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Abstract

Given a transfer function (open circuit voltage or short
circuit current) of the form

oo (1 - U)n/2
0 (U)

which is to be realized as a cascade of symmetric structures

each having a chain matrix of the form
r-l ap
[a]l = (1 - u)~1/2
U

ap =

where p is the normalized short circuit impedance, and q is
the normalized open circuit impedance at one part of the
structure, and U = .p/q, there are .in general, many different
realiéations, giving rise to different sets of impedance
scaling factors a;. It is of practical interest to consider
minimizing the ratio of the largest to the smallest of these
factors. 1In this work we have carried out such a minimiza-
tion for two, three and four section cascades, and have ob-
tained easily applicable analytical results.

In the cases of the two and three line realizations

the transfer functions are of the form

n/2
7= (1 - U)

T "I ¥ Ku




where n = 2 or n = 3, In some applications the value of n
is of no great importance, and we have therefore compared two
and three line realizations, and determined for what ranges

Kl the two line realization has a smaller minimum ratio than

the three line realization.
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Chapter I

Introduction

l.1 Statement of the Problem

The synthesis of a transfer function (open circuit
voltage or short circuit current) as a cascade of symmetric
Structures is now well known [1]. It will be shown that the

transfer function of a cascade of n symmetric structures is

of the form

oo (1- U)n/2
Q(U)

where U is a dummy variable used in the synthesis procedure,
and Q(U) is a polynomial having all its zeros on the negative
real axis of the U-plane. The synthesis is cérried out by
choosing some other polynomial P (U) such that Q(U) /P (U) is
an RC driving point function of U. Apart from this restric-
tion, P(U) is completely arbitrary. Hence there are many
possible realizations of the given transfer function, and
one may introduce other criteria to select a best realization.
One important such criterion is element spread. If
the symmetric structure is lumped, then the choice of P(U)
will significantly affect the impedance scalings of the var-
ious sections of the cascade. If the symmetric structure is
distributed, then this impedance scaling will be reflected
in the widths of the various sections of the cascade. OQOb-

viously large element spreads will lead to practical difficul-



ties. It is therefore of interest to attempt to minimize
element variations.

In this work, we will examine two, three and four
section cascades, and in each case, analytically determine
configurations, i.e. impedance scalings for each section,
which will minimize the ratio of the largest to the smallest
scaling.

The method of approach will be to first analyze a cas-
cade of sections. Next, the chain matrix parameter A = l/TV,'
which will now be known in terms of the scaling values a; '
will be studied and optimum solutions obtained. By so pro-
ceeding the polynomial P(U) will automatically become fixed.
The results obtained will also be immediately applicable to
the synthesis oﬁ the short circuit transfer function TI’ as
this has precisely the same form as Tv.

Finally, we note that since the major application of
this work will be in cascade synthesis of transmission lines,
we‘wiil in Chapters 3 - 5 not distinguish between "sections"

and "lines".



1.2 Chain Matrix of Symmetric Structure

It has been shown (1) that a symmetric structure (SS)
has a 2 matrix of the form:

[z] = &~ = (1.1)
Fa |1

where 2, F1 and %2 are all functions of S, and a is the im-

pedance scaling factor for the section. Hence, the trans-
mission matrix [a] is given by:, .
— = — —
a(F,% - 1) a(F,% - 1)
P, —t 1 L
1 F2 FlF2
[a] =
F F (1.2)
_2 F 2 1
a 1 aF1
B i _

We define p, g as the normalized short and open circuit im-

pedances of the SS. Hence,
F.2 -1
p=1/y;; = i T—
'll F1F2
q=2yy = F)/F

It is convenient to define the variable U as

F -1

The chain métrix [a] now becomes:

(1.3)

(1.4)

(1.5)



The variable U could have been defined

1/2

(1 - U)

For example letting:

2
F -1
U = & = l——-—
\}q F; .

[a] becomes:

[a]

1 -wm?

c

/pq

a
-

(1.6)

in other ways [1].

In this work we will use definition (1.5).

1.3

Examples of Symmetric Structures,

1l.3.1 ‘RC symmetric Structure

Consider the lumped SS of Fig. 1.1

It can be easily seen that:

[z] =

al™

(1.7
Ypq U
(1.8)
1
1l + DS 1
(1.9)
1 1 + DS




a

oA T
O~ _]-a- O

Figure 1.1 RC Lumped SS.




Comparing equation (1.9) to equation (1.1) we see that:

F

1 1 + DS (1.10)
F, = D§ : (1.11)

Using equations (1.10), (1.11) and (1.2) we obtain:

B a((1 + ps)2 -1)
DS (1 + D9S)
[a] = (1 + DS) (1.12)
DS
a(l + DS) 1
Equations (1.3), (1.4) and (1.5) become:
2
p=Fl l=DS+2 (1.13
Fle DS + 1 -13)
F
_ "1 _ 1+ DS : .
=R DS (DS + 2)
1.15
q (Ds + 1)2 (1-13)

1.3.2 Uniform RC - Transmission Lines

The RC~transmission line has beéome available as a net-
work element, as a result of the appearance of microminia-
ture circuits.

One method of constructing such lines consists of de-
positing a thin resistive film of tantalum on a glass sub-

strate, converting a portion of this layer into tantalum



oxide, and finally depositing a conducting layer of gold over
the oxide. The uniform RC-line is one where the resistance
and capacitance per unit length are constant over the length

of the line. The network symbol for the uniform RC-line is

given in Figure 1.2.

The [a] matrix of such a line has been calculated [2], and

°

is

- r, ]
cosh 0 5 sinh 6
[a] = ' " (1.16)
) .
— sinh 6 cosh 6
r
| o

where 6 = ¥sRC

R is the total resistance of the line = roz

r, is the resistance per unit length

% is the length of the line

C is the total capacitance of the line = coz

Cs is the capacitance per unit length

Equation (l1.16) may be rewritten as

o
1 T tanh 0
. o
[a] = cosh 8
T tanh 6 1
o
L—' —




Uniform RC-1line .

Fig. 1.2.



The impedances p and g may be calculated, and are,

_ 1l
9% 5 tanh ©
(1.17)
_ tanh © >
P==5 —
Hence, U = tanhze

1.3.3 Uniform LC - Transmission Line

At high frequencies (the Kilomegacycle range) one
example of an LC-line is the microstrip [3], which consists
of a metallic strip conductor bonded to a dielectric sheet,
to the other side of which, is bonded a metallic ground
plate. Electrically, the microstrip is analogous to a two
2-wire iine, in which, one of the wires is represented by the
image in the ground plane, of the wire thét.is physically

present. The symbol of the LC-line is given in Fig. 1.3.

The chain matrix of the uniform LC-line is identical to

that of the RC line (1.16), except that:
8 = sYLC

where L and C are the total inductance and capacitance of the

line.



The Uniform LC-line

Figure 1.3

10
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Chapter II

Analysis and Properties of a

Cascade of Symmetric Structures

2.1 Analysis

As was indicated in the previous chapter, the chain

matrix of a single symmetric

the following form:

[a] = (1 - u)~1/2

ap

e

structure can always be put into

ap
(2.1)

where a is the impedance scaling factor for the section. If

we cascade n sections, each of which has an impedance scaling

factor a; ., then the overall chain matrix is given by:

™~ e
-n 1 a.
7 n B
[a] = (1 - U) T
i=1 u
— 1
a;p _
L -
The above may be rewritten as:
—n B
2 & :
[a] = (1 - U) T I+a,
- i=l i
where i ]
0 a;p
a. =
i
U 0
a;p




Hence,
—% n n-1 n
[a] = (1 - U) I+ 2 o + ) z o. O.
i=1 i=1 j=i+1 * J
n-2 n-=1 n
+ ~2 2 z ai 0 ak + - (2.2)
i=l =i+l k=j+1 J

The second term of (2.2) takes on the form:

- =
n n 0 pa;
2 G.i = Z (2.3)
i=1 i=1
U1l
P a; 0
L. -
The third term takes on the form:
a; ]
n-1 n n-1 n — 0
a.
z 2 a; o, = z 2 U 3 (2.4)
i=1  g=i+l I i=1 g=i+l
a.
0 3
a.
L 1
The fourth term takes on the form:
n-2 n=-1 n
Z Z 2 oy aj Oy
i=1l j=i+l k=j+l
[~ ]
0 a;ay,
P 37
n-2 n-1 n J
= Z U (2.5)
i=1  j=i+l k=j+1 a.
[_I. J 0
P a;a,
[ _

12
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Other terms may be obtained in a similar fashion.

2.2 Properties of a Cascade of Symmetric Structures.

It has been shown (1) that the chain matrix of a cascade

of symmetric structures is of the form

[k 2 ]
-n Ka{(U+0Li) K8p1lr(U+Bi)
[al, = 1 - 0)? L «
KY 5 U I (U + yi) Ks I (U + Si)
- R
(2.6)

where U = g, and where the following necessary conditions

hold:

(a) if n is even, k = % and & = % - 1, while if n is odd,

(b) oy and Y ,_Gi and Yy e Si and Bi ;o and Bi

all interlace on the negative real axis of the U plane.
Further, 0 < oy < Yyr 0 < 61 < Yy 0 < 61 < Bl' and
(c) If the symmetric structure is an RC-transmission line,

then

Ka‘= Em— BB R S
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n
} G
_1 _ 1
KY s Ks = x
T Y. T 4§,
1 1 1 h R

As a consequence of the above results, we note that the open

circuit voltage transfer function of the cascade is of the

form:
n
2 .
- (1L -1
Ty = —% (2.7)
Kaﬂ [U + ai]

1

A similar form exists for the short circuit current transfer
function.

We further note that the driving point immittance functions
are of the form pz(U) or % Y (U) where 7z (U) and Y(U) are
RC driving point functions in U.

It has been shown (1) that such functions can always be

realized as a cascade of symmetric structures.
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CHAPTER IIIX

TWO AND THREE SECTION CASCADES

3.1 Introduction

As seen in Chapter II, the open circuit voltage transfer

function of a cascade of two sections is of the form:

=L _
Ty = &, = 170 | (3.1)

while that of a three section cascade is of the form:

S G ) i - - (3.2)
\ A3 1 + KU )

As there are many possible cascade realizations of equation
(3.1), we have the liberty to choose a."best“ realization.

We shall choose to minimize the ratio of the largest
a; to the smallest a;r and this will be called the optimum
realization.

In the case where the sections are transmission lines,
this will correspond to minimizing the ratio of the largest
to the smallest widths. - Further, if we ignore the numerators

of (3.1) and (3.2) we can compare the optima obtained in

(3.2) with those of (3.1),

3.2 Two Section Cascade

As seen in Chapter II, we have the following relationships
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for two sections:

.a
A, = (-7t s gi u) (3.3)
and also:
a
D, = (1-0) "% (1 + % u) (3.4)

It is only necessary to analyze (3.3), because if we reverse

a; and @y, then from (3.2) we obtain (3.4). Therefore we
a
need only consider the case where K = gl . It is obvious
2 a ‘
that given K, there is only one possible ratio gl which will

realize (3.3), and the only freedom we have is in a propor~
tional scaling of ay and a,.

3.3 Three Section Cascade

3.3.1 Introduction

As seen in Chapter II, we have the following relationships

for three sections:

-3/2 4, & 2
A, = (1-U) [L+0 (=+ =+ —= ] (3.5)
3 a, a3 a3 .
and also
~ 1y =3/2 q 8 23
D3 = (1-U) [1 + U(EI + 5; + EI) 1 (3.6)

It is only necessary to analyze (3.5), because if we re-

verse ay and as, then from (3.5), we obtain (3.6). Hence for

a given value of K, the optimum realization of TV = %— is

1 3
also that of T. = — ,
1 D3
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3.3.2 Preliminary Results

The following inequalities will be needed:

+ K-
a) If £%X 5 1 Then x 3 5% (3.7)

2
by £ &G - &h /EFD ST < L Thenk > 3 (3.8)

Proof:

The radical is real only if K > 3. Rearranging, we

obtain:

Sh -1 < EL smrmwEsr

Squaring both members and multiplying both sides of the
inequalities by 4, we obtain: (K-3)2(k+1)? < (K-1)2(K+1) (K-3).
If K # -1 and also K # 3, we can divide both sides of the
inequality by (K+1(K-3) and obtain: (K-3) (K+1) < (K—l)2 or

2 2

K"= 2K - 3 < K" - 2K +1, which is always true. This completes

the proof.

¢c) For all K such that K > -1, we obtain that:

BL < (-1 + /TR) 2 - 3.9)

Equation (3.9) implies that:

EL < (-1+/TR)? = k+2-2/KF1
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After some manipulations we obtain:
0 < K+5 - 4/K+1 or 4/K+1 < K+5

Squaring both sides, we get: 16 (K+l) < (K+5)2 = K2+10K+25

Therefore 0 < K2—6K+9 = (K-3)2, which is always true.

d) If K > 3, then the two roots of

x% + x(1-K) + 1 . ©(3.10)

are real, positive and reciprocals of each other.

The roots are given by

= Kl Ly Ry
% 5 = g+ WD (E3)

3.4 Method Used to Establish the Optimum

We will now proceed to establish the optimuﬁ. To
achieve our goal, we take all the a's in pairs, assuming one
to be the largest and the other to be the smallest. Each
ratio will then be minimized. These minima will then be
compared with each other in order to determine, for a given
range of K, the true minimum relation.

Starting with the relation

a
r =
2 93

WlHﬂJ

+ (3.11)

mlm
R
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we let al = X
a, = 1 (3.12)
. _ 1+x
and obtain a3 = K%

Note that if all a; are multiplied by the same arbitrary
constant, the value of X is unchanged.
The different possible relationships among the magnitudes

of the elements are given below.

(M = maximum and m = mninimom) -

Case I a; = Mza3ia2 =m
Case II a, = Mza3zal =m
Case III a; = MzazzaB = m
Case 1V aj = M>a ial =nm
Case V a, = Mialza3 = m
Case VI ' a3 = Mialzaz =m

We now proceed to the individual cases

3.4.1 Case I a; = Mi§3i?2 =m

We make use of Equations (3.12). We want to minimize

s}

L. X , with x > 1

2

3]

e

+X
-X

|

a; 2 a; Gives us: x > (3.13)

=
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=
»x

+

|

> a, Gives us: 1 <

ay > a, (3.14)

=
<

Since the function x has no maximal point (i.e., point where
the derivative is zero), the only way an optimum can occur
is if one of the inegualities (3.13) or (3.14) becomes an
equality. The other then becomes a strict inequality. We
now proceed to analyze each case separately

Case I(a)

Inequality (3.13) becomes an equality, that is:

_ 1+x
X = ==

(thus a; = a3)

After some algebraic manipulations we obtain that x is a root

of x2 + x(1-K) + 1 = 0. Therefore:

(k-1) ¥ /RFD (R=3)

Xy,2 = 5 ’ K > 3.
From inequality (3.14) we know that: 1 < %;g . Hence

x > 5%l (see 3.3.2 a)). Therefore the only acceptable root

of (3.10) is the one whose radical is preceeded by a positive

sign, and thus we obtain as an acceptable solution:

_ _ _ K-1 _];/————-——_—T
= a; = x = = + 5 (K+1(K-3

(3.15)
=1 with K > 3
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Optimum =

WIW
[

N

= E%E + L/ RFD(&=3) . (3.16)

Case I (b)

Inequality (3.14) becomes an equality, that is:

_ 1+x =
1l = == (thus a2 = a3)
From the last equality we obtain: x = E%l . Combining

X = E%L with inequality (3.13) we obtain:

K-1
K-1 , L+x _ 25 2 _
2 K-x ~ p K1~
2
If E%l > 1 then necessarily, K > 3. The solution for this case
will be:
K-1
ay =
a, =az =1 (3.17)
with K > 3
and the optimum is:
41 _ k-1
a, 2
2 (3.18)
with K > 3

We now have to find out which of the two cases (3.15) and
(3.17) is the optimum solution, both being valid for K > 3.

Supposing that (3.18) is a better solution than (3.16),

then we should have: E%l < §%l + 3/(K+1) (K-3) , which is
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true if K > 3.
Therefore Case I(b) is the optimum solution.'

Hence for Case 1:

a. = K-1 _ optimum

1=z T °P

a, = ag = 1 (3.19).
with K > 3

3.4.2 Case II a, = M3a33a1 =m

We make use of equations (3.11). We want to minimize

1 .
= < 3 where necessarily x < 1.

We should also have:

1+
ay, > azg , orl?2 K:§ } (3.20)

1+x
ay > ay s O g=x > x (3.21)

Since the function % has no maximal point, the only way
an optimum can be achieved, is if one of the inequalities
(3.20) or (3.21) becomes an equality. The other then becomes
a strict inequality. We now proceea to analyze each case
separately.
case II(a) _

Inequality (3.20) becomes an equality and hence:

1+x

1=5=

(thus a, = a3)
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or
x = Egi (3.22)
From inequality (3.21) we should have that, éfz >x .

Replacing x by K%l r We obtain the requirement that K < 3.

Element values are:

o]}
-
I
.

a; = a3 =1 (3.23)

The optimum is then:

i
a; - K=1I
with 1 < K < 3 (3.24)

Case 1II(b)

Inegquality (3.21) becomes an equality, that is

X = %;% (thus a; = a3)

After some algebraic manipulations we obtain that x is a

root of the following equation:

%% + x(1-K) + 1 = 0 (3.25)

Therefore:

(K-1) + V{&FI) (K=3)

X1,2 T 2 ’

=
v
w
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From inequality (3.20)‘we know that 1 > i*X . Hence

K-x
x < E%l - Therefore, the only acceptable root of equation
(3.25) is the one whose radical is preceded by a negative

sign, and thus we obtain as the only acceptable solution:

a, = ag = Egl - /IRFIT(R=3)

(3.25)
aé =1, K>3
and the optimum ratio is
a
53 = 2 » K>3 (3.26)
1 K-1- K+ K~

Having already found a possible optimum for K > 3, we
have to compare both cases, so as to determine the real
optimum,

If we suppose that Eil (Case I(b), (3.18)), is a better

optimum than 2 (Case II(b), (3.26)), then
K -1~ /(&+I) (X=3)
K-1 2 .
we should have: 5— < + Which means

K~ 1 - /{RFL) (&3]
2
Kzl) - K4l V®*I)(R=3) < 1 which is true if K > 3

(for demonstration see equation (3.8)) and therefore Solution

that: (

I(b) is still the best if K > 3.



3.4.3 Case III al = M3§23a3 =nmn

Making use of equation (3.12), we want to minimize:

a
1 _ x(K-x)
a, = Lk (3.27)
This function has no minimum value, it has only a maximum,
!
a, :
(because 3 < 0). Therefore we proceed as before.
X
x = yK

2

One of the inequalities:

a, > az or x > 1 (3.28)
a, > a; or 1 > ifX (3.29)
2 =73 — K~-x :

becomes an equality, and the other a strict inequality.

Case III(a)

Letting x = 1, we obtain from (3.29) that K > 3.

A possible case will be:

_ 2
a3 = k——]—. (3.30)
K> 3
And the optimum will be:
a
= =ELuith x> 3 (3.31)
3 .

This case has the same optimum as Case I(b), and may be

used as an alternate to it.
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Case III(b)

Letting a, = a3 = 1, we obtain as a possible solution:
_K-1 .
al ——2'— with K > 3
(3.32)
a, = a3 = 1
And the optimum will be:
a2 2 )
.a.;_ =T with K > 3 (3.33)

Case III(b) is identical to case I(b), and can therefore be

put aside.

3.4.4 case IV a5 = M>a,>a; =m

a

Making use of equations (3.12), we want to minimize Ei :
1

ii _ _1l+x :

aj T X (K=X) (3.34)

This function possesses a minimum. To obtain it we take the
derivative of (3.34) and set it equal to zero.

Doing so, we obtain:

- d 1+x - x2 + 2x - K _

X X(R=%) Zam? 0 (3.35)

Hence the minimum occurs at one of the roots of

x® + 2x - K= 0 , (3.36)
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Equation (3.36) has two roots, namely: X) o= -1 % YI4K .
’ . : -

Since x > 0, the only acceptable solution is:

X = -1 + V/1+K (3.37)

Combining equations (3.37) with ay of equation (3.12), we

obtain:

a. = 1rx _ 1 -1 + /I4K _ 1
3 KX g 4+1-1/TFR -1 +/T3K

The a's then will be:

-1 + /1+K

21}
i

I

1 . ' (3.38)

1
a3 = T
-1 + /I#K

The requirement a, > a,; implies that K < 3. From

a; > 0 we get K > 0. The minimum ratio obtained is:

a3 1 2
ay (—1 + /1+K) l

with 0 < K < 3 J

[

(3.39)

Because K < 3, we will have to compare Case IV with Case II(a),

to find out which is the optimum solution.
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If we suppose Case IV to be the real optimum, we should

have:

2
< K%T or (-1 + /TIR)? » K%l (3.40)

1
‘—1 + YIF+K

which is true (see equation (3.9)).

Therefore the new optimum for 1 < K < 3 is now Case IV.

3.4.5 Case V a, = M>a 3§3 =m

Making use of equations (3.12), we want to optimize:

o}

5% = %5% (3.41)

We should also have:

a, > a;’ 1>x | (3.42)
1+x
al _>_ 3.3 X 2_ K:—}z (3.43)

Since the function %%% has no maximal point, the only way an
optimum can be achieved, is if one of the inequalities (3.42)
or (3.43) becomes an equality. We now proceed to analyze

each case separately.

Case V(a)
Letting inequality (3.42) become an equality, we obtain

1=x , | (3.44)
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Equation (3.43) is now an inequality, therefore if in

X > %;% we let x = 1, we obtain K > 3.
We now obtain as a possible solution: .

a, =a, = 1
2
a3 = R:'T (3.45)
with K > 3
The optimum is now:
a
2 _ k-1 (3.46)
a3 2

We see that Case V(a) is an alternative to Case I(b),

and both are acceptable solutions.

Case V(b)

Letting inequality (3.43) become an equality, we obtain:

1+x

X = == (or al = a3) N . (3-47)

After some algebraic manipulations, we obtain that x is a

root of the following equation:

x% + x(1-k) + 1 =0 (3.48)

Therefore:

(K-1) + /(R+1) (K-3)
Xp,2 = > ’ K>3 ' (3.49)
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From inequality (3.42) we know that 1 > x which means that
the only acceptable root of equation (3.48) is the one whose

radical is preceeded by a minus sign. Thus:
- K—l 1 .
Xy = —5— - I/TRFIT (K-3) - with K > 3 : (3.50)
Thus a possible solution is:

- Bl - /e sy

a; = a5
(3.51)
a, = 1 and K>3
The optimum is now:
az: 1 K-1
£ = - = + 3/ (X+1) (R-3) (3.52)

ag 5%5 - /TRFD) (B=3) 2

For K > 3

We have to find out which of the two cases v(b) or I(b) has
the optimum solution for K > 3. Supposing that Case I(b)

(3.18) is better than Case V(b) (3.52), then we should have:

E%L < 5%£ + 3/(X+1) (K-3) which is necessarily true if K > 3.
Therefore solution for Case I(b) is better than solution for

Case V(b).

3.4.6 Case VI a; = Mialiaz =nmn

Making use of equations (3.12), we want to minimize
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a
3 _ 1+x '

We should also have:

as > a; which means %;% > x ' (3.55)
a; > a, which means x > 1 (3.56)

Since the function has no maximal point, the only way
an optimum can be achieved is if one of the inequalities
(3.55) ox (3.56) becomes an equality. The other then becomes
a strict inequality. We now proceed to analyze each case

separately.

Case VI(a)

Letting inequality (3.55) become an equality, we obtain:

X = Kl_t}}: (thus a3 = al) . : (3.57)

After some algebraic manipulations we obtain that x is a

root of the following equation:

x2 + x(1-K) + 1 =0 (3.58)

Therefore:

(K-1) + YTRF1) (R-3)
X 5 = 5 , K>3 (3.59)

From inequality (3.56) we know that x > 1; therefore the

only acceptable root of equation (3.58) is the one whose
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radical is preceded by a positive sign, and therefore we

obtain as an acceptable value for x:

-1+ /REDR-3L
% = K l+-2 K+1) (K-3 (3.60)
A possible solution will then be:
ay = ag = S5t + YWIFII (K31
(3.61)
a, = 1 with K > 3
The optimum then is:
a
-2 = Bl 3/ &)
1 (3.62)
with K > 3

We have the same optimum as for Case V(b) and we know already

that Case I(b) is better.

Case VI(b)
Letting inequality (3.56) become an equality we obtain:
x =1 (thus a; = a2) . (3.63)

Combiﬁing the inequality (3.55) with x = 1 we see that

K < 3, and we obtain as a possible solution:

a; = a, = 1

2
as = g1 (3.64)
with 1 < K < 3
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The optimum is given by:

2
K-1

QJIQJ
w

with 1 < K < 3 (3.65)
2

We have the same optimum K%I (for 1 < K < 3) as in Case II(a),
but we already have shown that Case IV is better than Case

Ii(a), therefore we can eliminate Case VI(b)

3.5 Summary of Results for Three Section Cascades

Depending on the value of K, we obtained three cases:

1. 1 <K<3 al = -1 + Y1+K W
a, = 1
_ 1 1 + /IiK ;
az = = K
-1 + Y1+K
optimum _ fg - 1 _ 2+ K+ 2/1+K
ratio ~ a; (.1 + /IFK)? K2 ’
(3.66)
_ K-1
2. K>3 al = 5
a, = ag = 1 (3.67)

4;

optimum ratio
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1

1l

a, =
T (3.68)

optimum ratio = 5%i

Remarks
1. When K = 3, we have an unique optimum: then
a; = ap = ag = 1. Formulas (3.66), (3.67) and (3.68)
are all acceptable.
2. As mentioned earlier, we should expect solutions which
are symmetrical with respect to a; and as.
If we look at the sets of equations (3.66) we see that

we can replace a; by 1 . And aj by %— without changing
a3 1
solution.

Looking at the sets of equations (3.67) and (3.68) we
see that by switching a; with %— and a, by %—-we get the
1

3
other set of equation and vice-versa.

3.6 Comparison of Two and Three Section Cascades

There are two first degree equations in U (see equations
(3.3) and (3.5)).
We wish to know for what range of K it is more advanta-

geous to use a three section cascade instead of a two section

cascade.

We know that if 1 < K < 3, the optimum is given by
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1
(-1 + /ITK) %

if we use three section cascade.

If we use only two sections cascade, the optimum is given
by K.

We try first to determine the limiting case, where we
could use indifferently two or three sections cascade.

Therefore we have to solve:

K = 1 (3.69)

(-1 + /I¥R) %
or
K4 - 2K2

This polynomial has only one root in the range [1,3] and

this was found to be:

Ky = 1.946965328 (3.71)

Hence, if K < KO’ we should use two sections, and otherwise

three. The results of this chapter are summarized in Table

3.1.
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CHAPTER IV

FOUR SECTION CASCADE

4.1 Introduction

As seen in Chapter II, cascades of four or five sections
will give rise to transfer functions whose denominators are
of the second degree in U.

It is the aim of this chapter to optimize the four
section case with respect to the criteria set forth in the

previous chapter.

4.2 Definition of the Problem

4.2.1 Definition of Ratios

The relationships for four sections are:

a a a a a a
A4=(1—U)‘2 1+u(-l+_£+_l+_2.+_2+_3)
a2 a3 a4 a3 a4 a4
coE)] .1
234
-2 2
A, = (1-0) 1+ UK, + U K2]
a a a a a a
D4=(l—U)2 1+U(—3+_:1+__4_+_3l+_4_+ 4)
a; a; a3 @ 3 243

+ Uz( 22%4 )] (4.2)
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It is only necessary to analyze Equation (4.1), because if,
in Equation (4.1), we switch a; to a, and a, to as, then it

becomes equation (4.2).

Letting
K] = Ryp + Ryg + Ry, + Ryg + Ry, + Ry,
Ky = RyyRyy
where:
a.
Rij = =
j

and
Rik * Rey = Ry
then we obtain:

K, = R

1 12 ¥ RipRaz + RypRy3R3y + Ryg + RysRy, + Ry,

Ky = RygRyy

We can express R23 and R34 in terms of RlZ’ Kl, and K2.
Doing so we find that:

2
“[Ry, = KjRy, + Kyl
R23 = R%. + R,.(14K.) + K
12 12 2 2
R =_I<£
34 T Ry,

We note in passing, that the requirement that R23 >0,
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bounds the range of values which R,, may assume: we must

have that
R12 €I

where .
K 2 2/K,

The impedance scaling values (ai) of each secticn can now
be expressed in terms of the ratios R12 and R23.
Letting a; =y, R12 = x and R23 = A(x), simple mani-

pulations lead to:

_ =
a; =
=L
a X & )
vy (4.3a)
a3 T ¥x
= 2
a, =
47 KA
where x ¢ I,
K K, 2 K K, 2 ;
_ 1 1 1 1 _
I= (-2—— (5—) —K2 ’ 2—+ (2—-) KZ) (4.3b)
' x2 - le + K2
A=-( i ) (4.3c)
x° + x(l+K2) + K2

Ky > 2vK, " (4.34d)
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We note for future reference that it can easily be shown

that x = /Kz e I

The possible ratios to be considered are listed below

_ 1
Rip = % Ry; = %
R,, = xA R.. = L_

13 ) 31 XA
R., = K.A R.. = -1_
14 2 11 T KA

_ 1
Ry3 =4 Ry = &
R = K_Zf_ R - X

24 X 42 ~ K;X
K

_ 2 %

Ry = = Ry3 R,

4.2.2 Minima of Ratios

As we shall be interested in minimizing ratios, we first
consider which of the above ratios could possibly have a
minimum, for some xX € I.

Beginning with A, we find its first derivative W.R.T.

Xy
| —(x2 - K.x + K,) (xz—K ) (14X, +K,)
dA _ d 1 2 _ 2 172

ax  dx | .2 -T2
x“ + x(l+K2) f K2 (x° + x(l+K2) + Kz)z

The first derivative is zero for x = #/K, , of which,
X = /Kz is of interest.
One may determine whether we have a maximum of a

minimum either by taking the sign of the second derivative,
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or by examining a sketch of the function A (Fig. 4.1).
Obviously, x = /KZ is a maximum.

Hence R23 possess no minimum within the required range.
1

However, R32 = x has a minimum for x = ¢K2.
The minimum value for R32 is:
2 , 2
1 X< + (1+h2)x + K, 1+ /KZ)
Ryomiy = = 2 =
A(/Kz) -x" + Kix - K, (K1 - 2/K2)
x=Vx'<'2

It follows at once that R14 has no minimum in I, but that

R does for x = YK, ,

41 2
2
1 x“ + (1+K,)x + K,
R = = =
4IMIN  KoA K2(-x2 + Kjx- K,)
x=/f5 x=¢K2
(1 + \[IZ;)Z
K, (K; - 2/?5)

We next consider R;,; = xA.
A sketch of this function is given in Fig. 4.2
Obviously the function possesses a maximum in 1.

This maximum occurs for some x > ¢K2 since

(Ax) = (&' x + A) = A(/KE) > 0
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It thus follows that R3l = %K has a minimum for some value
of x > VKZ such that x ¢ I.
. } K2A
Finally we consider Ryy = - A sketch is given in

Fig. 4.3.

Obviously this function possesses a maximum in the range'

x € I.

This maximum occurs for some x < /KE, since

K.A K,.[A'x - A]
a 2 _ 2 _
a‘£<—x ) = = = ALKy <0
x=JK; x=/K2
It thus‘follows'that R42 = KEK has a minimum at some wvalue
2

of x < K2 such that x ¢ I.

All the other functions of Table 4.1, namely Ry R34,

and R,. have no maxima or minima in the range I.

Ro1 43

4.2.3 Some Required Relationships
In order to simplify the discussion later in the
Chapter, we now develop some useful results.

1) Define the Polynomial P, as:

(1 + K2 - K

2

1)

X + K2 = (x - xl?(x - x2) (4.4)

which arises from letting A = 1.

We shall be interested only in the case where P2 has

44
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real roots satisfying:
(4.5)

Note that since x1x2 = K2 then Xl > K2 > X, < 1 and

vice-versa.

We now consider the following possibilities:

a) Xy, > K, >1> X, — Hence PZ(KZ) < 0 and it may easily

be shown that this implies that:
K, >3(1 + Kz) ' (4.6)

The same result would follow by considering P,(1) <0

The inequality (4.6) will be used for subcases: OR-4B,
OR-72, OR-11A and OR-~19B.

b) X, > 1> K2 > Xy - The restriction on Kl is again

given by (4.6).

Define the Polynomial P,' as:

(1 + K, - Kle)

2' X
1+ K2

+ K

5 (x - xl)(x - xz)

(4.7)
Which will arise from letting AK2 = 1. We note that if
Xy > KZ’ then X, < 1 and vice-versa.

As before we shall be interested only in real roots
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satisfying this requirement. Using the same argument as
before, i.e.; that Xy and X, must lie outside the interval
i, KZ] we obtain the requirement that:

(1L + K2)(2 + Kz)

K, > (4.8)
1 K2 .

The inequality (4.8) will be used for subcases:
OR - 4A, OR - 6A, OR - 7B and OR - 16B*.

We note the following necessary results: '
AR K,)

If K1 > 3(1 + K2) and also Kl > K2 ’ then
for both Pz and P2' we have that:
(a) If K, < 1: )
2(1 + K,) K. (K K, - 1)
2 2'1 2
¥ <gpTr -1 %t TIOFR) < x, (4.9)
1 2 2
(b) If 1 < K,:
. < 2(1 + K2) 1<k < Kz(Kl - K2 - 1) <« (2.10)
1 Kl - K2 -1 2 21 + KZ) 2 *

The proofs are tedious but straightforward.

* The different subcases referred to are defined in section

4.3.
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3) Define the Polynomial P3 as:

3 2
3 x~ + x°(1 ~ Kl) + x(1 + 2K2) + K

o)
I

2

(x - X) (x = x,) (x - x3) (4.11)

Which arises from letting Ax = 1.

We now show that P3 aiways has a negative real root.
First, we note that P3(0) = K, > 0. Now if K2 < 1, then
P3 has a root, say Xq1 in the interval [—K2, 0], since

_ 2
P3(-K2) = —Kz(l + K1 + K2) < 0. Hence
|x1x2x3[ = K, and |x1]< K, > |x2£3| > 1 | (4.12)

Further, if K2 > 1, then P3 has a root in the interval

(-1, 0), since P3(—l) = =(1 + Kl +K2) < 0. Hence

|x1%,%3] = K, and |%] <1 > |x,%5] > K, (4.13)

We shall be interested only in real positive roots, and

we will consider in particular the following cases:



a),KZ <1, Xz € (Kzr}/K;) -+ X

b)
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37 —
Ky

It may easily be verified that: P3(K2) > 0, and

(1 + Kz)(z + Kz)
hence that K, < 7 ’ P3(/K5) <0,
2

: 1+2/K2+3K
and hence that Kl >
'552

2

Therefore:

1 + 2/, + 3K, (1 + K5) (2 + K,)
<Kl< K
/K, 2

(4.14)

If X, € (K2, /Kz) where K 1l

5 <
Inequalities (4.14) apply to case OR-8B.

K2 <1, X, € (/Kz, 1l) » X3 > 1

It may easily be verified that P5(/K;) > 0, and

. 1+ 2¢K2 + 3K2
hence that K, <

1
£

» P3(1) < 0, and

hence that Kl > 3(1 + K2).
Therefore:

1+ 2;/K2 + 3K2

3(1 + K2) < K, <

1 /K;
(4.15)

For x, € (/KE, 1) where K, <1
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Inequalities (4.15) apply to case OR-20B. It can
easily be shown that when K2 < 1, there always
exist values of Kl satisfying inequalities (4.14)

and (4.15).

K, > 1, x, € (1, /R;) > Xy > /KZ

It may easily be verified that:

P3(l) > 0, and hence that Kl < 3(1 + K2)

1+ 2/K2 + 3K

2
P (\/I-E ) <0 and hence that K, >
3 2 ’ 1 /K;
Therefore:
1+2/K—2+ 3K, . '
< Kl < 3(1 + K2)
/Ky
. (4.16)
If Xy € (1, /Kz) where K2 > 1 B

Inequalities (4.16) apply to case OR-2A. It can

be shown that there always ekists values of K1

satisfying inequality (4.16).

K, >1, x, € (/Kz, K2) +> x, > 1

2 2 3

It can be seen that there is no guarantee that X3
is larger than X,+ We must therefore consider two
subcases:

i) x5 > x,

It may easily be verified that:
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Py(/K;) > 0, and hence that K, < 2 2
Ky
(1 + K2)(2 + KZ)
P,(K,) < 0, and hence that K. >
, o 3Y2 1 K2
(1 + K,) (2 + Ky) < x <l+2/f<;+ 3K,
Ky 1 /K,
(4.17)
X, € (/K;, K,) where Xy > x,
Inequalities (4.17) apply to case OR-5A.
Xy > Xg
In this case the inequality becomes:
1+ 2/?; + 3K, <% < (1 + K,) (2 + Ky)
/B, o K2
. (4.18)

If x, ¢ (/K;, K,) where X, > X

\

3

Inequalities (4.18) also apply to case OR=-5A.
It remains to determine for what values of_K2
inequality (4.17) or (4f18) is applicable.'.The

two bounds intersect for a value of K2 = 7.0711.

It may be shown that for 1 < K, < 7.0711,

2
inequality (4.17) applies, and that for
K, > 7.0711, inequality (4.18) is true.

(See Fig. 4.4).



52

4) Define the Polynomial P3' as:

3

v — 2, _ 2
P3 = x~ + x°(1 + 2K2) + xKZ(l Kl) + K

2

I

(x - xl)(x - x2)(x - x3). (4.19)

Which arises from letting AK, = x. The polynomials Py
and P3' may be related as follows:

x3 K, '

] — .

P3 (x) = K;'P3(§_) . (4.20)
K, '

Hence if W is a root of P3, then T is a root of P3'.

Our consideration of P3' is thus simplified.

a) K2 <1, X, € (K2, /Kz)

K ' .

This corresponds through the ;g transformation to the

interval for P3 where W2 e(sz,‘l), which is case b)

of P3.'

Therefore:l
1+ 21/K2 + 3K2

3(1 + K2) < K, <

1 . VK,

(4.21)
X, € (K, /K;), where K, < 1

Inequalities (4.21) apply to case OR-8A.

b) K2 < l, X2 Q(fK_z-[ l)

K
This corresponds through the ;3 transformation to the

interval for P3 where WZE(KZ,VKZ), which is case a)
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d)
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3

Therefore:

1+ 2/K2 + 3K2 < x < (1 + Kz)(z + Kz)
/K, 1 Ky

. (4.22)
xze(/fg, 1) where K, < 1

Inequalities (4.22) apply to case OR-9A.

K, > 1, xze(l,/ﬁz)

K
This corresponde through the §Z transformation to the

interval for P, where er(/Kz, K,), which is case Q)

of P3'
Therefore:
S s K,) (2 + K,) 1+ Z/K; + 3K,
i) 7 < Kl <
2 /K; L
(4.23)
xza(l, /K;) and also 1 < K, < 7.0711
C 1+ 2/K, + 3K, (1 + K,y) (2 + K)) A
ii) < K1 < ® .
/K; 2 \
(4.24)
x.€ (1, YK,) and also 7.0711 < K
2 2 2 J

Inequalities (4.23) and (4.24) apply to case OR-15B.

K, > 1, xze(/ﬁg, K,)

. K .
This corresponds through the ;g transformation to the
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interval for P3 where er(l, /Kz), which is case c¢) of
P3.
Therefore:

< Kl < 3(1 + K2)

(4.25)
xza(/fz, K2) where K, > 1

Inequalities (4.25) apply to case OR-2B.

4.2.4 Minimization Procedure

The procedure to be followed in obtaining minimum
ratios is similar to that used in the last Chapter.

We will assume the ai's to be ordered with respect to
decreasing magnitude, and consider all possible such
orderings.

For simplicity the value of y.will be adjusted to make
the smallest a; = 1. |

For each ordering there will be a specific ratio a .
If the a; has a minimum in I, we will determine whether the
minimum is acceptable or not. If the minimum is an accept-
able one, then from the ordering relationships we find the
reétrictions on Kl and K2' If a; has no acceptable minimum
in I, or else if éi has no minimum at all, the possible
solution to thé minimization problem will occur, when two

ai's become equal, or more specifically either the two
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largest or the two smallest a's will become equal,

As before we obtain from ordering relationships

restrictions on Kl and K2.

In some instances we will find that two sets of element

values will give rise to the same minimum ratio, and will be

valid for the same ranges of Kl and K2. Such sets will be

said to be equivalent.

Finally, we will compare the minima obtained for all
cases where there are overlapping ranges for Ky and K, in
order to determine the true minimum for each range of Kl

and Kz.

4.3 Examination of all Possible Orderings

The various orderings will be referred to in the
sequel as OR-1, OR-2, etc...
We now proceed to the definition and consideration of

each of these,.

OR-1 : (aj,a,, a3, a; = 1); Ratio = Ry, = KA

Asa4=l+y=K2A

Element values become:

a; = KA
K,A
g = %
(4.26)
=2
37 x
a, = 1.0
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Since Riy has no minimum in I, we must consider two subcases:

OR-1A : (a = 1)

17 3r 230 8y

From (4.26) we see that x = 1. Hence,

1 2 2
a3 = K2
a4 =1 )

_ K, -1 -K
where A = 1 2

2(L + Kz) *

From the ordering relationships we have that:

a; = a2 > az Kl > 3(1 + K2)

> a, = 1 »XK,>1

a3 2
, K, (K; ='1 - K,)
Since x = 1, Rl4 = K,A = X > Kz
- 2
OR-1B:: (al, a,r a3 = a, = 1)

From (4.26) we see that: x = K,. Hence,

a2 = A
A3 =a, = 1

It can easily be shown that A(K,) = A(1l), the value of A

being given by:
K, - 1 -K
2(1 + K2)

A = 2
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From the ordering relationships, we have that:
ay > a, * K, > il

a, >'a3 =1->A>1~> Kl > 3(1 + K2)

Hence OR-1A and OR-1B are equivalent, i.e., have same
minimum ratio, and cover the same range of Kl with respect
to K2 .

A summary is given in Table 4.1.

OR - 2 : (al, ay, ayy ay = 1); Ra#io =Ry = KzA

As a, = 1 »y = Ky, element values become:

al = K2A
K,A
‘ _ 2
a8 T x .
. . ) 4,27
K, L ( )
a3 = %
a, = 1.0
P

Since R14 has no minimum in I, we must consider two subcases:

we see that: A = —%—. Hence,

From al = a3



Table 4.1

Summary of Case OR-1

OR-1A OR-1B Remarks
K,A K,A Ratio = Ry, = K,A > K,
K2A A Range : K2 > 1
K; > 3(1 + K2)
K, 1 with , _ K1 = 1=K
2(1T + Kz)
1 1l

58
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K
_ 2 _
8 T x % a3
o =2
27 2
a4 = 1.0

(4.28)

2
-(x Kl X + Kz)
x2 + (l+K2) x+K

=1
X

14

2
which can be put into the form:

x> + x2 (1-K;) + x(1+2K,) + K, = 0 (4.29)

Taking into account equations (4.28) and (4.20) we know from

previous study (equation 4.16) that:

1+ 2 ¢K2 + 3 K2

< K

< 3(1 + K,)
1 2
7K,



2 2
Hence:
al = X
a2 =1 = a4
L -2
37X

From the ordering relationships we have that:

K,
a3 -> X > " + X > VKZ

X
aj >1 ~» % > 1 ~» K2 > X

The above inequalities give us:

K2 > X > /Kz > 1

and hence: /K, <R

2 sk

14 2

As X = KZA' we obtain:
-(x2 - K, x + K2)

1
2 X2 + (1+K2) x + K2

x = K

3 2 2
+ -
X x“(1 + 2 K,) + x(KZ)(l Kl) + K,

=0

60

(4.30)

(4.31)

From the combined conditions (4.30), (4.31) we know that (see
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equations 4.25):

1 + 2/K2 + 3K,

3(1 + Ky > Ky > —
X2
Both OR - 2A and OR-2B cover the same range of K, and

K,. Hence OR - 2A and OR - 2B are equivalent.

A summary is given in Table 4.2.

OR 3 (al, ays 34, az = 1) ; Ratio = Rl3 = xA

Since az = 1, we have that y = xA

Therefore, element values are:

a; = xA A
a, = A
ay=1 > i : (4.32)

Since Rl3 has no minimum in I, we must consider two subcases:

OR 3 A (ay = aé, ay, ay = 1)

From a1 = a2 we see that:

x =1

2(1 + K

If x =1 then A =
2)

Equation (4.32) now becomes:
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Table 4.2

Summary of Case OR - 2

OR~-2A OR-2B Remarks
K
— 2
1 -
a; K2/x b4 /K2 <Ryy =
: 2 1+2\/K—:2- + 3K,
a K,/x 1.0 K, > 1 ; <. <K
2
< 3(1 + K2)
as Kz/x Kz/x' x is a root of P4 lying in inter-
val [1,/1?2'1
%
a, 1.0 1.0 x' = T




63

17 9 2T+ K
1
A, = =
47K
a3 =1

From the ordering relationships we see that:

(1 + K2)(2 + K2)

al = a2 > a4 + K

>
1 K2
a4 > 1 -+ 1> K2
It follows that R,. = A > L
13 K2
OR 3 B (al, ay, a, = as = 1)
This case is identical to OR - 1B.
A summary is given in Table 4.3.
OR - 4 (al, a4,'a2, az = 1) ; Ratio = Rl3 = XA

Sincea3 = 1, we have that y = xa, elements value are:

a; = XA )

a, = A f (4.33)
az = 1 |

ay = %4 J




Table 4.3

Summary of Case OR - 3A

OR-3A Remarks
. Ky - Ky -1 . =A=K1-K2—l>l_
1 2(1 + K2) 13 — 2(1 + Kz) K2
K. - K, -1
1 2 <
a, 2L F Kz) Range K2 1
(1+K2‘) (2 + K2)
aj 1.0 K1> %
. 2 *
a, l/K2

64



Since R13 has no minimum in I, we must ‘consider two subcases -

OR - 4A (al = a,, ay, a; = 1)

From (4.33) we see that: A = %— Hence,
2
X
a=a =
1 4 K2
1

a=—.

2 K2
az = 1

From the ordering relationships, we see that:

a2>1 > 1> K

From the above inequalities we see that: x > 1 > K,

2
-(x" - K; x + K,)
and A = %— = — 1 2
' 2 X '+ (1 + K2) X + K2

Therefore x > K2 is a root of:

2

(1 + K, - K4K
2 2 172
or X" + x T+ K2

+ Ky =0

As x > K, is the largest root of P,, we can only have

N (1 + K2)(2 + K2)
1 K2
=X >
Further, R13 = K2 1

x° (1 + K2) + x (1 + K2 - Kle) + Kz(l + K2) =0

65

(4.34)

(4.35)
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OR - 4B,(al,.a4,,a =

2 ag = 1)

As a, = a3 we see that'A = 1. Element values now be-

come:
a; = x
a, = a3 = 1
X
a - — S,
4 K2

From the ordering relationships, we see that:

al > ay > K2 > 1
a, >-1 > X > K2
Hence, x > K, > 1 (4.36)

As A = 1, we know that x is a root of Pp. As x >K,>1 we

should have that (see inequality 4.6):

Kl > 3(1 + KZ)

Because A = 1, we also have

R = XA =x > K

13 2

A summary is given in Table 4.4.
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Table 4.4

Summary of Case OR - 4

. OR-4A Remarks
a; X/K, Ri3 = x/K, > 1
: (1 +Ky)(2 +K,)
a2 l/K2 x>l>K2& Kl> : K2
ag 1 X is the largest root of Pé-
a, x/K2
OR~-4B Remarks
al X R13 =X > K2
a, 1 X >K, >1 & Ky >3(1 +K,)
as 1 :
X 1s the largest root of P2
a, x/K2
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OR - 5: (al, as, a,r @y = 1) i Ratio Ry, = X

As a, = 1 » y = x, element values become:

a; = x
a, = 1
a. = L
3 A
Q. = X
4 K2A

Since R12 has no minimum in I, we must consider two

subcases:

OR - 5 A:.(al = ajr 84 3y = 1)

From a

hl L

1 = a3, We see that x = 3. Hence,

a, = 1
x2
a, = —
4 K2

From the ordering relationships we have that:

ay >1 » x > fﬁz

Hence, K, >x > /ﬁ; > 1 (4.37)

From the equation Ax = 1 we see that x is a root of equation

P3.
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From equations (4.37) and equation P3 we obtain: (see equations

(4.17) and (4.18)):

a) if 1 < K2 < 7.0711

(1+K2)(2+K2) l+2/K_2_+3K2
then 7 < Kl <

2 ' /Ig

b) if 7.0711 < K2

1+2/K2+3K2 (1+K2)(2+K2)
then — <Ky <

, /K2 X,

OR - 5B (al, azr a, =4a2 = 1)

This case is the same as Case OR - 2B and has already

been covered.

Summary of Case OR - 5A is given in Table 4.5.

OR - 6: (al, 2yr 83r By = 1) ; Ratio RT2 = X

As a, = 1= y = x, element values become:

_ A
al—x
a2 =1
1 (4.38)
a3 = »
1
a=—_
4 KzA
o

As R12 has no minimum in I, we must consider two subcaues:



Table 4.5

Summary of Case OR - 5A
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OR-5A Remarks
al X K2>R12=X>YK2>1
a, 1l x is a root of P3 lying in interval
a, X [VKZ, K2].
a x2/K If
4 2

a) 1 < K2 <

(1 + K2)(2 + K2)

then
4 Ky

1+ 2»’K2 +

Ky

b) 7.0711 _ K

1+ 2/E; +
then

/Ky

(1 ; K2)(2 + K

K,
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OR 6A (al = a,, a3, a, = 1)

As now K,A = 1, equations (4.38) become:

a; = x

a, = 1l

a3=K2

a, = x
From the oidering relationships we have that:

a; = ay > a, -+ x> K,

ag > 1 > K, > 1
Hence x > Ky > 1 - (4.39)

Since K2A =1, and x > K2, x must be the largest root of
Pz', and hence (4.8): .

K, > (1 + KZL(Z + K,)

2

.OR ~ 6B (al, ay, a3 = ay = 1)

This case is the same as Case OR - 4B and has already
been covered.

Summary of Case OR - 6A is given in Table 4.6.
OR - 7;>(a2, azs a4, @y = 1) ; Ratio R21 = %

As a; = 1 >y =1, element values become:



Table 4.6
Summary of Case OR - 6A
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OR-6A Remarks
a1 X Ratlo R12‘= X > K2
a, 1 Range K2 > 1
(1 + K2)(2 + Kz)
a3 K2 ] K1 > K2
ay X with x > K, > 1 being the largest
root of Pz'.
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> (4.40)

[V}
W
[
,l—-‘ J i
(M

o))
-~
=
w

o

Since R21 has no minimum in I, we must consider two

subcases:

L

OR -.7A:.(a2 :.a3,.a4,4a1.:,l)

As now A = 1, equations (4.40) become:

al =1
-1 _

25 x7 23
1

a;.—_—

Hence, 1 > Ky > x : ' ' (4.41)
As A =1, and x < K2, we must have that x is the smallest
root of P2, and that (4.6):

Kl > 3 (1 + KZ)

. . _1 1
The ratio R21 now becomes: R21 = 2 > i;
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OR - 7B (az, ags 4y = a; = 1)

As now ay = a; we obtain: 1 = AKZ’ equations (4.49) be-

come:
a; = ay = 1l
a2=}l{
aj = K2/x

From the ordering relationships we have that:
az > a; = 1> K2

aj >1 - K2> X

Hence 1 > K2 > x (4.42)

As AK2 = 1 and K, > x, x must be the smallest root of
Pz', and hence (4.8):

>.(l + Kzl‘z + Kz)

K
1 KZ

. _ 1 1
The ratio R21 now becomes: R21 =z R—

2

Summary of Case OR - 7 is given in Table 4,7.

OR - 8: (a2, a4; az, a) = 1) ; Ratio = R21 = 1/x

As a; =1 =y =1, element values become:
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Table 4.7

Summary of Cases OR - 7

Case OR - 7A

OR-7A Remarks
a; 1.0 Ratio R21 = 1/x > l/K2
a, 1/x 1> K2 > X with
asg 1/x K2 <1 g Kl > 3(1 + KZ)
ay l/K2 where x is the smaller root of P2.
Case OR - 7B
OR-7B Remarks
a; 1.0 Ratio R21 = 1/x > l/K2
(L +R)(2 + K )
a, 1/x K, <1 g K, > 2 2
2 1 K2
a K
3 2/ 1> Ky>x where x is the smaller root
a ) ' ‘
4 1.0 of P2 .
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a, 1/xA

a, 1/K2A

Since R21 = 1/x has no minimum in I, we must consider

two subcases:

OR - 8A (a2 = a,, az, a; = 1)

From a, = a,, we see that x = KZA' Hence,
a, = 1
a, = a, = 1/x
2
az = Kz/x

From the ordering relationships, we have .that:
a, =a, >az > X> K,
ag > 1 » x< /KE
Hence, 1 > /Kz > x > K, (4.43)

AS X = KZA’ we know that x is a root of P3'.
Consideration of inequality (4.43) and the fact that x
is a root of P3‘, levels to the case of equation (4.21) to

conclude that:
3(1 + Ky) < Ky < (1 + 2/K2 + 3K,)/ /Kz

Finally, from inequalities (4.43), we see that R12 is bound-

ed as follows:
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From asg = ajy we see that Ax = 1. Hence,

a; = ay = 1
a, = 1/x
ay = x/K2

From the ordering relationships, we have that:.

+ X > VKz

>a4

2
ay > 1+ x > Kz

Hence,
Ky <x < /Ky <1 N (4.44)

As Ax = 1, we know that x is a root of P,. Using, therefore,

inequality (4.14) we have that:

1+ z/K; + 3K, (1 + Kz)(Z + K2)
<Kl<
Ky Ky

Finally, from inequalities (4.44), we see that Roq is bound-

ed as follows:

> e

1

i
v
Pl
!
]

Summary of Cases OR - 8 is given in Table 4.8.



Table 4.8
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Case OR - 8A

OR-8A Remarks
1 1 1
a 1.0 —— < R = =< -
1 > 21 X K
/1\2 2
a, 1/x
: K., < x < /K, <1 where x is a root
K 2 2 2 .
a 2/x .
of P3' with
a, 1/x _ )
1l + 2/K2 + 3K2
3(1 + K,) ¢ K, <
2 1 VK
2
Case OR - 8B
OR-8B Remarks
1 1 1
a 1.0 —— < R == < x_
1 21 X K
/R; 2
a, 1/x
K, <x < /K, <1 where x is a root of
2 2
aq 1.0
P3 with
ay, x/K2
1 f 2/?2 + 3K2 < g < (1 + Kz)(z + K2)
VK 1 K,

2
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OR - 9: (a2, a84r @y, @3 = 1) ; Ratio = R,y = A
As aj = 1 » y = xA, element values become:
a1=xA
a2=A
ay = 1 .
a4=;§—2-

Since R21 has no minimum in I, we must consider two subcases:

From ay, = a, we obtain: x = AK2. Hence,

[+
[
1]
NI »
N

o)
N

]
NIN

o
w
]
et

bm
]
NI ]

2

From the ordering relationships we have that:

a, = a, > a; - 1> x

§1§1 - x>/K2

Hence,
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1>x> /K; > K, : : (4.45)

Since x = AK, we see that x is a root of equation P3'.

From equations (4.45) and (4.19) we obtain (4.22):

1+ 2/K; + 3K, (1 + K,) (2 + Ky)
— < Kl <
/Kz K,

This case is the same as Case OR - 8B and has already
been covered.

Summary of Case OR - 9A is given in Table 4.9,

OR - lO:(az, ay, agr ag = 1) ; Ratio R23 = A

As ag = 1 > y = xA. Element vaiues become:

a; = xA
a2 ='A

ag = 1

a, = x/K2

Since R23 has no minimum in I, we must consider two

subcases:

OR -~ lOA:(a2 = ay, a4, a3 = 1)

This case is the same as Case OR-3A and has already been

covered.
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Table 4.9

Case OR -~ 9A

OR-9A Remarks
a xz/K 1 X 1
! 2 = <Ry =g <&
/K2 2 2
a, x/K2
as 1 Ké < /ﬁz < X < 1 where x is a root of
é4 x/K2 P3', and

(1,+ K2)(2 + K2)

1 + 2v/F- + 3K
2 2
<Kl<
Ky K>




-

OR - 1luB: (az, ays a, = a5 =1

From a, = a3 we see tha X = KZ' Hence,

a; = K2A
a2"'vA
.a3 = a4 = 1

From the ordering relationships we have that:

a2> al-> 1>K

B N

a1> 1 <>, K2>

1l
Hence, x < K2< 1l
From x = K2 we obtain:

2

A_"(X -K1X+K2) _Kl" 1 -Kz
x2 + (1L + Ky x + Ky 2(1 + K,)
' x=K2

We should also have that K2>- %. Therefore

.Kl -1 - K2 51 - X (1 + K2)(2 + K:)

IR T Ky K 1 K,

Table 4.10 summarizes £he results of Case OR - 10B

, KA

OR - 1l: ( o0 8zr AyS a4.=.l) : Ratio: R24 = =
As a, = 1 y = KZA' element values become:
a, = KZA/x

82



Table 4,10

Case OR - 10B

OR-10B ! Remarks
a K, A . K, - 1-~K
1l 2 " _ _ 1 2 1
a2 A
K2< 1 and
a, 1.0 (L + Ky (2 + K,)
K, > A
1 K2
1.0

83
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az = K2/x.

il
l—l

ay
Since R24 has no minimum in I, we must consider two subcases.

OR - 11 A

(a2 = az, a;, a4 = 1)

From a, = a3, we see that A = 1. Hence,
= K2
a, = Kz/x = ag
a4 = 1

Fram the ordering relationships we have that: )

a
a; >1 - K2 > 1

Hence, K2 > /Kz >1 > x

Since A = 1, and K2 > x, x must be the smallest root of P2

.and we must have (4.6) that :

Kl > 3(1 + KZ)'

From A = 1 and x < 1 we obtain:

K.A
K
Ry = %

NlN
N

OR - 11B (aZ, Ay, 87 = 8, = 1)

This case is the same as Case OR - 7B and has already
been covered.

Table 4.11 summarizes Case OR - 11lA.
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Table 4.11

Case OR - 11A

OR-11A Remarks
a; K, Ratio Roy = KZA/x > K,
as K2/x K, >vK, >1>x, K, > 3(1L +K,)
2 2 ’ 1 2
a3 KZ/x where x is the smallest root of P,
1.0
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OR - 12: (a,, ays ag, a, = 1) ; Ratip Ryy = KA/x

As a, = 1 » y= K2A, element values become:

a; = K2A

a, = KZA/x

ag = Kz/x

ay =1
Since R24 has nb minimum in I,~we must consider two subcaées:
OR —4'12A:,(a2 = al,,a3,.a4.=v15

This rase is the same as Case OR - 1A and ﬁas alréady
been covered.
OR - 12B: (a,, a), a3 = a; = 1)

This case is the same as Cése OR -~ 10B, and has alréady
been covered.
OR - 13: (aj, 54, a;r a, = 1) ; Ratio Ry = 1/A

As a; =1 -+ y=x, element values become: .

a=x )
a, = 1 .

, 3 L (4.46)
ag = 1/Aa
a, = x/KzA J

From the ordering relationships we see that:
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K2 >x > 1

We have found previously that R3, has a minimum in I for

X = /K; and that:

) (1 + /Ky 2
R32 minimum = —
A(/Kz) Kl - 2'/K2
: Ky = 2/K;
Using the values x = /K; and A = E— in conjunction
(1 + fK—Z)
with equations (4.46) we obtain:
a; = &,
ay = 1 )
(1 + &)
ag = ——————
Ky - 2/Ky
2
(1 + /E;)
a, =

/R;(Kl - 2/K3)

From the ordering relationships we have that:

az >ay, -~ K2 > 1
(1 + Ky) (1 + 2/K3)
Ky

a4 > al > Kl <

> 1

We know from inequality (4.3d) that 2/K, <K

1° Therefore

we obtain as limits of K,:

1
(1 + Ky) (1 + 2/K,)
2VK, < K; < ,
2" 71 K,

Table 4.12 summarizes Case OR - 13
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Table 4.12

Case OR - 13

OR-13 Remarks
Ratio (R32)min = ——————7::_
az 1.0 Kl - 2 K2
K, > 1
.y —_— 2 .
ay | (/K5 Ax -2/K7) (1 + K,) (1 + 2/K7)
2, e Z/K; <Ky < 7
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OR - 14 (a3, ays 8y, @y = 1) ; Ratio R32 = 1/A

As a, = 1l -+ y =x, element values become:

a; =x \

ay =1 (4.47)
as = 1/A r |

a, = x/KzA J

We have found previously that Ry, has a minimum in I for

X = /f; and that:

1 (1 + /K;)z
Rang . . = =
32minimum A(/RE7 K; - 2/?5
~ K, = 2/K;
Using the values x = /Kz and A = 5 in conjunction
. (1 + VK;)
with equations (4.47) we obtain:
a, = /Ky
a, = 1
2.
(1 + /Kz)
a., =
3
Kl - ZVK2
2
(1 + /K,)
a, =
4
VK (Ky - 2VK5)

From the ordering relationships we have that:

ag > a; * K < (1+ 2/ +.3K2)//R;
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ay >3, * K > @1+ K,) (1 + 2/?;)/K2

a; >l » K, < (1+ 2/?5 + 3K2)//f;

1
(1 + Ky) (1 + 2/K)) 1+ 2/K, + 3K,
Therefore: < Kl <-
X, ' K,

Finally, a; >1 > K, >1

Case OR - 14 is summarized in Table 4.13.

OR - 15: (ay, a;, ay; @, = 1) ; Ratio Ry, = K,/x

As a, =1 =+ y = Ky, element values become:

a; = KZA
a, = K2A/x
ag =_K2/x
a, = 1.0

Since R34 has no minimum in I, we must consider two subcases:

OR -~ 15A: (a3 = a;, ag, a4 = 1)

This case is the same as Case OR - 23, and has already

been covered.

OR - 15B (a3, ajr a5 = a, = 1)

Now a2 = ay > X = KZA' Hence,
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Table 4.13

Case OR -~ 14

OR-14 Remarks
a VRS (1 + VED)?2
L 2 Ratio (Rs,) = — 2
32'min K. - 2/E-
1 2
a2 1
Ky, > 1
2
a3 | AR/ (K -2 (1 4 k) (1 + 207K |
< K <
K 1l
2 - 2
a, (1+/1§) /@(Kl-z/rg)

1+ 2|/K2 + 3K2

K2
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a; = x
a, = 1.0
a; = 1/A
ay = 1.0

From the ordering relationships we have that:
a; > a; = ;/A > X

al > 1 +» x>1

1
%lNN
%INN

P

Now

Hence, 1 < x < /Kz < K, (4.48)

As x = KZA' we know thdt x is a root of P,'. Because 1 < X

< /Kz, we should also have (4.23 and 4.24):

(1 + K2.) (2 + Kz) cx < 1 + 2@ + 3K2
1

K, Ky
x (1, /Kz) 1 <K, < 7.0711
1 +42{K5‘+ 3K, < x (1 + Ky) (2 + K,)

1
\/Ig K,

x e(1, VKy) Ky > 7.0711

From inequalities (4.48), we see that:

=

2

2

»

A summary of Case OR - 15B is given in Table 4.14.
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Table 4.14

Case OR - 15B

OR-15B Remarks
X is a root of P,' lying in the inter-
a, 1 : 3
val: [1, ¢K2]. If
aq K2/x
q) 1l < K2 < 7.0711 then
a, 1l
(1 + K))(2 + Kyp) 1+2/1§+3K
2 < Kl < 2
K, _ /Ky
b) 7.0711 < K2A then
1+2/I_<;+3K2<K g (l+K2)(2+K2)
1
VK., K

2 2
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16:.(a3, ag, ay, a8, = 1) ; Ratio R34 = Kz/x

As a, = 1 -~ Yy = Kyx, element values become:

a) = KZA |
a, = KzA/x
as = K2/x
a4 = 1.0

Since R34 has no minimum in I, we must consider two subcases:

OR -

16 A

(a3 = a,, aj, ag = 1)

This case is the same as Case OR - l1lA, which has al-

ready been covered.

OR - 16 B: (ag, ay, a; = a, = 1)
From a; = a,, we obtain: 1 = K2A. Hence,
a; = 1.0
a, = 1/x
as = Ky/x
a, = 1.0

From

the ordering relationships we see that:
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Hence,

K2>/i£->1>x

Since AK, = 1, and x < Ky, x must be the smallest root of P,

and therefore we must have (4.8):

(1 + K,) (2 + K,)
K. > 2 2
1 K,

From x < 1 we obtain£

Ratio R34 = Kz/x > K,

Summary of Case OR - 16B is given in Table 4.15.

OR - 17: (a3, ayr @y, 8y = 1) ; Ratio R3l = %K

As a, = 1 - y =1, element values become:

a; = 1.0
a, = 1/x
as = 1/xA

We know from previous study (see section 4.2.2) that 331

possesses a minimum for some value of x > VKZ.

From the ordering relationships we have that:

1l 1 1 ]
%A > R-Z—A- > z > 1.0 (4.49)
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Table 4.15

Case OR - 16B

OR-16B Remarks
(1L + K,) (2 + K,)
a, i/x K. >1 & K. > 2 2
2 1 K2
ag K2/x )
and K, > /Kz > 1 > x, where x is the
ay 1.0

smaller root of Pz'
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Hence, x < 1 and also x < KZ' Therefore x < 1 ¥ MKZ < Kz
or x < Ky < /K, < 1. 1In either case the minimum of Ry, which
occurs for some x > /Kz is unacceptable, and we therefore

consider two subcases:

From az = a, we obtain: x = K,. Hence,

a; = 1.0
a, = l/K2
ag = l/KzA
a, = l/KzA
where A(K,) = L -~ X2 ‘
A2 T F K

From the ordering relationships we have that:

2(1 + K2)

a3 =a, > a, » 1>A= -+ Kl < 3(1 + KZ)

a, > 1 + 1 > K

Since a; = a; , we have that x = 1. Hence,
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a1 = 1.0
a2 = 1.0
az = 1/A
a, = 1/K2A '
K, - 1-K
. _ M 2
with A(l) = (L7 Kz)

From the ordering relationships we have that:

a, > ay = K2'> 1l ,
(1 + Kz)(z + Kz)
K

a4 > 1 -> Kl < :
2
2(1 + Kz)

We have also: R3l = XK = m > KZ

A summary of Cases OR - 17 is given in Table 4.16.
1

OR ~ 18 : (a3’.a2' a4’ al = l) H Ratio R3l = A—}-{-

‘As a; = 1 » y =1, element values become:

a; = 1l

a, = 1/x f
az = 1/xA |
a, = l/K2A
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Table 4.16

Case OR - 17A

OR-17A ‘Remarks
a1 1.0 2(1 + Ky) L
R = 1/xXA = —~ —~ >
a, 1/K, 31 & - 1-K) K, T K
a 1/K,A K, < 1 and 2@ <Ky < 3(1 + K,)
Ki -1 ~-K
a 1/K,A _ 1 2
4 2 A(K)) = 7% X,)
" Case OR -~ 17B
OR-17B Remarks
a 1
L 2(1 + K,)
Ry, = 1/%A = — = > K
a, 1 31 Kl 1 K2 2
(1 + K,) (2 + K,)
as 1/a K, >1 & 2/K, <K, < 2 2
2 2 1l K2
a 1/K,A _ _
4 2 K, - 1 - K,

A(l) =

2(1 + K2)




100

We know from previous study that R31 has a minimum value

for x.> VKZ where x €I. (See section 4.2.2)

From the ordering relationships we have that:

3 a4 - K2 > X

a ? 1 + 1> x
Hence we obtain two possibilities:
(1) K2 > VKZ >1>x

(2) 1 > VKZ >'K2 > x

In both cases we see that x < VK2 , therefore the minimum of
‘R31 when x > VKz is an unacceptable value.

Since R3l has no acceptable minimum, we must consider

two subcases:

This case is the same as Case OR - 7A, which has already

been analyzed.

OI‘.{." 18 B (a3, a2, a4 = al = l)

This case is the same as Case OR - 16B, which has al-
ready been analyzed. Like both subcases of Case OR - 18 can

be omitted, we can omit Case OR - 18 entirely.
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.3
K

OR - 19 : (a4,val,.a2, as = 1) ; Ratio R43 = ;

As ag = 1l + y = xA, element values become:

a; = xA
a2 = A
az = 1.0
a, = x/K2

Since R43 has no minimum in I, we must consider two

subcases:

This case is the same as Case OR - 47, and has already

been covered.

OR - 19 B (a4, ay, ay = a3 = 1)

Now a, = a3 + A =1. Hence,

a; =X
a, = 1.0
as = 1.0
a, = x/K2

From the ordering relationships we see that:
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a4 > al + 1 >.K2

a; > 1 > x>1

Hence,

Xx>1> /K, >K

2 2

Since A =1, and x > K2, X is the largest root of P2 and there-
fore we must have (see inequality 4.6):

Kl > 3(1 + Kz),
From x > 1 we obtain:

1

Ratio R43 = x/K2 > K2

Summary of Case OR - 19B is given in Table 4.17.

= . : = X
OR - 20 : (a4, ayr 3y, az = 1) ; Ratio R43 = Kz
As a3 =1 *> y = sz, element values become:
al = XA
a2 = A
a3 = 1.0
a, x/K2

Since R43 has no minimum in I, we must consider two subcases:

OR - 20 A (a4 =a2! all a3=l)

This case is the same as Case OR - 9a, which has already

been covered.
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Table 4.17

Case OR - 19B

OR-19B Remarks
a, X R43 = x/K2 > l/K2
a 1.0 x>1> /K >.K and K, > 3(1 + K,)
2 2 1 2
as 1.0 x is the larger root of P2
a, x/K2
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OR - 20 B (a4, ay, a, = a3 = 1)

From a; = as, we obtain: Ax = 1. Hence,

a; = 1l

a, =z
ag = 1.0
a, = x/K2

From the ordering relationships we have that:
a, >a, + x > /ﬁ;
a, > 1.0+ 1> #

’Hence,

»l > x > VKZ > K2

Further, since Ax = 1, we conclude that x must be the smallest

root of P3, and hence (4.15) that

2

1+ 21/K2 + 3K
<

3(1 + K2) < Kl
VK,

From x < 1 we obtain: Ratio Ry3 = x/K2<'l/K2
A summary of Case OR - 20B is given in Table 4.18.
X

OR - 21 (a4, a3, 3y, a, = 1) ; Ratio R42 = KK;

As a, = 1 » y = x, element values become:
a; = x

a, = 1.0



Table 4.18

Case OR - 20B

OR-20B Remarks
ay 1l Ratio R43 = x/K2 < l/K2
a, 1/x x is a root of P3 in the interval
8.3 1 [/R;l l] .
a, x/K2 with K, <1 and
1+ 2 + 3K2

3(1 + Kz) < K

105
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az = 1/A

a, = x/K2A

We have seen previously that R42 has a minimum for x < vK

[\V]

such that x eI. (See section 4.2.2)

From the ordering reiationships we have
a; > 1 » x>1
a4>a3-> x>K2

There are two possible cases:
(1) x > Ky > /E; > 1

(2) x >1 > /KZ > K2

In either case x > /Kz, which means that the minimum for R42

cannot be utilized since it exists onl& for the range x < VKZ

We must therefore conclude that R42 has no minimum in the

acceptable range of x and proceed to consider the following

two subcases.

From a, ='a3 we obtain x = K2° Hence,

= K

ay 2
a2 = 1.0
ag = 1/a
a, = 1/A
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From the ordéring relationships we should have:
a, = a; >
21

Because X = K2 we obtain:

K, - 1-K

, _ 1 2
A(K)) = 3T TR
From inequality A < %— , we also have that:
2
A= K1 -1 - K2 . T, < (1 + Kz)(z + Kz)
2(1 + Kz) K2 1 K2
From x = K2 we obtain:
2(1 + K,) '
R = > K
42 Kl -1 - K2 2
OR - 21 B (a4, az, a; = a, = 1)

From a; = a, we obtain x = 1. Hence,

a; = 1

a, = 1.0
a3 = 1/a
a4=ﬁ
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Note that x =1 > A(Ql) =

From the ordering relationships we have:
a, > as - 1> K2
aj > 1 + 1>Aa

From the combination of the conditions x = 1 ang l>na
we obtain:

Kl < 3(1 + KZ)

. X 1l
Since x = 1 angd Kl < 3(1 + K2) we obtain R42 = KK; > K;

A summary of Cases OR - 21A and OR - 21B are given in
Table 4.19.

. oy o _ 1
OR 22 .(34, all a3l a2 - l) ; Ratio R4l = KZT

As a, = 1 - Y = X, element values become:

a; =x

a, = 1.0
ag = 1/a
a, = x/K2A

- We have seen previously that R41 has a minimum for

X = VE; = (see section 4.2.2). From the ordering relation-

ships we obtain:

al >1 » x»>1
‘ (4.50)

§4 > a3 > X > K2
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Case OR -~ 21A

OR-ZlA. Remarks
) 2(1 + K.)
a K - _ 2
1 2
a2 1.0 K, >1 and
2(1 + Kz) ‘
a p — . (1 + K,)) (2 + K,)
3 Kl 1 K2 2/K2 < K, < 2 2
: 1 K2
2(1 + K2)
a
4 Kl“l"KZ
" Case OR -~ 21B
OR-21B Remarks B
a 1.0 2(1 + K,)
1 _ - 2 1
Ryp = /KA = g—¢ —l—K)>K
2'71 2 2
a, 1.0
K2 < 1 and
2(1 + Kz)
a
3 K. -1 ~K
1 2 2/?5 < Ky < 3(1 + K,)
2(1 + K2)
a
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From the above inequalities we obtain two possibilities:
(1 x> K, > /Kz > 1 . - (4.51)

(2) x>1> /K; > K (4.52)

2

‘ Inequalities (4.51) and (4.52) both satisfy inequalities
(4.50), but neither of the inequalities (4.51) and (4.52) can
be satiéfied by x = /K, unless x = K, = VK, = 1 which is a
particular case. Since Ryq has no acceptable minimum, we must

consider two subcases:

This case is the same as Case OR - 6A, which has already

been analyzed.

This case is the same as Case OR - 19 B, which has al-

ready been analyzed.

: . 1
OR - 23 : (a,, a,, a3, @ = l).; Ratio Ry; = KA

As a1?= l1 » y =1, element values become :

o)
-]
I

grd E L o
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R41 = l/K2 has a minimum for x = ¢K2 such that

(1 + /Ky 2
41 <

R =
K2(Kl - 2/?;)

We know from previous study (see section 4.2.2) that x = VKZ
implies that x e I.

From the ordering relationships we see:

1 1

K2A

gl

From the above inequalities we obtain:
l1>x and x > K,. Therefore:
1>x> K2

We now note that x = /Kz lies in this range.

We now establish bounds for Kl' We have that:

N 2 ' .
L1, (1 + /E;) cd e 1+ 2/K2 + 3K,
K.A X 1
2 K, (Ky - z/ﬁg) /R; /K;
and 2

11 (1 + /K,) 2
> 1> —— =2 5 Kl > (1 + /K;) + 2/K2

K, - 2/K2' :

Bounds on the minimum value of R41 may also be found and are:



_ 1+ /K) 2

<Ry <

1
<K
K2(Kl - 2/K2). 2

(-]
Al
N

Y

Ca-e OR - 23 is summarized in Table 4,20..

OR - 24 : (a4, az, ay, a; = l)'; Ratio R41 = 1/K2A

As a; = 1 » y =1, element values become:

a; = 1.0
a, = 1/x
ay = 1/xA
a4'= l/K2A

We have seen previously that Ryq has a minimum for x =

From the ordering relationships we obtain:
a, >'az = x.> K2
az >a, - 1>A
ay>1. - 1>x

From inequalities (4.53) we obtain 1 > x > K,. Hence X

falls into this interval, where:

112

K, .

(4.

53).

/R
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Case OR - 23

OR-23 Remarks
SR 2
a 1.0 1 _ @+ /Ky 1
1l —_— < R41 = < =
a 1//K,
2 2
(l+/K—2)2 K2 < 1 and ‘
a
3 p— 1 + 2/K, + 3K
’/Kz(Kl'z'/K,—z) (1 + /K_)2 + 2/K, < K, < 2 2
2 2 1 VR
2 2
(1+/K,)
ay

K, (Kl—zflg)
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: Ky - 2/@
A(/‘K;) = 2
(1 + /12'2‘)

As ag > a, + 1 > A, we have that:

AKl‘z‘fK; 2
1> 2->Kl<(1+/1g) +2/1T;
(1+/1T2')

The lower limit of K,y is necessarily 2VK2.

Case OR - 24 is summarized in Table 4.21.

4.4 Derivation of Optimum Solution

In the previous section, we have examined all possible
orderings with respect to magnitude of the section scaling
co~efficients ays az;'as and ay. In each case we have deter-
mined the bounds of Kl‘and K2 and the variable x, which would
permit the existence of such an ordering. The ratio of the
maximum a; to the minimum aj was then examined. If the ratio
possessed a minimum for a value of x satisfying the ordering
relationships, this value was adopted as a possible solution.
Otherwise, the monotonic behaviour of the ratio with respéct
to x, within the confines imposed by the ordering relation-

ships led to the conclusion that the ratio must be smallest
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" Case OR - 24

OR-24 Remarks
R4l = 1/K2A = > -R-—-
a, /YK, K, (Ky - 2/?;) 2
(l+fK'2_.)2 | K2 <1 and
a
3
/X, (K, -2V/K,)
271 72 2,/K_2<Kl<(1+f1<_2)2+2/—1<2
(1+/K;) 2 :
ay

K, (Ky-2 /ITZ' )
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at the limit points of the ordering relationships, viz,
either the two largest, or the two smallest ai's must be
equal.

In carrying out this process, we have established several
possible solutions to the minimization problem for various
ranges of Kl and K,. ;n this section we will compare these
possibilities, and obtain the true solution to the minimiza-

tion problem.

4.4.1 Optimum Solutions for K, <1

An examination of the previous section reveals that there
ére five distinct range;, Rl to RS’ for Kl’ and these are
listed in Table 4.22. The relevant results from the pertinen£
orderings of the ai‘s are also listed there. |

The x marks indicate the ranges of Kl for‘which each or-
dering is applicable, and the circled x marks show the optimum
solution for each range, as derived below.

We now begin to compare for each range of_Kl, the minimized

maximum ratios obtained.
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Table 4.22

Optimum Solutions for K, <1

- = 2, .
0<K2<l a) R —{Kl 2/K2<K1<(1+/f<'2‘) +2,/i‘2‘}

b) R, =

—
L]

1+ /&2 + 2/K; < K; < 3(1+K2)}

c) R, = 3(1 + Kz) < K, <

1+ 2@+’ 3K2}

3 { 18 1
. 2
1+ 2/K, + 3K (L + K,))(2 + R,)
2 2 2 2
d) Ry = {K; : < Ky <
'EZ Kz
(1 + Kz) (2 + K2)
e) R5 = Kl : Kl > - K2
Case Rl R2 R3 R4 R5 Rminimum
OR-3A ' ® | r_ - Ki1-Ky-1 ;1
13 7 211+K2$ g
X 1 X is largest root of P.!
OR-7A X |x|x | Ry = i %_ X is smallest root of P,
. X 2
OR~7B x| Ry = };{ >-11<— X is smallest root of 1 2%
2
i v
OR-8A % Ry, = % < %_. X 1s a root of P3' such
2 that K2 < X < /Kz < 1
OR~8B QA Ry, = % < %_ X 1s a root of P, such
' 2 that K, <x < /Kz <1l
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" Table 4,22 (continued)

Case R3 Rninimum
. ] -
OR-9A 1 . R,y = %_ < %_ x is a root of P3
VKZ 2 2 such that K2 < /K;
< x <1
K, -1-K
_ X _ 71 2.1
OR-10B R23 = K; = 5 1+K2 S f;
. 2 (1+K.,)
1 2 1
OR-17A R S e S eme—————— > o
31 XA Kl—l—K2 K2
OR-19B x Ryq = %_ S é X is the largest root of
2 2 P, such that x > 1 > K,
OR-20B x R43 = %_ < %_ X is a root of P3 such
‘ 2 2 that K, < /Kz <x <1
2(1+K.,) ’
2 1
OR 21B R, = o2 = > L
2
(1+/?2') 1
o 2
(l+¢K2) 1
OR-24 R4l'= : — > =
. K, (K1-2/K2) 2
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a) K, < 1 with K, € R

1 1

It is obvious that cases OR-17A and OR-21B are equivalent.

We also know from previous study that:

A(l) = A(Kz)

From Case OR-24, we see that:

_ 1 e A minied
R41 = R?A—(;b-) where Xb = KZ minimizes R'ZT(;T _

It follows that:

41) = L (Ryp) = R‘%TTT = Rf%?ifT = (R3;)
KZA(VKz) 2 2 2
OR-24 . OR-21B OR-17A

(R

Hence OR-24 is the optimum solution for this range of Ky

b) K, < 1 with Kl € R,

Proceeding as above, we obtain:

. 1 1 1 ’
(R,,) = ——————— < (R,,) = = = (R,,)
41 K A (/) 42 KA - KA(K,) 31
OR-23 , OR-21B OR-17A

Hence OR-23 is the optimum solution for this range of Kl‘

c) K2 <1 with.K1 € R3.

It is obvious that cases OR-8A and OR-20B are equivalent.
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as are cases OR - 7A and OR - 19B. From Table 4.24 we have
that:

1 1 1
(Ry,) = == < =— < (R,,) = =—
21 x, K, 21 Xp
OR-8A OR-7A

Therefore Cases OR - 8A and OR - 20B are superior to Cases

OR - 7A and OR - 19B.

From OR - 8A, we see that R21 = %— is a solution of P3',
' a

where P3' arises from the condition:

1 _ 1
KzAzxas xa
From OR - 23, we see that R41 = Kéz%i—), where Xy = /R;
2 b
s 1
minimizes KZA <

It therefore follows that: *

R < = = R

KA(GKy) KAl #/K) *a 2t

o1 1 1
41 ~

Hence, OR - 23 is the optimum solution for this range of Kl.

d) K, <1 with K

2 R

1 %

It is obvious that Cases OR - 7A and OR - 19B are equiv-

alent, as are Cases OR - 8B and OR - 9A. We also know that:

_1 1 1 o .
21) =% K % = (Ry;)

OR-8B OR-8B OR-7A OR-7A

(R
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Hence, OR - 8B or OR - 9A is the optimum solution for this

range of Kl'

_e) K2 < 1 with K1 € R5

It is obvious that Cases OR - 3A and OR - 10B, Cases
OR - 7A and OR - 19B, and Cases OR - 7B and OR - 4A are

equivalent pairs. From inequality (4.9) we know that:

K2(Kl -1 - KZ)

(xz) > S+ Kz) ;, Where x2‘> x5
]
Py
Therefore
(R,.) = TOR-4a | e Sty Ml = (R,.)
13 K2 2(1 + K2) 13

OR-4A OR-3A

.

.From inequality (4.9) we see that:

2(1 + X,)
() < g——%-—=7
- 1 2
2
Therefore
(Ry3) = @y > §%1_+K§ ; -
X 2
OR-7A P,

Hence, OR - 3A and OR - 10B are optimum solutions for the

above range of Kl.
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4.4.2 Optimum solutions for 1 < K, < 7.0711.

An examination of the previous section reveals that
there are five distinct raﬁges, R6 to RlO' for Kl and these
are listed in Table 4.23.

The relevant results from the pertinent orderings of
the ai's are also listed there.

The x marks indicate the ranges of K1 for which each -
- ordering is applicable, and the circled x marks indicate
optimum solutions as determined below.

We now begin to compare for each range of Kl, the min-

imized maximum ratios obtained.
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Table 4.23
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2

Optimum Solutions for 1 < K, < 7.0711

K,: 2¢K2 < K, <

(1+K2)(1+2/E;)

6 1 1 K2
(1+K2)(1+2/K;) (1+K2)(2+K2)
g) Ry = K;: X < Ky < X
2 2
(l+K2)(2+K2) 1+2/K2+3K2
h) RS = Kl' 7 < Kl <
2 : #Kz
l+2»/K2+3K2
i) Rq = { K,: < K, < 3(1+K,)
9 1l 'ﬁq; | 1 2
3) Ryg= {Kl: 3(1+K2)v < Kq
Case R71Rg| Ro| R10| Rminimum
_ (K,-1-K,)
OR-1A ® | R, =kaA=fk L 2
14 2 2 211+K25
= (Ky-1-K;)
OR-~-1B Gb R14 = K2A = K2 ETT;RET——
K2 X is smallest
OR-2A € Ky < R14.= x <K positive root of
P, where l<x<{f§
K2 X is smallest
OR-2B @ YKy < Rig = 5 <Xy ositive root of
P3 where 1<x</K2
x is largest root of
OR-4B X R13 = x > K2 > . k. > 1
2 X 2
' x is largest
OR-5A Kk K2 > R12 =x > /E; > 1 positive root
of P3 where
1l < /Kz < x < K2
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Table 4,23 (continued)

OR-6A x| x |x R12 =x > K, x is largest root of
P,! where x > K, > 1
2 2
K .
: _ 2 X is smallest root of
OR-11a X Ryg =5 7 K P, where K, > 1 > x
, (1 + /K )2
OR-13 @9 R32 P
K; - 2»’K2
(1 + VK2
OR-14 R = —_—
OR-15B ‘ /B < R EZ < g X is iargest
X 2 34 X 2 positive root of
P3 where
1 <x < ¢K2
K .
_ 2. X is smallest root of
ORr-16B XX (% Ryg =5 K P,' where K, > 1 > x
2(1 + K2)
OR-~17B |X X R31 = -KI——_—I——_—KZ' > KZ
2(1 + K2)
OR-21A |x |x R42 = Kl — Kz >-K2
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f) 1 < K, < 7.0711 with K, € R

2 1 6

It is obvious that Cases OR - 17B and Ok - ZlA are

equivalent. We also know from previous study that:

A(1) = A(K,)

From Case OR - 13, we see that:

_ 1 _ P 1 -
R32 = §T§;T where X, = /KZ ‘mlnlmlzes AT

It follows that:

1 1 2

R = ——— < R R e—— S ee—
32 a0%) MA@ rAREy 42

Hence OR - 13 is the optimum solution for this range of K.

g) 1<K, <7.0711 with K; € Ry

Proceeding as in f), we obtain: °*
1 1 x(Kz)
R I emem— & R -— - = R

Hence OR - 14 is the optimum solution for this range of K.

h) 1 < K, < 7.0711 with K1 € R8

2

It is obvious that Cases OR - 5A and OR - 15B are equiv-
alent, as are Cases OR - 17B and OR - 21A. We already know
that:

< K, < (R (R

Rip = (Rgy) 2 31) 42)

OR-5A OR-15B OR-17B OR-21A
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Therefore Cases OR -~ 5A and OR - 15B are better than Cases

OR-17B and OR - 21A. From OR - 5A, we see that R12 = X is

. s 1
a solution of P3, and arose‘f;om the condition KTE;T = x

= 1 =
From OR - 14, we see that R32 = ﬁngT’ where Xp = /Kz

e . 1
minimizes AT It therefore follows that:

R _ 1 1
32 7
A (VK,) A(x

Hence, OR - 14 is the optimum solution for this range of Kl'

i) 1 < K, < 7.0711 with K, € R

1 9

It is obvious that Cases OR - 2A and OR - 2B are equiva-
lent, as are Cases OR - 6A and OR - 16B.
We already know that:

Ryg) = (Ryy) <K, < lez) = (Rgy)

OR-2A  OR-2B OR-6A OR-16B
Hence OR - 2A and OR -~ 2B are the optimum solutions for this
range of K, -

j) 1 < K, < 7.0711 with K, ¢ R

1 10

It is obvious that Cases OR - 1A and OR - 1B are equiva-
lent, as are Cases OR - 4B and OR - 11A, and Cases OR - 6A

and OR - 16B. From ineQuality (4.10) we see that:
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K2(Kl - K2 - 1) K2(Kl - K2 - 1)

P

) > Ry >
Pa 2
Therefore:

K, (K, - K. - 1)
2 (K) - K _
201 ¥ K,) = (Ryy)

(Ry3) = (x,) >

P

OR-4B 2 OR-1A

From the same inequality we obtain:

K, (K, - K, - 1)
o 2 (Ky - K _
120 = (%) > T+ Ky - (Regd.

P ]
OR-6A 2 OR-1A

(R

Therefore: Case OR - 1A (= OR - 1B) is the best solution for

the above range of Kl'

4.4.3 Optimum solutions where 7.0711 < K,

An examination of the.previous section reveals that
>there are five distinct ranges, Rll to R15' for Kl’ and these
are listed in Table 4.24.
. The relevant results from the pertinent orderings of
the ai}s are also listed there.
The x marks indicate the ranges of Kl' for which each
ordering is applicable, and the circled x marks'indicate'op—
“timum solutions as found below.
We now begin to compare for each range of Kl' the mini-

‘"mized maximum ratios obtained.
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Table 4,24

Optimum Solutions For 7.0711 < K,

(1+K21£}+2/K;)

K, > 7.0711 k) Ry 2/K, < K, <

]
=

2 1 1t 2 1 K,
(1+K,) (1+2vK.) 1+2/K,+3K
_ 2 2 2 "2
1) R12 = Klz < Kl < ——
K2 . VKZ
1+2/K,+3K (1+K,) (2+K,)
_ 2 2 2 2
m) Ryy ={K;: ———— <K < 7
Ky - 2
n) R14 = Kl: 3@;’ < Kl < 3(1+K2)
o) R15 = {Kl: 3(1+K2) < Kl
Case  [RjjR;oRy3R14R 5 Ruinimum
OR-1A é e M 1
14 — 72 2 211+K2$
OR-1B ® | Ry = KA =K oy — 1+K,
OR-2A @ (}9 JE= < R - ‘Lz_ <K X is smallest
2 14 X 2 positive root of
P3 where l<x<¢K2
K .
: _ 2 x is smallest
OR-2B ® ® Ky < Ryy = 5= <Ky  positive root of
: P, where 1<x</K;_
OR-4B . X R13 =x > K, x_is.largest root of P,y
with x > K2 > 1
_ ' - f— x is largest posi-
OR-5A X v K2 2 R12 x> K2>1 tive root of P3
where
1<;/K2<x<K2
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Table 4.24 (continued)

Case IRy Ry yRy 4Ry Ry gl Rossmum
OR-6A X X R12 =x > K2 x is largest root of P2'
where x > K2 > 1
Ky
OR-11A X R24 = > K2 X is smallest root of P2
where K2 >1>x
(l+/_K2)2
OR-13 ® Ry, =
) K,=-2vK
1 2
(l+/K2)2
OR-14 ® Ryy = ———
K, -2vYK
1 2
_ ' fr— - x is largest posi-
OR-15B X K2 < R32 x < K2 tive root of P3
where
1l < ¢K2 < x < K2
K2 .
OR-16B x K R34 =5 > K2 X is smallest root of
. P,' where K, > 1 > x
2 2
2(1+K2)
OR-17B X R31 = S > KZ
1 2
2(1+K2)
OR-21A |x R42 = K——-—l_l_Kz > K2




130

k) 7.0711 < K, with K

2 1 € R

11

It is obvious that cases Or - 17B and OR - 21A are equiv-

alent. We also know from previous study that:
A(l) = A(KZ)

From Case OR ~ 13, we see that:

1 T e 1
R32 = KT;;T-where xb = K2 minimizes AE)
It follows that:

1 1 1

R = — < R = ==
27 Xk | 3T AT T A

= R

42

Hence, OR - 13 is the optimum solution for this range of Kl'

1) 7.0711 < K, with K; ¢ Riz

As OR - 14 is the only solution for this range of Kl’

it is the optimum solution.

m) 7.0711 < K, with K

2 1 € R

13

It is obvious that Cases OR - 2A and OR - 2B are equiva-

lent, as are Cases OR - 5A and OR -~ 15B. We must establish
K
which of §Z and x is smallest.
OR-2A - OR-5A

We know that x is the smallest positive root of Pq

OR~-2A

and that x is the largest root of Ps.

OR-5A

From inequality (2.7) we have that:
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¥oR-2a ¥oRr-5a > K, and therefore:

|

R =

14 <

XOR-5A = R

]

OR-2A 12

Hence, OR - 2A or OR - 2B is a better solution than OR - 5A

or OR - 15B, for this range of Kl.

n) 7.0711 < K2 with Kl € R14

It is obvious that Cases OR -2A and OR - 2B are equiva-
lent, as are Cases OR - 6A and OR - 16B. We also know that:
2
*0R-2a

R =

14 < K

< R

2 < ¥or-6a = Ry

Hence, OR - 2A or OR - 2B is the optimum solution for this

range of Kl‘

o) 7.0711 < K, with K1 € R15

It is obvious that Cases OR - 1A and OR - 1B are equiva-
lent, as are Cases OR - 4B and OR - 117, and Cases OR - 6A and

and OR - 16B. From inequality (4.9) we obtain:

and also:

K2(K1 -1 - K2)
(XZ)P R 2T + K,)
Therefore: 2
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Ky () = 1 = K,)
Ry3) = ;) > =73 Ky - (Ryg) = (Ryy)
OR-4B P, OR-1A OR-1B
and also:
K, (K, - 1 - K.)
_ g (K 2) _
(Ry5) = (x,) 20 F Ky) = (Ryy) = (Ryy)
OR-6A  B,' = - OR-1A OR-1B

. Therefore Cases OR - 1A and OR -~ 1B are the optimum solutions

for the above range of Kl'

4.4.4 Complete Solutions for Four Sections

All previous findings are summarized in Tables 4.25 and
4.26.
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Table 4.25

Summary for Four Section Cascade
when K, <1

* denotes largest a; i Ml’ M2 and M3 are intervals on the

x-axis, defined as follows:

1+ 2/K; + 3K

u, = {2/K; , 2
VK,
. 1+ 2/?; + 3K, (1 + K,) (2 #+ K,)
2 = 14
VK, K,
M - (1 + K2)(2 + K2) _
- — I
3 K2
X is a root of P, = x° + X + K
_ 3 2 2
Range . . Range
of Kl Case al a, a3 a, . of x
*
(1+/ED) (1+/KD) 2
1 2 2
KleMl 1 1.0
Ky K, (K;-2/K) K, (K;-2VK;)
X 1 " 1 e
2 ;5 % 1.0 z K2<x</i;
KleMz "
1 X
3 1.0 z 1.0 Ké K2<x</fg
* *
. 2(1+K2) 2(1+K2) * K2
K1€M3 T
K, (K,=K,-1) | K, ~K,-1
5 271 72 1 72 1.0 1.0
2 (1+K,) 2 (14K,) " ot
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Table 4.26

Summary for Four Section Cascade

when 1 < K2

* denotes largest a.

i? M4, M5 and M6 are intervals on-the X

axis defined as follows:

1+ 2/K + 3K
M, =42k, , 2 2
<
1+2/I'<;+3i<2 :
Mg = r 3(1 + Kz)
M6=‘ 3(1+K2), © )
: 5 1+ K, - Ky
X is the root of P3 = x° + - 3 X + K, lying in

the appropriate range.
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Chapter V

Conclusions

This work has been directed towards realizing transfer

functions of the form

2 : '
_a-u? |

T =SS — ' -1
as two, three, and four section cascades of symmetric struc-
tures, in such a way that the ratio of the impedance scaling
factors a; was in each case minimized. In the case Qf the

two line cascade equation (5.1) is of the form

a-3 , | (5.2)

T =
it was found here that the ratio was unique, hence no optim-
ization was possible.

In the case of the three line cascade, equation (5.1)

becomes
1 - uy3/2

Here it was possible to obtain optimum solutions for various.
ranges of K, ahd these are given in Table 3.1; Further,

since in some approximation techniques [4] it does not partic-
ularly matter whether the numerator of T is of the form (5.2)
or (5.3), we have compared two line and three line realiza-
tions to see for what ranges of K, the two line realization

would be superior to the three line.
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In the case of the four line cascade the transfer func-

tion (5.1) takes on the form

a-u)?
1+KU+K2U

T =

) (5.4)
1 .

This case was much more difficult to aﬁalyze. However, com-
plete results were obtained and are summarized in Tables
4.26 and 4.27 and Fig. 4.4.

We would have wished to consider the five line cascade.
waever, the analytical difficulties were such that it was
beyond the scope of this work. However, it is intenaed to
carry out this study at a later date so that a comparison
analogous to the two and three cascades could be made for the
four and five line cascades. ’

It would be\enormously difficult to ﬁse the approach.
adopted ip this thesis to examine longer cascades, and a
different approach would be necessary. Such an approach
would of necessify involve using computerized optimization
algorithms [4]. As such; simple analytical results could
nof be obtained. |

However, in a 1ar§e number of cases; for example, in
active transfer function synthesis, it is rarely necessary
to go beyond the four or five section cascadg. Hence, this
work, which gives simple analytical results, should be of

significant practical value.
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Solutions Ranges for Four Section Cascades
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