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ABSTRACT

Estimation of Parameters of Small Domains In Finite Populations

Peishuo Chen

The estimation for small domains is to produce accurate estimator of
small domain’s characterics base on a sample taken from the large domain
of study.The probiem arises: Limited resources dictated that the smaple
should be relativly small, but representativenes requires that it should
be widely spread.These two conditions combin to giv: small or =zero
sample size in a small domain. If we only use the smaple in a small
domaln to produce statistics,much information will be lost from the
sample beyond the small domain.Then the variance of estimator for small
domain is large because of the small sample size.But when estimator is
obtained by a sample from whole area,this estimator for small domain
will usuvally be design-biased.However, traditional probability sampling
theory emphasizes that the estimator should be essentially design
unbiased.We'll now give an approximately design-unbiased method. Let us
consider the estimator under general regression model with random

coefficients.
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CHAPTER 1

INTRODUCTION

1.1 Estimation In Small Domains

A sample survey is usually designed within particular large
geographical areas These geographical areas are usually called domain
of study. Sometimes we are often faced with the problem of producing
statistics for local small areas in character that are subdomains of the
original domain of study. The subdomains are used to be called as small
domains What we uyo is to produce accurate estimator of small domain's
characteristics based on a sample taken from the large domain of study.
The problem arises : Limited resources dictate that the sample should be
relatively small, but representativeness requires that it should widely
spread. These two conditions are combined to give small or even zero
sample sizes in a small domain. If we only use the sample in small
domain to produce the statistics, much information will be lost from the
sample beyond the small domain, The variance of the estimation for such
small domain in characteristics is large, because of the small sample
size, Also no estimation will be obtained when sample size in the small
domain is zero.But when estimation is obtained by a sample from a large
area, this estimation for small domain will usually be design-biased.
However, traditional probability sampling theory emphasizes that the
est imator should ©be essentially design unbiased. We’'ll give
anapproximately design-unbiased method. Usually, we assume that the

characteristics y of population has model

’Vl\=BO+ B lxll\+' o +Bpxp£k '



(ww) ssauxoly|

0o¢ 9c cc 81 71 Ot
et e e O%
O
o @
e 7 { 09
O \V4
® \V/
O
o o ’ 108
VvV
. 1
e e - ool

SJoqWNOND 8384y} O Ssauxoly} pub yibua | bid

(ww) yybuan



where k € domain of study,x p=0,1,+++p are auxiliary variables In

Pk’
this thesls, we’'ll consider estimation for small domains, when (1) xpk
are random variables and (2) Bpare random variables. These cases are
of'ten encountered in practice.

For case (2),we shall introduce random regression coeffic.ents models
by means of an example with data from a study of the relationship
between the thickness and the length of cucumbers.In figure 1 the points
represent observed values of length and thickness of three cucumbers for
five consecutive days during the growing period. The di“ferent symbols
represent different cucumbers.

It is seen that the points for each cucumber almost lie on a straght
line Hence a straight line can be used to represent the relationship
between thickness and length for a given cucumber.But each cucumber
scems to have its own line.The cucumbers are chosen at random from a
large number of cucumbers of a certain variety.Hence the regression
lines must be considered as random. The individual cucumbers can be
characterized by their straight-line relationships.To characterize the

whole population of cucumbers ,it is natural to look at the distribution

of° these lines.

1.2 Plan of The Thesis

In chapter 2 , we'll review some available techniques for estimation
in small domains. Two concepts, design based approach and model based
approach,will be presented first,then we’ll outline two common
est imators: ratio estimator and regression estimator.The synthetic

est imator,an important method for estimating in small domains,also will



be .introduced.In the last part of this chapter we ccrniiider the
construction of srall domain statistics as a prediction problem. Chapter
3, the details of generalized regression estimation under some
superpopulation models will be discussed.Chapter 4,gives a .aumerical
study of the methods discussed in this thesis.

1.3 Notation

Suppose that the finite population U={ 1,2,¢++k,**N } is divided into
Q nonoverlapping domains, and the population also divided along the
second dimension into H nonoverlapping categories (called groups), the

population is cross classified into HQ cells.

U'q Population of gth domain g=1,2,°:++Q.
Uh' Population of hth group h=1.2,+°+H.
Uhq Population of qth group and hth domain.
N Size of U .
'q ‘q
Nh- Size of Uhf
th Size of Uhq'
s A probability sample, of size n,given given by u

sampling design p(s).

s.q A subset of sample s :{ k: k € s and k € qu }.

Sp. A subset of sample s :{ k: k € s and k € Uh~ }.

shq A subset of sample s :{ k:k € s and k € Uhq ).
nk=p(kes) Inclusion probablility: the probability of kth

population unit belongs to sample s.



nk1=p(k. les)
= 1
Y= ¥ Leu?x
Y= NY

T =} y
. keU K
q -q

y, L. Y
EUhqk. Shqk
o=1
Y=flkes K
=1
X_Nzkeka
y=ny
|
X= A lkes*k

X=nx

The probability
belong to sample s .

Populat 1 on mean of the y-values.
Population total of the y-values,

qth domain total of the y-values.

Sums of the y-values over k In the
sels.
Sample mean of the y-values.

Populat i on mean of the x-values.

Sample total of the y—wvalues.

Sample mean of tlLe x-values.

Sample total of the x—values.

Correlat ion coefficient between xl.and Yy

Populat i on variance of Yy

populat ion variance of "

Populat i on covariance

Sample wvariance of Yie:

of kth and qth population

units

indicated
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- -2
Lies ¥y V)
s2 L. Sampl i
x 1 ample variance of X
=2
Zkes(xk-x)
sxy=psxsy Sample covarlance .
ny:S';’,/?2 Square of the coefficient of variation (cv) of y
cxx=s;2r/)-(2 Square of the coefficient of variation (cv) of x

C. =S /(XY) Relative covariance.
Yy Xy

x

f=n/N Sampling fraction.

I‘EM Model Expectation.

l'ED Design Expectat ion,

\I" Variance under the model.
VD Variance under the design.
v Variance of statistics.

1.4 Elenentary Theorens (in SRSWGR)

SRSWOR stand for Simple Random Sample Without Replacement.

(1-f)

n

(1) v(y) = s
D y

K

K



(2) E (s°) = s°
D vy y

(3) ED(sxy) = S

xy

(4) Cov(x,y) = Ely-¥) (x-X)

(1-1) 1 _ _
= n n-1 z:}ces(yk—\,)(xk-)()
(1-f)
= -——n—" [o] SX Sy.

(5) Var f( V,W ) =E Varlf(V, W) |W+Var E[f(V,W)|W]

where V,W are random variables.

1.5 Introduct ion of Method of Estimation

One feature of theoretical statistics is the creation of a large body
of theory that discusses how to make good escimators from data.In the
development of theory, specifical ly for sample surveys, relatively little
use has been made of this knowledge. Most of estimation methods in
theoretical statistics assume that we know the functional form of the
frequency distribution followed by the data in the sample,and the
method of estimation is carefully geared to this type of
distribution.The preference in sample survey theory has been to make, at
most,limited assumptions about this frequency distribution (that it is
very skew or rather symmetrical) and to leave its specific functional
form out of the discussicn.

Consequently, estimation techniques for sample survey work are at
present restricted in scope. Some techniques will be considered in the

fol lowing sections.



~

1.5.1 The Ralio Estimate

In the ratio method an auxiliary variate x correlated with Yy is

1'

obtained for each wunit in the sample. The population total X of the X,

must be known.

The ratio estimate of Y, the population total of the yi,is

Y=°-X

R

K i<

1}
X<
>

where y,x are the sample totals of the yiand xirespectively.

" If the quantity to be estimated is Y,the population mean value of

yi.the ratio estimator is

V=%
R

< IX

We novw mention some results without proof.

Proposition 1.5. 1

The ratio estimators of the population total ,Y, and the population

mean, Y,are, respect ively,

Y =
R

ERNLCR
>
o 4
n

X1
I

In a simple random sample of size n (n large )

2
~ N2 (y, -Rx, )
V(YR)sN (”)[zkeu k_k ] (1.1)

n N-1




- - (_'/ -Rx )
A R [Eke” k k] (1.2)

where R=X/Y
Proposition 1.5.2

The estimated variance, V(YR),iS given by

2
sy _ N (1-f) S 2
n(n-1)
2 R -
- NTa-f) (s’ Rs®-2R s_)
n x Xy

where R=y/X .

Remark 1.5. 1

In general,the ratio estimate has a bias of order 1/n. In
practice,this quantity is usually unimportant in samples of moderate

size.

Remark 1.5. 2

The type of estimation of Y =N§ where § is the mean per unit for the
sample (in the simple random sampling) or a weighted mean per unit (in
the stratified random sampling).Estimators of this klnd are called
estimators based on the mean per unit or estimators obtained by simple

expans ion.
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Proposition 1.5.3
In the large samples, with simple random sampling,the ratio estimator
YR has a smaller variance than the estimator Y = Ny obtained by simple

expansion,if

wn

S

/

p >

V] =
> |><
<) l~<

coefficient of variation of :»(i

2(coefficient of variation of yl)

cv(x)

_1
2 cviy)

We Will Now Specify Conditions Under Which The Ratio Estimator Is A

Best Linear Unbiased Estimator

A well known result in regression theory indicates the type of
populat ion under which “he ratio estimate may be called the best among a
wide class of estimates. The result was first proved for infinite
populat ions. Brewer(1963b) and Royall(1870a) extend the result to finjte

populat ions which holds if the following two conditions are satisfied.

1)  The relation between Y4 and X, is a straight line though the

origin.

2) The variance of Yy about this line is proportional to Xy

A "best linear unbiased estimator" is defined as follow. Consider all
estimators Y of Y that are linear function of the sample values yi.They

are of the form
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) 11y1+12y2...+1nyn
where the 1's do not depend on the Yy ana may be functions of x’'s.The
choice of I's is restricted to those that give unbiased estimation of Y.
The estimator with the smallest variance is called the best linear
unbiased estimator (BLUE).

Formally Brewer and Royall assume that the N population values

(yl $ X Jare a random sample from a superpopulation in which

y=Bx +§ (1.3)
where the Ei are independent of the x, and X, >0. In arrays in which X,
e fixed, Ex has mean O and variance Axi.The X, (1=1,2,+++N) are

known.

The finite population total Y has been regarded as a fixed
quantity.Under model (1.3),on the other hand, Y=BX + z:‘_lgi is a random

variable. 1n defining an unbiased estimator under this model, Brewer and
Royall use a concept of unbiasedness which differs from that 1in
randomizat ion theory. They regard an estimator 9 as unbiased if
IE(\A()=IE(Y) in repeated selections of the finite population and sample
under the model.Such an estimator might be called model-unbiased.Thus
under model (1.3) the ratio estimator Y = Xy/x is the best linear

unbiased estimator for any sample, random or not,selected solely

according to the values of the xl.
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1.8.2 The Linear Regression Estimate

Like the ratio estimate, the linear regression estimate is designed

to increase precision by the use of an auxiliary variate x, that is
correlated with yl.When the relation between yland xlis examined, it may

be found that,although the relation is approximate linear,the 1inc does
not go through the origin.

We suppose that yl. and xl. are each obtained for every unit in the

sample and that the population mean X of the xl.is known. The lincar

regression estimote of Y, the population mean of the yj,, is

Yot b(X-x)

where the subscript Ir denotes linear regression and b is an est imate of

the change in y when x is incrcased by unity.

(A) Regression Estimates With Preassigned b

Let us now consider the following well known results

1) In simple random sampling, in which b is a preassigncd
[¢]

constant,the linear regression estimate
Yoyt b (X - x)

is unbiased,with variance
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v Sy12
V(ylr) n N-1

n

=17f (? _ops 4 b%S?)
n y o Xy o X

2) The value of b_that minimizes V(y“_). is given by

T, (y,-Y) (x,-X)
b= B-= yx: keu k k (1.4)

2 512
Sx z:keu(x X)

and may be called the linear regression coefficient of y on x in the
finite poppulation.Note that B does not depend on the properties of any
sample t hat is drawn, and therefore could theoretically be

preassigned. The resulting minimum variance is given by

(7, 1=1215%(1-p2).

Vo —_ (1.5)
min’lr n'y

where p is Lhe populat ion correlation coefficient between y and x.

(B) Regression Est imates When b Is Computed From The Sample

The equalion (1.4) suggests that if b must be computed from the
sample an cffective estimate is likely to be the familiar least squares
estimate of B, that is,

Zkes(y—y)(x—x)

b = — (1.8)
zkes(x )

The theory of linear regression plays a prominent part in statistical
methodology.The standard results of this theory are not entirely
suitable for sample surveys because they require the assumptions that
the populatien regression of y on x is linear, that the residual

variance of y about the regression line 1is constant and that the
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population is infinite,

We present an approach that makes no assumption of any specific
relation between y and x .As in the analogous theory for the ratlo
estimate, only large-sample results are obtained.

With b as in (1.6),the linear regression estimator of Y in a simple
random sample is

y. =y + b(X-x)

ir
=y - b(x-X). (1.7)

Introduce the variate € defined by the relation
e, = yk—Y-B(xk-X). {1.8)

Two properties of the e, are

D Bpe®0

2) Zkeuek(x -X)=0.

We now introduce some interesting results

Proposition 1.5.4
If b is the least squares estimate of B and
Y=Yt b{X-x)
then in simple random samples of size n,with n large, the variance of Yy,

is given by

1-f

R

2 2
V(ylr) Sy(l p)
where p=Syx/Sny is the population correlation coifficient between y

and x.
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Proposition 1.5.5

A sample estimate of V()-/“_),valid in large samples, is given by

= =112
R, (P (X e (YY) (x, %) ]
= ST Bkes Yk (x -1)2
z:kes Xk

the latter being the usual short-cut computing formula.

We now consider large-sample comparison with the ratio estimate and
the mean per unit For these comparisons the sample size must be large
enough so that the appruximate formulas for the variances of the ratio
and regression estimates are valid.The three comparable variances for
the estimated population mean Y are as follows.

Proposition 1.5.6
N-n

- 2,2 .
\V(y“_)— N Sy(l e") (regression)
Viy )= —Tj (52+R282—2RpS S ) (ratio)

R Nn 7y X y x
Viy) = W S; (mean per unit)

It is apparent that the variance of the regression estimate is

smaller than that of the mean per unit unless p=0, in which case the two

variances are equal.

The variance of the regression estimate is less than that of the

ratio estimate if
2.2 2.2
~ <R - .
ol Sy Sx 2RpSny
This is equivalent to the inequalities

(pSy-RSx)2>O or (B-R)%0 .
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Thus the regression estimate is more precise than the ratio estimate

unless B=R.This occurs when the relation between Yy and x, is a straight

k

line through the origin.

1.5.3 Bias of The Linear Regression Estimate

We can show that the estimator ;'lrhas a bias of order 1/n 1in simple
random sampling. We can write

Y-Eb(x-X) ,

E(ylr)
therefore for the bias is -Eb(x-X)=-cov(b, x).The leading term in the

bias turns out to be

2
—(1-r) E€;(¥7X)

n 2
S
X

This term represents a contribution from the quadratic component of the
regression of y on x.Thus, if a sample plot of ykagainst X, appeart,

approximately linear, there should be little risk of major bias in }Jr

1.5.4 The Linear Regression Estimator Under A Linear Regression

Mode 1

Suppos2 that the finite population values yk(k=1,2, ...N) are randomly
drawn frcr an infinite superpopulation Jn which

y= a + Bx+§

where the £ are independent,with means 0 and variance ol for fived x By

3
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direct substitution from the model we find that

ZiesV i i ®)

b = —
Zkes(xk-x)

s Lye S X1 X)

-2

):kes(xk-’()
_ - L& (x,mX)
Hence ;H-Y = (€ -EN)+(X—X) kes k I_f 5 (1.9)
" Des (X, %)

where En and EN are means over the sample and the finite population. It
follows from(1 9) that wunder this model,E(;'lr-?)=O,
so, that ;H is model-unbiased for any size of sample.

As regards the variance,it follows from(1.9), for a given set of x's,

vy, ) = E(}lr-?)z

2 [[ 11 ] (X-%)2 ]
=0 =S L —
¢ ’ Zkes(xk—X)

This result holds for any 1>1 and sample selected soley from the
values of x. This approach and its generalization to the case of unequal
residual variances were given 'y Royall (1970).Under this model a
purposive sample plan that succeeded in making x=X would minimize
V(;'“_) for a given n.

Also, for any sample selected solely according to the values of the

x, the usual least squares estimator
s2 =7, [(y-y)-blx,-x)1%/(n-2)
€7 Lyes' WYKTYITRVX n

is a model-unbiased estimator of 02 for 2.

3

Thus, in problems in which this model applies, simple exact results
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about the mean and variance of ;lr can be established,values of the

xk,the random element being supplied gratis by the distribution of the

£'s assumed in the model.



CHAPTER 2

~

SOME AVAILABLE TECHNIQUES FOR SMALL DOMAIN ESTIMATIOM

2.1 Design Based And Model Based Appraoches

The essence of survey sampling consists of selection of a part of a
finite collection of units, followed by giving of statements about the
entire collection on the basis of the selected part. Two ways of having
a finite collection of units are:

(1) The Fixed Population Approach:

With each population unit is associated a fixed but unknown
real number, that is, the value of the variable y under study.

(2) The Superpopulation Approach:

With each population wunit 1is associated a random variable
for which a stochastic structure is specified; the actual value
associated with a population unit is treated as the outcome of
this random variable.

The fixed population approach is the traditional one in survey
sampling. However, there are also early examples of the superpopulation
approach: [see Cochran (1939, 1948), Deming and Stephen (1941)].Many recent
importar* contributions to finite population inference theory take the
superpopulation approach. This is a very promising approach in survey
sampling and may be meaningful in terms of changing population values
with respect to the time.

As an example, suppose that the units are farms and that the
characteristics under study is the yield of wheat in a given year.One

approach to the inference problem, often used in standard texts,is the



20

following: It is assumed that to each farm in the population corresponds
a fixed but unknown real number representing the yield of that
particular farm in the particular year. When a farm has been selected
for the sample, it is further more assumed that the yield is a fixed real
number measured without error.

A different approach to the problem is to treat the yields of farms
in the population as numbers generated under a stochastic model. Such
models often incorporate auxiliary knowledge.

A crude but frequently effective model may simply postulate a linear
stochastic relationship,for example,the yield of wheat apart from an

error term of zero, expected value,proportional to size of the farm

in acres, xk,which is assumed known from a previous year. The model is,
YR = ‘;“'k*’gk ]
E, (§lx) =0, k=1,2, <N .

Moreover, the model considers that the unknown proportionality factor
B is common to all farms. It would be determined in the particular year,
by the average propensity of farms to devote acreage to wheat, by

average yield per acre that year.

An estimate é of the unknown proportionality factor can be obtained
from a sample of farms.For if any one farm is not in the sample, the
value éxk should provide an effective prediction of wheat yield, thereby
permitting a prediction of total yield in the population.

In the Fixed Population Approach the variation of the estimator is
entirely due to the sampling design chosen to select the units in the
sample. However,in the super population approach it will also depend on

the stochastic model generating the population, thus,the basis of
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comparison of two estimations under the two approaches is El(6e -

9)2].the average MSE under the model, where 0 is an estimators of 6 .We
often strive for unbiased estimators in which case the criterion of

comparison becomes the average variance.

2.2 Synthetic Approach

In many surveys, the target population is national in character,the
primary aim being to produce accurate estimates of national
characteristics.Limited resources dictate that the sample should be
relatively small,but representativeness requires that it should be
spread widely over the target population .These two conditions combine
to give smal! or even zero sample size in certain subpopulation (called
small domain), say province; yet increasingly,administrative decisions are
based on data for small domain and several methods have been
proposed. Among there is the method of synthetic estimation.This method
was proposed in the U.S.Nation Center for Health Ftatistics
(1968).Gonzalez (1973) descrited the method of synthetic estimation as
follows:

An unbiased estimate is obtained from a sample survey for a large
area.'’hen this estimate is used to derive estimates for subareas on the
assumption that the small are.s have the same characteristics as the
large area,we identify these estimates as synthetic estimates.

Suppose that the finite population U={1,2,...N} is cross classified
into HQ cells,Q domains and H groups.The domains may be numerous,say,

small geographical areas of a sampled country.THe groups ,may be not
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more than ten,could be based on age,sex and so on.
N = Z:=1Nh-= Zg=1N-q= Z:=1{3=1th
The th are assumed known from a previous census or any other reliable

source. This auxiliary information is the necessary prerequisite for
significant improvement over the most basic estimators and s the
essential ingredient in the synthetic techniques.

A probability sample s of size n, a subset of U,is drawn by a given

sampling design p(s) that determines the inclusion
probabilities nk=p(kes) and nk1=p(k,les).The parts of s that fall within
qu 'Uh- ,and Uhq are denoted by s.q ' Sh. and shq' respectively. Their

respective sizes are denoted by n.q,nh.aud nhq.

Associated with the kth population unit is th»: value Yy of the
variable of character y.Having drawn s,we observe Yy for k € s. The

problem is to estimate the domain total T, y for g=1,2,...Q.

)
keu
q .q

Notation such as I% yk'zs Yy and so on,denote sums over k in the
h hg

indicated sets.I will write thfor Zuhqyk/th.yh.for th¥ /Nh- and so

on.For means at the sample level,an s 1is added: }S stands for
hq

L yk/nhq.ysh.for Ls

yk/nh.,and SO on.
hq .

h

Often the survey is not or can not be designed to achieve highly
efficient estimates for every one of numerous domains. Although n may be
several thousand, there is often a lack of observations in given domain

(i.e.naqis small) In practice,the nhq may be zero for some
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cells. Assume, however,that the sample sizes for the groups, n,, are

moderate to large.
We refer to simple random sampling (srs) with nm=n/N for all k, where n

is fixed but the nh.and n.qare random.

The synthetic estimator of T.q is obviously

Tsyq =Z;;=1thysh. (2.1)

The term synthetic was used because these estimates were not derived
directly from survey results.However,this particvlar method of
borrowing information from similar small domains is to increase the
accuracy of the resulting estimates.

Synthetic estimator has the outstanding advantage in small

varjance.But this estimator has the design bias ZZ=1th(;h- _;hq } under
srs or strs (stratified sampling).

The advantage of small variance of synthetic estimator is based on
domains resemble each other.If the assumption is false,we can adjust the
estimator for small domains by weights.The weights are based on the
prior information.

Also proper bias is important.We shall see how to eliminate the

effect of the bias.There is another estimator

-~

= H v v -y
Tuoq I%=1‘"hth.*“hq‘th el
The estimator consists of synthetic estimator plus v correction ternm,

Z£=lnhq(th—yh.),which works in reducing bias.

Sarndal (1981) proposed the generalized regression estimator which
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reduces to the following formula when the simple prediction approach is
taken under the model that the mean in the hth group is the same for

each domain,

~

Teog = keu[th-Vsh_*th(ys -y )]

where N. =n, N ./n

hq "hq h he’

Sérndal points that Tsyqand Tuoqshould be similar in bias and mean

squared error(MSE)properties for small samples and shows that the
synthetic estimator has mean squared error advantage in small samples
under the assumed model, however,with moderate to large samples, the
generalized regression estimator gives smaller MSE under the deviations
from the model. The latter also has advantage that estimators of
variance and confidence intervals can be easily obtained.

Other estimation approaches have been proposed, including estimators
as a weighted combination of a design-unbiased estimatcr and a
design-biased but low variance estimator.Such attempts have included the
use of shrinkage(or James-Stein) estimators. Some references in this
direction are Schaible(1979),Fay and Herriott(1979),Battese an-i
Fuller(1981),and Drew, Singh, and Choudry(1982). As Little
(1983a,b) pointed out,one can construct by empirical Bayes methods a
combined estimator such that shrinkage toward the design-blased
component tends to zero in large samples.So the entire weight tends to
be put on the design-consistent compoment.The resulting combined
estimator will therefore be design consistent,but the welghts are
difinitely more complicated.With empirical Bayes and similar techniques,

the weights are complex functions of the estimated population or model
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variance, Consequently it is difficult to evaluate their design
bias and design variance by analytical methods. Simplifying the
weights, Drew ,Singh,and Choudry(1982) suggested a sample depend

estimator whose performance,studied by simulation,seems promising.

2.3 The Prediction Approach

In the prediction approach, assumptions about population structure
are made explicit by writing them in the form of a statistical
model.Estimators are then derived from the model by using some criterion
such as least squares.By using this approach all assumptions are quite
explicit and thus open to challenge and to test using the data.This
approach contrasts with the rather intuitive and ad hoc way in which
various synthetic estimators have been proposed.

D.Holt,T.M.F.Smith and T.J.Tomberlin(1879) considered the following
estimator.

The model is

Yhak = Bn * Snqik h=12-H
q = 1,2'000Q
k=1,2,+N (2.2)
hg

with E(thk)

O,V(thk) 0? and Cov(thk ,Ehk1)=0, when k,1 are

different.The population is cross classified by H groups and Q domains
as above.This model is a simple one-way analysis of variance model with

the hth group mean Bh the same for all of h.In any particular case,the

appropriateness of this model may be examined in the usual

ways, including the calculation of measures of fit and the use of other
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diagnostic procedures such as plots of residuals.

The assumption of homoscedasticity is unnecessarily restrictive and
can be replaced by different variances within groups or even a more
general variance structure.The assumption of different variance in each
group wlll not alter the form of the prediction estimator but will
change its variance and also the estimator of variance.Laake(1979) has
developed the prediction estimator and its variance under a more general
variance structure.

Under the model (2.2),the BLU estimator of Bh is giv - hy

~

Bh

yho .

Zqzkesthk/zqnhq '

The BLU estimator of Tq is given by

Tq = DilkesVngk * ThluesPn

Zhnhq(th°_yh'~) + Ehthyh--' (2.3)
When th is much larger than nhq(th» nhq).the second term in (2.3)

will dominate and we obtain the synthetic estimator (2.2).The difference

between the estimators is the result of the fact that the predictive

estimators(2.3) recognizes that observed values are known exactly and so

prediction is only required for the (th-nhq) unobserved values In each

cell.Laake(1979) has shown that the variance of the prediction
estimator(2.3) is smaller than that of the synthetic
estimator(2.2)evaluated under the model (2.1).We note that in the 1limit

when nhq=th and the small domain total is known exactly,then (2.3)

gives this value while (2.2) does not.

We can show under model (2.1) that the mean squared error of the
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predictive estimator (2.3)is given by

(N, -n, )
o = o2 hq 'hqg -
HSE(Tq) o Eh—————HT;—— (th nhq+nh.)
2 2
= ¢ Zhth/nh-' for th» Dhg' (2.4)

where all expectations are taken over the distribution of the model

error term B.We note again that if nhq=th ,this becomes zero,as it

should.
The variance o° can be estimated from linear model theory by using
the residual sum of squares.Under the model(2.1) we obtain

(n-H) 0% =  (yyp )%

As we noted before,a different variance structure on the model would

lead to a different expression for MSE(Tq).Under suitable assumptions

this modifled HSE(Tq) is still estimable wusing the theory for

generalized least squares.

As we have indicated, any model is likely to be only an approximation
of the actual situation.For this reason, we examine the behavior of the
estimator(2.3),corresponding to the wusual synthetic estimator,under
alternative models of the population structure.For example, if the
models of a constant mean for each group over all small domains were
false, then a more appropriate model might be one that makes no such
assumption; for example,

thk = “hq + thk (2.5)

where var(§ ) = o?.The BLU estimator of u is the sample cell mean
hgk . hq

9hq- and we see that no information is borrowed from other cells
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because the model does not allow for that.The estimator of Tq is %; =
Zhthth.,the poststratified estimator.If the estimator Tq (2.3), 1Is

used under model (2.4) instead of the BLU estimator %;. then the bias of

Tqis given by

Bias(T ) = E(% -T )
q q q
= Bl nlkes hgk* LnMng Phq’Yhe - TnZi¥ nqk!
n_ K
- _ Zq:"ng#hg: _
Zh(th nhq) [ 3 Phq ].
Zq’ hq;
MSE(T ) = E(T -T )2
q q°q
(N, -n, )
- - y12, 2 hq "hq ~
[Bias(Tq)] +¢r‘2h—-————nh. (th nhth-)'

Thus, the MSE is the sum of the square of the bias plus the MSE of the
true model given by(2.4) but with o° replaced by the true variance

af.this result is true in general.
P.Laake published (1973) a closely related paper in predictive
approach to small domain estimation. In this paper he derived optimal

predictors under a superpopulation probability model.

2.4 The summary of synthetic approach and prediction approach

Generally speaking,synthetic estimators make wuse of auxiliary
information.For ary small domain characterisltics of interest,the

simplest synthetic estimator 1is obtained by applying the estimated
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domaln means directly to each some domain.The small domain estimators
are then constructed by combining the domain estimators with known
welights of the small domains. More elaborate synthetic estimators are
obtained iIn the following way.With the domains of study,the sample
units are partitioned (also called poststratified)into strata on the
basis of information collected about them. The poststrata may be groups
such as age and sex.Unbiased estimators are constructed for the actual
characteristics within the poststrata.The synthetic estimators of the
small domains are then obtained as a weighted sum of domain
estimators, the relative sizes of the poststrata within the small domain.

As for predictive estimator,the small domain statistics is treated as
a production problem.One of the advantages of the prediction approach is
the fact that it may yield estimates of mean squared errors(MSE) as a
measure of reliability.Thus, the approach may be an appropriate tool for
comparison of different strategies for estimation within small domains.

In contrast to the prediction approach, synthetic estimators are
constructed only on the basis of classical sampling procedures for
finite populations.The estimators are usually biased,and there exists no
good way to estimate the bias.The only evident way to compare the MSE of
the estimators seems to be to establish a population in which the
characteristics of the population are known, which has been done by Laake
and Langva(1976) and Laake(1978).

Laake(18979) also showed in his paper that the predictors compare
favorably with the synthetic estimators with respect to the MSE. The

galin of the MSE is however,moderate.
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2.5 Some Other Investigations

The synthetic estimator (SYN) has been traditionally used to estimate
characteristics of small domains. Although it has the advantage of a
small variance, it also has following disadvantages:

(a) it can be badly biased in some domains,and ordinarily we do not
known which ones;

{b) consequently, a calculated coefficient of variation (cv), or a
calculated confidence interval, is meaningless for such domains.

Sarndal (1981) introduced the regression estimator (REG) in the
context of domain estimation.This estimator is nearly unblased and has
additional advantage that a standard design based confidence interval is
easily computed for each domain estimate.

However two drawbacks with REG are:

(a) the estimated variance can be unacceptably large in very small
domains

(b) although with small probability,it can take negative values in
situations where such values are unacceptable.

It is therefore desirable to strike a balance between SYN and REG.
M. A.Hidiroglou and C.E.Sarndal (1984) reported experiment with one such
compromise estimator,the modified regression estimator (MRE).It's
advantages are as follows

(a) It has a small (but noticeable) bias in those domains where the
synthetic estimator is greatly biased;in other domains, the MRE Is
nearly unbiased. The MRE has the advantage of considerably reduced
variance compared to the REG estimator.

(b) It has a smaller Mean Squared Error than the SYN estimator in
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domains where the latter is badly blased.

{c) Meanihgful confidence intervals can also be easily constructed

for the MRE estimator.

(1) Estimators

The following estimators of the gth domain total Tq = z%eu y, are
*q

proposed by M.A.Hidiroglou and C.E.Siarndal (1984)

Two versions of the SYN,REG and MRE have been Iinvestigated,the

"Count” versions and the "Ratio"version.

The formulas for the "Count"versions are:

Synthetic~-Count estimator (SYN/C):

-

quwvc= Z%=1thysh.

where } is the mean of y in She
he

Regression-Count estimator (REG/C)

TqRﬂvcz E:=1[thysh.+ hg

hg h-
where ys is the mean of y in shq , and th = an /n. Here
hq hg
Z;”th(yshq-ysh') is a bias correction term that ordinarily carries a

considerable variance contribution.

Modified Regression-Count estimator (MRE/C)

1qHRE/C= Zﬁ [thys q hq s q_ysh.)]
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with

E /n if n zE
F = g °q
n /E if n <E
oq uq
where

E =E (n ) = nN_/N
s °q
‘q
is the expected sample take,under simple random sample, from the qth

domain.

The MRE/C estimator thus differs from the ordinary REG/C estimator In

that the bias correction term revises a weight, F _,which 1s bounded

above by unity,and attains unity when the sample take equals 1its

expectation.The theoretical Jjustification for F_ is given in the paper

of Hidiroglou and Sirndal and is not presented here.lIntuitively, the

effect of Fq is to dampen the variance contributed by the correction

term.The MRE/C estimator will have some bias,which is,however ordinary

much less than tnat of the SYN/C estimator.
The “"Ratio" versions of the SYN,REG and MRE estimators are:

A) Synthetic-Ratio estimator (SYN/R):

R ; -
TQSYN/R - zh=1xthh

with th = zkeu x and R

=L ¥,/L X
hq h kesh. k kesh. k

B) Regression-Ratio estimator (REG/R):
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~

anrcm: Z::

-~ ~

[X, R +N
1

hqh+ Rx )]

(y
hq shq Shq

where x is the mean of x in s .
shq hq

C) Modified Regression-Ratio estimator (MRZ/R):

~ ~ ~ -~

T =7 {X R+F N (y. -R
GMRE/R h=1""hq h q hg shq hshq

where Fq is defined as in the MRE/C estimator above.

(2) Results From The Empirical Study

These results were supported by Mote Carlo study involving 500
samples.

The hypothesis expected to be verified was that the MRE estimator is
situated,with respect to both bias ard variance between the SYN and REG
estimators,also,the part of MRE estimator a rather small bias and a
substantial decrease in variance and Mean Squared Error as compared to
the REG estimators. These hypotheses were indeed borne out by the
empirical results.

For the Monte Carlo study reported in Dagum et al (1984) 500 samples
had been drawn from a Nova Scotia population of N=1678 unincorated tax
filers.The results are based on these same 500 samples. From these
results, the following conclusions emerge:

(a) the SYN/C and SYN/R estimators are badly biased in some domains,
namely, in those domains where the underlying model fits poorly. However,
they consistently have an attractively low variance, compared to the

other alternatives.The Mean Squared Error of the two SYN estimators will
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consequently be very large in domains with large bias (poor mndel
fit);By contrast, the Mean Squared Error is small in domains with little
bias (good model :'it)

(b) The REG/C and REG/R estimators are essentially unbiased. Their

variance, although wusially much lower than that of the EXP and POS

estimators, (EXP for the straight expansion estimator, quxr’ = 2
Ekes.qyk;POS for the poststratified estimator quos= N-qys_q) is

consistently much higher than that of the SYN/C and SYN/R estimalors.
(c) The two MRE estimators,MRE/C and MRE/R, are negligibly biased
when the SYN estimators happen to be nearly unbiased,otherwise the MAL
estimators have a certain bias, which, however, 1is ordinarily much less
pronounced than that of the SYN estimators.The MRE estimators have
considerably smaller variance and Mean Squared Error,in all domains, than
the REG estimators.This tendency is jarticularly pronounced in the
smaller domains.In comparison with the SYN estimators,the MR
estimators(as expected) still have a large variance in virtually all
domains.However, the Mean Squared Error of the MRE estimators is smallcer
than that of the SYN estimators in domuins where the latter are badly
biased. IN this study the MRE/R estimator has a smaller Mean Squared
Error than that of the SYN/R in 9 out of 16 small areas.the obvious
explanation is that in domains where the SYN estimator 1is greatly
biased, the (bias)2 constitutes an extremely large contribution to the
Mean Squared Error of the SYN, whereas for the MRE estimators,the
(bias)2 is not very important.Since we do not know which domains create
the large biases, the goal of producing reliable estimautes in all

domains is on the whole better served by the MRE method of estimation.
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The MRE method presented here involves a simple mechanism for
steering the estimates slightly in the direction of the stable SIN
estimators, when the sample taken is less than expected.This goal is
also manifested in such other attempts as the empirical Bayes (Fay and
Herriot,1979) and sample-dependent (Drew,Singh and Choudhry, 1982)

methods of estimation.
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GENERALIZED Ri.GRESSION APPROACH

3.1 Generalized Regression Estimator

(1) Estimators

To virtually eliminate the ma jor drawback of synthetlic
estimator,namely their design bias. The generalized regression estimator
was proposed (Cassel,Siarndal,and Wretman 1876, 1877, 1979;Sarndal
1980, 1984;related techniques in Isaki and Fuller 1982 and Wright

1983).For a general design, this estimator of Tqis

~ ~

Teq = Zkeu.qyk ' Zkes.qek/nk' (3.1)

~

where e, = =Y is the residual and Y= %

K Yy B the predicted yk-value

k
arising from a fit of a general model §£,assuming that the y, eare

independent and

EE (yk) = X, B
yo)
=Y. x B.
ZJ=o kJBJ
- -1
VE (yk) Vi (3.2)
For k = 1,2,...N,the vectors x,' = (x x, ) are assumed to be

k ko' " "“kp

known,and the v,, known up to multipliers that cancel when B in (3.3) is

kl

derived. The sample-based estimator B is chosen as

~

B = (L cViXiX '/nk)-

R I% (3.3)

1
Lyes i*i K Tk
which is the usual survey sampling (approximately design-unbiased)

estimator of its finite population counterpart
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-1

B = { 2:keuvkxkxk’] Zkequkak, (3.4)
which, in turn, is the WLSQ (for Weighted LSQ)estimator of B that would
be obtained if it were possible to carry out the census fit,that is,the
fit of (3.2) to all population units.Thus (3.1) can be called a

design-model technique,with emphasis on design.The specification of a
design-model pair determines the form of ch, which is approximately

design unbiased irrespective of model choice; Model choice is
important to achieve low design variance.

If we specify the one-way model €° such that for all k € Uh-’

Eg (yk) = Bh

o

1) h=1,2,+++H

£ (yk)

o

where Yy are assumed independent.

(3.1) becomes (with G for generalized regression,0 for one-way)

~

Tcoq =L {Nh Vs _+ Ekes (yk T Vs )/nk ]

9 Sy hq he
where ysh. = Bh = (Zkesh.yk/nk)/(zkesh.1/nk).Further,for the strs design
with nk=nh-/Nh- for k e Uh..Thus with th = nthh./nh.,

~

Tcoq =¥ [thys+ th(ys Y, )] (3.5)

he hqg® he

This estimator was considered in Sarndal (1981).

(2) Design Variance Of Tq And Its Estimator
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~

1f Tq is a member of the generallzed regression estimator family

(3.1),an approximate design variance of Tqis given by Sarndal(1984)

L [ ]
c, e c, e 2
> kq k lq~1
V((T)=Y% Y¥n ,A { - ] (3.8)
P g K< lev k1l kl n n,
where c¢ = 1 if k € U and c¢ = 0 for all other k,A =
kq °q kq
»
(nkul-nkl)/nkl. ana e, = y, - X, B [with B given by (3.4)]1is the residual

arising for unit k in the hypothetical census fit of the model (3.2). A
Taylor expansion is used to obtain (3.6),which is the leading term of
the exact design variance.

The sample-based estimator  of vp(Tq) is given by the

Yates-Grundy-type formula

c, e c, e 2
Y > kg k
v, () =3 % Akl[ gk ___lq! ]
k<les k 1
Here e, =y, ~ xk’B,with B given by (3.3),is the observed residual.

(3) A design-based confidence interval

For any given sampling design p,a design-based confidence interval is

given at (approximately)level 100(1-a)% by

T +z V(T) (3.7)
q a2 Pq

vwhere Tq is (approximately) design unbiased for Tq , o/2 is the unit

normal cdeviate,and Vp(Tq) is an(approximately)design-unbliased estimator
of the theoretical variance of Tq under the sample design p.The

interpretation of (3.7) is simple that in repeated draws of samples s by
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the .design p,the interval will cover the unknown population value T _for

roughly 100(1-a)% of all such samples.

3.2 Generalized Regression Estimator (GRE) Under Some

Superpopulations And Its Proterties

Now we’'ll discuss the properties of generalized regression estimator

under some superpopulations.The model is
Y, = Bx, *+ & k e U (3.8)
where €k’s are independent random variables

E

E(gklxk) 0, (3.9)

vg(gklxk) = 6xi (3.10)

and xk's are independent random variables following

Case 1) Gamma distribution with probability density as given by

—F%ET Xt e* for x > 0
f(x) = (3.11)
0 elsewhere
Case 2) General inverse Gaussian distribution with probability
density as given by
!
_ [A/2nx3]2exp(-A(x—u)2/2p2x}, for x>0
f(x;u,A) = (3.12)
0 elsewhere

the above pdf will be denoted by IG(u,A).

The generalized regression estimator for gth domain total T is
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-~ -

i ch ) Z;EU'qyk +z:kes_qek/"k

where e =YY

y =bx, .,

Here we have assumed that
(i) b is preassigned for B.
(ii) sample is obtained under a simple random sampl ing scheme.

We'll derive the average bias of ch: EMB(ch) and its variance

Var(TGq)

EHVar(TGq|y1.y2,"'yN+VarHE(TGq|yl.yz."'yN)

EHVD(TGq) + V"ED(TGq)

where the subscript M ctands for under model,and p for under design.

THEOREM 3.1

-~

If the estimator ch(3.1) under the conditions (3.8),(3.9) and

En(xk)=a, where a is a parameter,then the average bias of

~

ch’EnB(TGq)’is Zero.

Let c = 1 for ke s,
0 for ke s.g

=2
0
0
-
"

P(kes,kes )
*‘q

P(kes_q|kes)° P(kes)

N n
= 4.
N N




4]

_ nN.q
N2
- nN_q
= EDck= Enck = e (3.13)

Ey(ly ks &M~ L, %)
-q q .q

IED(ES ek/nk) - Xu e,
*q °q

ED():Uekck/nk) - Xu.qek

N
= T Loex ~ L, € (3.14)
°q
as Y = Bx + gk kelU (3.8)
EE(Eklxk) =0, (3.9)
and En(xk) = a
s0
R N'q
ENB(ch) = EH(—N— Zuek - ):U ek)

*

N
'q
N EUEH[(B—b)xk+€k] - EU.q[(B-b)xk+€k]

N
= 2 IN(g-ba) - N, (B-bla

= 0 m

COROLLARY 3.2

The average bias of ch is zero, under superpopulation with both

cases, (3.11) and (3.12).
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Proof':
The rth moment about the orign of the Gama distrition is given by

, Ia+r)

u_ = Tl (3.15)

r

We have
En(xk) = Q (3.186)

The first moment about origin of I1G(u,A) is given below

E(x ) =qp

So both cases have form En(xk) = a .By theorem 1,the statement holds

THEOREM 3.3

The variance of Tc,q under Gamma model (3.11) is

NN (n=1)N, (N _-1)N )

T—a(a""l)[(ﬁ"b) 48]+ nN-1) (B"b) o
2N® ,

- = 9 af (Nat1) (B-b) %+ (a+1)8]

+ N.qa[(B—b)z(N‘an)+6(¢x+1)+b2]

N
+ —éﬂ a[BZ— b2+8(a+1))

Proof

Var(T_ ) =EV (T ) + VE (T )
cq M D Gq KD Gcq

1) ED(TGq)



ED(T

E,(5

-
~
i

~

E(Ly Yy *Ls &™)

Eu b * & n Zs
.q .q

ol b4

=EU bxk+
*q

N nN

- ‘q
- Zu.quk *a N2 Zuek

N
= zu.quk + ?" L[ (B-b)x,+€, ]

Pl(c € +P(c,es |c.es )
(CJ s'q) k 'ql Jq

N2

n(n-1)N_ (N -1)
oq nq

nN [ n-1 N -1 ]

Encjck =

2—
e )’ E_(Le.c,)

"
M
o
~—
hM
Q
3]
X
N
]
x-
)
0

NZ(N - 1)2
n{n-1)N (N -1)
.q 'q

NZ(N-1)7

|
laa}
el
3]
x
0
x
+
‘__[VJ
0
0
x
]
3]
x

nN n(n—l)N?q(N.

-1)
q

I
| e
]
CF’J
4]
=
+

N NZ(N-1)2

e .e
Yk

(3.17)

(3.18)
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- o ED(ZS.qek)

[
_g ez+
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_z—quxzu ekED(Zs ek)+(rn ek)
lq oq oq

N (n=1)N, (N, 1) 2N

n k

+(I, ek)2
*q

2

3) E e, ,E e.e, and Enek

M k' M jk

n(N--l)2

Jj#k

[see (3.13), (3.18)]

From (3.15),(3.9) and (3.10) we have

IEH(Ek) =

2 —
[EH(xk) =

2 -—
E"(Ekxk) = §(a+l)a

g

M~

0
|

wk = By

(B-bla

2

(b) E e K

(B—b)zEHx

En[ (B-b)xk+ £k]

2
+IEH€k + Z(B-b)mekﬁk

=(B-b)2(a+1)a + 8(a+1)a

=a(a+1)[ (B-b)%+ 5]

(c) E e,e, = EH(yk-yk)(yj-yj)J + k

M Kk j

L

]

(B-b)%a®

2
IEH[(B-b) xJ.xk]

En[ (B-b)xk+€k] [ (B-b)xj+€j]

2

- ‘q
ejek N (Z'u.qek)(zuek)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)



45

4) Evaluation of other expressions

(2) EIL, e)=N alo+1) [ (B-b)*+8] + E (T  e.e,)

g T J#kegd K

= N, 2l (B-B) 5N, o) + (a+1)3]

_ 2
(b) En(zu-qek)():uek) = En[():u' ek) + (Eu.qek)():keu.qek)]

q
= N.qa[(B-b)2(1+N.q¢x)+(a+1)6]
2 2
N - -b
+ -q(N N~q)(B ) a

= N_qa[(Na+1)(B-b)2+(a+1)8]

oy L L2 2_ 2
(c) WH():U bxk) = b L, [lE(xk) (lExk)]
q q
_ .2 r(2+a) 2
—bzu.[ T(a) —oc]
= N b2a
g
" Vg 2 Mg
{d) WH{ W )_':U[(B-b)xk+£k]} = (B-b)"a + W S(a+l)a
N2
= o1 [(p-b) +&(a+1)]e

N
le) Cov{ T, br. — LI(B-bIx+&, 1)

bN
.c
_ __ﬁ__l_(lg_b) Cov( }:U.qu. o5 )

N

: 9 (3- 2 . _ 2
= (B b)b[ EH(ZU.qu) + [EH(EU.qu Zkeu.qu) N.chx ]

-9 - . - .
g (B-bIbL E (T, x, T ) EH(ZU.qu) E, (Lx,))

(3.26)

(3.27)

(3.28)

(3.29)

-b)bIN 1 -1)a® - 2. 2
(B-b)bl _q(a+ o + N-q(N-q N+ N.q(N N.q)a N.qNoc ]
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N2

= —ﬁﬂ (8-b)ba (3.30)

Now we have

Var(TGq) = Envu(ch) + VHED(TGq)
N.g . (n-1)N.q(N_q-l)
=E [ e, + y e.e
M n ):u k n(N-l)z j:ku J k
2N )
- 9L, e (Te) HE, e ]
.q lq
N.g
+ VH{EU.quk+ -« )_',U[(B-b)xk+ Ek]}
N, N (n=1INN__(N_ -1) -
=0 ala+1)[(B-b) +3]+ AINC1) (B-b)"a
2N, )
-5 En[():u ek) + (Z:U Ck)(zkeu ek)]
.q Iq .q
2 N-q
+lT:ZM(ZU e} +\Im(2U bxk)+VH{—N» Zul(B—b)xk*rEkl}
°q °q
N.g
+2Cov { Zu.quk S ZU[(B—b)xk + Ekl }
NN _ (n=1)N (N, -1)N -
= _n_ﬂa(am[(fs—b) +3]+ T (B-b)%”
2N )
- 5 9 o[ (Nat1)(B-b)%+(a+1)8]
+ N al(B-b)2(N a+1)+8(a+1)+b°]
.q Oq
N‘ 2 2
+ —ﬁﬂ alB%- b2+8(a+1)] (3 413
If b=B then
~ N 2N. N' 2
Var'(T.q) = N.qa(a+1)[(5 - Tqé)a + (——ﬁ—q- +1)61+N.qab‘

(3.32)
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THEOREM 3.4

The variance of ch under inverse Gaussian model (3.12) is given by

NN, 2N, 3 \
( n i —N———)(V- + i—')[(B"b) +8]
(n-1)NN (N -1) 2N? (N-1)
L “1) — 29 1(a-b)3,°
+ [ TR N, (N -1) 1 (8-b)°p
2 qu , aN?q bN'f’q ) suznfq
+ X T(B"'b) + N + N (B-b) + b N.q] + N

Proof:

The first two moments about origin of IG(u,A) are given below

u: =
, 2, 1
My WY X
= EH(Ek) =0
3
E, (€ |%) = 8(u®+ &)

Em(Yk) =
2 2 ;13
IEm(xk) = (= + . )

1. EHB(TGq)

From (3.14) we have

i}

. N
‘q
EB(T ) = € (7 Le,- zu.qek)

N
I B-bul - N, ,(B-D)

=0 (3.33)

So the average bias of ch is zero,under superpopulation IG(p,A).
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2. Var(TGq)

1) Eep. = EH[(B-b)xk+€k]

(B-blp (3.34)

2_ o 20 2 2 _
2) Enek— (B-b) E“xk + Euek +2(B b)Enxksk

3
(B-b) % (u°+ ‘;——) + 3F x°

3
= (u® + %—)[(B-b)2+6] (3.35)

3) Enejek= EH[(B-b)xj+ £j][(B-b)xk+ Ek]

2
EH[(b—b) xjxk]

(b-b)%u® (3.36)

4) Cov ( Zu.qu . Eu X, )

EH(ZU.qu-Zka) - E“(Zb.qu)E"(Zuxk)

=N (u® +E) (N -DE? + N (N-N PN NP
. M A loq .q p' °q °q K cq H

=N H
=N 5 (3.37)

Var(TGq) = Envn(ch) + VHED(TGq)
N_q s (n-l)N.q(N.q-l)
=g [—Te + = T ee
¥ n Z; k n(N-1) j:ku Jjk
2N, ,

- N (Zb'qek)(zuek) + Zu.qek) ]

N
+ vnm.qu; -2 Ll(B-t)x, + €1}
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(n=1)NN__(N_ -1)
n(N-1)

3
= =9 (u® + L)1(p-b)%+s] + (8-b) 2u?

n

2N 3
_ q 2 s 2 _ 2,2
FHN, o (n° + $IL(B-D)% 81 + N_ (N, -1)(8-b)%u

3
_ 12,2 2, 112
+ N (N-N_ ) (B-D)°n b+ N+ 5= )1(B-b)7+3)

3 N2
_ _n2,.2 2, M *q (o2
+ N.q(N.q 1)(B-b)“u”“ + b N-qA MY T (B-b)
N?q s “3 usN?q
W, N, 2 )
= ( n - T—)(M + ‘A—')[(B‘b) +8] .
(n=1)NN_ (N, -1) 2N° (N-1) -
+ 1 T3 NN, 1) - 1 (B-b)“p
e qu ., NI bN?q \ apzn?q
* 5 —ﬁ—(B-b) * Nt (B-b) + b N_q] + N

0-100(3.38)
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3.3 Generalized Regression Approach With Random Coefficients

3.3.1 Introduction

We shall take the example of section 1.1 as the introductory example

in this section.The following general regression model is considered

Yin® Boin*BsinXiin® " *Boin®pin*Sin -
i=1,2,%°°1, h=1,2,...,H, (3.39)
where the independent variables (xpjh} are assumed to be fixed. The

regression coefficients (Bpih} are random with

E(Bpih) = Gp (3.40)

and

) = AL (3.41)

cov(Bpih’Brih pr

Two Bpih with different values of the pair (i,h) are independent.We

denote the covariance matrix of (B ) by A. The error term,

oih""’Bpih

{Eih} are assumed to be independent with expectation 0 and variance
wz.They are also assumed to be independent of the (Bpih)'
The introductory example corresponds to the special ase P=1,1=5,0=3
and Boxh ='.'=Bosh ' B11h =."=Bxsh (h=1,2,3).
Swamy(1970) considers the following model
YinBon*Bin¥1in® " Pon¥pin®Ein
i=1,+¢°1, h=1, +++H. (3.42)

This model will be applied in this paper.

With matrix notion Swamy's model(3.42) is written in the form
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Y= XhBh+Eh h=1,2,+*+H (3.43)

where yj =(y .0y ) £1=(€ paeee€ )y B =(B .t oeByy) and X, is the

1-(P+1) matrix with ith row being (1 see X jh).The vectors

X .
*Tih' P

y,orery, are independent with expectation Xhe,where 9'=(eo,61,---ep),and

covariance matrix XhAX; +621 where I is the IxI identity matrix.

Further we shall assume that both the (Bh} and the (&h} have a normal

distribution.So we have that y is N(X 8,X AX'+0 I) and

~

— ’ 1 t
6] —(xhxh) thh (3.44)

h

.. 2 v 1
is N(O,A+o (xhxhﬁ ).

2 1

- L
o =Py Lne, Q0B (3.45)

where Q(Bh) = (yh-XhBh) (yh—XhBh) is the residual sum of squares when

ffitting Lhe regression for the hth item.In this situation, however, it is
difficult to find a best estimate of 06.If A and o were known the

gencralized least squares estimate of 8 would be

o = | ¥ X (X AX +0?1) X _lz” X (X, AX!+0°1) 7}
h=1"h Th R h|  Zh=1%m *h™h Yh

eee (3.48)
with covairance matrix
H 2_,-1 -1
[Zh—l Xh(thXh+a 1) Xh]

= 2, v, 1,-1
—[zjm (A+o (xhxhﬁ ) }

An alternative and more straightforard estimate of 6 is

-~

. 1 H -
0 =5 Zh;xﬁh =B (3.47)
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This estimate is also unbiased and has covariance matrix

Hence

2
1 o H , -1
i A+ ;5 thl(xhxh) . (3.48)

Hence
2

D

A= =T Zh=1(Bh B)(Bh B) i (thh) (3.49)
is an unbiased estimate of A.Swamy (1870) suggested to use the estimate

(3.44) with the estimates 02 and A inserted for czand A.

3.3.2. Generalized Regression Approach With One Regression Variable.

In this section,we’ll discuss generalized regression approach with

~

one regression variable.The estimate of gth domain total,qu.

where e, = yk - Yy

1

kT Bokt Bix¥ Kt Bk €V

Bok’Blk and ék are random variables with
E(Bpk) = ep p=20,1.
A r 1,k € samegroup
CoviB |.B,,) = P
p 0 otherwise

E(ﬁk) =0 k e U



2
o

Cov(g,, € ) =
1’k
0
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1=k

otherwise

and Ek are independent of Bpk'

~

= +
yk 0o le

1k

define

~

0’ =(86_,0)

5 - ’ =1y
whete Bh = (XhXh) X Y

h = 1 x

h: hth group

h - 1'2,010H

1. The average bias of T :E B(T_ )
cg' M ©gq

THEOREM 3.5

~

The average bias of TG

Proof':

From (3 14)

N

E B(T_ )
M cq

q,under above model, is zero.

‘q -A _‘
EH{_ﬁ_ EU[(BOK eo)+(81k 61)x1k+€k]
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=T (B -8 )+(B -8 )x +£ 1}
‘q

=0 becauc2 8 is unbiased of Bh n

:Var‘(TC )

2. Variance of T
G q

q

THEOREM 3.6

~

The variance of ch.under above model, i<

_ 1 2 2 2
_zu H [(Aoo+0 ‘—“oo)*‘xxk()‘nﬂy a11)+2x1k(on+w aox)]

‘q
1 2 2 2
+Yy v i\ [(A00+U a00)+(x]k+x1m)(A°l+a a01)+x‘kx1m(ail+c 011)1
k#m -q
g2 1 02 N?q 2
+(_ﬁ—) N[(l_ﬁ)uooﬂmﬂn)+E(aoo+ao1+an)]+ N7
2
o

(a +a +2a )+(1-1)(A +A 24 )]
00 11 01 H

N
42, oH -
* N ) {zh=1(Nh- I)Nh'[ 00 1101

H
2

H \ o 1 ]
+[N(N—1)_Zh=1(Nh-—‘)Nh-]IH—(aoo+a112do1) T 0t 122,

Lo 4

2N
- 2 *q 1 .
*N(N-1)07}+ N z:kosu. (H 00 x1k+x1m)Ao1+xxkx1mA11]

meu

1 2 1 2 2 .
) lﬁ(hoo+c aoo)*ﬁ(xo1+a ao1)(x1k+x1m)+ﬁ(A11+U d11)A1kA1m])
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NN.q 1 o2 N.q -
M [(l—ﬁ)(hoo+xoa+k11)+E_(aoo+801+a11)]+ n_ -

(n-1)N (N -1)
'q Cq

2
o
(T N, 1N, (To(a +a  +2a

h=1" h

+
n(N-1)2 o1

2
1 o
F-RV(A A +28 DI$IN(N-1)-Tp (N, ~DN, 5(a) +a, +2a )

2N
21 -1)o°}-———9 -
F(A_ A 422 D IN(N-1)0%) - {2:=1th(nh_ Ny

2

'[g (aoo+a11+2aox)+(1-%)(A00+A11+2Ao1)]+[N-q(N—N-q)
-7 N, (N, -N )][Ei(a va_+2a_ )-t(a_+a_ 422 )]
h-1 "hq h* hq H oo 11 01" H 00 11 01

2N

N
N o?+(1-—d -4
N, (NN o®hr (=T DUN, Y ) )

2
oq 2 _ g-—
* H (aoo+ao1+a11)+N-q0 +Z::=1(Nhk 1)Nhk[H (a00+a11+2a01)

1
+(1—ﬁ)(AOO+A112AOI)]+[N_q(N.q—1)-E; [N SN ]

2
o 1 2
[ﬁ—(aoo+a112a01)—ﬁ(hoo+hll+2A01)]+N.q(N'q 1)o“})

+++(3.50)
Eyoof:
VaP(TGq) = EHVD(TGq) + VHED(TGq)
1) ED(TGq) = ED(ZU yk + Zs ek/nk)
lq .q
- N'q
= EU'qyk + - Zuek (3.51)

2) VD(ch)

From (3.22) we have
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-1)N -1
(n=1)N_ (N, 1)

= -9 2
VD(ch) = L% * n(N-1)2 L o%k%n
2N, )
- _Tl_(zu ek)(zuek) + (Z’,u ek)
Iq .q
N (n-1)N_ (N -1)
. 2 Oq !q
= — Vel + Y ece
n IL k n(N-1)* kem® k'm
2N, 2N .
- ) e e )+(1- —2)( e, + Y e e )
N mUl.J.q k™ m N 2"u_q k k:m“-q k' m
keu q
‘q
eee (3.457)
3) Enek' Enek and Enekem
(a) EHek
EHek= E”(yk— yk)
= E [T° (B,-8 )x, +E,]
M “p=0 "pk "p "pk k
=0 (3.53)
note, let xok=1; 8 is unbiased of Bh.
(b) EeZ and E e, e
Mk M k'm
We have COV(Bph'Brh) = Apr p.r = 0,1,+°¢1]
A= (Apr)Pﬂ.P#l
-~ -~ .
Let Cov(e ,86 )} = A (3.59)
pr pr
- *
A= (A

)
pr



Let A=

S0 A

Now w¢ have

s7

2
o

' -1
A+ = )j;’1=1 (X, X, )

e i

el Rl

1 2
i (Apr + o apr)

P

v

—
k-

[ 1 X h ]
2h

From (3.41) we have

E (

E (Bph-Brl) =0 0

B

ph.Brh) = Apr + eper

E(6+8)=A +686
p r

pr pr

From (3.44) and (3.43)

-~

Bh

» -1 +
(thh) thh

) -1,
(XhXh) Xh(XhBh+€h)

from (3.48)

’ "1_
Z:=1(xhxh) - (apr)Pox,Pol

1 and let I = 2 ,then

for h = 1

(3.55)

(3.56)

(3.57)

«++(3.58)

(3.59)

(3.60)

(3.61)
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]

» "lo
Bt (xhxh) xhgh

5 1 1 H vy 31
1 Z£=13h+ i Ly, (XpX)) X, £ from (3.47)

&
@
1

We have EH(ER)=O and Cov(Ek,Bpk)=0 ,then

- 1 H
B Boi @) = By By Prp

)

A + 00 (3.62)
p

)2

2 -
Eyeyx = Byl myy

2

En[(Bok~eo)+(81k—01)x1k+€k]

.2 o2 " - 2
EME(Bok-eo) * (Blk_el) * (Boknao)(ﬁlk_ol)xxk] ¥ Engk

_ 2 1 2 * 2
= (A00+90) - Z(H AOO+00) + (A00+00) +

|
(A +06%) - 2(2 A +6%) + (A +8°) +
11 1 H 11 ™1 11 1

* 1 2
(A01+9061) +(}‘01'*8091)_.2(ﬁ>‘01+6001)+°-

- 2 1 2 2 1 B
- Aoo— H Aoo* H (Aoo+a aoo)+A11— H An+ H (A11+0 d11) ¥
1 2 2 2
A01+ H (A01+0 aoz)_ F2 *°
1 tr2 2
= {1- i )(AOO+A01+A11) ‘g (aoo+a01+a11) + 0 (3.63)

E"ekem= EH(yk—yk)(ym—ym)

EH[(Bok-90)+(31k—91)x1k+€k][(Bom-60)+(31m“01)xlm*gm]

~ o~

~2_ - R ) -
EH[(Bokﬁomwo Bokeo Bomeo)+(ﬁok81m+aooiﬁokoz b1m00)+
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LN ~

c2 - ~ - 2
(B1k31m+91-61k91-81m61)+(Bxk80m+ (o} 1B1keo Bome1)]+°-

From (3.58), (3.59), (3.60) and (3.61)

» - »
A +A 42X~ ?-(7\ A 420 ) 40" if k,m ¢ samegroup
_] 00 11 o1 H oo 11 01
1 = . ] 2 2
A +x 422 +(1- Z)(A_ _+A _+2A_ )+0o otherwise
00 11 o1 f-l 00 11 01
2
o 2
T (aoo+a“+2am)— }—{(AOO+A“+2A01)+¢* if k,m ¢ samegroup
02 1 2
H (aoo+an+2am)+(1— ﬁ)(7too+>¢“+27\01)+0' otherwise
+¢+{3.63)
Because of E e, = 0,then
Mk
_ 2
Vv ek =k ek
1 02 2
=(1- H)(AOO+A01+A“)+ H—(a00+am+a“)+¢r {3.64)

Cov(ek. em) = Enekem

1 2 .
(a00+a”+2am)— H(Aoo+?\“+27\m Y+or if k,m ¢ samegroup

(a _+a +2a )+(1- l)(?\ +A 427 )+0'2 othervise
00 11 01 H 00 11 01

|
-
~—~~
[eo I
+
D>
£
ot

(a) VH(yk) =

\/“(90)+.\r”<VM(61 )+2x1kCov(60,91 )



= A

% [(go*o®ay dox (A +o”a Jv2x , (A +o?a )]

(b) c°v(}k.}m)

{c) Cov(yk,em)

60

2 » »
+X . A +2x A

00 "1k 11 1k 01

2
00 00 1 11

+++(3.65)

1]

Cov[(9°+ lelk).(60+ lelk)]

Cov(eo,eo)+x1kCov(90.91)+x1mpov(00,91)+

x1kx1mC°V(91'91)

» * -

= Aoo+(x1k+x1m)Ao1+x1kX1mA11

1 2 2
H [(Aoo+¢ aoo)+(x1k+x1m)(Ao1+¢ aox)

2 -
xikxlm(A11+¢ ali)] (3.66)

= Cov(yk.ym-ym)

Cov(yk,ym)—Cov(yk.ym)

Cov[(90+91x1k),(3 +8

om 1m m € Y- Cov(yk,y )

1k+Cov(Oo.Blm)x1m4

COV(eo'Bom)+COV(91'Bom)x

] -

-~ »
Cov(ex’ﬁxm)xxkxlm_koo_(x1k+x1m)A01-x1kx1mA11

1 2

T H [hoo+(x1k+x1m)ko X k5w 11] - [(A 00" %00’
2
+(A 1+0 a )(x +x1m)+(A11+¢ a11)x1kx1ml)
o2
= ﬁ—[aoo+(x1k+x1m)ao1+x1kx1ma11] (3.67)



5)

v
M

61

En(ch)

- N, . N,
R

- A - N
*q.2
L, ey Covre gl ) Ry el

N -
*q,2 q
Hy) L UCOV(ek‘em“szkeu’ eV Y€y

k=zm

1 2 2 2
Zu’q i [(Aooﬂr aoo)+x1k(kn+¢r a“)+2x1k(7\01+o- am)]

L, kL efa ) (x (A +c%a_ )]

2
+x A +0a  )+x X%
1m)( 01 01 1k 1m 11 11

1k
k¥m +q
2 N2

)1+ —9o?

N
4,2 _1 o
+ N LS H)(Aooﬂoxﬂn)+H(aoo+ao1+a11 M

2

N
Lozt v i (O !
+( N ) {Zh=1(Nh‘ I)Nh-[H (aoo+a“+2a01)+(1 H)(KOOMHZAOI)]

2 “
H o i
+[N(N-1)-Zh=1(Nh.-l)Nh.][H—(aoora 12801)"—(A +A +2A01)]

1 H oo 11

l[7\ o+(x1 +X A ]

2N
1)o%y 49 d
*N(N-1)o™} +— 2:keu. {5l KFam 2o Pk m
mev 9

1 2 1 2 2
[g(hooﬂr a 0)+H()014o a J(x  +x )+ﬁ(7\1 +5°a )

Xx x ]}
o] 01 1k 1im 1 11" 1k 1m

+++(3.68)

from (3.51)
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(n-1)N__(N_ ~-1)
uq oq

Y ee
n(N—l)2 kem" k'm

2N
oq 2
G L, ge )= —FI Y, g B e )]
*q  k=m +q

ooy o2 NN
“ [“_}'-T)(Aooﬂmwﬂ1)+H—(aoo+do1‘\an)]+ n
(n-1N _(N_ -1} 2

‘9 -9 H _ o?
' n(N-1)% {Zh=1(Nh° 1)Nh.[ (a_+a +2a_ )

H 00 "11 01

1 H o .
HO=) A 0 AL #2  JIHININ=D)=E, (N, =N, Tl -Cag va 40 )
2 Mo,
*22 VNN 0T T N (N Ny )

1
TR 1q

11
1

. [}T(aoo+a1 1+2&ro1 )+ ( 1'}_{) (Aoo+)\“+2)\01)]+[N.q(N-N.q)

2

H o 1
_Zh=1th(Nh-'th) ] {ﬁ—(am+.51“4r2.alc)1 ) H(Aooﬂ: PRALL )]

2N N
NN o+ (1D N -—I)y(a A+ )
g H 00

g °qg N 11 01
N-q(r2 2 M o
{ = 2¢
TTH %0 %00 ™2 1)+N- 7 +Zh=1(Nhk 1)Nhk[H (a vy M‘m’

1
SO AL 2 DTN (N, 1) =F) (N, 1IN, |

hk

1 2 o g
[H (a00+a“2a01) H(A00+A11+2A01”+N-q(N-q 1)o"} (3 ©68)
Adding (3.88) and (3.69), we get the expression in (3.50) which

proves the theroen. -

Even though, the formula for the variance of the estimator is

obtained for one independent variable explicitly and it can be easily
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generalized to the general case of more than one independent variable,
these formulas are not very convenient for estimating the variance of
the estimator.

The general technique of Jackknifing for this purpose 1is useful

which will be demonstrated in the next chapter.



- CHAPTER 4

A NUMERICAL STUDY

——— THE ESTIMATION OF AVERAGE INCOME OF A FAMILY IN QUEBEC

4.1 Description Of The Data

In this chapter,we'll give a numerical study of the generalized
regression approach with random coefficients

The data is given by Statistics Canada, Household Surveys Division,a
microdata file named "Housed Income (1987),facilities and Equipment
(1987)" It is fr-n~ the survey of consumer finances (1987) and survey of
household facilities(1987}) it contains 30841 records selected randomly
from all over Canada

The purpose of my work is to estimate the average income of a family
in Québec and the variance of the estimatjon.

We regard 30841 records as superpopulation and take ten percen! of
30841 records, say popu ,as the population of Canada and take ten percent
of popu. as the sample making estimation,say sem2..In this example the
size of popu. is 3089,and 466 of the 30399 records are belong to Quebcec
province,the size of sam2 is 305,and 37 of the 305 records are belong tco
Québec province.

We have a histogram for sam2..The number of the horizontal axis g
the average income of a femily,the quantity of the vertical axis is the
number of the family Comparing with the distributiorn of inverse
Gaussian,we can see the distribution of sam2.fits in with the

distribution of inverse Gaussian with a certain parameter.
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4.2 Computation Of Estimator And Estimate Of Its Varlance{Jackknife)

In this example, we take the whole country is the Domain of study and
Québec province is the small domain.We divide the country into ten
domains (ten provinces).

Consider the estimation as a general regression with random
coefficients model.

Making this issue simple,we only take one auxiliary varible.Regarding
the number of persons with 1income 1in the family as being high
correlativity with the average income of a family,it is reasonble to
select the numberr as an  auxiliary variable x.1ne another 1o tor
affecting the average income of the family is the housechold head's
education.As like in the example in section(1l.1),the different groups of
eduction have the different straght lines of regression,we classify the
families into six groups by the household head’'s education.

let ¥y be the income of the family.We have mode!

Y, . =B + B %, .+ & . {4 1)
hqi ho h1"hqi hqi
q q 9 q 9 q

h =1,2,+++6, qg=1,2,---10, i=1,2,°-i
q q

where 10 is the size of gth domain.

The estimator of Yy given by

Yy = 60+ elxk (4.2)

-~ ~ -

(Zi=18ho zi=13h1)'and (B Bp,) are  the

~

where (90 91) = (Bo Bl) =

Q=

)

general regression estimator of (BhO,Bhl .

The estimator of average income of the family is given by
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= 1 -

TGQ = Z—ég (z:U yk + ZS ek/nk) (4.3)
oq oq

We wuse the jackknifing technique to estimate the variance of

estimator (4.3).The steps of the technique are:

(1) Order the sample sam2., eliminate the first one of sam2.and

obtain the new estimator based on (4.3),say T(”.

Eliminate the ccond one of sam2. and obtaln'mz).And SO on we

~

obtain T T ,o*T

(3)' (4) (305)°

(3) Take the mean of 305 new estimators, we obtain T('f
{(4) The estimator of variance of (4 3) is given by

(4.4)

4.3 Summary Of Results

The results are :

(1) The real average income of a family in Québec obtained from data
popu. is 32247.3.

(2) The estimation of average income of a family in Québec applying
(4.3) 1s 33691.6

(3) If we only use the first term of (4.3) to estimate the average

income of a family in Québec, we get 35115.2.

-~

(4) the estimation of variance of ch, say 02, is 5955390.4,s0 o is

2440

Summary-
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{1) The relative errer ,(33681.6 - 32247.3)/32247.3 = (.0448,is
small,so the estimation is good.

(2) The error term in (4.3) play a very important role, il reduces
the error a lot.

(3) The relative error of estimation 1is, 2440/33691.6 = 0.0724,
which is small. The real value is in the interval of one ¢ error, so the

estimation is good.
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