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Abstract

Estimation of Parameters in Item Response

Models of Psychological Testing

Wenming Li

In the decadeof the 1970s. Ttem Response Theory (IRT) hecame the dom-
inant topic for study by psyvchometricians. Three parameter models, (3-PL
modlel), have received considerable attention becanse of their applicability to
a variety of testing situation where the one- and two-parameter item response

models may not be completely adegnate.

There are three main approaches to parameter estimation in IRT. Joint
maximum likelihood (MLE. Wingersky. 1933), Marginal maximam likelihood
(Mislevy and Bock. 1981) and Bayesian approaches (131, Swaminathan and
Gifford, 1986). After assessing all these methods, the author found that some

problems of these methods do not appear to have heen completely solved.

In this thesis EDE. Experimental Design Estimate, is advocated. Orthog-
onal Designs can he constructed by Hadamard matrices & some other meth-
ods. Uniform Designs arve constructed using number theory (Fang, 1980).

With Orthogonal Ls(5%) and Uniform designs Uyg(252Y) optimal estimators




of item parameters. can be obtained rapidly and easily in the sense of mini-

mizing residnals. Using the goodness of fit as a criteria it is shown through
one practical case study, that the residuals of EDE are alinost the saime as in
MLE. But the EDI provides « considerable saving in computer time. From
the view point of practice, especially for new test theory which involves more

complex models, EDFE has a potential applicability in the future.
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Chapter 1. Introduction

1.1. Standard Test Theory

The basiec objective in psyehological testing is quantification of certain
aptitudes or abilities. An ideal test wonld be the one which would result in
the same score for a person every time 1t is adminitrated. This score would
be called "true”™ score of the person, But. in practice. to measure the true
score of a person. is not an casy task. 1 his necessitates proper design of tests
and scoring methods, their evalnation and interpretation. The Classical Test
Theory (C1T) and Ttem Response Theory (IRT) arve the responses of the
researchers in formulating, some of the problems related with psychological

testing,.

1. lL.a. Classical Test theory

In Classical Test Theory, a test score can be viewed as the sum of two
o, “ - o »

components, a “true” score and a random Terror” term. Two similar ("par-

allel™) tests are considered to retlect the same true score, but disagree about

an examinee’s observed score hecanse of the error cotaponent. ldeally deci-

sions would be hased on true seores: however in practice they must be based



on observed scores. “Reliability ™. the degree to which the unobservable true
scores account for the variance in observed scores, gauges the accuracy with

which a test ranks a group of examinees,

The model of Classical Testing Theory is:
r=1F4 (1)

Two unobservable construets are introduced: trae score ¢t and ervor score
¢. They are Lincarly related. T he true score for an examinee can be defined
as his or her expected test score over repeated administrations of the test (or
parallel forms). An error score can be dehimed as the difference hetween true

score and observed score.

("lassical Testing Theory postulates @ ervor scores are random with
mean of zero and uncorrelated with ertor scores on a parallel test end with
true scores:

1. E(c)=0;
2. Corr(t, c)=0:
3. Corr( ¢y, ¢2)=0. where o and o, are error scores on two administrations

of a test.

These assumptions can be miet casily by most test data sets, and, therefore
the models can and have heen appliecd to o wide variety of test development,

and test score analvsis problems. These assumptions also can be restated by -




for < A, G, 7, {X,00 € g€ G} >

o?(XN,.) = Var(Xy) <+ (2)

where A is the set of persons (population of subjects); G is the class of tests
under study; mis a probability distribution on 4; Xy, is a family of random
variables. It is assumed that if @ # o', then for arbitrary g, g’ in G (distinct
or not). the random variables Xy, and Xy are independent (Nowakowska,
1983). Today there are countless number of achievement, aptitude, and per-

sonality tests that have heen construeted with these models.

There might be some shorteomings for using C'TT in practical situations:
1) The values of commonly used item statistics in test development, such as
iten difliculty (proportion of right answers) and item discrimination (cor-
relation hetween item score and the total score), depend on the particular
examinee samples in which they are obtained. The result is that these item
statistics are useful only in item selection when constructing tests for exami-
nee population that are very similar to the sample of examinees in which the
item statistics were obtained. For example, item discrimination indices tend
to be high when estimated from an examinee sample which is heterogeneous
in ability thau from an examinee sample which is homogeneous in ability,
because of the well-known effect of group heterogeneity on correlation coef-

Hetents (Lord and Noviek, [963),

2) Increased test score validity can he obtained when the test difficulty



is matched to the approximate ability level of cach examinee (Lord, 1980 ;
Weiss, 1983). However when several forms of test that vary subsiantially
in difficulty are used, the task of comparing examinees becomes a difficult

problem,

3) One of the fundamental concepts, test veliability, in C'I"T is defined
in terms of parallel forms. This concept of parallel measures is dillicult to
achieve in practice (Hamblenton and van der Linden, 1982). Rescarchers
must be content with cither lower-bound estimates of reliability or reliability

estimates with unknown hiases.

4) CTT provides no basis for determining how an examinee might per-
form when confronted with a test problem. Such information is necessary for

test designers.

5) CTT presumes the variance of errors of measurement is the same for
all examinees. [t is not uacotninon to observe that the performance of high-
ability on several parallel forms of a test might be expected to be more

consistent than the performance of medinm-ability examinees.

Therefore psychometricians have been concerned with the development
of more appropriate theories of measurements. Presently, perhaps the most
popular set of constructs. models. and assimptions for inferring traits is La-
tent Trait Theory. Considerable attention is being directed enrrently toward

the field of Latent Trait Theory or I'TEM RESPONSE THEORY as Lord




(1980) prefers to call this theory.

1.1.b. Item Response Theory

In e Response Theory, an individual score is made up of the total
sum of "iem” scores which can be accounted for to a substantial degree by
certain parameters depending on various traits. called latent traits. Thus, in
IRT, scores on n items are considered to be distributed according to some

probabiity law characterized by these parameters

There are three primary advantages of iten. response theory models:

) Assuming the existence of a large pool ¢1 items all measuring the same
trait, the estimate of an examinee’s ability is independent of the particular

sample of test items that are administered to the examinee;

2) Assuning the existence of a large population of examinees, the de-
seriptors of a test item e.g. item difliculty and discrimination indices, are
independent of the particular sample of examinees draw for the purpose of

calibrating the item:

3) A statistic indicating the precision with which each examinee’s ability
is estimated is provided. Some shorteomings of CTT can be overcomed by

IRT.



There are many mathematical models that have been used in the analysis
of educational and psychological test data set in IRT. Fach model consists of:
1) an equation linking (obscrvable) examinee item performance and a latem

(unobservable) ability and 2) several assumptions.

For dichotomous data, there are Latent Linear (Lazarsficld and Henry,
1968), Perfect Scale (Guttman. 1911). Latent Distance (Lazarslield and Henry,
1968), One-, Two-. Three- Paravieter Normal Ogive (Lord, 1952) and One-
, Two-, Three- Parameter Logistic (Birnbawm, 1957, 1958a, 1958h, 1968;
Lord, 1930; Rasch. 1960: Wright and Stone [ 1979), Four- parameter Logistic

(Barton and Lord, 1981) models.

‘or 3-PL (three parameter logistic) model, the equation linking @ and
item parameters a.b.c is:

( Die, (0-0,)

IJ,((}) = ¢, + | — (',)-——-——---—| e TRCES (J)

where i=1. 2. ....n;

P,(8)= the probability that an examinee with ability level 8 answers item
i conectly;

D=1.7, a scaling factor;

bi= the item difficulty parameter:

¢,= the tem discrimination parameter (it shonld not be confused with
the notation of a person in page 2):

G is a pseudo-chance level parameter. represents the probability of exam-

inees with low ability correctly answering the item,

6
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Iigure 1: A Typical 3-PL Model Item Characteristic Curve

[igure | provided a typical 3-PL item characteristic curve,

When c=0, it redudes to Two-parameter Logistic model:

C,l)a.' (0-)))

Po) = T 1 eDai0-t) W

If ¢=0 and all b’s are equal, it is Rasch Model (Rasch, 19G6).

The three-parameter item respouse model has received considerable at-
tention because of its applicability to a variety of testing situation where
the one- and two-parameter item response model may not be completely
adequate (Loyd and Hoover, 1980; Slinde and Linn, 1979). In a recently

equating study of T'est of Lnglish as Foreign Language (TOEFL), the result

~1



of the study clearly indicated that the 3-PL model performed better than

2-PL and 1-PL models (\Vay and Reese. 1990).

The logistic function is chosen as an alternative to normal ogive models,

ra, (0=b,) ¢— = :/2

P) = / 5 (5)

due to its more convenient mathematical properties.

Sometimes we use -PL models.

( Da,(0-b)

P(#) =, + (7 i rwrey v} (6)

This model differs from 3-PL in that =, assuimes a value slightly below one.
1 ghtl]

In Item Response Theory examinees may be compared with cach other
even when they may have taken quite different subtests of items. A fur-
ther consequence of the fact that ability can he estimated independently of
the choice of items is that equating scores of tests is possible. In addition,
the problem of constructing parallel forms of tests is eliminated. [t is pos-
sible to measure the precision of the ability estimates at cach ability level.
Thus instead of providing a standard error of measurement that applies to
all examineces regardless of test scores. separate estiimates of error for cach
examinee can he produced. Finally, item parameters based on IR'T are in-

variant across different subgroups ol examinees. Consequently, they are of



immense value to test developers.

In the decade of 1970s. IR became the dominant topic for study by psy-
chometrists. But like Finstein’s theory of relativity revolutionized physics, it
extended rather than supplanted Newton's laws of motion, classical mechan-

ies still works just fine, C'I'T will continue to be used.

1.2. Statistics and Test Theory

It is only a slight exaggeration to desceribe the test theory that dominates
educational measurement today as application of twentieth century statis-
tics to nineteenth century psychology. The application of modern statistical
methods with modern psychological models constitutes the foundation of a
new test theory (Mislevy, 19389).

Many of the problems in test theory are essentially problems of multi-
variate analysis in mathematical statisties (Gulliksen, 1961). Much of the
recent progress in test theory has been made by treating the study of the
relationship between response to a set of test and a hypothesized trait (or

traits) of an individual as a problem of statistical inference.

There is an event in the recent history of test theory which has a major
impact on the field: the appearance ol Lord and Novick’s (1968) Statistical
theories of mental test scorcs with contributions by A. Birnbaum where a

comprehensive and integrated coverage of test theory topics was provided,

Y



in which the fundamental assumptions and essentially stochastic nature of
the subject were stressed (Lewis, 1986). For the first time, rescarchers in the
test theory had available the common language of modern statistical infer-
ence with which to discuss all aspects of their field. Bock and Wood (1971),
in their review of test theory. referred to the book as "a great step forward”

(pp. 194).

IRT, with which we are concerned in this thesis, is a practical advance
bevond CTT but much more complicated because it is move dillicult to work
with from the statistical analvtical point of view. There ace several unsolved
statistical issues that need Marther investigation, e.g. robustness, fit of the
model to data cte. Among these a major problem that remains to be solved

is that of estimation of parameters in IR as well as its robustness.

There are three main approaches to parameter estimation in IRF. The
quantity typically maximized by cach approach is shown below for a test of
n items administered 1o N examinees. Fi(#)) is the probability of success
on item i for examinee J at ability level 8. Q(8,) = 1 = I(0,), Uy, is the
response of examinee j on item 1. assumed here 1o be either 0 or 1, and ¢()

denotes a prior distribution of parameters,

1) Joint maximum likelihood (Wingersky. 1983). It maximizes

N o
L#:a.b.c) = H H[pl((}l)]u., (Qu(6,)) -

1=1=l

10



or equivalently

N n
logL(f;a.b,c) = Z

=li=

[, logP(8,) + (1 — wy;)logQu(8,)]
[

~

2) Marginal maximum likelihood of item parameters (Bock and Aitkin,

1981; Bock and Licherman. 1970). It maximizes

N
Lab.c) =[] / §(8,)L(8: a, b, c)db,
=

3) Bayesian approach (Swaminathan and Gifford, 1986). It maximizes

flB.a,b.cy = L(f.a.b.c)g(f)g.(a,b,c)

or equivalently
logf(6.a.b.c) = logL(#: a.b.c) + logg,(0) + g2(a. b, c)

There are some problems that do not appear to have been completely

solved.
1.3. Outline of This Thesis

In this thesis we are mainly concerned with the estimation of parameters
in IRT models, especially the 3-PL model. A Experimental Design Estimate
(EDI) is proposed in this thesis after assessing established approaches of
estimating parameters in IRT. EDE might hecome a widely utilized method-

ology of estimating parameters in latent trait theory. EDE does compare

Il



favorably with MLE because of considerable saving in size of sample and
computer cost. ensuring estimators within the parameter space, and having,

the same degree of goodness of fit.

In Chapter 1, the standard test theory (CTT and IRT) was reviewed very
briefly. The hypothesis and different mathematics models were described in
Section 1.1, Thuvee main approaches of estimation of parateters were intro-

duced in Section 1.2.

In Chapter 2 the methods of estimating parameters of three-parameter
models are emphasized. hecause ol their applicability to testing situations
where the one- and two-parameter item response models may not be com-

pletely adequate.

some problems associated with established approaches of estimating pa-
rameters do not appcar to have heen completely solved. The MLE is cou-
sistent, efficient and sufficient. But it does not give an B for a student. who
responds incorrectly (or correctly) to all items; it does not ensure that es-
timators remain in the parameter space: sometimes the procedure is diver-
gent. (Section 2.2) Bayesian estimation produces better estimate than MLE
by the criteria of "mean squared ervors”™ between estimates and true values.
But poor specification of priors may adversely afleet the estimates. Some-
times we have to increase the bias of 8 in order to reduce the MSE (Section
2.3). The optimization techniques and some miscellancons approaches are

described in Section 2.1 and 2.5 1espectively.




In Chapter 3., the procedure of EDE is illustrated in detail. At first the
main idea of Three-Stage Designs is deseribed in Section 3.2, Then two
different kinds of statistical experimental designs , Orthogonal Design and
Uniform Design, are introduced (Sections 3.3, and 3.4.). We mention here
how to construct these designs nsing Hadamard matrices, orthogonal Latin
squares and mumber theory, what their advantages are and where the factors

should be put on.

The steps of getting EDE are deseribed in Section 3.4 and a practical case
study (N = 3208, 1 = 105) is illustrated in Chapter 4. The test of unidi-
mension of the data set of MITST is treated in Section 4.1. The ratio of the
first two eigen values of the tetrachoric correlation matrix (105 x 105) shows
that it meets minimal criteria (Reckase. 1979). With Lys(5%) and Usps(25%°)
“optimal™ estimate of item parameters, . b.é. can be reached without any

real “experiments” (Section 1.2).

In Section 1.3 we compare these two different kinds of designs according
to their mean square error. We found the precision and the efficiency to be
almost same. Using the eriterias of minimum square error and standardized
residuals we conclude that EDE does compare favorably with MLE (Section

1.



Chapter 2. Parameter Estimation in IRT

2.1. Introduction

The latent trait models. of Ttem Response Theory (IRT), have numerous
advantages over the classical test models. Perhaps the most important ad-
vantage of IRT s that it is possible to estimate an examinee's ability on the
same ability scale from any subset of items that have been fitted to the model.
This implies that the ability of an examinee can be estimated independently
of the particular choice of the number of items and hence represents a major

breakthrough in the avea of mental measnrement.

Because of IRTs advantages it’s applications include such academic areas
as reading achievement (Rentz and Bashaw, 1977: Woodceock, 1974); psycho-
logical variables (Woodcock. 1978): and mathematics, geology, and biology
(Sorivan, 1977: Connolly. Nachtman etal. 1974). Lord (19684, 1977) and
Marco (1977) described the application of three parameter logistic model
to the analysis of such tests as Verbal Scholastic Aptitude Test (SAT), the
Mathematics sections of the Ndvanced Placement Program (APP), and the
College Level Examination Program (CLEP). Yen (1951, 1983) described the

application of 3-PL model to the development of the California Tests of Basic




Skills.

Fquating of tests based on raw series in ("I'T is not desirable for reasons
of equity, symmetry. and invariance, Fquating based on IRT overcomes these
problems (Kolen, T981). IR appears to be especially useful in test design
(or redesign). Uilizing IRT we can select test items to fit target curves, es-
tablish Hem hanks. evaluate test score prediction systems, detect item bias,
estimate power scotes and construct adaptive tests. In educational assess-
ment, IRT makes it possible to establish a stable measurement while allowing

assesstient instruments to evolve over time (Mislevy, 1989).

Most of the work in IRT has used ability and achievement tests, i.e. in
the arca of educational and psvehological measurements. Some researchers
utilized it for attitude survevs. sueh as Job Deseription or Supervisory Atti-

tude Survey (Waller 1981 Parsons and Hulin, 1982).

For all these applications of I, estimation of parameters in these mod-

els is the most important tash.

2.2. Maximum Likelilhhood Estimate

There are currently three main approaches to parameter estimation in
item response theory., (Lord. 1986)
1) Joint maximum likelihood. vielding maximum likelihood estimate (MLEs)

(Wingersky, 1983).




2) Marginal maxinnun likelihood (Mislevy and Bock. 1981).
3) Bayesian approaches, in which parameter estimates are usually the mode
(or mean) of the posterior distribution of the parameter estimated (Swami-

nathan and Gitford. 1936).

The probability that an examinee with ability # obtains a response Uy on

item 4. where

& I fn a coneet tesponse
: =

0 for an incorrect response

is denoted by P([',]()) It also can bhe expressed as

PUW) = P(U = 1oy P, =o' =" = 2o (7)

where Q=1 - D,

If the latent space is complete (in this case, unidimentional), then local
independence is obtained. that means the likelihood funetion is
N oo |
", - ,
Lowm = [T ™ (8)
Jj=hi=1
When N examinees take a tost that has nitems,in the 3-PLomodel, thetre
are N43n-2 parameters 1o be estimated hecanse of the "indeterminacy™ of

scale. Under the transformations

6



ar; = lq,

the response fimetion is imariant. Hence we fix the @’s such that their
mean is zero and standard deviation is one. It means two constraints have
to he imposed.
The logarithm of the likelihood fnetion is
M)
In L(ujf.a.b.c) = ZZ[I/,,‘II P+ (1 —u,)InQy) (9)
1=1i1=]
where uis an N dimensional vector. 6, and a.b,c are N and n di-
mensional respectively. Using a multivariate version of the Newton-Raphson

procedure we can get the numerical values of the estimators.

The MLIE is consistent, sullicient, eflicient and asymptotically distributed

normally. However:

1) MLEs do not exist for those students who respond incorrectly (or cor-

rectly) to all the items.



2) Sometimes there are several maxima in the interval —x < 0 < .
This was first noted by Samejima (1973). It may also happen if the value of
the likelihood function at # = —ac or # = oo is larger than the maximum
value found in the interval. In the practical applications that Lord (1980,
p39) studied, he found that multiple solutions did not occur when the num-
ber of items was > 20. But in a recent study (Yen, etal, 1991) fourteen
multiple-choice achievement tests with from 20 to 50 items were examined,

from 0 to 3.1% of them had respouse veetors with maltiple maxima.

3) MLE does not ensure that estimates remain in the parameter space,
In some simulations. there are 6 of 35 ont of [ 0, 10] for @ (Swaminathan and

Gifford, 19386).

4) The procedure might be divergent (Swaminathan and Gifford, 1986).

5) Joint MLEs of ability parameters may he biased. This then canses the

item parameters to be misestimated. (Lord. 1986)

6) In some cases for 3-PL model (see BEquation 3, Chapter 1), eg. b=
-2, s.e. = 0.3, the desired sample size is too large 1o he ol practical use
(N=100,000). There is no computer program currently available that will
fit the 3-PL model with 100,000 examinees, If the dimensions of existing
program were raised to allow data of such magnitudes, some researchers con-
jecture that it would take the annual revenue of Saudi Arabia to pay sucha

run (Wainer and Thissen. 1982).




These problems of MLE do not appear to have heen completely solved.
Bayesian procedures for estimating parameters have been successfully ap-

plied in numerous situations.

2.3. Bayesian Approach

Let the joint density of the parameters 8, a, by ¢ be denoted as f(6,a, b, c).

It follows from Bayes™ Theoren, that the conditional density, f(6,a, b, clu) is

f(8,a.b.cju) x L(ujf.a.b,c)f(d,a,b,c) (10)

Assume a priori that the parameter vectors 8, a, b, ¢ are independent.

Using the hierarchical model. we have

O,l1t0. 75 ~ N(j19.05) (11)

similar iid and normality assumption are made for the parameter b;:

bl ai ~ N af) (12)

. - *) e . . .
Priovs for jg, and aj are specified by assuming that j is uniform and that
ai has an inverse chi-square distribution with parameters v, and M. (Novick

and Jackson, 1971, pl0Y)

The prior distribution of ¢, can be taken to be the chi square distribution.

That ts

Y



. -1 —uy .
fley|vyewn Ylay ~ ay ™ erpl—=)da, (13)
it t)w
Ay
The prior for ¢, may be taken as the beta distribution with parameters s,
and #,, assuming that priori ¢y. ;. ...y are independent. The Bayesian pro-
cedure ensures that the estimates stay in the parameter space. It produces

better estimates than the MLE as judged by such criteria as mean squared

differences between estim  es and true vahies.

However, Bayesian Estimation (BL):

1) requires specification of the prior regarding an examinee’s ability and

hence may not be appealing to all.
2) may increase estimation bias. in order to veduce the MSE, minimizing
the overall mean square error. of ability parameters. See Figare 3 (Lord,

1986).

3) From the view point of practice. minimizing the MSE is not appropri-

ate (Lord. 1936).

2.4. Optimization Techniques

All the above approaches can he viewed s different types of optimiza-

2)
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Figure 2: Bias in estimated ability for a 90-item SAT Verbal Test

tion process with different constraints (Suen and Lee, 1989). For 3-PL model,

MLE is equivalent to maximize objective function, i.e. maximum likelihood
function L(ul#,a, b,c), subject to:

a) Zﬁ:l 91' =0,

b) Zﬁx(oj)z/N= L

For Bayesian estimate, the resulting optimal problem becomes: minimiz-

ing
f(ga a)b) C) = L(ox a, b’ c)gl(e)g2(aa b1 C)

where ¢1(0) and ga(a, b, c) be the prior distribution of ability and item
parameters. Similarly, if a marginal distribution h(6) is imposed, it is exactly

the marginal likelihood estimate.



There are several constrained nonlinear optimization algorithims available
today. GRG-II (Lichman ct al. 1986) and MINOS ( Murtagh and Saunders,
1987) may be appropriate. But these algorithms can only be used for a very

small number of subjects with a short test.
2.5. Miscellaneous Approaches

There are some other kinds of estimating methods, e.g. Approximate 1%s-
timation (Urry, 1976, 1977), hernel Smoothing Approaches (Ramsey, 1991)

and Golden Section Scarch Strategies {(Niao. 1939)

The Approximate Estimates are often nselul and provide a considerable
saving in computer costs, because of obtaining these estimates may be time

consuming and costly in three parameter model,

Under the assumption that (1) the ability is normally distributed with
zero mean and unit variance and (2) the model is a two parameter normal
ogive, Lord and Novick (1968. pp.377-378) have shown that the biserial cor-

. - . . ! . .
relation between 8 and the response U to item &, p,g is given by:

p’,,,:u,/[l Jruf]'/2 (14)

where @, is the discrimination index of item i Morcover, if 7, is the normal
deviate that cuts ofl to th ¢ right an area 7, where m, is the proportion of

examinees who respond correctly to iten o then it is given by:

~
SN




~ = probs (15)

where by is the difliculty of item .

Unfortunately, py cannot be obtained directly. However, it can be shown
that the point. biserial correlation hetween the binary scored response to item

i and ability @ are related according to

i)
hy = ——————— ].6
/l 'IT,(I —'/T,)I/“) ( )
where d(4,) s the ordinate at 4,0 In order for this to be a reliable esti-
mate, there must be at least 830 items and the KR-20 reliability must be at

least 0.90 (Schmidi1.1977).

In three parameter model. the item difliculty 7 is used
7=+ (1 —o)m (17)

Thus,

' 1/2

P = Pl (E = ) Jim —e)(l =) (18)

Swaminathan and Gifford (1983) and McKinley and Reckase (1980) have
demonstrated that approximations do not compare favorably with the max-
imum likelihood procedure unless the numbers of examinees and items are

very large.



Xiao (1989) suggested Golden Section Scarch Strategies (GS5S) in com-

puterized adaptive testing (C.\T) . She used the golden section ratio f:

t = \_/’);‘ ~ 0.618033989 (19)

to find the optimal solution of ability parameters. She finds GSSS can
provide more accurate ability estimates than MLE with the exception of
a few very high ahility levels. that (iSSS is more robust against random

guessing than MLE, more effective and cheaper to use.




Chapter 3. Experimental Design Estimate

3.1. Introduction

Birnbaum’s (1968) three parameter logistic model, 3-PL logistic, has be-
come a common basis for item response theory modeling, especially within
sitnations where significant gnessing behavior is evident. From an analytical
point of view, the 3-PL is quite difficult to work with, and as a consequence,
some analytical difliculties can also translate into practical problems. Some

rescarchers tried to find improved models.

Pashley (1991) proposed an alternative three-parameter logistic model.
He called it hyperbolic 3-PL ov hypcrbolic 1-PL. One of the advantages of this

model being that it may stabilize related estimation procedure (Lewis, 1990).

Iis basic idea is using a hyperbola that resembles to the logit transformed
3-PL curve, because the hyperbola exhibits a shape very similar to it. The

logic transformat on of 3-PL. is

P(0)

NA) = I”[T——-TW)-

] (20)

where P() is defined as in ().

A general equation for a hyperbola is given by



AN I
T (21)

where Z and 11" denote the axis coordinates; and s and » are parameters

which define the shape of the curve.

Two more transformations are needed in order for this curve to resemble

the logit transformed 3-PL. The fivst transformation is:

Z=Ycosa-Xsina: W =Ysino+ Ncosa. (22)

where v = t.an"(ﬁ) X and Y denote the new coordinates.

The second transformation is :
N=6-h: Y=\NO-kK (23)

The result is:

NO)Y = [0~ b+ \J(0 1)+ g] +k (24)

where f, h and k are similar to a. b and ¢ respectively in 3-PL Logistic

model.

Another new model is hased on proportional item response curve (PIRC).
In this model. as with the others. it is assumed that the probability of item
success is a function of ability level but that the form of that function is

the same for all items, except for a constant of proportionality. For example,

20



if, for a given examinee, the probability of success on an item is half thac
on second item, the probability of success on the first item is the half the
probability of sucess on the second item for all examinees at all levels of abil-
ity. The value of one-half nsed here is only by way of example. Any othr,

fraction could have heen used.

There is a general function ol ability 8. f(A) . For any particular item,
one parameter £ takes a role of the proportion constant. The estimation is
much easier and studies found it is consistent with TOEFL item correlations
(Boldt, 1989) and about equally accurate for prediction with 3-PL (Boldt,
1991).

This thesis will not attempt to improve the models, but concentrate how
to improve the methods ol estimating item parameters in 3-PL models. Be-
canse the problem of estimating ability parameters when item parameters
are given is reasonably straightforward. 1t is called conditional estimation of

f.

Secondly, estimation of item parameters is the most important task in
Adaptive Testing and constructing ltem Bank. If item parameters are avail-
able a collection of items, tests can he constructed for optimal performance

in specific applications such as minimizing classification errors.

With experimental designs the “optimal™ estimate of item parameters

can be reached in the sense of minimizing residuals without doing any real

<



"experiments”. These estimators ave called Erperimental Design Estimate,
EDE, in this thesis. The main idea comes from Three-stage Designs which

has been used in many countries of the world.

3.2. Parameter Design

In order to gain as much information as possible rescarchers nust plan
experiments very carcfully in advance. This plan is often refer to as caper-
imental design. These variables which can effect the performance of “prod-
uct”, dependent variable y, are called fuctors. ach factor was set al some

values which were called fevels,

Off-line quality control methods are the measurements taken at, the prod-
uct and process design stages to improve product quality. G, Taguchi (1979)
has developed a systematic approach to off-line quality control that has been
used to a moderate extent in Japau and has attracted attention in a number

of other counties. including the United States.,

Rather than attempt to lind and control some noise factors, Taguchi ad-
vocates a three-stage design procednie for off-line quality control © (a) system
design; (b) parameter design and (¢) toleranee design. In the first stage, a
system is designed to fulfill a specific function. The second step, parame-
ter design, attempts to find levels of the controllable factors such that some
optimal conditions are reached. In the thind stage, it may be necessary to

specify narrower tolerances for some of the factors. This final step is con-

.)'\.



sidered only i the reduction in variation achieved at the parameter design
stage is insuflicient. Thus. parameter design is the key stage for statisticians.
We use the same idea to find “optimal™ values of item parameters within a
parameter space such that the iminimnm residual can be reached with sorne

experimental designs.

Taguchi himself recommends that orthogonal arrays be used for parame-
ter designs, In the following sections, we will discuss this kind of designs as

woll as others,

3.3. Orthogonal Designs

An orthogonal design of order nand type (91, Sy, ..., 51), 8, positive inte-
gers, is an 0o x nomatrix X.with entries from 0. 2ay, a, ... satisfying
!

XX =(Y 5091, (25)

=1

(Geramita and Seberry, 1979). Fhe ideas and methods which we use to con-
struct an orthogonal desigin are quite varied. and many have been used in

the construction of Hadamard matrices.

A matrix whose elements ave £1 and inner-product of any pair of columns
is zero, is called Hadumard Matrw, For example following is a Hadamard

matrix Hy.
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! | 1 !
=l IS
I [
=1 -1 |

In fact after omitting the tirst column, all elements are 1, it is an orthog-
onal design Ly(23), where 1 is the number of trials, 2 is the number of levels

and 3 is the number of columns.

Suppose we want construct a orthogonal design which has t levels, fis a
prime number, Orthogonal Latin Squarc is nsed. Generally speaking we can
use orthogonal latin square to constinet Ly (") designs. At fiest we set two

fundamental columns as following. we get

(1 | o) l)|| ('||\

| 2 (yy I)l_g s 1
|t ayy I)“ Cu
2 | ) ])“ cee (]
202 ly, I)“ SN I D)
2t )y ]/_;, :

t |1 (4] [)“ s (7]
t 2 (lyy ]’12 tee (D)

\f f ”.u [’.II ";l)

These square matrices A, B... and (" a1e orthogonal to cach other, where

A, B... and (" are respectively of order £ latin squares, for example: A is
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(hyy gy O yy
() Ly -+ Ay

T () e Uyg
The elements of 3rd, dth..and t-th columns are the elements of 4, B, ...C’
respectively according to raw order. The number of every level in each column

equals to t. For cach pair of colunms the numbers of (¢,7), where 2,7 =

1,2,..F, all are same. Following is Ly5(5°%):
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N
(122222\
1 3 3 3 3 3
I T T T W
' 53555 5
201 23 15
203 15 1
283 15 1 2
20 51 23
25 1 203
30035 2
32 11 35
335 2 1 |
311 3 5 2
35 2 01 3
L1253
25 3 1 4
L3 1125
125 3 1
Py 3012
5005 103 2
52 0105 13
53 205
L3 2 1h
\5 5 1 3 2 |

3.4. Uniform Design

L

i Uniform Design is proposcd by Fang (1980). The most important, feature

: of it is that much more levels of factors can be arranged in an experiment,

'E 13 \d . . .

3 It still keeps some advantages of orthogonal design. e.g. experimental points
are distributed uniformally over the factor space. So these points have a very
good representive property.

;




Following is Uss(25%"). Comparing with Lys(5°), if we have two factors,
1:cure 3 shows that Uy is more uniformal than Las, because every level of
cach factor occurs once in Uy and. in particular five levels repeat 5 times in

Ly,

[
°
.
e
oy o) o] o]
®
)
°
o o o)
°
°
°
°
O (0] K3 (o}
°
°
°
o] (o} o} O]
°
°
°
°
o) o o) 0

Figure 3. Uy (25%") and L,5(3"). two factors
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In Figure 3, symbol ™ o ™ indicates an experimental poin. 1 Uniform
Design; symbol " o ™ indicates an experinental point in Orthogonal Desigu;

and ” ® " indicates a point in hoth.

I (2 3 4 6 T 8 9 0t 12 13 1416 17T I8 19 21 22 2
214 6 8 12 14 16 48 22 20 1 3 7T 9 It 13 17T 19 2
316 9 12 18 20 20 2 8 1L BT 28 1 4 7T 1316 19
T8 12 16 20 3 7 L1923 02 6 lboIs o2 1 9 13 17
3 (10 15 20 5 10 5 20 5 10 (5 20 5 10 (h 20 5 10 15
612 18 24 11 17 23 L 16 22 3 9 21 2 3 & | 7 13
T2 3 17T 20 G o032 9 06 23 12 19 1 8 22 (|
S 116 24 7 23 6 14 22 13 20 L 12 31119 2148 19
9118 2 11 4 13 2 6 20 8 U7 1 19 3 12 20 o237
1020 5 15 10 20 5 15 10 20 5 15 10 20 5 15 10 20 5
11122 8 19 16 2 13 201 21 7 18 1 1 1223 9 6 17 3
12024 11 23 22 9 21 8 719 G IS 17T 4 16 3 2 14 |
311 14 2 3 16 4 I7 018 619 7 821 9 22 23 11 24
M3 17 6 9 23 12 1 ¢ I8 7 20 20 13 2 16 19 8 22
1505 20 10 15 5 20 10 15 5 20 10 15 5 20 10 1h 5H 20
617 23 14 20 12 3 19 1 17 8 20 6 22 413 4 11 2 I8
ITY9 118 2 19 11 3 12 1 21 13 22 014 6 28 7 24 16
IS 111 4 22 8§ 119 12 23 16 9 2 13 6 24 17 3 21 4
9113 7 L 4 8 2 20 9 3 22 06 4 23 17 11 24 18 12
20 115 10 5 20 15 10 5 20 15 10 5 20 15 10 5 20 15 10
20017 1309 1 22 018 K6 2 28 19 17T 3 24 16 12 08
22119 16 13 7 b 1 23 17 1418 2 24 21 18 1209 6
230120019 17 13 1109 7 3 120022 08 16 14 12 8 6 4
20023 22 21 19 I8 17T 16 10 13 1210 9 8 7 6 4 3% 2
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
In Figure 3, we put two factors Ist and 9th cohnnns, becanse unifomality
is different from for cach pair of Uypy(25). Tt will be illustrated in the next,
31
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paragraph.

in order to construet Uy5(252%) we set the first column @,’s from 1 to
25. Then we pick up numbers a, from | to 25 which posess the property
(a,,25) = . It means the maximum common factor of @, and 25 is onn.
Because 25 = 52 and 5 is a prime number, we have 5271 ~=1/5) columns. The

clements uy, = ju, (mode=25).

Let 1 be the number of trials. sav. n = 25; a1, dg,....as and by, bs, ..., bs

be two groups of positive integers. o, # «a,,b, # b,. for any ¢ # 7, (a,,n) =

Do) = 1,0 =110 s dp.dy....ay and by by, ..., b, will generate different s
) 1.2 1. : g

columms. Comparing the following two values,

. ! M 1 a k
, - - — = (2 s
Jlay,ag, ... ay) » L_s__“l«ll{l n_ln(..smﬂn 1)} (26)
U b,) = Ly | I {1 - —l 2sinm bk )} (27)
J( by, 0y) = v 2 L n(2sin m—— 2

il flay,apeas) < f(by by b)), we conclude the columns generated by
the «¢,'s are more uniformal than these generated by b,’s. In two factories

situations of Uyg(25°"). the paiv (1.9) is the hest.

3.5. Procedure

Experimental Design Estimate (EDE) is a design method for estimating

35
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item parameters. lollowing are the main steps:

1) chose an experimental design which has some properties yon want;

2) take all parameters needed to estimate as "factors™, arrange them in proper
columns;

3) determine one or more objective function(s) which were used to be the
optimization criteria;

4) calculate the values of cach “trial™ according to theoretical formula;

5) search the optimal levels of "lactor™ which we will take as initial estimat-
ing values of parameters:

6) repeat the iterative procedure until the required precision is reached,

This procedure is very similai to parameter design in off-line quality con-
trol except it is unnecessary 1o colleet data alter doing real experiments. We
will use a set of empirical data to illustrate the application of the method in
Chapter 4. But before starting we have to check the unidimensionality for

the empirical data.
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Chapter 4. Comparison between EDE and MLE

4.1 Unidimensionality

In a general theory of latent traits, it is assumed that a set of k latent
traits or abilities underlie examinees performance on a set of test items. The
I latent traits define a A dimisional latent space, with cach examinee’s loca-
tion in the latent space being determined by the examinee’s position on each

latent trait.

In many IRT models. unidimensionality is assumed. It is equivalent to
the assumption known as the assumplion of local independence. For multidi-
mensional models, technical developments are limited and applications not

possible at this time.

A cheek on the unidimensionality of METST is reported in Table 1.
METST is the Matriculstion English Test of 1987 College Entrance Exam-
ination. It is a English prolicieney test. There are 105 items. The sample
size is 3,208, These values ave of the first 10 latent roots of the 105 x 105
tetrachoric correlation matrix. About 23 percent of the total variance was

accounted for by the fivst factor or component. and the ratio of the first to
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second eigenvalue was about & These statistics do meet Reckase's (1979)

minimal criteria for unidimensionality. The data set scems to satisfy the

unidimensionality assumption in IRT.

Table 1. First Ten Eigen Values

Eigenvalue Number Value
i 209

G e L1
1o

f=>

Holo RS |
l\r—

3.
2.
.
I
[
1.
1.
l.
l.

25
16
7.
50
H
39
3
3.
3

—
=

0

4.2. Results

Suppose the factor space is @ € [0.2]:h € [=2,2] and ¢ € [0,0.3]. It also
can be extended to any range for which theoretical assumptions are met. Us-
ing Ups(252Y), for the 3-PL model. parameters are arranged on the Ist, 9th
and 17th columns because this is the most uniformal one after comparing all

. . . . ¢
possible combination. i.c. C,.

Factor level ¢ corresponds to the value of ¢ + :z’;“—;ll-(tz — 1)) if the range of

this factor is [t,%2].



The criterion function is:

L ”~ ~
R = SIP#)]) - F6)1 (28)
1=1
where
P(f)) = ¢ — (1 = c){I + eap|—Dai(6; - b)]} " (29)

and F;((}J) is the observed {requencey of the correct answers of 8, groups,
estimated by standardized total grade on the ith item; k is the number of
homogeneous groups. (in this case study A = 21). Denote MRS, = R;/k.

In the Ith iteration, the values of ((lf”,bfl).cf”) which correspond to the
minimum of R, among all “trials™ are the {th "quasi-optimal” estimates.

Taking the ((15”,1)5”.('f”

as the midpoints of the (I 4 1)th factor space, the
length is half of the Ith factor space. Table 2 shows the results from the first

S iteration for Item | in NISTST.

Table 2. First 8 Iteration for No.l ltem

iteration d) by ¢ MRS,
1 133333 -0.16667  0.07500  0.00600
2 112500 -0.16667  0.10625  0.00488
3 0.97917  -0.01167  0.06875 0.00282
| 0.87500  -0.08333  0.08137 0.00265
b 088691 -0.05208  0.07969  0.00255
6 0.87719  -0.07813  0.08066  0.00253
T 0.87500  -0.08333  0.08099  0.00253
by 087516 -0.07983  0.08075  0.00253
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After 6 iterations. MRS has already been decrcase to 0.00253. We can

take this combination of ().D;.¢}) as “optimal™ estimates of item parame-

ters of Item No.l1, because its MRS is the minimun.

The stem-and-leal diagram for the minimum MRS values of 105 items

after all iterations is shown as Figure 4. Except for 6 items to which item

response might not satisfv the 3-PL logistic model, the MRS values for the

rest of 99 items are all less than 0.015. The value of median is Mdn=0.0017

and the mode A,=0.003.
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4.3. Comparison between Uniform and Orthogonal Design

Obviously uniform design is not the unique schedule for estiniating item

parameters. Orthogonal could be better. If we use Lgs(5%), the @,b,é are

arranged in the first three colmmns, Following the same steps the values of

these estimate can be obtained,

The median of MRS for all 99 items is Mdn = 0.0045, and mode Mo =

0.002. They are slightly smaller than when using uniform design Ups(25%).

Figure 5 shows its stem-and-leal diagram.
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Figure 5. Stem & Leal Diagram of MRS for Lys(5°)

Furthermore if we do the paived £ test on the minimum MRS values of



the total 105 items for the two design methods, the statistic is

—0.00061295

= = —0.811.
0.007 10582/ ,/101

We fail to reject the hypothesis that the minimum MRS values are equal.

In order to compare the efliciencies for obtaining the “optimal™ estimate,
we count the number of iterations for cach item in the two design methods.
Because ng = 23. i.e. there ave 23 items of which the two designs reach the
“optimal” in the same number of iterations: ny = 37, where Uy(26%) is
more efficient; n_ =15, Ly5(5") is more efficient. We can conclude from the

Sign Test that it is not significant.

4.4. Residual Analysis for MLE and EDE

In order to evaluate the results of EDE, the design miethod, we do a
residual analysis. In 988 rescarchers at Jianxi Normal University took the
same dataset and estimated the item parameters with MLE, (Qian, person-
nal communication. 1989) We climinated 9 items whose b were unreasonably
large (e.g. b= 99). It means thete are 9 items whose MLE are outside of the

parameter space. Table 3 shows values of these ML Es:

Table 3. MLIE of 9 items

No. of item | 6 11 13 b 19 26 28 30 87

b 9.63  60.21 52.210 3147 353260 1.34 -11.78

a 017 -0.20  -0.19




It is necessary 1o do a lincar transformation for MLE using the "Mean
and Sigma” method in order to put all these estimates on the same scale,
(Hambleton and Swaminathan. 1983) then we can compare their residuals.
The reason is mentioned in Chapter 2, section 2.1, The [ is the ratio of sy

and sppig, 1= 0.7618/1.1051 = 0.6207. the m = by — Ibpps = 0.3096.

We use the following two criteria 1o compare the two sets of estimates
one by one:
1) {MRS,}, where AIRS, = R, [k for i=1.2,.... 96. That is the MRS of the
“optimal” estimates for oth item:
2) SR, = [F(8,) — Fi(8,)]/ VMRS, That is the standardized residual dif-

ference.

Lt D = MRSk — MRSy The magnitudes of the D values are
shown in Table 1. We use the sing test to compare EDE with MLE in terms

of D for its simplicity.

Table 4. Differences of MRS between DI and MLE

Sign - +
D] [ <001 [001.0.1] >0.1]<0.11
(‘ounts a0 2 0 2

Based on the results in Table 1 rom the Sign Test,

ng =2land n. =72

e
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the residual difference for FDE is signilicantly smaller than for MLE. Ac-
cording to the SR, values, a comparison between the two sets of estimates

is shown in Table 8. There is no significant dilference.

Table 5. Standardized Residual of EDE & ML

ISR, [ [0.1] [1.2) [23) >3
EDE | 1380 55, 69 12
MLE [ 1378 510 90 R

The results of this residual analysis indicate that EDE is almost equiva-

lent to MLE in precision ol estimates.

4.5. Conclusion

Experimental Design Estimate (EDEF) is proposed in this thesis after as-
sessing established approaches of estimating parameters in ftem Response

Theory.

EDE might become a widely utilized methodology of estimating param-
eters in IRT, because it is casy to use and to understand. It ensures that
the estimates stay within the parameter space. Its pricesion is the same as
that of MLE. From Table 5. a 2 x 3 contigeney \# analysis shows that the
distributions of residuals of NMLE and EDE are almost the same. EDIS does
compare favorably with MLIC hecause of considerable savings in computer

costs.




EDE is more powerful when the number of parameters is large. For exam-
ple, in the 4-PL model, which is suitable for difficult questions, the number of
item parameters is 4n. Using MLIE the amount of working time in computer
will increase 1/3 at least. But using EDE the only difference from 3-PL is
putting the 4 on another colummn. in our case on the 5th column of Uss(25%).

The computing time is almost same as helore,

In the new test theory students” internal representations of systems, problem-
solving strategies, or reconfiguration of knowledge as they learn will be char-
acterized by much more parameters. (Mislevy, 1989) In such complex situa-
tion EDE will show its advantages hecause it does not need more work than

hefore.

DI can be used in assay tests and in graded response models, even
with continuous vesponse data. Essentially it is a non-parameteric method,
a distribution-free method. When assumptions are violated it is robust for

the estimation.
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