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ABSTRACT
Efficient Recursive Arithmetic Algorithm for VLS
Régis Cardh

An iterative cellular parallel multiplier based on multiplexers is
proposed in Chapter 1. The structure' accepts two N-bits two's
compiement numbers and éives the result in two’s'cdmplemerit
form. The structure can also be pipelined with a period complexity. .
‘of 0(1).'The area comg}lgxity of the ®tructure is O(N2). The
proposed sfructure can be implemented to perform 4 single
precision-multiplications or 1 double precision multiplication. The
multiplier is implemented with an array of equal macrocells and is
; suitable for automatic design and testing. The time complexity is
O(N), but macrocells are designed in such a way that variables
carrying a Iong.delay propagate faster than other variables

allowing to achieve practical advantages.

A new recursive aIgorifhm for deriving. the layout of parallel
multipliers is proposed in Chapter 2. Based on this algorithm, a
network for performing multiplic'a'tion. of two's complement
numbers is proposed. The network can be implemented in a
synchronous or an as'ynchronous way. If (the factors to be
multiplied have N bits, the area complexity of the network is O(N?)

- for practical value of N as in the case of cellular multipliers. Due to

-

.
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the desigh approach based on.a recursjve algorithm, .a time

complexity O(log N) is achiéved. AR

L It is shown how the strutture can be plpelmed Wlth a penod by
complex:ty 0(1) and used for single or double precusaon

-

multlphcatnon

’

A éombinational circuit fog\com‘puting the'bina_,ry Idéérithﬁw of
.an N bi’ts number is propos'ed' in Chapter 3. The structure has a
ttme complexlty O(log N) and an area complexity. O(N2). The same
. | structure can be-used for computmg the antilogarithm .of a
| number thus allowing to obtain the quotient of two 'binary‘
ngmbers m O(log N) time complexity an;j O(NZ) area complexity.
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‘ INTRODUCTION - .,

= | - ) . " /’/ .

This thesis is duvrded into three chapters/ twa of them are

concerned with multipliers and the other one with logarithm

number generation. The two multipliers that will be presented are

drfferent in therr conceptron evenf they share some points in
common.

Multipliers are fundamental com‘pgnents' of computer
arithmetic units and signal processing systems. In the last thirty
years, the design of parallel multipliers has received considerable

A 4

attention.

>

-

A fundamental contribution to the design of‘ combinationel‘
or simultaneous multipliers has been given by Wallace [WAL64]. -
He proposed a network of Carry Save Adder (CSA) 'for adding
Partial Product (PP) generated by two integér factors represented
in binary code with N bits each.and ob‘ta’in‘i‘ng in O(log N) time
com:)lexity two addends whose sum is equal to‘the product of the
factors. A pipelined version of this'design has been implemented
in commercrally available machines.

Wallace's design was improved by Dadda [DAD76] who
proposed to use Parallel Counters (PC) insteér:l of CSA in order to

~

reduce the cost.

!
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In the late 1960s, a number of mulfiplier designs were
proposed based on iterative arrays of equal cells [BUR70, DEA71,
DEM69a,’GUl69, HAB69, HOF68]. Those structures have an ared
complaexity O(N?) and a time complexity O(N). The basic cell of the
iterative multipliers was a gated fuil-adder. CeIIuIarity'w,as
considered an advantage for Large Scale Integretion even
throught the'time”complexity 6f cellular structures was O(N)
rather than O(log N). In fact, their layout canibe automatically
generated by iteratively reproducing the layout-of a single cell on
é plane. Using the same cells, networks' for Iying signed
numbers were proposed [BAN73, BAU73, DEE7T,-DEM72, MAJ71]

having the same area and time complexity.

In order to increase the speed of the iterative. multiplie'rs
- having time complexity O(N), some macrocellular structures:have
-also been proposed [DEA71, DEM69a, DEM75, KIN71, SPR70}.

An extended review with interesting comments and
contributions to the design of parallel multipliers can be found in
the book of Hwang [HWA79].

~

\ thépter 1 'of this thesis préb;ses a new solﬁtion for
macrocellar multipliers. A new macrocell design based on
multiplexers will be proposed which allows to make the maximum
delay of the multipiier array proportional to a fraction of N (the
number of bits of the factors). . '
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- it is well known that cellular structures have big agivantége;
* from the point of view of automatic design, manufacturing and
testing. Theéeéa'dv'an'tages .,can compensate the disadvantage of -
having a time complekity O(N) especially if N is not very large and
if the technology based on Gallium Arsenide is used for

- implementation, since Gallium Arsenide ryuires simple design.

The structure that will be presented in Chapter 1 can be
adapted to mdltiply two two's complement numbers with the
same performances using twhe algorithm proposed by Baugh and
Wooley [BAU73]. The design that will be propos“ed is based on
. modules whose connectipn can be easily programmmed in such a
way that either four single precision multiplications or o'n"eldoubTe
precision multiplication can .be performed under the control of
one specification variable to indicate single or double precision
operation. | ‘

| Cappello and Steiglitz [CAP83] promose a VLSI layout for
parallel multipliers with an area complexity A =O(N2Io§ N) and a-
time complexity T=b(log N). Cappello and Steiglifz co;npa(e the
existing solutions on the basis of a VLSI figure of merit defined as
follows: l
FM, = AT2(PE)2 M .

S P .
where A is the area complexity, T is the time complexity and
PE is the periodacomplexity. Period complexity refers to the

e o R
1] - o



number of clock pulses that have to be gwen to the circuit

' between the output of two successive results.
e

It should be noted that some other VLS| Figures o_f Merit have

also been proposed: T .
“ : I ¢
. FMg = A(PE) )"
y © FM_ = A(PE)T
<4 .‘.

. Id

Cappello and Steiglitz have shown that their ultlpjners can

. .be'pipelined with a penod complexaty PE = 0(1) correspondung to

a figure of merit:

FM, =N2log3N B :
FM, = N2iogN (3
* FM, = N2log?N -

_ They also.derived a Lower Bound Figure of Merit of (1) for
patallel multipliers.(LBFM): based on an area complexity of O(N?)
a time complexity of O(log N) and a period comp‘lexit); of O(1):

N
/ .
-

e © LBFM, = N2log?N ’ \ o
LBFM,, = N2 | o @
. LBFM, NzlogN A

and reported that this lower bound were not reached by any

- solution published before their paper. -

LAY




A new recursive algorithm for the layout generation of
parallel multipliers will be presented in Chapter 2. The area
complexity of multlphers obtained by the use of such algonthm is
Q(NZ), for values of N not exeeeglng a threeshold greater than 100
(this will be justified in Chapter 2), while the time complexity is
O(logN). The implementation of sGch a scheme requires essentially
two types of cells: carry save’adders aod multiplexers. Positive as

“well as two's complement numbers can be handled. The structure

can be pipelined with a penod complexity O(1) thus reaching the
lower bound (4) of FM as defined by (1) and (2).
¢

Chapter 1 and 2 propose two solutions for multuphers
Chapter 1 proposes a structure that is simple ‘ang fast for small
value of N. Chapter.2 mostlywp?'cl)posesmu|tip|ier from
the point of view of operation speed, but for small values of Kf,ﬁthe
solution of Chapter 1 is faster and easier to imptément. |

\ ¥4

Chapter 3 is concerned with the fast calculation of the base-

" two logarithm of a binary number which has been the object of
. mﬁstlgatlon in the past twenty years. Recently, the advent of

Very Large Scale Integration (VLSI) has attracted new interest in
the conceptnon of algorithms for numarical computatton suitable
to be integrated into microcir;uit. Integration suggests new
criveria for evaldating ‘the merits of an algotithm. These cri®eria
are based not only on time com_pletity whose optimality was
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already a goal in early desig}\s: but also on area complexity and

period ciomplexity.

. . ~ ) .
Almost all the solutions proposed for binary logarithm

computation are based on piece-wise approximations.
. ‘ > '

Mitchell [MIT62] was one of.the first to consider.the -

logarithm approximation. He used a simple linear approximation
with one segment i"n the interval [1,2] for computing the mantissa

of the logarithm: ~
/ogzx~='x-1 . . ' | (5)

A few yearsu later, Combat et al. [COM6S] have proposed
piece-wise linear approximati‘bn of the Iog'a“rithmic curve with two

segments instead of one as proposed by Mitchell.

LI s

Marino [MAR72] proposed to use second order polynomial

approximations with two segments. Sequential (serial) circui

were proposed for implementing the above methods. In-many
applications such as signal processing, it is inipqrtant to compute a’
large number of logarithms in a short interval of time. This makes '

it attractive to consider purely combinational solutions that can be

integrated into asingle chip using parallel multipliers.
\“

A design is pr'Bposed in this thesis Wthh is based on a
polynomlal approximation of Iogz(1 + x) in.the mterval

. -

‘ln v

%
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wull be presented in Chapter 3. | ' K

. L]

A'bin-ary division circuit can be obtainéd by computing the

. * logarithms of the magnitudes of the dividend and the divisor. The
logarithm of the-quotient is obtained by subtractmg the'

Ioganthm of the divisor from the Iogarithm of the dlwdend The
magmtude of the quotient can be obtained by compgt[ﬁg an

- antilogarithm. ‘
.o K , .
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An antilogarithm curcust can be built based on the desugn that,
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- | INTRODUCTIQN

Y

?vu s
ThIS chapter proposes a new. solutuon for macrocetlular

multrphers. A macrocell design based on multipléxers is proposed
which allows to make the maximum delay of the multiplier array

proportional to a fra_ction of N(the number of bits of the factors).

.
- Y e

It is well known that cellular structures have big advantages-

from the point of view of automatic design, manufacturing and

testing. These advantages can compensate the dlsadvantage of

having a time complexlty O(N) especially if N is not very large and .

if a technology based on Galllum Arsenude is used for
umplementatlon . N .

»The structure can be adaptéd ta multiply two two's

complement numbers with the same performances usrng the

PR algonthm proposed by BaUQh and Wooley [BAU73]. The design

proposed is based on modull whose connection. can be easily
programmmed in such.a way that either four single precision
mult\hc\attons or one double precrsron multrphcatlon can be

performed under the control of one specification vanable

[N}

Bl
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. . ~ a . .1;‘) .
f N-1 : . .
. ‘ H= N h 2! ‘ T \ » '
} , ) ° . /
+ ] s / . v .
' and - . , ) ‘ ‘ .

.
¢

THE ALGORITHM

,‘! ,

In order to intr'o‘ducﬂe the algori;:?}qi designing multipliers

with multiplexers, an iterative algo ‘,m denoted Algorithm IM
for n\wltiplyin‘g positive binary. integer numbers will first be
presented. This algorithm leads to the implementatioh of cellular

multipliers with time complexity O(N). " I .
.. " \ ~ - L
Algorithm IM (Iterative fdultiplfcation)

-

Let. -

t=0 . < . Vi

< . ’ . R ' /
‘ . N-1 . . . o / ‘
e K=Y k2 - 4
’ =20+ . ’ //
1 \ '/
. . /
- ' . . - . . /
be the factorsand ‘ o VA )
. - R ¢ ‘ //
ST /
H o aN - . . B "/ ' “ o
‘ P=H'K= Y g2 ;oa=n :
r=0 , / . '
L - s ///
o // jl
be the product. h;, k;, g, are binary variables.
o \ S
’ . . . /
. LetN=LGwith Land Gintegers.
L4 ' //
N // ]
0 :
PO // ;
. / » uJ
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Wording the factors H and K in the basis 26 one gets:

-~

L-1
H= N h 2"/
* m

m=1 / - )

VA

% : C 1-2)

/ (

SN » ,
‘L : ‘ .

K=Y k20
ey

/

wuth hm énd ki, mtegers less then 2G and expressible in the

-

binary code wuth G bits. The product P can be expressed by the
followmg relatlon

/

/
/

/P hoko + (hyky + kyhg)26 +

Let us consider the term hoky: it can be written in the

-—

following manner:
\
1 hoky = 26Uy, + Vi '

—

1

where U, < 26 ; V,, < 26. U,, and V,, are related to the

product P in the following way:

G-1 . .
= Ay r . . -
Va= 2 8,2, KIS

r=(

"



. G -1 :
, A g+02-]HK+HK+U“[G
} . r :0 . . 2
Where | |G indicates a modulo 26 sum. The right-hand

~ side of (1-4) can be developped as follows:

)

h'ko = 26U21 + V{,, 1

Vi + hoky + Uy = 26U, + vy, "~ (1-5)
G-1

D g, 4G =V,

r=0

Expression (1-2) can be computed by recursively applying the
following relation: ” |

B el

- “Vig+ bk, + Uy, = 26U + Vg (1-6)

until all the product bits are génerated. Expressidq (1-2) can
be computed using the structure shown in Figure 1-TwithL=3.In
this case the product P is obtained as follows: \
P=Vy + V26 + V2,32ZG + V33235
+ VaZ"G + U526

freg .

¥ . L.

12
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~

Notice that the structure shown in Figure 1-1 can be used for

adding two numbersj -

?&—_/—/‘ '
N -1
x= N !
. — a
a=1 .
|
V-1 \\
i = }:yb l '
b=0 o

1

] , i .

. 11 ‘
to the product P=H*K, making the stl\ructure capable of
performing the operation : |

Z=H'*K+X+Y, e (1-7)
}} . .
. Wthh is formally ldentucal to the expressmn that has to be
- computed by expression (1-6). Dean [DEA71] has called such a

structure, a full-multiplier. &

%
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CELL DESIGN

Cell design is the mam novelty of\bhe solution proposed in

thas chapter.of my thesis. The main idea of the desugn is based on

. the fact that a macrocell has some input variables (the Factors Bits
; FB) that are all genératedfgimultaneously and other input
variables (the-Additive Inputs : Al) which have to propagate
/throught the circuit and have a delay dependin‘g on the lqgatior{

~ of the macrocell that receives them.

/ " The outputs of each macrocell depend both qn.Fﬁs and Als. A
macrocell can be implemented using a VEM (Variable Bntry Map)

. technique (see [FLESO] for details). With suth an apprbéch each
f output is generated by.a multiplexer having Als as address bits
and suitable functions of the FBs at the inputs. The functions of
. the FBs can be generated in the most economic way because their
delay contributes with a constant factor (independant from N) to
the total delay of the multiplier. A desngn example for cell with

" G=1andG=2are reported in the following.

a
k.



~ Cell des:gn withG=1

L S %] .!*—J

.
Let Xy, yo be the Als‘zzﬁd hoko be the FBs. The term x,, y, and
hoko have weight 2. All those terms have to be added togéther in
" order to givé Vg and u, where v, has weigh{g 20 and u0 has weight
/2 ",

Let us assume that v, and u, are outputs of two 4-input
multiplexer whose address selection is based on the followmg

rule:

ye2! + xg2°

Let Lvy be-the ji input function for the multiplexer that
produces v, at the output. Let liug be the jt" input fupction that
produces u, at the output (0=j= 3). The input functions for each
multiplexer can be dérived using the following generél equation:

ug2! + vg20 = hoky + Xo + ¥,

”

The details of the algorithm performed by a cell is shown in
Table 1-1. The 4 mput\functlons for each multnplexer are the

followmg
lovo = hoko
foup = 0.

15



"Figure 1-2 shows the_';/EM maps for the two rﬁultiple&érs and
Figure 1-3 shows the lo'gica[strugtu re of the cell.

If © is the delay. of a multiplexer, then the total delay T of a

- multiplier 3§ N bit numbers implemented with cellswith G=1is:

r

T=(2N-1h +a

where ais thedelay of an AND gate.

16



Cell design with G=2

Let X, X, Yo ¥, b€ the Als and hy, hy, k, , k, be the FBs. The
" term xy, Yo, hoky have weight 20, and the term x,, y,, hok; and h,k,
have weightiz‘. The term h,k, has weight 22. All these terms have
to be added togegher producing four outputv variables vy, v,, u,
and u,. The term v, has weight 20, v, has weight 2!, u, has weight
22and u; has weight 23. .

Let assume that Vo Vy. Ug and u, are-the outputs of four 16 .
input multiplexers in which the input is selected by the follcjwing
rule: ' T

y,23 ; 122 + yg2' + x20

4y

There are 16linput functions for each multiplexer.

Let Lv, be the j™ input function for the multiplexer that
‘produces v, at the output. Let |u, be the j*" input function that
p{odﬁces u, at the output I(Oéj:‘_dS) and (0<k= 1). The input
functions for-each multiplexer can'be derived using the following -

<f

general equation:

.QB(J, + Zjuo + 2V, +V, . . o
= (2h, + hy*(2K, + k) + 2x, + X9 + 2y, .+ Y,

-

17
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~

o
A

A3 —_ i )
% The 16 input fynctions for each multiplexer are'the

following:
~ e T - -«
-~ ) 4 - '/\_, .
IoV’ - hok, 2] h’Eo
¥ ) ’ <
0 lgug = hikhoky
\ N ' Iou, - h’hok’ko . e ;
\ - ’1"0"4:;"’0*0 ? .
, . .
liug = hiky @ [hokok, + hikghyl
. liu, = hghkok,
v, = | ) L
/ ., JaVo = 1V '
Uy, =1y, |
- ‘ - / ¢
N ) . , Y
} ! N
| ‘ lue = L, N -
y Lo L
A lu,=lu, & -
",I ‘ ?' ~ N -
s |
. ‘ i 18 ‘



B — S
I3v, = hok, @ h,k, :
g = hik, ® [hok, + hky]
huy = hohok, + hkk
r 6
A 74Vo = hoko /
14V, =hok1@h1ko ~ *

r

lgug = h,k, @ [hok, + h, kel

I, = hk,h, + hkk,

—— \ (

0 ————

#  comuswmm. —

, ;o -
“lsug =hik, + [kihgky + hyhoky + hok,hy + hok
Isuy, = hikylhoky + hok,l
K

I6v0 =I5Vo . o .‘- 1\

<

kol

4
3
LE- (P



o= L

.

!

x\\ S
J// j\l Q*\) ’>
/

-

A

1yvg ="hokg

I7V, = hok, ® h’ko D

I, = h;k, ® Hok,hrka
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LV

Vo = lsvy
hovy = lsv,
)
loUg = lsug
_’:o‘!r = lgu, -

Inug = lug
Ihuy = lu,

8 }
hve = hoko

liuy = hk,

l13vo = hoky
C .‘6? G Y

lvy = hoky @ hikg

o7
[



&’

i g
g ¥
+
4

- | .
li3vy ='hoky @ hiko® hokg - "

>

v

,,I,3Uo - h,k’ s[haka(h1 + k')] -

haty = hiky + hokolhy + k] -

haVo = 130

liavy = l13v4

, S : b
latg = l13ug o !
V' Thauy = Uy
v i N ! -~
_ , P
.. lisve = hgkg :
; lisug = hik, @ [hok, + hikgl ~ ,

‘ "’su—’ =_h1k' + hok"t+ h,ko

- . ﬁ ’

>

“Figure 1-4 shows the VEM maps for the four multiplexers ah@i

Figure 1-5 shows the block diagram of the cell design for G=2.

v . ¢

. | .
With this design, the multiplication delay becomes:
' ™
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N ¢+ . T=(2N-1)t +a ' * _ g . '
. . 1 ’ 3 I - . f . ‘ - . . , ) ,.“
. /’"‘. . t ! ° . .
Where Tis the delay ‘of the multlplexer and ais the delay of
e the input functuons Flgure 1- 6 shows an exfample of the
multlpllcafuon algonthm for N-. 4b|ts o T S
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- TIME COMPLEXITY -

The proposed netvaork ’hav.é~a time éomple'xivty of O(N). The
longest path is ((2N- 1)t + a), if Ge=1. But if'G > 1, the delay
becomes ((2(N/G) - 1)t + a):'"depend'ing on the value of G,-andg the

time complexity can be very small compared to other structures

with O(N).timeh cé‘r'npléxity. t is the delay introduced by the select
line of the multiplexer. a is the detay introduced by the input
function of the multiplexer which does not depend on N.

In the proposed structure, tis the delay‘of a three-NAND-gate
cascade, which can be made very small with modern technologies.

24



AREA COMPLEXITY

The area complexity of the network can be easily derived. |
Consideririg the fact that G =1, we would have N? cells. If G > 1, .
the number of cells of the network becomes (N/G)2. A cell coﬁtains
- 2G multiplexers. Then the area complexity becomes (N/G)22G

which isin the order of Q(N2).” : .
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PIPELINING R

L]

L

The structures preﬁented so far are combinationdl but they
can Be converted:jgto,synchronous onesin seQeral ways.
* .
By providing some latches at the output of'every cell, and
_some additional latches for syn'chroniﬁation, the cellular structure
can be made to work in a pipelinec‘g;'wayl Figure 1-7 shows this

. - &
structure. . -
d o o
\ +
>
~ S /l/
[4
'\
-
b
« \//
- ] 4
0
L 3 ¢ .
. £
0 i
|
\ -4
N “'a’ ..‘ -~ hude )

26 R \




MULTIPLICATION OF TWO'S COMPLEMENT NUMB'ER“'S’

»

b . . > - .
Performmg mult|p|ncat|on of t\A@ S complement numbers is

easy wnth,;teratwe multnphers The algorithm proposed by Baugh
and Wooley [BAU73] can be used. : i

- =

The algorithm can be summarized as follows in the case H and
K are N bits twg's complement numbers:

N -2
— o\-l !
H=-h, 2% 1+ > k2 :
1 =0
) N2
K= -k, N =1, N o
N -1 —

The product P can then be ekpres‘seﬂ‘aé follows:

P.=Ply>2+P3+P4+P5'+P6

“pl=22N-'1 ’ ) ..

P= Y < ‘" hk 2"
l‘—'0j=0
N=2
> N 7 oN-14+;
_ PE _oh~_1k12

- 27
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@

v-2
- - N R N =14+,
Ps— > h‘qulZ
* .ov=0 ‘
_ N-1
13’_6,-(!:.\,__l kv_l)2 l

The term P, is the main product performed by the cells. The
term P, can be added in the lowermost line of cells by simply
inverting the input of the AND gate which has hy, at the other
input. In the same way, the térm PS can be added in the leftmost
row of the cells ‘

———

e

. N '
~ The terms P, and P, can be created by some small additional
hardware and added to the last row. The term in Pg can be added
using the spare inputs of the cellsin the leftmost column.

)

A

Pipelining the structure for two's complement operation
would required only the addition of a few delay elements for
bringing P, and P, to the last row at.the proper time interval.

Figure 1-8 shows the implementation of two's compiement
"4

. o

Covd

multiplication.

28
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4 SINGLE PRECISION OR 1 DOUBLE PRECISION MULTIPLiCATION s

. Iterative cellular multipliers conceived with the method

profzosed here can be programmed to’perform 4 single precision

R multiplicationg or 1 double precision multiplication. This
‘ implementation is done easily by using multiplexers. Figure 1-9
shows a structure for performing either double precision or single
?;Sreci';ioh operations.

*
I

P




CONCLUDING REMARKS ON THE ITERATIVE SOLUTION

" A network for performing multiplication of two two's
complement numbers has been proposed. The network can be
implemented in‘a synchronous or in an asynchronoas way. If the
factors to be multiplied have N bits, the area complexity of the
networks is O(N2) as in the case of cellular multipliers.

With some additional circuits the multiplier can be used
either independently for performing four separate single
precision multiplications or connected to perform a single double

preéision multiplication.

Asynchrounous multipliers can be built based on this
proposal. Input/output ports can be multiplexed in order to
minimize the package pins needed: this technique was proposed
by TRW [TRW78). " |

This chapter introduced a fast scheme for macro cellular
iterative multupllers and a cell design method for reducmg the
delay introduced by a. macrocell which reduce it to the swutchmg
timeé of a multiplexers. The approach will be suitable for.
implementations with very-high speed technologies like Gallium .
Arsenide where the simplicity of a cellular structure is an

"imperative requirement.
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. TABLE 1-1

-

THE MULTIPLICATION ALGORITHM e

procedure cell(hyko, X, Yo Vo, 60);
begin - |
) case x,20 + y,2' of
0:begin \
) Vg: = hgk, y -
Ug. =0;
end;
1:begin
Vo! =‘not(h0|‘<o):' S
- Ug: = hbi‘o; : K%
end; ’
2:begin
‘ v ;-not(hok{,'): |
Ug: = hokgs
end; ’ ) :
3:begin -7
Vo: = hoky, |
Ug: = 1; " s \.
end;
) end;
end;
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If select = 0 then A = hoko + xoyo, B = h'gky + y'ox'o, C= hik'ga yy ¢ xyand D= h'yk’y +y'y ¢ x°y
- i

If select = 1then P = (hghy)(kok1) + (xox1) + (yoy1)

’

FIGURE 1-9. Cirguit for Single and Oouble Precision Operation
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CHAPTER 2

&

Rr3s

A RECURSIVE ALGORITHM FOR BINARY MULTIPLICATION
AND ITS IMPLEMENTATION . . .,
'1 | | P
/ d ,
”
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@

INTRODUCTION

In order to increase the speed of iterative multlphers havmg
time complexnty O(@ome macrocellular structures have been
proposed in Chapter|1 scy,unpn for the macrocell designs
based on mul ﬁs hw%osed in Chapter 1. It allows,
for the reductlon of the maximum delay of the multiplier array
proportlonal to a fraction of lj}i '

A paper by Cappello and Steiglitz [CAP83] proposes a VLSI
Iayout for parallel multipliers with an area complexity
A =0(N2logN) and a time complexity T =O(logN). Cappella and
Steiglitz—compare the existing solutions on the basis of a VLSI
Figure of Merit (FM) defined as follows:

FM = AT2(PE)2 ' ©(2-1)

+

where A is the area complexity, T is the time complexity and

PE is the period complexity.

‘Cappello and Steiglitz [CAP83] have shown that their
multipliers can be pipelined with a period complexity PE=O(®
corresponding.to a figure of merit:

FM, =N2log3N . ‘ | (2-2)

42
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They also derived a Lower Bound Figure of Merit of (Z-i) for

'parallel multipliers (LB\FM): ‘.

+

LBFM = N2[og?N o (2-3)

and reported that this lower bound was not reached by any
solution published before their paper.

A new recursive algorithm for the layout generation of
pqrallél multipliers is presented in this chapter of my thesis. The
area’ complexity of 'multipliers obtained by the use of such
algorithm is O(N2) for values of N not exceeding a threeshold
greater than 100, while the time complexity is O(IoQN).'fhe
implementation ofsuch a scheme requires essentially two types of
cells: carry-{,ave adders and multiplexers. The circuit can easily be
adapted to handle two's complement numbers. The structure can
be pipelined with a period complexity O(1) thus reaching the

lower bound (2-3) of FM as defined by (2-1). ,
"

3
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THE ALGORITHM FOR hECURSlVE MULTIPLIERS

In order to introduce the algorithm for designing recursive

multipliers, an iterative algoyithm, deh oted Algorithm IM

(terative Multiplication) for ~multfplying positive binary integer -

numbers will be first presented. This algorithm leads to the
implementat’ion of ceHular multipliers with area complexigy
A = O(N?) and time complexity T =0(N). Adesign for a basic cell of
these&nultupluers is‘proposed in Chapter 1. These cells reduce/thé

time complexity to a fractlon of N allowing one to desrgn fast .
multipliers for small values of N. Furthermore these cellular
multipliers are implemented by repeating an elementary cellular
‘structure which is a big advantage from the point of view of
automatic design, “manufacturing and testing. Iterative

multipliers, also called array multipliers implemented as proposed
in Chapter 1 Jare testable [DEMS8S].and can be pipelined with a

.period complexuty of1)..

Algorithm IM (Iterative Multiplication)

s
H

Let ..,
NIt
H= N, h2! ' - - 12-4)
1-0 . . . 3 v -
and '
N-1 o . ‘
K=Y k2’ a® (2-5).
}.0 ' ,
44




be positive integer factors and

2 ‘ .
P=tK= N p2r . 12 -

r={
U ll

beethe product. h, k, p, are binary variables.

Let N=RG with R and G integers. Grouping the factors H and
K in the basis2G one gets:

R—1

k=N K27 -

n:O " . ’ -
and o ,:/ . e ' (,2-7)

R—1 — i ~ , .

H=S H2mG ,
L d m - &
m=0 - \ . o ”»

~ I ' :

. ~ . > , . ‘
\with H, and K, irftegers less then 2G and expressible in the
binary € ithG bits. ' |

) 4
* ©

Figure 2-1 ‘§hows the structure of the iteré’five mu_ltipligr for

* the case G=2 and N = 6. Some free inputs that can be used for

adding two numbers are:

—
-

]
(-]

3
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,The—input wires where V and W are applied are called
additive input wires. The structure shown in Figure 2-1 is thus

/ ‘ capable of performing the opé‘fation
. . T L =HUR+VeW 2 - 8)
which is also the expression computed by the basic cell. Dean
/*\ [DEA71) has called such a structure, a full-multiplier.
A special cell design for G=2 is ﬁroposed in Chapter 1. This
" cell design is based on four 16 input-1-output multipiexer's where
variables affectéd with the highest delay are applied at the select
" input. In this way the cell has a propagation delay equal to the
switching time of a multiplexer. P '
The area complexity in this case is
‘..'\ = Ol:'-:!-l"’ = OINY ' 2-9)"
. Let T, be the switching time of a multsplexer the structure
4 .
has a total multaphcatlon delay.
T ,=NT_=0N . 2-10),
,% - ' L Y .' - ' '
Cells with G>2 can be designed followung the approach
. proposed in Chapter 1 with multuplexers havmg 2G select mputs
This would reduce the mu!tnphca tion delay to: ,
; ) \
AN
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multrplrer proposed in Chapter T

< -modular layout,

. An algorithm has been proposed [DEM72] for usrng full,

multrphers of positive numbers in order te multrply two’s

%

_complement binary fractions with the addition of front and back
logic which does hot affect the area, time, or the period

complexity expressions Another a?gorithm has been proposed by
Baugh and Wooley for two’s complement binary mult:plrcafron
[BAU33] It has been shown that the structure of Figure 2-1 can be

adapted to perform multrp?rcatrons of twb's complement numbers

,,wrth Baugh and Wé)o ey's algorrthm as shown in Chapter 1

arrays of multiplexers has béen.investigated [DEMBS5].

2In ’order to reduce the tL,e_ complexity from O(N) to O(logN)
by keeprng the area complexrty approxrmately O(NZ) a new
structure, called recursive multrplrer is proposed in this chapter

'Thrs structure shares.the followrng features with the rteratrve

ff—‘—

{

-possibility of pipelining and multiplying two's complement
factors, ~

I 4

. Testability "of two's complement multipliers. based on iterative

¥

e



3
i

. _-possibilit;l of usin§ tohe,structure for a single or doyble

#orecision multiplier or for four single precision multipliers.”

I
. J

“ An algorithm for designing recursive multipliers and for

g

»
generating their layout will be given in the following. -
:/ - k v " - \ ‘ ) ,’
. # had . -
[*% » ~ ! I ’ ‘
v A ".
; . o, s 3 '
) O,,
. . © ° @ )
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2
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ALGORITHM RM (Recursive Multiplication)
The RM algorithm will bé introduced using the same

assumptions and nogations as in relations (2-4), (2-5), (2-6) and (2-
7) of the IM.algorithm.

For every step of the algorithm, the basic operations

\ '
perfonf\ined concurrently will be given. A device performing each
basic operation will be defined and the details on how the device

output is represented will be indicated.

-

-

Every output, represented by a capital letter, is supposed to
be in pure binary code (1 bit per weight). The first step of the
algorithm, called step 0, consnsts in partm?nmng the N-bits of K
and of H into adjacent G-tuples and in computing in parallel all
the products between Kp (1 . n <R) and\Hm (1- m R).

\
r

This product will be represented as: . .
0 - wememG
P?."‘ = H'n K': 2 . N

where the superscript 0 shows that the product is the result of
the computation performed at step 0. Products P%n n can all be

computed with iterative arrays of macrocells based on

49



multiplexers. The de}ay introduced by these arrays can be reduced
by allowing the most significant bits of the output to be 2 for each

weight. | . r

<

~ A layout for such arrays is shown in Figure 2-2a. There is one

PR

output for the first G least significant bits. Let:

o

g -

L—
d

o

be the biniy number represented by these bits. On the
contrary, there¥are two outputs per weight for the. G most
significant bits. These output bits can be considered as forming

two binary numbers,

{mn 2man

M°  and \ M ¢

<

~ where gach of these numbers has one bit per weight.
step0 (O<m <R, 0sn<R) - ' g
for every pair(m,n) do S

cobegin : N L0

1

Compute: P’ =y K ™G
m.n n n

coend
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- v Vg e e e m e e

. ” :
Each concurent operation is performed by a device called a
G,-pseudomultiplier whose input-output characteristics are

defined as follows:

Go-pseudomultiplier(m,n)

Input: IIm,Kq
A - ] 5 o o
Output: P™-=H K 2'm*™0 -
ma m i .
The output is represented as follows: N
'Po = L0 om+mG _ 0 + M0 )2cm‘+n+'h0 ’ v .
m.n man®’ im.n 2m.n te

Ll «20M%  <20M) <26

4

Figure 2-2a shows the layout of a Go-pseﬁdomultiblié; with

G =8 using the cells whose design has been introduced in{Chapter

L1 v

1. The area complexity of tnis multiplieris =~ S

+

G 2 A . . ta « .
“\G-—-(E) ‘ . . . I ‘Ztll)
and the time complexity is'
/ T.=CT . ’ . ' 2-12)
(0] m .

g

Figure 2-2b shows a ‘schematic representation of a G,-

pseudomultiplier. .

St .

N |
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« : , W -
2-2 the following assumptions have been made:

-
/7

-

Each cell in Figure2-2a is, a 2,bits fulfrbultiplier. In the Figures

-
-
[}
I
7
K=\14% 2 :
n — n+t x
N =0
1 .
H =N 1 2
CTmT e m+
=)
7
LO - V‘o . [
MR~ e mtn+t
1=
7 PR [ A - (
0 - v _— ¢ I3 '
M'lm.u— —Cmensi+8 .
10
Voo
\ .
’ s . - . “
0o _\N . ‘ ) .
M‘.!m.n- — m+n+1+82 CL R ; -
1=0 Lot . . .
. e R

*

-

'St.ep 1 of the algorithm cdnii;tﬁz;-'in gréuping’ G-
pseudomultipliers into sduares of four'eé'éh and in bseu.do-a‘dd-ing
the outputs using carry-save I'p?éddbad&érs. Pseudo additions are
performed on six numbers and éroduqe 2 numbers whose sum is
equal to the sum of the ir_'iit'ial‘ six. Pseudo-addition is a carry-save
operation performed in.-a time that does not depend on the
number of bits of the addends. The operation is repeated until

two numbers whose sum is equal to the product are found.




Let step y be the generic"pgeudo-addhwn ﬁtep and let step Y
- be the final step.

Step 'y

Let: n =0, 27,...,.q2%, ~.R =2, . o o)

m =0,2,.p2.  R-2" '
for every (my,ny) do ' ‘ S
cobegin .
Compute: pY  =p-t oy pr-t .t Pt 1+P’ I .
mJ"n)’ Myy my+2y— n ma+2” +2y a sl i

coend. _ - . «

Each concujent operation is performed by a devuce called a -
.Gy pseudomultiplier whose input- output characteristics are
defined as follows:

Gy-pseudomultiplier (my,ny)
| input: |

m+‘2‘v‘

H = N H_2C -

Y m=m
y
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output: - .

The output is represénted as follows:

’ 3 tmv+n G
P = <L 2 v
m | Im .n Im .n
Y y Yy y ¥

N Y

The'computatibn of two numbers:

- PY=(LY + M) 2%RC

. P” (L" ) ¥)2RG
“such that: )
- pY Y
ﬁ- Pl sz

+(M’l’m .t M2
. y

m n

2

y

tm +a +2'G
y ¥

2-13)

ns obtamed by performmg step #0, ahd then repeat step y untll

y =Y such that

>

'
.

[y
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There'will be only one pseudoq&ql{tiplier Gy-(0,0) giving two
output bits for each weight. These outputs can be added using a
special adder having Oflog NY time complexity [BRESO].

P

- Figure 2-3 shows an example of the execution of a
multiplication using the algorithm int;oduced so far. Numbers are
represer;ted in decinal code with one digitﬁger weight for the
sake of simplicity. " -

¢ . e

Although the algorithm propbsed s0 far is iterative, a
recursive algorithrﬁ can be introduced for defining a G-
pseudomultiplier in terms of G -pseudomultipliers (0z=y<Y). ThHe
recursive algorithm can be used for the generation of the

multiplier layout.

. o

Gy-pseudomultiplier(m,n) )
begin
ify ='0then -
compute PO using iterative arrays
else
cobegin :

Gy,..)-pseudomultiplier(m,n); S
Gy,.;-pseudomultiplier(m + 2v-',n);
G(,.;-Pseudomultiplier(m,n + 2v');
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Gyy.i-Pseudomultiplier(m+ 2v-',n + 2v°1);
coend ‘ -

compute PY,,  as represented in step y using Pseudo-Adders ‘

(PA) and represent it by two numbers:

\ ”\d
y — y v tm+miG
r 2 le.n - ‘Lglm.n * L'.’m.n)2
Py = ‘My + My )2(m+n+2y)0
. 2mn iman 2m,n

end L

B . Notice that the size of a G -pseudomultiplier (defined as the
" number of factor bits involved in the operation) is 2YG. Notice also’
that with the notation adopted here the index of the recursion is

J

7

the subscript of G. \

The algorithm of the entire multiplier can be described as:

multiplier(H K);
inputs :H,K;
. output’:P;

begin
y. = Y;:
Gy-pseudomuiltiplier(0,0);

. P:=P{+P2y; h _
end;
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The addition of PY, and PY, that represent the output PY of

> “ the Gy-bseudomultiplier is performed by a Special Adder The way
PY.n 1S cOmputed using the outputs of 4 G(y " pseudomultlplrers is
shown in Figure 2-4. PA stays for Pseudo-Adder. Symbols in Figure

2-4 have been simplified for the sake of clarity. Some auxiliary
variable OLij and OM;j have been introduced (1 - i j - 2) for
representmg -pairs of numbers that are the results of partial

J pseudo-additionis performed by PAs. S

Notice that here pseudo-additions reduce wrth a carry-save
operatron six binary numbers to two binary numbers whose sum
- is equal to that of the six addends. The detarls of the operatron
performed by the PAs in Figure 2-4 are grven in'the following:  "*

g I—

y-l y=-1 (m+n1-2y G\_
(oz.,_,l + oLy he =

. _ . e
- ;- - - - - 4 )
M et e L e LS e L - L hatmenr? G

oM + oM); hgm+n 20

y-1 y=l, pmqr-1 y=1t _ yr-! y=ligmrar2G .
AL+ Ly M ML - M e MY .52 |
: . _

'OL{; =Lr-". - . 12 ~16)

tma
AT
oMl = p-! e . -
- T llm#-?)c G)Jn-r-‘.” G)" , .
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-1 -1
oM. =M, i
2 cdim+ 2 " Gun + PG

Al the symbols used in (_2: 16) représent pure binary numbérs

having one bit per weight.

’

The representation- of the output Py ., according to the
scheme proposed by step y, is obtained by combining the outputs
of Pseudo-Adders as follows: L '

4 _4-

- 0
tm+argy . _ y=1 ptm+n) y=-1 im+as? TG
2 Ly, .= OL“ 2 + 0L, " 2

——

. ‘__‘ )
gmeny  Lop=tgmem Lopyst g ? o -

+

‘ . o ‘-1
2(m+n+2’G)M{mn = OM';;‘ 21m+n+!6) . OM,y,l‘l 2fm¢n+2y0-2) Gy

.

-~ ~.
-

. ¢ |
2....”*2’0}‘% =OM{2.| 2:m¢n,¢‘2’j0l m*a*?"c'b; v}
. mn : !

oMt 2

Figure 2-5 shows. a sc.he‘m'ati'c layout for. a ‘Gz'-

pseudomultiplier; connections between macrocells and PAs have '

been omitted for the sake of;si'nipl,icity. The PAs are represented in

Figure 2-5'by dashed lines. The maximum number of input -

) addends in a P'A is 6,and wirg_s carryir_,fg pairs- of addends are

- 58 . . 5



e

It
o=t
s
P L

already ordered in such a way that most of the wires carrying bits
of the same weight are adjacent.

L 4

The Special-Adder (SA) layout occupies two sides of the
square and is also represented by dasheq lines.

[
S~

The layout of @ PA is showh in Figures 2-6. Figure i-ﬁa show;
the structure of the Special Adder which uses four Carry-Save
Adders for adding six numpers A,, A,, B,, B,, C;, C, in order to
produce two output O, aqg’oz whose sum is equal to the sum of
the six addends. Figure 2-6b shows the detauled implementation ‘
of the CSAs. Each cell is a full- adder the sum and carry outputs are
indicated by S and C. Capital Ietters in Flgure 2-6a indicate binary

numbers and lower case letters in thure 2-6b indicate their bits.

-~

, The time complexity of the proposed PA structure is O(3). The
area .comp'lexity of a PA is 0((2‘Y'”G)(02‘Y°"G +4)) = O(a(Z(V'”G)z)
Where a is the ratio between the area complexity of a paur of wires

and the side-of a Go-pseudomultnpher dividedbyG.
&
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' 3 TIME COMPLEXITY
TR o
/~ ‘ As&ming that D is the delay introduced by an AND/OR circiit
- ) ) implgmentingfﬁ basic functions of a PA and the Special Adder
(SA), assuming T(G) is the delay introduced by a Gy-
v pseudomultiplier, if Y recursions are appliéd, “t°h-e:n the
multiplicatioredelay is the sur'n of three contribuutions ‘d:je to the

- . gt
special adder, 'the chain of PAs and th o-pseudomultipliers. The

A cantribution of the special adder is taken from [CAP83]. Thﬁ\,/'-
global delay can be expressed as follows: A
N S . v N
' | T'= Uog2N + 3VID + TG \ 2-18)
R . .

Logarithms are supposed to be base two unless‘?&pécified

- -

The Go-pseudo;nulaplier could also be ir'v:?nllemented, with a

-

-

- otherwise. =« e )
A e
l e . rs , . ) )
7 . Using the just described desing approach,”a cellular Go-
' - ' ! .. ‘ * ‘
‘ ‘ g -pseudomultipﬁer of G bit can be designed with a delay: .
y ' ’ ’ ' ) - '
AT ﬁG) ='GD , K _ 12-19)
. v .
: ° ! . .

. . . ., ]
ad Only Memory. (ROM) making T(G) independant of G. In this

ot ' case the (2-18) can be rewritten as :
o “ | ,
R | o . o ' —
Ao T = dog2N'+ 3YWD ~ T, ., ‘ \ , v N
', S N . "' i
\ ( -\ 1
’ /£

4

\

. 4
I‘ : i \ ‘
' b b ‘*w J’? i /
v " . ’ - .

-
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ot

1 4

’

B
[N ~

A technologically acceptable solu\tlon could be a ROM with 2
number of bits less than 2'2.

~

T e

In order to find a relation between Y and N from (2-14) onfs

- |

v
Y =llog—1 12 =20
G

MK

gets:

Where rAx means A if A is integer or the least integer greater
than A.’

. 4 {
In order to keep the.time complexity of the structure

»

logarithmic, different conditions on G can be |mposed A very

simple oneiis the following:

s .

G =logN . ] 240N .

/ ! '

- With t'hisJassumption‘the global delay can be expressed.as:

/ AYE - .
T=Uog2N + 3 log —— ~log\WD)
~ log N

-

N - ' »
and-the overall time complexity ig O(log N).‘Nog'ce that for small

' values of N, 3log(N/log N) does not introduce a remarkable

[

contribution to the overall delay.‘ ‘ '
. . N , L. . ”
’ /
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AREA COMPLEXITY )

~

The area complexity of the recursive mulitiplier can be

computed by inspection of Figures 2-5 and 2-6 as follows:
Oty = ()(.-HG\’.-pseydomulhplivrn ~ ASpreai Adder))

= ()MA(G’._ | — pseudomuluplier)) +

o] <

\{)il pseudo —adders)
‘\ - -

- ()G.V&)gN) + area of 2!

—=O16A(G ~ pseudom ultiplier)) + (

v ‘
area of2(‘?'b¢'lpseudo —adders) +

.

3

-

' N .
° area of 4 Y bt pseudo — adders) + O(NlogN)

In general, there are (N/G)? G.-pseudomultipliers whose area

complexity is O(N?).

| Y/here are Y = log(N/leSgN) levels of pseudo adders. At level Y
there are two pseudo adders. Each one of them has an .;rea
cdmblexity that can be computed from the scheme. of Figure 2-6.
The horizontal size is proportional to 2aN/2 and the vertical size/ is
proportinal to N/2. a is the ratio between the area complexity of a“
wire and the area complexity of a size of a cell of the Go-

pseudomultiplier. Thus the area complexity ai level Y is :
‘ ]

-
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P

- ‘e

(2*20* ~5 1= 0ta ) ' ) K
Ve -7
Given the proposed structure and the ce.u_)iesrgn proposed in
‘ Chapter 1.

-

_ At level Y-1 there are 2?2 PAs handling N/22 wires. The area
complexrty atlevel Y-1is: \j

2 .
N
orz’-za'-—; Oa—) . ° " :
22 ¢

The overall area complexity of the PAs is:.

L ,- | .
-omw N -—» OaN? . 12 -22)
rl:l2 W .

\P Eduation (2-22) does not take into account the space that {
remains free in Figure 2-5. Part of this space is occupied by wires
that connects pseudo-multipliers with pseudo-adders.

Taking th'is space into account in the evaluation of area

complexity represents a worst-case situation in which no attempt |

" is made for squeezing Gg-pseudomultipliers and pseudoadders in
order to obtain an optimal-layout with O‘(NZ) area complexity. In

: “ the worst case situation, correSponding to the layout of Figure 2-.

-

a



j" .
4

. 5, it is important to notice that each square containning four ,Gy-

1 pseudomultipliers has two Strips whose sizes are:

. 3

"—- and 2a —
. .)) - .))—V“l

Thus, the overall area complexity can be computed as

follows:

<
- y 1 1 1
2 2 4
Ay, =2°2a°N% -2 -~ e e )
PA 20! | pleg? . g%p?

” L e X ’ ..
|2 ) .o . 0. .
=2aN(1+1+...) .

= 2aN 2logR ‘ ' ' - o

1

In the worst case, the area complexuty of the GY
pseudomuitiplier is: ‘ : ,

A =-0NU1 +2aY) . T 223

The area complexity of the proposed structure tan..be |
assumed to be O(Nz) as far as: SR '

N 1 D o ‘
log(-—-bs — L - 12 —24)
2a . o

g Ebllowing the cefl design proposed i_n Chabter 1, "éa'ch cell of a
G,-pseudomultiplier contains four 16 input multiplexers and



circuits implementing functions of four variables. Based on the
above considerations it can be assumed that « = 0.025 which

mekes the (2-24) an acceptable condition for a Iar'ge class” of
practical multipliers. '



MULTIPLICATION OF TWO'S COMPLEMENT NUMBEkS

From Figure 2-2a it appears that a Gy-pseudomultiplier can
accept two additive inpbts, a G bit number along the vertical |
inputs lines and a 2G bits number along the diagonal'lines. In the
layoutr?ketched in Figure 2-5 éach squafe represents a G,-
pseudomultiplier each one of which can accept two additive
" inputs. In particular, the lowermost row ahd the leftmost column
of G,-pseudomultipliers can accept tvo addends whose bit
weights range from 2N-' to 22N-2, We will show how these inputs
can be used for m‘uultiplying' two binary numbers with negative
numbers represented in the two's complement notation using the
Baugh and Wooley [BAU73] algorithm. For the sake of clarity the

algorithm will be summarized in the following.

Let now assume that H and K are N bits two's complement

numbers:

N-2

H= ~h, lz“’"+ N h2 . .
¥ - ::-o { ' L

(2 ~25)

The product P can then be expressed as f/ollov'vs:
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P=P +P,+P,+P +P +P -

Pr=thy | +hy vho ko @207 -/

> )
2 V-1 N-t N1Vt

..
]

o
-~
1]

(=1

12 —26)

lk 24V~‘4‘l
$

_ N-1
Pe=thy _thy 2

The term P, is the main“product performed by the G,-
pseudomul‘tiplier. The term P, can be added in the leftmost
column of cells of Gy-pseudomultipliers by introducing an array of
cells made by an inverter and a two input AND gate fed by h,,
and-the complement of h,. In the same w;y, the term Pg can be
added in the lowermost row. '

~7

The terms P,, P, and Pg can be created by some small
additional hardwareand added to SA. |

F)
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. previously.

Figure 2-7 shows the details of the modification jn‘roduced in
the leftmost column and the lowermost line of G,-
pseudomultipliers. in order to make the structure.ca'pable of

multiplying two's complement numbers. By inspectign of Figure 2-

7 it is clear that the introduced modifications do oi affect the
/r as evaluated

delay nor the area complexities of the multip|
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PIPELINING

Let PE be the period of a multiplier, defined as the time‘
between completionﬂlo_f successive multiplication instances. If the
number of bits of the multiplier and the application for which ihe
multiplier is designed are such that the combinational array
introduced so far can complete an o?aeration before a new
operation is started, then registers can be introduced only far
storing the factors and the ‘product. In this case, the period
complexity of the array would be

.

PE=1 | SR - (2-27)

If the application requires a period between the output of
two successive results to be less than the multiplication time, then
the array can be pipelined for reducing the idle time of the circgt\;B
cells. .

Concepts derived from retiming transformation [LEIB3] can
be abblied to the recursive multiplier in order to implement
pipeli'nning..Following a recent suggestion by Hawck et al.
(HAWSS], pipelining can be implemented by first adding registers
on the iants and then retiming to minimize the period.

The degree of pipelining can be defined as the maximum
nu%ber of cells between any pair of registers. For ouy’ specific
application there are two types of cells, normely, the cells of the
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i

G,-pseudomultiplier and the carry save adders used in the Pseudo
Adders and in the Special Adder. -

The most effective level of pipelining depends on ma?wy
practical and technological considerations. A practically
acceptable degree of pipelining given the actually available -
adders and multiplexers is four. This implies that registers can be
placed at the output 6f the pseudo édders whose structure is
proposed in Figure 2-6 but there is no need of providing registers

inside'them.

Figure 28 shows a rearrangement of the layout shown in
- Figure 2-5 where Go-pséudoh\ultiplier are represented by squares,
pseudd adders are represented by fect‘angles and the wires
carrying the bits of each of the binary numbers representing a
PA’s output are represented by a singlg arrow. A black arrow
represent also an array of registers on the correspoﬁding wires.

As far as G<4 there is no need of introducing registers inside
the Gj,-pseudomuiltipliers. it suffices to introduce registers at their
outputs. From jnspection of Figure 2-8 one can conclude that extra
registers are reguired at the output of the PA feeding the SA in
order to synchronize the appea~rencae of the bits of the same
product at the input of SA. The numberof extra registers required
is zero for the rightmost and the lowermost SA and increases by

one going leftward and upward. These registers are not shown in

70 . o



. Figure 2-8 forh the sake of simplicity. ‘Pipelining SA has been
discussed elsewhere [BRE8B8O] and won’t be discussed here.'

. ‘ v - ‘

Should the G4-pseudomultiplier be pipelined, the same
technique proposed by Mawck et al. [HAW8S] can be used for
placing the r'egisters/. In any case, a period complexity PE=0O(1) can

be achieved. SO

Several VLS| figures of merit have been proposed.. The ones

- that have been mostly discussed-are:

. a i
. FM_ = AT%(PE)? ‘
FM,, = A(PE)2 T (2-28) -

FM_ = A(PE)T

For each one of them lower bounds for binary multipliers
have been derived.

The recursive structure proposed here meets these lower
bounds with the complexities:

* A= N? o
T=IlogN : : ) (2-29)
PE =1

Given the following figures of merit

A



EM, = N2logiN
FM, = N2
FM_ = N2 logN
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SOME APPLICATIONS OF THERECURSIVE STRUCT l:lRE

. fFigure 2-9 shows a layout for a structure based on G,-
pseydomultipliers’ capable 'of‘performmg a single double-
pretision multiplication or four single-prggisjpn multiplications.
Binary nupnbers are represented with asingle arrow.

be J
[y —

S10.52. 53 Sa represent single precusuon outputs, OP représents '

a double precision output Essentually, four SAs are included for
smgle precis®on with a global contnbutlon to the whole area
complemty of Ai, = 4NlogN. These single-precision SAs are
bypassedﬂwhen double-precision multiplication has to be
performed. External switches have to be added for sending the
factor bits to the four G,- pseudomultipliers' and for selecting the
outputs to be stored The qomplex:ty of these switches, which are

not shown in anure 2-9 for the sake of clarrty, is O(N). Thus the

overall area complexity remains O(N2). Also tljwe time complexity
: | . .

remains unchanged.’ . i
-~ ‘ 0

\

—
\
I3

o~

-
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CONﬁUDlng;REMARKS ON THE RECURSIVE STRUCTURE

v L} .
N Yo
8

* _The recudve design approach introduces some_new ideas
&

C

o . tha»t are su1table for an agtomatrc layout design. Another

i"? potentlally yseful idea presented in this chapter is that of
3 ' combmmg multrplexer based macrocells with pseudo-adders.
' crocells based c{n multrdlexers allows a fast propagatron of -
changes of variables affected by alarge delay by applymg them to
-\ the addre'ss select inputs while using simpler and slower circuits
:," Qapplred at the multrplexer mputs for handling factor bits. Paths
? contarmng a few macrocells in cascade can be tolerated as far as
thenr delay rs not the predommant contribution to the overgl.

’ multrpjrer delay Effrcrent pseudo adders with conltant ‘délay can
~ pe used for adqu dp the 0utputs of chains of macrocells i in order “»

to, produce two nu’ﬁrbers whose suln is equal to the desrred <,

[ B ) .

k - A recurswe procedure can. systematrc9 place pseudo adders
- nﬁ a regular layout ®f macrocells making th maxrmum delay of a

e cham of p%eudo- adders proportrm{al to log| N ‘, SR /
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Figure 2-3. Recursive multiplication example
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A NEW DESIGN APPROACH TO BINARY LOGARITHM

- AND BINARY DIVISION COMPUTATION
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. . ! . . - ~
) ) " ! INTRODUCTION

- ‘ ’

-

The -fast “calculation ofttheﬁ base-two logarithm of a binary
number has been the object of investigation in the past twenty
years, Recently, the adveni of very Large Scele Integraiion (VLSH)
has attracted new mterest in the conception of algorithms for
numerical computaﬁon ‘suitable to be integrated into
microcircuits. lntegrauon suggests new criteria for evaluatlng the

- _merits of an algorithm. These criteria are based not only on time |
,complex:ty whose optamahty was already a goal in early designs,
but also on area complexny, and period complexity. Period
complexat’y refers to the number of clock puises that have to be
issued to the circuit before' the next inpuﬁt‘ can be applied.

4

R’

Almost all the approaches for binary leggnthm computatnon

. {
, arebasedon pnece -wise apprommatnons

: e {“) :’ ' : 4. - (

A positive number N is represented in floatmg pomt format SN

Qy a pair of integers (x, E) such that: : [ | 35{%”:7

. . - gwj?‘ N
. \ "
[ ] = E
 N=x2 \ | | C i y
(Osx=1) o o

The base-two logarithm of N can be obtained as follows:

\\ «""(M ‘ ‘ . . . ' \
- log,N = logx + E. : 4’ | .
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g Where E is the integer part and log,x is the fractional part

called the rhantissq. As the integer part.E is already available in the

‘number representation, the calculation of log,N consists |

essentially in the calculation of log,x.
o ? . N ’ R

approxlmatlon in the mterval [1 2] for computmg the mantissa of

the.logarithm: -
v . logyx = x-1
(1 s X<2)

f(

Mitchell [MIT62], one of the pioneer in desfgning circuits for

<

bmary logarithm .calculation, proposed to use a linear

(3-1)

The error mtroduced by assuming a linear approxnmatlon of

the manxlssa is:

* N " ’
A ) . .

“e=log,x-(x-1)
. ' /
i sothai: | ‘ , ‘ *ﬁ,
deldx = 1.443*1/(x:1),
.deldx = 0 | "when x=1.443.
f /' Thus:u
/

ma,-/ogzﬁ 443)- 0443 =0.086

! &
v

32)

'.
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is the maximum error introduced by Mitchell’s method. The

approximation and error curves for the linear’ approxumatuon of

_~the—base4wo logarithm- mantissa are shown in Figure 3-1a and

Figure 3-1b.

The symbol * represents here arithmetic multipiication.
* {

* A few years later, Combat et al. [COM65] have proposed

| piece-wise linear approximation of the logarithmic curve

following the principle shown in Figure 3-2a and Figure 3-2b.

AN
r

Marino [MAR72] proposed to use second order polynomial
approximations for thé error function\bg Figure 3-1b with two
curves. An approximation of the binary logarithm is obtained with
this approach by. adding the approximated error value given by
the thick curve in Figure'3-3a to the linear approximation of the .

" logarithm as shown in Figure 3-1a. The overall error curve is

represented in Figure 3-3b. The maximum approximation error is
e, = 0.004. | '

Sequential (serial) circuits were proposedﬁ for implementing

the above methods. In many applications such as signal

processing, it is important to compute a large number of

: Iogarithms in a short interval of time. This makes it attractive to

consider purely combmatlonal solutions that can be mtegrated
into a smgle chip using parallel multipliers. High speed parallel
multcphers of N bit factors are now available with time complexity

[

89




v

O(log N) and area complexity O(r\i?) as described in Chaptér 2. The

advent of Very Large Scale integration (VLSI) suggesté to consider
designs of combmatmnal circuits for logarithm computatmn A
solution that is optumal from the point of vuew of time and area
complexity is proposed in this chapter. It is based on parallel
md(. tipliers, adders, carry-save adders (CSA), multiplexers and Read
Only Memor|e§ (ROM). ,

It will be shown how a great saving in total area complexity
and operation time can be obtained by usmg components for
designing recursive multipliers mtroduced in Ghapter 2.

i
/

A design is proposed in this thesis which is based on a
polynomial abproximatidn of log,(1 + x) in the interval:’

v 0sxs1 ' R 8 (3-4)
The interval (3-4) can lae subdivided into sbbintervals:
([x01x1]([x|lx2\] :"[xi."]lxi]'"[xL]lx|l)- — -

The error functioh in the interval (3-4) is expressed by :

" e(x) = log,(1 +x)-x : . (3-5)

A piece-wise polynomla| approxumatlon of the logarithm
mantissa is obtained using curves of the type

.- , 90’



Z(x)=Ax2 +Bx +C, +Xx - (3-6)

In the combinational solution proposed in this chapter, for .
each interval [X._;,X ], e(x) is approximated by the function:

Q(x) = Aix2 + bx + .

The previously proposéd solutions can be seen as a particular
cases of the one proposed here. Mitchell proposed 1=1, Marino
proposed | =2, Combet et-al. proposed |=4. Other design
approachés suitable for a sequeritial implementation are
proposed in [DEA68a, DEA68b, MAJ73, NIC71]. The chice of a
small numger of break-points was impoﬁed by hardware
constraint; especiélly the one of keeping simple the.design of the
address selection scheme for coefficients (A, B, C). Garcia and

Kubitz [GAR83j have pointed out how this address selection

* scheme be&omes prohibitively complex in general if | is large and

the subintervals between’ two successive ‘break-points have
unequal, non-increasing or decreasing size.

In the new design apbrpach proposed here, coefficients A, B,
C.are stored into Read Only Memory (ROM). An algorithm for.
ROM address computation is proposed that allows to retrieve the

: coefficients (A, 'B,, C) with an address selection scheme that is

91 . ' .
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simple, fast and suitable for VLSI integration even if | is‘large and -
. the intervals between two successive break-points-have u‘nequaL
. non-increasing or-decreasing size. With the abproach propoﬁed
. here an appcoximation of the |dgarfthmic function with any -
desired accuracy can be obtained.

am—

It will be shown in this chapter how bmary loganthms can be

g computed W|th any accuracy usmg a combmatuonal network with

hY

r=0(logN) | | L3

. time complexity and with an area complexity

AzOMN?) S . (38

[
o

" Area and time complexities are important features for

computing figures of merits of VLSI circuits. .

It will be also shown how the combinational network can be

i

transformed into a pipelined version with period complexity

P=0(1) | | o o -39

q
LY

-

Period complexity is also an cmportant feature for deflnmg
/

L

the figure of merit of VLSI circuits. S N~
“-Q: . s
e
S 92
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The circuit proposed here will require one clock period with a

- period pfoportionlal to log,N for computing the mantissa of a
“logarithm of N bits. The solutions proposed so far.require a
" .number of clock pulses proportional to thé number of segmehts
"approximating the logarithm curvesand each clock pulse must
have a duration that is at best proportional to log N in order to
allow a binary multiplication to be executed. In order to make the
clock period shorter it is possible to pipeline multipliers 'and‘
adders in order to get a clock period which is proportio\rimal to the
switching time of a fevy AND/OR gates. ‘

The scheme proposed here for computing binary Iog‘arithms
can be used also for computing antdoganthms with similar figures
for time and area complexities.

A binary division circuit can thus be obtained by computing
the logarithms of the magnitudes of the dividend and the divisor.
The logarithm of the quotient is obéained by subtracting the
logarithm.of the divisor from the logarithm of the dividend. The
magnitude of the quotient can be obtained by computing an

antilogarithm.

Brent and Kung [BRES80] have shown that binary addition
(and subtraction) can be performed with a circuit having O(log N)
time complexity, O(Nlog N) area complexity and O(1) period
complexity. It will be shown how a binary divider consisting ‘of a

wa———

chain of two logarithm extractors, an adder and a circuit for ‘

/ ~ 03
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‘

antilogarithm .co tation can be imrilerri‘ent:éd with O(log N)

time complexity, O(Nz).-area\cqm'plexity,and O(1) period -
: o . ’ . -

complexity. ‘ e T e .
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A3 __ PIECE-WISE POLYNOMIAL APPROXIMATION

et - .
TR . ) S~
Sy . -

The problem of obtalnmg a piece-wise polynomial
approxumatlon of ‘the logaruthmlc curve Wlth any specified .
'ac’cu racy will be considered in this Sectlon.

" The curve to 63 a'ppr‘oxirhate.d is log,(1+x) in the in‘terval
specified in equation (3-4). It will be approximated by taking:a
linear approxima-ti‘on and adding to it a‘piéce-wisé polynomial
approximation of the error function (3-5). :

The interval specified in equation (3-4) will be subdivided in
such a way that a piece- wise polynomial approximation of
logy(1 + x) will be represented by functions of the type (3-6).

As a result of the approxlmatlon the interval (3-4) will be
subdwuded into submtervals ‘ , . , .

XX X Xl X XXX 3-10)

N

where: : BRI

X, =0 and X =1

-

For each |nterva| [X;.,.X], Iogz(1 + x) is approximated by the
_function Z, (x) " -

- 95
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The coefficients A;, B, and C; are stored iJ\ three ROMs. Given

x, the access time to the Eoefficiér\ts of Z,(x) carreSpondihg to the

interval [X; ,,X;] where x falls into is an important contnbutlon to

\ . . “the total delay of the circuit. Notlce that the fastest search would
- - .require a number of . ,compansons prppor_tlonal,to log,! and that
each comparison vdoqld fequired a time proport‘ional to IogzN,

[ where N is the number of bits with which x is'represented. This

. - | means a contribution to tI‘je overall time coyﬁplexity of
‘ O(log,l*log,N) which would prevent us from obtaining a time
complexity O(log,N). In ‘order'toﬁ\a‘chieve a fast a’ccesg to the

./ approximation coefficients, an address decoder scheme will be

introduced later in" this chépter and has a'time,_ comp|exify\of
O(log,N). - . R

y ' N " l'
l)‘
, -

4

The break-points of the piece-wise ab:prokimatiprj ‘and the
coefficients (Ai', B, C) of the.approximating function Z(x) in the
‘subintervoal X X)), 121, carﬂm obtained by.thaé following

bisection algorithh (ALT1). ’ ‘ ' Co



o | /
Q‘ /

. [« o ¥ &y |
ALGORITHM AL1 | sl

procedure b'iéectidq(var bp:array(1..2] of integer; .
- var coefficient:array[1..3] of integer);

var I,“z . integer,; _— ' )
begin B - |

ly: =bp[1]; S o . ;

l,: =bp(2]; - ' ‘ ‘fi
~whilel, <>l,do - SR |
" -begin - , \
leastsquarg(coefficient,bp[11,((l, +1,) div 2));.

if check(coefficient,bp[1], (1, +1,) div 2)) then

| 1,: = (I, +1,).div 2 |

. else . =

o =l +1,)div; |
énd; -
bp(2]: =1,; . -
bnd; } .

4

.Y

* * begin {main program}
bp[1]: =X, '
repeat . , . :
- bpl2]: =X;; , T
_ ( bisection(bp,coefficient);.
* store(bp,coefficient);
bp[1]: = bp(2];
until bp[2] = X
end.

-

The algorithm uses the procedure leastsquare and the

function check. The procedure !eéstsquare gives the coefficients

A, B,, C; of (3-6) for a given subinterval. The functi’on,che‘c'kfréiar.ng

= b the value true if for the given coefficien-t;;ﬁd\s.{bint‘erva‘l, the

|
f »

!
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approximation has the desired accuracy. The approximation Z,(i(),
of the mantissa is represented by an integer binary namber. For
this purpose, the coefficients obtained by algorithm AL? ard

multiplied by the desjred accuracy and converted to integer

-numbers.

- The break-points bp[1] and bp[2] are passed to the procedure . :
and bp[2] is modif}ed by the procedure. The break-pdint bp(1] is
equal to X;_,. The first time the procedure is exe‘cuied, i is set equal
. At the beginning of the procedure exe'cufion, bp[2] is always
qualto XT.. The procedure finds a value for bp[2] that corresponds
to the ¢nd X; of the maximum length interval X, ,,X;] in which an

approximation with the desired accuracy has been found.

If X; < X, then the procequre is called again with i=i+1, -
bpl1]=x.,andbp(2]=X,. ) " " ‘.

™

Table 3-1 contains the break-points and’ coefficients for

" computing the logarithm of a number represehted by N = 16 bits
~ with an accuracy of the order.of magnitude of the least-

significant-bit. The values are represented by integer numbers in
the decimal code. In order to compute the true values of the
break-points, the numbers in Table 3-1 have to be divided by
32768. Figure 3-4a and Figure 3-4b show the logarithmic curve

and its piece-wise approximation obtained with the above
described method.
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COMBINATIONAL N,E_‘TW.(;)RK..FOR LOGARITHM CALCUtAT!ON S

An approxamatmn Z (x) of Iogz(1 + X) can be computed by a |
combinationad! network descrube?i by the followmg .concurrent

‘alﬂgonthm AL2. - : é ‘
Algorithm°AL2 \
function Iog(x real):real;* . } LT~
var address:integer; - - - ‘

Y1 Y2 Y3 Vs Y5 real; ,
begin . . .
cobegin ' : -

address: = ADR(x);

Yy=xx # o 41
coend; ' - S -
cobegin | ' '

Y,: =Y *Aladdress];

Y;: = Bladdress]+x;

PSA(Y,.Ys.Y,.Y3.x, C[add ress]):
coend;
log: = Y4+Y5, ‘

end; °

- ‘D\ o L'V

The function ADR(x) computes the addresses of the -
coefficients A, B, and C; for a given x. The circuit implementing it
will be described in the next section.

. -

s

A scheme of a circuit implementin~g algorithm AL2 is shown in,
Figure 3-5. The network requires 4 levels of computation

independently from the number of break-pdi%
‘ o o .

%
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.
The coefficients (A;,:8;, C;) can be negative, thus sore of the
multipliers and adders have to be able to handle swo's-

-~ complement numbers.
: >

. The procedure PSA represents a Pseudo-Adder, that is a
S : Al
circuit with 4 inputs, in our case Y, Y,, x, Cand two outputs Y, and

Y, related by the following equation:

4

|

o
\

Yo+ Ys=Y,+Y;+x+C . , f-n)

'\lt'is well known that this operation can be performed by a

network of Carry-Save Adders (CSA) with a délay that is .
independent from N. .

li has beeﬁ shown in Chapter-2 that a considerable saving in ‘
area complexity with great improvement in the operation speed
of a parallel -multiplier can be obtained by using Pseudo- -
Multipliers (PM) of two’s complement numbers. PMs are bina:ry
. multipliers with two output numbers whose sum is equal to the
product. PMs can be used for computing two numbers Yz,ﬂand Y,
whose sum is Y, and other two numbers Y,, and Y,, whose sum is
Y, i.e. S . . |
Yy + Y=Y, o LT - (3-12)
¥ +Y5p=Y; o |



‘ 2
If pseudo-multipliers are used, then two numbers are

- ~ obtained for each multiplication and PSA has to compute the

- following sum:

Yo+ Y5 =Y, + Y,,+ Y3,. +Y;, +\< +C (3-13)
/ : ’ ) ,

' //\J

éhapter 2 proposes a circuit based on CSAs for computing the
(3-13) with a time delay equal to threé’ktimes the delay of a GSA
-~y e
which is independent from N.

With such an approach, the part of Figure 3-§ below the
dashed line can be substituted by the circuit sketched in Figure 3:
6. E

N
]

. A detailed description of the desigfiof PMs be/found in
Chapter2. W .

As described in Chapter 2, PMs’have an area complexig O(N?)
and a time complexity O(logN), PSA has an arga complexity O(4N)
and a time complexity O(3)/ According to [BREBO] ADDER can be

.implemented with a circuit having an area complexity O(N log N)
anda t'ae complexity O(Ioé N). -
. _ -

Chapter 2 also describes the use of two's complement
notation and shows how MULTIPLIER-1 can be implemented wnth
a PM and an ADDER with a time complexaty O(IogN) and an area-
complexnty O(N?).- . - ¢
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" other components. .

. represented by a 1.

" ADDRESS DECODER
- ~ v . , ta
The address generator design is an interesting contribution of -
this thesis and will be described in detail in this Section. It will be
shown how this desugn approach does not deteriorate the area

complexity figure. O(NZ) nor the tlme complexnty O(log N) .of the

" The sign of the f’,ollowihg differences are computed in

&

parallel: . | .
= sign(x - X,)

' (3-14)
i=(1,..,01-1)

-

A positive sign is represented by a 0. A negative sign is

T 4
(‘\

The address is obtained as follow: -

1-1 . .
ADRix)= D S, v | @-15) .
i=l

assuming that the firstinterval has address 0.

[4

One 3ossible solufion consists in computing, as shown in
] ¢
Figure 3-7a, the address of coefficients (A, B, C) by I-1 carry-

L -
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Jdookahead networks and & parallf.l blnary counter that can ‘be
implemented with a tree of full- adder cells

Smce a carry- -lookahead network has an area complexjty
'O(N log N), and | of these circuits are requrred the overall area
complexrty is O(IN log N). As thns\complexlty can be greater then
0O(N2?), a better solutlon has to be found. B

-

&

.- The bits S, (1 < i < .1) can be obtained by comparisons -
between x and the break-points X;. As the values of the break- ’
pornts X, are fixed, the design of comparators can be Slmp[lflelﬁr
Let us call Pseudo-Comparator (PC) a simplified comparator

. having a N bit mput number and one bit output. PC compares a

" variable number x wrth a fixed numb’%r X,. Furthermore, the value
x can be compared with all X; snmultaneously and ADR(x) can/ge
obtarned by a circuit that performs a logarithmic search on a
binary tree where the nodes are pseudo comparators

\ T4 °

. ¢
*The design of special fast pseudo-comparators will.be now

considered. ° L C ) .

— -4

Let us assume, as an example, that a break-point BP = X, isa -
« 16 bitnumber: N . e

¢ - BP=byshy, by - oL (3-16)
S I . ’ N ) -

| ' :

Let divide BP into 4 groups of 4 bits each:

-

~ - . >
T e

- 104



‘
-. | BP2BjBBB, - . ST 31)
C | whe,re e ’ N '
° &7 ;btsbtab 3b12
. B, = bnbtob9ba
ST - B, = bybgbiby’

o« A

h 30'-b3t?2b1bo N T

¢

' LA : Y o Lo
- T in a similar way, let subdivide'x into four groups asfollows:

A

. '. . i h BT ) .. ~ - ‘ ) - i ¢
_‘ L . ) ” . X = W3W2W1WO .. : . N . . & "“ (3'19)
- ~ - Notice that x and BP are pdsitive binary frections in this )
- . partlcular applncatlon The desugn of PCs starts with the desngn of
cells that compare ‘W, -with B, and generate outputs L.and E; N
‘ according to the following algonthm PC1. . o T
N ' . "_ B h | . " - ‘
[N N . ‘ e
. N Y "
ALGORITHMPCT . 5 fos
begin . T - w : o N
i~ |fW<Bthen s . _ B
. . ™ ' c . : : 5 -
S S ¢ L e
else . o . ' o , b,
_ , ' L =0 ’ . . e LT - ' -
s s i. - ifw| = Bi then- . - . ’ : . . .
Ei = 1 ’ .. . . L

. .
‘ else . ! ’
X \ ¢
.
. .




-

L 'stay)s'fof' Lower, E for Equal.

. -
“ 7 e

”
- r

ln order to fmd if x is less than BP, the followmg expreﬁss:on |s‘
used .- '

e

: © x is less than or equal to BP = Ly, + EyL, + EyE,L, +
EyEyE Ly + EyE,E,E, | (3-20)

v

+ represents logical disjunction and - represents fogical
~ gonjunction. Dl ' ‘

t

T,h'.e circuits'for implementing L;"and will be presented in
_ Appendix;3-A. |

]'he pseudo comparators have constant tlme and area
;omplexlty Thelr outputs have to be interconnected in such a way

that they implement the function (3- 20)
“hn, iy

[22

AN

'

e IR The 4-bit pseudo “tomparators can be. conr\ected wnth ithe
' ' scheme of Fugure 3-7b. . 7

L . | ,; e

~'" ' “’The area EOmpIexity A(PC) of such @X}he’me grows with N
- - ‘because gates have limited fan -in and each PC handles a fixed
R number of bits. Area complexuty can be computed as follows



\F 4 '

.

, N N TN '
A(PC)::Am+—-(A [+A. )+ —(A + A ,+A Y+ .=

4 and wires” . g = or and wires ,
N A . 11 1
:(A + A and T wsﬂ:( + A dM\.W"es)(8+ 16+"+§)"
: N =3, -4 logN
= T At At Ared VA HA L FA, 270 27%+ ..+ 2 >
A + A ' + Aw:res l 1 (3 .21)
A +A L FA \ e
. . wires , .
3 \ :
° " logN - . . .
- N , 1 -k : "
AP =NA + A AL (T ta Y 2T . B-22)
k=3 .
The complexity A(PC) is O(N) as far as: ke
log N , .
l . !
—+a) 27%s1 : (3-23)
¢ 4 k=3 . - \

" Under he condition (3 23) that is true for practlcal value of N,. /

the areac mplexaty oflcomparatorsw . . /

7 ' S o /’
I L . : ‘ ' e
Acomp = O(IN) < O(N?) , ' (3-24)
. N . ¢ M i
‘The time complexity of each comparator is: o
N ‘ . ' ) // ‘ B '
Tc?mp =O(loggN). . 4 B
.‘"_/7/ N .
A .
g 107 ./
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‘The base of.the Iog in (3- 25) depends on the fan-in of an or

gate. A practlcal value of 6 can be assu/med for the fan- -in. As all
the comparators operate in parallel the\ (3- 25) represents the

conttibution of the comparators to'the overall time complexity,

-
L

y
tet cmp; be the output of the it comparatbr ADR(x) can be

/
obtamed as follows: . /
/

|‘ ./ ‘ \°
-1

ADRG) =Y cn/p oo ‘ - © (3-26)
|=0// ‘ '

/ W
/
/

The bits adr of ADR can be obtained by I combinational
circuits derlved by Table 3-2. From Table 3-2,fhe following

functions are derived:
/ .

/
/
/

/ ’ | \
' adf‘2 = cmp, - - '

/ R

adr = cmp,- cmp, . /

N -
. qdr6= cmp, - cmpy + emp,: cmp\?&.i- cmp,

_ The functions ADR are partic(.rlarly simple because the cmp,
have to respect the constraint that all the ones and the zeros must
be contiguous. ’ ‘



The time com&xnty contribution mtroduced by these
functions |s constant with | and N and the area complexity .
contnbution is O(log 1).
!
‘ A n'{ore systematic approach for large value of N consists in
v " computing the adr bits with a hetwork of multlplexers (MUX) as -
shown in Flgure 3-10.

»

L—-": . . . ‘ ’ | - . =
Each network of multiplexers has (I-1) mputs consisting of the -

cmp, bits. Two emp, feed the first MUX, other 4 cmp; bits feed the

"~ second MUX and soon. The correspondence between MUX inputs
"and cmp; is determmed by the algonthm order glven in the

) following:
ALGORITHM order (N : integer); . «
o varstep, i, j, sum : integer; i | ’ N
~begin ot | o ¢
step : = N; ‘ ' . .
fori:=1tolog,Ndo . *-. .
begin ‘ ‘

. sum ; = step div 2;
forji="1to2-'do
begin

- writeln(sum’: 5);

' osum:=sum + step;’

ehd; '

step : = step div 2;
end;

" end;

R .
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The successive 4values assumed by sum make a sequence of ‘
indices for the cmp; that have to be apphed to the multtplexer
inputs in. Figure 10, For N = 16, the sequence (n,, ,5) of cmp
mdncesnsthefollowmg(B 4 12, 2, 6 10, 14 1, 3 5 7 9 11, 13, 15).

. . |

- The overall area complexlty of the multlplexer net\gorks |s .

O(Iz) whuch is less than O(IN) -

|
l ’
|
|
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' COMPLEXITY

Multlplners and PMs can be |mp|emented wnth an area .

e complexlty O(N?), a time complexlty O(iog N) and a period
| complexlty 0(1) accordmg to the desngn approach proposed in
Chaptér 2. ‘

yjs'ing the special design of fhg pseudo-comparétor, it is
possfble to design the address gen'e'rator with an area complexity
of (IN) where | is the number of break- -points in the approxlmateg
curves. Smce 1is less than N, thé overall area complexity of the
circait is stull O(N?), The time complexity of the address generator
fs O(log 1) and the time complexity of t‘hﬁ entire circuit is O(log N).
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> PIPEEINING | - -
The network can be easily pipelined by introducing memory
elements as shown in Figure 3-8 and Figure 3-9. From the
inspection of Figure 3-8 and Figure 3-9, it can be easily derived

that the period complexity of the network is P = O(1).

N . 112
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COMPUTATION OF THE ANTILOGARITHM AND OF BINARY
. .- DIVISION ' A

—_— —
»

Let us consider two numbers X and Y represented in sign and
magnitude with the magnitude represented in floating point:

X = squzs‘, -
. " (3-27)-
} - tw ‘ ‘ . .
3 E . ' 4
Yy=SmM2’
. Yy
5 meayprmntioson | L
; Where M styys for Mantissa and E for Exponent. |
z ’ ‘ . .l - ‘ | ) “
The logarithm of t(e magnitude of the quotien\t: :
| Z=X/Y ' ' (3-28)
/ \ .
\. < ’
‘ ~can be obtained as follows:
loglz|] = (- E) + (logM, : log M;) (3-29)
. While the signs of Z, S,, cin be obtained by the-following -0
" boolean equation: " | -
. S, =5, @5, J
| . 13
Lo S




Figure 3-11a and Figure 3-11b shows a scheme for binary
division. Notice that it is not necessary to berform the final
addition for log M, and log M, . Rather the two numbers

r

representmg each logarithm can be added togheterlin a PSA. As

, M has to be subtracted and all the numbers are in two's

' complement at the output of the PMs, each bit of each output of’

the PM for log M is complemented and two ones-are added to the
PSA. lrv this way the two numbers whose sum is log M, are two's
) complemented\zfom being added to the numbers whose sum is

M - S

Suitable shifts can be performed before extracting the

logarithms in order to ensure thatM, = M.

| (\

The antilogarithm'¢f log M, can be computed using the same |

\
!

approach and hardware introduced for the computation of the
logarithm. . .

The approach consist in using piece-wise polynomial
approximatior of the error function .

o«

alm) = 2m-2m , V - \ : \ (3-30)

~.

Break-point and coefficients for the apﬁroximation of a(m)
when N = 16 are given in Table 3-3. "
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GONCLUDING REMARKS ON THE LOGARITHM SOLUTION

L3

»

.
“
.

A combinational-circuit for computing the binary logarithm
“of an N bits number has been proppse& with an area complexity
O(N2). The structure has a time é'or_gpléxity O(log N) and can be

pipelined‘~with a period complexity 0(1:).

. Several figures of merit (FM) have been proposed the ones
. that have mostly béen discussed are:

FM, = AT2(PE)P? ‘ N
FM,, = A(PE) |
FM, = A(PE)T

q

The combinational circuit proposed h‘g”e have the following

figures of merit: ..
- : .
' - FM, =N2log’N |
O FM=A? | ~ (33 1))
: / s FM_=N2log N /// I

The same approach can be used for cohpufing the

J antilogarithm. Two circuits for »comphting the logarithm and one

,_‘cir'cuit for corhput_ing the antilogarithm”can be used for

performing a binary division with the same figurés of merit as
eg,dations (3-31). : ‘ Y |

/.‘

¢ s




TABLE 3-1

Coefficients and b;eak‘:points for computing thelogarithm of
16 bit numbers.

D]

SEGMENT . RANGE X COEFFICIENT log,(1 +x)

0 F 0 ' 00000 A,=-21679 . 0.00000

2923 ° 00892 B, = 14438 012327 .~
ﬁ Co =.0 _ o
" 1 2923 00892 A, =-17983 ' 0.12327
6718  0.20502 B, = 13756 0.26906
¢, =33
- 6718  0.20502 A, = -14611  0.26906
11153 0.34036 B, = 12367 0.42262
C, =178 .
7
3 11153 0.34036 A, = -11794.  0.42262
N 16148  0.49280 B, = 10450 0.57802
C; = 506
4 16148 049280 A, = 9520 . 0.57802°
21644 0.66052 B, = 8213 0.73164 -
C, = 1058
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21644
27755

27755
32768

0.66052 A,
0.84702 B,
Cs

-

0.84702 ‘Ag

1.00000 B

n

-7694
5803

1855 .

-6393
3625

Cg = 2768

'0.73164
0.88520 .

0.88520
1.00000



TABLE 3-2

Address gdeneration table..
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of a(m) = 2m.- 2"‘

" "SEGMENT

»
4
s *

o

TABLE 3-3%.

ko

Break -points and coeffucuents fot a polynomial appr\oxlmatlon -

RANGE

4443

9767

9767 .

- 14499

14499

18495

18495
23375

X

0.0000

.0.1356.

_ 0.1356
0.2981

0.2981 -

0.4425

0.4425
0.5644

0.5644

0.7133

119
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'COEFFICIENT
Ao - '16504
By = 20151
Co=0"

A, = -18301
B, = 20662
C, = -38

A, = -20354
B, = 2‘|876
A; = -22321
B; = 23603
A, = -24519
B, = 26113
'Cy = -1317

M

.2X

1.0000

" 1.0985

1.0985
1.2295

-

. 1.2295

1.3590

" 1.3590
1.4788

1.4788
1.6346 -
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23375 *°0.7133

\

727900 ' 08514 A,
32096 ' 0.9795 . B,

Cs

109795 A,
1.0000- ‘B

= -27083

. =*29765

= -2619
20699
= 34215

= -4513

’.

o
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R | APPENDIX3-A . |

. Table 3-A1is a truth table for L, and E, as functions of four bits
of-X. There. are 16 such functions for each L; and E,. The pair of
fuhictions used in a particular circuit depends on 4 bits of the

constant that has to be compared with X.

/ . I
TABLE3-A1 ' . . - .
AN
- CONSTANT . - : C
Y -

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

LE LELELELELELETLETLETLETLELETLELETULELE

0000 01 101010101010 1010101010 10101010

0001 00 0110 10101010 1010101010 10101010

imooooogot101010101010101010'101,01010
0011 00 600001 101010101010 710101010101O0.

0100 00 00000001 101010101010101010 1010

) 0101 00 000000000110 1010101010 10101010

0110 00 000000000001 1010101010 10101010

omoood’ooooooooooo11o<to1oio10101‘010

1000 00 0000 0O0O0O0OO0OO0COO0O0GT' 1101010 1Q10¢11010

100 0000000000000000000MN101010101010

1010 00 0000000¢® 0000000000 OT1 1010101010

1011 00 0000 00000000 O0O0OOGOCOO OO01 1010101 C

1100 00 0000 0000 O0O00O0GCOOO0O00O0OCOO0 011010610

1101 00 0000 0000 0000 OOOOOO0O OO OO O0O0O1 1010

1110 00 0000 00 000000000000 OO0GO 00000 110

1111 00 00000000 0O00OO0O0OOODO OO OO0 00 O00O0O0GOQ 1

N ) ' .
‘ L
, ‘Q‘J

For each combination of bits of the constant acting as
-specification bits, the following logic functions have been
derived.
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Ly=0
Eo= X:l'
L = X, -
E =X, -
L,= X4
E2= Xs .
L= X; -
E3= Xa
L= X, -
E4= X3 .

.
L= X,

i -
E5ﬁ= Xa .
Ly= X, -
Eg= X, -
‘

. . | ‘
Xpr Xy Xy
X,- X, X ) ‘ )
xz’ xl © PR,
‘ -
X, Xp X N
b A\
oI N
X, (X +X)
> d‘
— ' 1
X2 Xl Xo
— - o
X2 ’
Xy X X )
(X, +X,- . X)
X, X Xo .
o
(X, + X)) ‘ ’
’ >
Xz‘ Xl' xo ’ \ \
i -~
122 ’ ' .



L1/

7 3 2 M 0
las = xs *

= . . v { Y

Es Xs 2 Xn Xo

-3 2 M 0
L12=X3+X2 |
[

* — [ Je—
E_=X-X- X X
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..omo ~ .

\ - L“= 3+X_+ ) ‘

€ . ¢y
CEg=Xy Xy Xt K, ‘ °
'Y
111 ) . i . -
- "15‘“ X:l Xz' Xl Xo .
Eg=Xy Xp° X+ X,
1 r r 4

Figure 3-A1 shows the implementation of functions L,, and
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Figure 3-8. Combinational circuit
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Figure3-6. Pseudo-Multiplier Circuit
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Z(x)

Figure 3-9. Pipelined addition of the outputs of bseudo-mbltipliers
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Figure 3-10. Metwork of multiplexers for computing
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Figure 3-11a. A Scheme for ein‘ary division (Mantissa)
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CONCLUSION
N

Networks for perfornﬁlng mul*tiplication of two two's
complement 'numbers have been proposed in Chapter 1 and 2.
Those networks: can be implemented in a synchronous or‘an
asynchronous way. If the factors to be multiplied have N bits, the
area complexity of the networks is 'O(Nz) as in the case of cellular

multipliers.

Wlth some additional circuits those multlpllers c}‘n be used

either independently for performmg four separate smgle

_precision multiplications or connected to perform a single double .

' precisiovlultlplicatlon.
, : : ‘ 2

4

Asynchronous ‘multipliers can be built~on this proposel.
Input/output ports can be multiplexed in order to minimize the .
package pins needed using the same technique proposed by TRW |
(TRw78. . )

Lo

1
Chapter 1 intgoduced a.fast scheme for macro cellular

.iterative multlpllers and a cell design method for reducing the
delay introduced by a macrocell. The approach will be suitable for
lmplementatlons with very high speed technologles like Galllum
Arsemde where the simplicity of a cellular structure is an
imperative requnrement.
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Several Figures of Merit (FM) have been proposed the ones
that have begn mostly discussed are:

FM, = AT?(PE)?

3

FM, = A(PE) , L m

FM_ = A(PE)T . .

c B

]

. The structure proposed in Chapter 1 has an area complexity
of O(N?), a time complexity of O(N) and a period complexity of
O(1). Those corbp[exities correspond to:

Z/ -
L . FMa = N . ) 0‘
. FMb =‘ NZ‘ I
) FM_ = N3

<

Y/

The recurswe algonthm design approach introduces some D

new ideas that can be useful for an automatic layout design.

Another potgntlally useful idea presented is the"mmbmatnon of

_ multipléxer based macrocells’ with pseudo-adders. Macrocells: -

based on multiplexers allow a fast propagation Qf changes of
variables - affected by’ a far Yarge delay by applying them to the
addr’?’s%&lect (inputs while using snmpler and slower circuits

applied’ at the multipleéxers inputs. Paths contamnmg a few\

macrocell in cascade can be tolerated as far as their delay is not a
predommant cor;tnbutlon to the overall multupl ier delay. Efflaent

' ‘ pseudo adders ‘with a ¢onstant delay can be used for adding up

*
14

-



=Y

the outputs of chains of macrocells in order to produce two
numbers¥whose sum is equal to the desired product.
N e
) - . P
A recursive procedure can systematically place adders in a
regular layout of macrocells making the maximum lenght of a

chain of pseudo adders proportional tolog N. -

- following figures of merit: Ty

+
)

]
Pl

- The recursive structure has an area complexity of O(N?), a

time complexity of O(log N) and a period complexity of 0(1) which
éorrespo[\d to the following figures of merit: '
FM, = N2logN
FMb = b‘2 v
FM, = N2logN

l\
7

A combinational circuit for computing binary logarithm of an
N bit number has been_proposed in Chapter 3 with an area
complexity O(N?). The structure has a time complexity O(log N)
and can be pipelined with a period cc%plexity O(i). ' [

\

“The combinational circuit probosed in Chapter 3 has the

<

. ) ' ’ &
M, = N2log2N -

y FM, = N2

<

FM, = Nllog N ’

. . 145

-1

A

Al




The same approach can be used for computing the
antilogarithm. Two circuits for computing the logarithm aq'd one
circuit for computing tﬁe antilogarithm can be used fot"

performing a binary divisic‘mzwith the same performance.

A . '
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e
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