.2. It is also 1'r;te|rest-~

ing to note that the torsional frequency g need not be equal to

.
. . sl e . e ae o
S e SR PR F AT W e

ey e
AL

* The corresponding equations and related figures for peripheral
systems, where E = 1.0, were derived by Tso (Reference [5],
Equations (25a,b)) containing inadvertent errors subsequently
corrected by [27,6]. ‘
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input frequency 2 to induce torsional osci]]afion of the structure.

“~ Torsional stability in a symetric system implies no torsional

response when’the input excitation is purely translationa1; It is
observed in ?igure 2.4 that the torsional frequenc; must be greater
than phe excitation frequency in order fog\torgiona] response to oc-
cur, At a value of @ equal to unity, the Jike]ihbod of torsional
instability is most pronounced. On either side of this point, i.e.,
Q<0.8 and o> 1.2, the coupling region narrows and approaches
the Qg = 9 line. Hence, away from q = 13 the unstable region
becomes suffiqient]y narrow that torsional oscillation is unlikely.
//é}§ﬁ55?§i£ed in Figure 2.4 is the staiic torsional "buckling
reg?an. The static torsional buckling region- corresponds to zero
magnitude of the apparent torsional frequency 2 (see Appendix D,
Equation (D33). This situation can arise for a certain magnitude of
translational amplitude P, described as the critical lateral dis-
placement given by Equation (D5). - In terms of static normalization,
Equaﬁion QDS) may be expressed as
) 2 E2D2

%% = Ty ) S . (2.36)

which is plotted in Fig&re 2.4 for stiffness distributed along the

“boundary. Some over]ap“beiween the static torsional buckling region .

and the zone of torsional coupling is noticed. The boundary of the
cdupiing region is meaningful only when static buckling does not
occur. Thus, the portion of the dynamic coupling region overlapping

the static buckling region has no physicaf méaning;
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To &émonstrate the influence of aspect ratio® r and damping Ty

s
’

p1otfed in Q,- @ parameter space based on Equations (2.352,b)
6ga?n for stiffness distributed along the boundary. As shown in ’
Figure 2.5, the unstable region increases with decrease in building |
plan aspect ratio and shifts away from the Qe =0 line. Similarly, .
the unstable region decreases, particularly in the neighbourhood of | '
2 =1, and shifts towards the 2y = Q 1ine with increase in fhe
value of translational damping coefficient g,» s seen in Figure
2.6.

From thé above observations, it is evident that uncoupled tor-

sional frequency‘ratio Q. is an important parameter influencing

8

1
. the torsional stability of a symmetric structure. Tso and Asmis [8] .

-

"have indicated that the critical value of Qe is restricted to the

range 1.]1&J 1.67. However, it can be observed in Figurés 2.5 and
2.6 that the cri;ica] range for Q, is strongly influenced by the
aspect ratio as well as by the translational damping coefficient.

For dynamic normalization the corresponding equations of the up-

per and lower bounds of the unstable region are obtained by substitu-

" ting h; (Appendix A, Equation (A6)) into Equations (2.33a,b) giving

B S:lez = Q2 + m . l (2.37a)

R s 2 s ' - (2.37)

,//’

~ on the stability, Figures 2.5 and 2.6 show the region of coupling '//,////(-~
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lation of Equation (2.12) is observed. Thus, the stébi]ity curves
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These equations are independent of translational damping Ty and are
\
plotted. in Figure 2 .7 for a typical system. Similar to Figures 2.4

£

th:Pugh 2.6, it may be observed that. the stabilit curJEs in this fi-
gure also lie above the equal frequency line @_= Q. In this diagram

8
the beaks of Figuresm2.4 through 2.5 do not exist and the upper and 4

lower bounds aré almost straight lines. Static tlrsiona1 buckling is

also shown, expressed by (from Equations (D5) and\(A5)? b . ]
2 gkd E2 -~ X\a . 3

. QB = 2—(]—_,_—"2')- ’ \\ (2.38) 3,

: : 1

V\f- . ! F

The obvious difference between the coupling regions shown in
Figures 2.4 through 2.7 raises the question, which of these curves is 7 E

the best measure of a system's susceptibility to torsional coupling. '

This question may also give rise to some misinterpretation when, com-
par{ng the work of Tso [5] and Antonelli et al. [6], since the insta-
bility regions differ markedly a]thougﬁ presented in the same fre-
éuency parameter space. Consequently, it needs to be{emphasized that
the static nonlinearity used by Tso [5] and the'dynamic nonlinearity
recormmended by Antonelli et al. [6] are related by Equation (2.12).
By way of clarification, Figure 2.8 shows that tﬁe stability
curve for a constant value of ), is found to be qotﬁing but the

locus of points on the curves for different values oﬁ' Ag if the re-

|
for a constant value of A represent the ensemble of an infinite

number of systems with . -

ty combinations related by Equation
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(2.12). Conversely, the stability bounds for constant As rebresent
systems with an ensemble of Ag - Sy combinations, each also govern;

.ed by Equation (2.12). For systems with known nonlinearity, the sta-

bility curves geffrated with A_ will be useful, since A s a un-
ique value, whereas the Ad curves will apply for systems with un-

known nonlinearity because these represent the entire range 0f~*AS.

|
- T

2.4.2 Torsionally Damped Structures

¢ ‘ The foregoing stability bounds have ignored torsional damping. ' .
Equation (2.25) represents the general expression for the stability
bounds for any_degree of torsional damping. For critical damping the
upper and 1owér bounds merge into a single curve described by the fol-

Towing ‘expression

/ A
/

Q2 + 3{h3P2 + 3 (hy + he)R2} - .

. -2
G e g e s

ofh, PR R2  fh, P2 R2 S
+ + > 3 - I
8(1 - 3F3P2- 4FR2 - 0.2)  8(1 - ;P2 - 3R - q2)

(2.39)

It is observed that- Equation (2.39) is the linear average of Equations . .

(2.33a,b);utilizing the épproximate values of P and R from Equa-

tions (2.28a,b) and (2.30) reduces the foregoing expression to S
h_D2 '
2 =02 + .3
42 = 02 + +— ‘ . $2.40)
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In terms of static no%ma]izatiop, this may be written as

ba . N N ' ®
. . + '
. : 9xg E2D2 . ]
. ‘ QGZ = 92 + m ‘ ) . . ‘ (2.4]) . )

. whereas for .dynamic normalization one obtains

. . L a Cove o /
BN :: N Qe =.9 +021| + rzs ' ’ . (2.42) ~ i
Hv TR "~ However, whgp daﬁpingn15 Jess fhanocriticaI, Equation (2.25)

= . ;
e s o

gives rise to the following upper and lower bounds

~ - ; 1
ke J N l ‘ /T—__ ' ) - ) s LR « L i
.h’ . T ? a'“ 962 = 92 + ('2—"-':—'—4""—"'?i {han + 3(h|’ + hs)-R_Z} i N ) ' i

H oo 9 (1+/T-x2) fh RR  (1F/T-D) fh, R : 5
+ + 1
! ‘ 9 3w : 3 1c 5
i ' : 8(1 - 5*352 - Estz - Qéz) - 8(1 - E$3FQ - EfSR - 992) AN ‘
. o 4 . :
, " L ‘ IR , (2.43a,b)
where parameter « denotes the degree of critical damping for.non=-
. ;‘ . \1\ -
lineanr torsional coupling given by « = r,e/ce or? with the possible
. . 1] '/
o range 0.0 < « < 1.0. Substituting the approximate expressions of P
e and R of Equations (2.28a,b) and (2.30) yields
' . . \
2+ T %), p ¢ o« PTANE
2 2092 4 2 - :
. ﬂe e + (———T——)h3D (2.44a) »\
. .’ -
- v Q
”(““ With statlc normalization, these become ‘




:
%
%
:
i
5
i

9(2 + /1T - k2) A E2 D2

2 = 2 : . o
P %% % 9+ gy . [(2.459)
, 9(2'- /T -x2) A, E2:D2
Q.2=02 + ° ’ . (2-.45b)
] 4(1 + r4 *
- O JNR“‘ . R
o,
W Qa

| . - L3 ' . 3
whereas for dynamic normalization, the corresponding expressions are

S
. ~ L ™

L , 92+ T ) AR
%° = 0%+ —— )

C 2 =3Z) A ez
L = s+ - 401 + r?)

With « = 1.0, Equations (2.45) and (2:46) degene}ate %nto Equations
(2.41) and (2.42){'respective1yl o
Figures 2.9 and 2.10-spow the stability bounds of a system ob- /o
tained from-Equations (2.45) and (2.46) with three different 1éVels  ' - -\

t 1

of torsional damp1ng, name]y 2o =0; t =3 s C.=C It is

8,cr’ "o "a,cr’

seen that the tors1ona1 coupling zone is sensitive to the introduc-

tion of torsional damping as would be expected; the region of tor-'

sional coupling decreases sharply with increase in torsional damping o

until, at ¢, = coupling is no longer possible. i

Ce,cr’

2.5 INFLUENCE OF STRUCTURAL GEOMETRIES

The preceding formulation for torsional damping and the regions
of induced torsional coupling apply for any system with its resisting

elements randomly located within the plan area (Figure 2.1). Thus,

A

- , . .

. . f

' - AY ’
. ’
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Equations (2.31), (2.32), (2.35)-(2.38), (2.41), (2.42), (2.45) and

(2.46) contain term E, the coefficient representing the stiffness

distribution over the plan area of the building. The expression for

" E, shown in Equation (A4) of Appendix A, represents the normalized

'

second moment of the translational stiffness kix about the x-axis.
The second stiffness distribution coefficient F represents the cor-
responding normalized second moment of the translational stiffness
ki} about the y-axis.’ The latter does not appear in the equations’
because the systems invest%gated are symmetric and the input excita-
tion is in the x-direétion only. Howevef, it can be expected that
critical torsional damping, the zones of instability ?nd the ‘magni-
tude of static torsional buck]ing\wil] each be influenced by the
actual distribution of the yesisti}g elements. Whereas Figures

2.4 through 2.10 were plotted for a system with stiffness distribution
parameter set arbitrarily at E = 1.0, i.e. having its Eesistiﬁg
elements distributed along the periphery as in References [5,6], in
what follows the influence of coe%ficient E- is gxamiﬁed for a
variety of commonly used structural ;trategies.

) Figure 2.11 shows typical examples of stiffness distributidns
encountered in practice namely systems with: (a) periphery‘resis-
tance; (b) wuniformly.distributed resistance; (c) central core 're-
sistance; (d) nine- and four-column resistances. The plan dimen-
sions are selectively kept ébnstant (2a x 2b) for these systems.,

Since these structures are symmetric, the magnitudes of coefficients

E and F are equal and are related as follows ’
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2 2 2 ="
3, E.2/s 1.5En £ ‘ (2.47a)

it

i
-n
N

2 = 2 = F 2 2’ ) ‘ -
F 3F Fc /s 1.SEn £ (2.47b)

where subscripts p, d, ¢, n and f denote periphery, distributed,
corel9- and 4-column systems respectively. The magnitude of E2 and F2
for these systems are correspondingly 1.0, 0.33, s2, 0.67 and 1.0.
Figure 2.12 shows the cr%tica] torsional damping curves for'thesg
systems obtained_from dynam1§?]1y normalized Equation (2.32). It is

observed that, for fixed & the periphery and four-column systems'

e’
" require the largest amount of torsional damping, whereas the core

syétem requires the least. However, to obtain a.meaningful compari-

son, total lateral stiffness Kx and Ky and mass M. are assumed

equal for all systems. With equal translational stiffness, the tor-

sional frequencies of these systems are related as follows

»”

wpez ) 3“’de2 } wc82/52 = 18w, = “sz ‘. (2.48)

and stiffness distri-

e

A relationship between torsional frequency wg

bution parameter E exists for the various systems:-given by

o
w w W w w
_&e_ = _dg = ._(& = _ne_ = ie- = constant h (2-49)

" The above equation indicates that, for a particular aspect ratio and

equé] total mass and translational stiffness, the ratio w,/E remains
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constant regardless of‘the actual distribution of resisting elements.

. In -order to investigate the influence of parameter E on the st- i
v ability bounds, Equat{ons (2.45a,b) have been plotted in Figure 2.13

for periphery, distributed, core, 9- and 4-column systems. Similar-

1y, Equations (2.46a,d) are plotted in F?Bure 2.14.* In both, an ex- y

ample set of values for paramete;s r, > and Ly has been assumed.

As these diagrams show, the zone of torsional coupling varies widely

with Jargest area for periphery and 4-column systems and smaliest

area for the core system. Thus, these diagrams are useful in pre-
Gicting the torsidnaT stabi]i?y of different systems. 'FQS example,
assuming a system with periphery elements to 1ie within the unstable
T\i;region, the equivalent distributed system will fall outside the Eou-
Ning region thereby indicating that the distributed system is less
susceptible to nonlinear torsional coupling than the alternative
periphery system having equal mass and to§a1 lateral stiffnesses. ;
Similarly, the core system encountered in a building relying primar- ;
ily on a centrally-located elevator shaft for resisting.lateral loads

will be uniikely to expgrience nonlinear torsional coupling (see . ;

. Figures 2.13d and 2.14d). : ' .

%
f

"' - . A

* The special case of a structure simplified to consist of two
Jateral load resisting elements, with nonzero stiffness in
the direction of excitation only, reduces to two straight 1ines

(6l - - - .

~
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2.6 GENERALIZED DAMPING AND STABILITY BOUNDS

In order to obtain generalized éxpressions for critical torsional

_damping which are independent of the system of resisting elements, Eq-

uations (2.31) and (2.32) are normalized with respect to EZ. This

yields the following expressions a;cording to static and dynamic norma-

1ization, respectfvely

PS ' g )\SDZ (' )
z F — 2.50
J8,cr 8(1 + r-’-)sze2 :
. 9.

= d ’ (2.51)

z, —
‘ BsCT g1 + r2)e,?
h '

where generalized torsional frequency &e = Qe/E. Equations (2.50)

S e ey L L

and (2.51) are plotted in figure 2.15a,b. It should be recogiized that

this generalized Qiaéram,determines the critical torsional damping

s 0

for all structural arrahgeﬁents. Also, Figure 2.15b suffices to re-

ot

present an ensemble of structures with different combinations of

K .

* values for Ty A and Q.

Corresponding generalized .upper and lower bound stability curves

.are ogtained from Equation (2.45) for static normalization, given by

o, e 82 TTRT) D2 .
Qe = Q¢ + AT+ v2) . _ . . 1(2-52) .

P

s

the corresponding generalized stability bounds are

/

and shown in Fgiure 2.16. For dynamically normalized Equation (2;46),

-
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,,2 ﬁz g(thI-K:’-) Ad
8" = 98+ — I r7) (2.53)

which are shown w Figure 2.17. In the above equations, generalized

input and systeﬁifrequencies are defined as
© Q= Q/E (2.54a)
a, = /E A (2.54b)

Such expressions for the upper and Tower bound curves can be
formﬁ]ated for any value of torsional damping Lo less than critical,
f.e., x < 1.0. It is interesting to note that the generalized upper
and Tower bounds are identical to those of the periphery and 4-column
systems (see Figures 2.13a, 2.14a); this results from E2 = 1.0 ?or
those systems. The diagrams indicate that the torsional coupling re-

gion always falls above the equal frequency line 56 = Q, thus indi-

cafing that the structure's torsional frequency must be greater than

_the exciting frequency for torsional response to occur.

Also.plotted in Figures 2.16 and 2.17 is the static tors}onal
buckling region. Some overlap between the static torsional buckling
region and the zone of torsional coupling is noticed. The boundaryl
of the torsional coupling region is meaningful only when static buckl-
1n§ does not occur. Thus, that portion of the dynamic coupling regipn
which overlaps the static buckling region has no pqrticular physjca]

meaning.
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2.7 CONCLUSIONS

wepgan O

Earlier studies of torsional instability in symmetric structures

_ have been extended. In particular, the originality of the work in

"

L T

the present chapter consists of the introduction of torsional damping

R e

and the subsequent study of the susceptibility to nonlinear coupling -
of a variety of structural systems common in the planning and design

of buildings. Within the scope of this investiéation, the foffowing

S R

r tonclusions are noted.

1. Both critica]gtorsional damping.and the torsional stability -
bounds are influenced by: nonlinearity parameter 'A;~bui]d-
ing plan aspect ratio r; translational démping cpefficient
Ly normalized system frequency ‘Qe; normalized input fre-

quency @3 and the stiffness distribution coefficient E.

2. Critical torsional damping and the associated stability dia-

grams, obtained from alternative static and dfnamic defini-~

-

tions of nonlinearity (A

¢ and Ad), are found to be re-

“a : ‘ lated by Equation (2.12). While curves for a particular
A value represent behaviour for one specific nonlinear
force-displacement relation, correspondihg diagrams for a

fixed value of Xd’ on the other hand, represent an array

structures with all possible values of .A;.

v

: , . 3. The magnitude of critical torsional damping beyond

Ce,cr’
which induced torsional oscillation due to translational

%

-ground excitation‘on1y is no longer possible, is directly

proportional to nonlinearity parameter  (i.e., A for

e

-

b i b i N B b L S L
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static.normalization and kd for dynamic normalization),

and inversely proportional to (1 + r2), where r is.the

.plan aspect ratio of the system.

The highest magnitﬁde of critical torsional damping to pre-
vent coupling is required when input normalized frequency
@ = 1; thus, in order to avoid torsional motion it is a
conservative measure to incorporate damping equal to Zo,cr
at o= 1.

The zone of induced torsional coupling is critically in-"~
fluenced by the magnitude of torsional damping; for zero
forsional dampiné the region of torsional coupling is large,
it decreases with increase in torsional damping and finally
degenerates into a single line at critical torsional damp-
ing, thereby indicatihg complete stability against nonlinear

torsional coupling.

Translational damping helps to decreasg‘the instability zone

of torsional response, i.e., the smaller the translational

damping, the greater the Tikelihood of significant torsional -

respanse.

The region of induced torsional oscillation is more pronounc-
ed for n values between 0.8 and 1.2 for a particular value
of static nonlinearity parameter Ags whereas such motion
is more pronounced for decreasing o considering dynamic

nonlinearity parameter g+

1
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It has been shown that, irrespective of which normalization
of nonlinearity is used (AS or Ad), torsional oscilla-

tion will be induced only when @, is greafer than .

8
While it is known that coincident 1atera11input and trans-
]ationai frequencies result in trané]ationa] resonance,
coincident torsional and input lateral frequencies (i.e.,.

fy = Q) do not induce’torsiona1 coup]%ng. Parametric ex-
citation is thus possible only when the magnitude of torsion-

“al frequency of the system is slightly higher than the trans-

lational exciting frequency. Both upper and lower bound
stability curves are asymptotic to the 9, = @ line at
higher values of Q. Also, at larger @ values the un-
stable reqgion becomes sufficiently narrow that inducea tor-

sional oscillation is unlikely. -

Building plan aspect ratio r influences the initiation of

o

torsional o;pi?fations ih a symmetric structure. Torsional

~response is more 1ikely if the ground motion is in the di-

rection parallel to the short dimension of a symmetric or

nominally symmetric building.

“The di§tribution of the resisting elements influences sta-

bility against induced torsion; thus, selectively rearrang-
ing the resisting elements can eliminate torsional coupling.
The zone of torsional coupling shrinks dramatically in mag- .
nitude when going from periphery and 4-column systems to a

core system,
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1. Stabifity diagrams have been presented in generalized form
to iﬁentify the susceptibility of structures with different
stiffness distributiohs and equal mass and total lateral
stiffnegs to torsional coupling. If the generalized fre-

A

-quencies o, and Q are such that they fall within the
" unstable region, torsional motion is to be expected if
lateral resisting elements are nonlinear; otherwise the

structure is not susceptible to torsional coupling

Since interest fn this chapter has focussed—on the initiation of

torsional coupling in symmetric stru ures, the assumption of elastic
non]inearify can.easily be justffjed. ,Actua1 magnitudes\%f response
with coupling could, if'desired, be‘estimated by the averaging proce-
dure described. It is, however, recognized that in ¥ea1 situations,
such as bui]dinés subjected to.earthquake groupa.excitation, struc-
trual elements are forced into the inelastic tﬁﬁge.and response am-
plitudes estimated on the basis of e1astic‘behaviour'doln0t apply.
Thus, the minimal pontribution to response based on elastic behaViour
reported in [6] for torsional coupling fails to.represent the. real
situation. The more realistic time-history analysis reported by

Tso [5], on the other hand, assumed nonlinear elastic-plastic and also
Ramﬁ%rg-Osgood behaviour and this showed a 70% increase in response

at the periphery of the structure, compared to uncoupled*translational
response. It husf therefore be concluded that, for those structural
arrangements which demonstrate a high susceptibility to torsional
coupling, incorporating the expected magnitude of reﬁponse and intro-
ducing plastic acéion for the resisting elements appear to be a useful

extension of this work.
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’ torsional response (E2 = 1.0).
. [ /

LY




——r o

Jv
.. '| —upPer Bouno [l
2,00 k---LOWER BOUND - |} '
| r0.5
-  Bay=10
A=0.00! ( ‘
175} o o '

Co o i
flg 150} £xr00 } |
002 TRRT\E _
| 0.05 H '|“
.25 ' : /,} WA >
\ =7
' ==
! !/ 7 S |
100 .

= 4 11 002
: ""””’*””i ' ’ <)<>=5
[ i - 1 1 1
075 10 .25

4

Fjgd:e 2.6 Effect of translational damping coefficient ;g on the '

region of .induced torsional response. (E2=1.0).



- 48 -
)
| T ‘ -
»
i 2.8 }
r =0.5 !
=0
v 24K E =100 f
VL P I‘ f
f
2.0} .

, 3
CouP -

j
| 1.6
{ 96 ‘
, ) 1.2 )
| . |
- 0.8
. 0.4 & -
Z|2 |
2|2
QID
B 0 1 [ S| 1
) : : 0 0.4 - 048 1.2 1.6 2.0
Figure 2.7 ‘"Region of torsional coupling for dynamic nonlinearity
Ad = 0-]- : :
[ |- '
t [
'k'

T Y St "
LA ERIR AR RET o oo ity B TR R ol AN



- 49 -
nonlinearity X,=0.1 clarifying relation with en-

semble of curvgs for *s'cx combinations.

Figure 2.8 Upper bound torsional éoup]ing curve for dynamic
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(a)

2a

s2a

2b

(d)

uniformly distributed resistance; (c) central core; -

Figure.2.11 Tygica] structural geometries: (a) periphery resistance

l

nine- and four-column systems.
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Figure 2.12 Cffect of structural geometry on critical torsional
damping to prevent coupling (34=0.1, r=1.0).
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CHAPTER II1 ' ’

INSTABILIfY IN ELASTIC ASYMMETRIC STRUCTURES

3.1 INTRODUCTION

-

In the preceding chapter, the instability dﬂ symmetric systems
with non]jnear elastic resisting elements has been studied in some
detail. It will now be worthwhile to investigate’how asymmetric
systems behave when the resisfing elements exhibit similar nonlinear
elastic characteristics, particularly since.}hg existing studies of
linear unsymmetric structures [16-22], as well as of nonlinear sym-
metric structures [5-6], are not directly abp]icab]e in predicting
the behaviour of structures that are both nonlinear elastic and un-
é;ﬁmetric. | .

Thus, the method presented in Chapter II is‘ektended to systems
having either single or double eccentricity (see Figure 3.1). As
was the case for symmetric systems, the resisting elements are coﬁ-
sidered randomly distributed over the plan area when’sing]e eccentri-
cjty is introduced, whereas for double eccentricity resisting elements
are along the periphery. In both the singly anq doubly eccentrié
systems, translational and tonsioﬁa] viscous damping has begn~jn ud-
ed. \ L

ol ' . .
It is shown that the nonlinear equations of motion are governed
by a set of two or three damped coupled Mathieu-Hill type equations
which also exhibit regions of instability. For illustration, tor-

sional stability curves for an example L-shaped building plan are

presented and the effect of Eqrs1onal damping on the instability ts

» L3

-
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‘\ investigated. Convergence problems, encountered in the form of 'gaps'

RPN L IR A p vy
»
3

in the resulting closed form solution, are also examined.

y

w ! 3.2 SYSTEMS WITH SINGLE ECCENTRICITY

3.2.1 Governing Equations of Motion -
i S - | o
Similar . to the symmetric system invespigated in Chapteé‘ll, the
simple structure idealized here also consists of a rigid deck sup-
ported on massless, axially inextensible resisting elements randomly
located over the plan area but with the centre of resistance eccentric
only in the y-direction (Figure 3.1 with e, = 0.). The load dis-
placement relationship of resisting elements is taken to be weakly
nonlinear, elastic and of the softening type with cubic nonlinearity
expressed by Equation (2.2). The structure is subjected to sinusoidal
o ground excitation in the x-direction given by Equation (2.5).
Since ground excitation exists only in the x-direction and the &
‘ structure is monosymmetr%c (i.e., e, = 0 in this section) transla- . !
tional displacement u in the x-direction and‘rotational displace-

ment @ , about a vertical axistrepresent the dégrees-of-freedom.

Thus, the system is governed by the following two equations of motion

l

. | “
Ut 2z U+ w2 (] - e(u?+ 3 b22))

.
;

. .

2 \\ . . .

P

: . A}
y A

N

- m§ 6,8 {1 -¢(3u2 + b282)} = -U ¢os ut  (3.1)
1]

wet i

-
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. wle
6 +2 g, b +ulb - -%%91 u{l - e(u? + 3 b2p2)}
J ‘ ‘ .
- e8(ayu? + a,82) = 0 (3.2)

in which the expressions for e, a; and a, are the same as those
in the symmetric system of chapter II, given by Equation (2.8); T
is the mass radius of gyration defined by T2 = (a2+b2)/3; Ty and te

are the viscous damping ratios; wy and «_ may be interpreted as

B
the uncoupled lateral and torsional frequenéies about the centre of

of resistance with respect to the centre of mass.
Throughout the derivation in the present chapter, the static
~ reference displacement 60,5 ‘is used; thus, all subsequent equations
and discussions refer to the static normalization procedure.
For the sake of convenience, Equations (3.1) and (3.2) are ex:

pressed in the following nondimensional. form following the procedure

' of Appendix A

(f. 23 foA2p + 72
(fan t fuA2ng + fon a2
'

S,
Ay fih, + fah,

+

fehg + f703) = - cos ar (3.3)

N

"4 . - ' .3 2 2
Ag * Ay + oty {(hy+hg) A3 + hohZn, + hah A2 |

‘v L
-

+

haax + heh3) = 0 PO CX)

' ’ )

pe
g

mass (Equation (A2));’and e, denotes the eccentricity of the .centre

kst e ok Vv vt & s o st
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Coefficients f. and h;, except f,, fgs f7, hy, hg and hg, are
jdentical to those found for the symmetric system and are given in
Appendix A, Equation (A5). Also, nondimensional frequencies g and
Q, both normalized with respect to the translational frequency wy s
are given in Appendix A, Equation (A2). Expressions for additional
coefficients f,, fg, f;, hy, hg, and hg are given in the follow-

ing

= - 2 . = 2
f, 3 Ey/ne h, Ey a2 (3.5a)
/
= 2 = o’ 2
fo = E /a2 hg NE 22 ' (3.5b)
e L - 2
f, = -)\Eyyg Qg hg = -3 EyYO/Q% (3.5¢)

It should be noted that Equations (3.3) and (3.4) involve the
added terms of Equation (3.5), as compared to Equation (2.13) and

(2.18), because of the eccentricity of the centre of resistance with

" respect to the mass centre. Thus, the exp?gésions for the coefficients

of Equation (3.5) involve the nondimensional eccentricity Ey, ex-

pressed as

= ‘ s :
Ey ey/r (3.6)

. ' 4)’
3.2.2 Approximate Solution for Response Amplitudes

This section presents an approximate solution for the translation-

-

al and torsional response amplitudes applying the method of averaging

'

. Tkdw W

PR .

PPN (P




[29] for Equations (3.3) and (3.4). Here also, the solution is assumed
in the form of slowly-varying sinusoidal expressions since the non-
linearity is assumed to be small. Thus, the solutions for A and

Ae are expressed as shown in Equation (2.15). Following the averag-
%ng method desd&ibed in Appendix B, a set of four algebraic équhtions,
similar to Equa?ién (2.16) for the symmetric system but this time for’

a singly eccentric system, is obtained; namely,
(f,~22) P - 2 93 - % fc PR2 (1°+ 2 cos? B,)

- 3R (f, P2 +f; R?) cos 4, - fg Rcos 8, = - cos ¢

(3.7a)
faP - (4f, P2R+f, R+ 2 f, M) siny,
’ P
-4 fs PR?sin23, =sine (3.7b)
(hy=02) R - 2 (hythg) R3 = 4 hy P2 R (1 + 2 cos? 3,) ' N
0 - 2P (hg P2 + hg R2) cos 8, - hyFcosd, =0 .
(3.7¢)
hlﬂﬁ“‘(t hg P—R—z+h7p—+a’:\9.§3) S'InX2~
+ihy 2Rsin2%, =0 (3.7d)

where P, R, ¢ and X are the average amplitudes and-phase angles ~

‘ \
v
. ' /
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over one(cycle and 3, repredents the average phase difference shown . ;
in Equation (2.17).

Equation (3.7) can be solved using a standard numerical technique
and the stability of the response can be examined in amplitude-fre- e
quency parameter space. However, in the following'an attempt is made to

obtain an approximate closed-form solution for P and R with the follow-

ing two additional assumptions.

e wa

(a) Since the nonlinearity is assumed to be small, the response

amplitudes will not be far from those for linear solutions;

¢
thus, as a first-order approximate solution only the linear terms

in P and R are retained in Equation (3.7).

(b) It is also assumed that both the translational and torsional
responses will maintain a negligibly small phase lag (or probably &
zero), i.e., the magnitude of 4, will be negligibly small as ,
evident from the time history response in symmetric structures
by Tso and Asmis [8]; thus one may assume sin &, = A, and

cos Ay = 1.0.

hn b ¢t

The reason of finding such closed-form expressions will become obvious {
later in this chapter when the torsiona’ll stability boupds are examined.

With the foregoing first-order assumptio'ns, one may note that all
terms in Equation (3.7) containinb the nonlinearity parameter A
will be absent. After imposing the second assumption (i.e., regard- 5
ing phase angle 4,), Equation (3.7) transforms into a set of linear

jalgebraic equations as follows
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(f, - Q%) F - feR= - cos‘il ' (3.8a)
f,aP -fgR B,=sin?¢ ] (3.8b)
(h,-92) R- h, P=0* (3.8c)

« ¢ ' ‘///
hy aR +h, P 5,=0 ! \ (3.8d)

Equation (3.8} is readily solved and, after substituting the values of
coefficients” f, f,, fg, hyu'h, and h; from Equations (3.5) and

(A6), the fb:i/lowing expre$sions for P and R are obtained

]
[{(]'Qz)s\- ﬁg‘-LQ—Z—} + 402 {Cx + ‘(—Q%-:ST.,_*T} ]
E 92 - s 3 LY
R= ()P - : : (3.9b)
6

It should be remembered that it is erroneous to use Equation

(3._9\) to examine the stability of response amplitude because this
’equation does not involve nonlinearity parameter A. The sole pur-
pose of obtaining E;guat1on (3.9) is to obtain e; first-order Spproxi-
mation of amplitudes to be used later in this chapter for the invest-

igation of torsional coupling due to nonlinearity.

However, these first-order approximations in P and R 1involve

nondimesional eccentricity, translational and torsional damping coef-

ficients, and torsioﬁal and input frequency ratios. For a symetric

a
'
¥
. i
¥ )
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str;ucture, where eccentricity js zero, it can be seen that Equatic;n
(3.9) transforms readily into Equation (2.28). As 1is obvious frem
Equation (3.9), tc;rsiona1 response amplitudes cannot be neglected in
investigating the torsional stab.ﬂity of an eccentric system, at
Teast not for systems with medium to large eccentricities.

3

3.2.3 Condition for Torsional Instability

In order to investigate the stability of coupled response by the
same procedurevas adopted in Chapter II for symmetric systems, solu-
tions - for response are made to undergo small perturbations gx(r)
and ge(r). Following the procedure described in Appendix C, equa-
tions of motion (3.3) and (3.4) are transformed into a set of damped
coupled Mathieu-Hill variational equations which are identical in
form to Equation (2.20), but with minor differences in the coefficient
matrices l~\ and Ej to accommodate the effect of eccentricity (Appen-
dix E). |

Since the form of the equat'ions for an eccentric system remains
the same as that for the symmetric system, the determinantal form
given in Equation (2.21) representing the principal region of insta-
bility will also remain valid for the eccentric system, except that
some of the coefficients of the determinantal equation are modified
for the eccentric system. The expanded form of this detern;inanta]
equation is also shown in Appendix E, Equdtion (E3). |

Equation (E3) is expanded and, after neglecting terms higher

than the second order in f, and h;, the following quadratic equa-

. tion results -

.t
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H H H :
2 . (-3 + Y% I T A, :
z (Hz + Hl) z + (Hl W, +Hs) =0 . (3.10a)
A o 2 '
- 8 o (3.10b)

’

3[\11 Q.2 ) .
&)
Hp = 1 ", T, (3.10c)
A 2f . 2h
. 22 3 6 21 7
Hy = 55, M2 +(2 ) @ R (3.10d)
: A 2f A 2h
s (B4 + 50 (- + D) (3.10e) -
(\ ) 4
py = oL | (3.10f) -
5" ) . . .
A -
= 11 Q2
2l om, T (3.199)

The solution of Equation (3.10a) can be expressed in the same form as
Equation (2.25), because Equations (2.24)‘and (3.10a) are identical.

Thus, Equation (2.25) forms the stability equation also for a single-
eccentricity system but wiQh H; to Hs given in Equations (3.10b-g).
The 1atter can be used to determine the influence of torsional damp'lng

on the zone of torsional coupHng in a monosymnetr‘ic system.

3.2.4  Critical Torsional Damping

.t

In order to avold complex frequencies; the inner radical term of

' ‘Equation (2.25) is set to a pos{tive" value or at least zero. This




E

B

'3.2.5 Stability Bounds

o

condition provides an expression for the maximum torsional damping
Lo ey for which induced dynamic torsional coupling is still possible.
k]
@
This leads to the magnitude of critical torsional damping, which

after substituting the expressions for fi and hi’ takes the form

22(2-p2)+8202 2E v2
3) Yo- VYo P/ TP0%e 0 = —
Ce,crgéﬁg{( ol )ﬁz'_n'g'_””*%ppz}
N v2O (1) vZ
E§,{1—4 (P2- f—— PR+ R2))
y 6 6
+
2E Y, 2
9 o e =
2 L3 - _0_R2y _ 2
2 (1 -5 (P? EglpR+'Q‘éR) a2)
2 7
Y 2 - Y,
ez (1 -3 (pr - I R g .
- yo - ° (3.1)
3 2B, __ Yy "
0 -F P PR )

The foregoing equation requfres’ average trans]/a/t/iéh/a] and torsional
: o

amplitudes P and R- which can be estimated from Equation, (3.9).
Since Equation (3.9) is a function of L 2N iterative approach is
necessary in order to satisfy both Equations (3.9) and (3.11). It
should be noted that Equation (3.11) transforms into Equation (2.31),
specialized for a symetric structure after substituting Ey = 0.
Figure 3.2 displays the critical torsional damping curve for a
typical unsymetric system in which a "gap" or discontinuity in the
solution is ancountered dn the neighbourhood of 96=1 & Similar
critical damping curves for a doubly eccentric system will be pre-

sented in Section 3.3.4. ’ - .

A
e

In the absence of torsional damping, Eduaﬂon (2.25) yields ‘he
\ . S

b

o e

e 2 o
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following upper and Tower bound expressions for the stability bounc{a-,

_ ries
R §
- 2 F2 (+2_R2)4R202 2 ¥ ’
v2 E2 (y2-g2)+g20 2E .
Q2 =2 + 3 (& 0 0 06 m ——-Y—-PR+Y2E252} 2
6 " & o a2
2(1+€2) v2 .
a2 (1 - 2 (P P R+ -2 R2)) |
4 E Q2. Qb
+ ' Yy 9 6 (3.12a)
FErgim |
(- F (P -SLPR + AR?) - a2)
5] ]
’ vé E2(y 82)*8297 2E v2
02 = g2 + B (S —{-ﬁrmygezm}
8
3
- 2 2 2 LY —
Y (]+E ) _ Y&
a2 SR @ PR R .
) + = y 8 & | (3.)2b)
0 2E Y i \ p
{]-—4—(52-%'2‘ FR"‘QW)-QG}

In the above equations, the average magnitude of P and R can be

found from Equatign (3.9) after setting the term containing . to )
v 3 -
S zero, since Equation (3.12) has been derived neglectinc torsional
Y .

damping. A

o~

"v-

Cor‘ﬁu}pondmg expressions for upper and lower stabﬂity bounds,

. similar to Equation (2.43) for syimetric structures, could be derived

for non-zero torsional damping. However, lfor— the sake of simblicity .
the,present investigation of eccentric struc‘t_ureswis limited to the

stabi] it_y of torsionaﬂy undamped system. '

In *figure 3.3,"Equations (3. 12a) and (3.12b) are p]otted for a typi- ‘

« cal sing1e-e€centr1c building. ~The shape of these curves resenbles

{



that for‘a-symmettie system, except with some minor difference to the

left of o =1.0,

T 'L.".72"

Y T

where a 'gap' or discontinwity in the solution is

encountered.

'Similar "'gaps' were a]se found by Evensen [1] while

N -

investigating ring vibrations.

The reason for the occurrence of such.

gaps is investigated ip more detail in Section 3.3.4. where tne results

for a doubly eccentric system are presented.

3.3 - SYSTEMS WITH DOUBLE ECCENTRICITY

-

3.3.1 ~ Equation of Coupled Motion o .

An idealized one-story structure simi]ar to Figure 2.1 but having
eccéntric centre of mass with respect to the centre of reswstance in

both the x- and y-directions is now cdns1dered (see F1gure 3.1). Th1s
!

system has three degrees-of- freedom namely the two hor1zonta1 dis- |

p]acements u and Vv of the.mass centre relative to the ground along

\

the x- and y-axes and the rotation ¢ about the vertical axis. The

\

centre of resistance is located at distances e, and ey . the ec~ -
centricities measured from the centre of mass a1ong'the x- and y-axes

and defined by

4 . -

= a1l L ‘ .
sy T Ky‘ z Xikiy’ e, = Kx ) y1k1x ‘ (3.13)..

The force-displacement relationship of the 1ate}aT resisting elements .
is assumed to be elastic and weak1y nonlinear with cubic softening-
type nonlinearity as expressed by Equation'(zlz). For simplicity, the

ground motion is assumed to be sinusoidal and directed a]ong the

.
.
4 ) -
: : .
. -
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= x-axis, of magnitude given by the expressions of Equation (2.5). The ' { "ﬁ%'“ﬂﬁl
v U P
o . resisting elements are located only at the per1phery of the bu11d1ng. "ij N
, 1 As, 1n the case for symetric and s1ng1e-eccentric systems the govern- . SR S
‘ .ing equations of motion are conven1ent]y expressed in nondrmens1ona1 AN - 3
A ' ¢ AN 3
‘ : form following the procedure described in Appendix A. Some additional i ;
. . changes‘of variables needed for nondimensionalization gre given in \\\\\\ #
T L z y \\q
Appendix F (Equation F1). - ~3

*

The process of nondimensionalization yields the fo]]owing three

coup]ed nond1men51ona1 equat1ons of motlon foe:slguso1da1 ground ac- -

P cer]atlon~d1rected a1ong the x-axis oL =)
£ ¥ : < .. N + ‘° l+ - 3 +\ 2 2 )
§ N . o Ay 3 Fihy + {fahy = (F3A] Fuhldgt 5 AG i | g
% _ . .
¢ NS 3
iR - + fGA + f-;A )} = -COS Q'[ \\\ (3.14) i
: - . . i e T : 3
4 \ . N [ | te
: _ N _ . ;
¥ P, . ‘ , < .. &
> : Ay + hyhy + {hohg (hqA3 + thZA + h3AeA;-f hBAi‘) _ oy
; e . L . 3
- . . ; ' C E
' \ \ 3
3 - (h6A3 + hypA2n ghy * hsh A§ + h11A3) , o
i \;\'-( - . A
{‘ . . ' .. » ' vo- . J . '
: ' o = (hphy + hygh )} =0, - (3.18) ‘
D PR . ) x . 1% .
5 B ' .
i"‘ - A ~ .
- ) A+ gyh-# % A + guAZA. + " ; .
3 ! y ¥ oy * (oahy - (g3hy *+ Guh, gsAy 6 - \
“ B .\ . | . ' . } . X .
+ gsAe + 97/\8)} =0 ‘ \ - .(3..]6).' .
. ‘ : ¢
2 ' where fi, g. and h, are nondimensional Constants that may be - - .
. - ‘\\ . '
, . N
“, o
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'expressed as functions of Zys ;y.-qﬁ, Q&, 2 ‘and the geometric ar-
"rangement of the stiffnesses. "Typical forms of fi’ g and hi’ de-
rived for an example sfructure, are ‘given in Appendix F. In the fore-

going equation Ays A and Ay represent nondimensional response at ’

y

the "centre of mass as a function of nondimensional time 3 c.. ¢, -

and Zq represent fhe ratios qf critical damping in x-, y- and o-

directions respectively; and Qy’ Q. are the uncoupled frequency

]
ratios in the y- and 8- dirgct{ons normalized with respect to the,

natural frequency of the system in the x-direction, given by Equation

(A2) of Appendix A. v .

3.3.2 Approximate Response Amplitudes ..

Equations (3.14) to (3.16) can be solved by app]ying the method -
, of averaging, the samé approach as adopted for tée épproxiﬁate solu-
tions for the response amplitudes of the symmetric and singly eceen-
éric‘sysﬂems (see Section.2.2.2.‘and 3.3.2.).

It is assumed that the solution exists in the form
N . . N ! . ] ' ]

.

Ax(r) = Pﬂr) cos [ar + ¢o(1)] - | ‘ ' .
) ay(e) = Q<Y cés [ar + ¥(x)] L tEan
holr) = R(x) cos [ar + x(1)] R

. v
3

where variables P, Q, R, &, ¢, and x are approximqted by their

veraging values P, Q, R, &, ¥, and x respectively. -The averag-
, ing procedure thus leads to a set of six honlinear simultaneous a1ge-:
. _ - ) N

braic equationE, which yie]d the appfoximaté‘so]utibn

\
Ly

>
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: . . . [y . I ‘. o / .
-\Ax(’r)-= P cci (a1 + ?) ‘
Ay’(r) = Qcos (ar +¥) - ¥ (3.18)
ng(t) = R cos (Q\+ %) A , .
‘. t ® 3 . X ‘ ' .'
f ¢ . ’ ‘ . . . »
The following set of.six simultaneous, coupled, nonlinear alge- . - \
i} \“‘ R . . -
bric equations result from the averaging procedure described- in Appen-
dix B | ‘ §
(F,-02) P - 2 f3 P2 - 2 R (f,P% + f,R2) cbs 1, ‘
. : _ - _ 2 ;
-2 f PR2 (1 +2 cos? a,) - fg Rcos £ = - cos &7 i
‘. - e o ' (3.19a) {
. ~ . \i N -‘ ?
- - _ Sy = .
. fraP- PR+ fo R+ 2 f R sind, ‘ \\
4 \ ' U T . . X
- & fg P R2 sin 23, = sine o 7 © (3.19b) . 3
; , . ' X R . . i
* (92-02) Q- 2 95 @ - % R (9,0 + 97 R?) cos & i
\i‘ ' . e oo . . L - é’
s - . - -3 9gs QR2 (1 +2 cosZ:K;.;). - gg R COS 43 =0 (3.19¢c) ‘
o - 3 {
C ‘9100 - 9, R+ge R + 2 gy R Sinsy’ g
i \ Coa S » Y
‘k: k3 R . * oy -' . . .
:‘ “. ,,— \_ . > , ‘l s A
i ; -39, Q Rsin2ig=0 : - (399)
£ ) . AN .
N . . -
! ' ’ v ) ?,
v \ * .
' ' 4
a ' s ! ) ' X ..‘\
\ \ . 3
‘ ~l' . ! ' * N '

_ ‘
( A L . _ e
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'(hz"Qz) ﬁ - é_hb R3 -E.P_ (he P2 + hg ﬁZ) cos Kz

“ ¢

-3 h3 P2 R (1 + 2 5:052 Xz) - 2 he R3- a-Q_ (hllq_z""' hlzﬁz) cos Ka

‘_'. ‘ . /

- 1 hs Q2 f%(1 + 2 cos? Bp3) - hy P cos B, - hyg Q cos 43 = 0

1

= . . (3.19%)

- k]

»
- . . _ _ _ __1._
"ha R+ (2'hg R2+ 2 hg P2 + hy) P sin 2, + 4 hy P2 R sin 23,

. ° + (8 hyp R2+ & hyy G2 + hyo) Qosin By + & hs Q2 R sin 285 = 0

. ‘- ‘ o (3.19f)
' . .

R . . —_
. ’ -
in which 4, and 43 represent average phase differences given by’

N

Edan i s n S el I Y R e S L

i .

el

s ( B " :A-Z = _X‘. - L (3-20a) v

. By tx-¥ ‘ ' x (3.20b)

Equations’ (3.19) and (3.20) can be solved using a standard numer-.

¢

ical method yielding the magnitudes of amplitudes and phase aﬁg]es of
the system, thus 'providing an approximate solution expressed by Equa-

o . © tion (3.18). Howevér,‘as was® the case for the single-eccentric

i

’ ' - system, approximate closed-form solutions for P, Q and R are
3 - ' \
. sought with assumptions ‘similar to those described in Section 3.2.2.
B v 4

These are: (a) phaﬁe lags 4, and a; are negligibly small so that ‘

sin Ao, = 4, and cos A, = 1.0; and (bi only linear terms in P,

T and R are retained as amplitudes will be clese to Tinear solutions

-~

b
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since nonlinearity is assumed to be small.. With the foregoing assump-
2 @ . S .

4
e -'fions, Equation: (3.19).transforms into .
N . . . /- . ‘l
- \ . :
\ ! ) (fp-02) P« fg~R = - cos © T + 3.21a) -
. - , N ‘ - '
“F0F ff RE,=sins O\ N e (3.21) . ]
. - \\ e h ‘ ' e
. N . .o - Y i,
: (92‘;9‘2) q- gg R=0 . . ‘ r)!! ' (?.ZIC)
. l . ) . : e.
glﬂa - Q¢ R .Ka =0 y . . (3.2]d) -
;;é . - "- - " i \— f
; (hy-92) R- hy P-hoQ=0 ) (3.21e) -
i'“ - hrﬂ R_."' h7 TJ- Xz +"h10 -6 X& =0 A i — ‘F—(S._ZT‘FTV
L} » ’T ;
————— ° » . — \-2 '
Equation (3.21) yields the following closed-form expressions for. P, .
1y ’ é *
g and. R, aftem®ubstituting for coefficients f,, fp, fg, 91, 92, B v i(
Ggs Nys Mys hy and hyp (see Equation (3.41) for a doubly eccentric
? building . [ L s
; ’ ' ’ s ° ’ ' .
L ] .. . o
s —2 = 9 . . .
: 3 : ) EZ (a2 - @2) > (3.22a) oo
" (1-02) - rer=oSTormey —F 2oy )
| {(ny Q )(sze Q7) \Exgy} .
] - B2 (gyi (02-02)2 + g 0563, |- . ‘
; 1492 Lot Tz a=a?y = B2 2072 T P
: - : Y 8 Xy : . ‘ %
,g, , .
I “ .
. L . , ' r
T N o o N
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Q= - mﬂlr:xry_‘rr- P ‘ . 3.22b
. { Qy Q Qe Q .EX ‘Qy} R ] -
S ‘ .
- E 02 (p2-02) a : . . o
R {(92_5};2)?92;%2) ey P Lo (3.22c) ‘
Y 8 Xy ¥

v * ¢

LN
¥

It‘éhould be’ éoted that the foregoing-equation s a genéral ex-
.pression for the approximate amplitude of an almost Tinear but doubly
eccentric system. For a ’siﬁg.]e—eccentric system, after subst.ituting
Ex =0, : Equat'ion (3.22) transforms into Equatior) (3.9). The above '
expressions for P, Q@ and R are required, as will be seen 1at:ter,

to détermine'the zone of torsional coupling of the eccentric system. '

It can be observed that Equation (3.22) does' not involve the nonlin-g

———— !

R At

earity parameter X, although the response amplitudes.are certainly °

. . ) .
not independent of . However, for the purpose of establishing
N , .

o 1 LN .
stabih‘ty zones, the first-order approximation of amplitudes calculat-

’

7N < ’ :
ed from Equation (3.22) seems sufficient.
Since interest herein is limited to the torsional stability for

.small eccentric '(i.e., a nominally symmetric) svstem, Simpler expr"e"s- .
{

oy

sions~for amplitudes, similar to those in Equation (2:28) but incor-

A R . > \\\\. -~
porating the effect of eccentricity, are desired.- Consequeﬁ‘ry;- an
alternative approach, based on the interaction equation for base

shear and torque derived by Kan apd Chopra [17], is.applied;yielding

the following simp1‘e expressions for response amplitudes as describ-

o

- o RS T, W b o dnw v

ed in Appendix 6

be L D2 (3.23a)
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q=R=0 K (3.23b) .
Where, D is given by Eq’uat'i"on (2.1). o ,
[ . .
3}.3.3 Stability of Coupled Response o

Y

The stabﬂi‘t’y of the solution can be examined by the periurbation
technique [1,3]. The form of the solution expressed by Equation (3.18)

is perturded by letting

t

(1) = Pecos (ar +2) + ¢ (1)

=
—
~
—
1]

Q cos (ot + ﬂ"+ gy(r) (3.28)

b3
D
—
-~
—
n

R cos {at +¥) + 5’6(1)

.

where LX(T),' £ (1) and ga(r) represent small jperturbations.

y
Substituting the expressions of Equation (3.24) into differen-

_tial Equations (3.14) through (3.16) and retaining only the first

order terms in pgrturbétions Ey £ and £q lead to the foHow-’

Yy
Ying set of variational equations’ (damped coupled Mathigu-Hi11 equa-

r‘tidns)
- £ r - ‘ \ N
oo | [:) D ;
f2 g'x ?‘2- 0 C 'EX
& 0 C 0 .h—l 0 £
| - b, . J..SP{ ", < e>
| | et :
—_ £ 0 0 L g
0. 0 g, \ 9, y
L “ L N G ’ J '

LR e T

* s
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1 0 o0 - (Fr) 0 “
2 2 2
A,  2h 2h
21, 77 22 _23, 22
* 0.1 09 -4 (+ * ) ™ (h”'-n.:*
q &
32 9% A33
1 0 + —
00 , ( 92 92) 92
A ()
_1_1_ 12 0 3
» f2 -T; 5 X :'
- é
’ Ryy " Ay Ayg A , ‘
~ % cos 2qr W h, H, <€e> =0 . \\. *
0 £3_2\ A_a_a_ E
92, 92 y
- : - ./ .
‘ , (3.25) —
\ - . 'f N : ,
'in which o | . ;
_ \ ]
, All = 3f3 P2 + 2f, PR+ fs‘ﬁz
| _ - _ : ‘
C Ay =y P2+ 2fg PR+ 3f; R2 : o . | g
L : . -
| A2‘1 = hg ﬁZ + 2h3 p-ﬁ""‘ 3h8 Fz
A22 = 3h14 R2 + 2h9 PR+ h3 p2 . > (3.25)
+ 3hg R+ 2h,, R +.hg Q2 ‘ ,
»
| A23I= ‘hlz-R-z + 2h5 E-R-": 3h11 62 ' ’ ‘. ‘ o
Asz = 9y Q% + 295 QR+ 3g, R . B 2
' |

T ' b
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s .i} ‘ . " e
*& 5 . .
v | .
. - * “Rys = 35 @ + 29, QR + g R2 J (3.26)
/’.. . ‘ " ,‘ ) . . \
‘ Eq (3.25) may be written in condensed -form as
‘I .
[ [ . . . ‘ ‘
s Ce+2Cef+[E-3A-34Bcos2at] =0 (3.27)
where '
' ] (6?
fy 0 0
o £ = i : i 0 h]'. 0 : a ‘ 1(.3.28)
0 0 9
_— — AN

~..and C, E, A and B are defined by Equation (3.25).
The principal region. of instability of the above equation can

be approximated by [4]

E-3A+28B-02€ -2aCe | o
/ l (3.29)

il
o

29Ce E-3A-3%B- 02
which, upon expansion, becemes a Sixth-order algebraic equation in
Q2. For the firét.approximation, let

» -
Ra,

Q=0 ‘ ¥ (3.30)

R e

W bt romas M
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Upbn substitu/ting this :into aH the elements of determinanta] Equétion '

(3.29), except the second and fifth elements of the: principa‘l d1agona1,

the fo]lovnng GdeEetermmanta] equation is. obtamed

- 2
A, g

/('I -, "r)
/ hs
/- (4h2 [

" A f
S22 4y

‘4T Ty’

A
0 - - B
o
gty O-

(=]

-

oJ1
9,

(3.31)

ISR S
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0 gty Urmtg,
(3.31)

L]

The foregoing equation is expanded, neglecting terms of higher than
the second order in fy, gl; and h;. To express the solution for

2 in concise form the following substitutions are made

3
A Q2 A Q2
(1 - AL 8y o388
Hy = (1 if, fz) (1 49, g,
. . -
2 2 v
H, = (] - ___]_1 - ?_g) (] - _3_A3_3_ - f)_e.
2 4fF, = 1, 4g, 92
A 3A 2 3 h,, 3A,. g
L (22 'S 23 10 32 . s
H3 - ( hz)HZ + (.l if f2) (4h2 h2 ) (4'—92 gz) P (3-32)
T NI (3A21 h,
Ui re) @t R W R
) | -
He = (1 - A_n_ _Q_e_) (A23 4 10y (32 6
4 4f2 f 4h2 h 492 'F
33 g A12 fs Az h7
+ - - —t b ) (£ L
( 4g, 92) (7 2 fz) ( hy hz) )
Q. h. '
Hg = ("E—l—)

@y - 22~ hg b (2 R [ (2 e 2 - gk
. H, " H s}
| (3.33)
It should be noted that the above equqfion contains the torsional

}

e’
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damping term, 'hl; within the inner radical term in Hg. If
H .H .
‘ [{i(ﬁ%- ﬁ%)}z - Hé] <0, o yields complex values for the bbundar)’
frequencies. Thus, the largest value of torsional damping for which

~ dynamic instability is still possible is defined by

-

’ .
Hs (3.34)

H
3 4
Q(H—z--ﬁ‘l')i

/

This results in the following'expressions ‘defining the minimum value

of torsional damping necessary to ensure stabl_ﬂ'ity

3, 3, . 3A 3A

Ay (g h) (gt gg) (g ) (gt h,) J

28ghy = 5=+ SV * 3A )
(92 - ] Qe (f2 - 4 Qe)

A A : A Al
. . 1
_4_.+ gG) (.._4..2_ + fe)(%l_ + h7)

A A
33 11 \ ¢
(g5 - - - Qé) . o (fy - - - Qg) . AG

. . (3.35)

.

[

Hov}ever, if torsional damping is neg]eéted Equation (3.33) gives
* rise to two equations, one representing an upper bound and the other C
- expressing a lower bound for the zone of instability. The upper

bound curve is given by

whereas the lower 'bound curve is

- _ :
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‘3.3.4 Typical Results and Discussion

Application of Andlysi$ to Example Structure o

¢ -85 -
s
‘ n; = h, - 5%£‘_.:§%3 ¥ hlz)(§%3'+ 6) _ (5%5 + fsi(ﬁ%l.+ h)
L T
| ' B . (3.37)

Typical reéu]ts‘obtaiﬁed fggp the foregoing analysis are present- -

¥

ed in the following discussion .of an 1]1usfrative unsymmetric build-

ing tructure. ‘ ~“, DY

~
. ! ¥

)

. ¢

. X _ . ‘ . s ‘..
It is clear that Equations (3.35) through (3.37) involve the

geometric pareueters, damping coefficients, fundamental freguencies,
input frequency and the non11near1ty parameter\ - Although these
equations have been‘rdrmu1;ted for an,unsxpmetnrc system, they are |
edué]]y applicable for symmetric stru%fures as we]].’:These equations . °
are useful iu studying she torsional instabiTity of the system'as‘
well as in'identifyjng values. of the system parameters for whﬁch
such instability may take p]ace: ' S )

» To demonstrate the applicatiou of ghe method described above, a .
typ1ca1 unsymmetrlc bu11d1ng, L- shaped in p1an as shown in F1gure 3. 4, .
is selected for studv - - . ) . .

s
-

2

The e]ements of Tateral res1stance are assumed to be d1str1buted

ﬁlongxthe perimeter of the’ structure as shown, in F1gure 3.4. The build-

o

ing is assuned to be nom1na11y symmetric, 1 e , eccentric1t1es e
|

.
4 . 4
. N

s
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and e, are small. (For the L-shaped bhi]ding; values of the geometric.

‘y N (6] - .
parameters B and v 3_0.3‘5correspond to eccentricities < 10%). For
. Lo .- . . . T I T
this condition, one may neg]ect response amptitudes Q and R in Eg-

/

z

uations (3.26) and (3.35) through (3.37). The upper and lower bounds

- of Equations (3.36) and (3.37) are then transformed, respectively as

)

e

fo]]ows‘
o 3f, p2 - 9h, [ .
3h3 p2 h096 (—~Z———-+ fe) (——Z—-— + h,)
2 = 02 + = + oyt — 1
B 4 g(Q;‘— Qe) of, P2 3 '
- (1-— - @) .
] (3.38)
and . ; ’ ‘
: - ) » f, P? 3h, P2
02 = g2 + hs P hids (g * f)l——+h,)
6 4§ (s> Qg) 3f, P2
Y (s a2)

+(3.39)

x

" It is instructive to transform Equations (3.38) and (3.39) in

-

terms of the nondimensional ?ccentricities of the system. The nondi-

meqsiona],eccéntric?tieg, Ex and Ey’ are given hy - 1 .
e By / . )
EX =< . Ey = - (3,40)

A11 coefficients, except hy, of Equations (3.38) and (3.39) can now

be expressed in terms of Ex1~£y’ A, 0 and Q

y 8} namefy

= . . = 2
fa=a " . b= Eaz ]

AR -

& R N et

oy

P

v

P -
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fy = - —-Z—Y-Qe. . hg =

.E » '\ \I
fs = % e hyo
» s

. EX 94 1;’
9 = “ﬁg“x R

- Q
..Ey
== E 92

) o

It is somewhat complicated to express hj in terms of , Ex, and

oy
metric parameters as.

~ ..’C
3,2
h =3 2 —_
3.3 YP '(Cl)
in which

B
Y  —
0. VCSTE + o8]

) Q

=1 - (-8)(y)
¢y = 1 - (1-82)(1-y) .

Ty =1 - (1-8)(1-v2)

o -
+
it

‘t'(l-Y)(1-B}2

O
wn
it

B (1-8)(1-y)2

2

)

o
o
n

4+ 48‘Cg

2
C3 + 4y Cs

and where r s thé aspect ratio a/b of the bu11d1n§ and parameters.

-

E'; therefore, the expression for hy 1is writ;ﬁn in terms of the' geo-

(3.42)

/
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k\i . gb . e and y, def1ned in ng 3. 4, represent the two geometr1c -parameters . - o
: ’ .of a part1cuTar L- shaped bu11d1ng plan. The approximation for trans- '

lational amplitude P in the direction of ground moticn for the no-

f: . miné]fy symmetric building is obtained from Equation (3.23). _Shbsti-

o ‘

: tuting Equations (3.41), (3.42) and (3.23) into Equations (3.38) and
: ', (3.39) yields the following uppgp\and lower bound instability equations . -
{ : ‘ ‘ g .
{ . : . 92 D2 . .\
; o g2 L1 - 4(1?5?] -E . :
. 9302 ,,% Xy Y
[ 2 =,
LN % =0 ey et G | T
1 ~ Y / )
? - 1
: (3.44)
: . IR [ - 32 D2

: , , 3 3 D2.,C3 , Ei 9” 11+E25 y ‘

‘ - 9 gy (G o) (Qz-ng) ¥ - 32 D T

K y Y y _TT:ETY "

r o L . S (3.45)
¥ - . N ‘ :

The foregoing a]]ow; Equation (3.35) to be expressed in terms
"of the nondimensional eccentricities. The']argest'value of torsion- -
‘al dampiné in anominally symmetric building for which dynamininstE-

bility is still possible is thus given by

- .

9 AD2, 5
Doty b

. (32 2, S5 24 Y \
Q'{HE?S) (F vo)* * g2 9 X 02 2 .
o {1 - ——(T_ﬁz—y} - 05 .
9 i DZ} PO |

L S BN Z "(3.46)
| . n-%afg,}-ga e

LTl wf = 2ol Tem P L,
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Stability Curves for Example Structure,

ety K T

)
Eigures 3.5 and 3.6 present the stability curves in 249 para-
meter space computed from Equations (3.44) and (3.45). An interest-

ing feature in the computation of Qg is the appearance of a discon- !

‘tinuity’or 'gap' in the solution to the left of @=1, where- the -ap-

5 ffom‘both the upper and the Tower Baund

equat}ons breaks down. To investig%tg the possible reason for this

proximate solution for: @

behaviour, examination of‘Equatiops (3.44) and (3.45) shows' that when

the denominator of the fourth term in these bquation§ approéches zero,

~

the term becomes ﬁarge.

Curves plotted iﬁ Figure 3.5 trace thg behaviour of the fourth

' . J— e T

term; the curves ‘for the-parttal denominators | - and
’ it 4{1+E2)
Y

1- 4%{&%§Y“ ~ from Equations (3.44) and (3.45), are seen to cross

Ry

the upper and lower bound instability curves at the location of the \ .
gap. A similar bre;kdown'in the solution is also noticed fov some of \
the lower bound curves, this time to the right of os1. However, here
the parfia]‘denOminatérdcurves do not cross the expected solutions of
the lower bound equation. It is found that the gaps diminish wilh de-
crease in eccentricity. This is.evident algo.from the fact that the
nﬁﬁerator of the fourth term contains the eccentricity és a compensa-
tingxfactor. It is interesting tq note that a sim%]ar 'gap' phenomenon ,
was 6bse;ved by Evensen [1] in the study of nonlinear vibrations of ‘
thin circu]gr rings. Figu?e 3.6 is the plotting of some instability cur-
ves simitar to thos? descriped in Figure 3.5 for various values of aspect

ratio r, to demonstrate the influence of this parameter anthe zone ¢ .

of instability of the system. It is seen that the instability zone

a—

-

-

’§§§§E§§Ew_

}
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decreases and sh%ftf towards the Qe;ﬁ line as r increases in mag-
nitude. 'Also thevlehgth of gap decreases With the increaseg r values
for both uppér and lowér bound curves. V '

The effect of torsional damping To (Equa?ion (3.46)) 1is demon-.
strated in ngyres 3.7 and 3.8. A value of Cg less than the mégni— .
tﬁde plbtted for a particular system implié% that the stkucture is un-
stable. This equation also exhibits computational difficyities, pro-

-

ducing a ‘gap' Et or somewhat to the'left of QG=] (Figure 3.7),
similar to that for the upper and lower bound curves of Figures 3.5
and 3.6. The denominator of-the second term of Equation (3.46), when

approaching small values, is responsible for this gap. 1In Figure

‘:3.8 the same equation is replotted in the ge-Q.fplane for several
\

‘o

-

4 and’ Q values td demonstrate the influence of the ‘aspect ratic

X
r. The results show that, the smaller the value of the aspect ratio,

the larger the value of Lq requifed to stabilize the ystem.
In the present study, the resisting elements have been assumed

to be distributed a]ggg the perimeter of the structure.| However, in

actual buildings the resisting elements are frequeﬁt]y distributed aver

- B, E , K and Ky should be employed in the genera

x® Ty °x
pressed by Equations (3.35) through (3.37).




" be torsionally unstable.

] .
stability curves.

1 \ © .
| ’ . ’

3.1, CONCLUSIONS ' S
. - | o C

" The purpose of this chapter is to preséntithe mathematical re-

lationships for the parameters of an unsymMétr1c étructure subJected

-

to ground motion, in order to 1dent1fy situations where the system w1ﬁ]

-

Two mathematical re]Etionships havé been formulated, one for the

_upper bound and the other for the Tower bound instabt]1ty curve. The

tors1ona1 motion is found to be unstable due to nonlinearity of® the
res1st1ng e1ements as well as the eccentr1c1t1es between centres of
resistance and mass, provided that parameters 'of -the systqm are such
that they fall within the zone between the upper and lower bound ih-

. Also, an exhression hesiheen presented for torsional

L3
[y

damping, in terms of the syStem parameters. [his,expression may be
used to determine the minimum torsional dampihg\necessary to stabilize
torsional response_accompanying purely translational excitation.

. Some numerical problems in the epmputation of instabt]ity and tor-
sional damping- curves have been encountered in the form of 'gaps':

Otherw1se, the numerical computat1on is simple enough to be used for

'both truly symmetric and the nominally symmetr1c structures of the -

present study. K ' ' o '

v «d

'
t
{
1
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CHAPTER 1V

INELASTIC RESPONSE OF BILINEAR S
UNSYMMETRIC STRUCTURES ‘

4.1 INTRODUCTION . - 4

\

| During thé last two decades cons1derab1e reserch has involved

ltg‘ v
the dynamic response of inelastic systemsﬂ The majority of investiga-

tions.concentrated either on simple single [33—36] or purely transla-

tional mutli degree-of-freedom systems [37-39] in which the resisting

v

elements gxhibjted Ramberg-0sgood, bilinear or elasto-plastic hysteref
fic Uéhaviour. Howévef, only lately has interest focussed on the cou-
p1ed\1atéra1-torsfona1 response of simple single-story systems [7-14].
Recent .forced vibration tests of a multi-story eccentric building [46]
confirmed that buildings behave in a non]inE;r fashion when excited

ﬁo different force levels during frequency sweep éests.

The primary cause of nonlinearity in large amplitude osci]]ation

" of strgctures is due to 1ne1ast1c hysteretic behaviour resu1t1ng from

'the yielding of structural components or from interface s11p between

adjacent”elements, \C

- -

L4

By far the most important among many charaéteristics of a siﬁglg
degkee:of—freedom.bi]inear hysteretic system, as studied by Caughey
and Iwan [33,34], is the softening behaviaur for large amplitude

response. Even for a general nonlinear hysteretic model of the

»

Ramberg~05éood pre, Jennings [35,36] observed the same softening res-

ponse characteristics.

Similarly, .for-a two degree-of-freedom translational system Iwan
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[37] found the Tow frequency response peaks of both amplitudes to be

typica1.of soft system response. Nigam [38] and Nigam and Housner [39],

while investigating the translational responée characteristics of a
single-story symmetric frame, observed that thesamplitude of response
in one direction increased with simultaneous reduction in amplitude
in the perpendicular direction due to coupling introduced through
interaction among force-displacement relations, as well as due to
energy dissipation by hysteresis. Nevertheless, the system exhibited
softening frequency-response behaviour under harmoﬁic excitation. In"
Reference 41, many interesting characteristics of both single and
multi degréé-of—freedom translational systems with a variety of
hysteretic models are illustrated. |

In Chapter I of this thesis, a review of the current literature
describing the coupled lateral-torsional response of simple systems
[7-14] has been presented. . R

This chapter 1is devgted to a study of the'inelas{}c lateral-tor-
;%onallresponse of a siﬁg]e-story.monoeccentric building subjected to
sinusoidal ground excitation. A frequency sweep analysis is emh]oyed

because it can expose fundamental characteristies of an eccentric

- system similar to the results obtained experimentally from vibration

tests [40]. The resisting elements are considered to be bilinear hy-
steretic for which elastic and pure elastic-plastic behaviour are the
two limiting cases.

Results are presented in amplitude-frequency parameter space.
]

. The.important system parameters controlling the response amplitudes

are identified and their influence on the pgak ductility demand is

examined. . : ’

Bt A WA A
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" total translational stiffness K, and Ky and torsional stiffness
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4.2 METHOD OF ANALYSIS ° '

4.2.1 Equations of Motion

In order to study theline1astic behaviour of eccentric buildings,
_the single-story model shown in Figure 4.1 is considered. This idealiz-
ed structure consists of a rigid deck supported by ptanar frame or wall
assemblages situated-at the periphery. In order to simplify the ﬁ;o-
blem, the structure is assu%éd to be eccentric for excitation 16 the ///
x-direction only. To follow _the génera1 trend in building design,

this eccentricity is the result of unbalanced stiffnesses of the
structural elements rather than due to eccentric masé, This’system It
has two coupled degrees-of-freedom, namely horizonta1‘disp1acement

u of the mass centre relative to the ground in the x-direction and

rotation ® about the vertical axis. For simplicity, the ground

motion is assumed to be sinusoidal and directed along the x-axis.

Thus

;g = Y cos-wt ’ . n (4.1)

Letting kix and ki represent the trén;]ationa1 stiffnesses of

y )
‘the i-th resisting element in the x- and y-directions respectively, ) )

of the structure with respect to centre of mass;. K are given.by

om’

K = L *
K, = 2 Ky, : (4.2a)

2 P
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K3

K, = iy (4.2b)
. . ’
Kem I kix y% I kiy xZ (4.2c)

Vo, !

The centre of-resistance is located at distance e, the eccentricity

-

measured from the centre gf mass along the y-axis. Hente

4
-

e s ) kix yi/Kx' .(4.3)

N The equation of motion of the system can then be written‘gs

M 6— u —CX o} u -Ex -Kx;q u ;
. + + \
0 9 | (e 0 Cg 8 ke Kool | @ ,
. U cos wt o R ! ,
_— @
. 0. )

where M is the mass of the deck, J_ is the mass moment of inertia

m
of the deck about the vertical axis through the centre of mass, and

CX and  C6 are' the translational and torsional viscous damping coef-

ficients, respectively; the dots denote differentiation with respect

.to timg t . It is assumed that Tinear element stiffnesses in tﬁe x-di-

rection are such that kzx = (14n) klx’ whereas for the y-direction

= Ky The general hysteretic restoring forces of the resisting

1

Y y'

VA st s« K s, e oY st B

B
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elements can then be defined as

, x\85) = Kyx

Ry(scj) " Ky

\

F(st Qy t) ’ J

F(6.

J

1

1}

’ast)" J

in which F(aj, a, t) s any general

1,2

3,4

(4;5a)

o

" (4.5b)

function for the geometric des- .

cription of the hysterefic skeleton curve, and 6. (J =\1; cens 4) ",

J

are the corresponding e1ement‘disp1acemenfs. The latter can be ex-

pressed as linear functions of system disp1acemen€s u, 6 and build-

"ing plan diﬁenéions a,b as follows B

.6 =u + be

J

i‘ letting

M 12

[«
“H

K, /M

T XN

W

= y
Ky/1

ae

\

2 =
wé Kem/J

m

i

Ww

v

(4.6a)

(4.6b)

after substituting Equations (4.5) and (4.6) into Equation (4,4) and

-~ . (4.7d)

AP ek A

e LR Iy
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2 Ly Wy = CX/M

N N /

2 towy = Co/dp ./
_the equations of motion transform into

w2

u+2cud + T7éHT (1) F(&2, @, t) + F(61, t)} = -U cos wt

(4.8)

- b w2 . '
6 t2r w8 = ?71;f%§[ {(1+n) F(6p, o, t) = F(8;, a, t)}

f

a w? -
+ =% (F(8y, a5 t) - Fs, @y 1)} = 0 (4.9)

in which T s the ma%s radius of gyration of the rigid diaphragm

about the vertical axis through the centre of mass; Wy W and w

y 6.

are the frequency parameters that may be interpreted as the uncouﬁ]ed

frequencies of the system, i.e., the fundamenta]‘natura] f?equencies

of the structure if torsionally uncoupled but otherWise retaining

translational and torsional stiffnesses identical to the coupled system;

]

and Lys &g denote the uncoupled ratios of critical viscous damping

in x- and e-directions, respectively.

Y

In order to represent the model in a.more meaningful manner, two

’
important characteristics of the system must be accounted for. These

are the stiffness andkstrength ratios given by
B = kay/kay ' "

v = Ry2/Ry

’ (4.10a)

(4.10b)
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\
in which 8 represent the ratio of the element stiffness in the unsym-

metric direction and v defines the corresponding ratio for yield

shear strengthg. These two parameters determine the degree of asymme-

try in stiffness and strength of the system which have'also been em-
ployed in earlier studies [7,9]. For the présent study these ratios
are assumed to be equal. The physical interpretation of this assump-

tion is demgnstrated in Figure 4.2, which shows that yie]d”disp]a;e—

ments 6
y

proportional to the elastic stiffness. The foregoing leads to the

of the elements are equal and that the yield shears are

following relations

k1x Ryl/Sy ‘ (4.j]a)
k2x = Ryz/dy . (4.11b)
B = Y = ]+n (4']]C)

It is convenient to express Equations (4.8) and (4.9) in nondimen-

sional form with the following change of variables

T wt (4.12a)

Ax(t) = u(t)/ay; Ae(t)= e(t)/ey | .(4.12b)

in which 1 represents nondimensional time, and Ax’ Ae represent

nondimensional response of the system as functions of t. The de-

y could be taken as either of the following relations

. —
A v KNI b, s A

e 2T

R T T (X, 2 e - YR RO



AT

w7

P g

e

- 107 -

-

e!—;%/b/" (4.13a)

—

ey = 51/a | , : (4.13b)

A

depending upon aspect ratio r = a/b and whether stiffnesses kiy

are situated at the periphery as in Figure 4.1 or directly on the

y-axis as in Figure 4.3. Hence, four cases are possible, namely
*

(i) b>a (i.e., r<1.0) and F(83) and F(6,) are’

situated at the periphery,

aéb (i.e., r>1.0) and F(s3) and F(6,) are

situated at the periphery,

(iii) b»a (i.e., r<1.0) and F(83) and F(s,). are

situated directly on the y-axis,

(iv) a>b (i.e., r>1.0) and F(83) and F(s,) are

situated directly on the y-axis.

In cases (i), (iii) and (iv) the expression of Equation (4.13a) fo%
ey is valid; otherwise Equation (4.13b) holds. It may be observed
that, wh.en the stiffness kiy are located at the periphery, the re-
sisting element situated farthest from the centre of mass will yield
first due purely to rotational displacement. However,'in cases

where stiffnesses in the y-direction are situated on the y-axis, only
the elements in the x-:direction yield regardless of the magnitude of
aspect ratio r, thus resulting in Equatjon (4.13a). Consequently,

whatever the governing situation, 6, always represents the initial

g

N Y R P SN




R S

I

-108 - - | :

rotational y{e1d displacement. ‘ .

In order to confine the prbb]em_and yet allow differing structural
strategies, only cases (iii) and (iv) are considered for the present
study (Figure 4:3), although case (i) is included in the derivatibn of
the genera) -equation of motion. 4

Substituting Equations (4.11), (4.12) and (4.13a) and noting that

§3 = - 8,, one obtains the following two nondimensional equations of
motion
. . : 8 6y -
AX + ZCXAX + m {f (6_ s G.,T) + f('é_ ) Q:T)‘}
A y . y
~ 2 ‘ U v
+2—_T:—f (5 y Oy T) - § oz Cos ar (4.14)
CY X
- ] ) 5. 8,
Mg * 200000y F o= {F (5 1) - (5= 0, 1))
Y Y
2 202
ny $ B0 )
- EIE F 2, ay )+ —2Lf (2,4, 1)=0
n § r 8
y y |
(4.15)
L]
in which B89, vg, Qy,'ﬂe and @ are défined as follows
Bp.= a/T Yo = b/T - . (4.162)
By Tufug s T wle 3 8= efey (4.160)

For the case where stiffnesses kiy fall on the y-axis, thq 1a§t term

of Equation (4.15) disappears since 8, s zero.
" .

\

”~
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. ) N G.A ) ,
It is convenient to express fcgl , o, T) explicitly in terms of

y S B
for which it 1§Peasy to establish the following relations

| Ax and Ae’
5, -
— =‘.Ax + 1, | ' (4.17a)
Y
5, T :
e - g , | o (4.17b)
y B
5, , ' : .
—é__ = r\ Aer N B ~ . . (4-]7(:)
y - v

-

Substituting Equation (4.17) into Equations (4:14) and (4.15) reduces

the equétions of motion to the following form

Ayt 2gxi\x + El_n' {f(A)'( * hgs .T) + f(A e, as 1)}
R (W N R ?y_uﬁi cos ar - (4.18)
2 ..
Y2 ~
A + 2gesz i, + zT (F(A, + hgs oy 1) = FlA, = Ay s 7))
2 2 02 -
Y2 B2 o
- —2—.;—“— f(Ax - Ae’ 3 T) + —_l f(r‘ Ae' u’ T)
(4.19)
. 4.2.2 “Method of Solution '. E

Equations (4.18) and (4.19) can be solved by applying the method

of averaging, i.e., the method of slowly varying amplitude based on

[P USRI RN

o o pad wid %
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the work of Kryloff and Bogoliuboff [29]. This method has been suc-

cessfully used in the last three decgdes for a wide variety of problems -

such as nonlinear elastic ring and shell vibration [1-3], elastic tor-
sional vibrations of buildings [27], and inelastic harmonic excita-
tion of single.and multi degree-of-freedom systems [33-38, 41, 42].

The use of the Kryloff-Bogolijuboff method in solving nonlinear
inelastic péob]ems has been demonstrated to be highly accurate provided
the nonlinearity is small [33,34]. Caughey's amplitude-frequency res-
ponse curve, based on this method, was normalized to predict response
regardless df the degree of nonlinearity. In later work, both Jennings
[35] and Nigam [38] used #his curve to determine the response amplitude
of elastic-perfectly plastic systems. Iwan [34] found the accuracy
of this method to be within approximately 10% for hysteretic behaviour
close té elasto-plastic, with the averaging method always predicting
larger response. Motivated by this demonstration of its accuracy, the
Kryloff-Bogoliuboff method was considered to provide approximate solu-
tions that are accepted for the purposes of this study.

In this method it is assumed that the solution exists in the form

-
¥

! . A(t) = Ay(t) cos {qQr + &1(1)} (4.20a)

' -t

= Ay(t) cos {ar + ¢,(1)} (4.20b)

-
[un]
—
—
~—
I

where A;, A, are the slowly varying system amplitudes, and ¢,
and ¢, are the corresponding slowly varying phase angles for the

translational and torsional responses of the system. It can easily

]

R S
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.. be shown that the magnitudes of the resisting element displacements
arelcertain functions of system amplitudes A; and A, and phase i
i angles ‘¢, and ¢, as follows - . .
. 1
; ‘ i
t ' o y
61 A ~ ) ¢ & ’ ;
. 3; = A Ay E As(t) cos {1t + &3{1)} - (4.21a) . :
{
P 62 N
s 3—- = A - A, = Ay(r) cos {ar + ou(1)} (4.21b)
y X ] . .
Sy y \\
3;- =rag=r Ay (<) cos‘{ﬂr + oo(1)} (4.21c) )

in which‘ Ay and A, are the slowly varying amplitudes and ¢3; and
9, are the corresponding slowly varying phase angles for the transia-
tional displacements of the resisting elements. These are related to

Ay, Ay, &, and ¢, by the following relations

AZ = A2 + AZ + 2 A, cos (8) - 0p) . (4.22a)
. - . |
A2 = A2 + AZ -2 A‘IA2 cos (¢ - &) ““/ (4.22b)
) ' b, = tan”} {(A1 In #1 * A Sn ¢2)} (4.22c)
; 3 (A; cos ¢; + A, cos 9,) )
* ) ]
s o - (Al sin 9y - Az sin @2)
¢Q = tan {(Al coS ¢1 — A2 COS @2) (4.22d)

(

v

Substituting Equations (4.20) - (4.22) into Equations (4.18) and
(4.19), neglecting first-order vartational terms as these will remain
essentially constant while averaging over one cycle, and replacing 'A1

R

n - \

' o |
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1

and o, by average values Ki and 761., one obtains the following

four nonlinear coupled algebraic equations

Q

%k, - z‘—-{c“(Aq) cos (%, - F1) + Sy (Ay) sin (3, = 37)}

- ‘2"1‘;{(:3(K3) cos (63 - Eu) + S3(A‘3) S.in ('5'3 - 5-1)}

1

u

y P

3
o

— + _— —_ - C — —_
20,08) - e (5,(R,) cos (% - %) - . (R) sin (8, - T1))

- 7 Sa(s) cos (8 - &) - ¢y (Rs) sin (35 - %)

=5 U_ sin 3 (4.24) .

Yy X

2 o
14m) ¥ - - - P T
0%k, + L'é:?r);_i{cu("\q) cos (- 92) + Sy(Ay) sin (o4 - 92))
A

- 53, {c3(R3) cos (03 - 95) + S3(Ay) sin (35 = 9,0}
1

B% 02 _ )
- =L c(r Ry =0 (4.25)
(14n) v2 _
2 52,9 Ay e Sy(Ry) cos (@ - 05) - cy(Ay) sih (o,-95)}
2
- 5 {S3(R;) (¢35 - 05) - c3(A;) si -
24n 3(A3) cos (&3 ¢2) C3( 3) $in (*?3 ¢2)}
5 g2 o2 | o
- L— 5, (rA) =0 (4.26)

= == C0s 9 (4.23)"

LAY "X W
g WQ' aas

dns" B

;e' #Q{t d ﬂ
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: In the above, the general expressions for C.(A.); ,Si(Ki) i=.3,4

N\ “ .‘N - " and €,(r Ky, Sy(r Ay) " have the following. forms
’ C -~ .l 2" —' ’ ,- v ' 4 -
‘- ReAER Io_..f(Ai‘. 0;) cos o doy 3 =34 (h.27a)
_ 1 27 _ ) R . .
, Si(Ai) = — J, —f(Ai, ei) sin o, dei{ : 1‘= 3,4 (4.27b)
Y 0 o v ) . .
] , , . A
- om, _ . . - ‘«'
. o ) ' Cz(r‘ Kz) = ];' Jfo f(Y‘ Az, 92) Ccos 6, d82 . *(4.27C)
¥ . . ‘ . {
; 1 . ¢
g; - { < ‘] 271' } » N . l
{ 52(r Az) = T 'J f(rfz, 92) sin 65 d62° ' . (4.27d)
., y o ., . L.
. } = . ‘ 6, = Qr + ?1. s - 2,344 . L (4.27(;)

> N . 3 . « N &1

‘Algebraic Equations (4.23) through (4 26) may now be regarded as &

3

t - B complete statement, of the problém 1n terms of.the four variables

t w

’ . . ~A1, Az, ¢, and o, wh1ch when so]ved, yield the steady state approx-

imate se1dtions,fo;'the‘system displacements and correspond1nq phase
angles: ' ST ey ' ] - _
The functions Ci(ii) and Si(ig) of thation (4.27) are in-
tégrals'bveh one pomp]etercycle gf oscillation. thever, due to -
\~smietry of the eteady state normalized hysteresis 1oop shown in Fig-
- f Ure 4.4, these integrals may be replaced by twice the tnte;ral over'

,one ha1f-cycﬁe.

N,

.
l ’ : . S V—
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4.2.3 ‘Functions C.(A;) and S.(R.)
‘ Iy . - ¢
' The’ general expressions forl Ci(ﬁ%) and 'Sj(ﬁ%) of Equation

. (4.27) are similar to those derived by Iwan [37], since the same nor-
{ " malized shape-of the bilinear hysteretic mode? was employed. Without
gbing through the detailed derivation of these expressions, as this

is done in References 33 and 37, the final forms of Ci(ﬁ}) and Si(K})

-

)

_reduce to
P ' L'C(T\_)=Ei[ +(1—&)e*\-!]—'ﬁli 20%]; K. >1.0; 1=3,4
‘ , iV T R g L 17T T s el Ry 2 1.0 A
. , T a ' \ (4.28a)
Uy o ) . . '
; C o= F SR<10 ;0= 3,4 (4.28b)
} - : ) '
. - » ‘
~é _— . Ai ) — 1 . ‘ -
S;(Ag) == L (1-a) sin2 ex 5 R.>1.0 5.1 = 3,4 . (4.28c)
’) .
- \\ =0 Ai<1.0 5 i=3,4 (4.284)
) « where \\\k\ , '
; o . . K2, e |

' i

.The ‘expressions for C,{r A,) and S,(r A,) do not differ much from
the expressions for Ci(ﬂ}) and Si(ﬁ%), except that amplitude A,
is associated with factor r. Thus, the expressions for Cyo(r Ké)

-

and S,(r K,) become ' " ' . *

.
'
' \ . . W e e e A h——— & ]

o
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’ | rA . o
Colr By) = —2 fan + (1-a) 6% - legl-sin 20x,] 3 r A21.0 /S

\ w . rs 2
(4.29a)
) . . - . , , %
i ‘ ‘ = r A, ©o3 e Ay<l.0 (4.29b) <l
‘ : ‘ ;
: X _ [ . ) . : H
r A2 - _ . :
= - - (1-a) sin 632 3 T Ay>1.0 (4:29c) : |
=0 : 3 1 Ry<l.0 : (4.29d)
' . . \
where \ R ' o
_» rA,-2 ]
- « g%, = cos ! {(—) . (4.29)
f r AZ | v .
; . ' R ‘ . ‘
; 4.2.4 Numerical Evaluation of Steady State Response . -
{

Fquatidns (4.23) to (4.26), togethér with Equation (4.22) and

" Equations (4.28) and (4.297, form a complete set of nonlinear ;3lgebraic

equations which yield the steady state averade response of the Eystem.
It should be noted that Caughey [33], Iwan [34] and J;nnings [35, 39],
while dealing with single degrée-of-freedom systems, successfully eli~
minated.the phase angle from ﬁhe two governing a]gebraié equations,
thereby obt;ining a single quadrétié equation for the response ampli-

" tude. Even for a two degree-of-freedom translational system, Iwan [37]

SEpiits ;ﬁ;ﬁ_mﬂ:}‘FMﬁ#:mﬁ»ﬁx s

succeeded in e]imiﬁating the phase angles from the set of four equa-

4

-tions and obtained two higher-order coupled hbn]inear polynomial eq-
% . ST .

17

'uatipns in térms of the averége amplitudes. This ﬁ%dg;tion was pos-

sible becpuse the system‘displacements were also. the physical.resisting
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element displacements. Furthermbre, in none of these systems was

\

damping considered. For a similar situation, E1-Zaouk and Dym [3]

ignored the hhase\ang]es and damp{ng from the start, thereby reducing

" two coupled algebraic equations to a single tenth-order equation. On

&

n

f

the other hand, Evensen [1,2] failed in eliminating the phase angles
-from the set of four coupled algebraic ;quations derived for a two
degree-of-freedom system even though the system d?Splaéementi were
also the resisting element displacements, in his case the modal dis-
‘placements. However, modal damping was included 1n this formulation.

In the present 1nvestigation'system displacements A_ and Ae

X
do not represent directly the element displacements, although one can
"be derived from the other by the relations 6f Equations (4.21) and
(4.22). Furthermore, viscous damping has Seen included in the formu-
lation presented here, making the consideration of phase angles neces-
sary for the derivation of the approximate so]utiong. Because of the}
aforementioned considerations (i.e., damping and element vs. system
displacements) algebraic Equations (4.23) through (4.26), together
with Equations (4.21), (4.22), (4.28) and (4.29), are too cumbersome
to allow elimination of the phése angles. Thus, amplitudes A;-A,

and phase angles ¢;-¢, were obtained directly from Equations (4.215

through (4.26), (4.28) and (4.29) without further modification using

r
the IMSL* 1library subroutine. This subroutine, developed to so1ye a

~system of simultaneous nonlinear equations, is based on Brown's method

"

* International M@tﬁematica] and Statistical Libraries, Inc.; Houston,
Texas, U.S.A.

o TR
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[31] which is a quadratiéally convergent Newton-1ike method employ-

ing Gaussign elimination. |

Equations (1?23) thréugh (4.26), together with Equations (4.22),

(4.28) and (4.29), contain the system parameters o, n, r, Qy’ Lo

Lo and G = U/(sy wi). The nonlinearity parameter o randes from

‘zero for elasto-plastic to 1.0 for elastic behaviour, whereas inter-

mediate values account for strain hardening. The parameters n, r
and Qy represent, respectively, unbalanced stiffness as a measure
of eccentricity; building plan aspect ratio and normalized lateral
frequency. However, in order to conform w{th the parameters consider-
ed in earlier studies, %t is worthwhile to replace n, r and Qy

by nondimensional eccentricity ratio e and torsional to translation-

al frequency ratio 2.

by the

Parameters @, and e are related to n, r and 2,
foliowing expressions
e=%- B (4.30a)
o (n+2) V1+r2
\ 3 (1+r2q2) » B
% = Tz o ~ (4.30b)

-

13

For cases where stiffness kiy lie directly on the y-axis, these
lateral stiffness do not contribute to the torsional stiffness expres-

sed in Equation (4.2c), thereby reducing the above expressions to

- _n Qe
e = ~7 (.4.3(]&)

R it 2 7 e AT N 7
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# 50 * .
3 ] .
2 = 2
Q2 = 1573 (Q.3lb)
which yield > : __;‘
_ Ze ' :

n= -5-_-? o (4.3_23)

3] . ’ .
’ 302 '
r= —Qz— . (432b)
6 ,

~

Thus, Equations (4.32a) and (4.32b) are employed in conjunction with

<

Equations (4.23) through (4.29) in the,fo]]owing parametric study

where the influence of system parameters 295 e, a, Ty Tg and Ga
\\

’

is presented.'

4.3 - PARAMETRIC STUDY

4.3.1 System Properties and Ground Motion

g

In order to arrive at meaningful conclusions, system properties

ry Qgs e, ¢, and g, , bilinearity parametér o of the resisting 7

elements, and the amplitude of input ground acceleration Ga are
selected to possess commonly encountered values. In practice aspect
ratio r varies over the range 0.5<r<2.0; eccentricity e general-

ly lies between 0<Esp.4; and for the torsional frequency ratio,

0.85%%2.0 [9, 10, 12, 14].

It should also be noted that various investigators have inter-

preted the torsional frequency ratio @, differently; for example

8
\
Irvine and Kountouris [12] considered torsional stiffness Kg sat the

¢
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.
centﬁg of resistance and mass moment of inertia J at the centre of
mass, whereas Kan and Chopra [9, fg,\g1] considered both Ke and J
at the centre of mass to determine the uncoupled torsional frequency
Wy On the other hand, Tso and Dempsey [23] considered both Ke

and J at centre of resistance. The present study interprets the

parameter a in the same manner as Kan and Chopra [9-11].

Both the translational gnd torsional damping ratios, Ty and Zg

respectively, have magnitudes from 0 - 0.20 although in actual struc-
tures this depends upon the level of inelastic deformation experienc-

s

ed by the resisting elements. The latter is a function primargl
the amplitude of input ground acceleration Ga‘ For the presen£ -
parametric study maximum normalized element deformation, or peak
ductility demand (PDD), of 5 to 10 is considered sufficient and is
achieved for a standard level of excitation corresponding tq G, =1.0.
Irvine and Kountouris [12,13] studied behaviour with G, as high as
12 by adjusting mass, yield strength and spectral acceleration of
reference earthquakes and obtained peak ductility demands in the re-
sisting elements up to a magnitude of 42.

Unless subjected to parametric variation or stated otherwise,

the aforementioned system variables remain fixed at the standard

values listed in Table ¢ 1.

4.3.2 Response Amplitudes

Effect of coefficient o

In order to determine the effect of bilinearity parameter o, the

system was analyzed for e« = 0, 0.05 and 1,0, for which the results

Sad ¥
Lot
!rc ;f\'J
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are presented in Figures 4.5 and 4.6. With a = 0; the system is con- |
sidered to have elasto-plastic resisting elements; with «a=1.0 the
system behaves elastically, whereas for a==0}05 the resisting ele-
ments exhibit some strain hardening.

The peak ductility demands of the translational and torsional
displacements Ax and Ae of the system are shown in Figures 4.5a
and 4.5b, respectively. It is noted that two amplitude peaks appear
for most systems, identifying some sort of resonance with the two
coupled natural frequencies of the system. For the linear system
(i.e., @=1.0), the coupled frequencies w; and w, can be expres-

sed in terms of uncoupled frequency ratio &, and eccentricity e

8
as follows

2 _ Y12
] 2 = (=
? X

)2 =3 (ngﬂ) + /a(ng-nz + g2 ’ " (4.33)

With the standard magnitudes @,=1.0 and e=0.2 the values of

and @, are 0.894 and 1.095, which correspond to the resonant input

frequencies 1« at which the peaks are observed for a=1.0 in Figure

4.5.
In the case of elasto-plastic and bilinear hysteretic systems,
these two peaks occur for translational amplitude (Figure 4.5a) but

not for the torsional amplitude (Figure 4.5b). It is difficult to

express the system frequency equations in terms of 2y e and «a
since the system is nonlinear. Nevertheless, the peaks in the non-
linear systems appear at frequencies cons$iderably Tower than for the
corresponding linear system. It is also noted that, for o=0 and

0.05, the torsional response curves of Figure 4.5b appear to lean
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toward the lower frequency direction, which characterizes the be-

tomm———

haviour typical of soft systems. Since a unique set of amplitude
values are found over the entire frequency range, the sﬁ-ca]]ed
"jump-phenomenon" or instability does not occur. Both the torsional
and translational amplitudes remain virtually unaffected by the change
in the magnitude of « at high frequencies, i.e., beyond o = 1.5.
For the elasto-plastic system (i.e., o = 0), infinite values of
lateral and rotational displacements are observed at 0=0 indicating
an unstable or continuously yielding structure when loading is static.
However, with the introduction of slight strain hardening (i.e.,
«=0.05), the structure remains stable with finite values of lateral
and rotational amplitudes even when =0,

The corresponding response amplitudes of the resisting elements
are shown in Figures 4.6a and 4.6b for elements 1 and 2, the far and
near elements with respect to the centre of resistance, respectively.
It is observed that the frequencies corresponding to the .peak ducti-
lity demands in these elements are in conformity with the Tower and
higher frequencies related to the translational amplitude peaks of
Figure 4.5a. Both elements remain elastic and exhibit the same ampli-
tude for input frequencies beyond 1.5 for any magnitude of o. How-
ever, the situation is quité different at low va]ues.of Q, where
the far element (element 1) exhibits increasing inelastic response
with decreased magnitude of o but the near element (element 2) shows
elastic and equal magnitude of response for all o at frequgncies be-
tween 0-0.5, appro*&mate]y. |

For the particular set of standard values for the system para-

meters considered here (see Table 4.1), both peak system and element
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disp]acements‘are lower for inelastic behaviour compared to peak
elastic response; however, théusituation may be reversed with increas-
ing Ga. For~examp1e, with Ga=2.0 the PDD for e]emeﬁt 1 with a=0.05~’
.is found to be 53, whé}eas the correspondiqg response ratio is 22 for I i

elastic behaviour (see Figure 4.5c). ' L
. N

4,3.3 Effect of Damping

i, i st A

Figures 4.7a and 4.7b present the effect of trans]ationq] damping
;X on the far and near e1ément response amplitudes for /a=0.05. As . é
for all dynamic systems, the amplitude of response decrea;es with in- ‘
creased translational damping."Simi]ér behaviogr is obse;ved for
varying Forsiona] damping Lgs @S shown in Figure 4.8. It may be
noted that damping has virtually no effect on the element respoqse

when ¢>1.3, approximately. A]éo, comparing Figure 4.7 with Figuré

4.8 one observes that torsional and trans]ationa]tdamping appear to

be equally effective in reducing the response. v

|

b

L V‘S

4.3.4 Effect of Qg o ' . {
Figures 4.9 and 4.10 illustrate the effect of torsional to trans- ‘ %

. , . 3

lational frequency ratio 2, on the response amplitudes and peak duc- %
tility demand of the resisting elements. jg
) - R

From the response amplitude curves for element 1, shown in Figure 'ﬁ

4.9, it is observed that when the structure is harmonically excited at
a fixed value of ‘input frequency @, the system's torsional frequency

2 hardly influences the element response. However, the peak ductility

demand, obtained as the maximum response amplitude over @, shows
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substantially different Eéhaviqur as indicated by Figure 4.10. It is

seen that, although @_ does not influence element 2 in a major way,

9
element 1 is critically affected, particularly for torsionally flex-

ible syst;;s possessing large eccentricities.

It may also be observed in Figure 4.]0'that a structure with low
eccentricity does not experience pronounced torsional coupling when
the torsional and translational frequencies are close (i.e., Qe=1.0),
as has frequently beeﬁ demonstrated in the case of Tinear elastic
structures. This absence of amplitifed response in inetastic systems
is a relatively important observation, since much emphasis has been
given to the problem of symbathetic resonance caused by coincident
frequencies, in both earlier studies [16,17] as well as by building
codes [23,24]. Nevertheless, Tso and Sadek [14] reported a similar
absence of magnification in response for yielding systems even though

torsional and translational frequencies are close.

4.3.5 Efféct of Eccentricity e

Figures 4.11 through 4.13 show the effect of nondimensional ec-
centricity e on the element response amplitudes for structures of
differing torsional stiffness for which Qe=0.5, 1.0 and 1.5. The
response amplitude of element 1 (Figures 4.11a, 4.12a and 4.13a) in-
creases with increase in eccentricity at low input frequency o and
decreases somewhat with increased ecceﬁtricity at higher values of
Q . Ai a particular magnitude of Q , the response amplitude is

stationary irrespective of eccentricity e . However, a reverse

trend is observed for the response amplitude of element 2 (Figures

'
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4.11b, 4.12b,'and 4.13b), again with stationary amplitude at a fre-
quency ratio which is close to that observed for element l:

The magnitude of excitation frequency @ , for which ampTitude
is stationary with respect to eccentricity e , shifts toward higher
frequency @ for torsionally stiffer structures. This phenomenon .
appears to res&1t from a high degree of torsional coupling with in-
creasing eccentricity when excitation frequency a<1.0, this pro-
duces an increase in deformation for element 1 and a corresponding
decrease for element 2 at low frequency ratio Q . The reverse effect,
although less pronounced, occurs at higher values of @ . However,
Kan and Chopra [9] observed a similar trend only in systems where
Qe>2.0 but for.earthquake response.

Figure 4.14‘shows the effect of eccentricity on the amplitude of
phase angle ¢3 anJ by, for elements 1 and 2, respectively. At any‘
particular input frequency o , the near element phase angle &y, is
larger thap the far element phase angle ¢35 ; the former is consistent-
1y larger and the latter consistently smaller than the phase angle of
the corresponding symmetric system where e=0. This indicates that,
for any excitation frequency PR the response of the near and far
elements of an eccentric system are always out of phase, clearly indi-
cating the absence of absolute resonance in deformation amplijtude.

The effect of eccentricity on the peak ductility demand (PDD) for
the two nonlinear resisting elements, as well as for the translation-
al and torsional systemldisp1acements, is presented in Figure 4.15a
through 4.15¢ for 0,=0.5, 1,0 and 1.5 respectively. It is observed
that the peak ductility demand in element 1 increases rapidly(y1th
increase in eccentricity, whereas for element 2 it decreases relatively

slowly with increase in e. In the case of peak displacements of the
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system, the translational displacement initially d credses somewhat
with increase in eccentricity followed by a consistent increase at
large eccentricity. On the other hand, torsional disp1%cement increases
witz increase in eccentriéity from the start. Gejera]]!* at large
eccentr{city (e>0.15, saj) the PDD of both the torsional and trans-

lational system displacements are nearly equal. However, the magni-
tude of the peak ductility demand, both for the s}stem as well as the
resisting elements, appeérs to be most pronounced for torsionally flex-
ible_structures (i.e., Qe=0.5) and decreases as the system becomes
torsionally stiffer, i.e.;eLat higher values of 2

Thus, it appears that in torsionally flexible structures, eccen-
tricity e does not affect the PDD of the near resisting element.
However, for torsionally stiff structures, increase in eccentricity
rapidly brings this e]eTent toward the elastic range. This agrees
with the observation of Irvine and Kountouris [12], but only in a
restricted sense. They observed a similar trend for an element near
the Centre of mass and were also able to demonstrate this analytically
for elastic behaviour, concluding that "there does not appear to be
strong correlation between PDD and eccentricity, provided that the ec-

centricity ratio is limiated to about 0.25". However, PDD curves vs

eccentricity for the far element were unfortunately not studied.

l

1

4.3.6 Effect of Excitation Level G

a—
i

The effect of increasing ground acceleration amplitude Ga is*
shown in Figure 4.16 for elements 1 and 2. The sfructure remains (
2 R

elastic beyond input frequency q=1.5, even when Ga=2‘0‘ With increased
»
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magn1tude of G the peak response amplitude of the resisting element.

A st SN A o e e =

sh1fts gradua]]y toward the low frequency range. This is probably due
to decreasing natural frequency of the coupled system caused by in- ©o
creased deterioration accompanying yielding of the resisting elements
w;?nigher levels of excitation.

In Figure 4.17, the peak amplitudes of response of the resisting
elements as well as the system d1sp]acements are plotted aga1nst am- ’ i
plitude of ground acce1erat1on Ga' It is observed that, for both ‘ !
the resisting elements and the translational displacement of the
system, the peak amplitudes are almost linearly re1atéd.to ‘Ga beyond
Ga=1.25 - 1.5, approximately. However, the torsional system di§p1ace-
ment, -although increasing, does not increase proportionately with in-
crease in Ga probably due to comparatively slow deterioration in .
torsional stiffness nf the system. Similar trends for resisting ele-

ments were also observed by Irvine and Kountouris [12] for real.earth-

guakes with a maximum PDD of 42.

4.4  CONCLUSIONS

This chapter is concerned with the coupled inelastic lateral-tor-

sional response of a single-story monosymmetric building with bilinear .

.
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hysteretic elements. The regnitg of the frequency sweep analysis em-

ployed Tead to the following nnnclusions. .
1. The response of a bilinear hysteretic structure‘is found

.to be free from the "jump- phenomenon" indicating stable behaviour with-

in the ent1re frequency domain.

2." The bilinearity parameter o appears to have no 1nf1uencé
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on response amplitudes of the resisting elements for input frequency

-

ratio (@ larger than 1.5. However, at 0<0.5 the system as well as

some element response amplitudes are strongly influenced by o . At

9=0 the system becomes unstaBle when o 1is set at zero.

3. ' Tor;{onal aﬁd trans}ationa1.daqping appear to be equally
effective in their usual role of- reducing response. However, damping
has vir;yaﬁiy nd effect on element response when‘-9>1.3, approximagg]y.

4. . The uncoﬁp]ed torsional to, translational frequepéy ratio\
2 of the system Hard]y iﬁf]uancés ejemén; responge when the struc-

ture is harmonica11y”éxcited at.a fixed magnitude of input frequency

rattc . However, 2, does- have major effect on the peak ductility

demand of element 1 although it does not influerice element 2 for tor-

sionally flexible systems possessing large eccentricity.
5. A structure with Tow eccentricity does not experienée
pronounced torsional coupling when the torsionaldnd translational

frequencies are close, in contrast to the observation for linear elas-

tic structures.

6. The response pf the near and far elements of a démped ec-
centric system are always out of phase when the system is exc{ted
at a particular frequency @ , é]ear]y indicating the absence of abso-
lute resonance in deformation amplitude.

7. Thé peak ductility demand of element 1 increases rapidly
with increase in éccentricixyg whereas for element 2 it decreases re:
lativeljxslowiy with increase in e. Thus, it appears that in torsion-
ally flexible structures, eccentricity € does not affect the PDD of

the near résisting element; however, for a torsionally stiff structure

N
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¥
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" . an increase in eccentricity rapidly brings this element tovard the N
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elastic range. ' L , /

1

[N V-

o . 8. The peak ductility demand of the resisting elements is

o -related almost bilinearly thground-accelération amplitude Ga s
ha&ing different slopes with am%?anijtion in they neighbourhood of . . ' .
Ga «1.0 to 1.5. Between 0~<Ga<1.0, the resistiag elements, al-
~ though ungergoiné inelastic deformation, lose stiffness only moderate- ‘
!' v M J} comﬁafed to fhe/reSpective e]astié stiffness. The afastic change o é
in element resbonse be}ond Ga = 1.5 occurs becauie the resisting E
C ‘ §1ements retain only the reduced stiffness ok when undergoing pro-

nbunced yielding at high Teve]s of excitation.

.
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Figure 4.9 Effect of tdrsional to translational frequency ratio

2, on element response ampli tudes
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Figure 4.10 Effect of torsional to translational frequency
ratio Qg and nondimensionial eccentricity e -
on peak ductility demand of resisting elements.
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CHAPTER V
INSTABILITY IN BILINEAR HYSTERETIC STRUCTURES

1

5.1 INTRODUCTION

During the past several decades, much research effort has been
concentrated on determining the dynamic behaviour of simple méqbania
cal systems having nonlinear elastic restoring force. Among the
known response properties of such systems,;by far the most important

and interesting characteristic is the existence of the “jump pheno-

- menon", or instability in response, within a certain frequency range

which is well described in numerous papers and texts [42-45]. Later
similar instability was demonstrated to exist in various nonlinear
elastic Civil Engineering structures, as foF’examp1e coupled flexu-
ral vibrations of thin circular rings [1,2] and the vibration of
orthotropic shallow shells [3]. However, the only known work on the
"jump‘phenomeﬁan“ in an, inelastic system is due to Iwan [46], in
which He showed that the steédy state resﬁonse of a one degree-of-
freedom doubly-bilinear hysteretic model also gives rise to the
"jump phenomenon", apart from exhibiting "softening".

In.this chapter, work is first devoted to idealfization of se-
veral experimentally available hysteresis loops typifying a wide
class of structures. The steady state resﬁonse of an eccentric
system with these idealized Toops is found folloWing the ana]}ti-
cal procedure describéd in Chapter IV. The response is p}esented
in the form of ductility demand versus nondimensional excitation

frequency. The possibility of experiencing instability. in response

[ N T
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.

for the different classes of hysteretic behaviour is examined and.
the predpminant'system parameters respo;sible for this instability
are identified. Finally, a parametric study is performed for pinch-
ed elasto-plastic structures since this type of hysteretic Behaviohr

is found to experience the highest degree of torsional instability.

i

5.2 IDEALIZATION OF HYSTERETIC BEHAVIOUR FOR VARIQUS
INELASTIC SYSTEMS

This section is devoted to the idealization of hysteresis loops
for a varietv of structures .such as reinforced concrete frames, shear
walls, gtee1 braced frames, etc. These behavioural models are based
on the load-displacement characteristics obtained from various ex-
perimental investigations of actual structures, wherein yieldina
of elements within the structure or interface slip between adjacent
elements determines its hysteretic natu?e.

The cyclic inelastic load-deformation characteristics of moment
connections and beam-column joints in moment resisting steel fr§mes

wpre recently studiedlexperimenta11y by Krawinkler and Popov [47].

Similar experimental observations for reinforced concrete ductile

frame structures have been reported by Fenwick [48], whereas re-

R TREL D PR b

paired reinforced concrete members under ¢yclic loading were inves- %
tigated by Popov and Bertero [49]. Typical load-deformation dia- %
gram for these steel and reinforced concrete framed structures is E
shown in Figure 5.1. The shapes of these diagrams are similar and g
can easily be idealized by the mathematically manageable bilinear %
hysteretic model, with the second slope o calculated to be with-“ \%
in 0.02 - 0.10. §

T, 1 B e
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A different class of cyclic load-deformation behaviour has
been observed for coupled wall systems [51], where the hysteretic
loops are pinched as shown in Figure 5.2. This pinching occurs due
to degradation in flexure-shear resistance combined with a gradual
loss of bond attributable to bar pull-out. This type of inelastic be-
haviour may‘be idealized by the pinched-bilinear hysteretic model
for which the second slope o is measured to lie within 0.05 - 0.17
(see Figure 5.2).

By setting o to zero, both fully bilinear and pinched-bili-
near hysteretic moaels transform into elasto-plastic and pinched
elastio-plastic behaviour resvectively. The pinched elasto-plastic
model, sometimes also referred to as the hysteretic slip model, re-

presents the behaviour of a plane cross-braced frame and has been the
subject of several studies [8,41,82]. .

Recently, attention has been paid to the study of more complex
forms of yielding behaviour, in which the hysteresis loops associat-
ed with successive loading cycles show progrqssive decrease in both
stiffness and energy dissipation [53,54]. However, for the present
investigation, the analysis is restricted to the two simple hystere-
tic models described above.

Both the fully bilinear and the pinched-bilinear models are
the two simplest 1dea}izat%ons of hy;teretic behaviour, compared to
other models such as Ramberg-0sgood or stiffngss degradation, able
to preserve approximate cyclic energy dissipation but neglecting
strength deterioration and creep. In fact, it has occasionally been

found that the hysteresis loss specified by the bilinear model is

slightly higher and that of the pinched-bilinear model slightly

"
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Tower than the corresponding experimental load-deformation diagrams.
The hysteresis 1oss in a pinched-bilinear model is exactly half that

of a fully bilinear model for the same amplitude of response. It

W Mmars bt & h e

is believed that other forms oflpysteretic behaviour, namely Ramberg-
Osgood or stiffness degradation, will be covered by the two 1imiting
cases of hysteretic behaviour considered in the present study re- %

garding cyclic energy dissipation.

5.3 ARNALYTICAL PROCEDURE

The ‘coupled lateral-torsional behaviour of an inelastic asym-
metric single-story building is examined for the two types q& hy-
steretic models described in the foregoing section. The single-
story model of Chapter IV (see Figure 4.1 and 4.3), also with har-
monic ground shaking, is considered here. The study of steady state
harmonic response for inelastic structures is useful because, quite
often, structural testing employs forced harmonic excitation to
determine structural characteristics such as natural frequencies
and damping [40]. Moreover, the response of a structure to strong-
motion earthquakes is close to harmonic in character [38].

—‘.The equations of motion given by Equations (4.185 and (4.19), ‘
and the corresponding four nonlinear coupled algebraic Equations
(4.23) through (4.26) obtained by employing the method of averagingi
are valid for any shape of hysteresis loop. In these equations, '
the expresiions for Ci(?i) and Si(i}) (see Equation 4.27) do not
require the explicit form of f(K,,5,). However, Equations (4.23)
through (4.27) can be specialized for a particular inelastic system

provided corresponding closed form expressions for f(l},é}). C1(K})
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and §i(ﬁG)' can be established. In the following, the exact ex-
bressions of these terms for the two idealized hysteresis models

studjed herein are described.

5.3.1 Fully Bilinear System

\

Thg explicit forms for Ci(ﬂ§)’ Si(ﬂ})’ c,(rh,) and S,(rA,)
for the fully bilinear hysteretic model have been pregented in Chapter
IV (see Section 4.2.3, Equations (4.28) and (4.29). Similar expres;
sions can be found for an elasto-plastic system by setting o« to
zero. Thus, Equations (4.23) through (4.26),‘(4.28) and (4.295 can

be s6lved to estimate the steady state average response of idealiz-

N

" ed bilinear and elasto-plastic hysteretic systems. ~

5.3.2 Pinched-Bilinear System

Figure 5.3 illustrates the normalized éhape for idealized pin-
ched-bilinear hystergéic behaviour. The denera] expressions for
Ci(ﬁh) and Si(ﬂﬁ) for éhis type of hysteretic model have been
derived for a single degree-of-freedom translational system by Iwan

[46]. Without showing the detailed derivation, the final form of

these expressions are T
. K} sin 267 sin 203
F—_ * | 1 2. - -
Ci(Ry) = 7 [(-a)(of + o - —- 7 2 *onl
/— r
; K} > 1.0 ; i=3,4 (5.1a)
= R, 3 Ry <1.0; 1=3,4 . (5.1b)
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S;(R))=-3 ('l—u)(—xi—),', R > 1.0 i_=3,\4 r (5.1c)
=0 s Ro<1.0; i=3,4 " (5.1d
_ . A i< ' ) (5.1d)
where _ -
- Ai-]
* =
' ¥ = cos (Ti—) (5.1e)
o¥+ = cos™! (- 7) (5.1F)
1 s $

Q

Similarly, expressions for C,(rR,) and S,(rA,) are given by

expressions for pinched elasto-plastic behaviour. Hence, Equations*

(4.23) through (4.26), together with Equations (5.1) and (5.2),

v v \

sin 26* sin 20%*
— . . 2
Co(rBy) = =2 [(T-a) (o, + % - ——T2 - ——T %) + an]
7 . ¢ ) ; | \ © ‘ -
. . s YA, > 1.0 . (5.2a)
= vA, 3 rh, < 1.0¢ - (5.2b)
. ” _ 2 -rA_-1 : ’
SZ(Y'Az) = - n' (1—(1)(—;_“-‘-2—) ’ Y‘KZ 2_].0 (5.2C)
\ = 0 3B, < 1.0 -(5.2d) .
- N\ o, ’ S
3 in which
” '
. -1 rA,-1
B,k = cos (-—‘;A-z—) . RS (5.2) .
] . . ¢ .
oF* = cos (- ;—KZ—) ‘ g (5.‘2f)
- - Substituting o=0 1in the foregéing equations sbecia'lize“s in the




I3

g - 155 -

.

yield the steady staté average Yyesponse of .a pinched-bilinear hy-

y

steretic system for nonfero o as well as for pinched elasto-plas-

tic systems when o=0.

5.4 NUMERICAL EVALUATION OF STEADY STATE RESPONSE et

N

In Section 4.2.4, {t was mentioned that nonlinear a]gebraic‘
Equations (4.23) through (4.26), (4.22) and Equations (4.28), (4.29),
when specialized for fully b11ineaf hysteretic behaviour, were sol-
ved with the IMSL Tibrary subroutine without encountering'difficu]-‘
ties, because the solution is found to be‘sing1e-va1ued within the
observed frequency range. . -

;Although this subroutine also solved the same sét of a]gebraep ‘ ,
engtfons specialized for pinched-bilinear behaviour (Equations (5.1)
and (5.2)) for a large portion of thé input frequency range @ , it

failed to converge at certain values when 0<1.0. The solytion for
this portionvwas obtained with a recent but unpublished program '
developed by Bui [55], however only after a great deal of effort.
Several trial and error runs had to be performed withpbgth the IM%L.
anq Bui's subroutiﬁes to obt&in‘complete solutions for the.desirkd -
frequency range. ) ‘ 1

The IMSL subroutine can solvg for amplitudes and phase angles
at a specified magnitude of q , wherggs Bui's program solves along
the entire route or path of a curve at constaﬁt 3nterva1vpoints B
starting froma known sofution at any point on the‘path. Gne severe
restriction of the present version of this routiné/is that, just
after the,startin§ po?nt.‘it always -converges to the next point on

the path provided 0o at the-hew point is greater than the starting \“
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point o . Difficulties were encountered because, for most cases,
b}

the exact roots at or near Q=0 could not be predicted a priori.

’

Thus, all curves for the bilinear hysteretic systems were obtained

with the IMSL routine starting at ©=2.0 and sweeping toward 2=0;

this was possible because the system parameters do not.significantly
affect the response amplitudes beyond 0=1.5 (see Figures 4.5-4.8,

[}
4.11-4.13 and 4.16). Similarly, the IMSL routine was also used to

sglve for pinched-hysteretic behaviour with the starting point al-

ways at 0=2.0" but, because in most cases the solwtion failed at

r

9! somewhere near or less than 0.5, no solution. was obtained betwe-

-

ren  0.2<p<0.5. Fortunately, in some cases the IMSL routine gave

solutions at 0<0.2; these known so]utions were then used in Bui's
routlne to complete the range 0<Q<O 5. For cases where no known
solution was available from the IMSL routine, several trial runs
had to be performed with Bui's routine by intutive judgement based
on previously obtained curves. "
—~-—After each successful run with Bui's pregram, it was four® that
triple set of solutions exist for tht frequency ran@e in a pinchesii
bilinear ﬁysteretic system where the IMSL routine failed (Figures ‘
5.5-5.74). In most cases of triple so1utigns, the IMSL subroutine-
either failed or gave only one solution. It should be noted that
triple solutions of a sing]e'%on1ine§r equa£}6n were also found by °
Iwan [46]; even five va]uesmwere successfully obtainea by E1-Zaouk
and Dym [31.. Thusfar, no example of a complete solution of triple
values for two degree-o?-freedom‘systems'is reported inh the litera-

ture. Evensen [1,2) attempted to solve uniauely for system ampii-

tudes by a numerical method byt was unsuccessful for a comparitively
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U ‘ | less complicated system than the one studied here. Similar evidence }
“i . of unsﬁccessfu] attempts in finding triple values resulting in in-
: complete amp]itudé—frequency curves can be found in the recent work
of Reference 56. (

In order to verify the correctness of the solution obtained from ’
\bo{h the IMSL and Bui's routines, the linea; elastic case was solved.
A closed-form solution forkamplitudes and phase angles can be ob- -
tained by first substituting «=1.0 1in Equations (4.28), (4.29),
(5.1), (5.2) to estimate Ci(ﬂﬁ)’ Si(K})’ C,(rd,), S,(rA,) and
then substituting into Equations (4.23) through (4.26) and (4.22)(see

also Appendix H). The solutions obtained for «=1.0 from both rou-

tines were found to match the closed form solution within reasonable

T T

éccuracy. Moreover, both programs were also tested for «=0.95

f. _ producing solutions which were different from but close to the solu-
tion of the linear system. Additional verification of Bui's program
was also made by comparing several spot-check runs for typical non-

linear systems with solutions from the IMSL subroutine for both bi-

linear hysteretic and pinched-bilinear hysteretic systems.
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; 5.5 COMPARISON OF RESPONSE FOR DIFFERENT HYSTERETIC SYSTEMS

In Section 5.2, simple idealizations of hysteresis loops for
various structural systems are presented; As illustrated in Figure
5.1, a bilinear hysteretic model may be conceived for the load-dis-
platement characteristics of a moment resisting steel frame or a
reinforced concrete ductile framg. Similarly, a pinched-bilinear

loop can be substituted for hysteretic behaviour of a coupled wall

P
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system (see Figure 5.2). T?e pinched elasto-plastic model has been
considered earlier [52]‘to represent the cyclic behaviour of a cross-
braced frame. The elasto-plastic model has also been the subject of
a number of recent studies [7,9,15].

In this section a comparison of performance, in terms of fre-
quency response characteristics, among these idealized loops is pre-
sented. Figure 5.4 presents schematic diagrams of these idealized
hysteresis loops. The set of standard values of system parameters
2 e, C,» Co and o , listed in Table 4.1, is alSo used here for
all hysteretic models, with thg?exception «=0 for elasto-plastic
models. ' ”

Furtherﬁore, in order to achieve meaningful comparisons, it is
desirable to examine equal cyclic energy dissipation, equal maximum
restoring force, or equal yield stréngth for all hysteretic systems.
But, because of the typical nature of the set of algebraic equations
relating system parameters (Equations (4.23) through (4.26)), it is

difficult to achieve the condition for equal ener?y. Moreover,

Sfrom the designer's point of view, the concept of equal energy dis-

*

. Sipation is difficult to implement. The equal maximum restoring

force concept is also difficult to exercise because, although it is
easy to employ|in an elasto-plastic or pinched e]ésto-p]aspic system
whgre maximpm estoring force hs well-defined as yield strength, for
a bilinear ﬁysteretic or pincHed-bi]ineaF model maximum restoring
force is difficult to determine a priori because the corresponding
maximum displacement is an unknown quantity required to be solved

from the set of algebraic Equations (4.23) through (4.26). On the

other hand, the equal yield strength concept meaning equal 6y for
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all systems (see Figure 4.2) is the most desirable condition from
a practical point of view; however, this is also difficult to imple-
ment because nondimensionalization of the equations of motion has
eiiminated Gy in favour of ductility demand 6i/dy .
It is believed that meaningful comparisons of the various hy- !
steretic responses will still be possible by employing equal accel-

eration Ga' For the present study the magnitude of Ga is 1.0.

- ~

»

5.5.1 Response Amplitudes ’

Figures 5.5 and 5.6 illustrate the lateral and torsional res-
ponses of all four hysteretic structures, and Figures 5.7 and 5.8
show the corresponding response amplitudes for resisting elements.

It is observed that the peak ductility demand (PDD) appears to lean
in the lower frequency direction thus indicating that these systems
belong to the family of softing systems.

An 1ntéresting phenomenon observed in Figures 5.5 through 5.8
is that, while a unique set of amplitude values are found over the
entire frequency range for both bilinear and elasto-plastic hystere-
tic systems, a trip]é set of amplitude values are obtained over a
certain frequency range for both pinched bilinear and pinched elasto- {
plastic structures, identifying the existence of the "jump phenomenon" . %
or instability in pinched-loop systems. The zone of instability is \
found %o 1ie in the range b.235950.4§ for a pinched elasto-plastic ‘
system, whereas for the pinched-bilinear system 0.36<0<0.46. Thus, >
the frequency zone of instability of a pinched elasto-plastic system
expands somewhat compared to that of a pinched-bi]inea} system.

This probably occurs because the forﬁer is a continuously yielding
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system at a fixed magnitude of yield strength which, together with
Pinching behaviour, produces the observed instability.

For both elasto-plastic and pinched elasto-plastic structures
(see Figure 5.5), infinite values of lateral and rotational dis-
placements are observed at =0 indicating that the structure is
6ontinuously yielding at static load. But the structure is stable
at 0=0 , for both bilinear and pinched-bilinear behaviour (see Fig-
ure 5:6). In terms of displacements of resisting elements, Figure
5.7 illustrates that element 1 (far element) is yielding continuous-
1y, whgreas e]ément 2 (near element) is stable showing finite mag-
nitude at q=0.

A particularly important feature for element displacements
is shown in Figures 5.7 and 5.8, where, within the unstable fre-
quency zone of pinched hysteretic'systems, the far element exper-
iences a unique magnitude of response and is therefore perfectly
stable; on the other hand, near element response is triple valued
due to the existence of "jump" instability. Each e]ement,‘however,
remains elastic and'exhjbits'the same amplitude irrespective of the
type of hysteresis for @>1.5. However, the situation is quite
different at 0<0.4 (outside the unstable zone),‘where the near
element (element 2) response remains elastic and of equal magnitude
for all hysteretic models, whereas the far element (element 1) ex-
hibits varying inelastic response which differs drastically in mag-
nitude for differgnt«hysteretic models. |

Generally two amplitude peaks appear for bilinear hysteretic
systems, irrespective of whether the system is fully bf%tpear or pin-

ched-bilinear (see Figure 5.6(a)). But only one peak is observed
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in fully elasto-plastic or pinched elasto-piastic structures, in
which the second peak may be imagined at =0. These peaks forc

all systéms indicate some kind of resonance with the two coupled

natural frequencies of the system. The frequencies at which the

peaks appear in the system response curves correspond to those
of the element response peaks. The lower frequency is associated

with element 1 and the higher frequency is associated with element

2; this becomes evident when comparing Figure 5.5 with Figure 5.7

and Figure 5.6 with Figure 5.8.

5.5.2 Effect of o« in Pinched-Bilinear Model

In the foregoing %ection, it has been observed that the fre-

quency zone of instability is larger in a pinched elasto-plastic

system compared to a pinched-bi]iﬁear system. Therefore, it is
worthwhile to investigate the size of the 1nstab111fy zone fof'vary-
ing magnitude of biiinearity coefficient o .

Figure 5.9 presents response amplitudes of both resisting ele-
ments for different magnitudes of o . Element 1 is found to be
perfectly stable, whereas element 2 exhibits instability at low «
values. With increasing a the unstable frequency zoné shrinks,
becoming marginally stable at «=0.20. For a=0.éO, the structure
appears to becone stable. At o=1.0 (i.e., for an elastic sys?ém),
the structure is perfectly stable as expected. Thus, the lower
the magnitude of o , the larger is the unstable zone; consequently,
the largest frequency zone of instability is associated with a=0,
i.e., for a pinched q1asto-p1ast1c system. | .

Since the experﬁmenta]ly obtained pinched loops of real
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structures (Figure 5.2) indicate that the bilinearity parameter,
a does not exceed 0.20, it may be concluded that a structure con-
sisting of coupled shear walls or cross-braced frames will exhibit

some degree of instability whereas a structure consisting of mo- -

ment resistqnt steel or ductile reinforced concrete frames will not.

5.5.3 Effect of Damping

In Chapter IV, the effect of damping in a fully bilinear hy-'
steretic structure has been presented. It was found that damping .
does not play a significant role apart from decreasing response.

Since it has been observed that a pinched-bilinear hysteretic
structure can become unstable within a certain frequency rénge,
it is worthwhjle to 1nvestigate.the 1nf1uen;e of dampin§ on in-
stabi]ﬁty. ’

Figures 5.10 and 5.11 display response amplitude curves for
elements 1 and 2 with bilinear%gy parameter «=0.05, 0.20 respec-
tively, and varying magnitude of uncoupled damping.

' In Figure 5.10 element 2 is unstable at z<0.10. However,
it becomes stable at z=0.20 thus stabilizing the whole structyre.

Hence, there exists viscous damping somewhere between 0.1 - 0.2 at

which the pinched-bilinear hysteretic‘structure ceases to be un-

stable.

Similarly, Ftgure 5.11 shows that the‘@pfbinally unstable

structure (with «=0.20 ) exhibits stabi¥ity at relatively lower

damping, in this case at £<0.1 , compared to a structure with

a=0.05. The importance of damping therefore increases with
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decreasing magnitude of o . It follows that the r&]e of damping
is most critical in pinched elasto-plastic structures, where the
instability zone is largest.

From the foregoing discussion, it is clear that damping plays
an important role in stabilizing response in a pinched hysteretic
structure, in addition to its usual role of decreasing response.

It is therefore, important to have adequate viscous damping {n
coup]ed-wa11 systems and cross-braced frame structures, éompared to
steel and reinforced concrete moment re{istant frames, if torsional

instability is to be prevented. N

5.6  PARAMETRIC STUDY OF PINCHED ELASTO-PLASTIC STRUCTURES

In Section 5.5 it pas been shown that a pinched elasto-plastic
structure has the broadest frequency range of instability. There-
fore, it appears important to conduct a parametric investigation on
this system. The results will generally be applicable to other pin-
ched hysteretic systemstﬁj.e., systems having bilinearity cparameter
o within 0<a<0.2 for“whicﬁ;the unstable frequency band-width is
smaller but where, nevertheless, torsionq} instability is tq’be

expected:

'5.6.1  Effect of Damping

Figure 5.12 presents the effect of damping on the response am-

" plitudes of both the far and near elemants. The torsional and

trané]ationa] damping values are taken to be equal chause 1; has

been found, in Section 4.3.3 that, for a fully bilinear hysteretic
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structure, both torsional and translational damping possess equa‘l~
ability to reduce response. Moreover, for ‘simple dynamic analysis
of structures the practice is generally to assume & single value
for damping in both torsion and translation if the structure is
nominally symmetric.
Figure 5.12(a) shows that far element is stable for all in-
put frequency and damping, except that response becomes unbounded
at 0=0. Figure 5.12(b), by contrast,'indicgtes that near element
2 experiences instability even af damping as high as 0.1. The wiq;//*”
th of the unstable frequency range diminishes with increasing damp-
ing and eventually, at some magnitude of damping higher than 0.1,
instability is eliminated a]togetﬁer. The element becomes perfect-
ly stable And exhibits unique response amplitudes for all o at
t20.2.° ﬁamping has virtually no éffect on response of both elements |
beyond @ of 1.5, approximately. " A
Whereas element 1 begomes unstéb]e with unboﬁnded response as
o approaches zero, element 2 remains both stable and e1astic.‘
Cqmpéring Figures 5.10(a) and 5.12(a) shows stab1e and finite mag-
nitude of response in element 1 for pinched-bilinear behaviour at
or near 0=0. This occurs because a pinched-bilinear structure can:
sustain Toad beyond jts initial yfeld strength, whereas a pinched
elasto-plastic struciure is ihcapablg of sustaining load beyond
its yield strength since thereafﬁer the structure yields continuous-
1ly. This is perhaps the méjor difference in behaviour between pin-
ched-bilinear and pinched e]astofp1astic structures.
When- a pinched hy{teretic structure, becomes unstable within

some frequehcy r?pge at 0<0.5 , only one resisting element becomes -
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unstable. This is because the system investigated he}ein has only | \
two trans]ationa1-resisti;g elements in the x-direction contributing
towards both lateral and torsional resistance. An instability
mechanism can therefore be formed with only one element becoming
unstable. Thus, at 0=0 , 1i.e., at static loading only, weaker,
element 1 forms a p]astié hinge; for 0<q<0.5, where "jump"
phenomenon or instability occurs, only the stronger element 2 be-
comes unstable. The latter form of instability does not however,
mean that the structure or the unstable element will exhibit un-
baunded respons&; rather, it simply means that some beating-type

of response occurs with finite but large magnitude for the unstable

resisting element.

5.6.2 Effect of o

The effect of torsional to ;rans]ationa] frequency ratio 24
on response amplitudes is illustgated in Figure 5.13. It is seen
that, a]fhough 2 does not influence element 1 significantly,
element 2 is strongly affected. It may be recalled from Section
4.3.4 that, in a purely bilinear hysteretic system, the peak duct-
ility demand of element 2 is not influenced greatfy by 2, where-

as element 1 is critically affected (see Figure 4.70). Howgyer,

7 8k st

32

comparing Figure 5.13(b) with Figure 4.10, it is easy to conclude

that the peak ductility demand,of element 2 in a pinched elasto-

plastic system decreases rapidly with increase in g » from 22.3

for Qa=0'5 to 1.4'\for .99=1.5, but is only marginally affect-
. A\
ed in a bilinear hysteretic structure.

. ' ’ ‘»‘\ !
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Another iﬁteresting observation regarding the behaviour of
element 2 (see Figure 5.13(b)) is that a torsionally flexible struc-
ture, with ne=0.5, is found to be marginally stable'whereas a
torsionally stiff structure, with Qe=]“5’ is perfectly stable;

a structure with intermediate stiffness, Qe=1.0 » 18 upstab]e with=-

in a certain frequency range.

5.6.3 .[Effect of e

Figure 5.14 illustrates the effect of nondimensional eccentri-
city e on response aﬁplitudes for both elements 1 and 2 in struc-
tures with Qe=1.0. The response amplitude of element 1 (see Figure
5.14(a)) is virtually unaffected by change in eccentréﬁity. The
situation is somewhat different for the same resisting element in
a bilinear hysteretic structure at 0<0.5 (see Figure 4.12(a)).
However, beyond a certain value of & , the response amplitude of‘
element 2 is indqbendent of e , as evident in Figure 5.14(b).

Figure.5.14(b) also shows that element 2 is sjgnificantly af-
fected by eccentricity for input frequency 0<0.7 , approximately.
Structures with small eccentricity exhibit 1argé magnitude of peak
ductility demand which decreases with increasing eccentricity, in
constrast to a minimal effect on the same element when behaviour is
fully bilinear (see Figure 4.15(b)).

Moreover, the eccentricity is not capable of eliminating the
occurrence of (instability in element 2, although for small eccent-
ricity the frequency range is slightly reduced compared to a large-

eccentricity system. The unstable frequency rage is observed to

e A I
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shift towards =0 with decrease in e , wﬁich is & characteristic v

of a safting system.

[y
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5.7 CONCLUSIONS - ’
i

P

- l This chapter has been devoted to comparison of the frequency- . \\\
domain response of a wide class of structures with idealized hys- . i
teretic load-disp1acehent characteris:ics. In addition, a parame-
tric study is Performed for pinched g}asto-plastic structures where
torsional instability is most pronounced.

The following conclusions are drawn on the basis of the fore-
going discussions. i
1. The responses of both fully bilinear and fully elasto- .
.p]a;fic hysteretic s&stems a;z found to be always stable, whereas

the corresponding pinched-bilinear and pinched elasto-plastic

\;4 ‘ structures exhibit the so-called "jump phenomenon" wjthin certain )

frequency ranges.~

e o ey

2. The freguency zone of instability of a pinched elasto-

e s

plastic structure is widest compared to that of a pinched-bilinear .
system. Thus, a cross-braced frame idealized as pinched elasto- ﬁ

plastic has greater possibilijty of becoming dnstab]e compared to

3 o coupled-wall bwildings which may be representea by p1ncﬁ§d-b111near
behaviour. ¢ ' ;
3. Within the uqstable frequency domain of bdfh tﬁe;pincheat .
bilinear and pinched élasfo-plastic structures, the response of ‘
- weaker element 1 always remains stable, whereas that of stiffer

element 2 exhibits torsigﬁaf instability of the "jump phenomenon"

-
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type. . o
4. Both fully and pinched e]asto-p]astié structures exhibit ,

1
v

unbounded ampliitudes of lateral and torsional response at @=0.

A]thdugh at that frequency the response of element 1 is unbounded,

that of element 2 remains perfectly stab]e/. In cc;ntrast; b'oth

' ) system and element responses of fully 'and pinche'd-bﬂineér hystere-
tic structures remain’ pérfect]y?stabie at q=0.

- 5. ' For a pinched-bilinear structure, the fr:equency z0ne .of
instability decreases with increase in bilinearity parameter a
At a=0.20 the structure is marginally stable, while beyond this
magnitude of strain hardening instability disappears altogether.

.~ However, in real structures o is found not to exceeg\O.ZO, struc-

¥
~ tures consisting of coupled-walls or cross-braced frames represent-

ed by pinched hysteretic models will exhibit some degrée of insta-

bility.

6. In both pinched~bilinear and pinched elasto-plastic

.
i
!
{

structures, viscous damping plays an importpnt role by eliminating
the "jump phenomenon" and stabilizing response beyond some magni-
tude of damping, :’n additiqr}{.to,its usual role of decreasing amp-
) Titude 'of @onse. , '

7. The torsional to ‘translational frequency ratio Ry pers

o . forms a comparatively‘ important role for pinched r.\ysteréticﬁ systems

| ) in stabilizing response. A torsionally flexible structure (ne=0.5)

is marginally s%abi_e and a torsionally stiff structure (ne=1.\5) is

perfeg:t]y‘ stable, whereas ;tructures with Qy in the neigﬁbourhodd

of 1.0 exhibits torsional instability due to the “jump phenomenon".

i
. ) : B !
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8. Eccentricity in pinched hysteretic systems cannot’é]imjn-

ate torsional instability. In such systems, the peak ductility de-

mand of the unstable resisting element (element 2) increases with

'

N . . . ‘ (] . \\ ) ~
decreasing eccentricity, in contrast to the minimal effect on tfe

same element when eiement behaviour is ful];ﬂﬁi1inéar.

v

9.  The frequency zone of instabi]ify is not much affected - ~__

by eccentricity, especially for medium and large eccentric struc-
tures; however, it may be slightly reduced for nominally eccentric

pinched hysteretic structures.

Al ’ -

From the féregoing conclusions it is evident thaF a pinche&

7eTasto-plastic structuré ;ep;e§enting steel qxggg-braced frame
structures will experience the highest dégree of ﬁéfﬁidna1 insta—
bility. Moreover, the situation will be more severe for this system
whan torsional and lateral frequencies-are é]ose.~ Thérefore, one
should try to avoid designing structures Qith near]y equal lateral .
and torsionatl- frequenc1es for pinched- hxsteret1c structures in -
genera] and braced frame structures in part1cu1ar Unless other

considerations such as cost, ease of fabrication etc., govern, it

will bé preferable to adopt ductile moment resistant frames com-

-

pared to gither coup]ed-shear walls or cross-braced frames; the for- -

mer exhibit full hysteretic loops and dynamic stability in contrast
to the latter which exhibit pinched hysteretic behaviour resulting
w

in the "jump" type instability.

\
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o~ LT Figure 5.1 Fully bilinear idealization of load-displacement
" ~._ . . characteristic of a ductile moment resistant frame
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. . SUMMé?xeAND CONCLUSIONS _
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L ,
\} . 6.1. SUMMARY AND CONCLUSIONS ° - _ ‘ .

12

o arore bern

- This study is concerned with the coupled dynamic response of both
symmetric and unsymmetric structures for nonlinear elastic resisting -

elements and for elements governed by bilinear hysteretic characteris-

-
> -
k)

tics.
In Chapter Ii.wsrk is confined to a symmetric single-story build- %
ing model; ds an extension to earlier studies this study examines \A
. the impo;;ance of torsional démping as well as the distribution and
geometric arrangement of the lateral load resisfingrelements. Moreover,
a relationship between two sets of stability.diagrams with potentially ‘o
) . c0nf]ic¢ing‘§tabi]ity 1nterpretation§ derived in previous studies has sl
been clarified. The load-displacement .characteristics of the resist-
ing e]ement§, sim%]ar to earlier stud{es, are consi&ered to be non-
' linear g]astic and of‘;he"softéﬁiné tyﬁe. Both torsional s;ab111ty
bounds and critical'tbrsiona] damp%nglare found to Be inf}uenéed by
‘various system parameters+ namely, non]inearity‘paraméter Ay bqild-
. )
ing plan aspect ratio r,, translational dampihg,coeffiéient Ly »
stiffness distrjbution coefficient E, normalized system frequency

8
. b rd 0
metric excitation in a structure is possible only when the magnitude

i

{

|

a‘{

!

]

3

, ) i
. and normalized input frequency @ . _[E‘has been found that para-

*

‘. . §

of torsional frequency of the system is siightly higher than the trans- 1

lational exciting frequency. It has also been found that, because .

' the distribution of resisting elements can influence stability against )

[N .




»
T W s S 8 Tt o

A e

R I T

e e 2 T .

A e s e e

'Qe,cr

/,“z‘f'““f“*ﬁx

- 185 -

N .
\ =

induced torsion, a.selective rearrangement of resisting elements can

é]iminate torsional coupling. Furthermore, the susceptibility to non-

linear torsional coupling is presented in the form of generalized

stability diagrams and critical torsional damping in -0 “and

-~

Qg parameter spaces respectively, which are applicable to any
structure having general configuratiéps of load-resisting elements in

a symmetric structure.

a

In Chapter III work is further extended to both singly and doub-.

\ley eccentric structures. The formulation is essentially similar to,

that‘ef Chapter 11 but‘with eccentricity as an additional parameter.
The -importance of torstona] damping on induced coupling is investiéat-
ed. It 7s shown here that the norlinear equations of motion of these
monosymmetr1c and doubly eccentr1c structures are governed by a set’ of
two and three damped coup]ed Math1°u Hi11 equations, respect1ve1y.

The stability d1agrams|are presented 1n‘the frequency parameter space

and the critical torsional damping curves are presented as functions

of system and input excitation parameters. It is observed that, for

i . \ . . .
buildings with small eccentricity and for nominally symmetric buildings,

the stability diagrams and critical torsional damping remain similar

-

to those of a symmetric system ) . . |

Chapter IV is devoted to an understanding of the coup1ed inelas-
tic response characteristics of a simple single-story monosymmetric
bui]diﬁg subjected\to harmonie ground shaking. The load-displace-
ment characteristics of‘resisting e]ements are idealized as bilirear
hysterétic for which elastic and purely elastOJplastié are two spec1a1

cases. It is shown that a steady state harmonic response ana]ys1s,

because of its,simpler mathemat1ca1 man1pu]atlon, can provide
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jmportant insight into the dynamic behavieur of structures. A set of

four coupled nonlinear algebraic equations consisting of basic system

parameters with unknown steady state response amplitudes and phase

angles are der1ved us™ng the well-known method of averaging. It is

foynd that,the system and element responses of purely bi]inear hystere-‘

tic structures are stable even when v1§cous damp1ng 1s absent. Both

-

‘ tor510na1 and translational damp1ng are found to be equally effective

in reducing response amp]itudes.

. Alnomin§1]y eefentric gtructure with closé torsional and transla-
tional frequencies is fonnd to have no significhnt toreiona1 coupling
in constrast to earlier observations for linear elastic structures;
Sinilar behaviour in inelastic structures but ‘with earthquake ground
shaking has been reported by Tso and- Sadek [14]

It is observed that for med1um to large eccentr1c and tors1ona1-
1y flexible structures; the peak ductility demand of the weaker ele-

mént is influenced significantly whereas stiffer element remains rela-

) tive1y'unaffected.. Moreover, the response of the stiffer element ap-

proaches graduelly the e]a;tic range with increase’én torsional stiff-
ness of the structure. This observation is partly in disagreement
with the obserrations of Irvine and Kouftouris [12] who reported an
absence: of strong correlation between PDD and eccentricity derived -
ana1yt1ca11y for elastic behav1our and t1me h1stony _response.

The peak ductility demand in res1st1ng elements, as well as for '
the system as a whole, is found to be almost bilinearly related to
ground acceleration amplitude, with a much larger Second slope due to
the considerable deterioration of e1astic,sttffness at higher ampli-

tudes of ground acceleration. Similar conclusions emp]dying earthquake

L]

ground motion have been reported by Irvine and Kountouris [12].
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Chapter V examines the behaviour of several idealized hysté}etic
nodels representative of commen structural systéms: namely, rein-
forced concrete or steel moment resisting frames, shear walls, steel
braced frames, etc. The idealized models are grouped into four main
categories: these‘are purely bilinear hysteretic, elasto-plastic,
pinched bilinear hysteretic aﬁd pinched elasto-plastic. A frequenéy
sweep analysis for thgse models reJea]s thé fo]]owihg fwo important
characteriétics: (i) the systems exhibit softening behaviour; (ii)
pinched bilinear and pinched elasto-plastic systems experience insta-
bility or the so-ca11ed "jump phencmenon", whereas fully bilinear and
fully e]asto-p]asf%é systems remafn stable at all frequencies.

’It is found that, for unstable systems, the response of only
the stiffer resisting element undergoes instability. This Anstabi]ity :
can be e]tminéted altogether by increasing viscous damping in the
structure. It is also observed that the instability is,in terms of
the extent of the frequency zone of‘instability, most sever. for a_
pinched e1asfo%p1astic system representing steel cross-b(ac d frames.

A parametric study on the pinchéd elasto-plastic strugture re-
veals some imporfént findings. A torsionally flexible structure of
this type is found to be marginally stable, whergas a torsionally stiff
structure is perfectly stable. A structure with nearly equal to?siona]
and tréns]ationa1 frequencies exhibits the jump-type in tabi]ity.

Also, the jump-phengmenon or instability is found to be present for

nominal to large eccentricity with,apprdximate1y the same frequency

\ .
~ .

band-width of instability. ' : ’

The instability in a torsionally coupled §yst%m is an important

observation of the present study; emphasis is also placed on the

.

Pren

»
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|
impo%tant role of viscous damping in stabilizing motion in aqdition to

its well-known role of decreasing response amplitude.

~

6.2 SCOPE FOR FUTURE RESEARCH | \

» ‘Research on csupied 1atera1-torsiona]'behaviour of ine]a%tic struc- ,
tures is at present a growing field of actiQity. AdditionA] research
on Sseveral important aspects, to be described below, is still lacking.
At the same time, the resu]té from egisting work remain to be digested
before implementation in building codes as design guidelines is possible.

Thus, the future scope of research actiVify in this field can be

visualized in the following two important areas:
1.~ Since the.ultimate goal of research in 1atera11torsion51-
¢oupling QEQer seismic loading is to improve the désign of structures
to better withstand seismic forces, the cur}ently available research -
findings on inelastic coupled response need to be translated into a
form that is comprehensible to practicing design engineérs.

A closely related need in this area_i; to update the standard code
of practice. Thus, similar to ear]ier work' on code evaluation for tor-
sionally coﬁp]ed elastic structures [15,23,24], a promising field of
research activity can be to idgntify inadequacies in inelastic seismic
design of eccentric structures according to current practice and to pre-
pare new guidelines as proposals for revision to existing codes.

2. Additional research jn the fo]]owing'important areas Seems

necessary in order to fully understand the seismic behaviour of an in-

" elastic eccentric structure:

(i) Research is needed in the field of random vibrations to

-

investigate the inelastic lateral-torsional coupling of both
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nondeteriorating and deteriorating structures.

(ii) Further investigation is necessary on seismic behaviour Of

eccentric structures consisting of resisting elements subjected to

inelastic interaction effects.’ .

(iii) A promising area of future research is the seismic lateral-
torsional response of structures with various base-isolation systems,‘

namely: sliding structures, structures supported on rubber bearings,

"soft-story structures, and structures supported on flexible founda-

tions allowing partial lift-off.

(iv) Another field of %nterest is the inelastic response of tor-
siona]ﬁy coupled systemé including the effect of foundation or soil-
structure interaction.

(v) Imgprtant research can also involve the inelastic response — -
of ecéentric structures subjected to the simultaneous action of
several components of ground motion, especially base translation to-
gether with bgse rotation.

However, a§ a direct extension to the work of this thesis, the fol-
lowing additional studies could be performed:

(a) Work on nonlinear elastic coupling can be expanded to examine
the’ behaviour of large eccentric. structures and to determine'the
effects of combination and arrangement of different resis%ing ele-
ments.

(b) Further investigation can be performed for multi-story struc-
tures including the'effect of simutaneous multi-directional ground
motion on toréiona] coupling of both symmetric and unsymmetric non-
linear elastic structures. |

(c) . Further study could apply the method of averaging in exploring

o ’
]
\ o

Yt gy o4 Wt

onet
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Fhe behaviour of inelastic eccentrfc systems with unequal strength
and stiffness ratios. (

(d) Experimental Work dedicated,ta improvement of the force-
deformation behaviour tq eliminate the pinching effect i§ an-im-
portant area of invesfigation. ‘Joint and connection detailing appears

*

to be_the crjtical area of interest here. ,
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L (2 7), the nondimensional form of ‘the’ equations of motion expressed
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In order to nond1mens1ona11ze t;:\equat1ons of mot1en\(Equat1ons.
(2.6 and (2. 7)), the fo]10w1ng changes of variables are introduced.
,#" g 3
. L7 ,
3 oot
: Gx = Eg s . T = mxt, ‘ ge =‘U/(l" wg) . * ’
. ~ . r's \ - » (A]) . . e
Ax(t) = u(t)/<sx Ae-(t) = o(t)/¢ P
. 7/
VT where r denotes the‘mass radius of. gyration. The fp]]owing system- =
parameters are also needed for normalization. k / ? .
Loa2 = . w2 . v ;
b T KM : wy = Ky/M R _ S
@ \ ) v 3
] " . . . i
2 = . 2 = ! s v = . » i
wg Ke/(ﬂr‘_) . L Qy wy/@x 5/\2) ' \ L
L Lo < S
Qg t.oe/uux \ Q = w/wx . :
’ & ¥
- |
: ca ., 3r2.} b 3} ' °
Bo =T = (T“%ﬁ;z) Yo = 3= (F52) (R3) |
2 - 2 2 = 2 - 1
E (z kixy{?/(b z kix) . F (z k1y 1)/(a £k, y)
¢ ' (54) ' '
- s ' ' R N ' ~ v - .
« Coefficients f. and h, for &, s =U/w2 . . ' oy
1 ' 0,5 X v -
- After substituting Equations (A1)~ (A4) into Equations (2 6 and . )
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f
0
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H

by Equations (2.13) and (2.14) is obtained in which the coefficients

_fi and hi are given by the following expressions 1

f, =2 Ty LS ] thy = 2 2oy | '
fp = 1.0 hpo= @ . o
(f3 =g hy = 3 Agy 2E2 f e |
. o s |
= 2 /ol = UE2 /ol
fs =3 ASYo /Qe hy AgY o E /Qé A
= Lo2F2 /02 .
he A¢Bo QyF /Qe v §
. &
. . . _\&
in which cx'and L, are the translational and torsipna1 viscous
‘damping coefficients, respe¢tively.
. R {
Coefficients f. and‘ h,_for ao,d = UD/ws - . %
With this definition of &, Equations (A1)-(A4) reduce Equatidns
(2.6) and (2.7) to nondimensional form.when' the expressions for fi \
and: hi are j
fe2g, ComTEag,
fy = 1.0 S hy = a2 \ .
ﬁg = ld/pzl . - “hs =.3 AdygEz(DZ ' | (A6) ‘
=.2 % v2/7(q4D2 = WE2 /(D2
! ) . = La2F27 (kD2
( he AdBOQyF /(QeD )
- ' K o, o

-Comparing Equations (A5) and (A6), it is observed that f,, f;,
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hy and h, remain unchanged irrespective of which normalization pro-
) ;
‘ cedure is used. However, coefficients f3, fg, hy, h, and hg are
influenced by the normalization method. It should also be noted that.
- A
‘ these coefficients can be obtained from expr‘ession§ (A6) by simply
substituting Equation (2.12). )
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APPENDIX B

The method of slowly varying amp1ituqe, i.e., the Kryloff-
Bogoliuboff method [29], can be demonstrated for Equations (é.13) and
(2.14) with the assumed solutions shown in Equations (2.15a) and

(2.15b).. ‘

Letting ¢; =-Qtu + ¢
— ) X1 = 0T + X - . o (BY)
“~_ Equations (2.15a) and (2.15b) become

Ax(r) = P cos ¢;

" (B2)
Ae(r) = R cos x3 ~
Differentiating the above, one gets
A, = -a P sin o) + P cos e - Pésine

(83) 7

Ae ='=Q-R sin x1 t R Cos y; - R i sin X1

In the method of averaging [29], the foregoing equations are replaced .

by the following set of four equations ‘ '
ot . . 3 a
Ax =-qPsine, ' . (B4)
Prcos ¢~ P ¢ sin g =0 - (B5).
o ’ *
Ay = -2 Rsin x ' ‘ (B6)
Rcos x; =R x sinyx; =0 | (B7)

A

PSS .
.




Equation \(B4) is used to compute the second derivatives of Ax

and /\6 as
A
E A, = =92 P co§ & .- P o sin o P adcos ¢ .
.. —_ o o (B8) -
Ag = =02 R cos x - Rdsinyx, - Raxcos yxy ~ -
' w . . .
j ‘ ‘ B
These approximations for ‘AX, Ags Ax’ Ae’ Ax’ A, are substituted into
\ Equations (2.13) and (2.14) yielding
|
\ _ : ! : 2]
hd Q2 P Cos 9, + p Q sin $; + Pa &’ cos 4 + f]_ QP sin ¢
s . . ‘ ! .
i : - f, P cos &, + fy P3 cos3 o, + f5 P R2 cos ¢; cos? x; = cos ot
{ . . ' _
: , ' ) (B9)
; .
; - - . > . Lt
Ve o 5'22RCOSX1+R‘QS‘inxl+RQ)(_COSxl"'hlQRSinxl

- hy R cos x; + hy R P2 cos x; cos2 &) + (hy+hg)R3 cos¥yy = 0

(B10)

\ * M —

-

Equations (B9) and (B10) are then subjected to the following se-

quence of operations:

14

tfoﬁi(BS) by ©sin ®; and adding;
.

(11) ©  multiplying Equation (B9) by sin ¢; and Equation (B5)

e

§
by -0 cos ¢; and adding;

(ii1) multiplying Equation (B10) by cos x; ‘and Equation (B7) by

. 9 sin x; and adding; \

.
‘ v 0
v

(1) multiplying both sides of Equation (B9) by cos ¢; and Equa-
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(iv) multiplying Equation (B10) by sin x; and équation (B7) by
- @ cos x1 and adding;

’

The above operations yield the set of four equations giveh below -

1)

N

(f2-02) P cos? ¢; - P asg; - f, 0 P sin ¢; cos &
- f3 P3 cos™ ¢; - f5 P R cos? ¢, cos? x; = - oS &; COS Q1

(B11)

(fz-ﬂz) P sin ¢; cos ¢; - Pa- fl Q P sin? L4 -
- f3 P3 sin ¢, cos3 ¢; - f5 P R2 sin ¢; cos ¢; cos? x;
= - sin 9; cOS Q1 (B12)

L3

-
‘ -

(h,-92) R cos? x; - QR x - hlrn R sin x; cos x3
- hy R P2 cos? x; cos? ¢; - (hy+hg) R3 cos* x; = 0 (B13)
- (hp-9%) R sinx; cos x3 - @ R - hy 2 Rsin? y
- hy R P2 sin y; cos y, cos? ¢; - (hythg) R3 sin x; cos3 y; = 0

(B14)

Eduations (B15) through (B18) are averaged by integrating both
sidéé_gj;géghigguation‘gygrrgge period for o, (say §€=0~fto 2n)— —
in Equations (B11) and (B12) and similarly, for yx, ’;;tiaﬁations (B13)
and (B14). 1In the integration, variap]és P(1), R(r); o(t), -and .

Ap(1) are approximated by avéragé values P, R, %, X, and 1, ‘

b)) N

since they are assumed to vary slowly.

The result of these operations is a set of four equations invelv-

ing average amplitudes P, K and phases & and x as follows

1
-




I Y R k. 4, W s i

s

(fz-ﬂz)ﬁ-ZQFé)- -3 f;P3 -3 Ff PR2Z (142 cos?hy)
f : ~ ’ = - cos ¢ ; (B"I‘S)/*

f,07 +20P -4 f; PR sin 28, = sin? (B16)
(hy-02) R-2aRx -2h3 RP2 (1 +2cos27,) - & (hy*thg) R3= 0
A - (817)

hy @R+2qaR+2%hy RP2sin 23, =0 (B18)

]

However, for steady state vibrations P, R, & and ¥ are con-

stant. Under this condition P, R, & and ; , in Equations (B15)
through (B18). may be taken to be zerc; thus, these equations yield

Equation (2.16).
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APPENDIX C

With the introduction of small perturbations EX(T) and ge(t)

in the solution for Ax(r) and Aé?T), Equations (2.19a,b) are ob-

4

tained. fhus, letting
¢

®

Qr + 0 _ : . ‘ LI

Q’r"a.x_

%

the first and second derivatives of Equation (Z&ng,b) becpme _

. =--— _—+'
Ax(r) Pasin ¢ £,
Ae(r) =-Rasinyxy + g .
N s Pt ’ °
XT, 1€ COS 9 EX
= .
Ae(T) R 02 cos x; + & .

Retaining only the first order terms in perturbations s &g and
lafter some algebraic manipulations, the above derivatives together

- With Ay and Ay from Equations (2.15a,b) transform Equations (2.13) -
&

and (2.14) into
- d

Ex + fy éx + Ex - (3 f3 cmosz 31' tfs R cos? ;(-1) Ex‘

-2 fs P R cos ¢, cos ;1.56 = 0 (c1).

[}




o g i  a.

Cow “ e

+-h7 &y = {h3P? cos? &) + 3(hy+hg)R? cos? x;)gg

Sg ¥ hl—ée” )

</—/

8

et

~2h FReoshcos 6 =0 () |

o~

hEdﬂations (C1) and (C2) are .recognized as damped coupled Mathieu=Hill

equations. ) ' ‘s

Without loss_of generality, phase angles ¢, and x; can be

assumed zero, yielding ’

°

b

Thus, in Eqﬁé;ions (Cr) and (C2), the terms. cos? ¥,, cos? x, and

"~ cos #jcos ¥x; will all be replaced by cos? @r. MWith the relationship’

-

cos?2 Q1 = #(1 + cos 2 1)
Equations, (C1) and (C2) may be written as

EX + fl' JéX + fz\\Ex - i(] + cos 2 QT){(3 faﬁz + fsﬁz)gx (‘C3)

+2fs PReJ =0

gy tohy B+ hy £y = 3(1 4 cos 2 ar)[{hsP? + 3(hy+he)R2) ¢,

+2h, PREI=0 n (c4)

~

L3
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Dividing Equation (CB) by f, and (C4) by h, , and arranging these

equations in condensed matrix form, the following equation is obtained

where

b d

Ct+2Ce £+ (E-3%A-18cos

r"-l 1
?_-; 0
C:
]
S
- ‘ _
!
: Ay
2
A:B: -
B
hy
All = 3f3$2*+ fsﬁz;
]
Ay =20 PR oy,

o

20t) £=0 (c5)
) i 0
€ = 'i
. 0 h,
B i
A
12
+ 1 0
H E=
A22 )
'—h—z- . ‘ 0 1
p= N “L— -
A12 =2 fs F ﬁ

= hyP2 + 3(h,+hg) R?

-

¥

s
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APPENDIX D

) e
Equation (C4).of Appendix C is a coupled damped Mathieu-Hill
equation resulting from perturbation of torsional diéplacement /\e

by &:e , rewritten here as
' Ee + h ée + [hy ="H(1 + cos 2 q1) (h3P2 + 3(hy,+hg)R?2}] Eq

- %(1 + cas 2 at) (2 hy PR) £, =0

- . ) (D1)

This equation describes the magnitude of the perturbed torsional mo- -
tion with periodically varying torsional-stiffness.  The coefficient
associated with £o m/ay be interpreted as a modified torsional fre-
quency of the system. After algebraic operations w%th this coefficient,

gne obtains the expression

‘

Byt 2 60+ aF (1 -2 ycos 2 ) &g

- hy P R (14cos 2 1) £, =0 (p2)

in which

2 = hy = 3 hgP?2 - Hh,+hg) R? ‘ (D3)

h3P2 + 3(hy+hg) R2
P T 403

(D4)

In the above, qp may be identified as 'the apparent torsional frequency

!
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of the system. Since h, = 02, o2 represents modification of g2
‘ 8 P 5

proportional to the square of the amplitudgs P and R.

L it

For resisting elements with softening nonlinear characteristics,

A is considered positive, and hence the magnitude of hjs, hy, hg

- are positive. Thus, such nonlinearity has the effect of decreasing /

torsional frequency ratio Qg .

In Equation (D3) it is noticed that, for certain combinations of
'P_} and R values (hereafter called the critical amplitude combina-
tions), apparent\tor‘sionﬂ frequency g becomes zero. .This cor-
responds to static torsional buckTing of the structure due to Tateral
loading, However, it has alse been noted that the magnitude of R
becomes zero with suitable assumptions (Equation (2.28b)). Thus,
the critical value of lateral displacement amplitude P which reduces

S

the apparent tofsiona] frequency g to zero is given by ’

' 2
L 29

Por * P (D5)

For dynamic torsional response, it is assumed that lateral amp1itude

P does_not reach Pcr"

g o b Dok Woa M x T e

" For static normalization, substituting h; from Equation (A5)
and P from Equation (2.30), one obtains the following expression

for critical torsional buckling in Qe-Q parameter space

o ?
2n2
_9>\SED

2 = | * ,
% (D6)

The corresponding expression for dynamic normalization is
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% = [Ty (D7) :
ﬂEguations (06) and (D7) may be expressed in generalized form as fol-
i
Tows . ‘ . \ o
~ ¢ N
¢
AZ g AS Dz . . / i‘
) ’ p2 = [Ty s for ‘stat1c normalization (D8) . - i
€ - - \ },
. N X :
oy n . e -
s - o) = E] R for dynamic normfthzatmn (D9) .
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APPENDIX E
SYSTEMS WITH SINGLE ECCENTRICITY (ex =0, qy # 0)

The expression for coefficient matrix A of Equations (2.20)

and (C5), specialized for a single-eccentric system, is given by

My Agt2 fo o | | :
f) fa Wl
‘ﬁg A= . (E1)
A, +2 h, Aoz
. h, ha
in which

~

All = 3 f3 f2 + 2 f;;lﬁﬁ,'*' fs §2\

b
A12=f|_.p-2+2f5-p—ﬁ+3f7ﬁ2 .
Ay = hg R2+ 2hy PR+ 3w'h8 pz ' (E2)
. v
A22 = 3(hq+h6)ﬁﬁ2 + 2 hg Fﬁ + h3 FZ o

The form of B remains the same as in Appendix C but the quantity
\Aij needed to evaluate the elements of B are for the sccentric

system given in Equation (E2).
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« T APPENDIX F '
SYSTEMS WITH DOUBLE ECCENTRICITY,(ex,:eny)

bl

<

The following additional change of variab]és, along with those

. / ‘
shown in Equation (A1), are neede

e

set of three equations of motions

Y

2 5l =Y (F1)
y o %y

’

Coefficients f:, g,” and h, for Example L-Shaped Building
Plan with

= U/02
Sp,5 ULuy

~Vs
-

kS

' J
e
. /
2 Cy Qy‘ ' .
2
Qy
A/Q2°
/ Y
1:? N

d in order to nondimensionalize the

«
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3 ) ; YO ,
R hg = - X voQg Cau(ﬁze-f
‘ | \ |
3 _ ‘
b - hip = Cop BoR
Y
N
H xeoszg
~ hyy = ~(——) C22
- y
’ A8 22
hl\(‘h‘_ C35(—21) .
4 » ’ y \
i
;
| C]o = 3 C5/C1
E ~
C 3
11~ 62‘{ (C3-C1)(C3 Cs)}
| .
. Cy2 = Cs5/Cy
‘ Ci3 = -Clg {(C3-Cs) (3 Cg - 6C4Cy + 4c§)"- cg}
4 1 . ,
\ w- . - ,
. Cpo = 3 C,/Cy
.\) .
c21 % = Z(Cz‘c )(Cz“cl')
? p
— Ca2 = Cy/Cy
L !
{

> (F5)

S (F6)

P

o

Al - '*m
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4 /
Cos = gy ((Co-C4)(3 €2 - 6C,C, + 4 C) - cf) J .
: “ .
C30 =3 C%/C% ’ N -
- 2 3 C, c,C. C, c,
) C31 ={C§ (3 C2-6G+ 4) -Z—T('_f'])(q 2)}
C3p= 3 C3/C3 " ' _ ‘ , o
s - . .
, 2 ¢z -, c,c, C, c, $
? 3
i c.C. C,. c2 ¢
Cay = 3 (g7~ (g - 2) - 217%(0—3-1)}
\ 1
c.c, ¢ 2
274 2 2 2
— C3s 3{—7'*(;1, (EI--Z)-ZV(E--U} )
\ .
Ci = B+ vy - By o C)
' L]
: Co = v + 82 (1-y) [
: -
C3 = B + ‘Y2 (]'B) . .
S
| / Cym= v(1-8)2 (1-y) ' | L (F8)
» Cs = 8 (1+8) (1-y)2
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APPENDIX G
: Y

Kan and Chopra [17] provided the following relationship for the

translational and torsional response in a three degree-of-freedom

linear unsymmetric system

V2 +V2 + 72 =
Vv T2 1 .

in wh{ch .
v Y
-\7 = :V_x ; V = -V—X— ; -.r = .—T—
X X0 y yo rVxo

(6t~

(G2)

Here on is the response of a'single degree-of-freedom uncoupled,

system in the x-direction, where the mass and stiffness are the same

v and T

as those of the coupled system; ‘Vx’ y

and torsional responses of the coupled system in the x-, y- and ¢-di-

rections, respectively.

For a weakly nonlinear elastic system Vx, )

and VXo may be

assumed to be nearly equal to the force from linear stiffness multip-

lied by the displacement, given by

x ' Ox? vy ) Ky Sy 1 vo = K% Sxo

Also, total torque T can be expressed as

T=Veytlye

(63)

(G4)

are the translational

o'
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) K
Substituting (G3) and (G4) in (G1) and using the relations mi = wa
K ‘
2=l _'Y.= 2 . L3 : .
wy F W and K, Qy » the fo]]ow\?g relation is obtgcned

s, . e 8 : e
(732 0+ (22 + G2 0y 11+ (392

X0
S Sy By By o
R @)

,/"q -

-

Since Gx and 6y are the displacement amplitudes of the cou-

pled system and 5xo is that of an uncoupled system, these may be
replaced by P, Q@ and D respectively, where D  is expressed by
Equation (2.11). After nondimensionalizing eccentricities (i.e.,

e
= ._.X_ . = _l N .
Ex = Ey : )’, Equation (G5) yields

Gearens Qa0+ 2P e e =1 (@)

For input ground motion in the x-direction, one may assume
Q <<P 1in a nominally symmetric building; thus, neglecting Q in

the foregoing equation yields the magnitude of P as

P2 - D2 (67)

[T - e s it e
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APPENDIX H \x

As a check on the correctness of solution, the linear elastic
case was solved by introducing « = 1.0 in Equations (4.28), (4.29)
(5.1) and (5.2). This reduces these equations for both hysteretic

systems to the following form

C.(R;) = A, K} >0 , i=3,4 . \

| | ? (Hn‘

'Cz(rﬁz) = rAz s KZ > 0 .
, ¥ ‘

‘ After substituting Equation (H1) into Equations (4.23) through
(4.26) and performing algebraic operations, the following closed
form solution.of system amplitudes Ay, A, and corresponding phase

angles ¢, and ¢, are obtained

-t Gz , ‘
2 _ a__ (H2)
R (1-a2) - vpnt (v + 8§y - %) 2
-02) - -

2 Z z ]
(24n) ((v§ + 830] - 92) + (2 ¢40.0) ) \

2.2 ' 2
2 Z;eneﬂy.on

(2+n)%(v2 + p202 T+ (2 g0 9)2%
0 0"y 078

+[2cxa +

[TPIERE I 2 RS
»
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2 .
2 ' \ (Y% n K]) ’ h
2 =1L bZir s 52 a2~ oo)e 1 : —] - : (H3)
(R4n) {(v§ + 85 a7 - 9%)" + (2 goa.0). )
(v2 + 8202 - 02) A3 - (1-02) 2 2 -
e T - y 0 "1, _
cos ¢, { : Y%Gawl 3 (H4)
—\ -
2a (v§ ¢, A2 + ¢ a A2)
- x 0'0"2 .
sin &y = { } (H5).
Yo GaM1 .
(24n)(v% + 8202 - @2) Ry |
— -.._ = y s
cgs (0,-05) T } (ﬁﬁ)
o (24n)(2. ¢ 2,9R,) W7
sin (37-3,) = { wrn } , ‘( )
in which ‘ - S
G =V (H8
a = T T ” )
Yy X ‘ . : .

The numerical solution obtained for Equations (4.23) through
(4.26), with o = 1.0, was found to match perfectly the closed form
solution of Equation (H2) through (H7) for a typical system, thus

demonstrating the correctness of the solution.
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