INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps. Each original is also photographed in
one exposure and is inciuded in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

®

UMI

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

High-level Synthesis and Its Application
in the Design of

Reed-Solomon Decoders

Shadia Hijazie

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial fulfillment of the Requirements
for the degree of Masters of Applied Science at
Concordia University
Montreal, Quebec, Canada

Tuly 1997

(© Shadia Hijazie, 1997

i~l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre reéférence

Our file Notre rélérence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimeés
ou autrement reproduits sans son
autorisation.

0-612-40212-6

Canada

ABSTRACT

High-level Synthesis and Its Application in the Design of
Reed-Solomon Decoders

Shadia Hijazie

Most of the improvements in the performance of digital systems have been brought
about by recent advanced in VLSI technology. High-level Synthesis (HLS) is a major part
of VLSI design process. Its techniques can be used to yield an optimal result in the design.
Yet, major applications of HLS methods are on digital filters or DSP circuits. Arithmetic in
these circuits are real, integer or complex. The major theme of this thesis is to show that
HLS methodologies can be applied in the design of arithmetic circuits dealing with finite
field elements, such as Galois Field GF(2™).

A case study for such a design is versatile time-domain Reed-Solomon RS(n,k)
decoders. The structure of the time-domain RS decoder is simple and modular which
makes it fit for VLSI implementation. The first part of the thesis studies HLS and intro-
duces a Computer-Aided-Design (CAD) tool which can be used for designing an arith-
metic based circuitry such as digital filters and algebraic codes. The RS(n,k) decoding
algorithm, dealing with GF(2™) [7], is modified by applying some HLS techniques as
transformation, clustering and loop unfolding. The transformed algorithm is then coded in
VHDL and synthesized using Synopsys tools. The area and speed of RS(n,k) decoders are
estimated and simulated for different values of m. The results proved to yield an efficient,

fast with maximal throughput design.

Dedicated to My Parents

iv

ACKNOWLEDGEMENT

I would like to thank God for giving me the ability and strength to accomplish this
work and to be the way I am. I also would like to express my gratitude and appreciation to
Dr. Youssef Shayan for his guidance and patience for directing the thesis process in every
aspect. Special thanks to Dr. Asim Al-Khalili for his support and encouragement in sub-
mitting my work. I would like to thank Dr. Baher Haroun for his supervision in my early
phases of the thesis.

I would like to express my gratitude and love to my parents who gave the best they
could to raise me up and educate me. Special thanks to my kind husband and best friend,
Ehsan, for his love and moral support in writing my thesis.

Finally, I would like to thank my friends and the staff in the VLSI LAb, especially

Amal Khailtash, for their help and the friendly environment they provided.

TABLE OF CONTENTS

LIST OF SYMBOLS AND ABBREVIATIONS ... viii
LIST OF FIGURES ...t teteteetee e et s e sn e s en et sssesasn e cesesasssabees X
LIST OF TABLES ...t tececnescecesesenessnssenes s s e e sssassssnasssssss s e ese xiii
CHAPTER 1: INtroduction............cooucimreeeece et csemscacesaeos 1
1.1 VLSI Implementation TEChIIQUES:cceeireereecceeieniicnie et 1
1.2 The Approach for high Level Synthesis (HLS) ...cvuiiiiemieneieeerceeecceees 4
1.3 Linear BIOCK COAES: .oeiriieiiiciinntieeiiereernansnmsesesse e resscenetesnsstssntessse sossnnassensasnas 5
1.4 Contributions and Contents Of the thesis:euemreiereiiiiriiiiiictr e 8
CHAPTER 2: High-level Synthesis ... 11
2.1 High-level Synthesis (HLS) ..ot 12
2.1.1 Control-Flow and Data-FIow Graph.......cooeeemiioniiinieiiiiciiiiinennee 13
2.12 Scheduling and AIlOCAtION.......cccvicrrirrmrescmrercerneecestat et s s eneanes 14
2.1.3 TranSfOrTIAtIONS ..ecuiereeiricecreerrcierstesreresseaesrsssessonesstetssssnsssiess e stesssessnsessnans 15
2.1.4 PartitiOniNE.....ccoceereermirmmierineiiscseisssesssssseseresessessassnsn s rs s nsasss e s s e s s naes 17
2.2 ILP Tools for High-level SYnthesis......ooveeieeeeeminscnineinneientiecencieeen s 18
2.2.1 Synthesizing A Digital filter using OSTA: ...coommiriimnee e 23
CHAPTER 3: Versatile Reed-Solomon Decoders.............coonncncese. 31
3.1 Galois Field Elements and Their CharacteriStiCs:cooueereeeroneecscrnicnscsecncsussnssenennns 31
3.1.1 Properties 0f GF(2™) c.ucvemeeciinceearisiassnss s rstses o casecssesenssssnssnssssens 31
3.1.2 Implementation of Galois Field ArithmetiC......coovivrmnmmmemiimiriiereeee 33
3.2 The Time-Domain Versatile RS(0,k) DeCOAErS .eueummmmmtioeiieriieraeriececrenecceeennee 35
3.2.1 The Time-Domain AlgOrithm[7] ...cccecocrerrrrmnermnirennnrreesstrerennestaesnceneseasssees 37
3.3 High-level Synthesis APPIOaCh ... 40

vi

CHAPTER 4: HLS of Time-Domain RS(n,k) Decoders............................ 48

4.1 The Structure of the RS(15,K) DECOErovrirmmieeeeeeeeeeeie et 48
4.1.1 The Input/Output UDit ..ovoveeieeeeeiieinie ettt s nes s 49
4.1.2 The Decoding Unit.......cooiiiiiiniiiecreeeentcteitesette st s e s sas e s 51
4.1.3 The Control Ut ..o coiiiiiiiceercceerecneneserssnaesssnseeesssseescsescsssasssssanssessassnsass 62

4.2 Analysis of the IMplemMeNtation:cceeveveeeeeeetcen ettt 64

CHAPTER 5: Implementation, Simulation and Synthesis: Procedure

and ReSUIS ... 67
5.1 The RS(1.k) DecOder STUCTUTEcouiuiiirmrnieneecnesuresnesnese e cintseactsanasessssssssnsanass 67
5.2 Simulation and SYNthESIS: ... ittt n e 71
5.3 Technology used for SYNthESIS: ..omimiiiereeeieeet et 74
CHAPTER 6: Summary and Conclusion.............nnencccncns 79
REFERENCE ...ttt se s seaesecsssssssssnsnssessss e sassassassnsasasssscaneses 81
APPENDIX A: Synthesis Tool Program in Prologooocccece 84
APPENDIX B: Implementation in C and Simulation Results................ 155
B.1 Program i € .eececeiimirieiereeec sttt sst e sttt e e s e 155
B.2 Simulation RESUILS......ueerieecreeermecteirerneersceeseeessnessessssasasasssssasssssnsssessssnossssessssanes 161
APPENDIX C: VHDL Coding of Reed-Solomon (n.,K) Decoder 167
APPENDIX D: Synthesis Procedure and Optimization Results............ 196
D.1 Synthesis PrOCEAUIEc.eveeiiirteieeeietirssessese et senessenss s s s s sasa s s 196
D.2 Optimization RESUILS...c.ooeiiemeieineeeeeerenetencenentnset ettt s e 202

vii

LIST OF SYMBOLS AND ABBREVIATIONS

o The Primitive Element in Galois Field 2™
< Code Word Vector
4 Error Vector
g(x) Generator Polynomial of Reed-Solomon Codes
k Number of Information Symbols in a code word
A Error Locator Vector
m Size of each symbol in bits
n Number of Symbols in Reed-Solomon Code Word
t Error Correction Capability of the Code
r Iteration number
p Number of Erasures in Code Word
Y Received Code Word Vector
ALAP As Late As Possible
ASAP As Soon As Possible
ASIC Application Specific Integrated Circuit
BCH Bose, Chauduri and Hocquenghem
BiCMOS Bipolar -Complementary Metal Oxide Semiconductor
CAD Computer-Aided Design
CDFG Control and Data Flow Graph
CMOS Complementary Metal Oxide Semiconductor
FU Functional Unit
GF Galois Field
HLS High-Level Synthesis
ILP Integer Linear Programming

OSTA
RS
RTL
VHDL
VLSI

XOR

Optimal Synthesis Tool for Architecture
Reed-Solomon

Register-Transfer Level

Very High Hardware Design Language
Very Large Scale Integration

Exclusive OR Gate

ix

Fig.
Fig.

Fig.

Fig.

Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

1.1:

2.1:

2.2:

.2.3:

.2.4:

. 2.5:

2.6:

2.7:

2.8:

2.9:

3.1:

3.2:

3.3:

3.4:

3.5:

3.6:

3.7:

3.8:

3.9:

LIST OF FIGURES

Organization of a system deSigN......ceervrmemmieeeerieeieeee s ettt 3
Basic (a) retiming, (b) associativity and (c) commutativity mOVes................. 16

Applying associativity to improve resource utilization: Flow graph (a) before
EXaTe I (o) JE: S 473 oSO OO OO OO OO 17

The structure of the Biquadratic filter.[11]ooummminieeeeeee 23

The scheduling of the CFDG of Fig.2.3 (a) ASAP and (b) ALAP. The thick
line shows the Critical Path. ccc.eeoeeveeereeecec et et 24

Operation scheduling using (a) 1 adder and 1 multiplier, and (b) using two
multipliers and two adders. co.vem et 25

The two graphs showing registers added to (a) and motifs are established in

(b) between the two MUIHPHETS.....ccoiiiiiiiiictiie et 26
The data path of the filter using one adder and one multiplier. 27
The data path of the filter using 2 adders and 2 multipliers.cccu.......c.. 27
The flowchart of the synthesis toOL........ciiiiinuiinnee et 28
The implementation of GF(2%) adder.vvvurreeeeeeeereereeeesesssessssenessasenees 34
The structures of a-multiplier[7] (a) and the GF(24) multiplier employing a-

MUIEPLET 7] (D). ettt et ettt 35
The Versatile RS(n,k) Decoding Algorithm.[7].ccovceemmmmmmmieieeininnceaee. 39
The different paths of decoding algorithm.ccccoevvmmeerormenieenicnieninieenen. 40
Path 1t with the operations (2) and (6.1). cc.ccvereevcericciininnrreecrrreeeeercecteeeees 41
Path B with the operations (2), (3), (6.1) and (6.2).....ceomeeerereccenreceenenee 41
Path o with the operations (2), (3), (6.1) and (6.4). ..ccueervvrrrrrerenierieinene 42
Path A with the operations (2), (3) and (6.4). ccccccevrvvmenmimnnereeeeeerneeeeeee 42
Path o with the operations (2), (3),(8) and (9)....ccoeevemcreeimmniemrnieenincncenns 43

Fig.3.10:
Fig. 3.11:
Fig.3.12:
Fig. 3.13:
Fig.3.14:

Fig. 3.15:

Fig.4.1:
Fig. 4.2:
Fig. 4.3:
Fig. 4.4:
Fig. 4.5:
Fig. 4.6:
Fig. 4.7:
Fig. 4.8:

Fig. 4.9:

Fig. 4.10:
Fig. 4.11:
Fig. 4.12:
Fig. 4.13:
Fig. 4.14:
Fig. 4.15:
Fig. 4.16:

Fig. 4.17:

The control flow graph of the decoder after retiming..... everuenenes s ssaensnaes 44
Path P after FEHMING. ...oucemimimimeie et cem s s s 45
Path T after TEtIMINGcoceeeeeeereeeereiterre et e st e s e srecaecssstessn s sa e ssae e sannnans 45
Path O after TEHIMING.coveeeeceerniirireereereenrtenestanseeesese e s snesnesastasntasssesscasenene 46
Path A after FEHMINE.cucveeereverraririerersneereren e snsseesseeecnseestersnasasesssscsssacsaencs 46
Path G after retMING. ... cccceeeeeeeereererneerneenrereeteseec e s s ae s ss e s s s st saen e 47
The Block diagram of the RS (15,k) AECOMET .u.unmmrmceeniinimieneeinccececneee 49
The state diagram of the in/OULPUL UMt ..ceuciiriieiriieiiiiennene et 50
The sequence of operations done in the decoder.ocvveierieerieeccecccuncnee. 51
The structure of 32-bits adder in the RS(15,k) decoder.......ceiiieiniiovcninninenee 52
The structure of the 32-bits multiplier in the RS(15,k) decoder. 53
The structure of the summer NOAE. «....oovirririiieeee ettt 53
the structure of compare and add in the RS(15,k) decoder.coveeemennnnenes 54
the functional units used fOr StAte INit.....ccovviiernmrrrreenicccre ittt 55
functional units used to perform OpErations in State O.ceoveeeeenesresescnnanen. 56
functional units used in StALE B .cccecerceerririncienrininnriesres st sttt 57
the functional units uSed in SLAE T ..cocuiirririerrienerririe et eesttnre s cetetteaeeene 58
the functional units used for operations in sState A........ccccvervmmniniieniennnnnnns 59
functional UNitS iN SLALE §.ccceeeeeerrceersssimressssnriessssssnssssssanssssessssssnionnmssnnes 60
The structure of the block common to all paths.cccveemeemiecciciinnniinnennnnnee. 61
The control flow graph of the decoding algorithm in each iteration. 62
The state diagram of the decoding algorithm.cccoeceveiiriiniciiniccicninnens 64
Software Retiming: The loop in () is without retiming, the conditions are to

be determined in the middle of the iteration. The loop in (b) is after retiming.65

Fig. 4.18: The transformation from multiply and accumulate in (a) to Tree-height reduc-
HOD M (D) et cret et ee e sceeetee e e s raesaesesesse e e smnessas s nesaenseesnsesannnnes 66

Fig. 5.1: The schematic diagram of the decoder.cccccevirviininicnrienceeeceenee 68

TABLE 3.1:

TABLE 4.1

TABLE 5.1

TABLE 5.2

TABLE 5.3

TABLE 5.4

TABLE 5.5

TABLE 5.6

TABLE 5.7

LIST OF TABLES

Three representations for the elements of GF(24) generated by 33
The control bits selected by the control Unit.c.ccocceeremcmerereieucsnecsenanss 63
The values of and in binary representation.eceeceeeccorreceeerssninsiesaeenieenns 71
No. of gates in the design using the three technologiesccovvvueueecneneces 75
Timing delay results of the design using the three technologies................ 76
The throughput of the decoder in MDits/SEC. ... ceeeiumimrmrimeineieeenieec e 76
the area of decoder with different values Of M ..ccccoeveeccreniniiiiicnninennnen 77
the delay of decoder with different values of m in mS. ceoeeveercnceniiinienencne. 77
The throughput of the RS(n,k) decoder with different values of m............ 78

xiii

CHAPTER 1

Introduction

The influence of integrated-circuits in the past few years has been significant, in areas
ranging from consumer products to manufacturing control. The driving force behind this
is that the designers of modern integrated circuitry have continually attempted to provide
more computational speed with less dissipated electrical power and less circuit board area,

while maintaining a low failure rate and a minimal cost.

1.1 VLSI Implementation Techniques:

The tendency to use VLSI implementation techniques can be aroused from many rea-
sons. The first reason is that the number of high volume product application for logic hard-
ware has not grown at the same pace as the technological capability. The second reason is
that the expense and the quantity of resource required to verify the design prior to manu-
facturing and testing the manufactured product have increased tremendously. Another rea-
son is that the complexity of current designs is becoming considerably more difficult to
manage conceptually among the design group. The design group must have the tools
available that will permit the total integrated circuit functions to be partitioned for man-
ageability and then verified collectively.

There are several rules that are established in the use of VLSI as an implementation
medium[25]. One of them is that the correctness of the design is of paramount importance.
Debugging a flawed chip design is both difficult and time consuming. The second rule is
the degree of flexibility in the design which should be incredibly high. The designers can
specify the system organization, the partitioning and even the details driving logic and

gate transistors. Despite this flexibility, there are limitations in the ability of one level of

the design to compensate for shortcomings at higher levels. These limitations come from
both inherent constraints in the technology as well as the need to limit the addition of new
complexity at lower levels of the design.

It is important to understand how VLSI design are implemented. One can implement
a design using full custom gate arrays, macro-cell arrays, or standard cells. Gate arrays
and standard cells are generally called application-specific integrated circuits (ASIC).

The ASIC approach has new capabilities and benefits with the advent of high perfor-
mance technology. These are figured in the following[27]:

. higher-speed circuits are achievable by the use of advanced CMOS/BiCMOS tech-

nology.

. higher levels of integration and complexity are possible with the availability of very

high number of gates.

. architectural changes, coupling memory to on-chip CPU elements are possible now-

adays.

. power dissipation is reduced and off-chip electrical performance improved by the

use of lower power supply voltages.

. smaller chip sizes and shorter interconnection length are possible.

. interconnections are shortened by using multi-chip modules.

Obviously, the key goal implementation is to provide the fastest hardware for the
architecture; this translates into two rules[26]:

(1) Minimize the clock cycle of the system which implies organizing the hardware to
‘minimize the delays in each clock cycle.

(2) Minimize the number of cycles needed to perform each instruction.

Memory

Data Path Control Unit

I/O

Fig. 1.1: Organization of a system design

The hardware design is divided into several parts, as shown in Fig.1.1:

a) Data path unit that shows the flow of data through the whole cycles.

b) I/O unit that contains the inputs and the outputs.

c) Control Unit that controls the data flow according to the schedule. This is imple-
mented by a finite state machine.

d) Memory and Busses that contain the data for a specific period of time.

The interaction between the processor architecture and its organization has always
had a profound influence on the cost - performance ratios attainable for an architec-
ture[27].

The approach of optimizing the design is to go to the high-level synthesis where the

specification of the algorithm is translated into architectural primitives in such a way that

the resulting implementation optimizes a certain function: the area, the speed or the

throughput.

1.2 The Approach for high Level Synthesis (HLS)

Recently, automatic data-path synthesis of a digital system from a behavioral descrip-
tion has gained much attention in the Computer-Aided-Design (CAD) research commu-
nity. If more of the design process is automated, the design time is shorter and the cost is
minimized significantly. A higher level of abstraction reduces the number of objects that a
designer needs to consider, which in return, allows the design and manufacturing of larger
systems in shorter periods of time. High-level Synthesis (HLS) thus is the natural step in
the design methodology of VLSI systems.

Another reason for the emphasis on high-level design methodologies is that high-
level abstractions are closer to a designer’s way of thinking. It is difficult to imagine a
designer specifying, documenting and communicating a chip design in terms of circuit
schematic with hundreds of thousands of gates. With increasing design complexity, it
becomes impossible for a designer to comprehend the functionality of a chip or a system
completely specified with circuit or logic schematics.

A major characteristic for high-level synthesis is that it provides a shorter design
cycle. HLS also provides fewer errors since there will be a great assurance that the final
design will correspond to the initial specification. Also, a good synthesis system can pro-
duce several design options from the same global specification in a reasonable amount of
time[9]. This allows the developer to explore different trades-off between cost, speed,
power etc., or to take an existing design and produce functionally an equivalent one that is
faster or less expensive.

The synthesis task starts with a behavioral description of a digital system and a set of

time and/or resource constraints. The goal is to produce a structure of the digital system
that satisfies the constraints. It includes four subtasks{2]. The first subtask is to describe
the behavior of the digital system using a hardware description language (HDL). This step
is usually followed by a translation of the description into a graph-based representation
called Control-Data-Flow-Graph (CDFG). The next subtask is operation scheduling,
where each operation in the CDFG is assigned to a control step. The third subtask allo-
cates the resource for the digital system. Here, functional units are assigned to execute the
operations, storage units are assigned to store the values, and wires are allocated to inter-
connect them using the data transfer information derived from the CDFG. At this point, a
data path is completed. Finally, based on the schedule graph and the data path, a control
unit is synthesized to synchronize the executions of the operations.

The benefits of the HLS approach in the design process are tremendous, yet it has
only been applied to DSP applications. There are other types of data being manipulated
other than floating-point and integer arithmetic, e.g. algebraic codes, specifically linear
block codes. These types of codes has special characteristics. The operations applied on
algebraic codes, such as addition or multiplication, are not the same as the one applied on

integers or real numbers.

1.3 Linear Block Codes:

In the recent years, there has been an increasing demand for efficient and reliable dig-
ital data transmission and storage systems. This demand has been accelerated by the emer-
gence of large-scale, high speed data networks for the exchange, processing and storage of
digital information in the military, governmental and private spheres. A merging of com-
munications and computer technology is required in the design of these systems. One

major concern of the designer is the control of errors so that reliable reproduction of data

can be obtained.

The theory of error detecting and correcting codes is a branch of engineering that
deals with reliable transmission and storage of data. Information media are not 100% reli-
able in practice, in the sense that noise frequently causes seme data to be distorted. To deal
with this undesirable situation, some form of redundancy is incorporated in the original
data. With this redundancy, even if errors are introduced, the original information can be
recovered, or at least the presence of errors can be detected.

Any communication system is basically composed of the following components:
source, encoder, modulator, channel, receiver, demodulator and decoder.The channel
induces noise that corrupts the information passing through it. The transmitting channels
include telephone lines, high frequency radio links, telemetry links, microwave links, and
satellite links. Storage media include core and semiconductors memories, magnetic tapes
and so on. Each of these examples is subject to various types of noise disturbances. On 2
telephone line, the disturbance may come from thermal noise, cross-talk from other lines
or lightening. On a magnetic tape, surface defects are regarded as noise disturbances.

The decoder corrects the received sequence. The decoding strategy is based on the
rules with which the information was encoded. Unfortunately, most channels are not
entirely reliable and there is a certain probability that the decoder receives a symbol differ-
ent from what was sent. Hence error control codes have taken a prominent position in
obtaining reliable digital communication systems.

A block code consists of a set of fixed-length vectors called code words. The length of
a code word is the number of elements in the vector and is denoted by n. The elements of
a code are selected from an alphabet of g elements. When the alphabet consists of two ele-
ments, 0 and 1, the code is a binary code and the elements of any code word are called bits.

When the elements of a code word are selected from an alphabet having g elements (g>2),

the code is nonbinary. It is worth noticing that when g is a power of 2, i.e. g=2° where b is
a positive integer, each g-ary element has an equivalent binary representation consisting of
b bits and, thus, a nonbinary code of block length n can be mapped into a binary code of
block length N=bn.

It is important to observe that the encoding and the decoding functions involve arith-
metic operations of addition and multiplication performed on code words. These arith-
metic operations are performed according to the conventions of the algebraic field which
has as its elements the symbols contained in the alphabet as will be discussed later in
detail.

First block codes, introduced by Hamming, were a class of single - error- correcting
block codes. Hamming codes were weak compared with far stronger codes promised by
Shannon. The major advance in block codes was made by Bose - and -Ray Chaudhuri and
Hocquenghem who introduced BCH codes which is a large class of multiple - error cor-
recting codes. Reed and Solomon then found a related class of codes for bursty channels.

The discovery of BCH codes led to a search for practical methods for implementing
the encoder and the decoder. Basically the choice of the code depends on the characteris-
tics of the channel, for example, for burst error, non - binary BCH codes are suitable. A
subclass of non-binary BCH codes are Reed Solomon RS codes which have a very large
burst error correcting capability and correct a large number of random errors[3]. RS codes
are used in many applications such as in satellite, spread spectrum and mobile communi-
cations due to their error correcting capabilities and optimum structure.

RS codes provide a prominent place in the theory and practice of error correction for
three reasons:

1. They are good codes provided that the block length is not excessive. In long codes,

the complexit of the design increases significantly.

2. Encoding and decoding techniques are simple and instrumentally known.

3. RS codes have certain optimal properties and well understood distance structure.

An RS code is a block of symbols where each symbol is an element of Galois Field
2™ (GF(2™)). Galois Field elements are finite field elements. Each symbol is repre-
sented in m-bits. There are 2™ different possible symbols in a code word.

The set of 2* codewords of length n is called an (n, k) code block with n — k redun-
dant symbols which are added to each message to form a codeword. An RS (n, k) code
has the following properties:

n = 2™ —1 :length of codewords in symbols.

m: number of bits/symbol.

t: maximum number of error symbols that can be corrected.

d: number of check symbols = 2t.

k = n—2¢: number of information symbols.

The symbols of an RS (n, k) code are taken from finite field elements of GF (2™)
Each pair of distinct n-symbol codewords differs in at least 2z + 1 symbols. Thus an RS
code has a minimum distance of 2¢ + I and can correct ¢ - symbol errors. Erroneous sym-
bols of a received word confined to a region of ¢ symbols or less are correctable. A
received word with any combination of ¢ or fewer symbols in error will be correctly
decoded.

The hardware implementation of RS decoders are complex and time consuming,
resulting in a large high power consumption and unreliable design that could be a disad-

vantage in space communications.

1.4 Contributions and Contents of the thesis:

HLS is becoming more important in practical design environments to meet the new

system requirements. A Computer-Aided-Design tool that applies the methods of HLS is
implemented showing the advantages of such techniques. As a case study for adopting
HLS techniques, the versatile time-domain RS(n,k) decoder is taken. The RS(n,k) decod-
ing algorithm, developed in [7], is changed to meet the methods of HLS. The modified
algorithm is coded in VHDL and synthesized to optimize its speed. The decoder that
employs GF(2™) is simulated and its speed and area are estimated for different values of
m.

In this thesis, Chapter 2 deals in details with the techniques of High-level Synthesis.
This chapter discusses the distinct and inter-dependent subtasks taken in HLS: scheduling
and binding, Control-Data-Flow-Graphs, transformation and clustering. A CAD tool is
developed adopting some of the HLS subtasks. This tool uses the Integer Linear Program-
ming (ILP) formulation of some subtasks to the second order elliptic filter and atomizes
the formulation to be used in the design of circuit having the basic operations: addition,
subtraction, multiplication and delay.

Chapter 3 studies the characteristic of Galois Field elements and their operations. It is
shown that the HLS techniques could be applied to circuits that operates on algebraic
codes as well as real numbers or integers. Our case study in this thesis is the versatile time
domain Reed-Solomon decoders. The algorithm of the versatile RS decoder is analyzed
and modified after applying the methods of HLS discussed in the previous chapter.

Chapter 4 demonstrates the details of the synthesis of the decoding algorithm The
complexities of the algorithm were resolved using the following synthesis subtasks: clus-
tering, retiming and loop unfolding. The complexities were due to the presence of decision
making in the middle of the loop and multiple choices of data operations in each iteration.

Chapter 5 deals with the coding and synthesis. The design is coded using VHDL, an

abstract modelling language that can describe the temporal behavior and structure of a

system from the overall block diagram level down to the gate level. The synthesis of the
design was performed using Synopsys emphasizing speed as a constraint for the synthesis.
The decoding algorithm uses GF(2™) elements as data. The area and speed of the decoder
are simulated and estimated for different values of m. It will be shown that the HLS
approach in the design process reveals interesting results and that HLS methods could be
applicable for optimizing designs of digital circuits that perform algebraic operations as

well as DSP filters.

10

CHAPTER 2

High-level Synthesis

Computer-Aided-Design (CAD) industry has been very successful and has grown
exceptionally in parallel with the advances in IC fabrication. It started to deal with prob-
lems like circuit simulation, placement, routing and floor planning and then logic simula-
tion and synthesis. The use of architecture synthesis tools to automate the search for an
optimal VLSI architecture from a graph or language description of a digital system have
been a considerable emphasis in the past few year. Usually there are many different struc-
tures that can be used to realize a given behavior. One of the synthesis tasks is to find the
structure that best meets the constraints, such as limitations on cycle time, area, or power,
while minimizing other costs[16].

There are several reasons for the fact that logic synthesis is gaining acceptance in
industry, which are[9]:

Shorter design cycle: If more of the design process is automated, the design can be
completed faster. Much of the cost of the chip is in design development, and hence auto-
mating the process can lower the cost significantly.

Fewer errors: If the synthesis process can be verified to be correct, there is a greater
assurance that the final design corresponds to the initial specification. This results in fewer
errors and less debugging time for new chips.

The ability to search the design space: A good synthesis system can produce sev-
eral designs from the same specification in a reasonable amount of time. This can result in
exploring different trade-off between speed, cost, power etc.

Availability of IC technology to more people: As more design expertise is moved

into the synthesis system, it is easier for a non expert to produce a chip that meets a given

11

set of specification.

The synthesis task is to take the specification of the required behavior of a system and
a set of constraints and goals to be satisfied, and to find a structure that implements the
behavior while satisfying the goals and constraints. By behavior, we mean the way the
system or its components interact with their environment[6]. Structure refers to the set of

interconnected components that make up the system, typically described by netlist.

2.1 High-level Synthesis (HLS)

High-level synthesis means going from an algorithmic level specifications of the
behavior of a digital system to a register-transfer level structure that implements that
behavior[9]. An RTL design is specified by modules, storage units, and their interconnec-
tions, and can be used by a standard physical design automation tool such as silicon com-
piler to produce a chip layout.

The synthesis system produces a description of data path, that is, a network of regis-
ters, functional units, multiplexers and buses. If the control unit is not integrated into the
data path, and usually is not, the synthesis system must also produce the specification of
the control unit part. The system to be designed is usually represented at the algorithmic
level by a hardware description language that is similar to a programming language. Most
high-level synthesis approaches have used procedural languages. That is, they describe
data manipulation in terms of assignments to variables that keep their values until they are
overwritten.

The first step in high-level synthesis is usually the compilation of the formal language
into an internal representation[15]. Then several high-level synthesis tasks such as sched-
uling, unit selection, functional storage and interconnection binding, and control genera-

tion are performed.

12

The goal of high level synthesis process for real time applications is to minimize the
implementation cost, while still satisfying all timing constraints. Yet the resource utiliza-

tion may not obviously get balanced over time. The resource utilization is defined as [7]

number of cycles a resource exploited
number of available cycles

resource utilization =

2.1.1 Control-Flow and Data-Flow Graph

Most app.aches use graph-based representations that contain both the data flow and
the control flow, Control-Data-Flow-Graph, (CDFG) as implied by the specification. This
graph captures sequencing, conditional branching and looping constructs in the behavioral
description. The data flow graph shows the essential ordering of operations implied by the
data dependencies in the specification.

In the data flow scheme, we use circles to denote operatioms, arcs to denote data-flow,
rectangles to denote reading or writing of data, and inverted triangles to denote selection
of data based on the value of the control line. Like control-flow representation, the data-
flow representation also explicitly shows concurrence due to mutual exclusion of different
conditional paths.

However, since data-flow representation evaluates all branches of a conditional test
in parallel, it makes larger segment of graph available for refinement and optimization
than the control-flow representation. Hence, the data-flow representation is better suited
for the task of scheduling straight-line code than control-low representation [16]. The
timing information represented in CDFG is used as constraints for scheduling, unit-selec-

tion and unit-binding as well as performance of design implementation.

13

2.1.2 Scheduling and Allocation

Scheduling involves assigning the operations to so-called control step while preserv-
ing control and data dependencies between these operations. The aim of scheduling is to
assign operations to control steps so as to minimize a given objective function while meet-
ing constraints. The objective function may include the number of control steps, power
consumption and hardware resources. Scheduling is an important task in HLS because it
impacts the trades-off between design cost and performance. A control step is the funda-
mental unit in synchronous systems for it corresponds to a clock cycle.

To speed up the computation of a specific graph, the operations in the control graph
can be scheduled with maximal parallelism, packing them into control steps as tightly as
possible and observing only the essential dependencies required by the data flow graph[2].

Allocation involves assigning the operations and values to hardware i.e. providing
functional units, storage and communication paths and specifying their usage. In alloca-
tion, the problem is to minimize the hardware needed. The hardware consists of functional
units, memory elements, and interconnections. If more operations are scheduled into each
control step, more functional units are necessary, resulting in fewer control steps for the
design. On the other hand, if fewer operations are scheduled into each control step, fewer
functional units are sufficient, but more control steps are needed.

In storage allocation, the values that are generated in one control step and used in
another steps must be assigned to registers. Values may be assigned to the same register
when their lifetimes are not overlapping. Storage assignment should be done in a way that
not only minimizes the number of registers, but also simplifies the communication
paths[2].

Communications paths, including buses and multiplexers, must be chosen so that the

functional units and registers are connected as necessary to support the data transfers

14

required by the specification and the schedule. Multiplexers are considered to be the sim-
plest type of communication path allocation compared to buses [8].

In the case where the design specification contains conditional branching or loop, the
situation is more complicated. In conditional branching, we will have several branches
that are mutually exclusive. During executing one path of the design, only one branch gets
executed based on the outcome of the evaluated condition. Scheduling a loop body differs
from scheduling a pure data flow graph, in that we need to consider potential parallelism
across different loop iterations. Loop unfolding is one scheduling technique where a cer-
tain number of loop iterations are unrolled. This action results in a larger loop body with a
fewer iterations. This loop body provides a greater flexibility for compacting the sched-

ule[2].

2.1.3 Transformations

Transformations alter the organization of a computation in such a way that the user
specified input/output relationship is maintained. They are often used as an effective
approach for the implementing the computations. Transformations are the best way to
overcome these resource utilization bounds. Three transformations that are particularly
effective in achieving this goal are retiming, associativity, and commutativity[8] as shown
in the Fig.2.1

Retiming has been successfully used in several areas of design synthesis and automa-
tion. It has been exclusively used in reducing the critical path in a graph, to minimize the
number of delays or to optimize sequential networks with the aid of combinational logic

tools by temporary moving the delays to a periphery of a network[12].

15

Fig. 2.1: Basic (a) retiming, (b) associativity and {c¢) commutativity moves

As an example, in Fig.2.2, after applying associativity on the a chain adder, the criti-
cal path is reduced to four cycles and one adder and one multiplier are sufficient for imple-
mentation. Tree-height reduction is the most common type used in associativity.In the real
world, many variations on how the operations are implemented and the different structures
of the data flow graph have to be considered during the scheduling phase.

Since the specification has been written for human readability and not for direct trans-
lation into hardware, it is desirable to do some initial optimization of the internal represen-
tation. These high-level transformations inciude many aspects, one of them is loop-
unrolling. Loop unrolling can be done in the case of small number of iterations. Unfolding
allows simultaneous processes to run reducing the critical path but not reducing data

dependencies[7].

16

Fig. 2.2: Applying associativity to improve resource utilization: Flow graph (a) before and (b)
after

2.1.4 Partitioning

Partitioning is used in HLS for scheduling, allocation, unit selection, and chip and
system partitioning. Partitioning can be used to cluster variables and operations into
groups so that each group is mapped to a storage element, functional unit or an intercon-
nection unit of the real design.

The most frequent application of partitioning algorithms to HLS is in unit selection,
which defines the functional units to be used for scheduling and binding. Operators in the
CDFG are partitioned into clusters according to their functional similarity, where each
cluster defines a functional unit executing all the operations in the cluster.

Another application of partitioning to HLS is decomposing a behavioral description
into a set of interconnected processes. These processes can be mapped into a Finite State
Machine (FSM). Such partitioning is similar to the scheduling of processes onto different
processors in a multiprocessor. Partitioning algorithms group these processes into clusters

so that each cluster is executed sequentially on one of the processors. The main goal of

17

this grouping is to execute the entire cluster under one control unit while satisfying design

constraints such as chip size, clock rate and power consumption[15].

2.2 ILP Tools for High-level Synthesis

Automated design tools at higher levels of design provide the designer with the capa-
bility of reducing the design time, which is very crucial given the competitiveness of the
current market. Furthermore, automatic tools are less likely to produce incorrect designs.
Another benefit of designing at high-level is the ability to search a larger part of the design
space for a satisfactory implementation.

These high-level tools will reduce not only the time for designing but also the number
of iterations required for generating a satisfactory design by guiding the designers towards
a better result in an earlier part of the design process.

The main goal of the synthesizers is to transform an input algorithm or behavior into a
hardware architecture that minimizes a cost function and satisfies a set of constraints. The
architectural synthesis problem involves several interdependent subtasks including sched-
uling, and the allocation of functional units, registers, and interconnects. Integer linear
programming can be an efficient method to solve the scheduling and binding problems.
Binding refers to allocating each operation to one specific functional unit. Operation
scheduling determines the cost speed trades-off of the design.

The simplest scheduling technique is As Soon As Possible (ASAP) scheduling where
the operations in the CDFG are scheduled step by step from the first control step to the
last. An operation is said to be ready if all of its predecessors are scheduled. This proce-
dure repeatedly schedules ready operations to the next control step until all the operations
are scheduled.

As Late As Possible (ALAP) scheduling performs a very similar procedure as ASAP.

18

In contrast to ASAP, ALAP scheduling schedules the operations from the last control step
toward the first. An operation is scheduled to the control step as all its successors are
scheduled.

A third technique, the list scheduling, similar to ASAP, the operations in the CDFG
are assigned to control steps from the first control step to the last. The ready operations are
given a priority according to heuristic rules and are scheduled into the next control step
according to this predefined priority. When the number of scheduled operations exceeds
the number of resources, the remaining operations are delayed[2].

Another type of scheduling is that it selects the next operation to be scheduled then
decides the control step in which to put it, this is called force-directed scheduling. In force-
directed scheduling, the pairing of operation and control step that has the most attractive
force is selected and assigned. After the assignment, the forces of the unscheduled opera-
tions are re-evaluated. Assignment and evaluation are iterated until all operations are
assigned. In this scheduling technique, the maximum number of control steps must be
specified[2].

Since the above scheduling methods mentioned above assign operations to control
steps one at a time, their results depend strongly on the order of the assignments. If the
design is subject to speed constraint, the scheduling algorithm will attempt to parallelize
the operations to meet the time constraint. Conversely, if there is a limit on the cost (area
or resources), the scheduler will serialize the operations to meet the resource constraint[9].
Once the operations are scheduled, the number and the types of functional units, the life-
times of variables and the timing constraint are fixed.

A tool OSTA[14] was designed to perform architectural synthesis to digital filters and
produce optimal data paths favored to other synthesis methods. In this tool, we state the

scheduling problem by a mathematical description and then solve it using an Integer Lin-

19

ear Programming (ILP) method. ILP is an efficient method to solve the scheduling and
allocation problems. This is because formulation with linear cost function can be solved
much more easily than that of nonlinear cost function.

By carefully arranging the data dependency relationships in the formulation, it is pos-
sible to formulate the cost function as linear. We can reduce the solution space of the
scheduling algorithm by restricting the range of control steps for each operation. This can
be done by using both the ASAP and ALAP scheduling together with setting an upper and
a lower limit to the number of functional units of each type. By this procedure, unneces-
sary searches can be easily avoided.

The ILP program was made to reduce the number of functional units, registers and
buses by balancing the concurrence of operations assigned to them but without lengthen-
ing the total execution time[14]. Concurrence balancing helps to achieve high utilization -
or low idle time - of the structural units, which in turn minimizes the number of units
required[10].

The tool has a graphics user interface that enables the user to draw the flow graph of
any digital design consisting of adders, multipliers, and delay elements. This step is usu-
ally followed by a translation of the description into a graph based representation called
the control data flow graph (CDFG). The CDFG is represented in a netlist file generated
automatically as the graph is drawn. The nedlist file produced describes the type of edges
(input, output or direct, recursive) and node operations (adders, multiplier, subtracter and
ALU) used in the graph. An intermediate program is written to prepare data by determin-
ing the ASAP and ALAP of each operation, numbering edges and operations and specify-
ing their types and the data dependency of the operations.

A database file is created containing all the information about each node and its type

and each edge and its type, written to be used for the next stage. The node, as mentioned

20

previously, could be an adder, a multiplier, a subtracter or an ALU. The edge is either of
type direct, that is a connection from one FU to another FU, or recursive, a connection
between a delay element and an FU. Also the edge could be an input/output port.

After the ASAP and ALAP scheduling, the next is to assign a propagation delay value
to the operations and partition them into specific control steps.The netlist file produced
from the interface is used as input to an intermediate program to calculate the asap and
alap of each operation and to determine the critical path of the graph. These values with
the netlist are used as parameters to generate the code of the ILP for scheduling and bind-
ing using the mathematical formulations written in [12].

The ILP formulation is achieved by arranging the data dependency relationship in the
graph and then restricting the range of control steps for each operation. The restriction is
done to reduce the search space for each operation. The second phase is done using the
ASAP and ALAP scheduling. This ILP program allocates the resources for the digital sys-
tem and assigns the control step in which the operation is scheduled. This formulation
results in lower interconnections and multiplexer inputs. As a whole the first ILP program
sets the following goals: minimization of FUs, minimization of control steps, minimiza-
tion of registers, and /or minimization of the number of parallel transfers.

When the [LP, written in OSTA, is used to do the scheduling and binding, the user can
choose the number of each type of the functional unit types. To obtain an optimal design,
scheduling and binding are done simultaneously. However, this tool allows the user to
have choices in either tightening the time or the resources or a combination of both.

(2) Given the maximum number of control steps, find a minimum cost schedule that
satisfies the given set of constraints. The maximum number of control steps should be
greater than or equal to the number of control steps in the critical path. In other words,

given the ALAP and ASAP of each operation, minimize the cost of the resources.

21

(b) Given the maximum number of resources, find the fastest schedule that satisfies
the given set of constraints. In general, the resources are the number of functional units
such as adders, multipliers, and ALUs. Registers and interconnections are difficult to spec-
ify as resource constraints.

(c) Given a fixed amount of resources and a specified number of control steps decide
if there is a schedule that satisfies all the constraint. Produce the solution if it exists. This
approach is useful since it allows the user or an expert system to control the speed-time
trades-off. Since a set of optimal solutions is generated and the selection of best time/area
implementation is left to the user.

Another ILP program was taken from [12] to perform bus transfer scheduling and bus
allocation and binding, altogether with storage minimization. In this synthesis technique,
the input/output ports are considered as functional units or registers. The register binding
is done after scheduling and binding the operations to their functional units. The register
binding is done concurrently with the placement and routing phase. This enforces to take
into account for interconnection and storage cost at the same time when doing the schedul-
ing and binding. The ultimate for this stage is do the following: minimize the number of
busses, schedule the bus transfers, and/or minimize the destination registers connected to
each bus.

This synthesis methodology performs the register binding after scheduling and bind-
ing the operations. This approach makes it essential to take into consideration the inter-
connection and storage cost together with the operation scheduling and binding.
Minimizing the interconnects is done by minimizing the number of motifs. A motif is a
representation of all edges that have the same FU bound to its source operation and the
same the same FU to its destination operation.

As the number of motifs decreases, the utilizations interconnects utilization becomes

22

maximum leading to a minimum structural complexity. The result is: reduction of local
interconnections done by optimal operations to functional units binding, and high through-
put in the busses by the increase of data transfers to these busses. The Graphical User
Interface and the automation techniques for the two ILP programs were written in Prolog
language.

At this stage, the functional units are assigned to execute the operations, storage units
are assigned to store the values, and wires are allocated to interconnect them using the data
transfer information derived from the CFDG. Here the data path is completed. Finally,
based on the schedule graph and the data path, a contro] unit is synthesized to synchronize

the executions of the operations.

2.2.1 Synthesizing A Digital filter using OSTA:

The following is an example of how the tool works. The following circuit, in Fig.2.3,
is drawn using the graphical user interface. The circuit elements are mapped to a CDFG
representation.The CDFG will be present as a database file that informs the type of each

element and the type of connection of each edge.
8

Fig. 2.3: The structure of the Biquadratic filter.[9]

23

Once the database file is prepared, the program calculates the ASAP and ALAP of
each operation and given the time delay of each functional unit, the critical path is found.

The data in the files explains the connections and precedences of each operation. Each
connection to a delay unit is cut and related to a register. As the critical path is found, the

upper limit of the control step cycles is determined.

Fig. 2.4: The scheduling of the CFDG of Fig.2.3 (a) ASAP and (b) ALAP. The thick line shows the
critical path.

The first ILP program will schedule the operations in specific cycle steps by giving
the number of resources. With all the data given, minimum number of functional units,
control steps, registers and storage are performed in this step. Fig.2.4 shows the schedul-
ing and operations binding with two cases. In this example, the delay of the multiplier is
two step-cycles and the that of the adder is one step-cycle. As shown in Fig.2.5a, one

adder and one pipelined multiplier is used. The number of cycle-steps in that figure is one

24

cycle more than that in Fig.2.5b, where two multipliers and two adders are used. This
shows the relationships between the cost of area and time: they are orthogonal to each

other, i.e. the time is reduced by increasing the area and vice versa.

A

®)

Fig. 2.5: Operation scheduling using (a) 1 adder and 1 multiplier, and (b) using two multipliers
and two adders.

The objective in the second ILP formulation is to minimize the number of bus alloca-
tion, register file storage locations and bus loading[8]. In this stage, no register binding is
made, only the scheduling of the bus transfers. In our example, a register is allocated

between node 7 and node 8 as shown in (Fig.2.6a) shown in the next page.

25

(a) 2nd phase, two registers are (b)2 multipliers and 2 adders are
added. used and no register.

Fig. 2.6: The two graphs showing registers added to (a) and motifs are established in (b) between
the two multipliers.

In the second case, in Fig.2.6b, where two adders and two multipliers are used, no
registers are employed, and there are motifs used between the two multipliers and from
one multiplier to an adder which leads to smaller interconnections. The data paths for
these two cases are shown in Fig.2.7 and Fig.2.8 consecutively. The first case, Fig.2.7,
where one adder and one multiplier are used, multiplexers are used to control the data

transfer to and from the FU.

26

Fig. 2.7: The data path of the filter using one adder and one multiplier.

It is noticed in Fig.2.7 that two registers are also added to delay the same data for
another operation. This is because the same data is needed for different operations in dif-
ferent step cycle.The second case, Fig.2.8, two adders and two multipliers are employed.
The functional units are doubled but there are no registers used and the number of multi-

plexers are less.

Fig. 2.8: The data path of the filter using 2 adders and 2 muitipliers.

27

In summary, the whole tool is translating the circuit diagram drawn from the graphics
user interface to database file that represent the CDFG. Once this information is ready, the
code needed to run ILP formulations in GAMS (an ILP programming software) is gener-
ated and the ILP file is set to be running to produce the scheduling and binding of the oper-
ations. The solution to the ILP formulation is stored in a new file to be used for bus
scheduling and register binding. The whole procedure is explained in the next figure

below.

4)

database file |

runilpl

| ilpl.Ist |

(printlisp)

\ J

Fig. 2.9: The flowchart of the synthesis tool.

Fig.2.9 shows the sequence of commands needed to do the synthesis of any digital

28

circuit. The following is a brief detail of each command and the type of file produced by
each command. The code written for the commands, might be in Prolog, GAMS and unix
ex- editor commands. The elliptic shape in the figure is the command representation and
the rectangle is a file representation.

gui: This command opens a graphical user interface that allows the user to draw the
circuit diagram of any typical digital filter. The operations are mainly addition, multiplica-
tion and delay. The output of the command is the database file.

database file: This is the file produced from the gui command. It contains the control
and data flow. The data in the file is mainly about the type of operations, and the control
and data dependencies between these operations. The results are stored as variable ele-
ments in Prolog to be used as parameters to the next phase.

runilpl: This is the command that generates the ILP formulations given the data from
the graph drawn. The number of functional units to be used for implementation, the delay
of each functional unit in cycle-steps and the degree of optimization are given by the user
interactively. Then the formulation is generated to run in GAMS. This is the scheduling
and binding phase. It assigns each operation to a specific functional unit and determines
the cycle-step the operation is taking place.

ILP1.Ist: is the output file that results from running the formulation in GAMS. It con-
tains the list of operation-functional unit binding and scheduling. The result is written in a
GAMS format that needs an intermediate phase to interpret it as a prolog input.

cleanSB: This is an ex-editor file in the unix system. It scans the results from the list-
ing and writes the data output in a Prolog format. The data output shows each operation
binding and scheduling.

runilp2: This command shifts to the next stage, bus allocation and minimization. As

mentioned before, the tool takes into consideration minimizing the interconnections as

29

well. Register allocation is a way of achieving that. The command runilp2 generates the
ILP formulation needed to run GAMS and allows the user interactively to set the number
of registers desired in the optimization.

ilp2.Ist. It is the output file that results from running the GAMS for bus and register
minimization.

cleanRB: It is like cleanSB, a unix ex-editor file that reads the data output from the
listing of the second ILP formulation and writes the result in a prolog variable to be used
for the final stage.

printlisp: This is a command that takes the results of both operation scheduling and
binding with register minimization and produces the data path accordingly in the Lisp for-
mat.

lisp_file: This is the output file that contains the description of the data path in a lisp
format. The lisp format is to do the floor planning for extended purposes.

As a result, the OSTA tool has an objective of optimizing the interconnections con-
currently with the scheduling and binding of the operations. The number and the type of
the functional units to be implemented are left to the choice of the user. The flexibility of
these two ILP formulations allows to adjust the delay of the data-transfers between differ-
ent partitions to some technology dependent value[8]. However, there are limitations to
the tool: the running time to find the optimal solution may take hours if not days depend-
ing on the complexity of the design. The synthesis tool program is given in Appendix A.

Some of the synthesis techniques used in OSTA are applied in the implementation
proposed in this thesis. As will be seen in the next chapters, the steps mentioned in the
HLS methods, from the clustering technique to scheduling and binding of operations
together with loop unfolding will prove to produce an effective and optimal implementa-

tion of the RS(n,k) decoder.

30

CHAPTER 3

Versatile Reed-Solomon Decoders

Reed-Solomon Codes are constructed from fields with a finite number of elements. A
finite field with g elements is generally called a Galois field and denoted as Gift. Every
field must have a zero element and one element. Hence the simplest field is GF(2). In gen-
eral, when g is prime, we can construct the finite GF(g) consisting of the elements {0, 1,...,
q - 1}. The addition and multiplication operations on the elements of GF(g) are defined

modulo-g and denoted as (mod-g).

3.1 Galois Field Elements and Their Characteristics:

The finite field GF(q) can be constructed only if ¢ is prime or a power of a prime.
When g is prime, multiplication and addition are based on modulo-g arithmetic. If
q = p™ where p is a prime and m is any positive integer, it is possible to extend the field
GF(p) to GF(p™). This is called the extension field of GE(p). Multiplication and addition
of the elements in the extension field are also based on modulo-p arithmetic. Because of

implementation simplicity, normally RS codes are constructed in GF(2™).

3.1.1 Properties of GF(2™)
1. Elements of GF(2™) can be represented in powers of the primitive element . as
GF (2™ = {0, 1, 0.0, ..., a* 2} , where a is a root of the irreducible genera-
tor polynomial I (x) .
2. The multiplication of two elements of GF(2™) is defined as:-
0-l=0/-0=0

l-ai=col-1=oaf

31

oi-of = gtdmed=r where n=2"-1 .
3. o, any element in GF (2™) can be represented as a polynomial representation as

of = oy al+. 0y . o™~ or in power representation as

o m—2
i,m—2 o +0"'i,m—

)

1
o = (O Oy o0

The power representation is convenient for multiplication while the polynomial repre-
sentation is convenient for addition.

Let m = 4. The polynomial p(x) = 1+X+ X* is the primitive polynomial over

GF)[1].Ifset p() = l+a+at=0 ,then

ot =1+a . 3.1)

The elements of GF(24) are given in the table below and using equation (3.1), we can
form the polynomial representations as well. For example,
o = a-at= a(l+0a) = a+a?,and so on. To multiply two elements of and
o/, we simply add their exponents and use the fact that ol!’ = 1. For example,
of -oS= 12 and o2 -al® = o= o.
4. Addition in GF(2™) is carried in using the polynomial representations in the table
below. Thus, for adding o and o,

)

0’ " i,m

i =

o'+of = (ai0+aj _1+aj’m_1) [1], for example,
S+a’ = (a+02) + (1+o+ad)=1+a?+a® =al? .

It is important to notice that adding the same element to itself yields a 0.

5. Squaring in GF(2™) is linear

32

Vo, Pe GF(2™)

(a+B)%= o +B% ,because 2-off = af+af =0.

TABLE 3.1: Three representations for the elements of GF(2%) generated by

p(x) = 1+X+Xx*

Power Representation | Polynomial Representation | 4-Tuple Representation
0 0 (0000)
1 1 (1000)
o a (0100)

o? o? (0010)
o3 ol (0001)
o T+ot (1100)
o o+ (0110)
o o240 (0011)
o 1+o+o3 (1101)
od 1+02 (1010)
o’ oo (0101)
ol0 1+o+o2 (1110)
ol! or+o2+a3 (0111)
ol? 1+o+o2+o3 (1111)
ol3 1+02+03 (1011)
ol 1+0 (1001)

3.1.2 Implementation of Galois Field Arithmetic:-

Galois field arithmetic can be implemented more easily than ordinary arithmetic
because there are no carries. To add two field elements, we simply add their vector repre-

sentations. The resultant vector is then the vector representation of the sum of the two field

elements. For example, we want to add o and a!3 of GF(24). From the table above, we

find that their vector representations are (1101) and (1011) respectively. Their vector is

(1101) + (1011) = (0110), which is the vector representation of o. Addition of the two

33

field elements can be accomplished with the circuit shown in the figure below.

o B? 0y Bll 02 B a3 B3
X X | X X
o) O 0 o)
R R R R

0 1) 33
d=a+P

Fig. 3.1: The implementation of GF(2%) adder.

The Galois Field multiplier has a different structure than the binary arithmetic multi-
plier. It is more complicated yet still pure combinational logic. It is implemented as paral-
lel-in/parallel-out Galois Field multiplier [1].The choice of the multiplier depends on the
irreducible polynomial that can generate GF(2™). The polynomial which introduces the
least complex o-multiplier(5], should be chosen and is called the minimal polynomial.
Suppose that we want to multiply a field element f3 in GE(2*% by the primitive element o
whose minimal polynomial is p(x) = 1+X +X*. The structure of o-multiplier is
shown in Fig.3.2(a).The structure of the Galois Field GF(24) multiplier is shown in
Fig.3.2(b).

After the properties of GF(2™) have been stated, it has been seen that the multiplica-
tion and addition on these finite field elements are different than the ones performed on
real pumbers or integers. However, the implementation of the operational units of such
" elements is similar to that for reals or integers.For the case study, versatile time-domain

Reed-Solomon decoder is considered since RS codes are defined in Galois Fields. It will

34

be shown that HLS techniques could be applied to implement such decoder and that this
approach will yield interesting results.

RS codes have a very large burst error correcting capability when the symbols are
transmitted bit by bit. These codes correct a large number of random errors. RS codes are
used in many applications s;Jch as in satellite, spread spectrum and mobile communica-
tions as well as in magnetic and optical storage systems and this is the fact due to their

error correcting capabilities and optimum structure.

0 a
2 xor]—21
ap ap
a3 da

(a)ct - multiplier

(b) GF (2% multiplier

Fig. 3.2: The structures of a-multiplier{6] (a) and the GF(24) multiplier employing o.-multiplier(S]
(b).

3.2 The Time-Domain Versatile RS(n,k) Decoders

An RS code is a block of symbols where each symbol is an element of GF (2™). An

RS (n, k) code has the following parameters:-

35

m= number of bits per symbol.

n= 2" -1 =length of codewords in symbols.

t= maximum number of error symbols that can be corrected.

d= number of check symbols =2t¢.

k = n— 2t = number of information symbols.

RS codes have a minimum distance of 2¢+ 1 and 7 — symbols error-correction capa-
bility. A received word with any combination of t or fewer symbols in error will be cor-
rectly decoded. Block codes such as RS codes, can use one bit of soft decision information
per symbol, called erasure indicator, to inform that the received symbol is incorrect. In fact
an erasure is an error with known location. An RS (n, k) code is able to correct up to
n — k erased symbols. Any pattern of v symbol errors and p symbol erasures can be cor-
rected provided that 2v +p <n—k. To correct an error, the decoder must find both its
location and its value. To correct an erasure, only its value needs to be found. A versatile
RS (n, k) decoder has its error and erasure correction capability programmed, yet the
code should be defined in GF (2™) with a fixed m[4]. The limitation is because the multi-
plier in Galois fields has different structures for different values of m[5].

For decoding, we have to solve a system of 2t simultaneous equations in the v
unknown error locations and v unknown error values[28].

Let ¢ (x) be a code word polynomial of RS (n, k) and e (x) be the error polynomial,
the received vector then is

vix) =c(x) +e(x) =v,+vix+ - - - +yx
where the polynomial coefficients are components of the received vector - Two main

steps are involved in time-domain decoding.

36

3.2.1 The Time-Domain Algorithm[6]

The time-domain decoding algorithm, presented in Fig.3.3, the vector A is the error
locator vector, s is the errata value vector and b is the temporary storage of A. The value
of L is initialized to zero, A, and b;, (i=0, 1, ...,n— 1), are initializedto o’ = 1, and
the errata value vector § = .

After initialization, there are n iterations, divided in three stages: according to the
value of the parameters p, (the number of erasures) and k (the length of the message) in
symbols.

In the first stage, we have p iterations, where the components of the error vector A

are evaluated according to the erasure locations j, r = 0, 1, ..., p, using following equa-
tions:
A=or
d=0
bi (At (1-8) o075
b, = A, (3.2)

3]

In the iterations r = p+1,p+2,...n —k, the second stage, the error vector A is

evaluated using the following set of recursive equations.

n-1
A= Z)\.isi
i=0

Led(r-L)Y+(1-0)L
H |1 A [)”E| (G3)
b; A (1-8) o |b:

37

where 8 = 1,ifboth A#0 and2L—-p<r—1,and & = 0, otherwise.
In the third stage, after the (n—k) th iteration, the estimate of the errata value vec-

tor s is calculated according to, -1
A = 2).isi
i=0

s;¢=5;—A (34)

and finally, if A;s; = 0 for i = 0, ..., n -1, the received vector v is corrected to

0
il

<
1

A

3.5

Hence, for an RS(n,k) code, we have a total of n iterations.

38

£ ¥ —*
b;=% |(5) rer+l 1)
(A) No

0 e i
4)

Si(—sii-A (8)

LeL+8(r—2L-p))

RS

[+

r —i r=1) (6'1)’
o (A _ 1 A —Jli(1 (6.2)or (9)
sO| (a8 (-8 | (64)

¥

‘_L-]

Halt

Fig. 3.3: The Versatile RS(n,k) Decoding Algorithm.[5]

39

3.3 High-level Synthesis Approach

Referring back to Fig.3.3, the calculations done in each iteration are not the same and
depend on the values calculated previously, hence they involve decision making and loop
branching which make the algorithm difficult to implement. As it is noticed, there are five
conditions to be considered:

(DA: r>p,

2)B: r>n-k,

3)C: A =0,

(4)D: r>2L-pand

BOE: r=n

we see different paths according to the different possible conditions as in Fig.3.4.

@%
1
iy

Fig. 3.4: The different paths of decoding algorithm.

Path «:
We have (r<p) A = &/,8 = 0,L does not change, with these conditions, the

sequence of operations is as shown in Fig.3.5:

A" =AY A s (6.1)

b =2

Fig. 3.5: Path T with the operations (2) and (6.1).
Path -
With conditions (r>p), (r<n—k),A#0,r>2L-p ,® = 1, we have the fol-

lowing operations as shown below in Fig.3.6

—

g —

) (2) s, =s,-0 Vi

i i

(N _ 4 (r=1) _ s —ip (r=1)
6.1 = ATV -AaT,

n—1
3) A=) A,
6.1 6.2) igfo !

2 b 62) b =AY

Fig. 3.6: Path B with the operations (2), (3), (6.1) and (6.2).

41

Rath o:
With conditions (r>p), (r<n—-k),A#0 ,r<2L-p ,6 = 0 we have the fol-

lowing sequence of operations as shown in Fig.3.7

©

(2) s;=s;-08 Vi
n-1

s 0 (3) A=Y 1,
i=0

() (e 61 M =AY

64) b =a ATV

Fig. 3.7: Path o with the operations (2), (3), (6.1) and (6.4).
Bath A:
With conditions ((r>p), (r<n—k),A=0) the sequence of the operations

becomes as shown below in Fig.3.8

10 MO =AY

n—1
(3) A=Y A,
i=0

64) b7 =0TV

Fig. 3.8: Path A with the operations (2), (3) and (6.4).

42

Path o:

When (r =n) , we have the following operation: if).isi =Q0for i =0,...,n—],
the received vector v is correctedto ¢ = y— 5.

The above mentioned path, will be combined with path & for simplicity, hence the
operation (9) is inserted in Fig.3.9. With conditions (r>p), (r>n—k) the sequence

becomes as shown in Fig.3.9

Fig. 3.9: Path ¢ with the operations (2), (3),(8) and (9).

As mentioned earlier, the decoding algorithm consists of a loop of n iterations with
operations and decisions represented by circles and de-multiplexers. Implementing simple
loops are easily done, but in our case the loop consists of conditional branches that depend
on the data of the previous iterations which makes it more complex and difficult. From
Fig.3.5 to Fig.3.9 we could see that there are five possible paths from which only one is
taken at each iteration r ,where r =0,...,n—1.

The conditions that control the choice are the values of p, k and A. The first two
parameters are known in advance prior to any calculation, but the last, A, is calculated in
the middle of each iteration in the loop. The fact that A is found later delays the decision
made to choose the path. This is a major obstacle to make thg design fast since the choice

of the path, to be executed, must be determined before each iteration. It is noticed that

43

operation (2) that calculates the errata value vector s , is performed in each path.

>
;

END k

Fig. 3.10: The control flow graph of the decoder after retiming

To speed up the design, we can use one kind of transformation called retiming. Retim-
ing has been used successfully in several areas of design synthesis and automation[2]. It
has been used to reduce the critical path in the graph and to minimize the number of
delays. Our approach is forwarding operations (2) and (3) in Fig.3.3, up to be done in the
previous iteration, i.e. at iteration i, A, and s; are calculated in (i — 1) th iteration and
the values of A, , and s;,; are obtained in the ith iteration and so on.

By this transformation, the decision to chose the path can be determined at the begin-
ning of each iteration, hence reducing the delay path and optimizing the resource utiliza-
tion.The data flow graph, after retiming the operations mentioned previously shown in

Fig.3.4, is transformed to the graph shown in Fig.3.10, above.

>
>
(=

[172]

6.2 6.1

>

>

Fig. 3.11: Path P after retiming.

As the retiming is applied to the decoding algorithm, each of the paths mentioned pre-
viously is affected by this transformation. Fig.3.11 to Fig.3.15 represent the transformed

paths shown in (Fig.3.5 - Fig.3.9).

Fig. 3.12: Path 1 after retiming

45

Fig. 3.13: Path o after retiming.
It is clearly shown that the time to do the operations in each path is reduced since the
parameters that affect the decisions are evaluated at the beginning causing the design to be

faster.

Fig. 3.14: Path A after retiming.

46

o

Fig. 3.15: Path ¢ after retiming.

The next chapter is devoted to implementing the hardware of the operations of the
five possible paths. The implementation will be applied using the High-level Synthesis
(HLS) approach in the OSTA tool. The techniques will be clustering functional units (FU)
to form one unit that performs all the operations required on the data in one control-step.
This control step will constitute the clock cycle of the decoder. The period of that clock

will be dependent on the delay path of that cluster.

47

CHAPTER 4

HLS of Time-Domain RS(n,k) Decoders

The new micro- technology in VLSI design enhances any system in the hardware to
result in three basic components: the data path, the control unit and the I/O unit. The data
path contains the arithmetic and logic units where all the calculations are done by the
operational units, the control unit, mainly represented by a finite state machine, controls
the flow of data to the data path by deﬁning the time and type of each operation together
with the inputs and outputs. The IO unit interacts by interfacing the input data to and from

the data path.

4.1 The Structure of the RS(15,k) Decoder

Implementing the hardware of the RS(n,k) in the proposed design, requires that all the
vectors being calculated to be nxm - bits wide. The input is m-bit symbols entering the
decoder symbol by symbol and each nth symbol completes the n X m - bits symbols to
constitute a codeword. To make the design faster and easier, all the codeword symbols are
manipulated simultaneously which causes the connections in the data pathtobe nxXm -
bits wide. In our example, m = 4, and the code word length is then 15 x 4. Since the
hardware does not support 60-bits width bus, the operational units are 32-bits wide built.
Each of the operation presented in the previous graphs are constructed using two of the
same type of functional unit. For example, the addition is built of two 32-bits wide adders
and so is the multiplication. It is noticed that two of the adders constitute 64-bits opera-
tional units, and hence four most significant bits are added for symmetry purposes. The
hardware cost might be increased slightly by adding these symmetry bits but the resultis a

more convenient design. This is due to the fact that having all the functional units to be of

48

the same width causes the design to be more consistent with higher throughput.
The structure of the RS(n,k) decoder will consist of the three units: In/Out unit, con-

trol unit and data path unit. The structure is shown in Fig.4.1..

k } Tk + clk f spike

- —————
In/out interface
iR R TS
b b
g . A
'Y Control Unit s
A — »| Decoding
—a-l
T Q > Unit
clk; oL
——
control hits > _l

Fig. 4.1: The Block diagram of the RS (15,k) decoder

4.1.1 The Input/Qutput Unit

The In/Out unit has the following inputs: the received codeword vector y which
comes as a series of symbols, the external clock, the length of the message k and the spike,
the signal that shows an erasure. As the codeword is entered, if the spike is set to 1, an era-

sure is indicated to the relative symbol position. The position of each erasure is stored in

49

the vector &", which is to be used as initial values of the vector A in the datapath or the
decoding unit. The process of generating the input symbols, as one codeword to the
decoding unit, is done using a finite state machine. If the reset signal is set to 1, the decod-
ing process is initialized to start from the first symbol otherwise the next symbol is
entered. Each time the symbol is entered, and an erasure is indicated, p will be increment-
ed.In the last state, where the 15th symbol is entered, the process resets to the initial state
where a new sequence of symbols is input. The state diagram of the input/output unit is

shown in the figure below.

Fig. 4.2: The state diagram of the in/output unit.

The codeword is entered symbol by symbol at the rising edge of the clock. At the end

of the 15th cycle, the In/Out unit produces a 64-bits vector containing the whole codeword

50

that constitute the symbols entered with four redundant bits added. Meanwhile, the vectors
A, s, and b will be initialized so that the decoding process starts for this specific code word.

The sequence of the operations is shown in Fig.4.3.

codeword 1 |codeword 2 e codeword m
decoding 1| decoding 2 s decoding m
Out 1 Out 2 e Outm
i 15 30 % T5%m cycles

Fig. 4.3: Sequence of operations done in the decoder.

In conclusion, during the first n-cycles, the In/Out unit receives the codeword symbol
by symbol, the second n-cycles the decoding unit decodes the first codeword while the In/
Out receives the second codeword and so on. Therefore, while the in/out is receiving the
mth codeword, the decoding unit is decoding the (m-1)th codeword and the (m-2)th code-

word is ready for output.

4.1.2 The Decoding Unit

As mentioned in the previous chapter, the time domain decoding algorithm has five
different possibilities of calculations in each iteration. Building the hardware for each pos-
sibility leads to an increase in the area, reduction in the throughput and hence the design is
neither optimal nor efficient. The solution to this problem is to build a common hardware
for all the possible operations with multiplexers added to the operational units. The multi-
plexers act as switches to control the data flow in and out of the common block. A state

machine will be built to produce the control bits that supervise these multiplexers.

51

The calculations of the vectors are done for all the symbols simultaneously to
improve the speed of the algorithm. The operations in the decoder, are: addition, multipli-
cation, and compare-add ones. For example, the vector s is calculated as a codeword of 15
symbols simultaneously rather than calculating each symbol sequentially. This makes the
calculation significantly faster with additional hardware that can be afforded.

For example, operation node (2) where

s;=s;-00 Vo i=(0,...n—1)
is evaluated by multiplying the whole vector s by the constant vector & where Qo is
[oco, .. .oc14] .This is the case for all the vectors.

The width of each vector is 60 bits (15 X 4 bits). Due to the limited capacity of imple-
menting 64-bits bus, the vectors are divided into two 32-bit vectors where redundant 4-bit
added are for symmetry purposes.

As mentioned in the previous section, the functional units are built to perform opera-
tions on 32-bit vectors. Hence each vector is divided into two 32-bit vectors. Galois field
adders, are simply XOR gates with no carry bit to take care of. As shown in Fig.4.4, the
basic adder, is composed of two 32-bit adders. Each 32-bit adder is composed of eight 4-

bit adders, where the 4-bit adder is simply a 4-bit XOR gate as previously mentioned in

chapter two.

@ =Co000000

The addition is implemented using 8*4 XOR gates

Fig. 4.4: Structure of 32-bits adder in the RS(15,k) decoder.

52

Similarly, the node for multiplication is composed of two 32-bit multipliers. Each
multiplier is composed of eight 4-bit multipliers. The structure of the GF(2*) multiplier
was shown in Fig.3.2. The structure of the multiplication, or the multiplication node, in the

RS(n,k) decoder algorithm is shown in Fig.4.5

¢ 00000000

The multiplication is implemented using 8*GF(2*) multipliers

Fig. 4.5: Structure of the 32-bits multiplier in the RS(15,k) decoder.

The structure of the summer that sums up a multiplication calculating A, in equation
(3.3), uses tree addition instead of the sequential addition to speed up the process from 15
addition delay to [log215'| = 4 additions. This transformation is applicable due to the
associativity property of operations like the addition causing the delay of the whole addi-

tion to be smaller. The summer is shown in the figure below (Fig.4.6(b)). The summer

-z
\o/

The summer node (a) The summer (b)

node is shown in Fig.4.6..

Fig. 4.6: Structure of the summer node.

As for the compare and add, a comparator is used to evaluate the product A;s; and

53

compared to zero. If zero, then do ¢ = v+s , as shown in Fig.4.7.

Fig. 4.7: Structure of compare and add in the RS(15,k) decoder.

In the proposed design, the functional units used are the adder, multiplier, summer
and the compare-add elements presented above. Each of the operations in these different
paths will be mapped to its related functional units.

There are six different paths, Fig.4.8 to Fig.4.13, which represent the functional units
used as mentioned in the previous chapter. The total number of the operational units is:
twenty-four multipliers, twelve adders and six summers.Building the hardware of each
path results in larger area and hence more cost and less resource utilization. Also the
throughput is very low because not all the paths are utilized in each iteration. Only one of
them is busy while the other four are idle and hence we get 20% throughput leading to
poor resource utilization. An important fact is that all the paths have some operations in
common, which are two operations (2) and (3), (in Fig.3.3). These two operations consti-

tute a major effect on the delay and area of the whole decoding process.

54

Fig. 4.8: The functional units used for state init.

55

N

A
@ : Multiplier
ﬂ]]ﬂ[[[) : Adder
: Summer

b | |ois alsf | b
1 \@/
b \
b
aols ofs s

Fig. 4.9: Functional units used to perform operations in state o.

56

o’'s

Al Al A
Y
ods ods s

Fig. 4.10: Functional units used in state B

57

A o’'s

ao’ls

Fig. 4.11: Functional units used in state &

58

ofs

A A
©
\\
A
A

Fig. 4.12: Functional units used for operations in state A

59

Fig. 4.13: Functional units in state c.

The optimal solution for implementing an efficient design is to construct a common
block that can perform the operations in all paths.This is applicable because the operations
in each path are mutually exclusive.This reduces the area and increases the throughput of
the resource. However, the price is adding multiplexers to control the flow of the data
depending on the type of the path. In the common block multiplexers are employed and

their cost are incomparable to implementing the five structures.

60

|

: multiplexer

: summer
: multiplier

: adder

o =298 (

: compare and add

Fig. 4.14: The structure of the block common to alt paths.

The selection of the inputs to those multiplexers is determined by the control unit, an
additional cost, that makes the control unit more complicated. The common block is
shown in the figure above (Fig.4.14) and contains all the functional units necessary to do

the operations in all the paths. The data path is composed of 14 multiplexers, 2 compare

61

and adds, 10 multipliers, 5 adders and a summer. From Fig.4.14 it is clear that the

resources are reduced to less than 50%, with a throughput of 100%.

4.1.3 The Control Unit

The control unit has the following as inputs: n, k, p, and A. These inputs are the
parameters that determine the conditions. The output bits produced by the control unit are
fed to the multiplexers in the decoding unit or the data path. These control unit monitors
the flow of data. The following conditions are the ones that controls the choice of the path.
A: r>p,7*.: r<p;
B:r>n—k,B:r<n-k;
C: A=0,C A=0;
D: r>2L-p,l-5: r<2L-p;
E:r=n

Fig.4.15 shows the decision being made in each iteration depending upon the condi-

tions given above.

Fig. 4.15: The control fiow graph of the decoding algorithm in each iteration.

62

In Fig.4.16, the control flow graph is mapped to a state diagram that shows the flow of
control and output bits which controls the multiplexers in the data path.Each state in the
state diagram, is named by the path it represents. The decoding algorithm has basically six
states: state “INIT™ is to initialize the vectors. The others represent the states in the other
iterations.

The output bits in the state diagram are not shown for the sake of simplicity. These
output bits are tabulated in Table 4.1. In each iteration r in the decoding algorithm, where

(r=1,...,n), the decoder is in one of the states and the control unit produces output bits
to the multiplexers in the decoding unit.The control bits act as switches to the input data to

the functional units in the decoding unit.

TABLE 4.1 The control bits selected by the control unit.

state |1 |2 |3 |4 |5 [6 |7 [8 |9 |10 |11 [12 |13 |14
it |- -1-1-1-}-|1]1]ojo|lofo]ofo

o ololo|lo|lo]of1|1]ofo]|o}o]o]o

B olof1 |t |1 |11]1]ofo]|o]o]o]oO

A olololo|o]|o|lo|o|o|o]ojojo]o

o N P I T I I U O I I O

n tj1|-|-|-|-]t|1]oflo]ofjo]o}o

63

Fig. 4.16: State diagram of the decoding algorithm.

4.2 Analysis of the Implementation:

The proposed implementation has taken advantage of many high-level synthesis tech-
niques. The approaches of High-level synthesis techniques mentioned before in chapter
two, are applied here and are proved to produce an efficient and optimal design. These
methods are: retiming, associativity, clustering and scheduling and binding.

e Retiming has been successfully used in several areas of design synthesis. It is

64

important to note that the richest source of delay in a program is the loop construct. When-
ever a loop body uses information from a previous iteration, a delay is introduced. There-
fore, retiming is applicable to instances which employ iteration or recursion as in this
design. The application of retiming in this case is called software retiming in correspond-
ing with the well known software pipelining transformation[10]. Retiming is also used
here because the pipelining is ineffective namely in the optimization of recursive struc-
tures. Retiming has been exclusively used to reduce the critical path and is employed to

the operations 2 and 8 that calculate A and g respectively. This shown in Fig.4.17.

iteration i
iteration i

&)
Q@@@ ()=

& &

@) ®)

Fig. 4.17: Software Retiming: The loop in (a) is without retiming, the conditions are to be
determined in the middle of the iteration. The loop in (b) is after retiming.

65

@ Clustering is also used in the proposed implementation. Scheduling algorithms
assign operations in a CDFG to control steps while preserving control and data dependen-
cies between operations. Scheduling of operations into control steps can be viewed as the
partitioning of operations into a set of clusters in which operations in the same cluster are
executed in the same control step[15]. Hence in the proposed implementation, the com-
mon block is the cluster in our design. This is an optimal approach because partitioning
the operations in smaller clusters proved to consume a huge amount of multiplexers that
causes the design to have more delay and greater area.

@ Associativity is employed in this implementation to calculate the vector A which is

14
basically multiply and accumulate using the formula 4 = Z A -s; - When the two

i=0
vectors A and s are multiplied, associativity namely “Tree Height Reduction” is used. This
transformation causes the critical path of the operation to be reduced from the delay of fif-

teen adders to four adders delay. This is explained in the figure below.

S
Roso kls‘ Aosg sy hasy Aas3 Misii Aggsiz Aissis

kS

Aiasia

Ap3sis

14514

(a) (b)

Fig. 4.18: Transformation from multiply and accumulate in (a) to Tree-height reduction in (b)

e Scheduling and Binding are performed when each operation in any node in the

algorithm is bounded to the functional unit in the cluster formed.

66

CHAPTER 5

Implementation, Simulation and Synthesis: Procedure
and Results

The versatile Reed-Solomon (n,k) decoder has the following features: The error and
erasure correction capability can be programmed, i.e. the user can choose the length of the
message, k. As cited before, the RS(n,k) decoder receives the codeword as a sequence of
fifteen symbols. It is important to observe that the operations involved in the decoding
algorithm are calculated symbol by symbol sequentially. Since the symbols have no data
or control dependency between each other, they are updated parallel wise in all the vec-
tors. This approach tends to result in a faster design with no internal clock as will be seen
later.

In this chapter, for the case study, the RS(15,k) decoder where m = 4 will be
implemented. The design of such decoder is implemented using VHDL. The process of

synthesis and simulation will be described in the following sections.

5.1 The RS(n,k) Decoder Structure:

The decoder receives the data symbols continuously without any interruption. Each
consecutive fifteen received symbols constitute one codeword. The decoder is designed to
receive data symbols of the codeword and correct the previous codeword simultaneously.
When the symbols of the decoder are entered and a spike is detected at a specific symbol,
an erasure with its position is detected.

Fig.5.1, represents the schematic diagram of the decoder. At the rising edge of the
clock, the symbols are entered one by one sequentially. The length of the message in the

codeword is also entered and if a spike is detected, an erasure is indicated. Meanwhile, the

67

decoder is performing the iterations with every clock rise. When the whole codeword has
been received, that is at the fifteenth clock cycle, the previous codeword would be cor-
rected. The iterations of the decoding algorithm to correct the codeword is synchronized

with the entrance of each symbol of the next codeword.

inverse Al
di ill |
. >
in_ port 2 »| initialize ramalpha
v
l s| a]a
c vy
. . <
- mew—
contl'ol B R decodin
- _AT_. g ﬁ ‘
— FHA—p! unit |2
unit 2y

Fig. 5.1: The schematic diagram of the decoder.

At the arrival of the last symbol in the codeword, the vectors s, A, A and } are initial-
ized. Vectors A and b are calculated for the first iteration while the calculation of A and §

are done for the second iteration. This fact is due to the retiming procedure mentioned in

68

the previous chapter.

Two finite-state machines (FSM) are built in the proposed design. The first one is in
the input port of the decoder and its function is to take care of the input data and produce a
vector of 64-bits that contain one codeword symbol y. The input port also detects the pres-
ence of erasures and stores them in a 60-bit vector, d". The second FSM is the control unit
that monitors the flow of data into the muxes in the decoding unit.

The design of Fig.5.1 consists of five parts: in_port, ramalpha, inverse, initialize, con-
trol_unit and the decoding unit.

in_port: This is the interface of the decoder. It accepts the stream of symbols as input
where each fifteen symbols constitute a codeword. The interface is a finite state machine
with its clock taken as the clock of the decoder as a whole. With the beginning of each first
cycle of the codeword, the codeword of the previous fifteen cycles are ready to be
decoded. At the end of each fifteen cycle, the in_port would accept the next input code-
word and have the previous one decoded and ready to be output simultaneously.

initialize: When the codeword is received, the vectors A, b are initialized. At the same
time the vector g with the A of the second iteration would be calculated. As mentioned
before, the procedure has all the conditions of the next iteration known where the path is
chosen at this phase.

ramalpha: This is the storage of the constant pre-calculated values of o and oL

inverse: This part gives the value of the inverse of o and oL, It is a pure combina-
tional portion. It works as follows: given the value of o, its inverse is output.

decoding unit: This the part that does all the calculations in the decoder. It is the com-
mon block that contains all the paths in the algorithm. It contains the multiplexers that acts
as data switches to the adders and multipliers. The multiplexers are controlled by the bits

produced by the control unit.

69

control unit: It is the part of the design that controls the operations and the data flow
into the functional units. It is a finite state machine that has its states representing the dif-
ferent paths of the decoding algorithm. According to the conditions reviewed in the algo-
rithm of the decoder, the control unit sends the control bits to the multiplexers to monitor
the operations and the flow of data.

As seen previously, the operations in the decoding algorithm are done symbol wise.
For example, in the equation s; = §;- of Vi=0,..,14 , each symbol which is
composed of 4-bits, is multiplied by o. Instead of implementing the multiplication of o,
all the values of o are stored in a memory component. Also, the a™ is stored in the same
memory component.The values of o are defined according to function generator g (x) of
GF(2™). For the case of m = 4, the following table shows the values of o and o~ in
binary vector representation.

The memory component that contains these values is called ramalpa. It has those val-
ues stored. This method is efficient because an o-multiplier will be not needed to generate

the powers of o.

70

TABLE 5.1 The values of o and &t in binary representation.

i of ot
0 0001 1001
1 0010 1101
2 0100 1111
3 1000 1110
4 0011 0111
5 0110 1010
6 1100 0101
7 1011 1011
8 0101 1100
9 1010 0110
10 0111 0011
11 1110 1000
12 1111 0100
13 1101 0010
14 1001 0001

5.2 Simulation and Synthesis:

The design process starts with the description of the circuit behavior in a high level
design language such as VHDL in which the design of the decoder was coded. VHDL is a
high level hardware design language that allows the user to specify the design’s outputs in
terms of the inputs over time using abstract data carriers and operators. It is similar to “C”
or Pascal in which the programs are written using sequences of statements with expres-
sions that assign values to variables. Yet, the semantics of a specific behavior in VHDL

implies a hardware design to be built rather than to be executed on an existing machine.

71

Synopsys package was used as a CAD tool in the implementation phase. Synopsys is
a synthesis and modelling tool that provides a high quality of results in IC area, perfor-
mance - speed in particular - and power optimization. The Synopsys synthesis-based
design methodology provides the technologies needed at the implementation levels appro-
priate for the design. Two tools of Synopsys were used: one for simulation and the other
for synthesis.

VHDL System Simulator (VSS), used for simulation, provides performance through-
out the design cycle through a unique, single simulation environment. It is offered by Syn-
opsys and it is considered to be efficient when using VHDL, as a descﬁpﬁon language, for
verifying the performance and functionality of an ASIC. It provides behavioral synthesis
policy checking and powerful debugging environment.

Once the whole decoder was assembled, VSS was used to simulate the design either
interactively or by writing the script code. The first method was adopted in checking the
functionality of each of the small modules. If there was an error in the behavior, the design
code was checked again and corrected to meet the specification. The second approach was
a script written specifying the values of the input. It was used when the small modules
were assembled to form the decoder.

To check the validity of the output, a C program was written to generate the test vec-
tors. The same test vectors were applied in the simulation process of the hardware part. At
the end, the errors were corrected and the simulation was complete. In the simulation, all
the possible cases were examined to check wether the decoder can handle all the oddities
possible. The cycle period could be specified at any value, since the delay of the critical
path in each iteration has not yet physically been determined. Once the design was
checked for errors and corrected, the next phase was the synthesis phase. Appendix B.1

shows the VHDL of the design and Appendix B.2 shows the simulation results.

72

Design Analyzer is a powerful analysis tool that gives the user synthesis control,
design management and design aralysis in a graphical environment. Design Analyzer
enables the user to perform various design set-up and analysis functions, as well as view-
ing and interacting with the synthesized schematic. Synopsys provides an interactive syn-
thesis procedure as well as indirectly using the script file to choose the criteria for the
design. A script file was written trying again to optimize the design from smaller to larger
modules.

Two approaches for optimization were selected: speed and area. Each sub-module
was synthesized separately and the goal was to obtain a fast design. The emphasis in the
synthesis process was to make a fast design, as an optimization criteria. This is because
the present features of VLSI technologies available in the market nowadays allow to con-
cern less about the number of gates reqilired to build the design.

Reducing the area causes the design to be slower and vice versa. In order to obtain a
design with an optimal area, one of the constraints for synthesis is to set the minimum
limit of area to zero. Other constraint is to set the path delay to the minimum. This is pos-
sible if the design is purely combinational. If the design is sequential, i.e it has a finite state
machine; the path delay, mainly the critical path, can be reduced through minimizing the
clock period.

When choosing speed as an optimization criteria, several trial and error methods were
tried. The combinational part of the design: the adders, the multiplexers and the multipli-
ers were synthesized by setting the path delay from the input to the output to be as small as
possible. When all the sub-modules were assembled to constitute the data path, an esti-
mate of the delay of the path was reached to set the clock period for the decoder. As for the
non combinational part mainly the control unit, which was the most complicated part, a

value of the clock period was set so that to reduce the time as much as possible.

73

When assigning the clock period of the decoder, the delay of the data path was added
to the delay of the control unit to obtain the delay of the decoder as a whole. The clock
period of the decoder was set to a minimum when synthesizing the design of each unit.
The delay of the output of each block was set to be within the clock period of the decoder.-
Trials and errors were observed during the synthesis procedure and the slack of the timing

in some output ports were violated.

5.3 Technology used for synthesis:

ASIC designers today are faced with a common dilemma. On the one hand, product
specifications dictate their designs must consume minimum amounts of power to meet
cost, reliability, and energy efficiency goals. On the other hand, functional specifications
imply that the ASIC’s must integrate more circuitry and run faster than ever to implement
the desired functionality, which drives up overall power consumption.

At the present time, there are many different circuit families. A partial list would
include the TTL (Transistor-Transistor Logic), MOS (Metal-Oxide-Semiconductor), and
CMOS (Complementary MOS) families. The technology used for synthesis was restricted
on CMOS and a combination of CMOS and BJT (Bipolar-Junction Transistor) families.

CMOS is currently the most popular digital circuit technology. CMOS logic circuits
are available in as standard SSI and MSI packages for use in conventional digital system
design. CMOS is also used in the design of general purpose VLSI circuits such as memory
and microprocessors. CMOS is an inherently low power circuit technology with the capa-
bility of providing a lower power-delay product comparable in design rules to NMOS and
PMOS technologies. Another advantage for CMOS is that there is no direct path between
the voltage source and the ground for any combination of inputs. This is the basis for the

low static power dissipation in CMOS[19].

74

Another VLSI circuit technology that is becoming increasingly popular is BiCMOS.
As its name implies, BICMOS technology combines Bipolar and CMOS circuit on the
same IC chip. Therefore, circuitry retain the low-power, high input-impedance, and wide
noise margins of CMOS and the high current-driving capability and high speed operation
of Bipolar transistors. The result is a circuit technology that is capable of implementing
very dense, high-speed, and low-power digital integrated circuit[19].

The two technologies mentioned above, CMOS and BiCMOS, were used in the
libraries provided by the VLSI laboratory. Each library was set separately so that the syn-
thesis was done for each of the two technologies. Two CMOS technologies were used in
the synthesis: Nortel and Mitel technology. Table 5.2 shows the number of gates for spe-
cific parts of the decoder. The first row shows the number of gates in the decoder employ-
ing the three technologies. The next three row shows the gate number of the basic
functional units used in the decoder. What is called ‘decoding’ is the data path of the
decoder or the decoding unit. It is noticed that the BiCMOS technology required more
number of gates than the others. The number of gates were calculated after obtaining the
data results in terms of cell area. Each technology has its cell area linearly related to the

number of gates per cell.,

TABLE 5.2 No. of gates in the design using the three technologies

Design Bicmos Mitell15 cmosds
decoder 26k 15.8k 18.1k
data path 13k 8.7k 9.7k
7/ Tk 4.3k 4.8k
control 6k 2.8k 3.6k
summer 154 76 92
adder 346 85 128
multiplier 892 512 602

75

Table 5.3 displays the results of the speed of the decoder, in micro seconds, when

employing the three libraries. It is obvious that the BICMOS is faster than the CMOS and

this is because of the reasons mentioned previously.

TABLE 5.3 Timing delay results of the design using the three technologies

Design BiCMOS MitellS CMOS4s
decoder 26.04 us 3933 us 30.08 ps
data path 15.17 us 2594 ps 16.8 us

7{6) 7.8 us 9.4 us 8.2 us
control 10.5 ps 15.6 us 123 ps
summer 2.15us 3.78 us 1.51 ps
adder 0.32 s 1.13 ps 0.62 ps
multiplier 2.63 us 4.17 us 2.77 us

In order to translate the numbers in the table above as the speed in MBits/s, the fol-

lowing formula is used:

nxm 5.0
the delay of the pathXnumber of iteration |

throughput =

Hence from the equation above, (5.1), we tabulate the results obtained in the previous
table and calculate the speed of the decoder in Mbits/sec:

As a result, we obtain new tabulated data that is shown below.

TABLE 5.4 The throughput of the decoder in Mbits/sec

technology employed | speed in Mbits/sec

Mitell5 101.7
BiCMOS 153.8
CMOS4S 133

The above results are displayed for m = 4 and n = 2*—~1 = 15 . The same

76

approach can be applied to different values of m for the versatile RS(nk) decoders where

m = 5,6,7,and 8 . Table 5.5 shows the estimated speed and area of the decoders of

different values of m.

TABLE 5.5 Area of decoder with different values of m

m adder multiplier | summmer | datapath | decoder
4 128 602 92 9.7k 18.1k
5 400 1632 775 23.6k 48k
6 1152 4608 2268 64.8k 130k
7 3136 12096 6223 144.7k 288k
8 8192 30720 14400 420k 850k

It can been clearly deduced that the area increases significantly as m increases. This is

due to the fact that the number of bits in each vector manipulated by the functional unit

increases exponentially.

TABLE 5.6 Delay of decoder with different values of m in ps.

m adder multiplier | summer | datapath | decoder
4 0.62 2.77 1.51 16.8 30.08
5 0.62 5 3.72 21.96 36.6
6 0.62 6.24 4.34 26.8 447
7 0.62 7.48 496 31.64 52.73
8 0.62 8.72 5.58 36.48 60.8

Using the equation (5.1), the results in the above table can be re-tabulated to show the

throughput of the RS decoder for the various values of m.

77

TABLE 5.7 The throughput of the RS(n,k) decoder with different values of m.

m throughput in Mbits/sec
133
136
134
132
131

(o B ILS I o N RN T - N

It is deduced, from Table 5.7, that the throughput of the decoder is approximately the
same for the various values of m. This is due to the fact that there is a linear relationship
between the throughput and the number of bits per symbol, m. The formula in (5.1) can be
changed to the following one, because the number of iterations in the decoding algorithm
equals the number of symbols per code word n.

m

delay path of the decoder 5-2)

throughput =

78

CHAPTER 6

Summary and Conclusion

This thesis presents High-level Synthesis (HLS) techniques applied in the design of
circuits dealing with finite field elements such as Galois Field elements. The HLS
approach constitutes an important phase in the VLSI design of any digital circuit. High-
level synthesis starts with an abstract behavioral specification of a digital system and finds
a register-transfer level structure that realizes the given behavior. The HL.S as implied by
its name deals with the design in a very high level of abstraction. HL.S has the goal of opti-
mizing the design given its algorithm regardless of the type of data being processed. This
allows the diversity in the types of designs being synthesized. Our case study is applying
HLS methodologies on circuits that operates on Galois field elements specifically the ver-
satile Reed-Solomon RS(n k) decoders.

First, the following tasks of HL.S were discussed including scheduling, binding, Con-
trol-Data-Flow-Graphs (CDFG), loop unfolding, transformation and clustering. It was
shown how the synthesis tasks can be decomposed into a number of distinct but not inde-
pendent subtasks. Then an automatization of Integer Linear Programming (ILP) formula-
tion for scheduling the operations, as well as functional units and register binding were
discussed. The ILP formulation was previously applied to the second order elliptic filter
and now the tools could be used for performing certain subtasks of HLS for a general cir-
cuitry of any kind having basic multiplication, addition and delay as functional operations.

The properties of GF(2™)and the structure of their adders and multipliers were stud-
ied. The algorithm of versatile RS(n,k) decoder, proposed in [7], was chosen as case study
because of its structure and modularity. The algorithm of the decoder was analyzed in

order to achieve an optimal design. To obtain the goal of an optimal design, several meth-

79

ods of High-level Synthesis were applied in the synthesis techniques. The decoding algo-
rithm was modified accordingly. The behavioral synthesis of the proposed decoder
algorithm was commonly achieved by dividing the task into a data path and a control path
design.

The RS decoding algorithm contains conditional branching in each iteration. This
made the design process complicated because the control unit could hardly be separated
from the data-path unit as desired. These present conditions might have lead to larger
hardware area due to the diversity of data operations in each iteration. However, several
synthesis techniques applied to overcome the inconveniences mentioned above. A com-
mon block that could perform all the operations in any of the conditions was obtained and
was considered to be the data path unit. A control unit was built to organize the flow of the
data to and from the data path unit. This was made possible by applying some synthesis
subtasks such as clustering, retiming and loop unfolding.

The design was coded using VHDL as a hardware description language and it was
simulated using Synopsys CAD tool. For the design synthesis, Design Analyzer of Synop-
sys was used to optimize the speed of the decoder. The result of the design process
revealed interesting figure numbered in terms of speed. The speed of the decoder using the
adopted approach was significant with great amount of variations than the previous meth-
ods. As mentioned before, RS(n,k) decoders use GF(2™) elements as their data. Studies
were taken on different values of m, where m = 5,6,7 and 8. The area and speed of
the decoder, under those values of m, were simulated and estimated using the same modi-
fied algorithm. The synthesis approach would be the same but as m increases, the area of
the decoder increases significantly mainly, exponentially. However, larger area do not sig-
nify a problem in the advances in VLSI technology. It has been proved that results reveal a

significantly fast decoder for all values of m.

80

REFERENCES

[1] Lin, Castello, “Error Control Coding: Fundamentals and Applications”, Prentice
Hall, New Jersey, Englewood Cliffs, 1983.

[2] C.Hwang, J.H. Lee, Y.C. Hsu, “A formal Approach to the scheduling Problem in
High level Synthesis”, IEEE Trans on CAD, Vol. 10, No. 4, pp 464-475, 1991.

[3]1 R.E. Blahut, Theory and Practice of Error Control Codes”, Reading, Mass. Addi-
son-Wesley, MA, 1983.

[4] Y. Shayan, T. Le-Ngoc and V. Bhargava, “A Versatile Time-Domain Reed-Solomon
Decoder’, IEEE JSAC, Vol 8, No. 8, October 1990.

[5] S.A. Vastone,P.C. VanOorshot, An Introduction to Error Correcting Codes, With
Applications. Kluwer Academic Publishers, Boston, 1989.

[6] E.R.Berlekamp, “Bit-Serial Reed-Solomon Encoders” JEEE Trans On Information
Theory, Vol 28, No. 6, 1982. pp 869-874.

[71 Y R. Shayan, Versatile Reed-Solomon Decoders, Ph.D. Thesis, Concordia Univer-
sity, Montreal, 1990.

[8] B.S.Haroun and M. Elmasry, “Synthesis of Multiple Bus Architectures for DSP
Applications”, Chapter in “VLSI Design Methodologies for DSP Architectures &
Applications” Ed. M. Bayoumi, Kluwer, Bostor, 1992.s

[9] M. McFarland, A. Parker and R. Composano, “The High-Level Synthesis of Digital
Systems”, Proceedings of the IEEE, Vol 78, No. 2, pp 301-317 February 1990.

[10] M. Potkojnak, J. Rabeay, “Maximally Fast and Arbitrarily Fast Implementation of
Linear Computations”, IEEE Trans on CAD, Vol 11, pp 304-308, 1992.

[11] M. Potkonjak, “Optimizing Resource Utilization Using Transformations”, JEEE

Trans. on CAD of IC and Systems, Vol. 13, No.3, pp 277-291 March 1994

81

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

P. Paulin and J. Knight, “Force-Directed Scheduling for the Behavioral Synthesis
of ASIC’s”, IEEE Trans on CAD, Vol. 8, No. 6, June 1989.

B. Haroun and B. Sajjadi, “ILP Synthesis of Signal processing Architecture with
minimum Structural Complexity”, CCIC, May 1994, pp11.2.1-11.2.4.

S. Malik, M. Sentovich, R.K. Bryton and A. Sangiovannivincentilli, “Retiming
and Resynthesis: Optimizing sequential networks with combinational technique”,
IEEE Trans. on CAD, Vol 10 pp 74-84, 19941.

B. Sajjadi, Architectural Synthesis for FPGA Based Signal Processing Systems, M.
A. Sc thesis, Concordia University, Montreal, 1996.

D. Gajski, N. Dutt, A. Wu and S. Lin, High-level Synthesis, Introduction to Chip
and System Design, Kluwer, Boston, 1992.

H. Mecha et al, “A Method for Area Estimation of Data-Path in High-Level Syn-
thesis”, IEEE Trans. in CAD of Integrated Circuits and Systems, Vol 15, No. 2,
February 1996.

M. Rim and R. Jain, “Valid Transformations: A New Class of Loop Transforma-
tions for High-level Synthesis and Pipelined Scheduling Applications”, /EEE
Trans on Parallel and Distributed Systems, Vol 7 No. 4 April 1996, pp 399-400.
A. Sedra,K. C. Smith, Microelectronic Circuits, Saunders College Publishing, N,
1990.

J.Yang et al, “Scheduling and Control Generation with Environmental Constraints
Based on Automata Representations”, IEEE Trans on CAD of Integrated Circuits
and Systems, Vol 15, No. 2, February 1996 pp 166-176.

J.Sung and R. Redinbo, “Algorithm-Based Fault Tolerant Synthesis for Linear
Operations”, IEEE Trans. on Computers, Vol 45, No. 4, April 1996 pp 425-438.
C. Gebotys and M. Elmasry, “Global Optimization Approach for Architectural

82

[23]

[24]

[25]

[26]

[27]
[28]

Synthesis”, IEEE Trans. on CAD of Integrated Circuits and Systems, Vol. 12, No.
9, September 1993, pp 1266-1268.

S. Wei and C. Wei, “High-Speed Decoder of Reed-Solomon Codes”, IEEE Trans
on Communications, Vol 41, No. 11, November 1993, pp 1588-1592.

S. H. Jamali, T. Le-Ngoc, “Coded Modulation Techniques for Fading Channels”,
KAP, Montreal, 1994.

S. Wicker, V. Bhargava, “Reed-Solomon Codes and Their Applications”, pp 61-
105, IEEE Press, NY, 1994.

Glasser, Lance A, “The Design and Analysis of VLSI Circuits”, Addison-Wesley,
MA, 1985.

E. Dillinger, “VLSI Engineering”, Prentice Hall, NY, 1988.

Y. Shayan, T. Le-Ngoc, “A Cellular Structure for a Versatile Reed-Solomon

Decoder’”’, IEEE Trans. On Computers, Vol 46, No. 1, Jan 199, pp 80-85.

83

APPENDIX A

Synthesis Tool Program in Prolog

[¢/A
10

% Package: AS

% Authofs: S H%ane and B. Haroun.

% Updated: 1

% Purpose: To find the ASAP of each operation.

% copyright (c) 1994, Concordia Univ... All rights reserved.

OZ

LY

1mualxs ist nodes)R
et _root(List_nodes,Roots),
ete list(Roots LlS[nodes Rema.mxngs),
visit_path(Roots, emamm s)
setof(Asap,No derasap(Node,Asap),Asaps
last(Maximum, Asapsg assert(max_asap Vaximum)).

operations_in_cycle(Asap,0p1,0p2,Maximum): -
ogerauons in cgllcleéA% OBI %2 Maximum,1).

%o rations_in_cycle(1,0p2,Maximum,Maximum):-
ndall(Nod e,asa%(Nodc,lBigxplmaIx)l

% this predicate allows to traverse the path starting from each visited node.

visit
v1sn Path%&taanes ,Remainings
e,(Start*c 1ld of v1sned(Node Start),
\+ wsncd(N L_nodes),
remove_du s(L no’des List_nodes)
check fc')r v1sued arents ist | nodes ,Remainings),

findal o e mem er(N o C,LIS[nodes),
Stan" ge,

v1sned dc)

append(Ri Rest., ew)

v1sn path ew Remammgs

child_of vmted(Chxld Parem) -
e ge(lé(gage Parent,Chil

e direct),
gyxgzted arent)

check_for_visited_parents
check_for_visited_parents odelOLhetskRemmmng) -
findall{Parent,(Edge”edge ge,Parent, Node),
ited o gx‘ﬁg'c‘ 1St)
yisi ar
findall arent, dge"edgel(Edge Parent,Node),

\+ vmxtc%l?’arent%,hstl)
et_max asap(Llst,Max,Delay),
p is Max + Delay,

assert(asap(Ng S
asseréixélslpteat\lx(N £)ap))
delete(Remaining, ode,Rest)
Rest = Remaining
check_for_visited_parents(Others,Rest).

getof&\sap—bf())de)l.lstt(%b)ermode,Llst),
,List_:

84

last(Max-N,List_.

tion numbe%’l)ype),

(pre—- multiply ->
ypel = mult

R R Betay).

% this predicate gets the list of nodes and the list of edges:

initialise(List_nodes):-
setof(Node, Y “operation_number(Node,Y),List_nodes).

% this predicate gets the parentless nodes and assign directly their
o asaps

get_root(List_nodes,Roots):-
setof(Root,paremless(Rooc,Llst nodes),Roots),
assign_asap(Roots).

parentless(Node,List_nodes):-
member(Node,List_nodes),
((edgel(Edge.Node,), type(Edge,direct))

" (edgel(Edge,_Node),type(Edge.recursive))
¥ (edgel(Edgel,_,Node),type(Edgel,direct)).

assign_ as

assign Roothoots]) -
asscrt oot,1

assert v1sned oot

assign_asap

s e
elete li1s
elete_list ead?Rest] List,Rem):-
lelete(List, Head.Res),

lelete_ list(Rest,Res,Rem).

~

% Package: AL

% Authors: H%azxe and B. Haroun.
Updated
% Purpose: To find the ALAP of each operation.

% copyright (c) 1994, Concordia Univ... All rights reserved.

[0/ A
70

retractall visited(_))
ist_nodes
ggt roots(Lxst nodes,Roots),
t(Roo ist_nodes Remammgs),
ted_path(Roots;Remainings).

% this predicate allows to traverse the path starting from each visited node.

visited _pathE .
v151 ag tarthest] Remainings 3
ode,(S "parent of_visited(Node,Start),
\+ visited(N
check v1sxted parents odes &emammgs)
e membe ode odes;
Start"

e ode Start
v1snted(1~§ de) g
aﬁlht ch1 d,Kest, ew;
vxsuzd _path(New,Remainings

85

parent_of_visited(Parent,Child):-
edgel dge Parent,Child),

e, ¢ direct),
wslted(hild).

check_visited_paren E
check_visited_parents
ﬁndalI(Parent, dgc"e

tcd ent,
:yl: éllfgrrem,eEdge"edgel(Edge,Node Parent),
e

\F vtslltelé arent),Lxstl),

et_min ist, Min
gperauon nun(}f)er(Noc?e . Type),
== m Up { ->

haaif’f%wy“’a

asselrt ap(Node,AIap))
assert(visited I\}
delete emmmng, ode,Rest)

k'a)delomers emaining):-
gel(Edge,No]&l; Parem),g)

Rest = Remaining
check_visited_parents(Others,Rest).

get_min_alap(List,Min):-

setof(Alap,Node List™ member(Node,Lxst)
alap(Node,Alap)).List_alaps),

rev(List aIaps, ev),

last(Min,Rev).

‘}%6 this predicate gets the list of nodes and the list of edges:

initialize(List_nodes):-
setof(Node, Y *operation_number(Node, Y),List_nodes).

% this predicate gets the parentless nodes and assign directly their
asaps

et_roots(List_nodes.Roots
gewf(Roo%éhﬂ'dless(Root,L)lst nodes),Roots),
assign_alap(Roots).

childless ode ist_nodes):-
member ist_nodes).
ge.direct)

dgel ode),t
%edgtszli'!EdEel N;))dey:g)e type(Edgel,direct)).

assign_al R
assign_ al ootJRoots]) -
max_asap operauon number(Root, Type),

(Type—m u y->

Tel Type
Alap is Yp yp)

is Max
BnERSRY
ap(Roots)

del hst

del_list

dcl hst ead Rest],L1st,Rem) -
delete(List.Head,Res),

del_list(Rest,Res,Rem).

% Package: Code

86

% %_Authors: S. Hi;azic and B. Haroun.
% Updated: 12/16/94 .
% Purpose: This program generates an ilp file to be run on Gams.

% copyright (c) 1994, Concordia Univ... All rights reserved.

7.

/0

% the user input variables asked here affect the running of ilp since it
% influences the constraints...

% these variables are :-~

% motisum.... if its coeff =0 -> .
%constraints 4,5 & 9, the variable motif,
%and addition3b are deleted from the ilp.

%mergsum... if its coeff=0->
%constraints 6,10,11 & 12, the varjable merg,
%and addition3a are deleted from ilp.

Gtymaxov... if its coeff =0 ->
%constraints 7 & 13, the variable maxovlap
%are deleted from the ilp.

%totovlap... if tis coeff =0 ->
Yconstraint 8 is deleted from ilp.

%totincomp... if its coeff=0 ->
%constraints 9 & 14, the variable incomp
%are deleted from ilp.

generate_code(Outfile):-

% asap.pl and alap.pl are programs that produces the asaps and alaps of each
% node or operation.
write(* R PLEASE THE MAXIMUM NUMBER OF CYCLES’),nl,

% here you should have previous knowledge of how the gragh is being
% scheduled, so that at least you would know the number of cycles the
% whole process needs.

wcgé%& IHE1 NIUMBER SHOULD BE GREATER THAN CRITICAL PATH’),nl,
¢ vcles),nl,

wr@teE‘DO OU WANT THE MULTIPLIERS PIPELINED!),nl,

write(‘IF SO TYPE YES ‘),nl,read(Ans).nl,

Clisi
whie(* HOW MANY ADDERS YOU REQUIRE ?)l
read(NumAdder),asserta(numfu(add,N dder)),

imAdder \==0 ->
1isC+1-1
assert(opntype(add,C1))
ClisC

),
write(* HOW MANY MULTIPLIERS YOU REQUIRE’), nl,
readNumMauit),asserta(numfu(mult, NumMult)),
gumMult \=0->

isCl+1,
assert(opntype(muit,C2))
£2isC1

%l'rite({\} HOW MANY SUBTRACTER YOU REQUIRE’), nl,
real;im Su%l§Ub) asgerta(numfu(sub,NumSub)),
u — -

3isC2+1,
gssen(opntype(sub,C3))

§:3 isC2
write(* HOW MANY ALU YOU REQUIRE’),nl,
read(Num Alu),asserta(numfu(alu,NumAlu)),
NumAlu \=0 ->

C4isC3+1
assex@(opntype(alu.C4)§

' C4isC3

r

87

(NumAdder \=—= 0
write(* LATENC OF ADDERS YOU REQUIRE ? “).nl,
read(LatAdder)

LatAdder isO
) asser(a(latenc%(add,LaLAdder))

(NumMu t\==
LA’I'E%*ICY OF MULTIPLIERS YOU REQUIRE’), nl,

read tMul

LatMult
assertai)latenta’(mult,LatMult)),

wgéc LA'It;l;ZNCY OF SUBTRACTER YOU REQUIRE’), nl,
re

i_atSub
(N serta(latcn%'(sub,LatSub))

*LATENCY OF ALU YOU REQUIRE’),nl,
read tAlu)

LatAl
)’asse‘%&%%“ RS COST FUNCTION ...CSTEP)al,

read(P) assertaéAost funcuon%cste&CsteHE %
TION COST..... MOTIFSUM’),nl,
d oufum assertaf t_inter(motif sum.Motif:)g
rea sum) cost_in RS_ umE otifsum

ov™H)al,
rcad ov) asserta maxov max_ov, T’ nj)
TAL OVERLAP FA R TOTOVLAP’),nl,

e T
, I

read er. esum?Nasserta(memeabl e(mer: e%um,Memesum&)
write(‘ENTER INCOMPATIBILITY FACTOR..... TOTINCOMP"),nl,
read(Totincom g asserta(mcomp(touncomp,Totmcomp)),
get_max(Num
runasap,runalap,
tell(Outﬁle)
write(‘SETS "),nl, _
write('S /1*'),wme(Cycles),
write(*/),nl, .
write(‘P /1*"),write(Cycles),
write(‘/),nl,
nodessog‘emuon,Num),

gNuni) wntcg {).al,

wme(Num) wnte(7),nl,
edges(dlrec&N) ,
write }wmc(N um4),write(‘/*),nl,
write(C4). Emte ‘f nl

i'Il'[e(1 LS

write write(*
u: AsstNl (/12‘
gwme(/’),nl,
write(* AS IGNZ /1*’)
wrme uml) wnte(‘/’) nl,
s
wnte um?2 wntgl{‘/')nlnl
write(* EDGECON /1*),
write(Num4),write('/"),nl,

edges recurswe
mgw"?é%e EOGEWRAP /1*'}
] um3),write(*/;’),n
'true

%"rnteg SCALARS), nl
write(‘CRITI)),

wnte(D wnte(/’) nl,

88

write(‘PIPELINE g2
Ans == yes ->

yvrite(‘l 137)

write(C /0/ ;")

ol ie(PARAMETERS Jal
Wiile ASAPSOP) y.ni,

S aSZ)ELAPO(RG)(R 9.al,

£t SR nkak

writeg‘CObNTER((Ol% “,nl,ni,

write“TYPE(OP)

nl an(c;/ : write(* /)nl
c_0 E) P2

wntc I,
write delay(C),nl,
write_more.n
wme(‘w[gSLfCC(OP) “nl,

wri

._get_wosucc wnteé /‘) nl nl,

write “SOURCE(P YY),
write ‘/ et source _r?rec,wnte(/"), nlnl,
Wflg JL).get des TeC, write nl,nl,
wri »
v&(ﬁﬁte d_%\’{) C&RE %nf
yvritc(COMPRECZ(EDGEWRAP,P) “),nl,nl
; true
vfrrite(‘OE?TART(EDGE) “.nl,

wri

et_source. wnte§ nl ,nl

g’vntc ()} o 5 nl,
write /

get_ dest, ‘write(‘/"), nl,nl,
writel _more
wntc(’Cg%\TSRC(EDGECON) 9.nl,
WIl
direct ce,write(‘/).nl.nl,
wneé source e FANLEL: -yl
WwI1
. dxrect des wrue .
(N‘m& [YERGE %EﬁGECON OPTYPE) “).nl,nl,nl,
write(* WR(AI;SRC(EDGEWRAP))i,
write

source_wrap_around(Num4), wrlte(‘l),nl,nl,
wntcg WRAPDES(EDGE)

write
dest wr around write(‘*/"),nlnl,
EW(EAP(ﬁ X OPTYPE)).nl
) true
’ write_parameters(Num3),nl,nl,
:(»;xlhtc cons ts(Num(gg,nl,)

? this predicate gives the max num of fu needed .

B A umfu(Qp, Numfu), List_of_numfu),
se 1. n 3 ist_ of_n
last umlﬁLnst of num%up “ 4

‘03,6 this predicate gives the critical path of the graph.

ﬁntg'f Asa(crm de" d),List_of)
sel s, No ,Asap asap),
f numl Lfégt ogNo ¥ s).L1st_ol_asap

89

% this predicate prints the ASAP(OP) in the ILP1 File:-

setof([l\?ode,Asapno{asap(Node): Asapno),
rev(L tpnos LList_ a(?f Asap)
len%th Asap,Len),
Cis & L_ Asapnos,Part,_Rest),
is 0,
write_asap(l._Asapnos,Part,C).

write_asap .

write, a.sapgﬂﬂ"oie Asapno]iL_Asapnos],Part,9):-
nl,write

(pno] \= Part ->

(wnte odeﬁ,wme(=’), wnte(Asapno) write(*,”))

o) e

&vme asap([[Node, Asapno]lL_Asapnos],Part,C):-

 C+
ode \=—"P
N ,As(apn(t)g(‘ ‘) wntc(Node) write(‘="),write(Asapno),write(","))
_ {write(*),write(Node), wnte(="),write(Asapno))),
write_asap Asapnos,Part,C1).

%
% this predicate prints the ALAP(OP) in the ILP1 File:-

setof([?gode AlapnoL A?a(NOde ,Alapno),

rev(l_Alapnos,List_of ,
len(It‘hTLls _of A]ap,Len),dp)
Ci 611.!1 (Len,L_Alapnos,Part,_Rest),
isQ,
write_asap(LL_Alapnos,Part,C).

[2/A

70

% This predicate prints out the SOURCE(EDGE) in ilp1:-

et source:-

ndall({Edge,Source],(source(Edge,Source),
\+type ge,output)
\+ ge.in ut))'L sources

rev sources ist_of_ sources;
% xst of_sources,Len]),
Ci thT1(Len1,Lisi_of_sources,Parts,_Rests),
1s
writing_source(List_of_sources,Parts,C).
ﬁe source_prec:- .
ndall([Edge, Sourcc] (somce(Edge,Source) type(Edge,direct)),
sources_prec),
rev(Ll sources, f_prec,Llstl_of sources_prec),
lcngi (Listl_of sources_prec,Lenl),
Cis§ thT1(Len1,ListI_of_sources_prec,Parts,_Rests),
is

writing_source(List1_of_sources_prec,Parts,C).

writing_source([},_,).
mun(%(somw([[Edge,Somce]lest of_sources],Parts,9):-

(e, Source) \=
(write(Edge),write('=),wmc(Somcc),wme(")

dge),write te(S .
(W““‘fw%u%g’_‘s‘a“m‘e@?s?’%f Coveeres 1),

é_soutce([[Edge ,Source]lList_of_sources],Parts,C):-

.S \==P
([Edge o(urcege(‘ ‘),wme(Edge) write(*="),write(Source),write(*,”))

90

N (write(*)wme(Edge) 'te&‘:’),write(Source))),
writing_source(List_of_. sources 1).

(/A
0

‘o@ This predicate prints out the DEST(EDGE) in ilp1:-

get_dest;-
fi ([Edge,Dest] (dest(Edge,Dest),

\+type e,output

\+ doe mnut))L DeStS)

rev ests,LiSt_t of_Dest),

length(List_of_Dest.Len
%8_._%3,Lxst “of] Dest, art,_Rest),

write_dest(List_of_Dest,Part,C).

get_dest d'é‘l’l
([Edge,Dest]bdest(Edge,Dest) type(Edge,direct)),
rev(L1 Dests_prec,List]_ of est_prec
lengf.'b istl oP e%i prec,e F)_pr >
(Lenl,Llstl_ of. Dest_prec, art,_Res2),

write_dest(List1_of_Dest_prec,Part,C).
write_dest({],_,_)-
wntc dest([[Edge,Dcst]ILlst of_Dests],Part,9):-

(e est]\-—Pan
(write: e wnts(—),wnte(Dest) write(*,")

(“’“‘%v(ﬁdg 3 e = t’ DestgD lgfar[t),)ﬁ

CisO

est(List_o
L -
;évulan(tli% _g%slt,([tﬁdge,Dest]l ist_of Dests],Part,C)
e,Des
£ (write(* %), write(Edge), write(‘="),write(Dest),write(","))

write(* *),write e),write swrite(Dest))),
wrire el o wite(Bded) wrlte(' =" write(Dest)

70

3: This predicate prints out the WRAPSOURCE(EDGE) in ilpl:-
(]

_around(Num4):-
ﬁndall([Edge Source] (source(Edge Sour S)
ge,recurswe)), _wraps),
length(S wraps,Len

n4 =0 ->
a\fnte _source_wrap([1,_._,_)

Ci (r)nhl (Len4,S_wraps,PartS,_RestS),
18 »
) write_source_wrap(S_wraps,PartS,Num4,C)

7

write_source_wrap
write sggrrcg_wrapgﬂEﬁ"e Source]lLlst of_Dests],Part,Num4,9):-
ol, [Edge Sotirce] \— art ->

1 is Ed e Num4 wnte(Edgel) write(‘="),
Source), write(’,’

(wnte(“) Ed el s Edge -Num4,
write(Edgel),wri ="),write(Source))

> write_source wrap(Lxst of_Dests,Part, Num4,1).

te e e,S [List_of_Dests 4,C):-
i e PRI o Do et

ge xsEdge Numd, write(Edge1),write(‘="),

91

writc(Source) write(*,"))

((E(?,Ed elis Ed

gel)write('= wrue(Source))
wnte_source_wrap(Lxst_of_Dests,Pan,Num4.C1).

%

% This predicate prints out the WRAPDEST(EDGE) in ilpl:-

dest. around!
findall([Edge,Dest (dest ge Dest),
ge,recurswe)) D_wraps),
:l;ength(D wraps en3),
wirite dest_wrap([],_,_,__)
I&ﬂ_]l en3,D_wraps,PartD,_RestD),
15 U,
) write_dest_wrap(D_wraps,PanD,Num4,C)
write_dest_wrap([],_._.)-
wntc dest wrap([[Edge,Dest]IList_of. "_Dests),Part, Num4,9):-
est] \== Part ->
(wntc().Egdgel is Edge - Num4,
wme(Ed’gel) write('="),write(Dest),write(","))

((E LEdgel 1sEd - Numd4,
gel),write("= wntc(Dest))

z;vme dest_wrap(List_of_ Dests,Part, Num4,1).
wxl'ue _gest _wrap([[Edge,Dest]IList_ of_Dests},Part Num4,C):-
+

([Edge Dest] \==Part ->
(write(" el is Edge - Num:
write gel),write("= wme(Dest),wme("))
writ Edgel is Ed - Num4,
(wntggEchel wnte(wnte(Dest))
» write_dest_wrap(List_of_Dests,Part, Num4,C1).

[+ 4

70

% this predicate prints the source of all direct edges in the graph:-

%“daec‘u(siﬁ‘ém S] Gource(Edge Source),

n e, Source],(source ,Sour

5 (Edg)e chr%tct)) L _direct_source),
len th(L direct sourcc en

mh n6,L_direct_ source,DirectLast,_RestDirect),

wntmg__source(L direct_source,DirectLast,C).

[+/A
70

% this predicate prints the destination of all direct edges in the graph:-

%ggglK[Edge Source],desi(Edge Soutce ce),

ect)),L_direct_edge),
§th(L direct edge enﬁ
ci 0 (Len3,L._direct_edge,DirectLastdest, | RestDirectEdge),
is

write_dest(L_direct_edge,DirectLastdest,C).

az,
7

% this predicate prints the type of each operation (add,mult,sub.etc...):-

type_of_ops:-

92

findall([Num, T’ e] 1s an operation(Num, Type),List_of_Ops),
len%th ist_of
ath n7.LisT_o bps LastType,_RestType),

is

write_ type(List_of_Ops,LastType,C).

is_an_operation(Num, T} e) -
operation_number(Num
s ==mnultiply -> opn ult,Type))
== add -> opntype(a ype ;
s == alu -> opntype(alu, Type));
Ops == subtract -> opntype(Sub,type))).

write_type({1,_.D
f ,LastType,9):-
wnteﬁl%(u[a[gg o age lst o Ops]t ypté _y>pe):
do_ write(Ops, ype

wrxte end(Ops,Type)),
write type_(Llst(O%E,L?%stTvpe 1).

_Cvpe([[Ops ,TypellList_of_Ops],LastType,C):-

\= LastT >
write O]ps, Type) ype

te_end(OQ
%te <t:')lflpe(plgt_())?_gps LastType,C1).

do wnte(Edae,Des zEdge) write(‘="),write(Dest),write(*,").

d dge,Des
i %E " (%dge) write(‘="),write(Dest).

%

% this predicate get all the without-successor nodes and prints them:-

et_wosucc:-
ndall(Nodes,no_succ(odes),L_wosucc),
remove _dups(,_wosucc,List wosucc),
len% ist_wosucc,L7),
8_ LList - wosucc,Last,_Rest_list),

write_succ(List_wosucc,Last,C).
write_succ([1, -
write_sncc([EdgelList_wosucc],Last,9):-
n wnu[:%— J(Edge\== Las]t’l-‘> L9):
wntc still(Edge)

write_end(Edge
write, suc::'(LxsgE wgs&)cc Last,1).

write_succ([EdgelList_wosucc],Last,C):-

st
e >

wnt% _still(Edge)

wnte end(Edge
write succ(:l(zLx‘%t)znosucc,Last,Cl)

till
%ﬁ(ﬁdggz,dwnze("), write(*1,7).

write_end(Edge):-
wnte(‘cn),&/Emg(%dge),wﬁtc(El').
not_a_source(Nod 3

\+ (édgel(Edge,No e,_Dest),type(Edge,direct)).

no_succ(Nodes):-

93

edgel(Edge, Source,Nodes),
type ge.duect),
not_a_source(Nodes).

e
TOB(EDGECON, P))al,
i GECON)),nl
ite(‘POS
write(‘POSBOT GECON’
‘L ON)nl,nl

wnte

POSBEG GEWRAPP nl
BDElgEgDIGEWRA'Pz’))
wnte POSFIN RAP) n
write{ ‘POSFDEF(EDGEWRAP,P)

tue
wnte% SRCDELA DGECO
HKMERG

write(‘C DGECON i)r
write(‘LIMIT10 ECON,ASSIG 1ASSIGN2)),nl,

um3 \==0 ->
wnteg MERG &%5) 1&
LIMITIZ(ED WRAPASSI& 1,ASSIGN2)"),nl

write

tru

c
)
“(_&n MULTOUT (E}D E)n(l)ﬁ'l) S,

0
wnte(WRAPMULT(EDGEWRAP) ;7),nl,nl,nl
wnte()

wnte constraints(Num

B) = AL APORG(OP) + ADDCYCLE;").nl

wnte Tipsﬁo 32 SUNCI)(OP (OP) EQ ORﬁROPﬁ)), TYPE(OP));"),
; P R

%ﬁ% BELQYOP OP UM’S PTYPES(TYPE(O y EQ ORD(OPTYPE)),)

write
write LATEOPMl&Q o) S(LA CYOP(OP) GT0)="9),
write

ni,nl,
wnte§ LA[I'ENCYOPEOE)[_— SUM(OPTYPE$(TYPE(OP) EQ ORD(OPTYPE)), *),
write LATEOI_’I%%SOY)O

CYOP(OP) GT0) =9,

write DEf.AYOPMl P%PWO YPEs(TYPE(OP) EQ ORD(OPTYPE)),"),
s
write :*OUTP 0'9)),nl.nl
wrie ‘&cgm{ EIN 1$(’SUNf(OP$(CINPUT(EDGEIN) EQ"),
et ORU%%S%@ om e orRom LT ALAROD))
ﬁt‘g BOTEART(EDCED I SUM(OPS((OUTPUTEDGEOUT) EQ),
gvvnrittg ‘Eo {%ﬁc;o AS)AP(()OP)+DELAYOPM1(OP)))) 9,
&v,nrittg ;Eosmp %)CON?)i 1$((SUM(OP$((CONSRC(EDGECON) 5%
ite(P
?vﬁg AND ngO)RRDégAP((ALAP;;* ?68554»‘{195&40&3}1@?»)) 9, al,
wri
i E
:nwgg E%RD sU IfrA s(ﬁxp(o)))), : ECON) EQ ORD(OP)) AND *),
write(B 98:]301 GBCON 13? ’1$((SUM(0P$((CONSRC(EDGECON) 9
%E AND {JMTC'}I%%P Olng%SCOD;GI EICEOIs?ll?e) &5 9,
write AND ORD §L~r ALAP((OP))) CC)UNTER(OP)) GT 0));").nl,

94

write :POSCOMgDGECON P)l 1S((SUM(OPS((CONSRC(EDGECON)),
3’3{5 : % 18 gé&% %s?ﬁé COUNTER(OP)) GT o; AND’))nl
G

MRS GECON) EQ ORD(OP)§ AND
et B te 5 S o
write :EOSCEN Gﬁ)co 3 = 1$((SUM(OP$((CONSRC(EDGECON) 9
zﬁg ot &QLAP(&PH DELAYOPM1(OP)))), *),
3:1“% (LIM§OP$é(1(;(3?‘IDES(EDGE 'ON) EQ ORD(OP)) AND (ORD(P)),
WIl
write(* G O
£ ENEDGECONP
&Vrﬁté sco (&)’GECON%)) T ONOR G go RO Bk .n,
wntc GECON,PYGT 0
POSB 1 $(SUM(OPS((WRAPSRC(EDGEWRAP
ORD(OP)))n write(‘POS EG(EDGEWRAP,P)= $((SUM(OP$S((WRAPSRC(EDG) EQ

wme.E (ORD?P) Lép AR ASAP(OP ER%?%%%}; 2&&8%}3(0?3}1%&%&'3@1%) EQ

POSBD EW = OPS((WRAP
ORD(OP))) G RAP.P) (OPS(

“AND (ORD(P) GT (ALAP DELAYOP(OP) -2))), COUNTER(QP)) GT. 0
=(-POS & (AL (10 (§UM(0P$(B S R SN BB ok,

&)NR%EP) LT(P ALA fg OP nlnl
ORD(OP) . E%(EB&EWRAP P)—s 3»)(}SSC(WRAPDES(EDGEWRAP) EQ
(Ol ND (ORD(P) LT ASAP(OP))), COUNTER(OP)) GT 0));"),alal

Wl'l

" true
FU(O)PTY mz(omsz)_ SUM(OPTYPES(ORD(OPTYPE) EQ ORD(OPTYPE2)), NUM-
TYP Sgy);gﬁbeﬁ(OP): SUM(OPTYPES(TYPE(OP) EQ ORD(OP'I'YPE)),N[M‘U(OP-
write RANgg o&% ggpmi &EE ASAP))AND ORD(S%LEAL AP(OP)) nlnl
R} L L (AL ABIOP) £ DELAY P%OP) = 8ORDS JLE oa’?aépp
write 8%3 EE&?.‘X% 8 AYOP(OP +1) RD(S E ASAP(OP))
wiite i{AN GRS P gﬁff:‘r-?t INE EQ 1) AND (ORD(®) GE ASAPOP) ANB
write(‘(ORD AL P{j\LATEO op 1$§D p))))
write(‘(ORD s§ GE&% 0) "I'EO 1(OP))) (S) ASAP(
&/nr;g : OORD S LE nl nl,
%E SUM gop)%‘gd CE DEL)\ {; lg)gl};)(oif)gm Y, :;
?m’?te SUM %s(gmg gé C)EQ oﬁo(&) S
wnte

EQ ORD(P))), COUN)I"ER(OP)) GTO));)nl nl,

wrte swég % M%)GEM) EQ 3RD(01§5) AND").ul,

write(*
ORD
et ORD(S 3 EQ ORD(é))), COUNII"ER(OP)) GTO0));").nlnl

write(*

OSMOTH:(EDC’EGPI ir'o' P’STAR)};}’YPE(OP)% % PTYPE)) AND “),nl,
GEB) E(OP)) EQ RD(O E2));"),nl,nl,
POSMOTIF(EDG oI
1(—'OSMOT[F(E %OP’I‘Y]?EZ% F@T 0) d 1l n} oal,
wnte ‘MINMOTIF=SUM oer PTYPE PTYPE OP’I'YPE2)) "),nLnl,
writeC'NUM VAR 20?0 $mNU§§811;) gp ORD(OP'TY%E))_

e e

write SELEC'%RPOPTY ES PE 015 E ORD&Og’I‘YPE)

Write [0) E

write(‘SELECT 0 OPTYPE) op SEL TO 1-:

write(‘CHOSE 1(OPTYP OPTYPE) EC’I’ OP,OPTYPE));)Dnl nl
write SRCDELAY(EDG com:s (0P$(ORD OPB EQ CONSRC ECON)),

95

OP(OP));"),nlal
wn‘é H M OPNORD ofi)é CONSRCEDCECON)), ASAP(QP)) AND 1).0l,
write(* LESUM(O (o % xiCONSRC DGECON)),’ ((0)))))) AND")nl,

write(”
' OP
WSt LIMIT miéDGE% &E%SIGNI ES(EDOECC gASAP(op)»), aLal,
write(“(SUM(O S(CONSRC(EDGECON) EQ 3P5), NUMOP(OP)) GE ORD(ASSIGN1))

AND’
o (SUM(OPS(CON"DES(EDGECON) EQ ORD(OP)), NUMOP(OP)) GE ORIXAS-
SIGN2 |.1)n§§nl'n

wnwf (SWW$gV %0@(0 N ASAP(OR), EQ 1) AND .0l
M1(OP)y’)nl P$(WRAP RC(EDG EQ ORD(OP)), ?0) + DELAYOP-

ief EQ (CART éSZE+ ADDCYCLEW) alal
%ﬁg ORD(P) GE SO Eglpps“(o IgOP)AI%WRAgESRC(EDG ADY S,

f..ORD'l(P% Er SUM&?XP(OSRS% N} E?SIGNZ&$ e GEWR@:%)@{ WRAIgOP{)g ; qeb

GW
write(‘gs OPs(WRAPSRC RD(OP)), OP(OP)) GE C)Rb(As-

SIGNI)) AND ((SUM(OPS(WRAPDES(EDGEWRAP) EQ ORD(OP)), NUMOP(OP)) GE ORD(AS-
SIGNZ)))),nl nl

 tue

%;rri te("TYEDGECON GECON,OPTYPE) = 1$(SUM(OP$(CONDES(EDGECON) EQ

ORD(OP 'I'YPE
© :r)\ \ OéD(BPIYPE)) "),al,nl,
u >
TYEDGEWRAPEDGEWRAP,OPTYPE) =1$(SUM(OPS(WRAPDES(EDGEWRAP) E
ORD(OP)) TéPE ORB(&PTYPE)) "),nl,nl ((=

" true
lm ‘MULTOUT op) =1$(SUM GES(OPSTART(EDGE) EQ ORD(OP)),").nl,
write](EOPSTART Ié) PST. GE&)))PGT
CON)wrlte ECON) 1s<s $((M{Jﬂ‘mu’r(op) EQ 1) AND (CONSRC(EDGE-

EQ’),nl
write ORD(SOP))), COUNTER(OP)) GT 0);’),nl,nl,
WRAPMULT(EDGEWRAP) =1$(SUM(OP$(MULTOUT(OP) EQ 1) AND

m%m%m(op»), C&}NTER(OP)) GT 0);").nl,nl
" true
sznn;[gg DISPII;(;)\Y COUN'II;IEdRM DELA\I(?EXV NWOIELR%G%O%%%I%% 8’?11: REC,’ m
&nutgﬁ — POSTOP, POSBOT, POSCEN POSCOM LIFETIME,), nl,

0->
 write(* “POSBEG, POSFIN, POSBDEFE, POSFDEE,"),ul
(N‘mg LATENCYOP LATEOPM1, LATEOPP1,’),nl,
write(* MERGWRAP D)
te(‘CHKMERG, LIMIT10,"),nl
ENW“ (gYEDGECON o)l
wnte(TYEDGEWRAP),nl
(N;u& MULTOUT EDGEMULT),
wnte WRAPMULT),nl,nl,nl,nl
; nl,nl,nl,ni
write VARIABLES),nl,write(“X(OP,ASSIGN,S)"),nl,

wmcg ‘CSTEP*) nl,
cost_inter(moti ,Moufsum)

96

(Moufeum \=—=
wntei MOTIE OLP’mI/'IYPIF rA‘I\SSIGNI LOPTYPE2,ASSIGN2)"),nl,

true

cost. overlap(tota.l overlap,Totovlap),
(Totovla 8
write(“T! TOVLAP “},nl,nl

true

mco)mp(tonncomop Totincomp),
(Totmcoméa

write('IN OMP(OPTYPEZ)),nl,nl

’

true

mergeable(mergesum,Mergesum)
erges lm —

write(MER P'f'YPE,ASSIGNl OPTYPE2,ASSIGN2)"),nl,nl,
write MEROSUMS LAl

)

true

maxov(type_max_ov, Tymaxov),
(Tymaxov \=0 ->

wnteg MAXOVLAP(OPTYPE) “),nl,nl,
write("TYMAXOV "),nl,

oun
grrnte(c'lqO‘FmCOMP “nll

im
OBJ:*).nl,nl,nlnl,
welS A}z" r\‘/A’fmABLEsx)
(Moufsum\——
write(*, MOTIF)
Eme
(Mer esum\-— Q>
write(", MERG)
ime
), nl,nl.nl.nl,
g Ag ATIONS)nl,
17).nl,write(‘ ADDITION?2"),nl,
(Mo sumb
write(* ADDITION3A) nl
ime
\==0
%%z ST 3Rl

)' 351415519 89“%0;'551’ C)O)NSZ(ASSIGN OPTYPE,P)),nl,
s SO QR

) wnte(‘CONS3B(EDGEWRAP,P))l

" true

3wme("CONS4(OP)").al,

Motirsum \==
te CONSS(EDG OPTYPE,ASSIGN1,0PTYPE2,ASSIGN2)).al,
%teg‘CON% E EA 2 y),

true
axov\=0->
gvrnyg(‘CONSKP,OFI'YPE)’),nl

b
true

)

97

(Totovlag
write(°C NS8") nl

true

tincom

gﬁw(cc?oﬁswompsz ASSIGN2)).nl
true

)

ergesum \== 0 ->
wme? CONSlO GECON P,ASSIGN1,ASSIGN2)"),nl,
write(‘CONS11

frue
),
gn(Nte(A e A N D TS TGN, ASSIGN2)).l

)
ymaxov \= \=—=0->
wnte(CONS13"),nl

true
\—0 >
(To te(" CORISI4).nl

) wnte(TOTAL; &,

ADDITIO 1.. CSTEP =G= CRITICAL;")
wmc ADDITI .. CSTEP =L= CARD(S);)ni
(Moufsurn \==0
wntc(ADDITION3A MOTIFSUM =G= 0;"),nl

true),
\e= 0 ->
»(yn?é S DDITION3B.. MERGSUM =G= 0;"),al

NE(OPTY
), te(' ASSIGNONE(Ll)i CARD(OP){ yal,

(CHOSE1§O PT%PE GE 1

wntc SUM(OP SS))§((1£ANG eOP S) EQ 1) AND (CHOSE1(OPTYPE) EQ ORD(OP))),’),nl,
write(‘X(OP,

write consl,

write_ con52

write_cons 3(Num3),

write_cons4,

(Motifsum \==0->

write_cons5,

wnt: _consé

true

(T axovi=0 >
wnte _cons7(MNum3)

1

true

otovlap \==0 >
gntsvc%%sS(NM)

’

true

(’rouncomp \=0->
write_cons9

true

(Mergesum \—=0->
write_ conle
write_cons]ll,

wnte —cons12(Num3)

true

1 1 ’ 9

ovi=0->
write_cons13

98

true

Cfonncomp \=0->
write_ consl4

%rue
Wﬂ(ﬁ I'CS[
er
0 I SSRANGEX(OPS
ﬁg@ gt?ﬁ?}u e S S AN G 625, S8 loP ASSIGN.S)) =E= 1),

wnte%‘CONSZ ASSIGN, OPTYPEE)&D(O (SSIGN) LE NUMFU(OPTYPE)).."),nl,

write SUMEsskgl;[P E%PPQ)PQP) xEOP,ASSI&)NS)S)-L-l "),nl,nl.

CON ﬁECP $COMPREC
i o SIG s SO éE) ORD
&mrgg &Eﬁ’f)3« UR % g E)LAYOQ(OP)H))AND "),nl,
write(* } I\P éc) PASSIG S+
write(* OPASS GN. }EUM P)))nl
%g ORD ASSIGN) oxslop)) XOP,ASSI h}S)) —L-l "),nl,nl,

W(an(CONSS PASSIGNPS);s COMPREcz éEL OP)) AND’),nl
wntsg (RAl\f&EX(OPS)EQ)AND(ORD{ED GE (ORD(%’) AY(O 33)?)+1))AND)

ni,
A N
ORI on woe
. wri ORD ASSIGN) L% Olg(OP))), X OPASS?GI\} S)) -L- 1 ’),nl,nl

gme

wnte CONS4§ 5$WOSUCC %{B
EX(OE.S). (S)* SUM ASSIGN$(ORD(ASSIGN) LE NUMOP(OPY)),’),nl,
Wme X(OP ASSIGN S))) -CS =L=-DELAYOP(OP) +1;"),nl,nlL.

ASF DGE,OPTYPE ASSIGN1,0P-
TYPE2 SIGN2)$ POSMOTIF{E]jG OPTYPE.OPTYPE2) gE 128 nl,
TYPEZ))) (ASSIGNY) (OP’I'Y PE)) RD(ASSIGN2) LE NUMFU2(OP-

gUM OP$ ORD(](E)P) ERQDOPSTART('EDG%%, Eg&ﬁ(} l\?RANGEX(OPS) SUM(ASSIGNS’),nl,

ASSIGNl) X)
%)PSS(IOQ(E ASS G %)PAS ENE l%i?PS) ,SUM(ASSIGNS),nl,

f\don%(oer E,A SIG 1,0PTYP 2A SIGN2) =L= ,),n,

vt %’BNss SUM (OPTYPE ASSION1 OPTYPE2, ASSIGN2)$)0,

(S OPTYPE2 :
(OPI‘:X; %N% (ORD SSIG E} NUMF8 Mm) AND (ORD(ASSIGN2) LE NUMFU2
&f(gT[F(OPTYPE,ASSIGNl OPTYPE2,ASSIGN2)) -MOTIFSUM =E=0;"),nl,nl.

ite conggN(PO%TY'PE) a,

UME DGECON, OPASSIGNS (TYEDGECON ECON, OPTYPE EQ 1)
e R A e e b

o %
%@@5 o) Z@y.%wa mya é% o o

S(g%gN GE PrYPE%Eq)m

% gE] ECON OPA%SI% A_éD
SRS M@E‘Lﬁaa e ‘E"AP f‘? QBT Al
&: ASSIGN S)SQ(T%ED&)EC N(EDGECO»?OQ’NPE) EQ 1)"),nl,

§§

8888858888888888

$5853535533583333

99

PRJOMEDGE

ASS GN

b

R Asg%DGEgED SRR A
O G}(-:}co%é)g ??s’%%’x":%zmm 13

DGE(EDBIT\IUK} Eg(1

ORD ASS G LE

DGE%ZDN P) E

55553355555555535585558335533333
ﬁ8888888888888888658885888888

o GEgﬂ%IPE i}f\é)

write(* QED S) LE RAP(OP))) X(&)P ASSIGN,S)) ¢
wnte(+)nlwnte(0.9 *

gop AS?IGNisgi
GECON IGN % G CON

OND%ED GECO]§D<‘:v RDNPOP%

ORD(S

GE%ON g%A%sl::ILG’}qY Mé: +(D E’%’P SECOb})Olg”l'YPE&EC}

CONDES
(ORD(S GT ORD

DGE OISI}EI;CICZ)NPARD) %s Ez' oE ORD oﬁ)lM)) ’
%> ORD S)GEASAP P OF

GECON,OPTYP

EC@@WE&E? IA;TD o

ORD

SBASTIoNTE -Da%égam S e A
go éﬂ)’ é ?) &j@écmufég&&)fmmﬁl)mm,
ECON OPASS %N) 35 ('I'YEDG Gi(%l?%ﬁ N

N EORSREEDCES

OPTYP@EI:E%I
EASéngP) o) (om))AND)nx

ﬁv:‘g ?omg? nR) AND)nl ol
RB&) P)), X OPAS IGNingRD S) GE ASAP(P)y AND
l}E)DGECO 0)1g § GECON%ECON omlgeﬁhq gi ol
0 Y

GECO

EQNDRD OP)) ")l

write(‘SUM (ED(S]%WRAPOPASSIGN S)$((TYEDGEWRAP(EDGEWRAP, OP'I'YPE) EQ

1)’),nl,
‘AND SBEG(EDGEWRAPP E
o z%{%‘go gED GEWRAP E%) R% P))

‘gORD d GE ASAP

RA%D

8RD o

S)S

?wurigom% MRD “&gg Q

DES (ED RAP) EQ

write(* - MAXOVLAP(OPTYPE) =L= 0;"),nl,nlL

te_cons8 um :-
CON

DGEC

LEN’UK/[O (SR AND

EEEEEEEE

100

: &EAP
ﬁr\% gfp@? EQO&%&:N%%PE Etmt
:%\,ID gE ORD(P A(?ND 0 § LE
Es%gmgm gg@@é el
C UNTEROP}H 3 lrnl N%) %
p)) Alg)v}(%w (AsstDGLE NUN}OP(O%))), m
O op %+3%2 C('OP;ASSIGW 53 1l 13,
gVORAPS E é“‘ 81»?2& OP BCOUNTElSE OP,
‘ ‘iﬁgﬁo ﬁ%zmpom ST ?m A%RWARAPMééuéEo)%WﬁAP
33 LE ORD&AS GN?)LE

R&O)P))) CSNUNTER(OP)))

GEcgb? oP AS ISEIGN %Ngg_ CONS RC(EDGECON P) E

go g § DELAY&%(SP& P.ASSIG: S))+)nl
(EDGEC N,P) EQ 1)) LIFETME(%:D‘%E?:ON,P) +”)n1

(ORD(ASS?EDGLE NUI\ZOI(’%O%)) "), nl

o @E@%é%%’r%&% EQ 1)"),0],

DGEWRAP) EQ 1) AND),nl,

EEREQ Y
m;ffwzz@;;%&% e

)Edl)AND)m
1)°),nl,

EWRAP)NEI)AND)DI
P’I'YPE{EEN& nl

RSN OB
AR e

)NEl)AND)nl

‘(‘IOP AND)m

e

bGE ASAP

‘SUM((EDGECON,OP. ASSIGN.S)$ IFETIME CON,P) E 1
SCOM(EDGECON,P) E 1)P) 8(EDG) Q

: ECO OP)) AND"),nl,
R AR R B AL ABsE

. '!sj OM Dco}ﬁlézorszAx§ SIE:GI\i Nz)) OP 5AND I
(ORD(ASS G Lﬁmﬁog(o)pg) ORD S) GE ASAP P§ £) »al,
:O[IMRDgﬁﬁs GECON o)IpA)égopffr‘S ONS ’fEDGECONP E

S (CONDE))1)52001%1)(0?)3 AND"),nl,

?RDEAS IGXBAP (©P))), X(‘OPASSIG QRD(S) GT ORD

(Num3 \= GEWRAP. PO
’vlJﬁwme RADSR gs) 2] ASRA’IQ%ASSII{}D (0])(ANISDB(% (ASSIGN) LE)NSMZ)P(OP) ").nl,
ORD s ; g> -DSELK op 0 3%%3 X(OPASSIG sgz+ nl
g é ;
wme E8NORD g COUN’]
OPA I% 3AND

wme s RD%&JR};QRD E)Eg)LE A&,Ap(é)%)f P;ASSIGN S)S +)) nL '

)EQ ORD(P))), CO
g:rue
vbme(‘) - TOTOVLAP =L=0;"),nl,nl.

ns9;-
Wntc CONSQ(OPTYPE2 ASSIG SSORD(ASSIGNZ) LE NUMFU2(OPTYPE2)) .."),nl,
write('SUM (OPTYP ASSIG

e R FORDA ((S)SIGNIE’LE PEMEOL)
e A D O S A a1 OPTYPEZ. ASSIG)N)2))) INCOMP(OPTYPE2) =L=0;"),

nl,nl.

. 10:-
write('CONS 10(EDGECON PASSIGNI ASSIGN2)$),nl,

&nr%g éf.UMrréggER E%%I%gss GN SIG zz)EQEgkb
ﬁt{é B ﬁ&m ORDEE\SSIGN)I?Q (AgSIBNl)))
write

(3
0
.
.

gs‘t&%&fbgé ﬁ‘s% % NDES(EDGECON) EQ ORD(P))AND)nl,

33{3 éORD §’§§§R§2) PQYO éASSIGNNQ)) %@PAS IGNS(?

write(*SUM((OP.O 25 GE! E%ORD OPﬁD) nl

wiis ‘ANDAND TYPE % f>zOE 0 N)Eé (OP2)).al,

write(' MERG(OPTY E,ASS?GNI oﬁrrYPEzA&I%}Nh)) =L=1;)nlnl

%nm C((S)STS,I\I,{IO Pr%ggovwlz) ASS%%N% OI;TYPEZ LASSIGN2)$").nl,
TYPEZ)» (ORD(ASSIGNT) LE NUMI):U PE)) AND (ORD(ASSIGN2) LE NUMFU2(OP-

te(2i\/[]’:‘.RG(OP’['YPE,ASSIGN1 OPTYPE2,ASSIGN2)) -MERGSUM =E=0;"),nl,nl.
&nutgacc\msl(%(NumB) -
== >
: EWRAPP.ASSI N2

Wt COII?HS(}VZISEMZDG%CSEDGEWREg) ‘AgssAanG R

Wit UM OPASSIG 3 ASSIONTASSIGN E?éa okBioP)) AND) I

3’?5 QSSIGN %ﬁgsm&m ").nl, T

write scr)SM(AS G $ SRC(EDGEWRAP) EQ ORD(OP)) AND),nl,

3?5 éom ASS E RDéA SIGN% X(O PASSIGN SB 2 5 EO ORD(OPYY
ORDF(')r];% (’I'YP ©op) EQ ORD ﬁ?{"%) % (ED&

E PTYP
e R ISP T RS SR OPTYPE2 ASSIEND) =L~ 17)alnl
%me

101

write_cons13:-
writeCCONS13.. SUM(OPTYPE, MAXOVLAP(OPTYPE)) - TYMAXOV =E=0;"),nl,nl.

write_cons14
wnte(‘CBNS 14.. SUM(OPTYPE2, INCOMP(OPTYPE2)) - TOTINCOMP =E=0;"),nl,nl.

write_rest:-
write("TOTAL .. 9),cost_function(cstep,Cstep ,write(Cstep),
wme ‘*CSTEP ,cost_inter(motifsum,Mo sum),

sum \==0->

%Moufs

(ﬁmov(tyge max ov,Tymaxov),

axov
write ov
yvmegT)TYMABKEov)

cost overlap 80(31 _overlap,Totovlap),
(Totoyl ap \=

wmﬁff%&%

(ﬁxergeable(_cr esum,Mergesum),

ergesum
+),

e et M

nl mcomp&totincomp,Totincomp),
(’I‘ouncom ->

+
wntﬁi'l‘ouncomg)
write("*TOTINCOMP *)

%rue
vrite(* =E= OBI; énl nl

wme ‘MODEL SCHED) /ALL/)nl
write ‘SCI—[EDULE tfile =1; %,

write("OPTIONS ITERLIM LIM=1
write(* WORK 500000, LIMROW=3 oo OPTCR—OOO 3
write('SOLVE SCHEDULE USING MIP MINIMIZIN 3 nl.

write_more:-

writeCNUMFU2 PI'YPEZ?),nl,
write(' NUMOP %}
write(‘'RANGE g

write RANGEXP(O

writel _m

write ‘POSMOTIF DGE.OPTYPE.OPTYPE2) °)nl,
write ‘SETM%TIF QPTYPE,OPTYPE2) 9),nl,

nl
te(‘NUMV, OP’[‘YPE
wntc ‘MAxvﬁ 8P‘I‘YP))'l

write('SELECT(OP,OPTYPE 1
write(‘CHOSE 1{OPTYPE)))iunlnl

LE(*‘;::E:KXY%U(OWYPE) 9,1l,
e
tg P‘RfPE) 9.,

te

teglagcnc C‘)O 13(é)nl

é

SSSSSS

‘LATEOPM }:&FYIZ'

tee LA’I‘EOPPI((SP) y.nl.

553553

=]
.."‘

102

write, numfuiC) -
write_numfu(C,1).

C,C):-
znnt[gd\:umﬁ](2

umfu
?W'Nnte()- /7)ol
wnte numfu(C Clﬁ

(S;g{}'tp Numfu),

wnte numfu(C C2).

write_latency(C):-
wntejatencggc)l)

write latency(C C'?
write

0pntyp

write latcncy(C C
write(C wrxte

opn e

laliettlyp type,Latency)l
write atencv) write(
C21sCl+1,
write_latency(C,C2).

s(C
wmtg(‘/),wrl(te)delays(C 1).

wme delays(C C) -
erte =

opn
lay),
wg,)eltay)%g%rfwe’) .

wruc delays(C,C1):-
1 wnte(=

clopiiee C1l
8pla)¥g)0ptype elay), 9,

elay "write(*,
1sCl +
write delays(C C2).

% this is the main call to the program that generates ilp2...
% 1[reads from output of 11p1p and generatgs the codf:sp for ilp2.
dynamic destination_edge/3

rdb:-
read_and_build_db.

read_and_build

compile(* 7SCHD BIND/sob.pl’)
% this ﬁle gives you thé output of i g formulauon in the form:
% nodenum_funcid_cycleno(Node,FU,Cycle).

ompile(‘~/SCHD_BIND/del.p
c R %Se gives the delay of eaclg operator (adder,multiplier,etc...)

ile(‘*~/SCHD_BIND/optype
& s 1es(to assert the databasé of &odenumber—OperauonType from file optype.pl

1t_0
% th%sfse to assertt};Ee delay of each operation related to the type of function

assert_delay_type,

103

% this is to assert database of Edgenumber-SourceNode.
% it takes data from the list in edge_srce.pl that gives the source of each

compile(*~/SCHD_BIND/edge_srce.pl’),
assert_edge_srce,

% this is to assert database of Edgenumber-DestinationNode.
compi eg ~/SCHD_BIND/edge_dest.pl’),
assert_edge_dest.

% this predicate allows to define the operauon type of each node
% and puts the data in a file called op.pl......

At 7S CRD,_ BIND/op.pl')
nodnum_optyp raton_| u)
told. assert_opn_| type(eration_Fu),

assert_opn
assert, ogn type H)IodeNum (§P elOperauon Ful):-
o

assert(nodenum optype ype),
write(nodenum_o type deNum OpType), write(*."),nl,

assen _opn_| type(peration_Fu).

[2/4
10

% this predicate asserts the dealy of each node related to the type of
% operation done...

assert_del
telic 7sc?ﬁ5t’@mD/de1ay ol'),
type_delay(De ays),

op
assert Hela(liy elays)
enum-Dela Op"nodenum type(Nodenum,Op),
operation_ delay(OP elay)) del ay)p
aslsgrt _operation_delay(List_de ay'5

0

assert_delay 2[8

asseg(delayu p’cli' e (Ddcpla 'I?SD‘QI& »,
assert(operation_dela)
assert_delay(Rest). Y P Y

assert_operation_delay([]).

assert o&rauon de!ayg[B -DelaylRest]):-
assert{op_ delay

write(op_delay(,bel l¥) Jwrite(*.),nl,
assert_operation_delay(Res

%

c& redicate asserts the data that defines the source of each edge.
% Lhe ta is written in a file calledsource.pll
e_srce:
tal(g /SCHD_ BIND/source pl’),
edge_srce(Edge_Source
:ti.s]sdcrt _edge_srce(Edge_Source),

assert_edge_srce

assert. edge srccg[Bdge-SomcelEd e_Source]):-

assert(source_edge(Source,Edge,1 o
write(source_edge(Source e,l)),wntc(‘.).nl,
assert_edge_srce(Edge_Sour).

tax(g-/scm) BIND/dest.pl’),

edge_dest(Ed c%e Destination},
assert_edge_dest(Edge_] Destination),told.

assert_edge_dest

assert_edge dest&Bd«e-DesunauonlEdge Destination]):-
set_of_al estination"St*destination_ edge(Destination,E, St),Edges),

104

length(Edges,Len),

St timeisLen+ 1, . i .
ass,en(desgnagon_edge((gespnapon Edge.St_time)), .)
write(destination_edge csunaUpn,Edge,St_ume) Jwrite(*.),nl,

assert_edge_dest{Edge_Destination).

kage: ILP2. |
% Authors: S. H%azxe and B. Haroun.
% Updated: 12/16/94 .

% Purpose: To generate an ilp2 file tp be run on gams.

% copyright (c) 1994, Concordia Univ... All rights reserved.

[2,4

70

:- dynamic cycle/2.

% this is the main call to the program that generates ilp2.....
% it reads from output of ilpI, and generates the codes for ilp2.

generate(Filename):- s

compile(*~/SCHD_BIND/in_put’), . X

% the in_put file is the file produced from data_ilp2.pl and gives the database
% for the input of ilp2.

compile%~/SCHD_B IND/sob.pl’),. . .
% the sob.pl file gives the information about the operation cycle and functional
% id for the node.

findall(Edge,Cycle~starting(Edge,Cycle),Edges),

% the abo%e ﬁr)nldall isto ggt thegstar{ing timc:g ot) edges that needs bus
% bus allocation......

findall(Node New”node_new(Node,New),Nodes),

% the second findall gets the original number of the node.

findall(Op-Edge, mult(Op,_.Edge).Multiple),
% the O'uPd finciall 1 t(o é)et the %nu’ltiple gut%)ut nodes and their edges.

write(‘Enter the number of buses needed’),nl,read(Number_buses),

tell(FxlepamezE .
t{g{glat_mput dges,Nodes,Multiple,Number_buses),

format input(fdges,Nodes,Multiple,Number_buscs):-

length %es ength_Edges), % gets the no. of edges that need allocation
len tl(] qu_ §,s Lelngth_Nodes), % gets the no. of ops that mult_output.
wri ,nl,

num_of_cycles(Max),
create_[ist_cycle(Max)
findall{Ops-Delay-Cycle,(op_delay(Ops,Delay).
)L OperaI:'iU"n)odenm_ uncid_cycleno(Ops,FU,Cycle)
L ons
IEmove, dupsgL erations, erationfg, L)
% the above findall gets the delay and the starting time for each operation.

visit_each_node(Operations,Max),
findall(Edge-Source-Phase,
cdge_twoéidﬁe,Sourcc,Phase),
Two_cycle_edges),

% the above findall gets the list of edges that two cycles long it gives
% the starting time, and the source of that edge.

findall(Edge-Source-Time,Max"wrap_two_cycle(Edge,S ource, Time Max),
Wrap_two_edge),

% the above findall gets the list of edges that are wr%) around ed%es, of
% length 2 and starts at the maximum cycle, it gets the source,and the starting
% time of that edge.

append(Wrap_two_edge, Two_cycle_edges,Listl),

105

Before is Max - 1,

findall(Edge-Source-Time
BeforeMwo_cycle_edge(Edge,Source, Time, Before),
Two_cycles),

% the above findall gets the eczﬁes that are two cycles long, wrap_around edges,
% and starts one cycle before the last cycle. It géts the source and the
% starting time of these edges.

append(Two_cycles,List1,L._Final),
_rgxlr)ﬁ)vea(-lu s(e, F’m’z&l‘tFmal')',

inc_cycles(Final),
ﬁnd'a‘H(Cyc e-Ra?g,(cycle(Cyclc.Reg),Reg \==0),List_regs),
% the above findall gets the cycles that have needs registers.

ﬁnda(lI(Noge-Féi e-C c(lje, le,Final)
member e-Node-Cycle, Final),
New”node_new(Node ew)),’
II.I.lilsl{u le_o nlo e(Node)),
e cle),
% the above findall gets the list of edges that are two cycles long and comes
% from a multiple output node.

write(‘Eset of the edges / 1*’)
write(Length_Edges),write(‘/’).nl, .
write(*Snumber of cycles /1*),write ax;,wmeg“/’;,nl,

write(‘Pnumber of cycles /1*"),write(Max),write(*/"),nl,
‘Nnumber of buses /1*7), te(Number_buses),
.l

‘OPno. of multiple output Qps /1*'?,
write(Length_Nodes),write(*/ ;7),nl,nl,nl,
write(‘P. S’),nl,
wr_t£ ‘ASAPS(E)asap cycle for bus tr. of each edge’),nl,
wri \
write_asaps_edges(Edges),write(‘ /*),nl,nl,
write %L%P’l‘(%)aﬁpgcycl’e Fe s b o kach edge’)nl,

wri ,
write_alaps_edges(Edges), write(* /),nl,nl,
MY (s ARk

write(*/’), .
write_mult_ops(Multiple),write(* /*),nLni,

wr;teE‘RE ,nl, . .
write(*/"),write_registers(List_regs),write(" /"),nl,nl,
formatl 1p2,

format2_ilp2,

format3_ilp2,

formatd_ilp2,

formatS_ilp2,
format6_ilp2,
(List_Reg Cycle \= [A ->
assert_additions(List_Reg_Cycle)

true

%()ﬁi t g‘ﬂp(%' le \

st_Re cle\=—=1{] >
yvrite_ad%i'tio}r,ls(List_Eeg__Cycle)
true

r_’ormaLS_jlpZ,

format9 1182
format10_gdp2,nl,nl.

% this predicate updates the no. of registers needed in each cycleas a
% final result.

inc_cycless D.
::n%fe c<::§{esl -_-CyclelFinal]):-

cle,
ClisCr 1,
retract(cycle(Cycle,C)),assert(cycle(Cycle,Cl1)),
inc_cycles(Final).

oz
70

edge_two e,Source,Phase):-
sogrce_ed(g}%ad ource Edge,),

106

dgs _delay(S ource,Dela

tination_edge est.

nodenum_funcid cycleno Source Start),

nodenum func id_cycleno est, JEnd)
gz End - Start - Delay + 1

Length Phase is Start + 1.

é%é this predicate initializes the no. of buses needed in each cycle to zero.

create_list_cycle(Max):-
create_list cgcle ax?l)

1 -
create(_cl;lsz:tré KC e(Max,Max)

assen(écyhsclIEcECIegMax'C) -

create_list_cycle(Max,C1).
%

two_cycle_ edze(Ed e,Source,Tmle,Before) -
source_edge(Source
op_delay(Source,Dela

destination edge est,Edge,__)
Max is Before + 1,

nodenum_funcid cycleno(Source,_,Before)
nodenum_ funcid cycI'éno(Dest,
Length is l - Before + Max - Delay + 1,
.Lenglh , Time is Max.

o c cle(Ed eSource ,Time Max):-
source e{Source
desunauon edge([§ % dge_)
nodenum_funcid_cycleno(Source
nodenum_funcid_cycleno est,_,'Z')
Time is 17

% this predicate updates the no. of buses needed in each cycle.

v1sxt _each node
vmh_ elgclz nodegab’?)-Delay -CyclelOperation],Max):-
e
Y -> New _Cycle is Cycle,
le(KIew Cycle,

New Cycle is Cycle + Delay - 1,

C cle ew_|
Cli 1s

retract(cycle@New_Cycle,C)),assert(cycle(New_C cle,C1)),
visit_ egl no([?ie Gpe};auon,)lz/l (eycle® Y)

%
é%é this predicate writes the alap of each edge formatted in ilp2 file:-

S, ed§es(Edges) -
e {Eﬂ) SL
‘Edges,Last_edge,_Rest),

write_alaps_edges(Edges,Last_ edge,0).

write_alaps_edges([1,_.).
writel_ﬂalap.stE edges([EdgelEdges],Last_edge,9):-
endin e,Cycle)
(Edge\— . .
(')'wme(Edge),wme("), write(Cycle),write(*,”)
wme(‘), write(Edge),write(‘="),write(Cycle)

107

write_alaps_edges(Edges,Last_edge,1).

write ala_xpsc ed%es([EdgelEdges],Last_edge.C):-
+ 1,

Clis
endin e,Cycle),
(Edge%(id as(Eyedg)e -=>

write(* *),write(Edge),write(‘="),write(Cycle),write(*,")
write(* ©),write(Edge),write('="),write(Cycle)
write_alaps_edges(Edges,Last_edge,C1).

oL

/0

% this predicate writes the number of registers needed in each cycle:-

write_registers(List_regs):-
NS o i regel hst,
wﬂte_regfstersTLlst_regsIZést,O).
write_registers([1,_,_).
write_registers([Cycle-ReglList],Last,9):-
SLSTTEl) e
(ycle-ﬁeg \==gl?,ast >) .
write(* *),write(Cycle),write(*="),write(Reg), write(*,")
write(* *),write(Cycle),write(‘="),write(Reg)
write_registers(List,Last,0).
Eﬁiti% _cr:e§i%ters([Cycle-Reg[List],LasL,C):-
%&gﬁ%_ﬁgle\lie: ‘ast ->)))
) writeC *),write(Cycle), write("="),write(Reg), write(*,”)
write(* *),write(Cycle),write('="),write(Reg)
write_registers(List,Last,C1).
%
% This predicate writes the multiple output nodes formatted in file for ilp2:-

write_mult ops(Multiple):-
len%tﬁ(Mul'ﬁ;He%, P
nthI(L,Multiple Last_node,_),
wntc_mult_ops(Muluple,Last_node,O).

write_mult_ops({1,_,-

write_mult_ops([Node-EdgelNodes},Last_node,7):-
node!%wn([ﬁ(Pd N] Node)
ew(Node,New. ,
(Node-Edge \==Last_node ->)
~ wrte(® *),write{New_Node),write(*."),
) write(Edge),write(‘=1"),write(’,")

" write(* ©),write@New_Node), write(*.”),
) ‘(Jvri%e(Edgg{wnte(El)S ¢
write_mult_ops@Nodes,Last_node,1).

ite_mult ode-EdgelNodes t_node,C):-
ite_mu 17ops([N geNodes),Last_node,C)
node_new(Node New_Node),
(Node-Edge \—= t_node

->
¢), write Node),write(“."),
xnnw&gggfwrﬁ%wﬂ’)?wg&g’t?()

ite(‘ *),write(New_Node),write(‘."),
anwEEJgg)I}wn(?e(y:T) hwte(.)

108

write_mult_ops(Nodes,Last_node,C1).
%
% this predicate writes the asaps of each formatted in file for ilp2 :-

(Edps edges(Edges):-

% ,Edg es,Last_edge, Rest),
wnte(Lasaps edges(Edges,Last_edge,0).

write_asaps_edges([},_,).

wntejasaps (edges(dgelEdges],Last_edge,9):-

startin SEd§e,C cle),
ge ast edge . . ,
write(*), write(Edge),write(‘="),write(Cycle),write(*,”)

write(* *),write(Edge),write(‘="),write(Cycle)
vfrrite_asaps_edges(Edges,I.ast_edge,1).
gilte_casaps _edges([EdgelEdges],Last_edge,C):-
starun (Ed e,Cycle),
t edge

wnte(9, write(Edge), write(‘="),write(Cycle),write(*,”)

write(* *), write(Edge),write(*="),write(Cycle)
write_asaps_edges(Edges,Last_edge,C1).
%

multiple_op_node(Node
ﬁndaﬁ %?Lsourc%Nedge)a(Node,Edge,_),Llst),

length
L >g1.

% this predicate writes the additional equations for multiple output nodes
% and gemng the starting time of their edges.

assert_additions(List_Reg_Cycle):-
length{List_Re ([C cle,l % y
wriie, equauon&? 3,

e o it).

wnte eAqDauon%N% write(C),n},

wnte equauon(L,Cl)
wnte addmons(Lxst Reg_Cycle):-

len th ist Rel%_Cycle,Length)
,List_Reg~ ﬁc e, t!_)
wnte addmons(Lxst eg Cycle JLength,1),nl,nl.

write_additions([Node-_Ed e-CycleI LIS[] L) -
writeCADDITION),write(L),wri
node_new e,New wnte(Y
writeNew)write(*~."),
write(Cycle),write(‘™) =E= 1;"),nl.

write_additions([Node-_Edge-C CIC[LIS[ength
writeCADDITION?) wnle(é y kL g, C):-
node_new ode New),,wn ("’)
write(New),write(*”,’
1i wgte che’) write(‘”™) =E= 1;),nl,

wnte_admuons(Lxst,Length,Cl).

109

%

o APXPSE)
ASAPT(E)
RANGESCE,S)
RANGESP(E,P)
RANGET(,S)
RANGETP(E,P)
COMSTEC(E,P)

STFACET(E,P,S)

.1y, TEFACET(EPs)

format2_ilp2:
format(‘RANGEE(E,P)

STRCOUNT(E,P,S)
TERCOUNT(E,P,S)
SINGLEC(E)
RANGEOP(OP,P)
RANGEMST(OP,S)

.y, RANGEMTE(OPS)

format3_ilp2:-

A%’E‘EE;: 1;
ASAPT(E)$(ASAPS(E) LT CARD(S))= ASAPS(E) + 1;

ALAPS 3 (%
ALAPS(E)S(ALAPT)GT 1)= ALAPT(E) - 1;

RANGES(E.S)S(ASAP LE ALAPS
((ORD(S)(E ?g APS(E))&ND(ORD(éE ALAPS(E))),

RANGES(E.S)$(ASAPS(E) GT ALAPS
((ORD(S)(EE)E: APS(E)gEg)R (ORD(S) AL;SXPS(E))),

RANGET(E.S)$(ASAPT(E) LE ALAPT
((ORD(S)(E) APT! (E)SEXND (ORD(S EALAF’T)

RANGET(E.S)S(ASAPT(E) GT ALAPT(E))= 13
((ORD(S) GE ASAPT(E)) OR (ORD(S) LE ALAPT(E)));

RANGESP(E,P)= SUM(S$(ORD(S) EQ ORD(P)), RANGES(E,S));
RANGETP(E,P)= SUM(S$(ORD(S) EQ ORD(P)), RANGET(E,S));

COMSTE(E,P)$((RANGESP(E,P) EQ 1) AND (RANGETP(E,P) EQ 1))=1

formatd_ilp2:-
format(“

STFACET P

(RS 1B (GBI
S'I'FAC

(AR BR SRRBR R

(EQTEE R o 1 anp (ORD® O ssapTEN-= 15

110

50D

TEFACTI&% (P)YLT ASAPT)) 13$
ORD(S oszQP) OR (O(RD(S) E ASAPTE)));

RANGEE(E,P)— 1$((RANGESP(E,P) EQ 1) OR (RANGETP(E.P) EQ 1));
STRCO

ﬁ@ﬁg AND (ORD(P) GE ASAPS(E))) =1$
§E ASAPS ANRD RANGESE,S) EQ 1);"[D-

formatj_ilp2:-

format(”

STRCO S_%()Dké AND(O s{P<AS =13
g) ORiDRS) GE AS@S(E))), ESES)E R

TERCOUNT PS)$

%@% 3 E}) 1) AND (ORD(P) GE ASAPT(E))) =13
g GE ASA&)) AND (RANGET(E,S) EQ 1));

TERCOUNT

e R RRERS T

(ORD(S) GE A (E))),
SINGLE(E)=1 $(SUM(OP, MULT(OPE)) EQ 0);

RAN
SUI\'?(}EE$M§JLT(OP,E) (RANGESP(E,P)+RANGETP(E,P))) GT 0);

RANGEMST(OP.S)=
(SUM(ES T©O ,E), RANGES(E S)) GT 0);

RANGEMTE(OP,S
(SUM(ES (bguz) RANGET(E.S)) GT 0);’,[D).

format6_ilp2:-

format(™

DISPLAY ASAPS. ALAPS, ASAPT, ALAP’T RANGES, RANGET,
COMSTE, TFAC " TEFACET, SINGLE.,

RANGE GEOP RANGEMST RANGEMTE
STRCO TER COUNT;

VARIABLES
ST S start var. for the bus transfer
termmauon var. for the bus transfer
MS (O start var. for a fictious edge
* re resemmg the multiple outgut op
MTE(OP,S termination var. fora ctious edge
* representing the multiple output op.

R(OP,P) tepresenung areg. per cycle for
multiple output op.
'min number of reg. at each cycle
TOTREG total cycles for reg. usage

OBJ;

BINARY VARIABLES ST, TE, MST,MTE,R; |
EQUATIONS
°D-

foxmat? _ilp2:-
forma
CO \IS
CONS2

CONS3
CONS4(E.P
CONS5(OPE,S,N)

111

5D.

format8_ilp2:-

CONSS(E).. SUMN,SUM(SSRANGESCE,S), ST(E,S.N))) =L=1;
CONS2(E).. SUMN,SUM(S$SRANGET(E,S), TE(E,S.N))) =L=1;

CONS%Es@wSSs%égRﬁNE%ﬁ%m@S)

CONS4(EP COMS
MiStmoerens sTes Ry

SOMNS

cor E, T(OPE)E
NS5(OBE S N S MU TR)ST?E,g,N) MST(OP,S,N) =L=0;

o PE) E
C NSG(O&W%"S%L%OI» S ,N) MTE(OP S.N) =L=0;
CONS7(S,N).. @ S(SNCLEE

Mom nglr(oé%) M T(OP S,N)) =L=1;

forma
format("C8N88 (ES(SINGLE(E) EQ) AND
gUMJ (é%?MGM(OP Sy, M (OP SN)) =L=1;
CON. P)$ T(OPE (RANGESPE.P) EQ 1
SQ(OPFSLM% ((SSQAIQG%S(ES) ST(ESESN)) VEQD).-
R(OPP) _L_o
CONSlO(OlPE P)$((MULT(OP,E) EQ 1) AND (RANGEOP(OP,P) EQ 1))..

-R(O Es %88% P‘ngE 3 %)

CONS11(P).. SUM(Es((SINGLE(E) EQ 1) AND (RANGEEC(E,P))),

§ SUM STRCOUNT ST(E,S,
ﬁ%%é% sugggops]l){ANGE(%(dx}P) 1%?,"3)2}) N+

gormatlo ilp2:-
CONSiZ - SUM(P, SUM(ESRANGEEC(E,P),
UMN,SUM(SSSTRCOUNT

?ITI(I\)/I TRch}JM ssmcom%%gg SSR)) ")L))

TOTAL.. 20*MINREG + 10*TOTREG +

SUM ops g GEMST! ops MST(OP,S
SUM((OP.S.N)SRANGEMTE(OB,S), MTE(OB,S

SUM OPP $ GEOP(OPP), R(OPP)) - OBJ— —0

MODEL SCHEDULE /ALL/

*SCHEDULE.o e =

OPTIONS ITE —2000000 RESLIM=1000000,
WO LIMROW=300, OPTCR=0.01:

RK=500000,
SOLVE SCHEDUL.E USING MIP MINIMIZING OEJ ;
“[D.

112

% Package: Code_il

%% Autﬁors H’ dme and B. Haroun.

% Updated: 1

% Purpose: creates a database file to be read to generate an ilp2 file.

% copyright (c) 1994, Concordia Univ... All rights reserved.

70

% this pro ifam enerates the database to be ready as an mput to the ilp2
% formulafion the database is stored in a file namied ‘in_put

% if there is no need to run ilp2 for bus allocation,hence no file is produced,
% and start fails.

tell(ISCHD BIND/in_put’),

ma;lc n((ige _5d,

cycles(Max

vgnte(num of_cycles(Max)),wnte(").nl,

% this statement gets the hst of edges that are longer than two cycles, hence
% they need data bus transfer.
% the first findall is for direct edges,

G0 evreecsrrsersrnrennranssesarasanes

ﬁndall(l;it(ligeZStart-tEnd (Length"edge length(Ed ge,Start,End,Length),
Length > ist1
% the next findall 1s'for e wrap around edges,

findall(Edge-Start-End
l\'gE I"gwrép edge_length(Edge,Start,End,Max),
is S,
append(List1 edggs, ist2 edges,Llst edges),
remove_dups(List_edges,Edges),
assert_edge num(Edges),
filter_edge(Edges),

% if there are no edgles of length greater than two cycles, then there is no
% need for running 11p2 and hence no data bus transfer.
% hence start fails and gives a message to skip running ilp2

Edges =[] >
fo; Jg 0

setof(Nodes,Old"New"mul I\SNodes ,Old, New),Nodes),
remove_dups(Nodes,New_Naodes),

number, nodes(New Nodes),

gold

% this file is to get the no of operations the whole graph contains.

max node._i

l c &N,F[J"C"nodenum funcid_cyclenoN,FU,C),Nodes),
ast(Max,N

assert(max_id (Max))

[+/A
0

% this file is to get the no of cycles the whole operation takes.

cycles

sgtof(g:AFU)N"nodenum funcid_cycleno(N,FU,C),Cycles),
last(Max,Cycles

assert(num_of cycles(Max))

oL
LY

113

number, nodesgodes) -
number_nodes(Nodes,1).

number_nodes 2&")
number_nodes([NodelNodes],C):-
assert! node _new(Node,C)), write(node_new(Node,C)),write(*.”),nl,

Clis
number. nodcs(Nodes C1).

R

% this predicate allows to filter the long ed%es and only take the edges
% that come from multiple output node, and hence deleting the edge that does not
% come from a multiple output node since it does not need bus to sfer data.

filter_edge(List_edges):-
Tilter edges(Llst edges,_List_edges,1).
filter_ed, h’d
filter edges e - lLlSt edges],Lst,C):-
source_edge Source
ource-Edges,mult out_node(Source,Edges),List),
%ingth st,L),

=<
%eletecelemem(Edge- _~_.Lst, NewList),

assert_mult(Source,Edge),
11sC+1
NewList = Lst) ,
ﬁlter —_edges(List_ edoes,NewLst,Cl)
% this predicate getS the multiple output nodes:

mult_out_node Source,Edges) -

num_of cycles

source_edge(S ource es,

(edge_ Tenglh(Edges,_, ength) Length >=1

‘wrap_edge_length(Edges,_,_,Max)).

assert_mult éSource,Edge) -
old nt(:w B §e ew dze.New),
assert(mult(Source, ew
wnt.e(mult(gsource,Edgge,New)%,wme()l

a

70

% this predicate renumbers the long edges so that they are it for the ilp2.

assert_edge_num(List_edges):-
assert_edge_numO(List_edges,1).

assert_edge_numQ
assert edge _numO ge-S-ElList_edges],C):-

gsdsgecrtsstta?'ttlm(&gg?) wz‘lte(stam (C)wrteC, 3

assert{old nevéE g),write(old_new ge C te(*.”),nl,
zci:slsert ending(C.E) wnte(endmg(C'E)),wnt.e(
is
assert, edge numO(List_edges,C1).
oL,

0

‘}%43 this predicate calculates the length of the wrap around edges:

dge_length(Edge,Start, End Max):-
source ge(S ourcel% tarh)

destination_edge(Dest 'N)
nodenum fl'mcxd _cycl eno ource ode, ,Start C cle),
um_fun cB leno(Dest_Node,_, Term_Cy¢
Op_ delay(Source Nod' elay),

114

Diff is Term_Cycle - Start_Cycle - Delay,

Diff <0,

Len is Diff + Max + Delay,
Len>2,

(Term_Cycle =1 -> End is Max

End is Term_Cycle - 1),
(Start_Cycle == Max -> Start is Delay

Stan is Start_Cycle + Dela 3'
assert(edge_st_end(Edge,Start, End)).

a
0

% this predicate calculates the length of the direct edge:-

edge_len, th ge Start,End ength) -
source._ urce Node e,),
desunauon edge est_N f
nodenum_funcid_cycléno(S ource ode Start C}icle)
nodenum _funcid, cleno t_Node,_.Term_Cyc

_dela (Source ode el a y

is Start_ yc e+ Delay -1, End is Term_Cycle ,

Len th is Term_ a'c e-
assert(edge st_en (Bdge StarL,End))

/4

0

delete_element(_,[1,[])-
delet'e_element(X,[XIL]M):-
delete_element(X,L,M).

delete_element(X,[YIL1],[YIL2]):-
delete_t elemen[gx,LMLZ). D

% Package: SBIFE.

% Authofs: S, H%azxe and B. Haroun.

% Updated: 1

% Purpose: To generate an SBIF file for Safir’s tool.

% copyright (c) 1994, Concordia Univ... All rights reserved.

o

:- ensure_loaded(library sts)
:- ensure_loaded(libr: etof
:- ensure_loaded

:- dynamic
cost_function/2, max asap/l
cost_inter/2, visited/1,alap/2,asap/2,
maxov/2,numfu/2,opntype/2,

:- ensure loadedglbrarygbasxcs))

latency/i
COSt_¢ overlap/2,
mer geabl
e_] bus/ function_index/2,
max no

incomp/2 , optypc_futypclz

% this pro Hroduces a file that prints all the information about
% each no edge and their scheduling and binding, and the information
% about bus allocation, etc...

%g]ﬁlename

ction_index(add,1
assert function_index mul)
assert(function_index(sub,

funcuon —index alu,

assert optype. utypegb

der)'her))

assert(o t e_futypel
424 R4y us,bus transfcr)),

assert(optype_futype

115

assert(optypc futyge(sub ,subtractor)),

maximum

ﬁndall(No'de-T 5e,nodenum_optype(Node, Type),Nodes),
z(issexl')tl_o type odes),

enable

complle'g ~/SCHD BIND/in put))
compile(*~/SCHD_BIND/bus.pl’

true

)
tell(Fil name),

(gpr? m) dings(All),
{)rmt member_at at_a_time(All),

assert_op_type
assert_op_type(iNode-TypelNodes]):-
odenu£ 0 EH& o e,"fp D:
ﬁmcuon mdex(Op

optype_futype
psert(ﬂ'ode operanongﬁp?e,Op’I’ype))
assert_op_type(Nod

all oPn bmdm s(All):-
+ enable_bus,
set_of_all{Out,operation_binding(QOut), All).

all opn bmdmgs(All) -

le_| us
set of all% operauon binding(Out), All).
%all 11 mﬂ

%append('All

print_member_at_a_time E[.
print_member_at_a_time niRest}):-
wrxtc tokens:test_write(Opn),

prmt member_at_a_time(Rest).

% this predicate gets the information about the node, its type FU used,
% edges leaving 1t, and edges entering it.

operauon binding({Opn_id,Opn_type,FU.nilL, FU 1d,EdgesTo EdgesFrom]}):-
nodenum_funcid_cycleno Gpn id ,FU_id,_Cycle),
nodenum_o %ﬂ id, type),
function_index n type),
edges_to_opn (% 0,0pn_id),
edges_from_opn dgesFrom Opn_id).

R

This predicate gets the information of the edge entering the node,with
its source, strting and ending time.

NN

edges_to lp dgesTo,Opn_id):-
set of al [dsdA dg,le Wme Read,Src,SrcFU,Reg__nd]],
i rite™
c%e to otpn (Opn_ 1d,Read,Wr1Le Src,SrcFU,Idst,Reg_id,Edge_id),
%sorLe

esTo
edge to OanOpn 1d,Read,Wr1te Srcx SrcFU Idst,Reg_id,Edge_id):-
‘desfination e’dge d.Edge i
source_edge(Stc, ge id, _Isrc),
nodenum_tuncid_cycleno(Opn_id , Fu _id, Read),
Reg_id =nil,%untl we get thatbinding
(uses_sb_edge_| bus(Edgc id,_Start, Termination,Bus_id,Bus_Opn_id)->

rcx = Bus OE
SrcFU = us_id],
Wntc is Termination

grcx Src
nodenum_ funcxd cleno(Src,Fu 1dsrc, StartSrc),
nodenum_optype(Src,FU_type_id)

116

function mdex(Futype.FU type_id),

OPYPe- usyp %%'u I,:FU) idsrc
_delay Src,DeTaySrc%

) ntc is StartSrc + DelaySrc - 1

(/A
70

maximum_node_id;-
setof(N, FU"C"nodenum funcid_cycleno(N , FU,C),Nodes),

1 Nodes
a?sssz:(rht%gjlgax nodt)a _id(Max)).

“% this predicate gives information about bus allocation if there was:-

uses_sb é‘gldg% _bus(Sb_edge,Start, Termination,Bus_id, Bus_Opn_id):-
enable_bus,
old new(Sb edge Bus_edge),
source_edge(S eS| Sb _edge,. Isrc),

max_node_i
Bus_! 1d is Max + Src,
edge_s bus(Bus_edge "Start ,Bus_id),

edge —end_bus(Bus_edge, Termination,Bus_id).
%

% this predicate gives information about the edges leaving the node
% with the dest, and starting and ending time.

edges_| from opn d,gc:sFrom Opn id):-
set_of. all Isrc.E esFroml
LF(Ij:IDSt’DStFU JReg_id],

Tsrc etof g)gﬁ id, Wme R
ead Dst"Ds
edge from op Opn id,Read,Write,Dst,DstFU. Isrc,Reg_id.Edge_id),
EdgesFromlsrc),

EdgesFrom).

edge_from_opn(Opn_id, Read Wrue stx DstFU Isrc,Reg id,Edge_id):-

source_edge(pn id,Edge_id

destination_edge(Dst,Edge_ T .

nodenum_funcid cycleno(Opn id Fu id, StartSrc),

nodenum optype Opn 1d, FU_; type id),
delay n_id, ea Src),
rc + DelaySrc -
%_1d ml %unul we get that bmdmg

(uses_sb_edge_bus(Edge_id,Startbus,_Termination,Bus_id,Bus_Opn_id)->

stx =Bus_Opn_id,
DstFU = [bus,Bus _1d],
Read is Startbus

4

Dstx = Dst, .
odenum funcid cycleno(Dst,Fu iddst, StartDst),

node_operation(Ds name
pe LFLSD 'st name,)Fu iddst],
%iead is StartD

R

e: RUNILP
b%sd S. H%azxe and B. Haroun.
a
ose: thxs interfaces the different steps from the SFG
to get an Sbgr ﬁf P

copyright (c) 1994, Concordia Univ... All rights reserved.

c»y
g-gss

!} R NRRS|WS

:- ensure_Jloaded(lib asics)
:- ensure_loaded 1b£21r'yysbsts)))

117

:- ensure_| loaded 1brar%(setof))

:- ensure_Jloaded

:- ensure_Jloaded 1braryEstnngs))

:- ensure_loaded(library(read_sent)).
uesr:runtime(start):-

runilp. |

:- dynamic

cost_function/2, max 1p
COSt_| mter/ﬁ visited/T,alap/2.asap/2,
maxov/2,numfu/Z,opntype/2,
latency/Z'
cost_overlap/2,
mer eable/a%
e e_bus/
max_node_id/1,
incomp/2 .

tunilp:
runil] 31 ;
nmﬂ.pz

% Package: RUNZILP

% Authors: S éane and B. Haroun.

% Updated: 12/16/94

% Purpose: this programs interfaces the different steps from the SFG
to get an Sbif file

% copyright (c) 1994, Concordia Univ... All rights reserved.

- ensure_loaded(library(read_sent)).

nmilpl(Dr2):-
% thx% le gz:nerates the code for cgl and ilpl is the integer linear
% programming formulation for scheduling and binding the operations together.

(umx&sgstem(mkdir SHOME/SCHD_BIND’)) ->
e

\ ' true
append(‘~/SCHD_BIND/",””",Hom

write(‘Do you want to generate the file for ilp1 ? y/n’),nl,
read(s),

write(* Emer (llgalse the I}le[namgh of tl(lﬁ liiatg})nas’% 1))1:11 end(H FLEil)
ilename),atom_chars(¥Filename nd(Home, ,
atom char<§§ 1EFﬂ1§f PP
nl, write(* E THE NAME OF THE GENERATED FILE..."),nl,
read%Outﬁle) ,atom chars(OutﬁJc,FZ) append(Home,F2,Fil2),
atom_chars(Fi
consu t(l]jl']]
t‘:,lnntle) e ILP1 file is generated nOWeeeee.e.),nl,
n
generate code(Fi2)

8ENTERPLEASE'I'HENAME OF THE GENERATED FILE...’),nl,
read(utﬁl%)l,eatom chars(Outfile,Fil2),
Ho

chars A 12_51:2)'

zvgé% ‘Do ou want to run gams for ILP1 (Scheduling & binding? [y/n]’),nl,
e
Yoatom. chars(Outﬁle Ofile),
unix system(‘pwd > this_dir")),
see

line(Dir),close(this_dir),unix stem(‘rm this_dir’)),
Kncnd(D(R[0],Dir),appen (Drl(Dr) »

SW =y >

write("The merogram now is running gams to File),

write(Ou

write("..... ,nf nlnl,n

write The output of Lhe file will be in the *),

write(Outfile),

write(* Ist......"),nl,nl,nl,nl,nl,

118

i

time’),

write(‘The program generates the scheduling and binding to the *
write(‘operations......"),nl,nl,nl,nl,

writeg ILP for scheduling and Binding is running ‘),nl,
write(* --—-=m—mmmm—- Waiting for results---—------—-"),n

write(* If your graph is very intricate, then running gams takes
nl,nl,nl,

% log% ng remotely to chloe to be able to run gams on the file that was

% pro

az.

uced by the’command generate_code.

wn(tie Entcr please your username in the ece account....”),nl,

rea

atom chars(N om),

append rlogm -l Nom Tcmp),

appe chioe * ,NewCom),atom chars(Lcom,NewCom),
x(systcm com))

true
atom chars(OutﬁIe Ofile),append(“$SHOME/SCHD_BIND/,0Ofile,Fr),

end(Fr,”.Ist
appenci%rz cleanS% * TempCommand),

g{)pend E ommand ue ,Com),
ars(Command om
umx(' ystem(Command))

70

ckage: R

% Pa UNILP
% Auth ors S. Hléane and B. Haroun.
% Upd

lated: 1

% Purpose this programs interfaces the different steps from the SFG

to get an Sbif fil

% copyright (c) 1994, Concordia Univ... All rights reserved.

07

:-ensure_loaded(library(environ)).

rgmlpZ(DrZ) -
% b{)o%;v data_ilp2.pl is to arrange the data for the input for ILP2 or for the

cornplle ~/SCHD BIND/op.pl"),
compile ‘~/SCHD_BIND/delay. {)l)
compile(‘~/SCHD_BIND/dest.pl’)
com;%ﬂ&n ~/SCHD_BIND/source.pl"),
S ->
write(‘Do you to generate a file to run ILP2 ? [y/n]’),
read(Anse)
write(‘Enter the name of the ﬁlc to be run for 1lp2’) nl,
read 1lme atom charsq?
environ ‘, t),atom chars(%OM
append “/SCHD
pend HD 'BIND,F ,F
Om_ ars(F w2, Film2
(Anse =y ->
generate(Fxle)
L) write(‘enter please your username again in the ece accou
nt..."),

nl,nlnl, read(Lcom

atom_c hars(Lco ser),
ppend(“‘rlogin - © UserCommd)
pen d(Commd,” ¢l *, Tcom),
s(Fcom Tcom)
umx(' ystem(Fcom))

true

(SN R

-
b

%ssert(enable bus
append ’BUS “ TmpC),
append 1lm2 st”,Lst_d com)p

119

Cgl' C, Lst com ComZ)

Com,Com2

) umx(' ystcm(Com)
nl,nl,write(".. NO ILP2),n
wme(No need to run ilp2 --> no bus uansfer ..),nl,
nl,nl,nl,nl,nl

%vrue(‘Enter the name of the sbif file),nl,

read(Nam),atom_chars(Nam,NamL),append(“~/SCHD_BIND/”’,NamL,PrintL),
atom_chars(Name,PrintL),

printlisp(Name).

Package wntetokens nl

Author ; Richard Keefe

Updated: 8/29/89

Purpose: Convert a term to a list of tokens.

Adapted from shared code written by the same author; all changes
Copyright (C) 1989, Quintus Computer Systems, Inc. All rights reserved.

:- module(write_tokens, [
term_to_token
texl'sn to_| “tokens/4’

3959 LSES R

sces_id(“”” @(#)89/08/29 writetokens.pl33.1™).

/* This is essentially the same as the public-domain write.pl, except
the instead of writing characters to the current ouput stréam, it
returns a list of tokens. There are three kinds of tokens:

(1) unctuation marks, which are represented by atoms.

cefs ¢y

eTee)?

constants, wrapped around to say what they are
ato(m)(Atom) app Y y

integer(Integer)
float(Float)
VA atoms used oth have other wrap
atoms used other ways have other ers
functor(Functor))% THE (YS IMPLICIT ﬁxs TOKEN!!!
prefix(Operator
1nfix(Operator)
pos erator)
Note that *,” and *;’, when used as operators, will be reported
as mﬁx(_) tokens.

There is nothm% to indicate spacing; the point of this package is
* to let the caller do such formatting.

% term_to_tokens(+Term, 7Tokens)

% unifies Tokens with a list of tokens which represent the Term.
% Extra parentheses are added just as write/1 would add them.
% This predicate is steadfast in Tokens.

term_to_tokens(Term, Tok
term_to_tokens(Term, 1200, ”l)okens, .

term_to_tokens(Term, Priority) -->
(vatre('l; (Tc)er}rﬁi vgr[gttgugr('l'erm)]
; linteger -
; %(Term) ->[ﬂoat erm)}
; axom (Term)} -
{prefix enn;P _), P> Priority} ->
[‘(.atom(Term),’)’]

J/* not prefix operator, or in priority range */
[atom(Term)]

; qunctorql'erm, EN)},
) unaryzto _tokens(F, Term, Priority)
bma.r;/ to_to 'ens(F, Term Pnon)

*there is NO § tax for terms with >2 ar, umems */
[funcmr(F)] % II-EE’ LICIT IN THIS TO I

120

ar%uments_to_tokens(l, N, Term)
).

%. arguments_to_tokens(+I, +N, +Term)(S0,S) .
% converts the [th to Nth arguments of Term to tokens, adding
% appropriate punctuation.

arguments_to_tokens(l, N, Term) —> !,
(arg(I, Term, Arg)},)
term_to_tokens(Arg, 999),
({I—.<N} '>[’]7
JisI+1}, to_ tokens(J, N, Term)
arguments_to ens(J, N, Term
; /*finished*/T°)’]

D

. unary_to_tokens(+Functor, +Term, +Priority)(S0,S)
converts au term (o a sequence of tokens. In addition to
handling user-defined operators and the {1__} form, it watches out
for a nasty little special case: we do NOT want -(4) to be written

% out as -4;that’s quite a different term!

kens(-, - - o
trancior)), oo t0 tofce_)ns(l?l {9[19119[51:)[65(?”

un to_tokens({}, { Term —> !
[‘{ql]—,yferm_to_to&}ns erm }12'?)0)) Y1
unary_to_tokens(E, Term, Priority) -->

éar 1, Term, Arég ,

prefix(F, O, Q)} >

(¢ ot oy | % tokens(Arg, O), [)7]
,pre y _tO_| ens y
P [prefix(F)], tcrm_to_token%(Arg, &)

; {postfix(F, P, 0)} ->
{O > Priority} ->

‘(*], term_to_tokens(Arg, P). [postfix(F).’)’
e term_to_wket()s(.ﬁr ,)ng[gs)osté?(i:g]]

}functor(F)], term_to_tokens(Arg, 999), [*)’]

R|RRK

[PV

. binary_to_tokens(+Functor, +Term, +Priority)(S0,S)
converts a binary term to a sequence of tokens. In addition to
handling user-défined operators, it handles the bracket notation
for lists.” The public-domain version of write/1 also has a case
here to catch (A,B) so that the comma here is written as a plain
" not as a quoted atom “*,”” as using infix(%,”) might do.
I'chose to omiit that case here. [Code available on request.]
Sorry about the layout in the second clause, but I wanted to
the relation between the with-parens and the without-parens cases clear.

F‘ifl‘z]uy_to_tokens(‘.’, [HeadlTail],) --> 1,
term_to_tokens(Head, 999),

JI_to_{oktegﬁ T Priority)

inary to_tokens(F, Term, Priority) -->
nfix(F, F, O, Q)},

arg(1, Term, A }
arg(2, Term, B)},
Loty) Fens(A. P) [infx(ELiem o tokens(B, Q)]

IS E SRS S

=gy

Vo e

k
: term_to_tokens(A, P),[infix(F)],term_to_tokens

ziinar% to_tokens(F, Term,) -—>
unctor(F)],
arguments_to_tokens(1, 2, Term).

%. tail_to_tokens(’FaiP(SO,S) .
% converts the tail of a list to a sequence of tokens. This Tail
% was preceded by a Head, which has been converted.

Y - (i

121

ail_to_tokens([]) --> !,
a1l_to_tokens([Head!Tail]) --> !,
rm_to_tokens(Head, 999),

tail_to_tokens .
to_tokens(Term) —>

YU

term_to_tokens(Term, 999).

%. The original public-domain code was written to go with a similarly
% public-domain version of op/3 and current_op/3 where the following
% ee tables were the anarﬁ reality. Whether they are or aren’t,

% only current_op/3 is (currently) directly available to customers.

efix(F, O, :- .
current_op(Q, fx, F) -> Q is O-1
s current_op(O, fy, F) > Qis O

ostfix(F, P, O) :- .
? current_op(Q, xf, F) -> P is O-1
3 current_op(O, yf, F) > P1s O

infix(F, P, O, Q) :- . .

(current_op(0, xtt;v, >PisQ-1,Qis O
; current_op(Q, xfx, F) >Pis O-1, Qi

i current_op(O, yfx, F) > Qis O

% test_write/1, write_tokens/1, and write_token/1 are a test harness to

% ensure that this file 1s working properly. L.

% This provides a very rough and inefficient first approximation to an

% output routine which takes line length into account. The things it

% doesn’t do include reducing unnecessary spaces between operators and
% operands when no confusion would result, getting the length right in
% the presence of quoting, atoms which are too big to fit no matter

% what you do (the answer is quote, use escapes, and insert \<newline>).
% Basically, what we want is a "write_token™ primitive down at the C

% level somewhere.

test_write(T ermg -

term_to_tokens(Term, Tokens),
current_output(Stream
line_position(Stream, olumng,
write_tokens(Tokens, Column

write_tokens]fo'R')énITokens], CO) :-
write_token(loken, CQ, C1),
write_tokens(Tokens, C1).

write_token(Token, CO, C1) :-
token_length(Token, Length),
(CO+Length > 75 >

Cl is Length,

write_token(Token
> Cl_is_CO+Le(tl; th,)
write_token(Token)

writc_token?i[

token_length(*(*
token
token_length ‘?.’,

J

)

token
token_length(*
token_length l

I

token_length(*
token_length . . .
ength(var(), 82.% sometimes an over-estimate

J

g
)
=

)J)

token_length(integer ﬁ L):- constant_length(X, 0, L).
token_length(floa):= constant_length(X, 0, L).
token_length(atom LB:- constani_length(X, G LB.
token_length(prefix j, L):- constant_length(x, 1,1).

L

122

token_length):- constant_| en ('X'I, .
tokerﬂengt.h unctor(L) constant_ len%, (X, T,L))

constant _length(Constant, LO, L1) :-
name(onstant, Chars),
leng (Ch ars, L),

LO+L.

token lcngtthnﬁ Léxe L) constam len th(X, 2, L).

wri
WIi

wri

Wi K (X
write_token(var(X)):-
write_token(inte er(X)) wn (X)
Wi

wri

WIi

WII

WIi

Wi

te(X).
te_token(atom write (XS put(*(*),put(.

te_token(prefi)- “).
te_token mﬁx 2))(put(“) wrue gxgut(“ by,

)i-
write_token unctoer))) wnte), put("(

end_of_file

% Pac ca e : GUI

% Autl S Hl a11e and B. Haroun.

ZbUpated tl’d a graphical interface for ds ts, and prod
Purpose vides cal interface for dsp circuits, and produces

% an ou utglethe dxscgrﬁl)gs e SFG. P pr

% ¢ ynght (c) 1994, Concordla Univ... All rights reserved.

Y%creating the main

R

:- module(gui, [
gu

:- ensure_Joaded(library roxt;;.
:- ensure_loaded(library proxl
:- ensure_Joaded(library(xif)).
:- ensure_Joaded(library asms)?
:- ensure_loaded(library(strings)).

:- dynamic
selected reg10n/4
last_element/
nodel/l, erased zrou?/Z
node2/1 ‘erased_lines/2
Lh)z element/2,erased_connection/2,
path/4;looping/1,group_ports/2,
connecuon/4
exit, loop/l relate/3,
draw_mode/2,lines_connected/7,

endmg_é)omt/

list_dat. erased/5
data/6, r‘ﬁroup connecuon/2
elemen 2,po %E
delay_data/5, gaoup/Z data/
startin pom

connection

inl1/3, gle%j%lfl:l/g i/gxe/‘i

data_figur e/4,
dr%wmg_wmdow@

user:runtime_entry(start) :-
gui.
gui -
‘injtialize_s
window 'alatagutle,l..abcl),

window_data(vertical_space, VerticalSp aceg
window_data(horizontal_space,HorizontalSpace),

123

)
window_data(boun _,heigl;t,%oundaryHeight),
window_data(menu_option_size,MenuBoxSize),
find_font(titlefont, TitleFont
find_font(menu_tont,MenuFont),
find_font(box_font,BoxFont),
get_font_attributes(TitleFont, [height ontHeiﬁh,t)),
get_font_artributes(BoxFont,[hei técoxFonL eight)]),
create_ru“bbe(,r_}t_)ztllnd C ugalierB_z’angb G (ft%mggn)
text_extents(TitleFont,Label, , elWidth,Ascent,_),
BoxWidth is LabelWidth // 6,

MinTitleWidth is LabelWidth + 200, .
MenuWidth is 4 * HorizontalSpace + 2*MenuBoxSize,
MinWidth is DrawWidth + MenuWidth,

max n'I'n.leWx(%lh,MmWidtt_n,Mdth ,
WindowWidth is Width + Horizontal xlg_ace /12,
BoxHeight 1s 2 * VerticalSpace + BoxFontHeight,
TitleHeight is 2 * VerticalSpace + FontHeight,
RootHeight is DrawHeight + BoundaryHelahct

window_data hqic{;h wHeiﬁ?t R
window_data(width,DrawWidth),

+ TitleHeight,
FgPixel,B el,

ont)
i get,&r otWin), .
_] ootWin, WindowWidth.RootHet tﬁlaootCursor),
create_ title_window(TitleWin, WindowWidth, TitleHeight,
RootWin,RubberBandGC,DrawingGC
TitleHeight,
DrawWidth, TitleHeight RootWin

create_drawing_gcs(DrawingGC,Inverting
. MenﬁF
%xif _initialize(test test,Shell),
%xtCreate Widget sheu,wx%geLClass Shell,[],RootWidget),
%widget_window{RootWi
create_root_window
belWidth,
Ascent,RootWin, TitleFont .)
create_drawing_window(DrawWin,Draw idth,DrawHeight, TitleHeight,
create_exit_box(ByeBox,TileWin, WindowWidth,BoxWidth,
BoxHeight,Ascent,
BoxFon oothKV
create_menu_window(MenuWin,MenuWidth,DrawHeight,
RootCursor,DrawWin,Drawing GC
Inverun%GC.FgPlxgzl,BgPixt:lc}g

ut_window_attributes(RootWin,[mapped(true
I:3sse_rt(drawin%_window ootVWn[,Mngow(W'xd)JJ),RootHeight,DrawWin,
raw Wid DrawHexgh%
. . MequWn,ﬁdeWm,Bye 0x)),

write(‘Is it a new file 7°),nl,
read(Answer),
(Answer ==no -> .

open_and_draw(DrawWin,DrawingGC)

" true),
%xif _main_loop(looping(yes)).
handle_events(oopir?g(yeg)).

%creating the windows:

% This is the rootwindow and it contains all the windows created in this
% software.

create_root_window(RootWin,RootWidth,Rootleight,RootCursor):-
wmdow_datagroot_cursor RootCursorName),
create_carsor(RootCursorName,RootCursor),
create_window(RootWin,
[xr_lap&ecc’léw c)l’th RootHeight)
size i eight),
sition(100,100),
rder_width Z)N
property(‘WM_NAME’,"GUT’),
gﬁsgarc ((c):%tnﬁurlsn?er)'notify sizel
new_rool_size(Root m\(lyvﬁl-)?]l)
%
% creating the title window:

0
% This is the title window that displays the title of the graphics user

124

% interface.
%

create_title_ wmdow tlct:\Vm 'I'xtlc[aVdeth ,TitleHeight LabelWidth,
ootWin,Font):-
create_ wmdow itleWin, éposmon(o ,0),size(TitleWidth, TitleHeight),
border w1 (1) parent(RootWin),

cazllﬁ)ack(expose count(0)],
e et Width, Accenn)l,
1 cen
[fom(Font)])
%
% creating the exit box:

% THhis is the box that allows the user to exit from the gui.

%

create_exit_box(ByeBox, TitleWin, TitleWidth,BoxWidth,BoxHeight,Ascent,
TiteHeight,BoxFont,RootWin):-
window_data(box 51ze Boxsze),
BoxX is TitleWidth - 2*BoxSize,
BoxN is BoxSize//2,

BoxY is (TltleHelght - BoxN)//3,
create_window(B e'eBox [gosmon oxX BoxY)
size(BoxWidth Box

border_width(1
parent(TitleWin)
win _grav1ty north_east),

mlﬁ)ack(expose [coum((})a)]
title ox ye (0).4

callblack(button press,[],
oo
e{Rooth))]

% [fom%Bo ont)]).

Z/@ creating the drawing window:

% This is the place where all the drawing takes place:
go You can draw an adder, multiplier,a delay element and connect the nodes.
(4

create_drawin wmdow(DrawVVm WindowWidth VdeowHexght,’I’uleHelght,
Win,RubberBandGC,DrawingGC) :-
window_data boundary height,BoundaryHeight),
window_data(draw_cursor,CursorName),
DrawWinY is TitleHeight + oundary eight,
create cursor(CursorN"ame.Draw ursor),
asserta(selected_region(0,0
create. window(D. rawW’n size(WindowWidth, WindowHeight),
posmon ODraw\/Q inY),border_width(0),
parent 00tWin),
curso awCursor)
gc(DrawmgGC)

ca?llﬁ)ack(e z)se,[coum (1)) N
refresn(DrawWin rawmgGC&
callba(cl:rka(button _press(Ri_[posmon I,

callback(butto (xpress [1]
osmon

callback(mouon noufgl([ll)
L e w
B berBandGC,X,Y))
callback(button ress([3]),

bel_at [X Y)),
callback(button release(
LoD Win, RubberBandGC,
end 1n
poDrawmgGC X.Y)),

125

callback(configure_notify,
% new_(%v sxze(Drg [I(Vm))])

%creaﬁng the menu window:
% This window allows to displ é the choice of event the user picks.

% it could be either add or delefe or move one of the proeviously mentioned
% elements.

create_menu_window(MenuWin,MenuWidth,MenuHeight X,Y,
RootWin o[Cursor’,NDIra Win, M gh
DrawmgGC InverunOGC FgPixe glxel) -

window_¢ datagboundary height,Boun I-fex

window_data(horizontal_ space,Honzomala ace X
window_data(vertical_space, VerticalS ace)
window_data(menu_option sze,Menquuonsze)
enuY is Y + Boun Height, .

create_window(MenuWin sxze%/[enumdth,MenuHexght),

position(X,Menu

parengoot\«Vm),

cursor(RootCursor),

border_width 25

background(Bé, ixel),

mapped(true
FirstColumnX is Horizon
SecondColumnX is Fu'stColumnX + MenuOptionSize + 2* HorizontalSpace,
FirstRowY is 2* VerticalSpace,
Rowlnc is 2*VerucalS ace + MenuOptionSize,
create_ menu) uons(Eadder,multmher]

delayl,alu
[subtract,fu],
connect,delete],
undo,c],
m,g],

MenuWin,

ﬁirleolumnX ,SecondColumnX],FirstRowY,RowlInc,
enuOptionSize,Draw Win,DrawingGC, InvertingGC,

FgPixel,BgPixel).

{s1l

Yo

% creating menu options:

create_menu_options
Create_menu oguonsEH(owO uons (980[15] Menqu Columns Row,RowlInc,
Size,DrawWin,Drawin InvertingGC,FgPixel, BgP, Pixel);-
create_menu_row(RowOptions enqu,Co umns oW, S’lze, me
NextR DrﬁwmgGl{Z InIvemngGC FgPixel,BgPixel),
extRow is Row + RowlInc,
create_menu_options(Options,MenuWin,Columns,NextRow.RowInc,Size,
DrawWin,DrawingGC, Inverting GC,FgPixel, BgPixel).

%
% creating menu row:

Create_menu_row s
create_menu rowE[& [RowGpuons] MenuWin ColmnnlColumns] Row,
%V' (}C gPixel,BgPixel):-
Hi t h1 (§ uon, mdow Size,Size Inverung E 1,
Sefect” = select(non Vdeow,sze,sze,X “DrawWin,
rawm
Redraw -redraw uon Win ow, sze,Slze),
ore = unh1 t(tion V\fmdow, ize,Size,DrawingGC,BgPixel),
uttonl = but ns down,
create_window(Window, 1ze(1ze SIZC),
posmon Co umn Row),
garent enuWin),
order_width(1),
rawin
%ackgrouné(B ixel),
callback(button_press([l]) {1,Highlight),

126

callbackl(button _release([1]),[position(X,Y)],

callbackzexpose,[coum(O)] ,Redraw %

call baé:(lic &;c‘]a\ici, notify,[state(Button1,_)],Ignore),

default setup(Opuon %‘fmdow Invertin \%GC FePixel), .

create_menu row(RowOpuons enuWin,Columns Row, Size, DrawWin,
DrawingGC, InvertingGC,FgPixel, BgPixel).

%
% The implementing of main callbacks(to handle event):

% 1. new_root_size:
new_root, snze(Roo ewWidt‘t{}NewHelﬁht) -
rawing_window(Root,OldWidth. Old L,Drame,OldDrawVVldth
OldDrawH eloht,MeanVm Title Box) >
(NewWidth =:= OldWidth th, NewHeight =: =dl feioht-> true
; put_window, attnbutes(gd tleVVm [w1dth(Nede D,
window_data(box_ size,BoxSize),
o[xX m:iNcw u}lglbf.ﬁ[E:"‘Boxsze,[B,
ut_window_attributes(Bye x(Bo
eltaW is NewWidth Y
DeltaH is NewHemht OldHemht,
DrawWidth is OldDrawWidth + DeltaW,
DrawHet us OlgDéawHelgtvx\t, + Deltal(g Width Hei
ut_window_attributes(DrawWin,[size[Draw Width,Draw
) gut window_ atmbutesge{enu\ﬁ’m [[x(DrawVVldLh) hexgm(DrawH) eight)])

%

% 2.1 tite for the Heading:

title_head(Windows,LabelWidth, Ascent
wmdovslW data(vertical @z;ce,%mcalgpace)

window_data(title,L.abe
et wmaow attributes mdowsémdth(’ﬁtledeth)])
belWid

1 tleX is (}'1 eWidth -
TitleY is VerticalSpace + As ;]

% draw_string(Windows, TltleX'I’x eY,Label).

(]

% creating interactive box:

/70

;,% 2.2 title for the exit box:

title_box(Windows,NameWidth,Ascent).-
window_data(vertical space,Veru Space),
window_data ox name,Name)
et wmaow attributes(Windows d[wndth&BoxWidth)])
X is ((BoxWidth - NameWidth 10),
'I'xtleY is (VerticalSpace + Ascent) /.
draw_string(Windows, TitleX 'I‘lt.leY,Name)

refresh(DrawWin,Drawing GC):-

it o D M) ny 2 drawn_figure(element(Figure,Label),
10Ure- c. - Wi ure(eiemen 18Ul
L dfa info(X1, Y1, X5 figure(element(Fig
S 'Wns),
draw_them(List_drawns,DrawWin,DrawingGC).

draw_them 1:,,_.
draw_them 1gure-Label-Xl-YllLlst drawns] wWin,DrawingGC):-
_drawn figure(element(Figure LaBel) Yl,X2 Y2))
(((Figure = adder ; Figure == suf)tract ure ==
lgure == delay] ; Figure = alu_ad ure == alu sub Fxgme =fu)->

drawmg_ﬁgure(element'(Fxgure,La el),

127

DrawWin,DrawingGC,X1,Y1,X2,Y2))

(Figure == connect ->
draw_figure(connect,DrawWin,DrawingGC,X1,Y1,X2 ,Y2))

(F‘lgure ==inl ->
portl(DrawWin,DrawmgGC,Label,Xl YD)
(F"xgure in2 ->
draw portZCDrawWin DrawingGC,Label,X1,Y1))
(F‘lgure ==out

ort3 wWin,Drawing GC,Label X1,Y 1)),
|Eem dravlvns,DrawVVm wm')édc »

draw_portl wWin,GC,Label,Xs,Ys):-

Xi is Xs - 60, is Xi + 40,

Yiis Ys- 10, mesX1+ Ym15Y1+20
%wnte(ml(Label,Xx Yl)),wnte(‘ p

draw rectang e

1,40,20)
,Y *
e T R

draw_port2(Draw Win,GC,Label,Xs,Ys):-
Xiis Xs- 90 is Xi + 40,
Yiis Ys - 10, Xm is Xi+ 5, Y'mstx+20
%wme(m2(Label.Xs Ys)) wme

B 480

w_line(DrawWi

draw smng(DrawW’m GC Xm m,Label)
draw_port3(DrawWin, GC XXS ,YS):-

Xiis X§+20, Yiis Ys - n is mle1+20

Zowrite(out! bl Y t
A o
w_line(DrawWin 5,Ys),
draw_string(Draw Win, GC,)’(m Yin,Label).

%
% label the input:

la.bel _at(DrawWin, X
near_end_ mt([Xs Ys X,
get window_ati butes(Draw m gc(G &n
data(élement(Mod e,Name ._.ending_point(Xs,Ys),
ending_point
endmg_pomt y >
ot 51y
ensym(i,Label)
gsserytzran ml(Labe}zx
write(in1(Label Ys) ?
assertz(drawn_ ﬁgure e emem in %abel),mfo(Xs Ys,))),
draw_port1(DrawWin,GC S, Y.
asserta(list_ data(elemenet(ml Labef) S, Ys,_,)
; data(element(Mode, Namezf,__S ending_pomt{(_,_)

ending_point
dn%gzgomt .:)

) >
No?e is 2
ens
isenyi?mza_abei XsYs),
write(in2(Label, Xs, Ys)), wnte(").nl,
assertz(drawn_ ﬁgure(element(bel) info(Xs,Ys, .,).)
draw_por2(Draw Win,GC,Label
assena(hst data(element(in2,La el),Xs ¥s,.)
+ data(element(Mode Name),_,_.ending point(_,

enaging pO mnt
end n _point(Xs, S)) >
Node is 3,g ym(o
asserta(out(Laf)el Ys)
write(out(L abel,Xs, s)), write(*.’
assertz(drawn__ ﬁoure(element(ou Labei),mfo(Xs,Ys,_,_),_)),
draw. port3(Draw\Vm GC,Label
assc):na(hst -~ data(element(out,La el),Xs,Ys,_,__))

128

(delay data(element(Mode,Name),_,_.ending_point(Xs,Ys),
endin int(_,) ->
Nodeis 1 gemym i,Label),
asscna(ml(LaBel Ys)),
wnu:(ml(Labe sYs) ,write ?
assertz(dra gure(e ement(in Label) Jinfo(Xs,Ys._,),),
draw_| ortl(Draw\Vm GC,Label
assena(hst data(element(in1,La l) Xs,’Ys,__,_))

"delay_ data(elemem(Mode Name; _._.ending_point(_,_),
endin pomt(Xs,

Node is 2 gensym
assena(out(L
write(out(La)P
assenz(drawn gure(e ement(ou Label) info(Xs,Ys,_,_),)
draw, pon3(DrawW n,GC,Label ..s,Y
asserfa(list_data(element(out,L.abel).Xs,Ys._,)

asserta(port(Name, Node,Labe
) wnte(p(ort ame,Node, Label)))zvnte("),nl

»

true)
g 4 start_point:

start_point(X,Y):-
asserta(selected reomn(X,Y,X Y)),
draw dén)lcode(Mo'd X,
0 = con
(near_end_point(Xs,Y X, Y)->
(«(data(elemem ode,Name),_,_.ending_point(Xs,Ys),
endmg_pomt
endmg_pomt y >

Node
data(element(Mode,Name ,..ending_point(_,),
ending_point s),
Nod . andmg_pomt _’)) ->
data(elemem(Mode,Name),__,_,cndmg_pomt(_,_)
endigg-pgg}t&s s)) >
en -
)Node is3 P

’ (delay_data(element(Mode,Name),_,_.ending_point(Xs,Ys),
Node is 1 endmg_pomt(_ _)) >
e is

delay data(elemem(Mode Nameg,_,_,endmg_pomt(_,_)

ending_point(Xs,Ys)
Node is 2 &P X

3etract(selected re 1on(X Y. X, Y)),

asserta(nodel
asserta(selected_ re 'lOIl 5. Ys,Xs.Ys))

asserta(lines_connected ame,Node, s-Ys(le,Mode Name,Node)),
assena(ﬁath(clemem(Mo e,Name),no

lme(G(XY' YilLXY) >
e ed(li/!odel NamelNode List Model Namel Node),

a meulllbfr - iLxst) a member(Xj-
CO S -
Chedk_for A At aue], Namel Node1,ModeJ,NameJ,NodeJ,NList))

’

) true
(o i"rf~.°d';°§f<[x le)
g1 iYi >
asspdelecied reeion G LR

true

ModeX == g -> true

129

%

check_for_connections(Model, Namel, Nodel, ModeJ Nam ode] -
connecuon(element O%I.Name I),Nodel elélr\r'llem(h’PodeJ ame]),JI:I%Sdt)zJ),

((Nodel =1); qsz Model \== dela
et i

' asserta ath(element(Model,Namel),node1(Naodel),_,
8) es(connect%Mod’I;II,NmIr)er,Nod(gIILasIg&:)_)b

c _hst

cgg¥ hst?y(_y [?- 1stl,NLxsl) -
msert_g(1st, ew List
copy_list(Xj-Yj,L.ist, NewList).

% 5. end_point:
A .
end_; m RubberBandGC,DrawingGC,X,Y):-
sele cte re (SX SY,L ,LY), g

draw_mod c o e,
(Mode = conn
(near_end pomt([Xl Y1 X
(Cdatalelement(M ame),__,_,endmg_pomt(Xl Y1),
en%o_pomt 5 >
en oint >
Node g_p

is1
data(element(Model .Namﬁ _,_.ending_point(_,_),
ending_point 5,
endm«' _point N>
Node is 2 .
; data(element(Model,Name),_,_,ending_point(_,_),
eng ing_point D)
ending_point(XI, ->
)Node is3 8P

" (delay_data(element(Model Name),_,_,
ending_point(X1,Y1),
ending_point(_,)) >

Nodeis 1
"delay_ data(elemem(Model Name),_,_,
ndmg"pgig%) >
e) -
) Node is 2 &P
" true

h)nes connected(ModeI Namel,Node1,List, ModeJ ,NamelJ,NodeJ),
insert(X1-Y1,List, NewList
asserta(lines_connected odeI,NameI,Nodel,Nelest1
tract(lines, commemsdiMadsL Namial Node,Li
re es_connec odel,Namel,No is
Model] N Igl\I -

draw rubberband(connec w in,RubberBandGC,SX SY
ure connec a Wm,brawmgGC SX.SY. X1, Y1
asserta mne(SX
asserta(list_data element(connect, SX SY.X1L,YD),
wntc(hne(SX S I)
assertz(drawn_fi ure(e ement connect,_),mfo(SX SY.XLYD,),

asserta(node2(No
(path(element(ModeI NameI),nodel (Nodel),
ena(connecuon element(ModeT, amel),
Nodel elemem(Mode ,Name) Node)),
connectmn(h

DL e
write(Node),write

retract(path(élement odel,_),node1(Nodel),
element odel (,gode (Node))), - ®)
write(N ewList),
write(lines_connected(Model,Namel Node1,NewList,

130

) Model,Name,Node)),n!
true)

in line(P(l X.Y) >
p"éth(]? en(ljc(rllt ocﬂe]X ameX),node1(NodeX),_._),
line
lines_ connect odel,Namel,Node %lSt,MOdCJ ,NameJ,NodelJ),
a_meémber(Xi-Yi 1st),a member(Xj-Yj
%cc‘):ﬁy list(Xj- _], st,NList)]
Tor, connecuons ode'[NameI ode1,ModeJ,NameJ,NodeJ,List),
(path(elemem(ModeI,N f o >
asserta(connection(el emcnt odeX,
element(Model ode
wntc(connecuon(NameX NodeX amel odel)).

ath(ek t(ModeJ od
%sserta(e c(glgx?n%o:(e’ll%mzﬁgﬁ 2.)851 EO&X
element){N
wnt)c(connecuon(Nam ode ,Nam
asserta(hne(SX SY.X,Y)),write(line(SX, SY,X Y)),

write

draw(ru berband(connect,DrawVVm,RubberBandGC SX,SY.X.Y),
draw_figure(connect,DrawWin,Dra Xg Y.XY),
asserta(list_data(element(connect,_),S

assertz(drawn_figure(element(connect,_) mfo(Y;e SY.X,Y).)))

lines_connected(Model Namel Nodel,List, ModeJ,NameJ,NodelJ),
msert(X-Y,List,NewL.ist)
asserta(lines connected(Mode'[Namel,Nodel,NNewList,
ModeJ,NameJ,Nodel)),
retract(lines lvclzo(!lmfxl:\%ed(Modc:I NamelI Nodel,List,

eJ
asserta(lme(SX SY.X.Y)), wr)l)te(lme(SX SY.X,Y)),

write nl,
%v _rubberband(connect, DrawWin, RubberBandGC SX,SY.X)Y),
draw ﬁG%ure(connect,DrawW‘m,Drawm SYX Y),
assertal hst ta(elemem(connect._)
assertz(dra glure(elemem(connect, mfo(SY.X.Y).)),
write elesl N
write(lines connected(ModeI Namel,Nodel NewList,
Model,Name,Node)),n!

((data(elemem(Model I)\Iame) ,$X,SY.ending_point(X1,Y1),

ding_poin gX
endm po &
&elemem(Model,Name) ,SX,SY.ending_point(X1,Y1),

ending_point|
ifap L)é)g’j llSLY(‘i'a)%lN DrawWin,LL.X
wing_figure(element(Mode 1, Name wWin
assertz &n faure (element odellzf e) 11:1fo(LX'L YXf Y1),))),
(data(elementQMddeT,Name),LX,LY,énding _point(Xn1,Ynl},
endmg_pomt n2 Yn%"
ngpomL 3;
delay_ data(elem%l)t(Mo ,Name),LX,LYendmg_pomt(an Ynl),

endmg_pomt(Xn .

e(Xl Y1.Xi.Y)) >
9meO(l

retract)éelemcm(connect,_)

rtz drawn ﬁ;gure e emcm(connect,_)

%x (an th YD)
(lme(XJ,g LYD) >

retrac ,_X%ure element(connect,_),
m o(Xj,
((X Lo glm'e(e ement(connect,_)

retract(lme(g(’YY

an Y)n‘l))
i
Eg&%m"é&)gﬁxivj»,

131

retract(drawn_figure: elememSconnect._)
info(X2,Y2,Xj,Yj
assertz(drawn 2ure§: emem(connect,_)
info(Xn2,Yn

asserta(lme n2,Yn2 _],Y_]

lin Yi, X2.Y2
rgmi:(?(dta&m ﬁ%,ur)e(flemem connect,_),

assertz ure e emem(connect,_),

Xn2 n
retract(7& Y'
asserta(hne 3. Y7, Xn2, ni))

(gg'gg(3 Y3'X r elemem (o))
T ured conne ,
in o(X gY S et

assertz(dtawn geiement('connect,_)

info
retract(lme(g 2,
asserta(lme(Xn3 in

(line(Xj,Y 3 Y3) >
(X cjf()c(irawn ﬁ§uregelemem(connect,_)

mfo 3, Y1, X
asserta drawn gjure(e ement(conncct,_)

info Yi,. X
retract(line J? JX
asserta(line A J,Xn3 n3))

(mf bel X1,Y1) ->
(;fa &’L)r(act(dmm figure(element(inl,Label),
o(X1,Y
asserta(in1 3 el nl ,Ynl)),
retract(ml(Labe ,YD
assertz(drawn zure(elemem(ml Label),
info(X Xnl,Ynl,_,

(1n2(Labe? X2.Y2) >)
retract(drawn figure(element(in2,Label),
info(X2,Y2,

rel:ract(m2(Labe
assertaém abel,Xn2, 2
assertz(drawn ﬁ ure(elemem(mZ Label),

mfo(XnZ n2, .).)
true),
(out(Label,X3,Y3) ->
retract(drawn ﬁ3s,ure(element(ouL,Label)

assertal out(Label Xn3 n
retract(out abelX ﬁY

assertz(drawn elemen out,Label
. ¢ info(Xn3,Yn3,_,.) ,5 LL)
)’ true
((connecuon(element(ModeZ Name2),NodeZ
element(Model,Nam el

connccuon(element(Mo el,Name) odel,
element(Mode2,Name2),Node2)

data element ode2,Name2), NX
fndal ¢ (Ydata(e ment(Mode2 améNZ)Y ,_,_)),

line_element] odel,Name,X1,Y1.Xil,Yi ines1),
mvlu% mégI Dra% n, lY}lB’L)

dall -Yi2,
line_el 2 del,Name,X2,Y2 Y'12 2
e-¢ emex:, meso(Lme 6’52 Dfa’)u(/ n 2’),Lmes).

\== 1) -
(((Modecllal cll3ela 3y >

i3,
line_element3(Model ,Name,X3,Y3,
Xi3,Yi3),Lines3), Name,X
mvlines(Lines3,DrawWin,Xn3,Yn3)

132

; true)

13

truc

),
retract(data(element(Model,Name),SX,SY, ,_.
retm(ctgdela§ daé(elemex%wodel am)e, X.SY,
retract(drawn ﬁgure(elemem(Model Name),mfo(S Y,_,_),_))

(dfawn_figure(element(rectangle,Group),info(SX,SY,_,).),
group(Gro 1st msx e),

daﬁm mes inside),
fin (Na— dg-‘ Yg wn_figure(element(Fig,Na),
1,_,

Fi "Dx"Dg"a member(1g- a-Dx-Dy,List_inside)),
inside

move block(LX, LYDrawVVm Drawmg st_inside),

1!
reproduce_lime(LX,LY,DrawWin Drawmgdé Lines_inside),
remove_list(Ol m51de ,

delete_[mes(Lines_inside),
retract{drawn mfgur%element(re;:tangle ,Group),

’_’ .

re&esh(Dr)a).wW'm,memgGC)

Mode =g -
draw rugberband(rectanale DrawVVm,DrawszC SX SYX .Y),
draw_fi ure(rectangle.Draan,DrawmgGC SX.SYX)Y)

gensym é)

asserta ure(element(rectangle Jnfo(SX. SYXY))

wme{cl(rawn L%re(eﬁemem(rectang e,Group)I,,x)n o (X XY, __‘55)
(Figure- ame-Dx-D ieure \== connect, Figure ——rectan l

under 0r0u (SX,!
a.sserta(gr (G?ou ISt inside)),
rou Grou 1st msxde) n!

Xi-Y1-X 1 Xi,Y .
! qu Yjéme 218 QX

msndeg() ‘S("szy is Y’ SY{,Lme inside),

asserta(group lmeé Lme insi e)
findall(NameI-No ame2- ode2
ig1AD xl"Dyl"member 1g'l-Namel-Dx1-Dyl,Lxst inside),
Fig2"Dx2~Dy2"member(Fig2-Name2-Dx2- 32 List_inside),
is_connéction(Name 1,Node1,Name2,NodeZ

List_connections),

Figure,Name,Dx,Dy)), List_insi e),

write(List_connections),nl,
assena(group connecuon Grou ,Lxst connections)),

WrI1 me m51 e)),nl,
da.fl%?abe"[Elemem, ort! {e)-ment,Node Label),

Port” x"Dy"a mem er(Port-Label 1-Dx-Dy,List_inside)),
List

asserta(grou l()%rc? List_ports)),
assertagﬁrst ga(g(()elemem%?éctan e,Group),SX.SY.X.Y))

retractall(selected_region(_,_,_,).
%

move block
move_block(CLX LY, rawWin GC,[Figure-Name-DX-DYIList_inside]):-
drawn ﬁg(ure elemem(Fl ure,Name),),
YnlisDY +LY,
Xn21an1 + 30, Yn215Yn1+30
(([gﬁ e——adder Figure == mulugher Figure = subtract;
are == e ; Figure == alu_adder , Fxgure == alu sub fu)y ->
wm gure element(Fxgure e).DrawWin, Canl Y'nl
ure element xgure ame),info(Xn1,Yni Yn2),_)
assena element ure ame)
asserta(lis data(e ment(Fxgure,Name) Xnl,Ynl,_,)))

e =—=inl ->
(F(%;r _port1(DrawWin,GC,Name, Xn1,Yn1),

asseriz(drawn_figure(element i ame),info 1,Ynl,_, N
assertagml(Namg,Xn ,Ynl)) (m N) Xn 9-)

. e ==in2 ->
& port2(DrawWin,GC,Name, Xn1,Ynl),
assertz(drawn ﬁgurc(element(mi,Name),mfo(an Ynl, ,))

133

) asserta(in2(Name,Xn1,Yn1)))

ure == out ->
(ngxa oou(Drame GC,Name,Xnl,Yn1),

assertzgdrawn ﬁgure(ielemem(out,Namc) .infoXn1,Ynl,__),),
asserta(out(Name,Xnl,Y

move_block(I..X,LY,DrawWin,GC,Llst__msnde).

lme elementl ode,Name Xi,Y1,Xj,Yj):-
f J,Xl(%f‘) ;line 1XJ in !
data(elemient _.e1 ng_pomt(X1 Y1)
delay_ data(element(Mode,Nime)._,_,endmg_pomt(?ﬁ 1)).

line_element2(Mode Name,Xl,Yx,X Y0

lme(X f ,X1, Y1), lme(XlY)

data(e emem(Mo od'N _,_,endmg_pomt %
delay_data(element(M ,Namef_,_,_,endmg_pom

line_, elementB ode.Name Xi, Yi,Xi,Y]):
line(X J,WXl Y1):line(Xi, Y1 ’))%
ta(elemem ode,N. ame),_,__,_,_,endmg_pomt(Xl Yi)).

% mvlines:- moves the lines that are connected to the element moved.

mvlines

mvlmesg[k;Y'TLxst lines],DrawWin,Xa,Ya):-

Yj
(ine(Xi, Y1.XJ glme(Xa,Ya,Xl

assertz drawn_fi ure(element(connect,),
info(Xa, Ya,X1,Y1 5

regac% ldlrne‘%l (I') t(ct,)

retract{drawn_figure(element(conne ,
info X1 1,X1,Yj),_)))

(Ime(XJ,YJ,
rta lme(Xa.Ya,Xl),
assertz drawn ﬁgure(clement(connect,_),

info(Xa, Ya,Xi, Y1),
retraciline (X, ¥ 7.X1, Yi),
retract(drawn_figure(element(connect,_),

info(Xj,
mvhncs(Lxstoﬂnes,Draw in,Xa,Ya).

% 6. new_point:
%

new_point(DrawWin,RubberBandGC.X.Y)

clause(selected_region(SX,SY,LX LY),_,Ref)

draw_mode(Mode,

(Mode == connect ->
draw_rubberband(connect,DrawWin,RubberBandGC ,SX,S%,LX),
draw_rubberband({connect,DrawWin,RubberBandGC,SX,SY,X,

Mode
draw rugbbcrbandgrectanglc,Drame RubberBandGC SX Y),
draw_rubberband(rectangle,DrawWin "RubberBandGC,SX ,X,
; true
asserﬁté(gglected_region(sx,SY,X,Y)),
usil,

erase(Ref).
%
% new_draw_size:
%

new_draw_size(DrawWin
% dfawmg_wmdow(_,_,_),DrawW‘m,_,_,_,_,_)

134

%goodbye(RootWi et):-
initiali st,” Demo’ mtVVndge!)
%xm'CreateMessaaeDlalog(uitWidget ‘quit’,
% xaNwidth(400 eight(2b0)),Button),
%xtManageChild(Button),
gxltlll}\/[essageBoxGetad(IIm si(Button xmDIALOG_HELP_BUTTON,Help),
xtUnmanage
A essagcgl?oxGetChxld(Button,meIALOG CANCEL_BUTTON,Cancel),
%xtMan el ancteni
gxn&Messa eBoxGT.{lC d(Button,xmDIALOG_OK_BUTTON,Ok),
oXtivian
%xmddggaélbzgclgo uttgn xmNokCallback,ok_callback(Button,RootWidget)
o,eX1
%xtAddCall éaut){on mecancelCallback,cancel(Button) looping(yes)),
xtReahzeWidget(Bunon
%xif_main_loop(exit_| loop(yes))

ok_callback(Button,RootWidget) :-
xtDestroyWidget ootWidgeig)
xtDestroy(Bution).

cancel(Button):-
asserta(exit Ioopgves)),
xtDestroyWidget(Button).

% 8. goodbye

oodbye(Window):-
%e oyyg:r want to save the data?yes/no’),nl,

gAns == es -> .
write(‘Enter the filename of the netlist....”),nl,
read(Filename),

tell(Filename
fin l(]_.lement-Label element(Element,Label),List_elements),

write elemems 1St elements)
findall(E1-N1-E2-N2,is_connection(E1,N1,E2,N2),List_connections),
wnte connecuons(Lxst “connections),

dall(E1-N1-Labe rgort(El,Nl,I..abel) ,List_ports),
wme ;igs'tsﬂ_lst _po!

€
) destroy_window(Window).
%

is_connection(E1,N1
connecuon(elégle’rﬁ(_’%f),N) 1,element(_,E2),N2).

write_elements
write_elements([Element-LabellList_elements]):-
element(Element,Label s
write(element(Element, bel); ,write(*.”),nl,
write_elements(List_elements

write connecuonsg). .
write_connections 1-511-52—N2IL1$[connections]):-

is_connection(E1
wnte(connecu(gn 1,E2,N2)),write(*."),nl,

write connecuons(L:st connections).
wnte
-Nl-Labellet_ports]) -

p° te(pon(El,Nl)r_abel)),wme(J),nl,
write_ports(List_ports).

% The Menu Callbacks:

135

% Lhighlight
hlghh ht Opuon Window,Width,Height,InvertingGC FgPixel):-
~ selected(Option,_,
put —window_a| tnbuLes indow,[background(FgPixel),gc(InvertingGC)]),
clear_window(Windo)
redraw(Option, Wmdow,Width,Helght).

%
% 2. select:
%

seleict(c,W’mdow,\Mdth,Height,X,Y,Drame,DrawingGC,BgPixel):-
‘Gnhighlight(c, Window, Width,Height,DrawingGC,B gPixeD),

X =< Width, Y =<Hei
clear_window(Draw m),
. retractall(drawn_figure(_,_,_))

true
).

seleict(s,Window,Width,HcighLX,Y,Drame,DrawingGC,B gPixel):-
‘anhighlight(s, Window, Width, Height, DrawingGC,BgPixel),

X =< Width, Y =<Height -
%refresh(DrawWin,DrawmgGC),
save_data base(DrawVVm)

1

true
).

select(Option, Window, Width,Height X,Y,_,Drawing GC,BgPixel):-

=< Width, Y=< Height ->

not, selected(Opuon Mode ModeWindow,MSize,Ref)

unhlg(hh ht(Mode,Mode mdow,Msze,N’szeDrawmgGC BgPixel),
erase(Ri

asserta(draw_mode(Option,Window))
unhighlight(Option, Window, Width,Height,Drawing GC,BgPixel)

).
open and dra wWin,DrawingGC):-
P T ENTER PLEASE THE N

OF THE FILE...."),nl,
read ilename),

consult(Fﬂename)
clear window raw\Mn)
daIl(Fl ure-
L e(element(Fxgure,Name),_,_),FigmeL— connect,

Figure rectang e),
f_nda.llg{ -Yl 2"Y2"11n(X1)Yl,XZ Y2),List_lines
draw_the_fi data_base,DrawWin,DrawimgGC),
draw_the_ st 1st_1mes'ZDrawVVm rawingGGC)
tmdaIl(Namel-Noael-NameZ No 2ﬁmdel"Mode2"conn(Model ,Namel,Nodel,

ame2,Node2),
List_ conn

findall(Na-No-Label,port_label a,No,Label),Llst_ports)
assert_ports(List_.),
assert, connecuon?lc_)xst connect).

assert ports

assert_ a-No-LabellList_|

assertal ort a,No, Label)),wme%pon a,No,Label)) nl,
assert_ports{List_ports).

assert_connection R
assert_connection([Name1-Node1-Name2-Node2[List_connect]):-
conn(Model,Namel odel,Mode2 ame2,Nod 2
assena(connecu mem(Model ame1),Node

element ode
write(connection amel odel,NameZ ode2)),nl
assert_connection(List_connect).

draw_| Lhe hst k,%
dhgaw the slList_lines],DrawWin,DrawingGC):-
,Y S, X e
assertz(drawn_ ﬁgure(elemem(connect,_),mfo(Xs,Ys,Xe,Ye)),

136

asserta(fine(Xs, Ys, Xe, Ye))

draw ﬁzur:zégonnect,Dra\)W\ﬁn ,LDrawingGC,Xs,Ys, Xe,Ye),
draw_the_list(List_lines,DrawWin,DrawingGC).

ure(element{Head,Name),i o(Xl ,Y2).),
ead = ad er ead == multipli ead == subtract ;

ead == del %y Head == alu der Head—-alu sub ; Head = fu) >
drawmo ure elemem(Head,Name),Drame,DrawmgGC

assertz drawn ﬁur aéelemem(Head,Name),mfo(Xl ,Y1,X2,Y2),),
asserta(element

write(element ame ,wntc(

asserta(list_i data(element(ead,Name XI,YI,_, -)))

(Head—-ml >
asserta(ml(Name X1,Y1)),
draw_port1(DrawWin,DrawingGC,Name X
assertz(drawn figure(element(in1l,Name}), mfo(X Y1,

draw_the ﬁleg h_
draw the_file(| Head-NamelList dataYb xiDrawWin,DrawmgGC) -

(Head = in

assena(m2(Name X1,Y1)),

draw_po wWin, DrawingGC,Name, X
. assertz(dmwn ﬁgure(clement in2,Name), mfo(X Y1,_,0.00
'(Head == ou

asserta(out(Name X1,Y1)),
draw_port3(DrawWin,DrawingGC,Name X1,Y1),
assertz(dxawn figure(element(out,Name), info(X1,Y1,_,).0))

draw_the_file(List_data_base,DrawWin,DrawingGC).

save_data base(DrawW‘
save_data base(D A WiIE NAME OF THE FILE...).l
read(Filename),
tell ilename)

(qure-'Name,
(drawn figure(element(Figure,Name), ,),

Figute \== connect,Figure \== rectangle),
List_data_base),
write_to_nle(List data_base. DrawWin §
findall(X1-Y ,XZ"Y2"Tme(X1 Y1,X2,¥2),List_of_lines),
write lmes(Llst of _lines,Draw W
findall(Name1-Nodel Namc--NodeQ,Model"Modc2"connecuon(

elemem(Model,NameRNodel,
element(Mode2, NameZ),NodeZ; ist_connections),

Fnl'aconnecuons(Lxst connections
(o)
save_data_base().

wr_connections B

wr_connections(|[Name1-Node1-Name2-Node2[List connections)):-
connecuon element(Model amel)Nodel element(Mode2,Name2),Node2),
write(conn(Mode1,Namel, odel ode2,Name2 Node2)), write(*.’),nl,
wr_connections(List_ connections).

wntc lines k
write_lines([Sx- -SylList_of_lines],DrawWin):-
e S Sy X Ey),write()l
write(1in(Sx,
te\(avrltf: gure(eiEy ent(connect._) info(Sx,Sy,Ex.Ey),),
wri

luzes(hst of _lines,DrawWin).

write_to ﬁleg h_)

wntc —to_file(|Head-NamelList_data_base DrawW"}

o wn ﬁ-gurelelemem(Head,Name),mfo 1,Y1,X2,Y2),),
ead==in

port(Mode,Node
te label(Mode,Node, Name)),write(‘.”),n},
"y E gure(elerrq\gnt(m}lq.Name) info ()v(l{l Y _23 _)),write(*."),nl

"Head ==in2 ->

137

port(Mode Node Nam
wrltg%d label(ﬁode %\Iode Name)),write(*
_ write gure(elemem(mZ Name),info(X1,Y1,_, _) ")), write(*."),nl

He,ad == out ->

\vﬂte ort label ode }\Iode,Name).write(*.”),nl,
gure(elemem(ouL,Name) info(X1,Y1,_,.),)).write(*."),nl

wulegﬁ %me(elementmem,Nme).mfo(X1 ,Y1,X2,Y2),),
write(*.),n

write_to_file(List_data_base,DrawWin).

light(Option, Window, Width,Hei GC,BgPixel):-
pl%ll.l v%m g\% attributes(Window, [bac ound(ngPlxelﬂc(lgrawingGC)]),
clear window(Window
redraw(Opuon,Wmdow,V\ﬁdth,Helght).

look_at
loﬁk at_| hst[odel—Namel-Nodel-Mode2-Name2-Node2]lest]) -
(copnection(element(M odel Namel) odel
element Name c2)
copnection(element ode2 ame2)

e lementMode1,Name) odel))

adel ==
daa(element(Model Namel),_,_.ending_point(Xa,
gNlay da[a(element(Model,l\famel),_,fet?dmg_pomt&(’ %é))

Qdel — 2 >
ta(element(Model,Namel) T ending_point Ya),)
(dgla§e dat.a(elg\r/r[lem(Modcl ,_,_,_,ge'r?dmg(_)gg’mtefd,Ya)))

Nodel == 3 >
daw element(Model ,Namel),_,_,_,_.ending_point(Xa,Ya))

ta(element(Mode2,Name2),_,_.ending_point(Xb,Yb
S%alay(edau(el%ent(ModeZ ameﬁ),_,_,%ﬁgmg_(l))(gnt()%b ’Y%)’))

Node2 == 2 >
(datalelement(Mode2,Name2)._,_, .ending_point(Xb,Yb
e1a§ve data(el(el\tlxilent(ModeZ,Name ,_,_,_%Et?dmg(_)égmt&ﬁ) Yb))

Node2 =
daa element(ModeZ,NameZ),_,_,_,_,ending_point(Xb,Yb))

(copnection(element(Mode 1,Name1).Nodel,
elemem@/lodeZ Name?),Node2) ->
show_path(X2a,Ya,Xb,Yb)

connecnon(element(ModeZ,NameZ) Node2,
element(Mode1,Namel),Nodel) ->

N show_path(Xb, Yb,Xa,Ya)
(retract(connectlxon(elemem(Model,Name ,Nodel,

t(Mode2,Name2),Node2));

reyract(connection(element(Mode ode
(el enfem(Model,Namel),NoJel))) 2

look_at_list(List).
lsll;ow pat.h a.Ya,Xb Yb):-

re
reggcct drawn e(Xa, %@e)n)lent(connect,_)

patbl(l)t(le,og%b %?b
pas1(Xb, Yb,Xb,YDb).

pat_bl(XI,Y'l
%‘fx

retract lln
retract g,efemcm(connect,_)

138

path1(Xj,Yj,Xb,Yb).

gel_hﬂtgﬂ.)abellhstz)

tggN ode La
& e =T > (in (Label T)retract(ml(Label,_, }
retract(drawn_| figure(element(in1,Label), ;

Node == 2 -> ((in2(Label, etract abel,
reu'act(dxgz(lwn figure(ele ’tem Gﬂi&)

(out(Label,_,).retract{outy
retract(drawn ﬁgure emem(out,l_abel)

Node == 3 -> (out(Label, etract(out(Label,_,_)),
reu'act(dlgawn(ngurE("T)efnent%o(gngfel),__, ;

),
'y l r
ﬁm(fo,ré(gfme,Node Label))

% draw according to selection:

draw button(DrawVVm,X Y):-
draw_mode
get_window_attri utes rameig é)GC)]),
X2 asserta selected_region(X,Y,)
is X
Y2 1s '+ 30,

(Mode—adder) -> gensym(a,Label

get window_ attributes(DrawWin [smefmeidth,DrawHeight)]),

= mulu lier) -> gensvm(m abel)
; ode—- y1) -> gensym{ ,L b l
; (Mode == subtract) -> gens

ode == fu) -> gensym(f,Lab ef)

assenaielemen ode,L. bel))
write(element(Mode,Label) wrlte(
drawing_figure elemem

RSXis aw 15 X
RSY is Y/DrawHexgh RY is Y2/DrawHex

abe).Dm&NuYVin,X Y.X2,Y2),

asse! §dmwn fi ure e ement(Mode,Labc mfo(X Y.X2,Y2),

info(RSX,RSY,
asserta(list_ data(element(Mode.Label) X, Y.,)

Mode == alu ->
write(‘it it an adder or subtracter?’ ? nl,
write(“ mer pleaseaors ---—- ‘),n
read(,
Ans = a ->
ModeT = alu_adder,
gensym(ala,La el)

" ModeT = alu_sub,
gensym(als,Label)”

is X + 30,
Y2is'Y + 30,

get_window__ “attributes rawVVm,[sne(DrawWidt.h DrawHeight)]),

asserta(element(ModeT,Lab
write(element deT,Label) wnte(

drawing_figure(element .(M abe)%&rawW‘m,X,Y,XZ Y2),

RSXis raw Width, {XIS
RSY is Y/DrawHeigh

Y is /Dra glh
assertz(drawn_fi ure e ement(ModeT,Labe)info(X,Y,X2,Y2),

:,’/U

infoRSX,RSY,
asserta(list_ data(elemem(ModeT,Label),X, Y, .))

Mode = delete ->
(in_region Xx Yi
((data e ement
MI1-N Nol 2-N
(connecuon(element(Ml
%lggl(gigmem 2
connec!
1 el[erlrllsint ﬁ'{)ﬁ‘ IBN,Lxst)
ook_al
deldal{ls(lﬁé‘ﬁ)e gﬁo e"port(Nl,Nodc,Label),LlsQ),
retract(data(element(Ml,Nl) 1Yi,endmg_point(_,_),
ding_point(_,

139

ending_poin)),
retract(d.rawn fi ure(elemeg‘ﬁ'ﬂ I&T_i)nfo 1,Y1,_,_), _))

delay_dala elemem(M 1,__,
Brdal((M1
(connecuon(element l,N 1 ,No ,
element(M2
connection(element
element(M1 ,Nol S,I.rst),
look at hst/(Lls(?
ggfiadlsma e;zl'}q Node~port(N1,Node,Label),List2),
- retract(delay_t data Xx,Yi,endm%yomt(_,_)
pomt

reu'act(drawn ﬁgure(_,mfo(Xr, 1,)_)

out(Label Xi Yi) etract(out(Label, Xi, Yi)),
retract(port(N {
retract(drawn figure(element(out,Label),info(Xi, Yi,_,_),_))

ml(Label Xi, Yi)I{etract(ml(Label,Xr ,Y1)),
retractgport
retract(drawn ﬁgure(elcment(ml Label),info(Xi, Y1,_,_)._))

" in2(L abelgil.'ﬁ) etract(in2(Label,Xi,Yi)),

retract(port(IN, f
retract ﬁgure(e ement(in2,Label),info(Xi, Yi,_,)._))
i, Y1,XL,YD) ->
retract wn figure element(cormect,_)

i’
retract(hne(XJ %}XIIY 3

line(X1,Y1,Xi,Yi) ->
retract(drawn ﬁgure(YlementSconnecL_)

§ctract(lme(Xl Yl Xi.Yi}) ’

drawn ﬁgureielemem(rectangle ,Group),info(Xi, Yi,_,_)._),
g ist_inside),
ele hst([?rst inside),

gr oup.Llst 'lines),

elete lmes(Lrst lines),

groug) connecuon(Group,Lrst connections),

elete connecuons(Lrsl connections),

retract &_ ist_inside)),

retract group lme(oup,List_ lmes))

retract oup —connection{Group,List connecuonsj
retract _figure(element(rectangle,Group),)]

refre)s’h(DrawVVm GC)

"Mode == und
list, data(eécrlll\eili(hd%delLabel))(l LY 1LXLYD,
ode
drawn_figure(element(Model,Label),info(X1,Y1
(hsredtrfgél{st datta(l(\t;1 ement. ode{,Lat;g%,X YX)\’ng
asserta element(Mode,
asserta(erased(elcment(MoEI&)al ,Labef)'X% JY1.XLYD),

%[odel == adder ; Model = rnulupher ;
del =— subtrdct Model == delayl
Model = ug.lltl(_z}dder [(%%d ell’Laalunsub Modei fu) ->
retract(ciemen [+
(reuact(data(element(Model XLY1 .)

‘retract(delay_data(element(Model,), X1,Y1,_,))

retract(drawn_figure(element(Model,Label),
nfO()EM Y1,_).0)

ret:racudrawn ﬁg{ elememgrectangle,Label)

bel%st mside ’

group(ia (L'abel L)lst lines),

ass E arased %&abeTLlst inside)),

asserta(erased JList_Tines)),

%delete_list(List_ msxde
%delete_lines(List_| imes)

140

rg up_ connecuon(Label ist_connections),

asse (erased connection ,Eist connccuons))
zdelete_connections 1st connections),

retract oup(Label,List_inside)),

retract(group_| me(LabeIllst lines)),

retract(group_connection(Label,List_connections))

’ retract(drawn_figure(element(connect,),
info(X1,Y1 Xl L YD,),
retract(fine(X1,Y1,X1,Y1)

retractgdrawn fi ure elemem(out,Label) info(Xi, Yi,_,_),_)),
retract(out(L.abel, X
retract(port(_,_,L

’ retract(drawn ﬁ;l;ure(elcment(ml,Label) ,infoX4i, Yi,_,_)._)),
retract(inl (LabelLX
retract(port(,_,L.ab

retractgdrawn fi ure elemem(mZ,Label) info(Xi, Yi,_,_),_)),
retract(in2(Labe
r%t.ract(port La el))

(element(ElemenL,Label) 1 ,Y1,X1L,YD),
((Element == adder; Element == multiplier;
Element == subtract; Elemem = delayl;
Element = alu_adder ; Element == alu_sub ; Element == fu) ->

Y2is Y1t 30, (element(Element,Label),
awing_figure(element(Elemen
DrawWin, X1, Yl X2, 8

assertz(drawn m'e(element(ElemenL,Label)
info(X1,Y ?

asserta(elemem(E ement,Label))

(Element == rectangle ->
erased roup(LabeI’,Ncw list),
assertz| 1gurc(lsclement(rectangle,Label),
mfo(XlY
asserta(group(L abel ew_lisp),
erased_ lines(Label,Lines. inside),
asserta(group_line(Label,Lines_ msxde;)
erased_connection(Label,Connéctions
asserta(grou _connection(Label,Connections
draw ourePrcctan.Je DrawWin,GC,X1,Y1, Y1)
%build(DrawWin,GC,Lines inside),
%draw_again(DrawWin,GC;New_list),
%buﬂd" connecuon(Connecuons)

(Elcment = connect ->
\gdrawn ﬁgure(element(connect,)
mfo(Xl

assertal lme(Xl 2)
asserta(list data(elemem connect,_),X1,Y1,X1, YD),
assertal element(connect.,_))

lement == in] ->
draw _port (Drame GC,Label 1 Yl
#drawn ﬁ;;ure(element(m
mfo(Xl

asserta(in el X1,Y1)),
asserta(list_data(élement ml,Label) X1,Y1,_,)
asserta(port(Mode,Node,Label)),

asserta elemcnt(ml,Labe)

gemem =in2->
W _pon2(Drame GC,Label.X1,Y1
ure(element(in?,Labe

GoE R s

),
gg% ist (dl\z/i[ta elené%ntﬁZ,Lﬁbcl),Xl Y10,
asserta element(mQ,Labe D)

memns—(ﬁ’}’zf Win,GC,LabelX1,Y1),
0 wWin,
R WI_ ﬁg;ure(element(out,l.abe

info(X1, \gdra
assena(out('l:)a X1,Y1)),

141

asserta(port(Mo
asserta elemem(out,Label))

’

asserta%hst data elemem ouL,Labcl) X1,Y1,_,))),

retract(erased(element(Element,Label Y1),

1),X1,Y1
asserta(list_data(element(Element,Label), iY'l,XI 1
re esh(DrawWin,GC)

Mode
ure element(rectangle Group),info(X1,Y1,X2,Y2),),

oupt ist_insid
gr p (Egroup ist mmde))) nl,

group ine(Group,Line_inside
group connecuon Group,List. connecuons),

line(oup,I’,me Inside)),nl,
ngUP PO

Group
reprodu ()Z Y,Dra VVm GCllst inside),
reproduce_ port(LrsL_ports),
reproduce_connection(List_connections),
reproduce_line(X,Y,DrawWin,GC,Line _inside)
assenagxst data(elemem&ecmngle,Group),Xl Y1,X2,Y2)),
Win,G

7

true
%
delete. hS[EH:)
celete -Name— -_IList_inside]):-
drawn ﬁgure element(Fig Name),info(X1,Y1, .),),
(btract Flg—mul plier;

== adder ; Fig == su
(FFgg— layl ; Fig == alu_adder ; Fig = alu_sub ; Fi —-fu) >
retracty drawn figure elemem(Flg ame),info(X1,Y1,_,_),
“"éa“{ e EmaniC Name).X1.Y1,.)
retract(lis element(Fig e D
(retract(data égemem(Fio ame),X1, Yf
retract(delay ta(element(Flg,Name),Xl _’)))

retract(drawn_figure(element(out,Name),info(X1,Y1,_,_),_)),
ret:ractEout(Namg X1,Y1)), retract(port P,Naorile))

retract(drawn_figure(element(inl,Name),info(X1,Y1,_,_).)),
retractgml(Namg,Xl Y1), reuact(pon(l%‘ P, aoélc)

retmctgdrawn _figure(element(in2,Name mfo(Xl Yl,_,_),_))
retract(in2(Name,X1,Y 1)), ret.ract(port ,PName))

delete, _list(List_inside).

remove_list
remove list([Name-Xi-YilOld_list}):-
drawn ﬁgure(element(Fxg Name).info(Xi, Yi
(Fi I:g = adder ; Fig == subtract Fig = mui multiplic
= delay 1 ¢ == alu_ad u sub = fu) >
rctract drawn urei&elcment(Flg,Name),mfo(Xx,Yi,__,
retract elemem 1g,
retrac(t list, gladtg el‘élment f g Name) ;(kaY,
retract(data(elemen ame),Xi
retract(d (la ta(elemen%(Fxg Name),X'x _’)))

retract(drawn_figure(e ement(ou Name),infoXi, Y1,_., s
retracéout(Namg,Xx 1)), retract port(_.,)'l (xb b))

retract(drawn_figure(element(inl,Name),info(Xi, Yi,_.,
reu'actEmI(Namg,Xl 1)), retract ort(_,)iNarglX) i)

retract(drawn_figure(element(in2,Name),info 1,))s
reu'actEmZ(Namg,Xl 1)), retract onu)_fNamm))

remove_list(Old_list).

draw again(_,_,
draw agam []%V'm GC [Flg-Name-Xl-YilOld list]):-

= ad == sub Fi ;
((FFg == delafl {;g == alu adder gFrg = alu lgb Fig = fu) ->
drawm figure(e ement(F1 Name) DrawWin,GC,Xi, Yi,X2,Y2),

asserta(e emcm ame)),
assertz ure(element(Fxg,Name) info(X1,Y1,X2,Y2),)),

142

. asserta(list_data(element(Fig,Name),Xi,Y1,X2,Y2))

"(Fig == out
assertz drawn figure(element(out Name),info(X1,Yi,_,_),_)),
draw p(ort3 a»%Wu(l,GC,Name, i, Y1), %,
assenaiout ame, X1, Y1

_ asserta(list data(elemem('out,Name),Xl Yi,_,)

ig=inl >
(I;-Sgsenz(drawn ﬁgure(element(ml.Name) info(Xi, Yi,_,_),)),
draw_port1 raw Win,GC,Name,Xi, Y1),
asserta(inl Xi, Y1)
asserta(list data(elemem(ml,Name),Xr,Yr,_,_)))

(Fxg—-mZ-
assertz(drawn_figure(element(in2,Name),info(Xi, Yi,_,),
A DA Win GC. o iame) Info(X, >
assertaEmZ ame, X1, Y1))
asserta(list_data(element(in2,Name),Xi,Yi,_,_)))

draw _again(DrawWin,GC,0ld_list).

build _,[]

build in,GC 1Y1X -Yj-_-_-_-_|Lines]):-
asseﬁzagr’f‘f(xl’éﬁ XI(Xf tJ(. fo g Yi,X5,Yi),),
asse wn_fieure(element(conn info ,
asserta(list data(‘?:lemem(connect,_).)a 51

uild(DrawWin,GC,Lines).

build_connection h
build_connection odel-Nodel-ModeZ-NodeZIConnecuons]) -
element(Figl,Mode1),element(F ode?2
asserta(connecuon(elemengdg eli odel,

element(Fig2, e2 ')No
build connecuon(Connecuons

delete_lines Q

deletc_lmes i-Yi-Xj - - - IList lmes]) -
line(X3,Y1,X],Yj), ret:ract(l'me(X' i,

retract(drawn ure(elemem(connece. mfo(X1 Y1,Xj,Yi)),

delete_lines(List__lines).

delete cormecuonsE pI

delete_connections amel-Nodel-NameZ—NodeZlest connections
connection(element 1).Nodel,element(Mode2 amer\j ode2
retract(connection(e ement odel amel),Nodel element(Mode2 ame2),Node2)),
delete_connections(List_connections).

a_member(A,L):-
\+ nonmember A L).

under up(X1,Y1,X2.Y2 Figure, Name,Dx,Dy):
drawn u?e elementSF' ureﬁamc) info(Xi, Y'ry,_,_) s
nside(X1,

Figure \= cormec -— rectangle,

Dxis Xi- X1, Dyi 1s

msde Yi 1,X2,Y2):-
. %)ﬁx 1’}%_< 2,Yi>Yl1.

reproduce_port
reproducg_'_gort@_)abeI-ModelLrst_ports]) -
o e
relat.e ame) elate ode New
asserta port e e.N ame wnte(pon(New,Node,Name)) nl,

reproduce _port(Lxst_po

reproduce, connecuonéH%

reproduce_connection al-Nol-Na2—N02lLlst connecuons)
connection(element(Figurel, a()FN ,clemcm 1 ure ,Na2 ,No2),
relate(Figurel ,Nal ewl),relate ureZN

Q

asserta(connecuon ement Nol elem t(Figure2 New?2 02))
write(connection(ele ment l,Newl), ol,eiemem igure2,New2), 02))
nl,reproduce_connection connecnons)

143

reproduce

reprod uce& YDra wVVm GC,[Figure-Name-DX-DYIList_inside]):-
drawn ﬁg(mes%lemem(ﬁaure ame),_,),

XnlisD 1isDY

Xn2 is Xnl + 30,Yn2 is Ynl + 30,

(F“xgure == adder -> gensym(a,New)

_Flgure == subtract -> gensym(s,New)
iFigure == multiplier -> gensym(m,New)
tFigure == delayl -> gensym(d,New)
Figure = alu_adder -> gensym(ala,New)
'Figure = alu_sub -> gensym(als,New)
Flgure = fu -> gensym(fu,New)

(&Q-‘xgure = adder Figure == multi her Figure =< subtract;

e == delayl ; Figure == alu 1ure—a1u sub Figure = fu) ->
dawin ﬁguregelemem(ﬁgure ew) Drame Ynl n2 Yn2))
assertz eure(element(Figure,New),mfo(Xn Yni

asserta(element(Figure,New wnte(elemem(Fxgme,New
asserta(relate(Figure,Name,New
asserta(list_data %lement(Figure ew),Xnl,Ynl,_,)))

(Fié!%re ==inl ->
portl(DrawWin,GC,New,Xn1,Yn1),
assen.zgdrawn fi ure lemem(ml,New) jnfoXnl,Ynl,_,),))),

_ asserta inl(New,

e——m ->
& porB(DrawWin,GC,New,Xn1,Yn1),
assertz(drawn_figure(e élement(in2,New), infoXn1,Ynl,_,),))).
. asscrtaEmZ(New nl,Ynl)))

i gm ure == out -
port3(DrawWin,GC,New,Xn1,Yn1),
assertzgdrawn fi ure(Ylement(ouL,New) infoXnl,Ynl,_).)),
asserta(out(New, nl

2%msert(l'-“xgure-Ncaw-Xn1 Ynl,New_list,List),
asserta(relatcg“ ure,Name ew)),
reproduce(X, ,lg awWin,GC,List_inside).

reproduce_line (D.
T Jroduce_lme Sraw Win,GC,[Xi-Yi-Xj-Yj-DX-DY-Dx2-Dy2[Line_inside]):-

IR,
Xn 1s'DX+'X nlst+DY,Xn215X+Dx2 Yn21sY+Dy2,
draw_figure connec aw m GC,Xnl,Yn 1,Xn2,Yn2),

assm-rttzzi dlt‘la? nfli = (X t(_),inf 1,Yn1,Xn2,Yn2),)
asse wn_figure(elemen connec info(Xn1,Yn)X
reproduce_line(X, Y,DrawWin,GC, Lu%e inside).

% connect the elements:

E‘-Q.Q

redra adder. W'mdow Width,Height):-
is wid
IRV & Heig B 15
draw, ﬁgure(adder Window,15,15,LRX,LRY).
redra Wpller , Window, Width,Height):-

IRy 5 Height - bt
draw, ﬁgure(mUIUpher,Wmdow,ls 15,LRX,LRY).

redraw R)Esubtracrm\?\/indow,“ﬁdth,}{exgbt).-

LRY is Height -
draw. ﬁgurc(subtract,“’mdow 15,15,LRX,LRY).

144

redraw R)&dela 1 Window Width,Height):-

LRV &5 Heu__(h '
draw_figure delayl Window,15,15,LRX,LRY).

redra aluv“vﬁndow Width,Height):-
1S id
LRY is Height - 3
draw_figure(alu, Window,0,0,LRX,LRY).

Wndodeth Height):-
e e ! ght):

LRY is H ht 30,
draw ﬁgure(fu, indow,0,0,LRX,LRY).

redraw(undo, Wmdow Width, Hexght)
Lext extems(\V indow,u,LB emng,_,Tcxt\Wdth,Ascem,Descem),
S is (Height - TextWidth)//
TCXLHCI 1s Ascent + Descent,
HS is - TextHeight)//2,
XisH LBeanng
YisVS + 2*Ascent,
draw_string(Window, X, Y,"U").

redraw;connect,Window , Width,Height):-
LLY is Height - 5,
draw_figure(connect,Window,5,LLY,URX,5).

redraw delete DrawWin ‘Width,Height):-

URY is Hel t 5

et_window attnbute%(Drame GC)]),
aw_line(DrawWin, Q

draw_line rame GC5.5, URX UR

redraw(m, Window, Width,Hei &ht)
text extents(VVm ow,m.L. eanng,_,TextVVldth,AscenLDescent),
vs is (Ha?m Text\fﬁdth)

TextHeight is Ascent + Descent,

HS is (Width - TextHeight)/2,
Xis H - LBearing,
YisVS+ 2*Ascent,
draw_string(Window,X,Y,"M").

redxaw(c,Window Width Hei éht) -
text_extents(Window,c,L
VS is (Height - TexthdLb)//

¢, TextWidth,Ascent,Descent),

TextHeight'is Ascent + Descent,
HSis dth TextHeight)//2,
X is HS - LBearing,

Y is VS + 2*Ascent,
draw_string(Window,X,Y,"C’).

redraw(s, Wmdow Width,Hei gh

text_ extcms indow;s,L eanng,_,TextWid(h,Ascem,Descent),
VS is (He TextW1dLb)/

TextHei Ascent + Descent,

HS is gﬁldth - TextHeight)//2,
is HS - LBearing,

YisVS+ Asceng

draw_string(Window, X, Y,’S").

redraw(g, Window, Width,Hei &h
text extents(Wmdo anng,_,TextVWdth,Asceut,Descem),
VS is (Height - Tcxt 1dth
TextHeight'is Ascent + escent,
) 1dth TextHeight)//2,
XisH Bearing,
YisVS+ Ascenh
draw_string(Window,X,Y,"G’).

%
% drawing the figures:

draw_figure(Figure, Window,X1,Y1,X2,
g.euig v% attrib utt:s(\iﬂfuu.’iow&c(GC}}P2
W ﬁgure(Flgure Window,GC,X1,Y1,X2,Y2).

145

draw ﬁﬁures(ectangle ,DrawWin,GC,X1,Y1,X2,Y2):-
Width is

Heightis Y2 - Yf
draw_rectangle(DrawWin,GC,X1,Y1,Width,Height).

draw ﬁg_uregadder,Drame ,GC,X1,Y1,X2,Y2):-
Sizeis 3

dmi;vlsellesegDrawWin ,GC,X1,Y1,Size,Size),
isX1+5,
X2-5
Y1+ %’5,

—t
EN:—AN
Bt ot P ot st ¢

[7R
~
N
'

B <<<5xx
(7 27]
;<
+

ﬁll elllg(se(Drame ,GC,X14,Y13,10,10),

ﬁll ellipse(DrawWin,GC,X15,Y2,10,10
draw. e{)ﬁpse wWin,GC,X2,Y13,10, {0)

draw_figure(fu, DrawWin,GC,X1,Y1 X2 Y2):-

draw_string(DrawWin,GC.X X1, YT Label),
Size is 30,Sizel is 60,

Xtemp is X1 + 15, X2temp is X2 + 15, .)

w rectangle(DrawVVm GC,Xtem ,Y1,Size,Sizel),

X0 is Xtemp - 2temp +
YllisYl + 10 Y 215Yll +8 Y131 Y11 + 16,
Yidis Y11 +24,Y15is Y11 +32,Y16is Y11 +40,

>{
E's'o

draw_line(DrawWin,GC,X0,Y 11 Xtemp, 11 ,
draw_line an,GC,XO,Y12,Xtem.3,Y12 ,
draw_line(DrawWin,GC,X0,Y13,Xtemp,Y13),
draw”line(DrawWin,GC,X0,Y14,Xtemp, Y 14),
draw_line(DrawWin,GC,X0,Y15,Xtemp, ,
draw_line(DrawWin,GC,X0,Y16,Xtem

drawline(DrawWin GC Xtemp Y 11)?3 il
draw_line(DrawWin GC,XZtem Y ,X3,Y12),
draw_line rawW GC,XZLem ,X3,Y13 ,

draw_line m GCX2 temp, 14,X3,Y14 ,

draw_line Win GC.XZtemp,Y 5,X3,Y15),

draw_line raw\Vm GC,X2Lernp,Y16,X3,Y16 ,
Xcl is Xtem YclisY11-2

Yc2is 2-2 Yc3is Y13-2, Yedis Y14 - 2,
VYchsYS 2 Yc6is Y16-2.
draw_ellipse rawVVm,GC,Xcl ,Ycl4,4),
draw_ellipse(DrawWin,GC, cl Yc2.4.4),
draw_ellipse rawVVm,GC, cl L c3.4.4
draw_ellipse wwWin,GC,Xcl,Yc3,4,4),
draw_ellipse rawWin,GC, cl,Yc4,4,4),
_ellipse wwin GC, cl Yc5,4,
draw _ellipse(DrawWin.GC.Xcl.Y '
drawellipse(DrawWin,GC.X2temp Y
draw_ellipse wWin.GC.X2tempYc2.4
draw_ellipse(DrawWin,GC.X2temp, Y ¢3.4.4},
draw_ellipse(DrawWin,GC,X2temp, Y c3,4.4),
draw_e pSe Win,GC X2temp,Ycd.4.4).
draw pse Win,GC. X2temp. Y c5.4.4).
draw_ elhpse wWin GC.X2temp, Y ¢6,4.4).

draw éiegxre{)subtract,Drame ,GC,X1,Y1,X2,Y2):-
Sizeis 3
Sl(rﬁwlselh{)segDrawWin ,GC,X1,Y1,Size,Size),

15,
draw_line(DrawWin,GC,X12,Y11,X21,Y11),

146

X22is X2 + 15,

draw_line wWin GC,XI ,Y11,X1,Y1
draw_line(DrawWin GCX11)Y2.X11,Y2
draw_line raw wWin.GC.X2,Y11,X22

Yi3is Y1+ 1(5

%i(l{ elh&se(Drame ,GC,X14,Y13,10,10),
lS

fill_ellipse(DrawWin.GC,X15,Y2,10.10

draw_e hpge)(DrawWin ' X2,Y13,10, Ib)

draw ﬁgu.re&muIUpher,DrawW'm ,GC,X1,Y1,X2,Y2):-
Size'is 3
draw, elhf)segDrawVVm ,GC,X1,Y1,Size,Size),

Y2lisy2 7,
X311 X2 9
pETERS, 7. Win,GC.X11,Y21.X21.Y11
w_ne W win, N v
it R IR eIl

15,

Y22is Y2+ 15,

Y12is Yl + 15

X13is X1 - 15,

draw line(DrawWin,GC,X13,Y12.X1, Y12

xﬁv h)r&e raw\Mn GCX2Y12,X22,Y12
18

draw_| ne(Draw\Vm GC,X12,Y2,X12, Y22),

X16is X1-10

Y15is Y1 + 10,

ﬁll elh&se(DrawVVm ,GC.X16,Y15,10,10),

ﬁll ell se(DrawWin,GC,X17,Y2.10,10
e lxp(slg(D‘?’awVWn B).

drasw ﬁ;,ure(delayl DrawWin,GC,X1,Y1,X2,Y2):-
ize 15
dxaw elllfse(Draw\Vm ,GC,X1,Y1,Size,Size),

X13 isX

X22is X2 + 13,
draw_line(DrawWin,GC,X13,Y11,X1,Y11),
draw line(DrawWin,GC.X2,Y11,X22,Y11
X161is X1

Y15is Y1 + 10,

fill_elli se wWin,GC,X16,Y15,10,10),
XisX

YisY1l +

draw_strin (brawVVm 2)

draw ellxpse(DrawVVm GC X2,Y15,10,10).

draw_figure alu,Drame GC, X, Y. X
X1isX+ 20, Y +10, X3is Xi Y21sY+50
Y4is Y +40, Y3le+ 0, X9 O
draw_line(DrawWin,GC,

draw_line wWin.GC
draw line(DrawWin,GC.X, Y 3,X1,Y3),
draw_line wWin,GC,X,Y4,X1,Y4

ro—

draw Jine(DrawWin.GC.X1,Y1,X3,Y.
draw_line(DrawWin, 'GC.X1 Y2 3 Y4
draw lme rame GC Yi)

Xc 1-

Yci 1s Y3- 4 Yc2is Y4 - 4

fill_elli se(ljraw\Vm 8,8),
fill elhpse rawVVm, 02 8 EC;}

draw elhpse(Draw\Mn GC,X3 Yc3,8,8).
draw ﬁgure(connect,DrawVWn GC.X1,Y1,.X2,Y2):-

draw_line(DrawWin,GC,X1,Y1,X1,Y2),
draw_line wWinGC.X1.Y2 X2, Y2).

%drawing_figure is a predxcate to do so&so
drawmg_ﬁgure(elemem ure,Name) Wmdow,Xl Y1,X2,Y2):-
et_window_attributes{Window. &))
wing_figure(element(Figure ame) indow,GC,X1,Y1,X2,Y2).

drawing_figure(element(adder,Label), DrawWin,GC,X1,Y1,X2,Y2):-

147

drawsstnnggDraw\Vm ,GC,X1,Y1,Label),

is

d;zzisw elh)%se(Draw\Vm ,GC,X1,Y1,Size,Size),
%Tls

taTa

—ER——
et e hut s b ¢k et

1+35,

géﬁiﬁ

-

rawWin,GC,X11,Y 2,X1
wWin,GC.X12)Y11

Y22is Y2 + 15,

e
=
7
o}
On

asserta(ending_point 13
% wrxte((endm%g__%%mt(x 13
asserta(ending_point(X11 Y22
% write(ending_point(X11,
asserta(ending_point(X22,Y11)
% write(ending_point(X22,
asserta(data(elemen t(adder,Labe[?
ending_point
end g_poml 11,
% (data(element(a Olt,lf_xbz%’“l
o write e emen der,Labe .
%encmg point 3X YiD,
eng’ng‘mm{ 5% 3Y{%ﬁ})m
ending_poin
X14is Xl 10

Y13is Y1 + 10,

gi(l{_seléxg(se(Drame ,GC,X14,Y13,10,10),
i

fill_ellipse(DrawWin,GC,X15,Y2,10.10

Bl elipse(Dat W S B).

drawing_figur (elemen t(subtract,Label),DrawWin,GC,X1,Y1,X2,Y2):-
drawssmgrﬁg rawWin,GC,X1, Yl% bel), D
ize iS 3
drawl elh}:&qe(Draw\Mn ,GC,X1,Y1,Size,Size),

2 1s X1 +5,
X21is X2 - 5,
Yi1 xs Y1
draw_line (meVVm GC,X12,Y11,X21,Y11),
X13isX1-15
Y22is Y2 + 15,

X22is X2 + 15,
draw_| lmegrawwm ,GC,X1

RS

X13 ,Yl’IXXI Y1),
draw_line(DrawWin.GC,X11,Y2,X11.Y22).
draw_line(DrawWi X2, X22. .
asseria(en ng_pomt(Xl?,Ylll)
% write(ending_point(X13,Y1
asserta(ending_point(X11,Y22}),

% write(ending omt
asserta(data(elemer nl su trac Laf)e\) X1,Y1,
ending_point
enclmg_p01m

oint 2 Y
% wnte(data(elememF_ %tracL,Labe ? Y1,
nding_point(X13 11),
end ng point(X11,¥22
nding_point(X22,Y11))),nl,

ﬁ

ESEY
B

X13is 10,
fill 111 ame GC 15 Y2 10 10
dravs e pse(Drame ' X2,Y13,10, {b)

drawing_figure(element(fu,Label wWin,GC,X1,Y1,X2,Y2):-
g_st%mg aw 1(n)Yl,Label), X)

Size 1s 30'szel 1S 6

draw_rectan)gDrawVVm ,GC,X1,Y1,Size,Sizel),

Y11is Y1 + 10, Y1215Y11 +8,Y13is Y11 + 16,

148

o
ot
EY
7
-
=
+
§
.<
.—n
V)]
7y
o
W
w
<
i
p—
+
8

draw line(Draw W ,X
draw_line rame GC,X
draw_line(DrawWin,GC,X
draw_line(DrawWin, ,X
draw_line(DrawWin,GC,X
draw_line wWinGC.X!
draw_line(DrawWin.GC.X2

OO0
*<~<-<'-<'-<'-<'-<
I i o e o ek
'—‘O\Ulhb.)N'—‘

draw lme’DrawVVm,GC,XZ 2),
draw_line Win,GC, X2 3),
R

w_line{DrawWin .
draw_line(DrawWin GC.X2 6),

XclisX1-4, Yclis Y11 -
Yc2isY12-3, Yc3is Y13
YcSis Y15 -2, Yc6is Y16 - 2,

draw_ell J;caBE‘DrawVVm GC,Xcl,Y

NN
3
7

-
o
£

'

N

draw_ellipse
draw_ellipse
draw_ellipse ,XCI,YC

draw_ellipse ,XCI, c4,
draw_ellipse \Vm, ,Xcl,Y 3,
draw_ellipse ,Xcl Yc6

draw_ellipse
draw_ellipse rawVVm GC,XZ,YC_
draw_elli pse rawWin,GC.X2,YC3,
draw_ell rawWin.GC.X2.Yc3.4,
draw_ell ch%l’aww-lﬂ GCX2,Yc4, .

draw_ellipse(DrawWin GC.X2 ,Ycs5,4,4

draw_ellipse(DrawWin,GC,X2,Yc6,4.4),
assert(ending_point(X0,Y 11)),assert(ending_point(X0
assert(ending_point(X0,Y 13)),assert(ending_point(X0
assert(ending_point 15)),assert(ending_point(X0
assert(ending_poi 11)),assert(ending_point(X3,Y
assert(ending_point! 13)),assert endmg_pomt 3,
assert(ending_point(X3,Y15 ass rt endm 3
assert{data_fu elementgt u,Labe % 4(2igxb Y12),(X0,Y13),

0Y1a)(XOY 13).(X0Y X0 151 (xo S);l

. 135 3,(X3,Y125,(X3,Y133,(X3,Y

drawing_ ﬁeure(elemem mul \Pher ,Label),DrawWin,GC,X1,Y1,X2,Y2):-
drawssmng Oraw in, 1,Label),
ize is
draw elh{)segDrawVVm ,GC,X1,Y1,Size,Size),
X11

Y21isY2-

X21is X2 -9

Yilis Y1 + ’7

dan e B in SELVABLYAL,
w_ling(DrawWin,G , s

X221s X2 + 15,

LR

awWin,GC,X13,Y12,X1,Y12),
raan,Gc,xz,Yu,Xzz,le}
x12 s x 15,

draw_line rawVVm GCSXI Y2,X12,Y22),
asserfa(ending_point(X13,Y12)),
%write(ending_point 13, Yl , nl,
asserta(ending_point(X12,Y22)),
%write(ending_point| 12.Y2 , 0,
asserta(ending_point(X22,Y12y),
%write(ending_point(X22, Y1
asserta(data(element(multiplier, bely(l Y1,
ending_point

enr m g_point
ng_point Y QJ
%wnte(data(elemem(mu tiplier, bei ,Xl
%ending_point
% ending_point 12 Y22;
ending_point(X22,Y12))),nl,
X16 is Xl 10

Yi15is Y1 + 10,
ﬁll elhg{se(Drame ,GC,X16,Y15,10,10),

ﬁll elli e(DrawVVm GC,X17.Y2,10,10
draw_ellipse(DrawWin,GC,X2,Y135,10, }b)

b

i

149

drawing_fi
draw_string

ure(elemeGédela 1 abel? DrawWin,GC,X1,Y1,X2,Y2):-

Size is 30,

draw ell

draw_line
asserta(ending_point
asserta(endin
asserta(delay_

dmw smnﬁgr)m
'\

dmw e hpse

fill_elly

a)se(DrawVVm ,GC,X1,Y1,Size,Size),

wWin,GC

1 Yll}
point
ta(elemcm(de

a
endmg_pomt)gg
ending_point

-

‘Cv%%")é%}?ﬁs}%wo‘o&

drawm%qﬁgure(elem\.m(alg adderBLabel),Drame ,GC, X, Y, X1,Y1):-

X1isX +‘Z

Y4isY+40 Y
X915X+60 X61$X+2

_line
_line
“line
_line

ine
ine
ine
ine
ine
Xcis

fill_ellipse
Yc3is

assertal

X1
Ycis Y3
fill_elli se([jraw\Vl

Win,GC.X,
+10,>’<3ls X +40,Y2is Y + 50,

1is
M (5) SisY + 35, Y6is Y +25,

3le

~

35.
7}
>

<t
(98]
Ul

-

rawWin,GC,
rawWin.GC,
rame GC,
rawWin.GC,
rawWin, GC,X

Win'GC X
AV 88 ¥2 LXo1,
m 1 y
ng&fm RLYEXLYS,

4 Yc2is Y4
. lI’IXGCXCYC

5‘-<
e

L
o

P

L) bt

X
X
X
X

)

-

-<~<35
—

-

:":"‘

(3>

Wi
..<; e

S5t

:<
>

8,8),

rame,Gc 2.8.8),

-4,
draw_ elhpse(Dr%g/\\/(V:}n ,GC,X3,Yc3,8,8),

ng_point

asserta

ng_po n(X.Y.

end
end

engimn

assertay

oint X9

draw lme(DrawW

asserta

in,GC.Xi §S,X1 Y6)
(data(element(alu adder,La
en ng_pomt
ending_point

o

ending_point(X9,Y1))).

drawm

draw s%ﬁnoDraw
X1isX + 20,
Y4is Y +40,
is X + 60,

X9
draw_line
draw_line
draw_line
draw_line
draw_line
draw_line
draw"lme
draw_line

cIs

ﬁYl(I:ISIK?’ (15 'Win,
el gse raw Wi

fill elhpse

ends

draw
assertagenanggpomt X,
assertal
asserta(ending_point

draw_line

asserta(da.ta(elemem(afu sub

ﬁgure(elemem(alu_sub Label) DrawWin,GC, X, Y, Xi, Yi):-

Viis Y m+ Sk 1sX+40 Y2is Y + 50,

Y3is +20,Y51s + 35, Y6is Y + 25,
rawWin,GC,X1,Y1,X1, ng

4 Yc2isY4-4
GC.Xc,Yc,8,8),
Yc28.,8),

(DrawWin GC ,X3,Yc3,8,8),

wVVm,GC,Xc

7

“’»«
(98]

ing_point
Y6),

en ng_pomt

ding_point

ending_point(X9,Y1))).

150

%

% RubberBanding the figures:

dra bberband(rectangle,DrawWin,GC,X1,Y1 Y2):-
mmﬁvxs“)’(zerx?n(gle.DrawWin, GC.X1.Y1,X2.¥2)
Heightis Y2 - Y1,
draw_rectangle(DrawWin,GC,X1,Y1,Width,Height).

draw_rubberband(rect miDrawWin GC,X1,Y1,X2,Y2):-
draw. meEBxame 2;
draw line(DrawWin,GC. X1 Yl,X2 Y1

draw rubberband(conn égrame GC?XI ,Y1,X2,Y2):-
w line(Draw Win,
draw_line wWin GC,Xl Y2,X2 Y2).

% Drawing Graphics Context:

create_drawing_gcs(NormalGC, InvcrunaGC FgPixel,BgPixel,Font):-
get_screen_attributes([black_pixel el},
white 1x<:l(Bg= ixel

create_gc(NormalGC,[foreground gPlxe),

background(Ba ixel),

function(copy},

font(Fon%

line_width(2)]),

create _gc(InverungGC [foreglr> und(BgP1xel)
ground(FgPixel),
funcuon(copyS;

font(Font

line (fvxdl}](Z)])
%
3,6 Drawing Rubberband font:

create rubberba.nds,g c(GC,Font):-
get_screen_attri ([biack ixel(FgPixel),
white 1xel 1xe D1,
xor(FgPixel, BgPixel,XorP, 1xe
create _gc(GC foreground(XorPixel),
background(BgPixel),
tt:unc(%on(xor
ont(Fon
line wxdt}](O)]).

%
‘2%6 to maintain the state of the window:

% 1.
initialize_state

predxcate cwert}'a(ﬁm :P,(dynamic)),

mmalxzc state.
Yretractall(draw state(_,
%retractall endmg_pomt
Zretractall(list_data(_,

%retractall(drawn ﬁgur _,_))

% 2.
default_setu tion, Window,InvertingGC,FgPixel):-
window lgl(za.?.a;%default mode 0puon§ Fe)

yut_ window_attributes(Window, [background(FgPixel),gc
gsserta(draw modc(Op(uvgn W'md<[)bw)) ground(FgPixel),ge(InvertingGC)D),

default_setup(_,_._,_)-
%

151

% Some User Built Functions:

find_font(FontData,Font):-

window_datal omDat?FFomSpec ,

current_font(FontSpec,FontName) ->
load_font(FontName,Font);

otherwise ->
%‘og}nat(‘[~p: Cannot Find Requested Fonts]~n’,gui),
ai

).
B,C):-
xor&‘l\i's (\((:&) AB)V (A ANA\B)).

not_selected(Option,Mode \deow,Sizc,Reg -
clause(draw. mode(Mode, Window),_Re
window_data(menu_option_size,Size),

Mode \= Option.
ma)(c A,B Max):-

’

>= B -> Max = A ; Max =B).
min(A,B Min):-
((ﬁ:’ < ->)Min = A ; Min = B).

square_constraint(Apparent,Start,Size,Real):-
1 (Apparent < Star?—p> Real is Start - Size); Real is Start).

position(A,B,Min Dejta&:- . . .
(A>=B > Minis B, Deltais A - B ; Min is A,Delta is B - A).

difference(A1,B1,A2,B2,D):-
(AT-A2)>0->

X is Al -

;DxisAZ-Al
{(B1-B2)>0->
.(%ByisB -B2

Dy is B2 - B1
max(Dx,Dy,D).

n Y, X1,Y1,Delt):-
Dgi ﬁl‘ttzre%ce(X.Y,X},Yl,Delt),
elt < 5.

near_end_point(fXs,Ys

X, Y)i~
setof(T,near_en _pomtl(’['f}?Y),[[_,Xs,Ys]I _D).

pear_end_point1([Diff,Xs,Ys],X,Y):-
ending_poini(Xs.,Ys),
near(Xs,Ys,X, Y, Diff).

in_region([Xi,Yil,X,Y):-
« %é%%el Xi,]ﬁ._,_,_);delay_data(Label,Xi,Yl,_,_)),
is Xi + 45,
Yfis Yi+ 45,
X>=Xi,X<Xf,Y>=Yi,Y<Yf)

« oﬁzg.(abel G, YD) .. .
f,lsizfi’s Yf1 is Yi+ 10,Yf2 is Yi - 10,
X>=Xi, X =< Xf,Y>= Y2, Y=<Yfl

" inl(Label,Xi,Yi
Xfis Xi - 50, Yl is ¥i+ 10,Yf2is Yi - 10,
X=<Xi,X o= Xf, Y>=Yf2, Y=< Yfl

" in2(Label Xi,Yi), _
Xfis Xi - 80, Yfl1 is Yi+ 10,Yf2 is Yi - 10,

152

)X=<Xi,X>=Xf,Y>=Yt2,Y=<Yf1)

drawn_figure elemem(rectan le,Label),info(X1, Yi,X1,Y1),),
(near(X'Y;X1 ‘} g))

((lme 1YY1,)<(1 Y1);line(X1,YL,Xi, Yi)),
Ko T KA Xi, Y =< Y1, ¥ >= i)

(Xx>-Xl Yi>=Y
) X—<X1,X>—X1Y—<Yx Y >=YD

C Yi Y1
O)&(l=<Xl XSE XY =< Yi, Y >= YD)

i>=Xl, Yi=<YIl
)O)(c Ki' X 52 X1,'Y =< Y1, Y >= Yi)
)

A
.

LY!

((;%el&e(s[rx‘ YYX i, v,
L YL

L X >— Xi, Y=<Yl, Y>=Yi)

(X1>-Xl Yi>=Y],
X< Xi, X>5=XI,Y=<Yi,Y>=YI

(X1—<Xl Yi>=Yl,
. X =< X1, X >=Xi, Y =< Yi, Y >= YI)

'Xi>=Xl, Yi=<Y],
) X =<Xi,X>=Xl, Y =<YlY>=Yi)

delete(_,[LID.
dellete(X,[X[L],M):-
delete(X,L,M).

dcég}gg({{ [Lll_]i)YILZ]) -

msert

insert % Blg) -
member S
insert(f1, 1sL,Bm)

insert LlsLBxgg
nonmem er([X is

append(List[X],Big), \.

insert(X,List,Big):-
append(List,[X ,Big), !

%

window, datagwxdth .5 08

wmdow data(hei s
%window_data(titlefont,’ *-charter-medium-r-*-240-*’).

window_data(titlefont,’ *-times-bold-i-*-240-*’

window_data(box_ fon -luc1dabn t—demlbo d-*-normal-*-12-*").

window_data(title,’G DIG TERS’)

window_data(menu w1de,

window_data(menu_width 8

window_data menu_hex ht,35 é

window_data(boundary.

window_data(borizontal_ space,

153

window_data(vertical_space,J).
window_data(menu_option_size,60).
window_data(menu_font,’ *-times-bold-i-*-240-*").
window_data(default_mode,adder).
window_data(default_line 2?).1 .
window_data(box_name,).
window_data(root_cursor,left_ptr).
window_data(draw_cursor,crosshair).
window_data(box_size,40).

154

APPENDIX B

Implementation in C and Simulation Results
B.1 Program in C

#include<stdio.h>
#include <string.h>

main()

1Int enc|15],message{15],rec{15];

mtk Ljg;
mESe0] | el =6 B o o1 -2

an.f(“ the mcssagse is as follows:\n™);
r(x—k i<15;i++
message[i] = -1;
for (1=0;i<15%i++)
p[rfl(nt\t;(message %d is %d \n”,i,message[i]);

encodc(messaze,enc,k)
channel enc,rec)
decode(,fec);
for (i=0 1<- 4 i)
pontf(* %d -- message is %d , encoded is %d , corrected is %d \n",i
Jmessage[i],enc[i],recli]);

}

#include<stdio.h>
#include <string.h>
int rget _inverse(X)

f(x=-1
return(-1);
else
x1=0
r(eturn(25 X);

else
}retum(O);

}

void decode(k,rec)

int krec[];

I* trying to build the data structure... we have three tables:
dition table: it gives the the value of the GF numbers.

inverse table: it gives the inverse of the GF element.

transformation table: it transforms the binary input to the
power representation of alpha. */

mt al[elrg{;SE erasure]]
0S
Uk Sipdpostls
nt ij,temp,l A
. .mlélm, p.l,r,row,
del,delta;

155

/* initializing the error vector */
for (i=0;i<=14:i++)
vli] = recfi];

/* calculating the syndrome eleg}ents;

printf(“remember that the relation between the errors and erasures: \n™);
printf(“ row + 2*no. of errors <=n -k \n");

scanf(*%d”,&row);

if(row>15-k

printf(“ Error in entering row violating rule row + 2*t <= 15-k\n"");
scanf(%d",&row);

imit = 15-k+row; .
[*calculating the erasure polynoxilllal :

pnntfé enter please the number of erasures : row\n “);

i=1;
while(i<=row)

intf(“enter please the position :\n");
gcanfé“ od” £pos[i]); P

lf(pps&l >15 . o
lpnn error message Wrong position reenter again \n”);
else

printf(“The position of the erasure is %d \n”,posfi]);
14++;

}
r* in}tializingllem[i i=0,...,n-1 */
for (i=0;i<15;i++
lexil[_ll b 0;
whilé(r<=row)
for(i=0;i<15;i++)

m = get_sum(0 (get_inverse(i)+pos[rD%15);
if((teng1 = -l)ﬁl (f‘egm[i] = -1§) P)
lem[i] = -1;
else
lem i{: em[i] + em)%15; . .
s)rmt.f *lem[%d] 1s now %d\n “,i,lem[i]);
r++

AN

printf(*\n™);

/* step 2. calcultating erata locator vector using Berlekamp—Mg}?sey algo.
/* initialization of keppa and b --—----- */

f?r (i=0; i<15; i++)
keppali] = leml[i];
bﬁ?pﬂgm[il; i
I=0,
w{'mle(r<=lnm:)
/* calculating delta-r ----—---*/
delta = -]:;
for (i=0; i<15; i++)
if ((keppali] = -1 Il Wil =-1))
else P - L
temp = (i*r + kepFa[i] + v[i])%15;
ta,iemp);

. delta = get_sum(delta
printf(* delta isnow %d “.delta);

?fim-f(“\n’,’);
* determining the value of del--—~-~--e-—- */

156

if {(delta I=-1) & (2*l-row <=r1-1))

del=1;
1=r-1-row;

else
del =0;
antf(lis now %d , r is %d, and del is %d., \n" ,L,r.del);
(1=0; i<15; i++)
k_templi i] = keppalil;
/¥ calculating the egns 2.52 from Shayan’s /Lhes1s

if(del=1)
if (delta == -1)

i=0; i<15; 1++)
b[1(1).- k_templi];

else
&'or (i=0; i<15; i++)

O

delta + get_inverse(i) + b[i])%15;
PR gyt merse® BV

keppa[i] = temp;
b[1 p=[-}; p:

else
keppa [il = get_s templ(i],tem
oppa L e e e hass;
}

}
e]lse /*del=0 */
1{f(delta !=-1)
or (i=0; i<15; i++)
i[f ®lil=-1)

temp = -1;

bli] =-1;
! (delta + ger_inverse() + BD%15:
emp = (delta + get_inverse(i) +
if (k tem %) i

eppa[1 —temp,

= get_sum(k_templil,te
elt] m§erse(y ‘; l mp);

pnntf{llce_gpa[Tod] is %(B g[(R is %d * i,keppalil.i,bliD;

tior (i=0; i<15; i++)
intf(“ keppa(%d] is %d ,b[%d] is %d “,ikeppalil,i,b[il);
prin pnnafp\n[*); epp
++;
/* om‘f
the errata values e[i] from eqns 2.54 and 2.55 in

shayan s thesis.......
*/

I* mmahzauon for e£1] */
for 1—0 i<15;

el —V l
f!)r (r=limit+1; r<15; r4+)
elta=-1;

157

for (i=0; i<15; i++)
if ((keppa[i] =-1) i (e[i] ==-1))
l
R kppall - D15
or (i=0; i<15; i++)
if (delta !=-1)
eli] = get_sum(e[i],(delta + get_inverse(r)*1)%15);
printf(* e[%d] is %d , “.1, eli]);
printf(*\n");
Il doing now step four eqn /2 71

for (i=0; i<15; i++)
eli]1f(keppa[1] I=-1)
or (i=0; i<15; i++)
recli] = get_sum(v(i}.e[i]);

}

#include <stdio.b>
#include <string.h>

void encode(inf,enc,k)
int inf[],enc{},k;

int 1b[15{[15
mlt b[3],j,q count,

int divider| 15],m1t d[15],
a[15][1 1]rem [13],
upper,r{ 15],temp;

/* this is to initalise the multiplier -

init_b[0] = 1;
init_p{1] = 0}
for Tl-[2 1[<]—14 i++)
in =-
r* thllS is té) initialize the divider which equals information bits
shifted by 15-k to the right -

*/

*/

%or (1—0 i<=14; i++)
fo{r (= 'lz{ }c+1,1<—14 si4+)
init dfil = infj

limit = 15-k;
/* initializing the generator polymonuz/ﬂ-.

b[0][0 =0;
b[1 0L= 1;
b(1]{1}=0; . .
for (1=2; i< limit; i++)
b[1] 0] (b[l—l]BO] +1)%15; /*bnext=bprev*alpha_i */
1; j<ij++

if (bli-11] == -1)
temp =-1;

else .
temp = (i + bli-11[j1)%15;

158

blil{j] = get_sum(b[i-1]{j-1],temp);

b[}][i] =0;

/* now calculating the division- .

poper = 14
while(i <= limit)
d%l(ggro u qp<e_1:-]pel:nqi?c%[upper]
for (j= J<upper+ ;j+H)
if (d1v1der[lupper-1+1] =-1)
else

mp = (i+ divider[upper-j+1D%15
dlvxder[uéper-&— gét pspum init d[upper—yl-l] temp);

if (upper-j ==

1f(d1v1der[10] ==-1)

Ise ¥

e

tem i + divider{0])%15;

rfi-1]= g(ct sum(init cRO‘i temp)
.}
1++
for(q—O <=14

++)
init, d[q'] d1v1der[q]
* for(] 14:]-1 _]>‘0 H] "y
/* Now cé]cu ating Lhc check parity symbols--

count = 0;
while(count < limit)

for (j=0; j<=count;j++)
if (count]] == -1?

alcount]fj
elsc

{.
if (b[cggg{]m == -1)
¢ t:Zl[count][ﬂ = (r[count] + b[count][j)%15;

count++;

/* initializing the remaindg;--

for (i=0; 1<11m1t i++)
rem[i] = -

'&/hﬂe (]<11m1t)
or (i=0;i<=j;i++)
}rem[i] = get_sum(a[j][il,rem[i]);
ior(j=0"<limit"++)
enc[jl = rem

for (i=limit;i<13;
enc[i] = inf[i-1 umt

#mclude<std10h>
#include <string.h>

159

void channel(enc,rec)
int enc[],rec[];

/* this simulates the noisy channel by allowing the user to enter the
change in the recieved véctor. ¥/

int i,error,pos;

for (i=0; i<=14; i++)
e (- i 1d like to introduce\n’
prin OW mManny errors you wou ¢ to introduce
D O TS e o o e A 5 - 2 =>a);
erlf “qt%en 8tche pr())gram will not be able to correct the errors\n”™
4] €ITOr,

whlle (i <= error)

intf(" enter lease the position of the error %d\n “i);
Is’crimf d oy T

&os > 4
prm - ertor in position reenter again \n”);
else

printf(* emer t.he value of the error \n’’);

scanf(*%d’”, &r ﬂPos ;

f(req[pos] > 14 Il recipos] < -

plrsmtf(error in value reenter thc value again\n™);
e

[{Jgntf(“ the error value of %d is %d\n”,pos, rec[pos]);
1+
}
}

h

#include <stdio.h>

#include<string.h>
int get_sum(x

{uglt ﬁble[l(SﬁIS]

1,5,nw;
1ffx>y)

nw=y;

y=X;

X=nw,
(ai)le'O 0]=-1; table[0][1]=4; tabl =14; table =1
table[0 _5}):10; table 31:13- tab 1 _2 ta 1[[011[[9]1_7,
table[0][10}=5: table[0}[111=12;
table[0][14]=3'table =5; table m})u
table[1] _61:11; table =14; tab 0=3; table(1 [10 =8;
table[1][11]=6" able[1][12]=13; 14]=7; table2][3]=6;
table[2][4]=10’ table[2 5&=1; l = 2, table[lZ =
table[2][9]=11; table[2]{10]=4; table 1=7; wable] 2[113}=14;
table[2][14]=13; wable[31[41=7; 6]=2: table[1— ;
table|3 85:13; table L:l' e[1:5; tablei 2;:10,
table{3][13]=8 wble[3][1 {:0- 1: 2: table[1: ;
table[4}18}=s5: table[d][1=14; table =13; table[3][12]=6;
table[4][131=11; table[4]] 14]=9; tab =13; table 8;:4-
table[5 _95':6; table[5][10}=0; _tabl 2]=14: table[5][1 d:‘l'
table[5]{14]=12; table[6]{71=10; 6]9:5; table gl 1l=7,
table|6]{11]=1; table[6][12]=4; tabl ;6{ 41=8; table; =11;
table{7 ,9}‘:0; table[7][10]=6; table 21=2- 3 5
tabletaiid)=d: aplefsl ‘i%‘ L efelT=r: Ztabtab 5][1]21 Zg.

(- =J; 1€ (+ = =
tablef 13110 tablef3 L mble 5 ah [][1]1¢13§_4’ table[11]{14]=10

€ =2, tab = € =10;
table:12][13]=1;tablel [14]=5; table[

x=

return?l);

x ==-1)

160

retun(y);

if =-YP)
return(x);

else
return(table[x][yD;

}
B.2 Simulation Results

enter please the length of the message :
Enter all the the terms of the message in power of alpha...

enter the message 0 1

enter the message 1 6

enter the message 2 1

enter the message 3 2

enter the message 4 5

enter the message 5 0

enter the message 6 3

the message is as follows:
message (is 1

message 1is 6

message 2 is 1

message 3 is 2

message 4 is 5

message 5 isQ

message 6 is 3

message 7 is -1

message 8 is -1

message 9 is -1

message 10 is -1

message 11 is -1

message 12 is -1

message 13 is -1

message 14 is -1

limitis 8 .
the multiplication po(liylnpr_mal is being calculated
Now calculating the division :

the parity symbals are the following:
encoded vector (is :
encoded vector 1 is :
encoded vector 2 is :
encoded vector 3 is :
encoded vector4 is :
encoded vector 5 is :
encoded vector 6 is :
encoded vector 7 is :
encoded vector § is :
encoded vector 9 is
encoded vector 10 is: 1
encoded vector 11 is:2
encoded vector 12 is: 5
encoded vector 13 is: 0
%?coded vector 14 is: 3 1d like to introduce?

OW manny errors you wou etoin ?
REMMEM?,BER : 1ty the number of errors exceeds (15 - k)/2 ==>
2t.hen the program will not be able to correct the errors

CJ\--‘\IJ-‘-'—‘UISH-&-—*

(7

elnter please the position of the error 1
g.mer the value of the error

the error value of 1 is 6
eéltcr please the position of the error 2

2enter the value of the error

the error value of 6 is 2 .

the recieved message is as following.....
therec [O]is 1

therec [1]is6

therec [2]is 1

the rec (3]is 12

161

the rec |
the rec

ot ¥ ¢ Jum ¢ Pk ¥ Pk ¥ Pt ¢
nonwnnnn
= =QI=tn

the rec
the rec

7377y
T =V ST

V= S IDI =t N it et O Pt

1
therec {1
therec |1
1
1

-
w

the rec [4
the rec {5
the rec [6
7
8
9
11i

2
therec (13
the rec [14
the vector
the vector 1
the vector 2 i
the vector 3 is:
the vector 4 is :
the vector Sis:
the vector 6 1s :
the vector 7 is :
the vector 8 is :
the vector 9 is :
the vector 10 is :
the vector 11is:
the vector 121s:
the vector 13 is:
the vector 14is: 3

enter please the number of erasures : row

remember that the relation between the errors and erasures:
row + 2*no. of errors<=n -k

i
L7 7%

[oge

-
nannwn

38

O —

gnter please the position :

The position of the erasure is 3 .)
lemisnow 14 ... lemisnow 8 ... lem isnow 4 ... lem isnow -1 ...
lemis now 3 ... lem is now 6 ... lem is now 11 ... lem is now 12 ..
demisnow?5 .. lemisnow 7 .. lemisnow 2 ...lemisnow 9 ...
lemisnow 13 ... lemisnow 10 ... lemisnow 1 ...

emd N

emd
emd
emd
emada
emd
emd
emd
emd
emd
emd
emgd
emd
emaa
emd
risnow 2) .
delta is now O... and ,tf:mg is Odelta is now 4... and temp is 1delta is
now 14... and temp is 9delta is now 14... and temp is -1delta is now 7
... and temp is 1delta is now 12... and temp is 2delta is now 3...

RGN

\ 00

PO S L .
LR S

O T

P

POOEONONUR 87X 7R TR 7 R T TR 77
BETRE JUimmavw

Pt ek et \D D,

bttt \O QO~I AN A LI O

A

and temp is 10delta is now -1... and temp is 3delta is now 7...
and temp is 7delta is now 14... and temp is ldelta is now 6...
and temp is 8delta is now 2... and temp is 3delta is now 7...
and temp is 12delta is now 10... and temp is 6delta is now 4...
and temp is 2
deltais 4 ...

delismow 1_.... .

eppal0] is O ..., b[0] is 10

eppall}is 7 ..., b|1]lis

eppaf2] is 12 ..., b[2]is Q...

keppal3] is -1 ...,b{3]is -1...

eppal4] is -1 ..., b4l is 14...

eppal5]is 9 ..., b{5]is 2...

eppal6] is 2 ..., b|6] is 7...

eppa|7]is 8 ..., b[7] is §...

eppal8] is 2 ..., bj8lis 1...

eppal9]is 12 ..., b 1)15_3...

eppal10] is 9....,, bJ10] is 13...

eppaf11]is 11 ... {1 lis5...

eppal12] is 7 ..., b[12] 1s 9.

eppal13}is §8...., b[13] is6..

eppai14]is 11 .., b[14]is 12

risnow 3 ...

delta is now 1... and temp is 1delta is now -1... and temp is 1delta

162

is now 4... and temp is 4delta is now 4... and temp is -1delta is now 4
... and temp is -1delta is now 2... and temp is 10delta is now 12...
and temp is 7delta is now 4... and temp is 6delta is now 6... and temp
is 12delta is now 13... and temp 1s Odelta is now 9... and temp is 10
delta is now 3... and temp is 1delta is now -1... and temp is 3

delta is now 2... and temp is 2delta is now 9... and temp is 11

deltais 9
del is now 0]
eppal0]is 1 ..., b[0] is 10.
eppajl|is2...,bJ1]}is 3...
keppaf2]is 2 ..., bl2} is 13...
keppal3lis -1 ..., b[3]1s 11...
keppal4]is 4 ..., b[4] s 10..]
eppaj3]is 3 ..., b[3] is 12...
eppa|6lis 4 ..., b[6] is 1...
eppal7lis1...,b[7]is 1...
keppaf8]is -1 ..., b[81is 8...
keppaf9]is 10 ..., b[9]1s 9...
keppa]10]1s 8 ..., b[10] is 3...
eppafll]is S ..., b[11]is 9...
eppaf12] is 10 ... {1 Jis 12..
keppal13] is 0 ..., b[13]1s 8...
eppal14] is 8 ..., b{14]is 13...
risnow4 ...

delta is now 2... and temp is 2delta is now 7... and temp is 12delta is
now 8... and temp is 11delta is now §... and temp is -1delta is now 1
... and temp is 10delta is now 6... and temp is 11delta is now 13...
and tg:m;i 1s Odelta is now (... and temp is 6delta is now 0... and
temp is -1delta is now 9... and temp is 7delta is now 14... and
temp is 4delta is now 8... and temp is 6delta is now 13... and

temp is 3delta is now 5... and temp is 7delta is now 13... and

tempis 7/
deltais 13 ...
delisnow 1 ...
eppaj0] is 10 ... b{O] is 3...
keppal1]is 8 ..., bL 1s4...
eppa|2}is 11 ... g lis 4...
keppa|3]is 6 ..., i)[J 1$-1...
keppaj4|is -1 ..., b[4] is 6...
keppa[S]is -1 ..., b{5l1s 7...
keppal6]is 5 ... b]715_ 6...
eppal7]is 14 ..., b[7] is 3...
eppal8lis 13 ..., b|8] is -1...
eppal9]is 9 ..., b(9]1s 12...
eppal10] is 14 ..., bf10] is 10
eppaflllis3 ..., b{11]is 7...
eppal12lis 9 .., b[12]is 12...
eppaj13lis2 ..., bj13]is 2...
keppa[14]is 9 ..., b[14] is 10...
risnow 5

delta is now 11... and temp is 11delta is now 13... and temp is 4

delta is now 5... and temp is 7delta is now 11... and temp is 3delta
isnow 11... and tem? is -1delta is now 11... and temp is -1delta is now
8... and temp is 7delta is now 7... and temp is 11delfa is now O...

and temp is 9delta is now -1... and temp is Odelta is now 5... and temp
is Sdelta is now 10... and temp is Odelta is now 11... and temp is 14
delta is now §... and temp is 7delta is now 11... and temp is 7

deltais 11 ..

e pa O i L1 . b[0] is, 14
eppajutis weey D] 18 14..
L S AN
eppaj2]is 4 ..., b[2] is O...
eppal3]is 6 ..., b[3]is 10...
eppaj4]is 13 ..., b[4] is -1...
eppal3)is 13 ..., b[S]is -1...
eppal6]is 3 ..., b[6]1s ...
eppal7}is1 .., b|7}is 3...
keppa|81is 13 ... J; lis2...
eppal9 ls_4...,b_ 1s13...
keppa[10] is 10 ..., bJ10] 1is 3...
eppal11]is4 ..., b[11]1s 7...
ppal12}is 2 ..., b[12] is 13...
eppa|13]is 8 ..., b|13] is 6...
eppal14]is 0 ..., b[14]is 13...
S oW

T i
delta is now 12... and temp is 12delta is now 10... and temP is 3dela
is now 4... and temp is 2delta is now 12... and te;mf is 6delta is now
-1... and temp is 12delta is now 14... and temp is 14delta is now 10...

and temp is 11delta is now 0.., and temp is 5delta is now 8... and temp

is 2delta is now 5... and temp is 4delta 1s now 3... and temp is 11

163

delta is now 10... and temp is 12delta is now 2... and.temzp is 4delta
is now 9... and temp is 11delta is now 8... and temp is 1

deltais 8 ...
delismow 1 ...)
k 0 ;sS...,bO{ s3..
eppaj1]is12...,b[1] is 13...
keppal2]is 12 ..., b[2]is 11...
keppaf3]is 13 ..., b[3}is 13...
eppaj4)is 13 .., b|4} is 3...
eppa}S}is 13 ..., b[5]is 5...
eppalo]is 3 -.., b6 1s 10...
eppal7]is 0 ..., b[7]is &...
eppal8] is 14 ... 35 1s5...
eppaf9lis 6 ..., b Iis 115
eppaf10]is 8 ..., b[10] 1s 2...
eppaj1l]is-1...,b[11}is 11...
eppal12]is 11 ..., b[12]is 9...
eppaf13]is 10 ..., bJ13] is O...
eppa[14]is 9 ..., b[4]1s 7...
risnow 7 ...) . .
is 9delta is now 13... and temp is 10delta

deltais now 9... and tgmlp 1
isnow 1... and temp is 12delta is now -1... and L;m{gjls delta is
now 1... and temp is 1delta is now O... and temp is 4delta is now 1...
and temp is 4delta is now 6... and temp js 1ldelta is now 1... and
temp is 11delta is now 4... and temp is Odelta is now -1... and tem

is 4delta is now -1... and temp is -1delta is now 10... and temp is 10

delta is now 14... and temp is 11delta is now 12... and temp 15 5

deltais 12 ...

del isnow 1

keppa|Q} is 2 ..., bfO] is 11...
eppalllis 8 ..,b{1]is 0...
eppa|2]is 4 ..., bf2]is O...
eppa|3]is 5 ..., bi3]is 1...
eppajd]is -1 ..., bg‘lr]_ isl...
eppa[3]is 1 ..., b[3])is 1...
eppal6lis 2 ..., bj6] is &...
keppal7]is 6 ..., b[7] is 3...
eppal8lis 4 ..., b[8]is 2...
eppa|9]is 8....,b[9]is 9...
eppa[10]is 5 ..., Dél()] is 11...
eppa[11tis 12 ... b[11]is -1...
eppa[12}is 2 ..., b[12] is 14...
eppa13]is 11 ..., b[13]is 13

keppall4}is 6 ..., b{14]1s 12..
T 1S NOwW é

delta is now 3... and temp is 3delta is now 4... and _Lemlp is 7delta is
now 12... and temp is 6delta is now Q... and temp is 11delta is now 0
... and temp is -1delta is now 11... and temp is 1Zdelta is now 8...
and temp is 7delta is now 12... and temp is 9delta is now 8... and temp
is 9delta is now 7... and temp is 11delta’is now 8... and temp is 11
delta is now 9... and temp is 12delta is now 10... and temp 1s 13
ge{ttg is rllow -1... and temp is 10delta is now 1... and temp is 1

eltais 1 ..,

delisnow 1
keppa[0]is 7 ..., b[0] is 1...
keppa[1]is 2 ..., b[1]is 7...
eppaj2}is 9 ..., b]2] is 3...
eppal3]is 12 .., b[3]is4...
eppaj4}is 13 ..., bj4] is -1...
eppa|S}is 13 .., bi5]isO...
eppal6] is 6 ..., b[6] 1s 1...
eppal7}is4 ..., bl7}is 5...
eppa|8]is 2 ..., b|8lis 3...
eppal9]is 10..., b[9] is 7...
eppa[10]is 1 .., bJ1 1154..
eppal11]is 12 ..., b[11]is 11
eppal12]is 6 ..., b[12] is 1..
eppaj13}lis6..., b[13]is 10
eppal14] 1s 8 ..., b[14fis 5...
risnow9...

delta is now 8... and temp is 8delta is now 0... and temp is 2delta is
now 6... and temp is 13delta is now -1... and temp is 6delta is now 9
... and temp is 9delta is now 4... and temp is 14delta is now 10...
and tqu s 2delta is now 11... and ten71p is 14delta is now 12... and
temP is Odelta is now 2... and temf) is 7deha is now -1... and temp is
2delta is now §&... and temp is 8delta is now 6... and temp is 14

delta is now 2... and temp is 3delta isnow -1... and temp is 2
deltais-1 ..

delisnow(...]

keppal[0] is 7 ..., b[0] is 1...

164

Ryl rUr sl rid U
wnntrnnnn
o WWINL .
P, .

et N 2 O\ e et e \O N

O

-Mwm,_.mwmb)\,
Pt O_‘_ h

.....
R737
~ HE
HE IR AN
Pt
HEEE!
:

17
———

wg,r/': 7

@ coonOn
Bri: D
RERER

B ogoo”
._.r—!'—v-\

ROY)

eyt pt
wnn

is 5.

eltais 13 . deltais 6 ..deltais 5 .. deltais 7
~deltais 13 _.deltaisO ..deltais? ..delta

.deltais9 ..deltais?2 ..deltais 5

-
<<
RO

_
17
w

P NE oo
e
1]
¢
s

@

o
o
o5
7

~OV N RLIN=O
Pt ps -
wn w
Ve pd o) et b Y
Hoﬂﬂ—:wﬁfww:ua

Ly Ry

—
iy O
I SO O
HE : HE H]
:
:

OO OODOOOO
b ek —\D 00
SN

‘B

0...

delta 112 ..deltais 9 ...deltais4 ..deltais3 ..deltais 12
“deltais4 .. deltais4 ..deltais4 ..deliais 11 .. dela

is8 ..deltaisd ..deltais 8 ..deltais’s ..deltais 4 ...

delta i 1s

deltais

is

o
w

[BRI

11X X X1 X1 X X XX s XX XX Xo
paupawaw\ooo\!c\m.:;‘un_?o

DI

PN

N

«nn wx)_-—-n—-aut—A\O-hO\:uu

t—*w'—‘l\): LRI S T T S S HEN

T P .
A

e AR DD PG PRSP
BB RE

d . o ek

1 3 _delta is 11 ..deltais 8 ..deltais 9 ..deltais 8
is 10 . ..delta is 5 . .deltais 12 . .deltai is 11 .

delta is 10 deitais 12 ..deltais4 ..deitais 13 ...delais

...delta is 0 ..

1 1S

o
R
°-53

()
oo
I

e ™ L e = AN o N L

L PErERt oM P

st o
mnnnnnnnonnnn

.-.-.-'.-a'\ood\lc\'u-:«hwrd»-ao
R

.°E

PO OROROR O OGSO

B
B BN

AT

S 4 ~delta is 10 ..deltais4 ..deltais 4 .deltais 8§
..delaa is 1 .delta is -1 delta

.deltais O .
(liglta is 2 dglta is 10 ..deltais 5 ...deltais 7 _deltais
2

165

Pruth + [¢ ot ¥
(7R Rr AT R R R RN
HANNIND00—0

‘°.°.‘°?°.°‘5::::::::

Y e s ek \ D OO~ J N LN DA DN ek

n—d
AUN’-‘C
AT

%noooonoonnonon

tais 0 wdeltais 5 ..deltais
...delta is 14 _deltais1 .

4 _.deltai 1s 14 3delta is 13
is3 ..

.dehtais0 .

deitais 6 ...deitais 4 ...deitais 14 . deltals 0
deltais 2 ...deltais 6 ..
1ais6 ...

e[0] is 14...

e|1}is0...

e[2]is 10...

e[3lis 7...

eld}is1....

el5]is2....

e[6]is2....

el7]is3....

e|8]is 12....

e|9]is4....

e[10] is 11....

e[11]isO....

e[12]is 1....

e[13]is 1....

ejl4]|is 6....

ei0]1s 14 ...

e[l]isO ...

ej2]is 10 ...

ef3lis7...

e[4]isl ...

e[Slis2 ...

el6lis2 ...

el7]isS ...

e[8]is12 ...

ef9]is4 ...

efl0}is 11 ...

ef11]is0 ...

e[12]is1 ...

e[13]is1...

el14]is6... .

error{Q]is -1rec[Q] is 1

error|l}is-1rec[1] is 6

error|2]is-1rec{2}is 1

emor[3]is -1rec[3] is 12

error{4]is -1recj4} is 5

error[5]is-1rec[S}is 1

error[6}is -1 rec|6} is 2

emor|[7]is-1recf7}is 7

error[8} is -1rec{8] is 1

error|9]is -1rec{9]} is 6

error[10] is -1rec[10] is 1

error[11]is-1 ... rec[11] is 2

emor|12]is -1rec[12} is 3

error|13] is -1 rec[13} is O

error|14] is -1 rec[14] is 3

0 --message is1 , encoded is 1, comrected is 1
1 -- message is 6 , encoded is 4, corected i 16
2 --message is1 , encoded is 1, comected is 1
3 --message is 2 , encoded is 12, corrected is 12
4 --message is 5 , encoded is 5, corrected is 5
5 --message is 0 , encoded i is 1 , comected is 1
6 -- message is 3 , encoded i corrected is 2
7 -- message is - 1 Cencoded s7’ corrected is 7
8 -- message is-1 , encoded is 1, corrected is 1
9 -- message is - 1 »encoded is 6, corrected is 6

10 -- message is -1’ , encoded is [, corrected is 1

11 -- message is -1 , encoded is 2, corrected is 2
12 -- message is-1 , encodedis 5, corrected is 5
13 -- message is -1 , encoded is 0, corrected is 0
14 -- message is-1 , encodedis 3, corrected is 3

166

APPENDIX C

VHDL Coding of Reed-Solomon (n,k) Decoder

-- VHDL Model Created from SGE Symbol alpha.sym -- Sep 26 16:11:39 1995

library 11
use IE
use IE

E <td _logic_1164.all;

E std_logic_misc.all;

use [EEE.std_logic_arith.

use IEEE.std_logic_¢ componentsall

entity ALPHA

ort (INl std_logic_vector (3 downto 8)
o) ut std_logic_vector (3 downto 0));
end ALPHA;

a.rchu.ccture BEHAVIORAL of ALPHA is

be
outl O <=inl(3);
outl(1) <= in1(3) xor in1(0);
outl(2) <=inl(1);
outl(3) <=1inl(2);
end BEHAVIO ;

uration CFG ALPHA_BEHAVIORAL of ALPHA is
for EHAVIO

end for;
end CFG_ALPHA_BEHAVIORAL,;
-- VHDL Model Created from SGE Symbol and1to4.sym -- May 2 10:21:24 1997

lib r[_EE,
use TEEE.std_logic_1164.all;
use IEEE.std_logic_misc.all;
use [EEE.std_logic_arith. all;
use LEEE std_logic_ components all;

entity AND1TO4 is
ort (__ BI:In std_logic;
INl. n std Toglxc vector (3 downto 0);
Out std_logic_vector (3 downto 0));
end AND1T04

architecture BEHAVIORAL of AND1TO4 is

TIHTHTITINL]

<- bi and inl

ou 3%
tp <=bi and in1(2);
1o

outp 2
outp <=biand in
outp(0) <=bi and inl
end BEHAVIORAL;

% uration CEFG_AND1TO4_BEHAVIORAL of ANDITO4 is
for EHAVIORAL

end for;
end CFG_AND1TO4_BEHAVIORAL,;
-- VHDL Model Created from SGE Schematic galois_mult.sch -- May 3 09:40:12 1997

library IEEE;
use IEEE.std_logic_1164.all;
use [EEE.std_logic_misc.all;
use [EEE.std_logic_ "arith_all;
use IEEE.std_logic_components.all;

entit GALOIS -MULT is
ort (In std_lo KFIC _vector (3 downto 0);
GAMMA : In “std_logic_vector (3 downto 0);

167

: Qut std_logic_vector (3 downto 0));
end GALOIS “MULT;

architecture SCHEMATIC of GALOIS_MULT is

signal W:std logxc vectorgB downto O),
signal Y :'std_Jogic_vector(3 downto 0
n Z : std Jogic_vector(3 downto 0);
1} R * std”logic_vector(3 downto 0);
11 R1: std_logic_vector(3 downto 0);
rnal R3: std logic_vector(3 downto 0); R
N Z1 : std_logic_vector(3 downto 0);
ign Z3 : std_logic_vector(3 downto Q);
signal Z2: std_logic_vector(3 downto 0);

componem GALOIS_ADDER
rt(_A:In std_logic_vector (3 downtg 0);
B:In std_logic_vector (3 downto 8)
C :Out std_logic._vector (3 downto 0));

end component;

componem AND1TO4
Port (_ BI:In std_logic;
[Nl : n std, Togfc vector (3 downto 0);
Out std_logic_vector (3 downto 0));

e

nhnnnwnnn

end componem

component ALPHA
Port (_INT: In std_logic_vector (3 downto 8)
OUTI : Out sid_logic_vector (3 downto 0));

end component;
begm

: GALOIS_ADDER
Ton Ma BP (A(3 downto 0)=>Z3(3 downto 0),
downto Q)=>Z2(3 downto 0)
[12:G AE 3 doxyAtllbto 0 ->RES downto ()));
“Port Ma (A_(3 downto —>R3(3 downto 0),
3 dgﬁg =221 dowmio By,
I_3 : GALOIS_ADDER

“Port Ma Bp (AQ3 downto l£_>R1(3 downto 0),
downto ; b,
3 downto 0)=>R3(3 downto 0));

PortM BI=>B(3), IN1(3 downto 0)=>Z(3 downto 0
A2: CPU(T >dogvr)1to O)(=>Z3(3 dow)n-to OS Y;)

PrtM BI=>B(2), IN1(3 d to 0)=>Y(@(3 d toQ
° CPU(T >do(wr)no 0)£>Z(i%§ndow)rfto o§) ownto 0),

PortM (BI=>B(0), IN1(3 downto 0)=>GAMMA(3 downto 0),
Al cP T B0, N1 downto Dy A MMA(downto 0)

PonM BI=>B(1), IN1(3 downto 0)=>W(@3 d to 0),
oDU(r B, I e O B3, dowmto 0)

PortM IN1 3d to 0)=>Y (3 downto 0),
ALP1 d)U(l‘ (ov?nv%g 8)—)>Z(3 (dowmo 0)))

Port M IN 1(3 downto 0)=>W(3 downto {
ALPO. ODU(T 1 dommie 0 Y B ooty -

PortM IN1(3d to 0)=>GAMMA(3 downto 0),
ODU(I‘I(G Qom0 A sipwmto 0)

end SCHEMATIC;
configuration CFG_GALOIS_MULT_SCHEMATIC of GALOIS_MULT is

for SCHEMATIC
forI_1,1_2,1_3;: GALOIS_AD
use con'ﬁgurauon WORKCFG GALOIS _ADDER_BEHAVIORAL,;

end fo
forA3 ‘A2, A0, A1; ANDITO4
use conﬁ;,urauon WORK.CFG_AND1TO4_BEHAVIORAL;

end fo
for ALP2 ALP1, ALPO: ALPHA

AQ

168

l(xjsct‘,_ configuration WORK.CFG_ALPHA_BEHAVIORAL;
end for;
end for;

end CFG_GALOIS_MULT_SCHEMATIC;
-- VHDL Model Created from SGE Symbol galois_adder.sym -- May 2 10:38:41 1997

li
use
use
use
use

enti GALOIS ADDER is
ort (:In std loglc vector (3 downto 0);
B : In std_logiC_vector (3 downto 6
: Out st& " 16gic_vector (3 downto 0));
end GALOIS _ADDER

architecture BEI-{AVIORAL of GALOIS_ADDER is

1

IEEE;

E std_logic_ 1164.all;
E.std_logic_misc.all;
E_std_logic_arith.
E.std_logic componems .all;

1

1

[TITITH(T

begin

c<=axorb;
end BEHAVIORAL;

configuration CFG_GALOIS_ADDER_BEHAVIORAL of GALOIS_ADDER is

for BEHAVIORAL
end for;

end CFG_GALOIS_ADDER_BEHAVIORAL;
-- VHDL Model Created from SGE Schematic summer.sch -- May 2 12:12:58 1997

lib TEE
use TEEE ctd logic_1164.all;
use IEEE.std_| lomc misc. all
use IEEE std_ lO"lC —arith.all
use [EEE.std_ Ioglc componems all;

enuB' SUMMER
ort AX In std_logic_ vcctorg 31 downto 0);
- Out std_Togic_vector (3 downto 0));

end SUMMER,
architecture SCHEMATIC of SUMMER is
signal Z1 : std_logic_vector(3 downto O);

signal Z2 : std_logic_vector(3 downto 0);
sign Z3 > std_] loglc vector(3 downto Q);
sign ZA : std_logic_vector(3 downto 0

signal Z5 : std_logic_vector(3 downto Q :
signal Z7 : std_logic_vector(3 downto 0);

component GALOIS ADDER
Port (:In std_logic_ vector (3 downto 0);
B: In std_logic_vector (3 downto 2)
C:Out std_logic_vector (3 downto 0));
end component;

begm

: GALOIS_AD
Tort Maj Bp (AR downto 2—>ZS(3 down 0)
downto O downto 0
C(3 downto 0 —->B (3 downto
: GALOIS_ADD
Ton Ma l:}'p (A3 downto 0)=>Z3(3 downto 0),
downto 0)= 3 downto Q),
G AE 3 gownto 0 —>Z7 3 downto 0));
"Pon Ma Bp (A downto 2‘)->Zl (3 downto 0),
downto 0 2(3 downto Q),
C(3 downto 0 —>ZS 3 downto 0));
: GALOIS_ADD
“Port Map (A(3 downto 0)=>AX(27 downto 24),

169

8 g gowmo 0 —>% 3& downt8)2)8)
ownto 0)=> ownto
I 5 GALOIS_AD
“Port Ma Bp (A'(3 downto 0)=>AX(19 downto 16),
downto ;—>AX 23 downto 20),
3 downto 01)=>Z3(3 downto 0));
: GAL ADD

'Port Ma BP (A(3 downto 0)=>AX(11 downto 8),
downto 0 >AX(15 downto 12),
C 3 downto 0)=>Z2(3 downto 0));
1_7:GALOIS_ADD
“Port Ma Bp (A'(3 downto O)->AX(3 downto 0),
to 0)=>AX(7 downto 4),
C(3 dowmo 0)=>Z1(3 downto 0));

end SCHEMATIC;
configuration CFG_SUMMER_SCHEMATIC of SUMMER is

for SCHEMATIC
fori_1,1.2,1 3,1.4.1 I 7: GALOIS_. ADDER
133% con'ﬁouranon ORK CFG GALOIS_ADDER_BEHAVIORAL;
end for;
end for;

end CFG_SUMMER_SCHEMATIC;

-- VHDL Model Created from SGE Symbol in_port.sym -- Mar 4 15:47:29 1996

library I
use TEEE <td logic_1164.all;
use [EEE. std_logic_misc.all;

use IEEE.std_logic_arith.all;

use [EEE.std_ loglc componemsall

enug IN_PORT
ort CLK In std _logic := 0";
RES I logicC = 1
: std lo ric = ‘0’;
SYM In ogic_ vecwr 23 downto 0);
AJR : Out std logic_vector (59 downto
QUTI : Out sta logic_vector (31 downto 03
OUT2 : Qut sud lo&xc vector 31 downto 0
ROW : Out
end IN_PORT;

archltecturc BEHAVIORAL
(SO Sl 52 53 S4 SS S6,S7,
ss 39 310'511 512 S13,S1 z}g
signal CS,N T’YP

be
---glProcess to hold a combinational logic.
COMZBIN process(CS,CLK,S,RES)

0(%'[‘2 31 downto 28) <= “0000™;
case C
when S

NgiES ‘1) then

NS <= S1;
end i
when S1 =>
NS <= S2;
when S2 =>
NS <= 83;
when S3 =>
NS <= 84;
when S4 =>
NS <=S5;
when S5 =>
NS <= S6;
when S6 =>
<=S7;
when §7 =>
NS <= S8;
when S8 =>

o

170

NS <= S9;
when S9 =>
NS <= S10;
when S10 =>
NS <= S11;
when S11 =>
S <«=S12;
when S12 =>
NS <= S13;
when S13 =>
NS <= S14;
when S14 =>
NS <= S0;
end case;
end process;

Process to hold synchronous elements

SYNCH : Brocess(CLK RES,.SYM,S
variable C GER ran e 0to 5
variable temp : INTEGER range to15:=0

in
out2(31 dowmo 28) <= “0000™;
B ‘1T then

<‘_d

=(;
elsif CLK EVENT and CLK = ‘1") then
if (CS = SO) then
riem
COUNT = 0;
else I
emp =rtemp +
end if; p= P
CS <=NS;
case rtemp is
when 0 =
ofutl €] dowmo 0) <=SYM;

= then
= COUNT +1;
case COUNT is

hen
AJ R 59 downto 403 <= ‘OOOOOOOOOOOOOOOOOOOO %
AJR(39 downto 20) <= “00000000000000000000"";
b Al Llé 19 dowmo 0) <= 00000000000000000001
when others =>
AJR(59 downto 40; <= “00000000000000000000"";
AJR(39 downto 2 “00000000000000000000™;
d AJR(19 downto 0) <= * OOOOOOOOO 0000000000";
end case;

outl (7 ?howmo 4) <=SYM;

if (S =
:= COUNT + 1;

case COUNT is
when 1 =>

AJR(59 downto 40 <= *“00000000000000000000°;
AIR 39 downto 20) <= “00000000000000000000™;

R(19 downto 0) <— . “00000000000000000010™;
when 2 =>

AJR(59 downto 40) <= “00000000000000000000™;
AJR(39 downto 20) <= OOOOOOOOOOOOOOOQOOOO
AJR(19 downto 4) <= “0000000000000010";
when othe s =>
R(59 downto 40) <= “00000000000000000000”;
R(39 downto 20 <= “OOOOOOOOOOOOOOOOOOOO
R(19 downto 0) <= “00000000000000000000°;
end case,
end if;
when 2 =
(oul lfll downto 8) <= SYM;
COUNT +1;
case COU
when 1 =>
AJR 59 downto 40) <= 00000000000000000000”;
AJR(39 downto 20) <= “00000000000000000000™;
AJR(19 downto 0) <= “00000000000000000100™*;

when 2 =>

171

AJR(59 downto 403 <= “00000000000000000000™;
AJR(39 downto 20) <= “00000000000000000000™";
AJR(19 downto 4) <= “0000000000000100™;

when 3 =>
AJR(59 downto 40; <= *00000000000000000000™";
AJR(39 downto 20) <= “00000000000000000000";

" AJ(% 19 dowmo 8) <= “000000000100;

when o
AJR 59 dowmo 403 <= “00000000000000000000™;
AJR(39 downto 20) <= “00000000000000000000"™;
AJR(19 downto 0) <= “000000000000000000007;

end case

end if;

when 3 =>
outl 15 downto 12) <=SYM;

if(S='1

CO COUNT +1;

mse COUNT is

Q.JJE §3 Jowmt 4} <= - D0000090002000000000™ 00
own ;

AJR 19 downto 0) <= “00000000000000001000;

>
R(59 downto 40 <= 00000000000000000000
R(39 downto 20 <= *“00000000000000000000°
R 19 downto 4) <= "0000000000001000™;
>
R(59 downto 40 <= *00000000000000000000™;
R(39 downto O OOOOOOOOOOOOOOOOOOOO ;
R(19 downto 8) <— 000000001000

>59 dovmo 40) <= "00000000000000000000"
539 Swhte 203 <= “00000000000000000000"
R(19 downto 12 <- “000010007";

the

when others =>
R(59 downto 4 o = *“000000000000000000007;
R(39 downto 20 <— *00000000000000000000™;
R(19 downto 0) <= “00000000000000000000™;
end case,
end if;
when 4 =>
out1(19 downto 16) <=SYM;

G SN '~ COUNT +1;

case CIOUNT is

Al ﬁ 59 downto 40; <= “00000000000000000000™;
Al R§39 downto 20) <= “00000000000000000000™;
AJR 19 downto 0) <= “00000000000000000011°";

>59 downto 40) <= -00000000000000000000"
R R(39 downto 20 <= ~0000000 0000000000000";

her 3 19 downto 4) <= “0000000000000011"";
W en —>
R(59 downto 403 <= “00000000000000000000
AJ R(39 downto 20) <= OOOOOOOOOOOOOOOOOOOO
b .fzJR 19 downto 8) <= “000000000011"*;
when 4 =>
AJR(59 downto 40) <= 00000000000000000000*;
AJR(39 downto 20) <= 0000 0000000000007;
AJR(19 downto 12) <= “00000011™%;
when 5 =>
AJR(59 downto 40 <= “00000000000000000000°;
AJR(39 downto 20) <= “000000000000000000007;
b A{% 19 downto 16 <- 0011
when others =>
AJR(59 downto 403 <= 00000000000000000000
AJR(39 downto 20) <= 0000000000000000000
AJR(19 downto Q) <= 00000000000000000000
end case;
end if;
when 5 =>
out11523 downto 20) <= SYM;
COUN'I‘ +1;
case CO!
when 1

AJR(59 downto 40) <= “00000000000000000000™;

172

Al RE39 downto 20) <= “00000000000000000000;
AJR(19 downto 0) <= “00000000000000000110™";
when 2 =>
AJR(59 downto 40 <= “00000000000000000000";
AJR(39 downto 20 <= “00000000000000000000™";
B A3]R 19 downto 4) <= “0000000000000110”;
when 3 =
AJR(59 downto 40 <- “00000000000000000000°";
AJR(39 downto 2 “00000000000000000000™;
whe 4R 19 downto 8) <— “000000000110"
end =>
AJR(59 downto 40 <— “00000000000000000000™;
AJR(39 downto 20 “0000000000C0000000000™;
AJR 19 downto 12 <- “00000110;
=>
AJR 59 downto 40 <— “00000000000000000000™;
AJR(39 downto 2 “00000000000000000000™;
AgJR 19 downto 16 <— “0110™;
hen 6 =>
AJ R€59 downto 403 <=* OOOOOOOOOOOOO"
AJR(39 dowmo 20) <= “00000000000000000110™;
when other:
R 39 dowmo 40 <= “00000000000000000000
R(39 downto 20) <="* 0000000000000000
R(19 downto 0) <= “00000000000000000000";
end case
end if;
when 6 =>
(S ou lfzt’ildowmo 24) <=SYM;
CcO COUNT +1;
mge COUN Tis
when 1
Al R 59 downto 403 <= “00000000000000000000™’;
AJR(39 downto 20) <= OOOOOOOOOOOOOOOOOOOQ "
b A2J 19 downto 0) <= “00000000000000001100™;
when 2 =>
AJR(59 downto 403 <= “00000000000000000000"";
AJR(39 downto 20 OOOOOOOOOOQOOOO s
. A§JR 19 downto 4) <= “0000000000001100 ’
when 3 =>
AJR(59 downto 403 <= “00000000000000000000"";
AJR 39 downto 20) <= “00000000000000000000™;
b 4 R(19 downto 8) <= “000000001100™;
when 4 =>
AJR(59 downto 40 <= “OOOOOOOOOOOOOOOOOOOO ,
AJR(39 downto 20) <= 00000000000000000000™;
. ASJR 19 downto 12 <- 00001100
when 5 =>
AJR(59 downto 40 “0000 000000000000000"
AJR(39 downto 2 “OOOOOOOOOOOOOOOOOOOO
AJR(19 downto 16 1100™;
when 6 => “ .
AJR£59 downto 403 <= “00000000000000000000™; s
he A’IJ R(39 downto 20) <= “00000000000000001100™;
when 7 =
AJR(59 downto 403 <= “00000000000000000000°";
AJR(39 dowmo 24) <= “00000000000011007;
when others " 0000"
AJR(59 dowmo 403 <= “00000000000000000000 i
AJR(39 downto 20) <= * OOOOOOOOOOOOOOOOO
AJR(19 downto 0) <= “00000000000000000000;
end case;
end if;
when 7 =>
(Soutl (3 lmdownto 28) <=SYM;
CO :=COUNT +1;
cage CO UN T is
AJ R 59 downto 40; <= “00000000000000000000™;
AJR(39 downto 20 “00000000000000000000°;
AJR(19 downto 0) <= 00000000000000001011"

AJR(39 downto 20) <= “00000000000000000000";

AJR(19 downto 4) <= “0000000000001011™;
when 3

=>
Al RES9 downto 403 <= “00000000000000000000™;
AJR(39 downto 20) <= “00000000000000000000™;

bhen 2 =>
AJ R§59 downto 403 <= “00000000000000000000™;

173

AJR(19 downto 8) <= “000000001011";

when 4

when others =>

AJR 59 downto 40) <= “00000000000000000000";
AJR(39 downto 20) <= ‘00000000000000000000";
AJR(19 downto 12) <= “00001011"";
when 5 R 59 downto 40) <= “00000000000000000000"
ownto <=
AJR§39 downto 20§ = “00000000000000000000™;
AJR(19 downto 16) <= “1011"";
when 6=
ES9 downto 40} “00000000000000000000°°;
39 downto 20) <= “00000000000000001011™;
whe 7 =>
259 downto 40) <= “00000000000000000000;
39 downto 24 <- 0000000000001011”
when 8 =
ES9 downto 403 <= "
R(39 downto 28) <= “000000001011";
when others =>
AJR(59 downto 403 <= “00000000000000000000°";
AJR(39 downto 20 “00000000000000000000™;
AJR(19 downto 0) <= “00000000000000000000’
end case;
end if;
when 8 =>
ouL2(3 downto 0) <= SYM;
if (S = th
= COUNT +1;
case CO
21_[E gg ggwng <210 <= 88888000000000000000
wn = 000000™;
AJ R(19 downto 0) <—- “00000000000000000101™;
AJ R(59 downto 40 <= “00000000000000000000°;
AJR(39 downto 0 <= “00000000000000000000™;
wher' R(19 downto 4) <= “0000000000000101"";
en3=>
AJR(59 downto 40 <= ‘00000000000000000000";
AJR(39 downto 20 <= ‘OOOOOOOOO OOOOOOOOO";
whe %IR 19 downto 8) <= *“00000000010
end => ’
AJR(59 downto 40) <= 0000 0000000000000000
AJR(39 downto 20) <= “00000000000000000000;
h ASJR 19 downto 12) <= *00000101";
when 5 =>
AJR(59 downto 40) <= “00000000000000000000™";
AJR(39 downto 20) <= 00000 OOOOOOOOOOOOOOO
%JR 19 downto 16) <= “0101"";
hen 6 =>
AJR(59 downto 40) <= “00000000000000000000"";
0 A_/J RE39 downto 203 = “00000000000000000101™;
when 7 =>
AJR(59 downto 40) <= “00000000000000000000™";
.%I Rg 9 downto 24; <= “0000000000000101"";
hen 8§ =>
AJR(59 downto 40) <= “00000000000000000000
AJR€39 downto 283 <= *“000000000101";
when 9 =>
Al R€59 downto 403 ’s
AJR(39 downto 32) <= 00000101"
59 downto 40) <= ‘00000000000000000000";
AJ R§39 downto 20 3 “00000000000000000000°;
AJR(19 downto 0) <= “OOOOOOOOOOOOOOOOOOOO";
end case;
end if;
when 9 =
t2 7 dowmo 4) <= SYM;
if (S
COUNT +1;
case CO
A.I R(59 downto 40) <= “00000000000000000000";
Al R§39 downto 2 03 <= “00000000000000000000™;
B AZJR 19 downto 0) <= “00000000000000001010™";
when 2 =>
AJR(59 downto 40) <= 00000000000000000000";
AJR§39 downto 203 ‘00000000000 ”
AJR(19 downto 4) <= “00000000000010107;

174

n3=>
CPAIR(59 downio 40) <= :00000000000000000000
Al R§39 downto 20 <= *00000000000000000000™;
. AJR(15 downto 8) <= 000000001010
when & =>
'ATR(59 downto 40) <= “00000000000000000000"
AJRg39 downto 20§ <= “00000000000000000000""
o AJR(19 downio 12) <= “00001010°;
=>
when 5 =159 downto 40) < = “00000000000000000000";
AJR§39 downto 20) <= “00 B
ne .%JR 19 downto 16) < “1010";
eno=>
W ATR(s9 dowmto 40) <= "00000000000000000000"
. ATR(39 downio 20) <= “00000000000000001010°
n/ =>
whe AIR(59 downto 40) <= "00000000000000000000";
e ATR(39 downto 24) <= “0000000000001010'
hen 8 =>
ATR(s9 downto 40) <= , .
.. ATR(39 downio 28) <= 000000001010
=
W R(59 downto 40) <= 100000 s
AJ 39 downto 32 <= “00001010™;
when 10 =>
ATR(3 downto 40) <= 200000000000000000000°;
AJR(39 downto 28 = 1090
Wb O downto 40) <= 200000 .
= “00000000000000000000";
ATR(30 downto 2 oooooooooooooooooooo
AJR(19 downto 0) <= “00000000000000000000
end case;
0=
er -
out2 11 dowmo 8) <=SYM;
SN counT + 1;
case COUNT
hen 1 =>
e 2}5‘%8 downto 40) <= “00000000000000000000
ownto <- 0()()()
AJR§19 downto 0) <= “00000000000000000111";
o = T
own N
A RI33 dowmio 2 < 0009090000000 P!
hen 3 2759 downto 409 <= :00000000000000000000";
AJR(39 downto 20 <= *00000000000000000000™;
, AJR(19 downio 8) <= “000000000111";
VICTATR(59 downto 40) <= “00000000000000000000";
ATR(33 downto 20) <= -00000000000000000000"
whe ASJR 19 downto 12) <= “0000011
=>
*PLIR(59 downto 40) <= 200000 00000000000";
AJR§39 downto 203 < 00000000000000000000";
o AR(19 downto 16) <= “OT11
AJIEESQ downio 40) <= “oooooooooooooooooooo,,
. ATR(39 downio 20) <= “00000000000000000111";
/ —"
v erlAJR§59 downio 40) <= 00000000000000000000";
A8JR 39 downto 24 “00000000000001117;
enAJI—Z?SQ downio 40) <= 0 "
_AJR(downio 28) <= ‘000000000111
when ¥ =>
'XTR(59 downto 40) <= “00000000000000000000™;
. A1162239 downto 325 <= “00000111";
VIPATR ES>9 downio 40) <= "
hert 1 R(39 downto 36) <= “0111";
 ATR(39 downto 40) <= “00000000000000000111
when others =>
AJR%gg o D) <= 000000000000
own
; AIR(19 dowato 8= 00000909990900060000™.
end case,

175

t2 5 downto 12) <= SYM;
if (S = ‘T then
CcO COUNT +1;
cage CIOUNT is
AJR(59 downto 40 <= "00000000000000000000™;
AJR(39 downto 2 <— *“00000000000000000000™;
R(19 downto 0) <= “00000000000000001110™;
when 2 =>
AJR(59 downto 40 <= “00000000000000000000™";
AJR(39 downto 20 <= ~00000000000000000000™;
‘?R 19 downto 4) <= *“0000000000001110;
=
AJR(59 downto 40 <= *“00000000000000000000™;
AJR(39 downto 0 <= ~00000000000000000000™;
AZIR 19 downto 8) <= “000000001110;
=>
AJR(59 downto 40) <= “00000000000000000000";
AJR(39 downto 20) <= X 5
AJR(19 downto 12) <= “00001110";
when 5 =>
AJR(59 downto 40 “OOOOOOOOOOOOOOOOOOOOZ;
AJR(39 downto 2 000000000000000000007;
AJR(19 downto 16 =“1110 i
when 6 => .
Al R259 downto 403 “00000000000000000000°;
A_il R(39 downto 20) <= “00000000000000001110™;
hen 7 =>
AJR(59 downto 40; 00000000000000000000™;
b A8JR 39 downto 24 0000000000001110";
when 8 =>
Al R§59 downto 40; “000000000000(;
A9JR 39 downto 28 “000000001110™;
hen 9 =>
Al RES9 downto 40g “00000000900000000000";
b Allél 39 downto 32 ‘000011107
when 10 =>

AJR(59 downto 403 <= “00000000600000000000™;
h AIJR 39 downto 36) <= “11107;
when
b Al.[}i(59 downto 40) <= “00000000000000001110;
when
AJTR(59 downto 44) <= *0000000000001110;
when others =>
AJR(59 dowmo 40; <= “00000000000000000000
AJ R 39 downto 20) <= 00000000000000000000”
R(19 downto 0) <= “00000000000000000000;
end case
end if;
whcn 1”

(S f 9 downto 16) <= SYM;
CcO COUNT +1;

cage CIOUNT is
nl=
WHCTATR(59 downto 400 <= -00000000000000000000
AJR(39 downto 20) <= “00000000000000000000";
A2JR 19 downto 0) <= “00000000000000001111"";
hen 2 =>
AJR(59 downto 40 <= “0000000000000000000Q°";
AJR§39 downto 20 <= “00000000000000000000™;
AJR(19 downto 4) <= “0000000000001111";
when 3 =>
AJR(59 dowmo40 <= “00000000000000000000™;
Al R§39 downto 20 <= “00000000000000000000";
P:‘JR 1
=>
AJR(59 downto 40) <= “00000000000000000000°;
AJR(39 downto 20) <= “00000
ASJR 19 downto 12) <= “00001111";
=>
AJR(59 downto 40 = “00000000000000000000°;
AJR§39 I’
AJR(19

9 downto 8) <= “000000001111™;

(134
r

downto 2

downto 16 “1111”;

6=>
AJRg 59 downto 40) <=
AJR(39d

when
“00000000000000000000™;
ownto 20; <= “00000000000000001111™; >

176

when 7 =>
AJR(59 downto 40) <= “000000000000000000007;
he Agl RE39 downto 24) <= “0000000000001111";
when 8 =>
AJ R259 downto 403 ~00000000000000000000°";
0 A9JR 39 downto 28 *“000000001111™;
when Y =>
AJ R259 downto 40; “0 i
AJR(39 downto 32) <= “00001111"";
when 10 =>
AJ R£59 downto 40; <= *“00000000000000000000™;
b AIJIR 39 downto 36) <= “11117;
when

=>
AJR(59 downto 40) <= “00000000000000001111™;

12
Al R(59 downto 44) <= “0000000000001111";
when 13 =
AJR(59 downto 48) <= “000000001111";
when others =>

when

59 downto 40) <= 00000000000000000000”
AJR§39 downio 20) <= “00000000000000000000"
ATR(10 downte 0) <= “00000000000000000000™;
end case;
3 =
er -
ouL2 ’73 downto 20) <= SYM;
if (8 2 -1} hen
go T COUNT +1;
Case UIQI is
2}&?38 o0 2 S ~J0009999090909990000"
win ;
e IR downio 30 <_ %00000000000000001101";
*PATR(59 downto 40 <= “00000000000000000000°";
Al R§39 downto 20 <= 00000 OOOOOOOOOOOOOOO
. AJR(I9 downio 4) <= "0000000000001101";
When IR (59 downto 400 <= 100000000000000000000
AJR§39 downio 39 <= “00000000000000000000"
1. AJR(19 downto 8) <= 000000001101
=>
W IR(59 downto 40 <= “00000000000000000000
AJR§39 downto 20) <= “00000000000000000000™;
o AJR(19 dovio 208 <= 30939909
=>
STRIR(59 downto 40) <= “00000000000000000000
AJR§39 downto 2 “000 00000000000™
 AJR(S downto 299 <= 99800000
W enAJli?SQ downio 409 <= -00000000000000000000
_ ATR(39 downio 20) <= “00000000000000001101"
nAJR?SQ downto 40 <= 00000000000000000000
| AJR(39 downio 24) <= 0000000000001 101
>
w anJR259 downio 40) <= 00000000000000000000
. AJRG9 dowinto 28) <= 000000001101
v °“AJ§§ 9 downto 40) <= “00000000000000000000'
. ATR(9 downio 32) <= “00001101
¥ enAJRE 3 downio 40) <= :00000000000000000000°;
 ATR(Y downio 36) <= 1101
w

'ATR (39 downto 40) <= “00000000000000001101™;
when 12 =>
- AJR59 downto 44) <= “0000000000001101™;
>
whenAIJR(59 downto 48) <= “000000001101";
when 13729 downto 52) <= “00001101";
when others =>
33 downto 40) <= "00000000000000000000";
A.IR§39 downto 205 <= “00000000000000000000""
3 ATR(1S dowto 0) <= “00000000000000000000";
end case;

end if;
when others =>
out2(27 downto 24) <= SYM;

177

if(S =1
U COUNT + 1;

caéc CIOUNT is

when

AJR(59 downto 40; <= "00000000000000000000”;
AJ R§39 downto 20) <= “00000000000000000000" ’,
AJR(19 downto 0) <= “00000000000000001001™";

39 downto 20 <= -00000000000000000000™;
19 downto 4) <= “00000000000010017;

?59 dovimio 40) <= 00000000000000000000"

ggsg dowmto 40) <= 100000000000000000000
R

R
R(30 downio 20 <= “0000000000000060000
R
R
R

AJ
Al
hen 3
Ty
9 downto 8) <= “000000001001";
when 4 =>
AJ
AJ
Al

when

downto 20) <= “00000000000000000000™;
downto 12) <= “00001001";

downto 40§ 0000000000000000Q";

downto 40§ <= *“00000000000000000000™;

downto 20) <= ‘00000000000000000000
downto 16) <="1001"

9

9

9

9

9

9

9 downto 40;
9 downto 20
9
3 ;
9
9
9
9

000000000000000
“000

‘z‘i
R
R
ﬁE 00000”;
R 00000000000001001""

3
1
S
3
1
S
3
1
>

5
3
5 [\a
3

S

3

5

3

0000000 ;
“0000000000001001”'

* 00000000000000000000
downto 28 “0000000010017;

ATR(59 downto 40) <= “00000000000000000000;
" Al%l downto 32) <= “00001001"";
whnen =>

R doumi 19 <2 9030000000000000000"
when 11 => '
whenAlj?F£5>9 downto 40) <= “00000000000000001001™;
whenAlj 3R(5>9 downto 44) <= *“0000000000001001™";
whenAIJ R£59 downto 48) <= “000000001001";

AJR(59 downto 52) <= “00001001";

hen 0 =
AI R§59 downto 403 <=" 00000000000000000000"3

downto 40
downto 24

nn

AJR
ASJR

é
z
s

<=
<
<
<
<

AJR <

AJR <

g =

<=

downto 40;
3

3

AJR(39 downto 2 = 000000000 (00000000000,
AJR(19 downto 0) <= “00000000000000000000";
when others =>
AJR(59 downto 56) <= “1001";
end case;
end if;

end case;
W <= COUNT;
end if;

end grocess
end BEHAVIORAL;

conﬁ%urauon CFG_IN_PORT_BEHAVIORAL of IN_PORT is
for BEHAVIO

end for;
end CFG_IN_PORT_BEHAVIORAL;

-- VHDL Model Created from SGE Schematic init.sch -- May 3 09:42:53 1997

li r['EE
use E.std_logic_1164.all;
use [EEE.std_logic_misc.all;
use [EEE.std_logic_arith.
use IEEE.std_logic_components.all;

entity INIT is .
ort (ALP:In std_logic_vector (31 downto Q);

lllll

178

ALP1 :In std_logic_vector S3l downto 0);
S1:In std_logic_vector (31 downto Q);
S2:In _ std_logic_vector (31 downto O

DELT : Out std_logic_vector (3 downto 0);
SO1 : Qut std_Tog;c_vectorg 1 downto Q);
SO2: Out std_logic_vector (31 downto 0));

end INIT;
architecture SCHEMATIC of INIT is

signa 05 : std_logic_vector(31 downto 0%;
sign SO1_DUMMY : std_logic_vector (31 downto Q);
sign SO2_DUMMY : std_logic_vector (31 downto O
component SUMMER)
Port(AX:In std_logic_vector (31 downto Q);
BX : Out std_Togic_vector (3 downto 0));
end component;

component GALOIS_MULT_32
Port (IN1:In std_logic_vector (31 downto O);
2:In_ std_logic_vector (31 downto Q);
OUT1 : Out std_logic_vector (31 downto 0));
end component;

component GALOIS_ADD_32
Port (IN1:In Sstd_logic_vector (31 downto 0);
2 :In_ std_logic_vector (31 downto 0);
OUT1 : Out std_logic_vector (31 downto 0));
end component;

’

begin

SO1 <= SO1_DUMMY;
SO2 <= SO2_DUMMY:
SuU1l: SUMMER
Port M%%(((AX(M downto 0)=>05(31 downto 0),
3 downto 0g=>D LT(3 downto 0));
M2 : GALOIS MULT_32
Port Mﬁ%(IN1(31 downto O =>82§31 downto 0),
2(31 downto 0)= Plé 1 downto Og
OUTI(31 downtg 0)=>S02_DUMMY (31 downto 0));

M1 : GALOIS T3
Port Map (INIéBl downto (RE>S 1(31 downto 0),
2(31 downto 0)=>ALP(31 downto

0
00'5'1(31 downto 0)=>SOl__DUMMY%31 downto 0));
Al : GALOIS_ADD_32
Port Mﬁ%(IN1(31 downto %)=>SOI DUMMY (31 downto 0),
2(31 downto 0)=>S02_DUMMY (31 downto 0),
OUT1(31 downto 0)=>03(31 downto 0));
end SCHEMATIC;
architecture BEHAVIORAL of INIT is
begin
end BEHAVIORAL,;
configuration CFG_INIT_SCHEMATIC of INIT is
for SCHEMATIC
for SU1: SUMMER
use configuration WORK.CFG_SUMMER_SCHEMATIC;

end for;
for M2, M1: GALOIS MULT_32
- use configuration WORK.CFG_GALOIS_MULT_32_SCHEMATIC;

end for;
for Al GALOIS_ADD_32
en‘iis% configuration WORK.CFG_GALOIS_ADD_32_SCHEMATIC;
()
end for;
end CFG_INIT_SCHEMATIC,;

-- VHDL Model Created from SGE Symbol inverse.sym -- Oct 22 15:45:17 1995

librar* IEEE;
use TEEE.std_logic_1164.all;

179

use IEEE.std_ lo"xc misc.all;
use IEEE.std_. o--xc —arith.all;
use [EEE.std_logic_components.all;

enug INVERSE is
ort ALP In std_logic_vector (3 downto 0

AL : Out std_Jogic_vector (3 downto O)}
end INVERSE;

architecture BEHAVIORAL of INVERSE is

begin
procebSS(aJp)
if (alp ="0000") th
=000 e
elsif ?alp— “0001°)then
lsﬁ”?alp- *0010°)thcn
“1001°;
elsif ?alp = "0100") then

alpi <=*"1101"";
elsif (alp = “1000") then

5 5% 8
it
Fdo
Pl M
. 4 4
[N
o
j=

=5

o=
Com:

'

=3

[y']

=]

p—
—
—

~
&
[1]
j=]

5.5 88 1 5 %
o S
oBERES
.‘d‘.‘ "J"
=3 =3
o (]
= =

=
A
W W W W 0 g g g 0
RS

ol
Oyt
5.8.

et
S
—

.‘ \;o
5
(1]
=

end process

end BEHAVIORAL;

configuration CFG INVERSE_BEHAVIORAL of INVERSE is
for BEHAVIO

end for;
end CFG_INVERSE_BEHAVIORAL,;
-- VHDL Model Created from SGE Symbol mux2_31.sym -- Feb 5 19:10:31 1996
library I
use IE
use IE
E
E

l,..

E.std_logic_1164.all;
E_std_logic_misc.all;

E . std_logic_arith.all;

E._std_ lo;,xc components.all;

use
use

lllll

enti
B,o 7\ In std_logic_vector (131 downto 0);
B:In std log1c vector (31 downto 0);

to 0 7

architecture BEHAVIORAL of MUX2_31is

begin
ocess(en,A,B)

n
i%l en= ‘0" then

180

OUTM <= A;
elsifen="1" then
OUTM <= B;
else NULL;
end if;
end process;

end BEHAVIORAL;

fo %urauon CFG MUX2_31_BEHAVIORAL of MUX2 _31is
r

end for;
end CFG_MUX2_31_BEHAVIORAL;
— VHDL Model Created from SGE Schematic ajr.sch — Nov 7 12:47:43 1995

library IEEE;
use IEEE.std_logic_1164.al};
use IEEE std_logic_misc.all;
use IEEE std_logic_arith.all;
use IEEE std_ louxc components.all

entity AJR is
ort (sCLK In std lomc

In std_log
ALPIR : Out st‘d logxc vector (3 downto 0));
end AJR;

architecture SCHEMATIC of AJR is

component IN-PORT
Port CLK :In std_logic;
ET:In std_logic;
S:In _std_logic;
SUM :In std_logic_vector (3 downto 06
AJR : Out std_logic_vector (59 downto 6
QUTI : Out std_logic_vector 231 downto
QUT2 : Qut std_logic_vector (31 downto 0);
ROW : Out std_logic);
end component; -

begin

PORT1 ; IN-PORT
Port Ma CLK->CLK RESET=>R, S=>SIG
3 downto 0y=>S YMB(3 downto 0),
39 downto 0 ->DEL(5 downto 0)
1(31 downto 0)=>VO1 %31 downto 0),
OUI 2(31 downto 0)=>VO2(31 downto 0), ROW=>ROW);

end SCHEMATIC;
configuration CFG_AJR_SCHEMATIC of AJR is
for SCHEMATIC
for PORT1: IN-PORT
las% conﬁourauon WORK.CFG_IN-PORT_BEHAVIORAL;
end for;
end for;
end CFG_AJR_SCHEMATIC;

-- VHDL Model Created from SGE Symbol comp_add.sym -- Jul 5 18:47:45 1995

Ii y IEEE;
use TEEE.std_logic_1164.all;
use [EEE.std_ loolc misc.all;
use IEEE.std_logic_arith.all;
use IEEE.std_ log,lc “components.all;

enusl COMP_AD
I&l In std _logic_vector (3 downto 0);
:In std_logic_vector (3 downto 0);
AR P
ogic_vector
end COMP_ADD; S8 ownto©));

181

architecture BEHAVIORAL of COMP_ADD is

OUTl <= Al xor A2 when CON = “0000"
else Al;

end BEHAVIORAL;

configuration CFG_COMP_ADD_BEHAVIORAL of COMP_ADD is
for BEHAVIORAL

end for;
end CFG_COMP_ADD_BEHAVIORAL;
-- VHDL Model Created from SGE Schematic blocl.sch -- May 3 09:40:13 1997

it IEEE;

use TEEE.std_logic_1164.all;

use IEEE.std_logic_misc.all;

use [EEE.std_logic_arith.all;

use [EEE.std_logic componemsall

enn{y BLOC1 is
ort ALPI In std logxc vector §31 downto O)
AL :In std_Togic_ vector ldownto
In std_logic_ vector (31 downto O
Bl:In std_logic_vector (31 downto
DEL In std_logic_vector (31 downto d)
In std_logic_vector (1 downto 0);
:In std_logic_vector (31 downto 0);
LAM1 :In stJ _logic_vector (31 dowmo);
Z:In std_logic_vector (31 downto O
LO:Out std_logic_vector (3 ldowmob
LO1: Out std_logic_vector (31 downto 0});
end BLOCT;

architecture SCHEMATIC of BLOC1 is
signal OS5 :std_logic_ vcctor§31 downto Og
si1en

T

L

1

{ 8 : std_logic_vector(31 downto Q
S :n 09 : std_logic_vector(31 downto O
s 010" std_logic_vector(31 downto
sxgnal OB : std_loglc vector(31 downto 0);
signal OB1: std_logic_vector(31 downto 0);

component
Port (

MUX2_31
A:In std_logic_vector (131 downtg 0);
B IIII stdaloglc vector (31 downto 0);
St
¢ - Out ~std__logic_vector (31 downto 0));
end component;

component GALOIS_ADD_32
rt(INI:In std loglc vector (131 downto 0)
IN2 : In_ std_logi¢_vector (31 downto 0
OUT1 : Out std_logic_vector (31 downto 0));
end component;

component GALOIS_MULT,
rt { 1:In sud loglc vector (131 downto 0);
INZ In std loglzc vector (31 downto 0);
OUT1 : Out std_logic_vector (31 downto 0));
end component;

begin

Port M (A(3' 1 downto 0)=>Z(31d
]3p downto 0)->13EL(31 m 0), EN=>E(1),
(31 downto 0)->OB1(downto 0));

MUX4 : MUX2 1
Port Mﬁp (A(31 downto O —>Z(31 down
ownto 0)=>DEL(31 downt.o 0) EN—>E(O),
O 31 ownto 0)=>0B(31 downto 0));
: GALOIS

"PortMa (INl 313 wmo =>L AM1(31 downto 0),

owmo 0)=>010(31 downto 0),
&3 1 owmo O)—>L 1331 downto 0));
ADDI1 : GALO D_32

182

Port Ma Hg(INI(31 downto 0 ->LAM(31 downto 0),
ownto 0)=>09(31 downto 0),

to 0)=>LO(31d 100
MUL2 - ALO(I ovPae =>LOG1 downto 0));

Port Map (IN1 downto O)=>0B1(31d to O

© ul’r_(53 O TP re dow%‘;glog)
&31 downto 05—>08(1 downto 0)

MUL1: MULT_3

Port M [18 é I3l\f1 f&g&»ar;t_o;RfOBOl downto 0),

31 downto Q),
QUT1(31 downto O&—>OS 31 downto 0));
MUL4 : GALO
PonMng(I‘\I1(31 downto Q ->Bl 31 downto 0),
31 owmo 0)=>08(31 downto 0),
1(I downto G£—> 10(31 downto 0));
MUL3: G

Port Map (IN1(31 dowmo Q ->05(31 downto 0),
[132(31 downto 0)=>B(31 downto 0),
OUT1(31 downto 0)=>09(31 downto 0));

end SCHEMATIC;
configuration CFG_BLOC1_SCHEMATIC of BLOCI1 is

for SCHEMATIC. s
lascte conﬁgurauon WORK'CFG _MUX2_31_BEHAVIORAL;
en
Br1 1 ADDI: GALOIS_ADD 3
oﬁse Eontion WORK CEG-GALOIS_ADD_32_SCHEMATIC;
en for:
MUL2, MUL1, MUL4. MUL3: GALOIS_MULT.
0%% S o WORK G 5 b ST 52 “SCHEMATIC;
en or;
end for;

end CFG_BLOCI1_SCHEMATIC;
-- VHDL Model Created from SGE Schematic bloc2.sch -- May 3 10:15:13 1997

1i 4 l =
use E qtd logic_1164.all;
use F E.std_logic_misc.all;
use [EEE.std_ lowxc _arith.all;
use IEEE.std_logic componentsall

enus/ BLOC2 is
ort ALP In std_logic_vector §31 downto O),
1:In std_Jogic_vector (31 downto O
DEL In std_logic_vector (31 dowmo 0)
E: std_logiC_vector (5 downto 0);
INIBLOC In~ sfd_Togic_vector (31 downto Og
INBLOCI In std _logic_vector (31 downto O
:In std_logic_veéctor (31 downtoO
S1:1In std_logic_vector 53 downto
stcl'loblc vector (31 downtoO
V1:In std_logic_vector (31 dowmo 5
Z:In std_lTogic_vector (31 downto 0
C: Out std, loglc vector (31 downto 3
C1: Out_std_ u{;xc ~ vector (31 downto 0);
OTADD : Out s loglc vector (31 dowmoO
02ADD]1 : Out_ std_logic_ vector 31 downto
SO : Out std_logic_vector (31 downto 8
SO1": Out sud_logic_ vector (31 downto 5)
end BLOC2;

architecture SCHEMATIC of BLOC2 is

W : std lomc _vector(31 downtoO
Wi: std' ogic_vector(31 downto
S3 std olg c_vector(ldowmoo
0gIC_vector(ldownto
S4 std Togic_vector(31 downto)
OM3: std_logic_vector(31 downtg 0);
Tl std_logic_vector(3] downto Q);
: std_logic_vector(31 downto Q);
%3 std_logic_ vector331 downto 0);

<Zwn
e
=

S

std_logic_vector(31 downto 0);
O1ADD DUMMY logic_vector (31 downto (8;
OZADDI_ DUMMY : std_logic_vector (31 downto 0);

SSSopSpsse8g

nwnwninnn

183

signal SO_DUMMY :std_logic_vector (31 downto (8;
signal SOT_DUMMY : std_logic_vector (31 downto 0);

component MUX2_31 .
Port (A :In std_logic_vector 331 downto 0);
B:In std_logic_vector (31 downto 0);
EN:In _std_logic; .
OUTM : Out “std_logic_vector (31 downto 0));
end component;

component GALOIS_ADD_32
Port (IN1:In std_logic_vector (131 downto 0);
IN2 : In_ std_logic_vector (31 downto 0);
OUT1 : Out std_logic_vector (31 downto 0));
end component;

component GALOIS_MULT_32
Port (_IN1:In std_logic_vector (131 downto 0);
IN2 :In_ std_logic_vector (31 downto 0);

OUTI1 : Out std_logic_vector (31 downto 0));
end component;

component CO_ADDER_32
Port (_A:TIn std_logic_vector $31 downto 0);

B:In std_logiC_vector (31 downto ();
C:In std_logic_vector (31 downto 0);
D Out std_logic_vector (31 downto 0));
end component,;
begin

O1ADD <= O1ADD_DUMMY:
02ADD1 <= 02ADD1_DUMMY:
SO <= SO_DUMMY:

SO1 <= SO1_DUMMY;

131 downt => =>E
(31 downto 0)=>T4(31 downto 0));
MUX4 : MUX2_31
Port M%p (A(31 downto 0)=>SO_DUMMY(31 downto 0),
%31 downto 0)=>T1(31 downto 0), EN=>E(4),
(@] 2(3’3 11 downto 0)=>T2(31 downto 0));

MUX3 : MUX
Port M%p (A(31 downto (§)=>S4(31 downto 0),
O(3 1(31

MUXS5 : MUX2_31
Port M%p (A(31 downto (_})3=>SOI_DUMMY 31 downto 0),
B 0 Q) (31 downto 0), 5),

1 downto 0)=> downto 0), EN=>E(3),
3 11 downto 0)=>0OM3(31 downto 0));

Port M%p (A(31 downto 0)=>S3(31 downto 0),
531 downto 0)=>S(31 downto 0), EN=>E(2),
@] (31 downto 0)=>OM(31 downto 0));

1:
Port Map (A(31 downto O)=>Z(31 d to 0
O M o e S o N 1),
ou IM,)(3311 downto 0)=>W1(31 downto 0));

MUXO : 2
Port M. A(31 downto 0)=>Z(31 downto 0
o M ownto O)=>BEL(%(‘} L EN=>E(0),
@) 31 downto 0)=>W(31 downto 0));
GALOIS D_32

I.3:
“Port Mfﬁ(IN1(31 downto Q)=>W1(31 downto 0),
2(31 downto 0)=>0OM3(31 downto 0
OUT1(31 downto 0)=>SOI_DUMMY (31 downto 0));
I.4: GALOIS _ADD_32
“Port Mﬁa([N1(31 downto 0)=>W (31 downto 0),
2(31 downto 0)=> Mgl downto 0
OUTIS31 downto 0)=>SO_DUMMY (31 downto 0));
1_8 : GALOIS T 32
“Port Mﬁg(IN1(31 downto 0)=>ALP1(31 downto 0),
2(31 downto 0)=>S1(31 downto 0),
OUT1(31 downto 0)=>S4(31 downto 0));
I_5:GALOIS T 32
“Port Mﬁg(IN1(31 downto 0)=>SO1_DUMMY (31 downto 0),
2(31 downto 0)=>ALP1(31 downto O
OUTIS:\%{I downto 0)=>T3(31 downto 0));
I_6: GALOIS MULT_32
“Port Mﬁg(IN1(31 downto 0)=>SO_DUMMY (31 downto 0),
2(31 downto 0)=>ALP(31 downto (8,
OUT1(31 downto 0)=>T1(31 downto 0));

184

MULS5 : GALOIS MULT_3
PortM (IN 1(;3 1 downto (R.L>S§3l downto 0),
231 downto 0y=>ALP(31 downto 0),
7. AL(1)351 down%g g§—>53(31 downto ());
PonM (IN1 d(31 downto 0! >T2gl downto 0),
HGZ(31 downto 0)=> 1(31 downto 3)
MULS - o 31 downto 0&—>01ADD DUMMY (31 downto 0));

ALOIS MULT_3
Port M IIG(IN1(31 downto (R\I>T4gl downto 0),
2(31 downto 0)=> S31 downto 0
OUT1(@31 downto 0)=>02ADDI_DUMMY (31 downto 0));
I_% sy AI(D.E(EB}% d32 to 0 31d 0)
ort own o -> ownto 0),
Map (AL dov YS'MMY 31 dowvmto 0,
C 31 downto O Y(31 downto 0),
31 downto O ->C(31 downto 0));
ADD7:C DER_32
Port Ma (' A(31 downto 0)=>V1(31 downto 0),
downto 0)=>S0O1_DUMMY (31 downto 0,
C 31 downto)=>02ADD1_D (31 downto 0),
D(31 downto 0)=>C1(31 downto 0));

end SCHEMATIC;
configuration CFG_BLOC2_SCHEMATIC of BLOC2 is

fof Scﬁa}%AﬁtCJm MUX3, MUX2. MUX1, MUX0: MUX2_31
or
o358 conﬁ«vurauon ' WORK CFG_MUX2_31_BEHAVIORAL;

S | 4: GALOIS_ADD 32
O%s% Sorihpuration WORK.CEG_GALOIS_ADD_32_SCHEMATIC;
ena 1or;
ErL 8 15 1 6. MULS, MUL7. MULS: GALOIS MULT._32
usE con'ﬁﬂumuon WORK.CEG_GALOIS. MULT™ 32, SCHEMATIC;

end fo
B ADD7: CO_ADDER 3
Ofas% o toa W O CEG_CO_ADDER _32_SCHEMATIC;
€na 1or;

end for;

end CFG_BLOC2_SCHEMATIC;
-- VHDL Model Created from SGE Schematic bloc3.sch -- May 3 09:58:02 1997

library IEEE;
use E E std_logic_1164.all;
use E.std_logic_misc.all;
use [EE_ std_logic_arith.all;
use [EEE.std_logic_ componems all;

entig BLOC3 is
ort (ALPI:In std, loglc vector §31 downto 0)
ALPI1 :In std_Togic_vector (31 downto 0
B: In std_logic_ vector (31 owmoO
Bl : In std' lolglc vector (31 dowmo
ogic_vector (31 owmod

n std lo ic_vector (5 downto 0);
IIBLOCI Togic_vector (31 downto Og
I2B LOCl stdjoglc vector (31 downto 0

: n

INM2:In std_logic_vector (31 downto Q
LAM :In std_logic_vector (31 downto O
LAM1 :In std_logic_ vector 31 downto
BO : Qut std Togic_vector (31 downto 08
BO1: Out std_ l ic_vector (3 dowmo
DOUT : Out std_ oglc vector (3 downto 0));
end BLOC3;

architecture SCHEMATIC of BLOC3 is

si"nal 01 : std_logic_vector(31 downto 0);
3 Q2 : std_logic_vector(31 downto Q); ;

std_logic_vector §3 downto(:g

03 std_logic_vector(31 downto 0);

: std_logic_vector(31 downto Q);
O std logic_vector(31 downto 0);
011 : std_logic_ vectorEBl downto
012 Ld_ Clogic_vector(31 downto 0):

nhinthwnn
Hes333

"‘\1

185

component GALOIS_ADD_32
Port (_IN1:In Sstd_logic_vector (31 dowmo 0)
IN2 : In_ std_logi¢_vector (31 downto 0
OUT1 : Out std_logic_vector (31 dowmo 0));
end component;

component SUMMER
Port (AX In std_logic_vector g 1 downto 0);
- Out std_Togic_vector (3 downto 0));
end component
component MUX2_31
Po?to(A In “std_logic_vecto, 531 downto 0);
:In std logxc vector (31 downto 0);
EN In std_lo
OUTM : Out s loglc_vector (31 downto 0));
end component;

component GALOIS _MULT_3
Port (_IN1 : std_logic_ vector 31 downto 0);
IN2:In_ std logllc vector (31 downto 0);
OUT1 : Out std_logic_vector (31 downto 0));

end component;
begin
: GALOIS_AD
Tort Mng(IN1(31 aowmo Q ->]ZNM1(31 downto 0),

2(31 downto 0)=> 2(31 downto Q
OUT1(31 downto 0)=>07(31 downto 0) 3
SUM1:S R

Port Map (AX(31 downto 0)=>07(31 downto 0),
B%(3 doinio 0)=>DOUT(S downto 0))
MUXI10: 2.3

Port Map (A 3Td wnto 0)=>012(31 down
Bp . L GO0 O O T3 o Oy, EN=>E@),

downto 0)=>BO(31 downto 0) };
MUX11: MUX

31
Port Map (A(3T downto Q —>011 31 downto
B‘% 3(1 d(ow nto 0)=>1 5(31 downto 88 EN->E(5)
UTM(31 downto 0)—>B01(31 downto

MUXS : sz 31
Port MBp (A(31 downto 0)->B1 31 down
downto 0)=>LAMI(ldownto 0) 'EN—>E(3)
o) (1 downto 0)=>04(31 downto 0))
MUX7 : MUX2 31

Port Map (A(31 downto Q —>ALPIl 31 downto 0
13p S LG L dogst EN3>E(1),
(31 downto O)—> 3(31 downto 0));

Port8M (A(El d wmo O) =>B 31 downto
[¢] =]
Bp downto 0)=>LAMG1 O EN=>E(2),
31 owmo 0)—> 2(31 downto 0));

MUXE6 : MUX’) 31
Port Ma Bp (A(3'1 downto O ->ALPI(31 downto 0),
31 owmo 0)=>DE 81 downto 0), =>E(0),
IV -> 1(31 downto 0));

MUL10: S M
Port Mang (IN1 53'1 dowmo 0 >O3é31 downto 0),
ownto 0
UTl 31 down[o O =>011(31 downto o))
MUL9 : OIS

P M (IN1(31d Tf’éo Q1(31 downto 0)

ort own => own R
ﬁ% 2(31 downto 0)->(32 ownto 0),

1(31 downto 0)=> 12(31 downto 0));

end SCHEMACI'IC,
configuration CFG_BLOC3_SCHEMATIC of BLOC3 is
for SCHEMAT

IC
forI_1: GALOIS_ADD_ 32
use conﬁgurauon WORK.CFG_GALOIS_ADD_32_SCHEMATIC;

end fo
for SUMl SUMMER
use conﬁgurauon WORK.CFG_SUMMER_SCHEMATIC;

forMUXlO MUX11, MUX9, MUX7, MUX8. MUX6: MUX2_31
%s% configuration WORK.CFG_MUX2_31_BEHAVIORAL;™
ena tor,;

(ownto 0

186

for MUL10, MUL9: GALOIS MULT 3
use configuration WORK.CFG GAI:OIS _MULT_32_SCHEMATIC;

end for;
end for;
end CFG_BLOC3_SCHEMATIC;

-- VHDL Model Created from SGE Schematic blocked.sch -- May 3 (09:39:09 1997

Ll y IEE
use [EEE <td logic_1164.all;
use IEEE std_logic_misc.all;
use IEEE.std_logic_arith.all;
use IEEE.std logxc componentsall

enu%' BLOCKED
ALP: In std logic_vector §31 downto 0);
ALP In std_Jogic_: vector ldowmo 0)
ALPI :In std_logic_vector (31 downto 0);
ALPI1 : In std_logic_vector (31 downto 0;
:In std_logic. vector (31 downto 0);
Bl: In std' logic_vector ((31 downto
logic_vector (13 downtoO
DEL In st& logic_vector (31 downto
:In swd_logic_vector (31 downto
In std_logic_vector (31 downto 8
In std_logic_vector (31 downto 5
std_Togic_vector (31 d ownuo
1: In std_logic_vector 31 downto (f

:In std logic_vector 31 downto

:In “std_logic_ vector ownto
:In std_Togic_ vector dowmo

: Qut std_logic_vector (31 downtoO
: Out std_logic_vector (31 downto
O t std_logic_vector (31 downtoO
: Out std' logic_vector (31 downto
A Out std_logic_ vector (3 downto
Out std_logic_vector (31 downto &

o
L ()~
Omcl"‘chOWN<<

: Out std_logic_ vector(1 downto
O t std Jogic_vector (31 downto O
: Out std_logic_vector (31 downto 0));
end BLOCKED
architecture SCHEMATIC of BLOCKED is
signal Cl: std_logic_vector(31 downto Q);
sign C2 : std_logic vecto 31 downto 0);
sign LO_DUMMY : std_logic_vector (31 downto 08'
sign LOT_DUMMY : std_logic_vector (31 downto 0};
compo?cnt BLOC3

ALPI:In sid loglc vector §31 downto 0);
ALPI1:In std_Jogic_ vector(ldownto O)
B:In std_logic. vector (31 downto O

B1:In std_logic_vector (31 downto
DELI:In sud_Iogic_vector (31 downto d),
E:In std_ lO“lC vector (5 downto 0
I1BLOCI : In ~std_[ogic_vector (31 downto 0);
I2BLOCI : In std _logic_vector (31 downtg 0);
INMI:In std_ logicC_vector (3

INM2:In std_ Iogxc vector (31 downto 0
LAM :In std_logic_vector (31 downto O
LAMI :In std_ loglc vector § ldownto
BO QOut std_Togic_vector (31 downto O
Out std' logic_vector (31 downto
*Out sid_logic_vector (3 downto)
end componem

downto 05

component BLOC2
Port(ALP:In std_logic_vector §31 downto 0);
ALPI :In std_Jogic_ vector ldowm.o ;
DEL ‘In std_logic_vector (31 downto 0);
E:In_ std_logiC vector (5 downto 0);
INIBLOC : In" std_Jogic_vector (31 dowmoO
INBLOCI1 : In std _logic_vector (31 downto
S: std logic_veéctor (31 downto
S1:In std_logic_vector 31 downto
V:In stdjogxc vector 31 dowmo
Vl In sid_logic_vector (31 downto 5
:In std Togic_vector (31 downto 0);

187

C : Out std logic_vector (31 downto 0);
Cl: Out std_ lo'xc _vector (31 dowmo):
OTADD : Out std_ logic_vector (3 1dowm00
O2ADDI1 : Out ‘std_ logxc vector 31 downto
SO : Qut std_logic_vector (31 downto 8
SO1": Out ‘std_logic_vector (31 downto 5),

end component;

component BLOC1
rt(ALPI:In std loglc vector :531 downto 0);
ALPI1:In std_logic_ vector(1 downto 0),
B:In std_logic. vector (31 downto O
Bl:In sid_logic_vector (31 downto
: std_logic_vector (31 downto d),
E:In std 16gic_vector (1 downto 0
AM :In std_logic_vector (31 downto 8
LAMI1 : In std_logic_vector (31 downto
Z:In std_logic_vector (31 dowmo 0);
LO:Out std_logic_vector (31 downto 0);
LO1:Qut std_logic_vector (31 downto 0});

end component;
begin

LO <=1L0O _DUMM
LO1 <=L0O1 DUMMY

BLO3:BLO
Port Map S:ALPIGI downto 0)—>ALPIS31 downto 0),
11(31 downto O)->ALPIl(3 downto 0),

531 downto 0)=>B(31 downto 0),

31 downto 0)=>B 1(31 downto 0),

I(31 downto 0)=>DELI(31 dowmo 0,

(B ownto 0)=> 13 downto 8)

1BLOC1(31 downto Q ->LO D Y31 downto 0

2BLOC1 31 downto 0)=>LOT_DUMMY (31 downto
531 ownto 0)=>C2 31 downto 0),

[INM2(31 dowmo 0 ->C 31 downto 0),

AM(31 owmo 0)=>L 3 downto 0),
AMI1(31 downto 0)=>L1(31 downto 0),

BO(31 downto 0)=>BO(31 downto 0),

BO L§Tl downto 0)=>BO1(31 downto 0),
BLOZ - (3 ownto 0)=>DELTA(3 downto 0));

Port Map &)ALP(31 downto 0)=>ALP 31 downto 0),
downto 0)=>ALP1(31 downto 0),
DEL 31 downto O -.>DEL(3 downto 0),
E 5 ownto 0)=>CE(S downto
BLOC(3T downto o _> 1 DUMMY(31 downto 0),
INBLOCl 31 downto DUMMY(31 downto 0),
31 downto 02) g downto
31 downto 0)=>S1(3
1 downto 0)=>V (3 dowmo 0)
31 downto 0)=> 1(downto 0),
Z§3 downto O%)—>Z downto 0)

C(31 downto 0)=>CO(31 downto b)
Cl(31 dowmo =>C0O1(31 dowmo 0),
Ol1AD 531 downto 0 ->C2&3 downto 0),
OZADD (31 dowmo) (31 downto 0),
O 31 downto 2) 6 0 (),
31 downto 0)=>S 1(31 dowmo 0));
BIISOr% MB 0ALF'I(31 d to 0)=>ALPI(31d O)
0 own => ownto s
AR.,&’ 31 downto Q)= PIl(3S downto O
331 dowmo 02) =>B 31 downto 0
31 dowmo)=> (El downto 0),
(31 downto 0 ->D 1 downto 0),

E 1 downto 0)=>CE to 6),
L 531 downto O —>L 31 downt.o 0),

LAMI(31 downto 0)=>L.1(31 downto 0),
Z(31 downto 0)=>Zf»l downto 0%,
LO(31 downto O O_DUMMY(31 downto 0),
LO1(31 downto)—>L01 D (31 downto 0));
end SCHEMATIC;
configuration CFG_BLOCKED_SCHEMATIC of BLOCKED is
for SCHEMATIC

for BLO3: BLOC3

188

use configuration WORK.CFG_BLOC3_SCHEMATIC;

end for;
for BLO2; BLOC2
use conﬁourauon WORK.CFG_BLOC2_SCHEMATIC;

for BLOI BLOC!1
las% configuration WORK.CFG_BLOC1_SCHEMATIC;
end for;
end for;

end CFG_BLOCKED_SCHEMATIC;
-- VHDL Model Created from SGE Symbol control_unit.sym -- Mar 4 21:11:41 1996

i y IEEE;
use TEEE <td logic_1164.all;
use IEEE.std_ lO"lC misc.all;
use IEEE.std_logic_arith.all;
use IEEE.std lo-vxc componems all;

entity CONTROL_UNIT is

ort (AJR ‘In std _logic_vector (59 downtg 0);
BIl : In sid_logi¢_vector $31 downto 0;
BI2: In std logic_vector (31 downto 0
CLK : In std_logic;
DEL : In std'lo"xc vector ((3 downto ();
DELI: In logic_vector (3 downto 0):
DELTI : In td‘ logic_vector (3 downto 0);
DET: <td Touc _vector (3 downto 0);

G
LIl In std_logic_ vector (31 downto Q);
LI2 : In std_logic_vector (31 downto 0);
RES : In std_logic:
ROW : In INTEGER
S11:In std_logic_vector (31 downto Og
S12:In swd”logic_vector (31 downto 0
SI1:In std_logic_ vectoré 1 downto 0);
SI2:In sid_logic_vector (31 downtoO
I1:In std_logic_vector 231 downto
VI2:In sud lolglc vector (31 downto 0
BO1: Qut sid oglc vector£ ldowmo()
BO?2 : Out std_logic_vector (31 downto 0);
DELIQ : Out std_logic_vector (31 d downto 0);
DELO : Out std_Josic_vector (31 downto 0);
LO1 : Qut std_[ogic_vector g31downto 03
LO2 : Qut std_logic_vector (31 downto 0
OUT_CON : Out ™ std_Iogic_vector (13 downto 0);
SO1 : Out std_logic_vector (31 downto
SO2 : Out std_logic_vector (31 downto Q);
VO1 " Out std_logic_vector {31 downto
VO2: Out std_logic_vector (31 downto O),

end CONTROL _UNIT;

architecture BEHAVIORAL of CONTRO

type ST TE TYPE IS (%LPHA BETA,DELTA,DELT SIGMA,STOP);
mgnal CS,NS :S STOP;

signal r : INTE Rran"eOlo 16:=0;

si b'gal tempd : std_logic. vector (3 downto 0);

----g-l-Process to hold a combinational logic.
COMB IN rocess(CS r.k,tempd row)
variable | R range 0 o i5:=

variable rt : INTEGER range 0t0 16 ;= 0
variable rowt : INTEGER range O to 15:= 0;
ocedure Process_State is

1f (r= 15 k) then
S <= SIGMA
lfout con(13 downto 0) <="------11000000"";

15 -
(temb?d(3 downg%) £) = *“0000") then

i out_con(13 downto 0) <= “00000000000000™;
e
———ememneeee delta not equal to “0000”
(r<=2% - rowt Lhen
NS <= ALP

189

else
c——e—memeee —r>2¥%] - row
NS <= BETA;
end if;
end Process_State;
begin
n=r;

when ALPHA =>
out_con(13 dowmo 0) <= *“00000011000000™";
Process_State;
when BETA =>
L:=rt-1-row
out_con(13 downto 0) <="001111110000007;
Process State
when DELTA
Process State,
when SIGMA =
if r=15) Lhen
rowt =row; I:=0;

d if;
1f(r— 15-k+ 1) then
out_con(13 downto 0) <= “---—-—--001111117;

else
out_ _con(13 downto 0) <= “--—--00110011";

end if
NSlf<(-Sr>é5 k) and (r < 15)) then

1f (rowt = 0) then
Process State;

NS <= DELT;
end if;

when DELT =
out, con(13 downto 0) <= “11----11000000";
if (r < rowt) then
NS <= DELT;
else
Process State;

end if
1 wt(l)en STOP =>
Tf rts<— rowt) then

ELT;
out, cong 3 downto 0) <= "*11----11000000";

Process State;
end if;
end case;

end process;

SYNCH : proce%s CLK RES r,row del deh det,delu,sll s12,1i1,1i2,bil,bi2,sil,si2,ajr)
variable rtemp : R range 0 =

variable ajrt : std 10“1C vector‘fSQ downto),

vanablet " delt,t_deli;mysign : std _logic_vector(3 downto 0);

ﬁgRES— ‘1’) then

P <— ' STOP;
elsif (CLK’EVENT and CLK = *1°) then
if (CS = STOP) then
re=1;
rtemp =T,
else
rtemp :=rtemp + 1;
rff— r+1;
1f tem Dor(rtemp>1
e nor (emp 2 5 1000100010001”
lol 31 downto 20) <= *000100010001’
102(19 downto Q) <= 000100010001oob10001
102(31 dowm02) <= “000000010001" -
Bo% %? gown%o)<_ 0880 (1)001c1)00106010001
10 oOwnto
b02(19 downto 0) <= ‘00010001000100b10001"
bo2(31 downto 20) <= “0000000100071

190

sol <=sll;
so2 <=s12;
vol <=vil;
vo2 <= vi2;
else
lol <=1il;
lo2 <= 1i2;
bol <= bil;
bo2 <= bi2:
sol <=sil;
$02 <= si2;
end 1f;
case rtemp is
when 1 => i
mysign = ajrt(3 downto 0);
when Z =>]
mysign := ajrti(7 downto 4);
when 3 => R
m blﬂﬂ = ajrt(11 downto 8);
when R
m swn := ajrt(15 downto 12);
when > R
mysign := ajrt(19 downto 16);
when > i
mysign := ajrt(23 downto 20);
when 7 =>)
m w'n = ajrt(27 downto 24);
when .
m swn := ajrt(31 downto 28);
when 9 =>]
mvsuvn = ajrt(35 downto 32);
when 10 = .
mvswn = ajrt(39 downto 36);
when 11 = A
mysign := ajrt(43 downto 40);
when 12 => ~
mysign := ajrt(47 downto 44);
when 13 => ~
mysign := ajrt(51 downto 48);
when 14 =>]
mysign := ajrt(55 downto 52);
when 15 =>
mysign := ajrt(59 downto 56);
ajrt ;= ajr;
when others =>
r<=1;
rtiemp = 1;
mysign := ajrt(3 downto 0);
end case
CS <=NS;
if ((row 0) and (rtemp = 1)) then
t_delt :=det ;
t_deli := deld;
elsif (rtemp <=row) then
t_delt:= mysign:
t_deli = deli;
else
t_delt := del;
t deh deli;

delo(11 downto

%8‘

downto 28) <=t delt 3 downto 0
downto é <= t_deli(3 downto 0);

(0]
(0]

o(11 §<- t_dehi(3 downto 2}
o(15 downto 1 _deli(3 downto
io(19 downto 16) <= t _deli(3 downto 0);
o 2% downto 20) <=t_ deh 3 downto 0);
o

(4]

N COLOLOLCL
QOO0

<]

aQacoaacn

e

e

e downto 24) <= t_deli(3 downto Q);

elio(31 downto 28) <=t_i deh 3 downto 0);
tempd <=t_delt;

end if;

end process;

191

end BEHAVIORAL;
configuration CFG_CONTROL_UNIT_BEHAVIOR AL of CONTROL_UNIT is

for BEHAVIORAL
end for;
end CFG_CONTROL_UNIT_BEHAVIORAL;
-- VHDL Model Created from SGE Symbol ramalp.sym -- Jan 5 12:13:35 1996

1i 7 [E
use TEEE <td logic_1164.all;
use IEEE.std_logic_misc. all;
use [EEE.std_logic_arith.all;
use IEEE.std_logic_components.all;

enti?'RAMAL
ort (Al: Out std_logic_vector (131 downto O)
A2:Out std_logic_vector (31 downto O
All : Qut std_logic_vector (31 downtoO
AI2 : Out std”logic_vector (31 downto O
ZERO : Out std_logic_vector (31 downto ()))
end RAMALP;

architecmure BEHAVIORAL of RAMALP is

a 1 downto 0 <- “10111100011000111000030000100001";
a2 1 downto 0 “0000100111011111111001 11101001017,
ail(31 downto ; “01011010011111101111130110010001 "
2i2(31 downto 0) <= ~00000010010010000011011011001011";
zero(31 downto 0) <= 00000000000000000000000000000000’ ;
end BEHAVIORAL;

configuration CFG RAMALP_BEHAVIORAL of RAMALP is
for BEHAVIO

end for;
end CFG_RAMALP_BEHAVIORAL;
-- VHDL Model Created from SGE Schematic decoder.sch -- May 2 11:28:45 1997

library [E
use TEEE <td _logic_l1164.all;
use IEEE.std_logic_misc.all;
use IEEE.std_logic_arith.all;

use [EEE.std_logic componemsall

entity DECODER is
ly K: In INTEGER;
:In std_logic;
SIG . In std_logic;
SYMB:In s ‘Iomc vector (3 downto (3
)

CO : Qut std_Togic_vector (31 downto O
CO1: Out std_logic_vector (31 downto
end DECODER;
architecture SCHEMATIC of DECODER is

01 : std_logic_ vectorgl downto 0;

41

n 02 : std_logic_vector(31 downto O
na A : std_Togic_vector(
m Al std_logic_vector(31 downto Q);
. A2 : std_logic_vector(31 downto Q

41}

n 0);

41

9 downto 0);

AIl : std_logic_vector(31 downto
AI2 : sid_logic_vector(31 downto
Z - std_Togic_vector(1 downto 0);
S2 : std_logic_vector(31 downto
mal DIl : std_logic_vector(3 dowmogg

’

D2 : std logic_vector(3 downto O

na DI2 : std_logic_vector(3 downto
n B3: std'lomc vector(31 downto
m B4 : std_logic_vector(31 downto Q);

Ma L3 : std_logic_vector(31 downto Q};
ignal L4 : std_logic_vector(31 downto 0);

rhwmnmLtwnnnnwnnngnnnon
)

192

: std_logic_vector 31 downto 0
: std_logic_vector 31 downto 0
. std_logic_vector(3 downto 0);
:suﬂoglc vector(31 downto
- std_logic_vector(31 dowmoO
: std_logic_vector(31 downto
: std_logic_vector(31 downto 0):
:std lO}.:lC vector(31 downtoO
:std logic_vector(31 downto §

: std_ louc vecto 31 downto ;
na DEI : std_logic_vector: 31 downto Q);
na V1 : std_logic_vector(31 downto Q); ;
ma V2 : std_logic_vector(31 downto 0); ;
na OC : std_lozic_vector(13 downto
na S1 :std Toonc _vector(31 downto 0);’
mal N_1: std_logic:

nal K : INTEGER:

component CLOK
P RIS Out std_logic):
end componem

I RIrd N bt ps NN

=)

£
(W] %1% I quivelvel w17
m&

nhonininintininmnnnhnmnunnnnw
<

component IN_ PORT
Por (—CLE:In std_logic;
S -In std _logic;
-In std_logic;

SYM In qtd”lowlc vector 23 downto 0);

:Out std” logic_vector (59 downto
I: 8u{ QS }o«xc vec{gg 8% gownto 8;
UT2 : Out std_logic_vec ownto 0);

ROW : Qut INTEGER);

end component;

component RAMALP
Port (Al:Qut std_ logic_vector (31 downto 0)
Out std_logic_vector (31 dowmoO
All : Out std_ lonxc _vector (31 downto
AlI2 : OQut std_logic_vector 31d0wnt00
ZERO - Out std_logic_vector (31 downto D));

OOE.

end component;

component INVERS
Po v ? enALF’ In std logic_vector (3 downto Q);
ALPI: Out std_logic_vector (3 downto 0) J;
end componen[

com onent INI

p It (ALP In std_logic_vector §31 downto 0)

:In std_Togic_vector (31 downto O
Sl In std loglc vectorz downto 0);
S2:In std_logic_vector (31 downto 0);
DELT Out std_logic_vector (3 downto 0);
SOl Out std_Jogic_ vectorg 1 downto 0);
SO2 : Out std_logic_vector (31 downto 0 "
end component;

component CONTR OL_UNIT
Port F n(_AJR:In std_logic_vector (59 downtg 0);

BI1:In sud_logic.vector (31 downto 0Q);
BI2:In std_logic_vector (31 downto O);
CLK : In std_logic;
DEL : In std_logic_vector %3 downto 0);
DELI: In std_logic_vector (3 downto
DELII: In std_logic_vector (3 downto j
DET : In _std Togic_vector (3 downto 0);

K:In ER;

LIl :In std_logic_vector (31 downto 0);

LI2:In std_logic_vector 31 downto 0);
In std_I0gic;

ROW E

: R;
S11 :In std logic vector (31 downto 0
S§12:In std_logic_vector (31 downto 0;
SI1:In std"lonlc _vector (31 downto
SI2:In std_logic_vector (31 downtoO
VI1:In ‘sid_logic_vector £31 downto
VIZ: std logic_vector (31 downtoO
BOl Qut sid_fogic_vector 31 downto(')
BO2: Out std'1 ic_vector (31 downto O
DEL O " Out std_logic_vector 81 Jownto :
DELO : Qut std_logic_vector (31 downto 0);

—
.':!

193

LO1 : Qut std_logic_vector 231 downto 0;
LO2: Out std_logic_vector (31 downto O
OUT_CON : Out_ std_[ogic_vector (13 downto 0);
SO1: Out std_logic_vector §31 downto Q);
SO2 : Out std_logic_vector (31 downto 0);
VOI1 : Qut std_logic_vector {31 downto
VO2 : Out std_logic_vector (31 downto O)
end component;

componem BLOCKED
n(ALP:In std logxc vector §31 downto 0)
ALPI :In std_Jogic_vector (31 downto 0
ALPI 7 In std Jogic_vector (31 downto
ALPIl In std_logic_vector (31 downto)
:In std_logic. vector (31 downto 0);
Bl :In std_logic_vector (31 dowmo
CE:I std_logic_vector 13 downto ())
DEL : In std_logic_vector ldownto O%
DELIL: In td" _logic_vector (31 downto
L :In std_logic_vector (3 ownto()a
L1: In std_ logic_ vector (31 downto 5
S: n std Togic_vector (31 downto O
S1 loglc vector (31 downto
V. In stdjogxc vector (31 dowmoO
Vi: std_logic_vector (31 downto 0);
Z: std_Togic_vector (31 downto 0);
BO: Out std_Togic_vector (31 downtoO
BO1 Out std_logic_vector (31 downto)
CO : Out std_logic_vector (31 downto 0);
CO1: Out std_logic_vector (31 downto
DELTA : Out sid_fogic_ vector(downto)
LO: Out std logic_vector (31 downto 0);
LO :Out std_ lo;_.lc vector 831 downto s
SO: Out std_Togic_vector (31 downto O
SO1: Out std_logic_vector (31 downto 0));
end component;

begin

1_.12: CLOK
'Port M:f:p (ROUTC=>N 1);
: IN_PORT

Ton Map (CLK=>N_1, RES=>RES, S
%’M(B downto 0 —>SYM (3 downto 0)
A.IR(39 downto downto
OUT1(31 downto O -> 1 31 downto Q),
OUT2P31 downto 0)=>02(31 downto 0), ROW=>R);

: RAMAL
Ton Map g A1(31 dowmo 5>A1(31 dowmo 0),
A2(31 downto O downto 0
AIl§31 downto 31 downto 0
AI2(31 downto 0 -> 2(31 downto Q),
[1 ZERO(31 downtd 0)=>Z(31 downto 0));

:INVE
T‘ rt Map (ALP(3 downto 0)=> downto 0
° A%. PI(3 d(owmo 0)—>EH 8ownto 0)); &

: INVERS
"Pon Ma A?L(ALP(3 downto 0)=>D 33 downto 0),
PI(3 downto 0)=>DI2(3 downto 0));

I
—Port Ma ALP(31 downto O)—>A1 (31 downto 0),
1 downto O)->A2(downto 0),
1 1 downto0—>0 31 downto (),
2 1 downto O =>02(31 downto 0
downto O)—>Dl 3 downto
Ol dowmo >32(31 downto
02 31 dowmo 0 ->Sl 31 downto O),
10 : CONTROL
T’o Map (AJR(59 wnto 0%—>Aé 9 downto 0).
1(31 downto 0)=>B ownto 0
BI2(31 downto 0)=>B4(31 downto 0), CLK=>N_1,
d 0)=>D2(3 down to

LI2(31 downto Q =>L4 31 downto 0),
S11(31 downto)=>S2(31 downto Q),
S$12(31 downto 0)=>S1(31 downto (),
S11(31 downto 0)=>S5(31 downto Q),

LI1(31 dowmoO > downto
% RES—>RES ROW=>R,

194

2(3 downto 0)=>S6(31 downto 0

11(31 downto ()=>01(31 downto

2 31 downto 0)=>02(31 downto 0),
§31 downto g->B1§1 downto

f11‘<<‘/J

2(31 downto 0)=>B2(31 downto Oz

g 1 downto Q)=>DE 1 downto 0}
L (31 downig 0)=>DEI(31 downto 0
1(31 downto 0)=>L1(31 downto Q),
2(31 dowmo 0)=>L2(31 downto 0

N(13 downto 0)=>0C(13 downto 0),
131 downto O ->S32 1 downto 0),

1 downto 0)=>S4(31 downto O
VO1(31 downto 0)=>V1(31 downto

I8 V02 31 downto 0)=>V2(31 downto O),

T’ort M &%ALP(BI downto 0)—>A1(31 downto 0),
(3 1 downto 0)—>A2(3 downto 0),
ALPI(31 downto O 1(31 downto
ALPI1(31 downto) 31 downto
B 31 downto O —>B1 31 downto 0
31 dowmo 31 downto
CE downto 13 downto 0},
DELPI downto O ->D 31 downto Q),
31 downto 0)=>DE(31 downto 0),
& ownto 0)=>L1(31 downto 0),
L1(31 dowmo O)—>L 31 downto 0),
(131 downto 0)=> 3& downto OB
31 downto)->S g&l downto (),
1 downto 0 ->

BO 31 dowmo ->B 31 downto
531 downto)->CO 1 downto 0),
(31 downto 0)=>CO1(31 downto 0)
L A(3 downto 0)—>D2 3 downto 0
LO(31 downto 0)= downto 06
L01(31 downto)—>L 31 downto),
SO(31 downto 0)=>S5(31 downto 0
SO1(31 downto 0)=>S6(31 downto 0));

end SCHEMATIC;
configuration CFG_DECODER_SCHEMATIC of DECODER is

for SCHEMATIC
for I_12: CLOK
use conﬁ"urauon WORK.CFG_CLOK_BEHAVIORAL;

end fo
£ 1 9° IN_PORT
°fg% confizuration WORK.CFG_IN_PORT_BEHAVIORAL;
ena tor;
for _1: RAMAL
usc conﬁﬂurauon WORK.CFG_RAMALP_BEHAVIORAL,;

end fo
forI 1i I_3: INVERSE
las% conﬁ'“urauon WORK.CFG_INVERSE_BEHAVIORAL;
Sl 5 INIT
°5se configuration WORK.CFG_INIT_SCHEMATIC;

forI 90: CONTROL_UNIT
use conﬁourauon WORK.CFG_CONTROL_UNIT_BEHAVIORAL;

forI 8 " BLOCKED
usé configuration WORK.CFG_BLOCKED_SCHEMATIC;

end for;
end for;

end CFG_DECODER_SCHEMATIC;

195

APPENDIX D

Synthesis Procedure and Optimization Results
D.1 Synthesis Procedure

/* Lectures des sources du groupe */
read -f vhdl alpha.vhd

current_design = ALPHA
link

check_desig

set_wire_ load *05x035™ -mode enclosed
set_operating condluons

set_max_defay 0.2 -from all_inputs() -to all_outputsQ

compile -map_effort high -ungroup_all

write -f db -hierarchy -output ALPHA.db
check_design

report_desigan

report_area

report_constraints -all_violators -nosplit
report_timing

exit

read -f vhdl and1to4.vhd
current_design = AND1TO4

link

check _design .

set_wire_load “05x03" -mode enclosed
set_operating_conditions “BCCOM

current_design = AND1TO4
set_max_delay 0.2 -from all_inputs() -to all_outputsQ

compile -map_effort high -ungroup_all
write -f db -hierarchy -output AND1TO4.db
check_design

report_design

report_area

report_constraints -all_violators -nosplit
report_timing

exit

read -f vhdl blocl, vhd

read galois_mult_32.d

read GALOIS A'DD 32.db

read MUX2_3'1

current_design = BLOC1

link

check_desig

set_wire_| load ‘05x05” -mode enclosed
set_operating_conditions “BCCOM

set_max_delay O -from all_inputs() -to all_outputs()
report_reference

compile -map_effort high -ungroup_all

write -f db -hierarchy -output blocl.db

196

check_design

report_design

report_area

report_constraints -all_violators -nosplit
report_timing

exit

reacdl -t;l}/h_dl blolc[2.?:/2hc(iib

rea ois_mu .

read é S _ADD_32.db
3‘1 db

read co_adder_32.db
i:u;ul'r(ent _design = BLO

check_design

set_wire_load “05x05” -mode enclosed
set_operating_conditions “BCCOM™

set_max_delay O -from all_inputs() -to all_outputs(

report_reference
compile -map_effort high -ungroup_all

write -f db -hierarchy -output bloc2.db
check_design

report_design

report_area

report_constraints -all_violators -nosplit
report_timing

exit

read -f vhdl bloc3.vhd

read galois_mult_32.db
reag MAU[XOI%"[AggD_32.db
rea

read SUMMER

ﬁﬂmgent _design = BLOC3

check_design
set_wire_load “"05x05™ -mode enclosed
set_operating_conditions “BCCOM

set_max_delay O -from all_inputs() -to all_outputs()
report_reference
compile -map_effort high -ungroup_all

write -f db -hierarchy -output bloc3.db
check_design

report_design

report_area

report_constraints -all_violators -nosplit
report_timing

exit

read -f vhdl blocked.vhd
read blocl.db
read bloc2.db
read bloc3.db

i:lﬂmkent _design = BLOCKED
check_design

set_wire_load *05x05™ -mode enclosed
set_operating_conditions *BCCOM

set_max_delay O -from all_inputs() -to all_outputsQ

197

report_reference
compile -map_effort high -ungroup_all

write -f db -hierarchy -output blocked.db
check_design

report_design

report_area L)
report_constraints -ali_violators -nosplit
report_timing

exit

read -f vhdl control.vhd)
remove_license VHDL.-Compiler
set_wire_load “05x05™ -mode enclosed
set_operating_conditions “BCCOM”
current_design = CONTROL_|

check_design

include control.iod

set_max_delay O -from all_inputs(Q) -to all_outputs(Q)
uniquify)

compilé -map_effort high -ungroup_all

report_area |

write -f db -hierarchy -output control.db
check_design

foreach(inport, all_inputs
r}epon(_tixggng -frompinp(g)n) {

foreach(outport, all_outputsQ) {

r}eport_ummg -to outport
report_constraints -all_violators -nosplit
exit

read -f vhdl decoder.vhd

current_design = DECODER
link

check_design .
foreach (design,find(design,”*”)) {
current_design = design

reset_design
currem_desi% = DECODER
set_wire_load “05x05" -mode enclosed

set_operating_conditions “BCCOM’
include decoder.iod
report_area

report_reference

write -T db -hierarchy -output decoder.db

check_design

report_design R i

report_constraints -all_violators -nosplit

foreach(inport, all_inputs()) {
1ieport_t1mmg -from inport

foreach all ts
olgeport(_ct’ilxlrtgx?g’-m th%%)rl{ O

exit

198

read -f vhdl galois_adder.vhd
current_design = GALOIS_ADDER
link

check_design .

set_wire_load “05x05™ -mode enclosed
set_operating_conditions “BCCOM”

set_max_delay 0.2 -from all_inputs() -to all_outputsQ

compile -map_effort high -ungroup_all

write -f db -hierarchy -output GALOIS_ADDER.db
check_design

report_design

report_area . .
report_constraints -all_violators -nosplit
report_timing

exit

read -f vhdl galois_mult.vhd

read ALPHA db

read AND1TO4.db

read GALOIS_ADDER.db
uniquify

fﬁent_de&gn = GALOIS_MULT

check_design .

set_wire_load “05x05™ -mode enclosed
set_operating_conditions *“BCCOM”
set_max_delay 0 -from all_inputs() -to all_outputs()

compile -map_eftort high -ungroup_all

write -f db -hierarchy -output GALOIS_MULT.db
check_design

report_design

report_area . .
report_constraints -all_violators -nosplit
report_timing

exit

read -f vhdl in_port.vhd
set_wire_load "05x05" -mode enclosed
set_operating_conditions “BCCOM”

current_design = IN_PORT
link
check_design

include inport.iod
set_max_area
umquify .
compilé -map_effort high -ungroup_all
report_area
write -f db -hierarchy -output IN_PORT.db
check_design
foreach(inport, all_inputs
r}epon_tiﬁplci)ng -frompinpcg)rt) (

foreach(outport, all_outputs
scport(_tintgng'-to outptgrt 04

report_constraints -all_violators -nosplit
exit
read -f vhdl init.vhd

read galois_mult_32.db
read SUMMER.db

199

read GALOIS_ADD_32.db
current_design = INIT
link

check_design

set_wire_load “05x05” -mode enclosed
set_operating_conditions “BCC

set_max_defay O -from all_inputs(-to all_outputsQ

report_reference
compile -map_effort high -ungroup_all

write -f db -hierarchy -output init.db
check_ emgn

report_design

report_area

report_constraints -all_violators -nosplit
report_timing

exit

read -f vhdl inverse.vhd
current_design =

check_design

set_wire_load “05x05" -mode enclosed

set opcraung_condmons ‘BCCOM”

current_design =

set_max_{ de ay 0.2 -from all_inputs(-to all_outputsQ

compile -map_effort high -ungroup_all

write -f db -hierarchy -output inverse.db
check_design

report_design

report_area

report_constraints -all_violators -nosplit
report_timing

exit

read -f vhdl mux2_31.vhd
i:l;ln'rkem _design = MUX2_31

check_design "

set_wire_load “05x05” -mode enclosed

set operaung_conmuons oM™

current_d lg

set_max_delay 0.44 -from all _inputs() -to all_outputs(

compile -map_effort high -ungroup_all

write -f db -hierarchy -output MUX2_31.db
check_design
report_design

TEpPOrt_area
report_constraints -all_violators -nosplit
report_timmg

exit

read -f vhdl ramalp.vhd
ﬁgem _design = P

check_design "

set_wire_load “05x05™ -mode enclosed
set operaung_condluons ‘BCCOM”™
current_ lgn RAMAL
set_max_defay 0.2 -to all_outputs()

compile -map_effort high -ungroup_all

write -f db -hierarchy -output RAMALP.db
check_design

report_design

report_area

report_constraints -all_violators -nosplit

200

report_timing
exit

read -f vhdl summer.vhd
read GALOIS_ADDER.db

uni
lcgr;e‘ﬁfy design = SUMMER

check_design s

set_wire_load “05x05™ -mode enclosed
set_operating_conditions “BCCOM”

set_max_delay O -from all_inputs() -to all_outputs(

compile -map_effort high -ungroup_all

write -f db -hierarchy -output SUMMER.db
check_design

report_design

report_area

report_constraints -all_violators -nosplit
report_timing

exit

This pro roprietary and confidential information of Synopsys, Inc.
and nll)afg ang disclosed only as authorized in a llcenseyarllgr%e)t’nem
controlling such use and disclosure.

Initializing.
read -f vhdi decoder.vhd
Loading db file ‘/cadl/synopsys/librar es/syn/standard sldb’
Loading db file ‘/cadl/s opsys/h xcu
Loading db ﬁle ‘/cadl /s opsys/li mgn/gl
Loading le */grad/facul /baher sh ad/decoder vhd’
Reading n the yn &sys vhdl rimitives.
/grad/faculty/bahier/ decoder.vhd:

urrent deswn is now /grad/faculty/baher/shadxa/shad/DECODER db:DECODER’
{“DECOD ER }
read blocked
Loadmg db ﬁle ‘/grad/facul a)/'/baher/shadla/shad/blocked .db’

esuzn IS now ‘/grad/faculty/baher/shadia/shad/blocked.db:BLOCKED’

read com.rol db

Loadxn{; db file_ /grad/facul dy/bahcr/shadla/shad/control dy’
deSl%fl is now gm facu]ty/baher/shadla/shad/control db:CONTROL_UNIT’

{“CONTRO

read init.db

Loading db file /grad/facu O)I'Ibaher/shadxa/shad/

Current design is now ‘/gra faculty/baher/shadla/shad/nut.db INIT

read P.db
Loading db file ‘/grad/faculty/baher/shadia/shad/RAMALPdb’
Curren desg 1s%rgw /gracgfaculty/baher/shadlalshad/RAMALP ‘RAMALP’

read IN .db
Loadm§ db ﬁle ‘/grad/fac Gy/baher/shadla/shad/]N
des Tgn is now ‘/grai faculty/baher/shadla/sﬁad/m POKI‘db IN_PORT’

read mverse

Loading db file ‘/gradlfac G)I'Ibaher/shad.la/shadlmverse db’
({l‘unenﬁdRem }1s now */grad/faculty/baher/shadia/shad/inverse.db:INVERSE’
cmem _design = DECODER

Current demgn is ‘DECODER’.

h{%x(ad/ acnﬂty/baher/shadxa/shad/DECODER db:DECODER”

desi
B elen
Informauon Updating design information... (UID-85)

201

D.2 Optimization Results

e e o e e e e A e ok ok o 3k ek o o ok o A o e o o ok Aok ok ok ek ko K K ok Kok

Report : area

Design : DECODER

Version: v3.4b

Date - Tue Jan 14 12:33:36 1997

FA A A A KA KKK KA KK *** * A e o ke o ok Aok AR K

Library(s) Used:
class (File: /cad1/synopsys/libraries/syn/class.db)
Number of ports: 103
Number of nets: 1025
Number of cells: 7
Number of references: 6

Combinational area: 13993.000000
Noncombinational area: 4140.000000
Net Interconnect area: undefined (Wire load has zero net area)

Total cell area: 18133.000000
Total area: undefined

1
report_reference

e e e o e e e e sk e ok ofe e e o ke e e e e e e e e e ofe e e e e ok e e ok ok ke ke ko

Report : reference

Design : DECODER

Yersion; v3.4b

Date : Tue Jan 14 12:33:
ook KA

1199
ek e ok e e ok e e ok s ok ok o o sk ok

Attributes:

b - black box (unknown)

bo - allows boundary optimization
d - dont_touch

mo - map_only

h- hlerarchlcal

n - noncombinational

I - removable

§ - synthetic operator

u - contains unmapped logic

Reference Library Unit Area Count Total Area Attributes

BLOCKE 9671 000000 1 9671.000000 h
CONTROL _UNIT 5095.000000 1 5095.000000 h,n
INIT 1256.000000 1 1256.000000 h
N S, 5 e,

. , M
RAMALP 0.000000 1 0.000000 h
’II‘otal 6 references 18133.000000

write -f db -hierarchy -output decoderl.db
Wnung to file /grad/faculty/baher/shadia/shad/decoder1.db

check _design
report_design
e ok dfefe 3 2 3k 2 Ak 3K ke e e e A ke o o ke ok Ak e o o e ke ke ok e o o o oK oK ok ok kK

Report :

R S DER

Version: v3.4b

Date : Tue Jan 14 12:38:5 }2 7

***************** ¥k e Aok o e e o A e 3 o ok K ok
Library(s) Used:

class (File: /cad1/synopsys/libraries/syn/class.db)
Flip-Flop Types:

No flip-flop types specified.

202

Latch Types:

No latch types specified.
Operating Conditions:

No operating conditions specified.
Wire Loading Model:

Selected manually by the user.
Name : 05x05
Location : class
Resistance :
Capacitance : 1
Ar .

€a :
Slope : 0.186, .
Fanout Length Points Average Cap Std Deviation

1 039

Wire Loading Model Mode: enclosed.
report_constraints -all_violators -nosplit

e o e e o o oo e o e Aok ok o ok ok oK o e ok o e o ok sk ok ok sk ok

Report : constraint
-all_violators

Design : DECODER

Version: v3.4b

Date :Tue Jan 14 12:28:51 }22

e A o o e ok ok o ok sk ko ok o o K sk ook kR kAo Rk

max_capacitance
Required Actual

i m e
WATATAY,

tm

OEC

(IIHININT jeaiesies|eyinyiey 1AL I3 11 ll 2218

ATATATLE LB B S A AT ATAATATATATAYAY,

Net Capacitance Capacitance Slack
RES 0.15 2.58 -2.43
K[0 0.15 1.39 -124
K[1 0.15 1.39 -124
Ki2 0.15 1.39 -1.24
KI3 0.15 1.39 -1.24
K4 0.15 1.39 -1.24
K[5 0.15 1.39 -1.24
Kl6 0.15 1.39 -1.24
K7 Q.15 1.39 -124
K|8 0.15 1.39 -1.24
KI[9 0.15 1.39 -1.24
Kl10 0.15 1.39 -1.24
K|11] 0.15 1.39 -1.24
K12 0.15 1.39 -1.24
Ki{13 0.15 1.39 -1.24
K|14 0.15 1.39 -1.24
Kf15 0.15 1.39 -1.24
Kl16 0.15 1.39 -1.24
K17 0.15 1.39 -1.24
Kl18 0.15 1.39 -1.24
K|[19 Q.15 1.39 -124
K[20 0.15 1.39 -124
K|21 0.15 1.39 -1.24
K|22 0.15 1.39 -1.24
K|23 0.15 1.39 -1.24
Ki{24 0.15 1.39 -1.24
K|25 Q.15 1.39 -1.24
K[26 0.15 1.39 -1.24
KJ27 0.15 1.39 -1.24
K28 0.15 1.39 -1.24
KI29 0.15 1.39 -1.24
K30 Q.15 1.39 -1.24
K31 0.15 1.39 -1.24
SIG 0.15 1.39 -124
SYMB[0 0.15 1.39 -1.
SYMBJ1 Q.15 1.39 -1.24
SYMBI2 0.15 1.39 124
SYMB[3 0.15 1.39 -1.24

jQjuuy
\ZAAZAY,
N g e

1
report_timing -true
sl e ook e ok e ok o e ok e koo e o e e ek e e o o o ok e ok e o ok K oK kK kK
Report : timin 1g
-path ful
-delay max
-true

Design : DECODER

Versxon v3 .4b
Date : Tue Jan 14 12:39:2 9

o0 o e e e s o o oo 3 ok sl ok e o ke o o e R sk o e e ok o ke ok ke ok K R R kK

%x:ratm g Conditions;
¢ Loading Model Mode: enclosed
Design Wire Loading Model Library

DECODER 05x05 class
IN_PORT 05x05 class
RAMALP 05x05 class
INVERSE 05x05 class
INIT 5x05 _ class
CONTROL UNIT 05x05 class
BLOCKED ™ 05x05 class

A True path:

Start mt. 1_10/rtemp_re
pe nsm%o edge- qug gE:d] flip-flop clocked by CLK)

Endpoint: I]ﬂ
(rising ed gg tnggered ip-flop clocked by CLK)

Path Group: CL

Path Type: max
Point Incr Path
clock CLK (rise edge 0.00 0.00
clock netwo(rlilc delav ro ated) 0.00 0.00
GQBBF) 000 0.00r
1.57 1.57f
0.34 191r
1.14 305r
1.15 420f
242 6.62r1
0.71 733r
0.71 803r
0.23 8.26 f
0.25 8.52r
107 o %3¢
10/v02 2{3{%1 .%'%% %%%%r
o . . T
data arrival 1Eme 30.08
clock CLK (rise ed 34. 34.00
clock netwo(rrlé delay epropagatet_ig 0.00_ 3400
clock uncertai %' 30 33.70
I_10/VO2_reg[8]/CP FD1) 0.00 33.70r
library setup -0.80 3290
data required ume 32.90
data required time 32.90
data arnival time -30.08
slack (MET) 2.82
?xit
dc_shell>
Thank you...

204

