e l National Library

Acquisitions and

395 Wellington Street
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction nossible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 19706, c¢. C-39, and
subsequent amendments.

1ok

Canada

Bibliothéque nationale
of Canada du Canada

Direction des acausitions el
Bibliographic Services Branch des services biblograptwques

395, rue Wellington
Ottawa Ontario Ottawa (Ontario)

Your e Volre referenc e

Out bl Nofte ioteren o

AViS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec I'université
qui a conféré le grade.

La qualité d’impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont eté
dactylographiées a l'aide d’un
ruban usé ou si I'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

EVALUATING ERROR RECOVERY
MECHANISMS IN THE XPRESS TRANSFER
PROTOCOL

AYUB ASAMBA

A Major Report
in

The Department
of

Computer Science

Presented in Partial Fulfilment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montréal, Québec

March, 1994

©AYUB ASAMBA,1994

l * I National Library Bibliothéque nationale
of Canada du Canada

Acquisitions and

Direxclion des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street 395, rue Wellington

Ottawa, Ontano Otlawa (Ontano)
K1A ON4 K1A ON4
THE AUTHOR HAS GRANTED AN

IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

ISBN 0-612-01380-4

Canadi

Your hie Volre reldrence

Our bl Nowre rdférence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

Abstract

EVALUATING ERROR RECOVERY MECHANISMS IN THE XPRLESS
TRANSFER PROTOCOL

AYUB ASAMBA

The objective of this project is to use a real time environment to verify the error
recovery mechanism of the Xpress Transfer Protocol (XTP) version 3.6, which has been

specified in the Estelle specification language.

Two modules were built to interact with the XTP Estelle specification module. At
the bottom of the XTP module, is a medium module that makes use of the Internet
Protocol to provide an unreliable transmission medium. The loose source routing
strategy is implemented to guarantee the unreliabilty of the transmission medium. On
top of the XTP module is the user module, which uses the services of XTP to transfer

and receive data reliably across the unreliable underlying medium.

i

ACKNOWLEDGEMENT

I wish to express my sincere gratitude to my supervisor, Dr. J.W. Atwood for his professional
guidance throughout the course of the project.

| also acknowledge the technical support that I got from the system administrator.
Special thanks go to the team members of the High Speed Protocol Laboratory (HSPL). for
their encouragement and helpful discussion.

Financial assistance from the Kenva Government in conjunction with the Canadian
International Development Agency (CIDA) is greatly appreciated.

Finally. i gratefully acknowledge the moral support that i got from my family.

v

Contents

1 INTRODUCTION

[S]

1
2

o

3.1
3.2
3.3

3.4

6.1
6.2

6.3

OVERVIEW OF XTP AND ESTELLE

XTP OVERVIEW

22.1 ESTELLE COMPILER
2.2.2 SIMULATOR/DEBUGGER (EDB)

XTP PACKET STRUCTURE

XTPHEADER..

XTP ERROR RECOVERY MECHANISM

INTERNET PROTOCOL

XTP SIMULATION PHASE
CHANNEL INTERACTIONS
MODULES.

...................

...................

...................

...................

...................

...................

..................

..................

...................

..................

6.2.1 USERMODULE..

SIMULATION.

SIMULATION OBSERVATION

CONLUSION

APPENDIX A. user module

..................

11
11
19
19
19
22

0)‘1

&

27

32

36
36
40
40
43

47

49

53

10 APPENDIX B.

11 APPENDIX C.

medium module

C-code primitives

vi

62

64

List of Figures

o =

L 00 3 S Ov W= W

10
11

INT TEST CONTFIGURATION o . 3
THIS PROJECT TEST CONFIGURATION !
XTP SEGMENTSo 12
XTP HEADER 13
CONTROL SEGMENT e, 20
INFORMATION SEGMENT oo o o . 23
XTP PACKET LAYOUTS o o o o . 26
DATA STREAM WITH GAPS 30
TRANSMISSIONPATH o o . 33
IPHEADER 34
FLOW OF INTERACTIONS 37

vii

1 INTRODUCTION

The transport layer protocol in the OSI model provides a reliable data delivery service to the
application layer. It defines error recovery mechanisms that ensure the data being delivered

is in sequence and without duplication,

The design of some of the extant transport protocols, such as the Transmission Con-
trol Protocol (TCP), followed a pessimistic approach, based on the fact that the underlying
transiission network was slow and had a high bit error rate. With the advent of high speed
networks with low bit error rates, a more optimistic design approach to the error recovery
mechanism is necessary in order to maximize the throughput of such high bandwidth. The
Xpress Transfer Protocol (XTP) [6] is a new protocol designed to meet such high efficiency.
This new design approach must also be shown to work in the same more traditional envi-

ronment.

The Institut National des Télécommunications (INT) of Frauce, carried out an ex-
periment to validate the error recovery mechanisms of XTP. The experiment was based on a
specification of XTP, version 3.6 that had been written in the Estelle specification language
[7]. In Estelle, XTP is represented as an XTP module. The internal structures of the XTP
module are also represented as modules. The major XTP internal modules are the context
module and the router module. The context module represents the functionalities of the
transport layer, while the router module represents the functionalities of the network layer
(routing packets through the network). These modules exchange interactions through in-
teraction points, which define the endpoints of a communication channel. Each interaction

point is associated with a queue that stores and delivers data in a FIFO fashion.

The experiment involved two context modules, which communicated with each other
via a medium module (representing the transmission medium). Since the simulation was
carried out within a single process, it was not feasible to have a scenario where a packet be-

ing transmitted from one context to the other got lost or reordered by the medium module.

To provide an approximation of an unreliable transmission medium in such a closed environ-
ment, the INT specification manipulated the queues associated with the medium module's

interaction points. by dequeueing (packet loss) and reordering the packets.

In the current project. the error recovery mechanizm of XTP is validated by using a
real cuvironment transmission medium. The test configuration consisted of two XTP spec-
ification modules placed on two distinct Sun workstations and made to run on top of the
Internet Protocol (IP). The IP layer provides a connectionless and unreliable delivery sys-
tem. It is connectionless because it treats each IP datagram independently of all others. It
is unreliable because it does not guarantee that the IP datagram will ever get delivered or

be delivered correctly [5].

Since the two Sun workstations are located in the same room, the probability of
packets being lost or reordered is negligible. To guarantee an unreliable transmission path
between the two workstations, the Loose Source Routing option of IP was used. This option
increases the number of intermediate routers that the packets have to traverse. For example,
two machines A and D placed in the same locality, can use this routing strategy to provide

the following path for the packets

A(Montreal) — B(Toronto) — C(California) — D(Montreal)
and

A(Montreal) «— B(Toronto) « C(California) «— D(Montreal)
instead of

A(Montreal) « D(M ontreal).

The structure of the XTP packets in an Estelle specification is represented in logical form.
The transmission of an XTP packet through a physical medium, by encapsulating it in an
IP datagram, requires the packet to be in a particular physical representation, as defined by

the Protocol Definition document [11]. An interface module was therefore built between the

SINGLE MACHINE

USFR - MODULE USER MODULE

CONTEXT MODULE CONTEXT MODULE

MEDIUM MODULE

Figure 1: INT TEST CONFIGURATION

XTP module and the Internet Protocol (see page 62). This interface module consists of a
library of C-code routines (see page 64) that perform the function of transforming packets
designated for transmission from the logical to the physical representation. Packets received
from a physical medium through an IP socket are transformed into logical form before being
channelled to the XTP module via an interaction point. Figures 1 and 2 show the disparity

in test configuration between that used by INT and that used by this project.

MACHINE A MACHINE B

USER MODULE USER MODULE
XTP_MODULE XTP MODULL
CONTEXT MODULE CONTEXT MODULE:
ROUTER ROUTER
MODULE MODULE
MEDIUM MODULE MEDIUM MODULE

INTERNET PROTOCOL (1P)

Figure 2: THIS PROJECT TEST CONFIGURATION

2 OVERVIEW OF XTP AND ESTELLE
2.1 XTP OVERVIEW

X1P is a high performance protocol, whose design was based on the mechanisms and con-

cepts of extant protocols such as TCP. DELTA-T, VTMP, etc.

The design of this new protocol was motivated by the fact that extant protocols could
not meet the demands that were taking place both from above and below the transport layer
in the OSI model. From above, new application domains such as distributed systems and
multimedia workstations demanded new services from the communication subsystem. For
example, the shift towards distributed computation and demand paging requires communic=-
tion services that rely heavily upon request /response interaction [11]. The 3-way handshake
required by TCP to set up a reliable connection is too costly and unacceptable for the trans-

action communication that is recuired for request /response interaction.

From below, the transport layer must respond to the drastic advances in network
hardware that is moving towards high bandwidth with lower bit error rate medium, from

10Mbit /s ethernet to 100Mbit/s FDDI (fiber distributed data interface) and later 1Gbit/s.

As it became apparent that the network software cannot keep pace with such speeds,
it was necessary to incorporate the functionality of the network layer in designing the new
protocol that can easily be implemented in VLSI. Without such drastic changes in the de-
sigh, mere improvement on the existing protocols would not be able to catch up with the
network media and the bandwidth available to the application would remain essentially the

sate,

Experiments have shown that protocols require more processing per packet at the
receiver than at the sender and hence the receiver is the bottleneck in protocol processing
[11]. In high speed networks and with the XTP goal of processing packets at the speed of

the underlying high speed media. the receiver must not be overburdened with the amount

of processing it has to do. XTP reduces the burden on the receiver by making it operate
as the slave of the transmitter. The recciver is required to issue a control packet only when
its transmitter sends a status requesting command in a packet header. This master/slave
relationship has the significant advantage of enabling the sender to request control packets

at synchronization points independent of patterns determined by data acknowledgement.

TCP adopts a positive acknowledgement retransmission (PAR) scheme using the go
back n retransmission algorithm. Under PAR, the receiver only acknowledges data received
error free and in sequence. Retransmissions are triggered by timeout at the sender for
unacknowledged data. (o back n retransmits all data starting from the point of last ac-
knowledgement. In high bandwidth networks where the number of packets in transit can be

very large, using the go back n retransmission algorithm can be very inefficient.

In XTP, the sender requests a status report from the receiver, cither periodically,
or when the flow control window has closed, and then bases its retransmissions on the in-
formation contained in this report. The report is informative enough to allow seclective

retransmission.

Other useful features that give XTP an edge over the existing protocols are mentioned

in the section that dwells on the functionalities of the relevant fields in the XTP packets.

2.2 ESTELLE OVERVIEW

Estelle is a formal specification language that can be used for describing distributed
concurrent process systems [12]. In particular, Estellc is used for describing the services
and protocols of the open system interconnection (OSI) architecture defined in the ISO 7498

standard.

An Estelle specification describes a collection of components. Each component is an

instance of a module defined within the Estelle specification by a module definition. The

hehavior of the module and its internal structure are specified by the set of transitions that
the module may perform, and by the definition of submodules, if any, together with their

interconnection.

A module may have a number of input/output access points (communication inter-
faces) called interaction points. A channel associated with the two interaction points defines
the set of interactions that can be sent or received or both. The exchange of messages is

called interaction.

A module instance can send an interaction to anot her module instance through a pre-
viously established communication link between the two interaction points. An interaction
received by a module instance is appended to an unbounded FIFO queue associated with
this interaction point. A FIFO queue could exclusively belong to a single interaction point
or could be shared with some other interaction points. For the former, the queue is referred
to as an individual queue and for the latter, as a common queue. The modules communicate
in asynchronous mode. In other words, they are non blocking, they can always send an

interaction,

2.2.1 ESTELLE COMPILER

An estelle compiler translates an Estelle specification into C - language source code.
The compiler consists of the translator and the C code generator tool.

The translator takes an Estelle specification as its input, and perform a complete
static anaysis (lexical, syntactical and semantic) of the specification. If no errors are found,
it generates a specification representation in the so-called intermediate form (IF).

The C-code generalor takes the intermediate form as its input and returns the C-code

of the specification.

> ec filename.stl

-1

2.2.2 SIMULATOR/DEBUGGER (EDB)

EDB is an Estelle symbolic and interactive simulator/debugger [12]. Its purpose is to help
the user in discovering and processing errors that occur during the execution of an Estelle
specification. It enables the user to concentrate on the propertics that he wants to verify.

The user of the EDB may conduct the simulation in two different ways.

1. STEP BY STEP SIMULATION

In this mode, after a single transition has fired, EDB issues a prompt for the user to
enter the next command. The user has the option of choosing the next transition to fire
from among the fireable transitions or examining all the information that constitutes
the global state of the specification under simulation. The user may also modify the
values of objects such as local variables and the content of the FIFO queues associated
with one end of a channel. This last facility may be used to simulate reordering or loss

of packets by an unreliable medium.

To select the next transition to fire, the following command is issued

edb> $se

where se stands for select executable transition.

A list of fireable transitions will be displayed, each prefixed by a number. These num-
bers are used to select the desired transition. Once the transition has been selected,

the following command is issued to fire the transition

edb> ¢

where ¢ stands for continue.

The following commands are used to display the content of the interaction processed

by the last transition to fire.

oo

- To display the content of the output.

edly> dSltro

where Itro stands for last transition output.

- To diplay the content of the input

edb> dSltri

where Itri stands for last transition input.

- To identify the transition that fired last.

edb> dS$ltrid

where ltrid stands for last transition identification.

- To display the hicrarchical structure of the specification modules.

edb> d$h

where h stands for hierarchy.

- To display the interactions in a queue of a given interaction point.

edb> d$q(n->r)

where n is the submodule number in the hierarchy, r is the interaction point.

. RANDOM SIMULATION

In this mode of simulation, the simulation goes automatically for a given number of

computation steps or a predefined amount of time. At each step, EDB selects randomly

9

from among the fircable transitions, the next transition to fire.

In this project, we used our own intuition to select a number that was large enough to
allow a user module (transmitter) to transfer a reasonably large file to the correspond-

ing user module (receiver). This number was set by using the following commands.

edb> $fs := number;

where fs stand for firing steps.

cdb> ¢

10

3 XTP PACKET STRUCTURE

XTP defines 9 packet tvpes, which are represented in physical form. These packets are
within 2 formats, a control format and an information format. The packets are made up
of three segments: the header segment, the middle segment and the trailer segment. The
header and the trailer segments are the same for all the packets. The middle segment can be

a control segment or an information segment. Figure 3 shows the structure of these segments.

The header has a fixed length of 40 bytes and the trailer a fixed length of 4 bytes.
The header size is twice as long than that of TCP because of the fact that XTP takes into
account hoth the transport and network functions. Another reason is that all XTP control
fields are 32 bits aligned. The middle segment is of varied length and a multiple of 4 bytes.

The information segment consists of 4 segments.

The control segment provides the mechanisms to communicate state information from
one protocol machine to another. Such information includes data reception status, rate and
flow control parameters, context and route identifier, and values used to synchronize the
state machines. The state machines exchanging this information may be at the endpoints of

an association or within the switches between the endpoints.

The information segment provides mechanisms for communication of user or protocol
data rather than protocol state information. The data provided by the user is carried from
end to end without being interpreted or inspected. Protocol data such as diagnostic informa-
tion, may be inspected or examine by the protocol as well as given to the user. Also included

within the information segment is the mechanism for providing address information.

3.1 XTP HEADER.

Figure 4 show the structure of the XTP header segment

¢ ROUTE FIELD.

11

XTP PACKET

HEADER (40)

MIDDLE SEGMENT

(4*N) TRAILER ($)

CONTROL SEGMENT

OR

INFORMATION SEGMENT

ADDRESS SEGMENT

DATA SEGMENT

GR

DATA SEGMENT

OR

MANAGEMENT SEGMENT

OR

ADDRESS SEGMENT

Figure 3: XTP SEGMENTS

12

PHYSICAL RFPRESENTATION

HEADER SEGMENT

.....

- “a,
RouT | TTL | <MD | KEY | SYNC | SEQ DSEQ | SORT | DLEN |HCHECK
4 4 4 4 4 4 4 4 4 4
! “~.\“'-..,_. e,
) .~ . .
v S ... e,
31 (ORKEY) 0 ...,
' $ e,
INSTANCE | INDFX
' H ';
4 /
MSB V
OPTION |OFFSET | PTYPE
2 1 1
_ .
P \ W
_ - - N
- - \ e .
-~
_ - - \ \‘-.__ T
- 4 kY o
BITS - | VERSION | PFORMAT
1st1af13f12] 1] 10] of 8l7 | 6] sla {3 | 2[1]o 116 54 v
BIT FIELD KEY:
0 BTAG 1 END 2 EOM 3 WCLOSE
4 RCLOSE S DREQ 6 SREQ 7 FASTNAK
8 NOFLOW 9 SORT 10 RES 11 MULTI
12 NOERR 13 - 14 NOCHECK 15 -

Figure 4: XTP HEADER

13

XTP uses a technique called cut through switching. which has been designed specif-
ically for compatibility with the ATM (asynchronous transfer mode) and emerging

gigabit networks.

As the FIRST packet cuts through the network using the address information in the
address segment, it leaves behind a trail of route values at each intermediate node
along the path. Subsequent packets moving in the forward direction route themselves

through the network by using the trail of route values that were left belhind by the

FIRST packet.

The use of route values to route a packet, by indexing into a route table, eliminates
the overhead involved in processing a full destination address. A route value is a 32
bit unsigned integer with the most significant bit (MSB) cleared. The route value is
a return route when the MSB bit is set. The destination host uses the return route

value for sending response packets back to the source.

TTL FIELD (time to live).

The TTL field indicates the amount of time that the packet has to remain valid while
in the network. As a packet traverses the network, it may become lost or misdirected.
A mechanism is required to stop such packets from meandering through the network.
The TTL field is set by the originator with a value that is expressed in 100nsec clock
ticks. This field is examined and modified as a packet transits an intermediate system

such as a switch or router.

A TTL value of zero disables the mechanism. The packet never times out. For non
zero values, the intermediate node decrements the value by an amount equal to the
expected network propagation and latency time. If the TTL value becomes zero or

negative, the packet is discarded. Otherwise, it is forwarded to the next switching

14

destination.,

CMD FIELD (command).

The CMD field encodes four kinds of information within three subfields

1. protocol options

2. number of offset. bytes before the beginning of user data

3. the format of the remainder of this packet and

4. the version number of the XTP protocol being used.

OPTION SUBFIELDS.
The option subfield is a 16 bit field with 14 bits defined. These options contro! many

service features of the protocol. They select the XTP operation modes and mechanisms.

A function is enabled if the corresponding bit is set to one and disabled if the bit is zero.

The ficlds that are meaningful to this project are as follows

1.

NOCHECK BIT.
When set, the receiver does not perform a checksum for the middle segment. This
bit has no effect on the checksum for the header, which is always enabled. The

bit could be set for efficiency reasons.

. NOERR BIT.

When set, it inform the receiver that the sender will not retransmit and directs
the receiver to disable error correction processing. The receiver ignore any in-
put error. If the sender requests a control packet response by setting the SREQ
or DREQ bit, then the receiver must acknowledge the highest received sequence
number. The sender ignores nspan and spans on the received CNTL packet.

The use of this bit allows XTP to provide two types of services to the upper

layer. When the bit is set, the protocol provides unreliable services equivalent to

15

those provided by UDP. When the bit is off., the protocol provides reliable services

equivalent to those of TCP.

3. MULTI BIT.

When set, indicates the multicast mode is on. This feature provides a mechanism
for group communication, which is useful in distributed database systems and

teleconferencing.

. NOFLOW BIT.
When set, indicates that the sender does not observe sequence based flow con-
trol. This mode of operation is used on a rate controlled connection or in situa-

tions where unconstrained operation is desired. A receiver may decline to accept

NOFLOW mode by rejecting the FIRST packet with a DIAG message.

. FASTNACK BIT (fast negative acknowledgement).

When set, directs the receiver to generate a fast negative acknowledgement, im-
mediately if out of sequence data are detected. This is an aggressive stralegy
designed for those networks that either never or seldom loose or reorder packets,

and hence out of sequence data implies that some data have been lost. The value

of this field is ignored if the NOERR bit is set.

. SREQ BIT.

When set, requests the receiver to respond immediately with a CN'TI packet.

. DREQ BIT.
Request the receciver to respond with a CNTL packet after it has delivered any

already received data to the higher layer application.

16

8. WCLOSE, RCLOSE and END.
These bits indicate the progression toward association termination. The WCLOSE
bit indicates that the sender’s Write process is closed and hence no more new data
will be sent. Retransmissions if necessary are still allowed even after the Writer
closes but the sequence number associated with this data stream will not advance.

Upon receipt of the WCLOSE bit, and after obtaining any packets that needed

to be retransmitted, the receiver sets the RCLOSE bit in outgoing packets. This
indicates the sender’s reader process is closed and hence no new data will be read.
The END bit indicates that the context sending is being relinguished and no other
communication of any kind is allowed.
A context that sets both WCLOSE and RCLOSE bits indicates that it has shut

off all user data exchange functions and cannot respond to packets with new data.

9. FOM BIT.
This bit marks the end of the message. The bit is ignored in packets other than
the FIRST and DATA packets.

10. BTAG BIT.
Indicate that the first 8 bytes of the data segment within the information segment

contain tag information for the higher layer application. It is meaningful only in

FIRST or DATA packets.

e OFFSET FIELD.
This field indicates the number of bytes of padding that come before user data when

data is present in an information segment.

e PTYPLE SUBFIELD.
This subfield contain two types of information. The pformat subfield occupies the 5
lower bits and specifies the format of this XTP packet. The next 2 bits specify the

X TP verston number.

17

e KLY FIELD.

The key field is a 32 bit field with the most significant bit reserved as a flag. 1t is used
to uniquely identify the context that will serve as one end point of an association. 'he
31 bits are further subdivided into an instance and an index. The index selects the
context by indexing into the context table, and the instance is used to validate the
index value and discriminate against inactive index values. It is an end to end value

communicated unchanged through switches to a destination end point.

e DSEQ FIELD.

DSEQ indicates the sequence number of the next byte expected to be delivered to the
user. XTP receiver uses dseq to indicate to the transmitter what data it can free from

the buffer space without fear that the data will ever be requested for retransmission.

e DLEN FIELD.
The data length field indicates the number of bytes present in the middle segment. It

includes the offset bytes but not the alignment bytes.

e SEQ FIELD (sequence number).
The sequence number field is the mechanism by which bytes within a data stream are
correctl, ordered and identified. Each byte in the data stream is assigned a sequence
number to uniquely identify that byte in the data stream in order to ensure proper

sequen cing.

For data bearing packets, the field specifies the first byte of data in DATA packets,
and the first byte of address information in the FIRST packet. For control packets,
the SEQ field is used to identify the next byte expected to be sent on the outgoing

18

number of bytes that can be in the pipeline. This has the eflect of reducing transmis-

sion bandwidth utilization in a high speed network.

e HCHECK FIELD.
The HCHECK field contains the result of a mandatory checksum calculation over the

data stream.
The seq field is 32 bits wide, allowing up to a maximum of 232 - 1 bytes to be in the
data transmission pipeline. TCP has a sequence number of 16 bits. which restricts the
| header fields excluding the ROUTE and TTL fields.

3.2 XTP TRAILER FIELD

The XTP trailer contains the result of an optional checksum calculation over the middle

segment of the XTP packet. Its value is ignored if the NOERR bit is set.

3.3 MIDDLE SEGMENT
3.3.1 CONTROL SEGMENT

Packets containing a control segment as their middle segment are called control packets.

("ontrol packets are used to exchange state information between endpoints.
e CONTROL SEGMENT FIELDS.

1. RATE AND BURST FIELD (rate control procedure).
The rate value specifies the maximum number of bytes per second that can be con-
sumed by the receiver. The burst value specifies the maximum number of bytes that

can be consumed in one burst of packets. that is packets sent in rapid succession. XTP

19

CONTROL

SEGMENT

a”’ ’
RATE |BURST |RSVD [ECHO [TIME |TECHO |XKEY {XROUTE |RSVD [ALLOC | RSEQ | NSPAN SPANS
4 4 4 4 4 4 4 4 4 4 4 4 8+ N
e P Pid i
- . P4 t
. P i '
- ’ .7]
P e e t
i < v’ s Pid 4
PR Pid 4)
- g ’ L4 - !
.7 s)
.7 . . '
- . s]
“- e - '
31 04 ;
I’ - !
” !
INSTANCE | INDEX ‘
.7 !
P)
e '
} (OR XROUTE) e !
MsB el :'
‘ v
0 1 '
]
|
LOW-SEQ(4) HIGH-SEQ() LOW-SEQ() | HIGH-SEQ() F

Figure 5: CONTROL SEGMENT

20

defines RTIMER (refresh timer) variable. which is initalized by the value obtained in
dividing burst by rate. The CREDIT variable is instantiated with the burst value each
time the RTIMER is reset. As packets are transmitted, CREDIT is decremented by
the amount of data sent. When the value of CREDIT becomes zero, the transmis-
sion of data is suspended until RTIMER expires. RTIMER is then refreshed and the
CREDIT renewed. A value of zero for burst means transmission is unconstrained. A

value of zero for rate halts transmission.

ECHO FIELD.

This field along with the SYNC field of the header is used to synchronize protocol
state machines. The receiver copies the SYNC value into the ECHO field of the next
outgoing CNTL packet.

TIME and TECHO FIELDS (time synchronization).

The sending context places the current time in the TIME field of each outgoing CNTL
request packet. When the receiver receives a CNTL packet with the SREQ bit set, the
value in the TIMI ficld is copied into the TECHO field of the outgoing CNTL response
packet. When the sending context receives the response CNTL packet, it subtracts the
value of TECHO field from the current time to get the estimated round trip time for

packets.

. XKEY and XROUTE FIELDS (key and route exchange).

The XKEY field is used to inform the receiver of this CNTL packet to use this key
value as the return key field in all outgoing packets. The use of this return field to
identify a context has the effect of improving performance. The XROUTE field is used

similary to improve routing performance.

. ALLOC FIELD.

This ficld conveys to the transmitter the highest sequence number that the receiver is

21

=~I

able to consume. The value is set according to the amount of buffer space available,
As the receiver frees the buffer space. the ALLOC value increases. It is used in the

flow control procedure to set the upper edge of the transmission window.

RSEQ FIELD.

The receiving side uses RSEQ value in CNTL packet to acknowledge receipt into buffer
space of contiguous data on an incoming data stream. If the transmitter side receives
a CNTL packet with the RSEQ value equal to the sequence number of the next byte
to be transmitted, then the transmitter infers that no retransmissions are required. If
the value of RSEQ is less, then the transmitter infers that the receiver has not received

all the data sent and some retransmission may be necessary.

NSPAN AND SPANS FIELDS (selective retransmission).

The SPANS field tells the transmitter which contiguous group of data (pairs of low-
est and highest sequence numbers) have been received after the first gap in the data
stream. NSPAN field indicate how many of these contiguous groups are present in the
SPANS field. The gaps determined from the two ficlds are used to provide information

for selective retransmission.

3.3.2 INFORMATION SEGMENT

This segment provides a mechanism that allow users to transfer data between two commu-

nication end points.

e DATA SEGMENT.

This segment is always present in DATA packets and optionally present in FIRST packets.
The length of this field is limited only by the maximum frame size of the underlying net-

work. If the BTAG bit in the option field is set, the tagged data occupy the first 8 bytes

22

PHYSICAL REPRESENTATION

INFORMATION SEGMENT

|

ALEN | SERVICE |AFORMAT

] 1

Figure 6: INFORMATION SEGMENT

23

P L e |

MANAGEMENT SEGMENT

i
)
]
]
: .
] hES
ADDRESS SEGMINT | OR | DATA SEGMENT | OR | OR =«
] S
\ 5 b
l \ |
\ 1
v ¥
DESCRIPTOR | ADDRESS ADDRESS DATA
2 (4*N) SEGMENT SEGMENT
' o T T = - -
\ T - -
CONTROL | RATE-RLQ | BURST-REQ |MAXDATA |ID
4 4 4 8
~
| .
I S .
~
v Sa

of the data segment. The BTAG field is used to convey higher layer control information.
For example. in an intergrated service data transfer where a single data stream must switch
between video, voice and data. each of these types of information can be proceeded with a

BTAG that indicales the tvpe of data that follows.

e ADDRESS SEGMENT.

The address segment holds all the information necessary to deliver a packet from one
end to another end across the network. The segment is included in both the FIRST and
PATH packets. It enables the FIRST packet to establish both the forward and return path
through the network. XTP does not have its own addressing scheme, instead it uses a para-
metric addressing scheme that supports the address format of several widely used address

schemes [1].

The MAXDATA ficld indicates the length in bytes of the maximum information seg-
ment that the initiating context expects to transmit during the lifetime of the association.
Intermediate switches can reject this value by sending a diagnostic packet containing the
maximum size that the switch can forward. XTP avoids the processing overhead involved in
fragmenting and reassembling of packets by using this field to determine the smallest MTU

(maximum transmission unit) along the route.

3.4 XTP PACKETS

o FIRST PACKET.

This packet is used only once, during the establishment of an association. As the
first packet threads its way through the network switches, it establishes a bidirectional
path for all subsequent packets in the association. Upon receipt of the first packet,
the receiver activates a context, which, together with the context of the transmitting

endpoint, defines an association.

24

CNTL PACKET.
Its function is to exchange state information between the interacting contexts within

an association.

PATH PACKET.
This packet is used to rethread a path if during the lifetime of an association, the orig-

inal path become undesirable or unavailable. It is also used in a multicast association,

to allow a receiver to join an in-progress data transfer.

DIAG PACKET.
This packet is used for diagnostic messages. It contains an information segment that

reports errors encountered by the protocol machine while trying to process a packet.

ROUTE PACKET.
This packet is used for path release. The packet uses the management segment to

signal to all switches along the path that the path is being released.

RONTL PACKET.

This packet allows communication of state information between XTP switches.

DATA PACKET.

This packeu carries user data only.

MGMT AND MAINT PACKETS.

These packets are not yet defined.

FIRST PACKET

MIDDLE SEGMENT

HEADER TRAILER
ADDRESS SEGMENT OPTIONAL DATA SEGMENT

DATA PACKET

HEADER DATA SEGMENT TRAILER
CONTROL PACKET / RCNTL PACKET

HEADER CONTROL SEGMENT TRAILER
PATH PACKET

HEADER ADDRESS SEGMENT TRAILER
DIAG PACKET / ROUTE PACKET

HEADER MANAGEMENT SEGMENT TRAILER

Figure 7: XTP PACKET LAYOUTS

26

4 XTP ERROR RECOVERY MECHANISM

Error recovery mechanisms outline the functionalities within XTP protocol that facilitate
reliable data transfer between XTP users. The mechanism make use of the timers, sequence
number, checksum and synchronizing handshake in detecting errors and if possible recover-

ing from them through retransmission.

As packets are being transmitted from one end point to the other, it is possible for
the bits within the packet to get corrupted. In order to preserve the integrity of the packet,
a checksum is applied on each packet. XTP defines two fields in each packet for checksum
purposes. The field used to preserve the integrity of the control information in the XTP

header is called the HCHECK field. The DCHECK field in the trailer is used to preserve

the integrity of the middle segment.

The checksum over the header is mandatory because compromizing the integrity of
the control information fields in the header could lead to a more dangerous operation that
might be difficult to recover from than recovering from the loss of the packet itself. At each
intermediate switching node, the checksum for the header is recalculated and compared with
the value stored in the HCHECK field. A mismatch means the packet has been corrupted

and should be discarded. This ensures that each node deals with a valid packet.

The validity of the middle segment depends on the value of the NOCHECK bit in
the option field of the header. If the bit is set, the checksum is disabled. The integrity of

the middle segment is an end to end issue.
Timers are another aspect of the error control procedures that are used to detect
the non occurrence of a specific event, mostly a lost control packet. The following example

illustrates how a lost control packet could lead to a deadlock.

Consider a scenario where the transmitter has sent all the data in the flow control

27

window and has issued a request for a response control packet by setting the SREQ bit in
the outgoing packet. Assume the packet gets lost before it is reccived by the receiver or it
was received, but the transmitted response control packet gets lost on the way. Since the

XTP protocol defines the receiver as the slave, the two end points will wait for ever.

The use of timers in error recovery help in detecting and recovering from such a sce-
nario. There are 3 timers defined in the protocol. The WTIMER (wait timer) specifies the
amount of time a context has to wait for a CNTL response packet after a request packet with
the SREQ bit set has been issued. When WTIMER expires before the requested response
CNTL packet arrives, the transmitter assumes the request packet got lost and it therefore
initializes a synchronizing handshake. This type of handshake involves the exchange of con-
trol packets between the two contexts in order to determine the state of the receiver. During

this period, the transmission of data packets is suspended until the handshake is completed.

CTIMER signals the inactivity on the association. It is enabled when loaded with a
value greater than zero. When CTIMER expires and no packet has since been received, the
context is forced to initialize a synchronizing handshake. CTIMER is reloaded and started
again. The value of this timer should be sufficiently large so that if it expires with no packets
received, it would indicate with high probability a possibility of a broken path or a dead end

point.

In addition to timers, there are variables that play an important role in error recovery.
Retry-count variable is used in conjunction with the CTIMEOUT timer to provide an upper
limit on the number of retries in message exchange. RTT provides an estimate of the round

trip time across the network.

When the context enters a synchronizing handshake, the CTIMEOUT is enabled, the
exponential back-off constant (k) is set to one, the retry-count is set to some value greater

than zero and the new waiting time (wt) is set to the product of the WTIMER and k.

28

wt = k7 WTIMER.

Il the reniote context is alive, an indication that the association was successfully ini-
tialized by the FIRST packet, a CNTL request packet is retransmitted or else the FIRST
packet with SREQ bit set is retransmitted. The context then sets the waiting time limit for

the reply to the value of wt.

If the requested response CNTL packet arrives before the waiting time (wt) expires,
the synchronizing handshake is considered to have completed successfully. Conversely, if
the time expires and the requested response control packet has not arrived, the transmitter
assumes the request packet could have become lost due to congestion in the network. It
therefore doubles the value of the exponential back-off constant, recalculates the new wait-
ing time and decrements the retry-count by one before repeating the retransmission and
waiting process. If the retry-count reaches zero or CTIMEOUT expires before the requested

response control packet arrives, the context is aborted.

RTT is used to load the WTIMER with the value that is smoothed over multiple RTT
observations. It ensures WTIMER is dynamically assigned with values that reflect the true
congestion in the network. It therefore reduces the possibility of unnecessary retransmission,
which could be caused by values smaller than network delay or unneccessary retransmission

delays due to larger values.

XTP uses a sequence numbering scheme to detect lost data packets. Each data byte
being transmitted is assigned a sequence number that is monotonically increasing. The se-
quence number for the first data byte in the data carrying packet is stored in the seq field
in the header. At the receiver end, the receiver will continue delivering the data to the XTP

user as long as it is being received in sequence.

Once a gap is detected in the sequence. the receiver suspends the delivery of data to

the upper layer until the lost packet is received. Meanwhile, the receiver continues to buffer

29

0 100 150 200 250 00

Figure 8: DATA STREAM WITH GAPS

the data being received. When a request packet is received, the receiver generates a response
control packet with the neccesary information that will facilitate selective retransmission of
the lost packets. The fields in the control packet that are involved in this exercise are the
RSEQ, SPANS and NSPAN. RSEQ represents the first byte of the first gap in the data.
NSPAN represents the number of contiguous data groups received and SPANS gives the list

of pairs of the sequence numbers for the first and last bytes in each of the contiguous groups.

Figure 8 is a hypothetical example of an input data stream with gaps at the receiver

end and the values assigned to these fields in the response control packet.

RSEQ = 100

NSPAN =

spans{1].lowest_seq = 150

spans|1].highest_seq = 200

spans|2).lowest seq = 250

spans|2].highest _seq = 300.

30

Given this information the transmitter will retransmit two DATA packets with the

following information in the seq and dlen fields

first packet : seq = 100, dlen = 50
second packet : seq = 200, dlen = 50.

To impose the go back n strategy, the receiver assigns the nspan field a value of one and
sct both fields in the spans to the same value of (hseq,hseq), the highest received sequence

number.

31

5 INTERNET PROTOCOL

An internet is a connection of two or more distinct networks so that computers on one net-
work are able to communicate with computers on another network. One way to connect two
distinct physical networks is to have a gateway that is attached to both networks. This gate-
way is sometimes called a router. A router operates at the network layer. Its functionality

is to move packets from one network to another.

In an internet that uses the TCP/IP family suite, the Internet Protocol(1P) [5] layer
is responsible for the forwarding of packets. Each IP packet contains enough information
(ie., its final destination address) for it to be routed through the TCP/IP internet. Figure

9A shows an example of two user processes interconnected with 1P.

The internet protocol uses four key mechanisms in providing its services: type of ser-
vice, time to live, options and header checksum. The options is only useful when testing new
protocol or network reachability, otherwise it is unnecessary for common communication.
Figure 10 shows the internet datagram header together with the internal structure of the
options field. Without the options, the size of the IP header is only 20 bytes. T'he options

that are defined include the

loose source routing
. strict source routing
. time stamp

. record route

D WO -

internet timestamp

e NOTE: since the Internet Protocol multiplexes several upper layer protocols, for safety

reasons, its accessibility is limited to the superuser only.

32

USER

TCP

P

DATA LINK

DATA LINK

e

(A)

USER

XTP

DATA LINK
(1P)

DATA LINK

USER

TCP

IP

DATA LINK

USER

XTP

(B)

DATA LINK
(Ip)

Figure 9: TRANSMISSION PATH

33

31 0

VERSION | [HL TYPL OF SERVICE TOTAL LENGTH
IDENTIFICATION FLAGS FRAGMENT OFFSET
TIME TO LIVE PROTOCOL HEADIR CHI CKSUM

SOURCE ADDRESS

DESTINATION ADDRISS

|
OPTIONS | PADDING

e —w e e m e m e, ., — - — -
P

TYPE LENGTH POINTER ROUTE DATA

Figure 10: IP HEADER

e LOOSE SOURCE ROUTING

Loose source routing option is identified by the type field having a value of 131. The
length field gives the length of the option. For the option having type number 131, the route
data field consists of internet addresses that the packet has to visit on its way to the final
destination specified in the IP header. The pointer field points to the next address to be
processed. Since the option is defined as loose, the packet is not restricted to take the direct
path between two adjacent addresses. Depending on the congestion status on the network,

the packet is allowed to traverse several other intermediate routers.

XTP, like TCP/IP, is another family suite of internetworking protocol that combines

34

the funetionalities of both the network and the transport layer. Since the network mecha-
nisms are not so well defined as the transport mechanisms and the theme of the project is
confined within the transport layer. for simplicity, the ubiquitous IP was used as the data
link layer to provide point to point movement of XTP packets as shown in figure 9B. A MAC
table was defined that mapped the simple integer MAC addresses being manipulated by the

XTP router into the internet addresses.

6 XTP SIMULATION PHASE
6.1 CHANNEL INTERACTIONS

Three modules are defined in the test configuration. These are the user module, the NTD
module and the medium module. Figure 11 shows the channels that interconnect the mod-

ules.

The channel that connect a user module to an XTP module is called the GLOBAL-USER-CHANN
and the one connecting the XTP moduleto the medium moduleis called the MEDIUM-CHANNEL.
The interactions that are exchanged between the user module and the XTP module are as

follows:

¢ FROM USER-MODULE TO XTP-MODULE

. TCONreq
. TCONresp
. TDISreq
. TLSTreq
. TSORTreq
BUSY

. IDLE

~N O T D WON e

¢ FROM XTP-MODULE TO USER-MODULE

. TCONind
. TDISind
. TDATind
. TERRind

BN 7 I

36

USER MODULE

TCONind

TDISind

TDATind

TERRind

TCONreq

TCONTresp

TDISreq
TLSTreq

BUSY
IDLE

XTP MODULE

MEDIUM-OUT-OF-ORDER

MEDIUM-OPERATIONAL

MEDIUM MODULE

XTP PACKETS
(REAL PACKETS)

|

I IP DATAGRAM

INTERNET

OCTETStning()
(LOGICAL PACKETS)

IP HEADER

XTP PACKET

Figure 11: FLOW OF INTERACTIONS

3

L

TCONTreq
TCONTreq is the primitive issued by the user to request the creation of an association. The
paramcters specify the type of service required. the source and destination addresses and if
possible some user data. The XTP module uses this primitive to create one end of a new

association and generate the FIRST packet to be sent to the specified destination.

TLSTreq
TLSTreq is a primitive issued to create a listening context. It is created by the receiver
module prior to the arrival of the FIRST packet. The address parameter identifies the ad-
dress of the local host. If the listening flag is set, the context module will ask for connection

confirmation when it receives the FIRST packet.

TDATAreq
TDATreq is used to transfer user data to the XTP module.

TDISreq

TDISreq is used to reject a new association.

BUSY
BUSY it indicates that the user cannot accept new indications from the XTP module (back

pressure).

IDLE

IDLE shows that the user is ready to accept new indications from the XTP module.

TCONind

TCONind indicates to the user that a new association has been created.

TDISind

TDISind shows the rejection of a new association.

38

TDATind

TDATind is used to transfer data to the user.

TERRind

TERRind indicates that an error has occurred.

The interactions that are exchanged between the xtp module and the medium module

are defined below

¢ FROM XTP-MODULE TO MEDIUM-MODULE

1. octetstring

e FROM MEDIUM-MODULE TO XTP-MODULE

1. octetstring
2. medium_out_of_order

3. medium_operational

OCTETSTRING
OCTETSTRING contains the data parameter that is the union of all packets. The other

parameters represent the mac addresses of the source and destination machines.

INITIALIZATION.

The modules were initialized as follows

39

MODVAR
user : user_module(i);
xtp : xtp_module(i);

medium : medium_module(i);

where 1 = 1..2 identify the host number.

Once the modules are declared, the channels are created between the interaction points using

the following Estelle command.

CONNECT user.x TO xtp.x[1];
CONNECT xtp.m[1] TO medium.x;

6.2 MODULES.
6.2.1 USER MODULE.

This module defines the XTP users at both end of an association (sce page 53). It is a
simplified version of an application layer that makes use of XTP to transfer data reliably
from one user in one machine, to another user located in a different machine. The SENDER
module is the originator of data, while the RECEIVER module is the recipient of the trans-

ferred data.

1. SENDER MODULE.

The functionalities of this module are executed by the following transitions.

START TRANSITION

This is the first transition to fire. It fills the parameters for the TCONreq primitive
before dispatching it to the XYP module via the interaction point using the command OU'T-
PUT.

40

The abtract representation of the transition is given below

TRANS

FROM 1idle_state

TO transfer_state

NAME start_connection:

BEGIN
fetch data from buffer
fill in parameters, ie.., source and dest addresses,
type of service, etc.
OUTPUT TCONreq(...)

END;

SEND-DATA TRANSITION
Once the start connection transition fires, the module moves to the next transition state,
which makes this transition fireable. The transition then enters a loop until all the data have

been transferred from the user buffer. The abstraction of the transition is as follows

TRANS
FROM +transfer_state

TO SAME
NAME SEND-DATA:
BEGIN

read data from the buffer;

fill in the parameters;

OUTPUT x.TDATreq(...);
END;

41

At the end of the data transfer, the module will move to the final state and display the

amount of time it took to transfer the data from the user module to the XTP module.

2. RECEIVER MODULE.

The first transition to fire issues a TLSTreq primitive with the flag parameter set.
The module moves from idle to listen state. When the TCONind primitive is received from
the XTP module, the second transition fires by issuing a TCONresp primitive to accept the

connection.

TRANS

FROM idle

T0O listen_state

NAME start_receiver:

BEGIN
assign local host address;
fill other parameters;

OUTPUT x.TLSTreq(..);
END;

TRANS

FROM 1listen_state
TO active_state
WHEN x.TCONind(..)
NAME accept_connection:
BEGIN

£ill parameters;

OUTPUT x.TCONresp(..);
END;

42

Once the accept connection transition fires, the module moves to the next transition state

and loops to receive the data until the end of message parameter is set.

TRANS
FROM active_state
TO same
WHEN x.TDATind(..)
NAME receive_data:
BEGIN
inspect the received parameters for eom;
store data in the buffer;

END;

6.2.2 MEDIUM MODULE

This module provides the interface between the XTP module and the Internet Protocol (see
page 62). Although the Internet Protocol is a network layer in OSI model, in this simulation
it is being used as the unreliable data link layer. The simple integer MAC addresses being
manipulated by the XTP router (in Estelle) are mapped into the internet addresses using

the following simple switch statement

switch (destination-mac-address) {
"132.205.62.2"; break;
1132.205.45.24";

case 1 : dest_address

case 2 : dest_address

}

where mac one identifies the source host (sender) and mac two identifies the destination host

(receiver). The transitions defined by the module are the sender and the receiver transitions.

43

SENDER TRANSITION.

The sender transition becomes fireable when the OCTETString primiitive from the
XTP module is present at the head of the queue of this module’s interaction point. The
received logical packet is transformed into the physical representation and the destination
mac address into the corresponding internet address. The physical packet is then transmit-

ted through the IP socket. The abstract representation of this transition is as follows

TRANS

WHEN x.octetstring(..)

NAME send_data:

BEGIN
convert the received packet into physical representation
map mac destination address into internet address
send the data through the IP socket

END;

RECEIVER TRANSITION.
This transition become fir=>hle when the flag in the PROVIDE clause indicates that there
is data to be read from the IP socket. This flag is a function that uses the recufrom system
call with the MSG_PEEK as one of its parameters. MSG_PEEK causes the system call to
return the number of bytes the socket has received without doing the actual read. When the
transition fires, the same system call with the MSG_PEEK flag replaced by a zero, is used to
read the data from the socket. The data read is an IP datagram containing the XTP packet
as its data segment.

The XTP packet is then extracted from the datagram, converted into logical form

before being channelled to the XTP module.

TRANS

PROVIDED (data_to_read > 0)

NAME receive_data:

BEGIN
read datagram from the socket,
extract the XTP packet,

convert the packet to logical fornm,
OUTPUT x.OCTETString(...);
END;

6.3 SIMULATION.

In order to be able to make use of the IP socket, the user must have logged in as the super

user. The C code library routines are compiled into an object file using the C compiler as

show below

> cc c_code.c
an archive file is then created as follows
ar rev lib.a c-code.o
ranlib liba.a
At the source host machine, the simulation is initialized with the following command
> edb -Lliba.a source.st]
At the destination host machine, the initialization is done as follows
> edb -Lliba.a destination.stl

45

where -L is the option specifying the library to be linked to the edb executable file.
source.stl is the estelle specification module initialized with host identification number one.

destination.st] is the specification module initialized with host identification number two.

Once the compilation and linking is successful, an edb prompt is produced.

STEP BY STEP SIMULATION.
This mode of simulation was used to monitor the flow of interactions, to display the content s
of the interactions. to validate the correctness of the C code routines defined in the library

and to select the next transition to fire.

CONTINUOUS SIMULATION.
To perform a continuous simulation of up to 5000 transition steps, the number is sof using

the following command

edb> $fs := 5000;

followed by the following command

edb> ¢

These procedures are carried out on both machines.

7 SIMULATION OBSERVATION

Sinee the Estelle specification defines the queues of the interaction points as unbounded. the
X'I'P module piles up the user interactions containing data at its external interaction point.
The actual transmission starts when all the data have been received. For a large amount
of data. this process has the effect of increasing the overall transmission time. For better
performance, some kind of piping mechanism needs to be incorporated to allow the XTP
module to start the transmission process as soon as a certain amount of data (low water

mark) has been received.

Oune of the EDB properties that turned out to be a drawback in the project is the one
that issues a deadlock prompt when there is no fireable transition to choose from. At the
destination machine, if the received data have been delivered to the user and no more pack-
ets have arrived from the source machine, there will be no fireable transition and herce the
sitnulation wili be terminated and an edb deadlock prompt issued. even though additional

data arc “on their way ™.

To circumvent the termination of the simulation due to lack of fireable transitions,
the receiver transition in the medium module was made fireable regardless of whether there
were data or not in the IP socket. This was done by removing the PROVIDED clause in the
transition. Some test procedures were added within the transition to distinguish between
a system call that returned due to some internal error or because there was no data to be
read. This modification had the effect of almost doubling the overall transmission time.
Having at least one fireable transition at any given time created another side effect. The
DELAY clause that provides the delay mechanism for the error recovery protocol, becomes
operational only when there is no fireable transition. To keep things moving, we improvised
a DELAY mechanism by introducing two additional transitions with flip-flop characteris-
tics to piovide timing control to each XTP transition with a DELAY clause. This problem
was actually introduced because the “simulation” time maintained by EDB had no relation-

ship to “real ™ (wall clock) time. The two additional transitions established this relationship.

47

The first transition would fire when the conditions required to start the DELAY
clause are met. It would then get the time from the system clock before flaging off the
second transition. The second transition would fire when the current time minus the time
observed by the first transition is greater than or equal to the specified delay. During the

execution of this transition. a condition will be set that will make the XTP transition fircable.

The size of the data segment in the data carrying packets was limited to only 20 bytes.
The data being exchanged between the XTP module and the user module was limited to
a maximum of 30 bytes. Such small sizes increase the number of packets that have to be
exchanged between the two XTP protocol engines. Considering the fact that we are dealing
with the unreliable data link layer. more packets are likely to get lost and hence considerable

delay is expected in the overall transmission time.

As the interactions move from one interaction point to the next, there is an enormous
amount of copying that takes place. which by itself, is another factor that contributes to
the transmission delay. To miminize the copying to at most twice, once when the data are
received from the medium and once when the data is being delivered to the user space, a
data descriptor should replace the data parameter in all data-carrying interactions. The
descriptor should have only two parameters. the address and a counter, limiting its size to
8 bytes. The address specifies the starting address of the data in an array while the counter
specifies the number of valid bytes in the array. Performing the copying operation on the
descriptor rather than the data itself would have a significant impact on the performance of
the XTP protocol engine. Finally, the most disturbing issue during the whole exercise was
the unpredictable breakdown of simulation process due to an EDB internal error number
30018. This is currently being investigated by the staff at INT (where the EDB system is

maintained).

8 CONLUSION

The operation of the error recovery mechanisms of the XTP specification are capable of
delivering data reliably to the XTP user despite the unreliability of the underlying data link
layer. However. the overall performace was not good enough because the transfer time for

5000 bytes was being measured in seconds.

The XTP specification that has been implemented in C programming language and
run on the 486 DX processor transfers the same amount of data in milliseconds. Such a great
difference thwarted our next hope of connecting these two protocol engines together using

an FDDI link.
In order to improve the performance of the XTP Estelle specification to a level where

it can be considered practical for implementation purposes, the suggestions outlined in the

previous section need to be implemented.

49

acronyms

XTP = Xpress Transfer Protocol

TCP = Transport ('ontrol Protocol

VLSI = Very Large Scale Integration

ATM = Asynchronous Transfer Mode

Ip = Internet Protocol

PAR = Positive Acknowledgement with Retransmission
ARQ = Automatic Repeat Request

OSI = Open Systems interconnect

MAC = Medium Access Control

ISO = International Standardization Organization
VMTP = Versatile Message Transaction Protocol
NETBLT = Network Block transfer

MSB = Most Significant Bit

UDP = User datagram Protocol

EOM = End Of Message

FDDI = Fiber Distributed Data Interface

RTT = Round Trip Time

FIFO = First In First Out

Sreq = Status request

EDB = Estelle debugger/Simulator

50

References

(1] J.W. Atwood, Anindya Das.M Hamed Nour, Jean-Marc Jé zéquel: Addressing and rout-
ing in heterogencous data nectworks. Accepted for presentation at High Performance

Networks '91, Grenable, Irance, June, 1994, 12 pages.

[2] J.W. Atwood, G.K.C. Chung: Error Control in the Xpress Transfer Protocol. Proceed-
ings of the 18th Conference on Local Computer Networks, Minneapolis, MN, September

19-22, 1993, pp.423-431.

[3] D. Sanghai and Ashok K. Agrawalla: DTP an efficient transport protocol.

[4] Protocol engine design. Greg Chesson, Silicon Graphics, Inc.

[5) RIFC 791 Internet Protocol (1P).

[6] XTP Protocol Definition revision 3.6. Protocol Engines Incorporated.

[7] O.Catrina and E.Lallet: Contributions to the specification and validation of the Xpress
Transfcr Protocol. Research report 931005, Systems and Networks Department, Institut

National des Télécommunications, Evry, France, October 1993.

[8] Nicky G. Ayoub:Using the network interface tap. Project report, Department of Com-

puter Science, Concordia University.

ol

[9] George C.K. Chung:Design and validation of error control in an XTP simulator. Major

report, Department of Computer Science, Concordia University, February 1993.

[10] Richard Stephens: Unir network programming. Prentice Hall, Englewood Cliffs, N.J.,
1990.

[11] W. Timothy Strayer, Bert J. Dempsey and Alfred C. Weaver: XTP:The Xpress Trans-
fer Protocol. Addison-Wesley Publishing Company, 1992,

[12] Estelle tutorial, Estdle to C compiler (version3.0) manual and Estelle simula-
tor/debugger (EDB). Institut National des Télécommunications Systéms et Réseaux

Departement, France.

[13] Douglas E. Comer:Internctworking with TCP/IP (Principles, Protocols, and Archilee-
turc). Prentice Hall, Englewood Cliffs, N.J., 1988.

[14] D. Sanghai and Ashok K. Agrawalla:DT'P: an efficient transport protocol. Proceedings
of NETWORKS 92, Trivandrum, India, October 1992,

52

9 APPENDIX A. user module

o o o o 3k ke i e e ke o ok o sk o ook o sk ok o o s ok ok ok o s e ok o ok o 3 3k ok ke 3k sk ok ok o ok ko o o sk ok ok ok ke ok 3k ok ok

* NOTE: rl. means the specified function performs real
* to logical conversion. *
* lr_ the conversion is from logical to real *
* representation. *

3 3 o o o b e e o o ok ok sk o S sk ek e sk ok S ok ok ok ke ke s ok e e ks skl 3 ok 3K ok o K ke ok ok 3 3k ok 3k ok o ik ok 3k 3k ok ok ok ok 3k ok ke e 3k

{ It must be noted that the user module acts as a virtual user instead of a
real user. It is because we are specifying the XTP protocol, not the behaviour
of some user. Therefore, we decided to simplify the user module and we

assigned to it a "standard" user channel}

MODULE User_module SYSTEMACTIVITY (host_id:integer);
{host_id parameter allows host dependent user instances to be created. }
IP X : GlobalUserChannel(user); {the number of interaction points x is
irrelevant for the specification of
xtp. This is the reason why we chose

a number of one interaction point.}

END;

BODY user_body for User_module;

53

{ To be defined according to the tests. }

STATE idle,active,1isten_state,end_receive,end_send,re;ected,error;

VAR
lnoerr,lsreq,ldreq,1fastnak,lnocheck,lnoflow,sleom,
rleom,lbtag,lsort,lwclose,lrclose,lend : BOOLEAN;

lsortval : INTEGER;

ctl_nfp : Cntl_param_with_noflow_type;

ctl.p : Cntl_param_type;

closep : Close_param_type;

datap : Data_type;

dst,src : Host_address;

itimel,ftimel,itime2,ftime2 : REAL;

PROCEDURE initflags;
BEGIN

lsortval := 0Q;

lnoerr := FALSE;
FALSE;
ldreq := FALSE;
1fastnak := FALSE;
lnoflow := FALSE;
Inocheck := FALSE;

lsreq :

sleom := FALSE;
rleom := FALSE;
lbtag := FALSE;
lsort := FALSE;
lwclose := FALSE;
lrclose := FALSE;

54

lend := FALSE;
END;

PROCEDURE f£ill_nf_cntlp(VAR ctp : Cntl_param_with_noflow_type;a,b,
c,d,e,f,g,h,i: BOOLEAN; z : INTEGER);

BEGIN
WITH ctp DO
BEGIN
noerr := a;
sreq := b;
dreq := c;

fastnak := d;
noflow := e;
nocheck := f;

eom := g;

n
=4

btag :

sort := i;
sort_val := z;

END;

PROCEDURE £ill_cntlp(VAR ctp : Cntl_param_type;a,b,c
,d,e,f,g,h : BOOLEAN; z : INTEGER);
BEGIN
WITH ctp DO
BEGIN
noerr := a;

b;

sreq :

dreq := c;
fastnak := d;

nocheck := e;

99

eom := f;

btag := g;

sort := h;

sort_val := z;
END;

END;

PROCEDURE fill_closep(VAR ctp : Close_param_type;a,b,c : BOOLEAN);
BEGIN

WITH ctp DO

BEGIN

wclose :

[}
[+

rclose :

[}
o’

endc := c;
END;
END;

INITIALIZE

TO idle

BEGIN
IF (host_id = 1) THEN {sender}
BEGIN

init_data; {load data for transmission}

END;
initflags;
int_time; {initialize time}

END;

{ #xkkokkkkxk USER HOST No. 1 (sender) s*kskkiokokkskiskikx }

26

TRANS

FROM idle

TO active

PROVIDED (host_id = 1)

NAME start_connection:

BEGIN

TRANS

itimel := local_time;

fetch_data(datap);

IF (datap.nb_data = 0) THEN
BEGIN

sleom := TRUE;
lwclose := TRUE;

END;
fill_nf_cntlp(ctl_nfp,lnoerr,lsreq,ldreq,lfastnak,lnoflow,

lnocheck,sleom,lbtag,lsort,lsortval);

fill_closep(closep,lwclose,lrclose,lend) ;

dst.host_identifier := 2; {receiver MAC address}
dst.selector := 1;

src.host_identifier := 1; {sender address}
src.selector := 1;

OUTPUT x.TCONreq(ctl._nfp,datap,closep,dst,src,1);
IF luclose THEN

ftimel := local_time;

{loop to transmit data}

FROM active
TO SAME
PROVIDED (NOT lwclose AND (host_id = 1))

NAME give_data_for_trans:

57

BEGIN
fetch_data(datap) ;
IF (datap.nb_data = 0) THEN

BEGIN
sleom := TRUE;
lwclose := TRUE;
END;

fill_cntlp(ctl_p,lnoerr,lsreq,ldreq,lfastnak,lnocheck,
sleom,lbtag,lsort,lsortval);
fill_closep(closep,lwclose,lrclose,lend);
OUTPUT x.TDATreq(ctl_p,datap,closep,1);
IF lwclose THEN

BEGIN
ftimel := local_time;
END;
END;
TRANS {no more data to transmit}
FROM active
TO end_send

PROVIDED (lwclose AND (host_id = 1))
NAME all_data_sent:
BEGIN

printtime(TRUNC(ftimel - itimel));
END;

{*xxxxxxxxx% USER HOST no. 2 (receiver) sskwkskkkikk }

TRANS

38

-

FROM idle
TO listen_state
PROVIDED (host_id = 2)
NAME start_listen:
BEGIN
src.host_identifier := 2;
src.selector := 1;
OUTPUT x.TLSTreq(src,TRUE,1);
END;

TRANS
FROM listen_state
TO active
PROVIDED (host_id = 2)
WHEN x.TCONind(cntl_param,destination,source,user_number)

NAME rec_active:

BEGIN
itime2 := local_time;
OUTPUT x.TCONresp (user_number); {confirm connection}
rleom := cntl_param.eom;

IF rleom THEN
ftime2 := local_time;

END;

TRANS
FROM listen_state
TO active
PROVIDED (host_id = 2)
WHEN x.TCONcnf (user_number)

NAME rec_confirm:

39

BEGIN
END;

TRANS {loop to receive data}

FROM active
TO SAME
WHEN x.TDATind(data_param,btag,eom,user_number)
PROVIDED (NOT rleom AND (host_id = 2))
NAME user_get_data:
BEGIN

storedata(data_param);

IF (data_param.nb_data = 0) THEN

lrclose := TRUE;
rleom := eom;
IF lrclose THEN
ftime2 := local_time;

END;

TRANS {end of received data}
FROM active
TO end_receive
PROVIDED ((rleom OR lrclose) AND (host_id = 2))
NAME time_taken:
BEGIN
printoutput;
printtime(TRUNC(ftime2 - itime2));
END;

60

TRANS
FROM idle,listen_state,active
TO rejected
WHEN x.TDISind(user_number,code)
NAME rec_disconnect:
BEGIN
END;

TRANS
FROM 1dle,listen_state,active
TO error
WHEN x.TERRind(error,user_number)
NAME rec_abort:
BEGIN
END;

END; { of User body }

10 APPENDIX B. medium module

MODULE Medium_module SYSTEMACTIVITY(host_id : INTEGER);
IpP x: ARRAY[1..2] OF MediiumChannel(medium);
END;

BODY medium_body for Medium_module;
{ To be defined according to the tests. }
INITIALIZE

BEGIN

open_socket;

END;

TRANS
PROVIDED (checkdata > 0) {packet has arrived}

VAR

data : bitstring;

flag,src,dst,addr : INTEGER;

NAME from_network:

BEGIN
get_data(data,flag);
IF (flag = 1) THEN { valid packet}
BEGIN

src := 1;

62

dst := 2;
IF C(host_id = 1) THEN

BEGIN
src = 2;
dst := 1;

END;

OUTPUT x[1]) .octetstring(data,src,dst);

END;

END;

TRANS

WHEN x[1].octetstring(data,src_mac,dst_mac)
NAME to_network:

BEGIN

send_data(data,src_mac,dst_mac);

END;

END; { end of medium body }

63

11 APPENDIX C. C-code primitives

{ C - CODE LIBRARY ROUTINES. }

#include
#include
#include
#include
#include
#1nclude
#include
#include
#include
#inclﬁde

#include

<stdio.h>
<sys/stat.h>
<signal.h>
<fcntl.h>
<sys/types.h>
<errno.h>
<sys/socket.h>
<sys/time.h>
<netinet/in.h>
<netinet/ip_var.h>

<netdb.hL>

#define FORE_ADDR "132.205.45.24" /* forest destination address */

#define PINE_ADDR "132.205.62.2" /* pine source address */

/* service types */

#define connection 0x00
#define transaction 0x01
#define unack_dgram 0x02
#define ack_dgram 0x03
#define iso_stream 0x04
#define bulk_data 0x05

64

/* format types */

#define no_addr 0x00
#define ip_addr 0x01
#define iso_addr 0x02
#define xns_addr 0x03
#define ibm_src_route_addr 0x04
#define modsim_addr 0x05
#define netbios_addr 0x06
#define ip_loose_src_addr 0x07
#define ip_strict_src_addr 0x08
#define xtp_direct_addr 0x09
#define xtp_x_addr 0x0a
#define usaf_addr 0x0b
#define returnmask 0x80000000
#define instancemask 0x7FEC0000
#define indexmask 0x001FFFFF
/* packet types (real) */

#define p_data 0x00

#define p_cntl 0x01

#define p_first 0x02

#define p_path 0x06

#define p._diag 0x08

#define p_maint 0x0a

#define p_mgmt 0x0e

#define p_route 0x12
#define p_rcntl 0x13

/* packet types (logical) =*/

enum lptype {
First_pak,
Data_pak,
Cntl_pak,
Path_pak,
Diag_pak,
Route_pak,
Rentl_pak
¥
typedef enum lptype lptype;

#define Max_nb_of_span 10
#define INSTANCE_SIZE 10 /* 1023 */
#define INDEX_SIZE 21 /* 2097151 */

/* diagnostic messages (real) */
#define INVAL_CONTEXT 1
#define REF_CONTEXT 2
#define UN_DEST 3
#define DEAD_HOST 4
#define INVAL_ROUTE 5
#define REDIRECT 6
#define NO_ROUTE 7
#define NO_RESOURCE 8

66

#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

typedef
typedef

ERR_PROTOCOL 9
ERR_MAXDATA 10

REL_ROUTE 11
REL_ACK 12
GOOoD 13
First_data_seg_max_length 20

Data_seg._max_length 20
Max_nb_of_spans 10
addr_max_len 72

Diag_message_max_length 20

unsigned char bool;

unsigned int word_32;

/* o e ke e o sk ek e ke ok e sk o o e o sk ok ok ok ok ke ok ok sk sk ok %k

LOGICAL STRUCTURES

ok ok he 3k b ok of o 3 ok e ke ok o o ok 3k sk 3k ok 3k e s e e ok e ok ok */

struct cmd_type {
bool btag;

bool endc;

bool eom;

bool wclose;

bool rclose;

bool dregq;

bool sreq;

bool fastnak;

bool noflow;
bool sort;
bool res;
bool multi;
bool noerr;
bool nocheck;
word_32 offset;
lptype ptype;
3
typedef struct cmd_type lcmd_type;

enum service_type {
connection_service,
transaction_service,
unack_datagram_service,
ack_datagram_service,
isochronous_stream_service,
bulk_data_service
};

typedef enum service_type service_type;

enum format_type {
no_address_format,
IP_format,
IS0_format,
XNS_format,
IEEE_802_style_format,
MODSIM_format,

NetBios_format,

68

IP_style_Loose_format,
IP_style_Strict_format,
XTP_Direct_format,
XTP_Experimental _format,
USAF _format
h

typedef enum format_type aformat_type;

/* diagnostic messages (logical) */
enum diagnostic_type {
invalid_context,
context_refused,
unknown_destination,
dead_host,
invalid_route,
_ redirect,
cannot_route,
no_resource,
protocol_error,
maxdata_error,
release_route,
release_acknowledge,
good
};
typedef enum diagnostic_type diagnostic_type;

struct route_value {

word_32 instance;

word_32 route_index;

69

typedef struct route_value route_value;

struct lroute_type {
bool return_value;
route_value wvalue;

|-

typedef struct lroute_type lroute_type;

struct key_value {
word_32 instance;
word_32 index;
Y
typedef struct key_value key_value;

struct lkey_type {
bool return_key;
key.value value;
Y
typedef struct lkey_type lkey_type;

struct lheader_type {
lroute_type route;
word_32 ttl;
lemd_type cmd;
lkey_type key;
word 32 sync;
word_32 seq;
word_32 dseq;
word_32 sort;
word_32 dlen;
word_32 hcheck;

70

3
typedef struct lheader_type lheader_type;

struct trailer_type {
word_32 dcheck;
b
typedef struct trailer_type trailer_type;

struct host_addr_type {
word_32 host_identifier;
word_32 selector;
¥}
typedef struct host_addr_type host_addr_type;

struct descr_control_type {
word_32 alen;
service_type service;
aformat_type aformat;
b
typedef struct descr_control_type descr_control_type;

struct descriptor_type {
descr_control_type control_field;
word_32 rate_request;
word_32 burst_request;
word_32 maxdata;
word_32 id;
};

typedef struct descriptor_type descriptor_type;

7l

struct laddress_segment_type {
descriptor_type descriptor;
host_addr_type destination;
host__addr_type source;
};
typedef struct laddress_segment_type laddress_segment_type;

struct data_segment_type {

unsigned char data_seg[Data_seg_max_length];

};

typedef struct data_segment_type data_segment_type;

struct spans_type {
word_32 lowest_seq;
word_32 highest_seq;
¥
typedef struct spans_type spans_type;

struct lcontrol_segment_type {

word_32 rate;

word_32 burst;

word_32 rsvdi;

word_32 echo;

word_32 time;

word_32 techo;

lkey_type xkey;
lroute_type xroute;

word_32 rsvd2;

word_32 alloc;

word_32 rseq;

word_32 nspan;

spans_type spans[Max_nb_of_spans];

};

typedef struct lcontrol_segment_type lcontrol_segment_type;

struct diag_info_type {
diagnostic_type code;
word_32 value;
unsigned char message[Diag_message_max_length];
s
typedef struct diag_info_type diag_info_type;

struct rcntl_segment_type {
word_32 rate;

word_32 burst;

lroute_type xroute;
Y
typedef struct rcntl_segment_type rcntl_segment_type;

/* logical first packet */

struct lxtp_first_packet {
lheader_type header;
laddress_segment_type address_segment;
unsigned char data_segment [20];
trailer_type trailer;
¥

typedef struct lxtp_first_packet 1first_packet;

73

/* logical data packet */
struct lxtp_data_packet {
lheader_type header;
data_segment_type data_segment;
trailer_type trailer;
¥
typedef struct lxtp_data_packet ldata_packet;

struct 1lxtp_control_packet {
lheader_type header;
lcontrol_segment_type control_segment;

trailer_type trailer;

};

/* logical control packet */
typedef struct 1lxtp_control_packet lcontrol_packet;

struct 1lxtp_path_packet {
lheader_type header;
laddress_segment_type address;

trailer_type trailer;

};

/* logical path packet */
typedef struct lxtp_path_packet lpath_packet;

struct lxtp_diag_packet {
lheader_type header;
diag_info_type info;

trailer_type trailer;

};

/* logical diag packet */
typedef struct lxtp_diag_packet ldiag_packet;

/* logical rcontrol packet */
struct lxtp_rcntl_packet {
lheader_type header;
rcntl_segment _type rcntl_segment;
trailer_type trailer;
b
tvpedef struct lxtp_rcntl_packet lrcntl_packet;

/* logical route packet */

struct lxtp_route_packet {
lheader_type header;
diag_info_type info;
trailer_type trailer;
¥
typedef struct lxtp_route_packet Ilroute_packet;

/* ok 3 3k 3 b ok o ok ok ok oKk ok ok ok sk ok ok ok ok ok % K kK %k

PHYSICAL STRUCTURE

2k e ok ok ok ok koK ok e ok e ok ok ok ok ok ok ok o dl¢ ok %k Xk */

struct rxtp_cmd_bit {

unsigned int rotusedl : 1;

-1
Cr

union

typedef union xtp_cmd xtp_cmd;

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned

+

xtp_cmd {

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

int

nocheck

notused? :

noerr
multi
res
sort
noflow
fastnak
sreq
dreq
rclose
wclose
eom

end
btag
offset

notused3 :

version

pformat

word_32 word;

struct rxtp_cmd_bit bits;

};

struct xtp_route_bits {

unsigned int return_route :

unsigned int route_value

1;
31;

70

};

union xtp_route {
word_32 word;
struct xtp_route_bits bits;
};

typedef union xtp_route xtp_route;

struct xtp_key_bit {
unsigned int return_value : 1;
unsigned int key_value : 31,

};

union xtp_key {
word_32 word;
struct xtp_key_bit bits;
}.

’

typedef union xtp_key xtp_key;

struct xtp_header {
xtp_route route;
word_32 ttl;
xtp_cmd cmd;
xtp_key key;
word_32 sync;
word_32 seq;
word_32 dseq;
word_32 sort;
word_32 dlen;
word_32 hcheck;

-1
-1

¥
typedef struct xtp_header xtp_header;

struct rcontrol_segment {
word_32 rate;
word_32 burst;
word_32 rsvdil;
word_32 echo;
word_32 time;
word_32 techo;
xtp_key xkey;
xtp_route xroute;
word_32 rsvd2;
word_32 alloc;
word_32 rseq;
word_32 nspan;
spans_type spans[Max_nb_of_spans];
s

typedef struct rcontrol_segment rcontrol_segment_type;

struct rdiag_info_type {
word_32 code;
word_32 val;
unsigned char message[Diag_message_max_length]
¥
typedef struct rdiag_info_type rdiag_info_type;

struct descriptor_control {
unsigned int alen 1 16;

unsigned int service : 8;

unsigned int aformat : 8;

};

union rdescr_control {
word_32 word;
struct des« viptor_control descr_cntl;
};

typedef union rdescr_control rdescriptor_control;

struct rdescriptor_type {
rdescriptor_control control;
word_32 rate_req;
word_32 burst_req;
word_32 maxdata;
word_32 id[2];
R
typedef struct rdescriptor_type rdescriptor_type;

struct raddress_segment {
rdescriptor_type descriptor;
word_32 address[12];
¥

typedef struct raddress_segment raddress_segment_type;

union all_packets {
lfirst_packet first;
ldata_packet data;
lroute_packet route;
lrcntl_packet rcntl;
ldiag_packet diag;

lpath_packet path;
lcontrol_packet cntl;
};
typedef union all_packets all_packets;
struct bit_string {
lptype ptype;
all_packets pack;
Y
typedef struct bit_string bit_string;

struct rfirst_packet_type {
xtp_header header;
raddress_segment_type address_seg;
unsigned char data_segment[20];
trailer_type trailer;
};

typedef struct rfirst_packet_type FIRST;

struct rdata_packet_type {
xtp_header header;
unsigned char data_segment[20];
trailer_type trailer;
I
typedef struct rdata_packet_type DATA;

struct rcontrol_packet_type {
xtp_header header;
rcontrol_segment_type control;

trailer_type trailer;

80

}i
typedef struct rcontrol_packet_type CNTL;

struct rpath_packet_type {
xtp_header header;
raddress_segment_type address;
trailer_type trailer;
¥

typedef struct rpath_packet_type PATH;

struct rdiag_packet_type {
xtp_header header;
rdiag_info_type info;
trailer_type trailer;
I

typedef struct rdiag_packet_type DIAG;

struct rrcntl_packet_type o
xtp_header header;
rcontrol_segment_type control;
trailer_type trailer;
I

typedef struct rrcntl_packet_type RCNTL;

struct rroute_packet_type {
xtp_header header;
rdiag_info_type info;
trailer_type trailer;
}
typedef struct rroute_packet_type ROUTE;

struct ipheader {

unsigned int version : 4;

unsigned int hln : 4,
unsigned int dtype : 8;
unsigned int tlen : 16,
unsigned int id : 16;
unsigned int flag ;4

unsigned int offset : 12;

unsigned int ttl : 8;
unsigned int protoe : 8;
unsigned int hsum : 16;
unsigned int src 1 32,
unsigned int dst 1 32;

};
typedef struct ipheader ipheader;

#define datapt 30
#define mdata 5000 /* amount of data to be transferred */
struct data_type {
unsigned int nb_data;
unsigned char data[datapt];
};
typedef struct data_type data_type;

static unsigned char arraydatalmdatal; /* store data to be send by the source */

typedef struct storedatatype { /* store data received by destination host x*/

int count;

82

unsigned char datal[mdatal;

}

char *address_type;

typedef struct storedatatype storedatatype;

static storedatatype outdata;

#define IP_HEADERLEN(x) (((*x).hln) << 2)
#define BUFSIZE 300

extern int errno;

static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static

static

int
int
int
int
int
int

int

first_len
data_len
diag_len
path_len =
route_len
cntl_len

rcntl_len

nextwrite = 0;

int

int

index = 0;

source = 0;

sizeof (FIRST) ;
sizeof (DATA) ;
sizeof (DTAG) ;
sizeof (PATH);

= sizeof (ROUTE);
= gsizeof (CNTL);
= si1zeof (RCNTL) ;

unsigned int probno;

int nextread = 0;

int sockfd,fd,clilen,sockfdi,slen;

/* get ip header length */

struct sockaddr_in serv_addr,cli_addr,saddr;

unsigned char sbuff[BUFSIZE],rbuff [BUFSIZE];

struct timeval tv0,tvi;

int count_no = 0;

unsigned char option[32];

/* IP OFPTION STRUCTURE =*/

[% dokokaoR ok Rk oKk R R KRR KKK Rk AR KK Rk
LOGICAL TO REAL CONVERSION PRIMITIVES
AR AR K Ko Ko o K koK KK o R OK K KKK Kook ok
*/
void 1r_keytype(lpt, rpt)
register lkey_type *1pt;

register xtp_key *rpt;

{

{
rpt->word = 0;
rpt->word = lpt->return_key;
rpt->word = rpt->word << INSTANCE_SIZE;
rpt->word += lpt->value.instance;
rpt->word = rpt->word << INDEX_SIZE;
rpt->word += lpt->value.index;

}

void lr_routetype(lpt, rpt)
register lroute_type *lpt;

register xtp_route *rpt;
{
rpt->word = 0;
rpt->word = lpt->return_value;

rpt->word = rpt->word << INSTANCE_SIZE;

rpt->word += lpt->value.instance;

rpt->word = rpt->word << INDEX_SIZE;

rpt->word += lpt->value.route_index;

void 1lr_ptype(Ptype, rpt)

84

lptype Ptype;

register xtp_header

{

void lr_header(lpt,

switch (Ptype)
{

case First_pak :

case Data_pak
case Cntl_pak
case Path_pak
case Diag_pak

case Route_pak :

case Rcentl_pak :

*rpt;

rpt->cmd.bits.pformat
: rpt->cmd.bits.pformat
: rpt->cmd.bits.pformat
: rpt->cmd.bits.pformat
: rpt->cmd.bits.pformat
rpt->cmd.bits.pformat

rpt->cmd.bits.pformat

p_first; break;
p-data; break;
p-cntl; break;
p-path; break;
p-diag; break;
p-route; break;

p-rcntl; break;

default : { printf("error packet type\n");

ex1t(1);

register lheader_type

register xtp_header

{

lr_routetype(&lpt-
rpt->cmd.bits.btag

rpt)

*1pt;
*rpt;

>route, &rpt->route);

= lpt->cmd.btag;

rpt->cmd.bits.end = 1lpt->cmd.endc;

rpt->cmd.bits.eom = lpt->cmd.eom;

rpt->cmd.bits.wclo
rpt->cmd.bits.rclo
rpt->cmd.bits.dreq
rpt->cmd.bits.sreq

se = lpt->cmd.wclose;
se = lpt->cmd.rclose;
= 1lpt->cnd.dregq;
= 1lpt->cmd.sreq;

oL
<

rpt->cmd.bits.fastnak = 1lpt->cmd.fastnak;
rpt->cmd.bits.noflow = 1lpt->cmd.noflow;
rpt->cmd.bits.sort = lpt->cmd.sort;

rpt->cmd.bits.res = lpt->cmd.res;

rpt->cmd.bits.multi = lpt->cmd.multi;

rpt->cmd.bits.noerr = lpt->cmd.noerr;
rpt->cmd.bits.nocheck = lpt->cmd.nocheck;
rpt->cmd.bits.offset = lpt->cmd.offset;

rpt->cmd.bits.notusedl =

I
o

rpt->cmd.bits.notused?2 =

I
o

rpt->cmd.bits.notused3 = 0;
1lr_ptype(lpt->cmd.ptype, rpt);
lr_keytyre(&lpt->key, &rpt->key);
rpt->ttl = lpt->ttl;

rpt->sync = lpt~->sync;

rpt->seq = lpt->seq;

rpt->dseq = lpt->dseq;
rpt->sort = lpt->sort;
rpt->dlen = lpt->dlen;

void 1r_service(serv,rpt)
service_type serv;
register raddress_segment_type *rpt;
{ switch(serv)
{
case connection_service :
rpt->descriptor.control.descr_cntl.service = connection; break;

case transaction_service :

806

rpt->descriptor.control.descr_cntl.service = transaction;break;

case unack_datagram_service :

rpt->descriptor.control.descr_cntl.service = unack_dgram;break;

case isochronous_stream_service :

rpt->descriptor.control.descr_cntl.service = iso_stream;break;

case bulk_data_service :

rpt->descriptor.control.descr_cntl.service = bulk_data;break;

cagse ack_datagram_service :

rpt->descriptor.control.descr_cntl.service = ack_dgram;break;
default : { printf(" invalid service information \n");
exit(1)
}
}

void 1r_aformat(aform, rpt)
aformat_type aform;

register raddress_segment_type *rpt;
{

{

switch (aform)

{

case no_address_format :

(*rpt) .descriptor.control.descr_cntl.aformat = no_addr; break;

case IP_format :

(*rpt).descriptor.control.descr_cntl.aformat = ip_addr; break;

case ISO_format :

(*rpt) .descriptor.control.descr_cntl.aformat = iso_addr; break;

case XNS_format :

(*rpt) .descriptor.control.descr_cntl.aformat = xns_addr;break;

oD
-1

case JEEE_802_style_format :

(*rpt) .descriptor.control.descr_cntl.aformat
case MODSIM_format :

(*rpt) .descriptor.control.descr_cntl.aformat
case NetBios_format :

(*rpt) .descriptor.control.descr_cntl.aformat
case IP_style_Loose_format :

(*rpt) .descriptor.control.descr_cntl.aformat
case IP_style_Strict_format :

(*rpt) .descriptor.control.descr_cntl.aformat
case XTP_Direct_format :

(*rpt) .descriptor.control.descr_cntl.aformat
case XTP_Experimental_format :

(*rpt) .descriptor.control.descr_cntl.aformat
case USAF_format

(*rpt) .descriptor.control.descr_cntl.aformat

ibm_src_route_addr;break;

modsim_addr; break;

netbios_addr; break;

ip_loose_src_addr;break;

ip_strict_src_addr;break;

xtp_direct_addr;break;

xtp_x._addr;break;

usaf_addr;break;

default : { printf(" invalid format value\n");

exit (1);
}
}

void rl_aformat(lpt, aform)
register laddress_segment_type #*1pt;
unsigned int aform;
{
switch (aform)

{

case no_addr :

lpt->descriptor.control_field.aformat = no_address_format; break;

88

case ip_addr :

]

lpt->descriptor.control_field.aformat = IP_format; break;

case iso_addr :

1pt->descriptor.control_field.aformat = ISO_format; break:
case xns_addr : lpt->descriptor.control_field.aformat = XNS_format; break;

case ibm_src_route_addr :

lpt->descriptor.control_field.aformat = IEEE_802_style_format;break;

case modsim_addr :

lpt->descriptor.control_field.aformat = MODSIM_format; break;

case netbios_addr :

lpt->descriptor.control_field.aformat NetBios_format; break;

cese ip_loose_src_addr :

lpt->descriptor.control_field.aformat = IP_style_Loose_format;break;

case ip_strict_src_addr :

lpt->descriptor.control_field.aformat IP_style_Strict_format;break;

case xtp_direct_addr :

lpt->descriptor.control_field.aformat = XTP_Direct_format;break;

case xtp_x_addr

lpt->descriptor.control_field.aformat = XTP_Experimental_format;break;

case usaf_addr

lpt->descriptor.control_field.aformat = USAF_format ;break;
default : { printf(" invalid format type \n");

exit(1);

void rl_service(lpt, serv)

register laddress_segment_type *1pt;

89

unsigned int serv;
{
switch(serv)

{

case connection :

connection_service;break;

lpt~>descriptor.control_field.service

case transaction :

lpt->descriptor.control_field.service = transaction_service;break;
case unack_dgram :
lpt->descriptor.control_field.service = unack_datagram_service;break;

case ack_dgram

lpt->descriptor.control_field.service = ack_datagram_service;break;

case 1so_stream

]

lpt->descriptor.control_field.service
1sochronous_stream_service;break;

case bulk_data

lpt->descriptor.control_field.service = bulk_data_service;break;

default : { printf(" invalid service number\n");
exit(1);
}
}
}

void 1r_address_seg(lpt, rpt)
register laddress_segment_type *1lpt;
register raddress_segment_type *rpt;
{
rpt->descriptor.control.descr_cntl.alen = lpt->descriptor.control_field.alen;

lr_service(lpt->descriptor.control_field.service, rpt);

90

lr_aformat(lpt->descriptor.control_field.aformat, rpt);
rpt->descriptor.rate_req = lpt->descriptor.rate_request;
rpt->descriptor.burst_req = lpt->descriptor.burst_request;
rpt->descriptor.maxdata = lpt->descriptor.maxdata;
rpt->descriptor.id[0] = lpt->descraptor.id;
rpt->address[0]

lpt->destination.host_identifier;

rpt->address[1] = lpt->destination.selector;

rpt->address(2] = 1pt->source.host_identifier;

rpt->address([3] lpt->source.selector;

void copydata(lp, rp, n)
register unsigned char *lp;
register unsigned char *rp;
int np;
{

int 1i;

for (i = 0; 1 < n; i++)

*xrp++ = *1p++;

}

void init_proba(n)
unsigned int n;

{
probno = n;

}

void storedata(p)

91

data_type p;

{
register ant i,s,d;
d = outdata.count;
s = p.nb_data;
for (1 = 0; i < s;1++)
outdata.datali + d] = p.datali];
outdata.count += s;
}

void printoutput ()
{
int i,k,d;
d = outdata.count;
printf("rec data %d\n",d);
for (i =k = 0; i < d; i++) {
printf(“%c",outdata.datalil);
k++;
if (k >= 100) {
k=0;
printf("\n");

void lr_control_segment(lpt, rpt)
register lcontrol_segment_type *1pt;
register rcontrol_segment_type *rpt;

{

int i;
rpt->rate = lpt->rate;
rpt->burst = 1lpt->burst;
rpt->rsvdl = lpt->rsvdi;
rpt->echo = lpt->echo;
rpt->time = lpt->time;
rpt->techo = lpt->techo;
1r_keytype(&(lpt->xkey), &(rpt->xkey));
1r_routetype(&(lpt->xroute), &(rpt->xroute));
rpt->rsvd2 = lpt->rsvd2;
rpt->alloc = lpt-~>alloc;
rpt->rseq = lpt->rseq;
rpt->nspan = lpt->nspan;
for (i = 0; i < lpt->nspan && 1 <= Max_nb_of_span; i++)
{
rpt->spans[1].lowest_seq = lpt->spans[i].lowest_seq;
rpt->spans[1].highest_seq = lpt->spans[i].highest_seq;
}

void lr_diag_segment(lpt, rpt)
register diag_info_type *lpt;
register rdiag_info_type *rpt;
{

int 1i;

switch (1lpt->code)

{
case 1invalid_context : rpt->code = INVAL_CONTEXT;break;

93

case context_refused : rpt->code = REF_CONTEXT;break;
case unknown_destination : rpt->code = UN_DEST;break;
case dead_host : rpt->code = DEAD_HOST;break;

case 1nvalid_route : rpt->code = INVAL_ROUTE;break;
case redirect : rpt->code = REDIRECT;break;

case cannot_route : rpt->code = NO_ROUTE;break;

case no_resource : rpt->code = NO_RESOURCE;break;
case protocol_error : rpt->code = ERR_PROTOCOL ;break;
case maxdata_error : rpt->code = ERR_MAXDATA; break;
case release_route : rpt->code = REL_ROUTE;break;
case release_acknowledge : rpt->code = REL_ACK;break;
case good : rpt->code = GOOD;break;

default : { printf(" invalid diagnostic type\n");

ex1t(1);
}
X
rpt->val = lpt->value;
copydata(rpt->message, lpt->message, Diag_message_max_length);
}

void lr_rrcntl_segment(lpt, rpt)
register rcntl_segment_type *1pt;

register rcontrol_segment_type *rpt;

{
rpt->rate = lpt->rate;
rpt->burst = lpt->burst;
1r_routetype(&(lpt->xroute), &(rpt->xroute));
}

void lr_first_packet(lf, rf)

94

register lfirst_packet *1f;
register FIRST *rf;

{
1r_header(&(1lf->header), &(rf->header));
lr_address_seg(&lf->address_segment, &rf->address_seg);
copydata(lf->data_segment, rf->data_segment,20);

}

void 1lr_data_packet(lpt, rpt)
register ldata_packet *1pt;
register DATA *rpt;
{
1r_header(&(lpt->header), &(rpt->header));

copydata((lpt->data_segment.data_seg), (rpt->data_segment),rpt->header.dlen);
}

void lr_control_packet(lpt ,rpt)
register lcontrol_packet *1pt;
register CNTL *rpt;
{
1r_header(&(lpt->header), &(rpt->header));

1r_control_segment (&(lpt->control_segment),&(rpt->control));

void lr_rcontrol_packet(lpt, rpt)
register lrcntl_packet *1lpt;
register RCNTL *rpt;
{
1r_header(&(1lpt->header), Z(rpt->header));

95

1r_rrcntl_segment (4(1pt->rcntl_segment), &(rpt->control));

void 1lr_diag_packet(lpt, rpt)

register ldiag_packet *1lpt;

register DIAG *rpt;

{
1r_header(&(lpt->header), &(rpt->header));
1r_diag._segment (&(1lpt->info), &(rpt->info));

void 1lr_path_packet(lpt, rpt)

register lpath_packet *1pt;

register PATH *rpt;

{
1r_header(&(lpt->header), &(rpt->header));
1r_address_seg(&(lpt->address), &(rpt->address));

void lr_route_packet(lpt, rpt)
register lroute_packet *lpt;
register ROUTE * rpt;

{
1r_header(&(lpt->header), &(rpt->header));
1lr_diag_segment (&(ipt->info), &(rpt->info));

/* e e a3 o o s ok sk ok g 3 ok oo sk ok ke 3k ok ok s sk ok ok sk ok ok o 3 ok o 3k ok ok ok 3Kk ok k¢ ok oK

96

REAL TO LOGICAL CONVERSION PRIMITIVES

3k ok e e e e sk S ok ke sk sk s sk ke ke e ke o ok ok ok ok e ok s e sk sk sk sk ok e ok ok Sl e sk s ok ok ok 3k ok

*/

void rl_keytype(lpt, rpt)
register lkey_type *1pt;
register xtp_key *rpt;

{
lpt->value.index = indexmask & rpt->word;
lpt->value.instance = (instancemask & rpt->word) >> INDEX_SIZE;
lpt->return_key = (returnmask & rpt->word) >> 31;

}

void rl_routetype(lpt, rpt)
register lroute_type *1lpt;

register xtp_route *rpt;

{
lpt->value.route_index = indexmask & rpt->word;
lpt->value.instance = (instancemask & rpt->word) >> INDEX_SIZE;
lpt->return_value = (returnmask & rpt->word) >> 31;

}

void rl_ptype(lpt, Ptype)
register lheader_type *lpt;
unsigned int Ptype;
{
switch(Ptype)
{
case p_data : lpt->cmd.ptype

Data_pak;break;
Cntl_pak;break;

case p_cntl : lpt->cmd.ptype

97

case p_first : lpt->cmd.ptype = First_pak;break;

case p_path : lpt->cmd.ptype = Path_pak;break;

case p_diag : lpt->cmd.ptype = Diag_pak;break;

case p_route : lpt->cmd.ptype = Route_pak;break;

case p_rcntl : lpt->cmd.ptype = Rentl_pak;break;
default : { printf(" unknown packet type\n");

exi1t(1);

void rl_header(lpt, rpt)

register lheader_type *1pt;

register xtp_header *rpt;

{
rl_routetype(&(lpt->route), &(rpt->route));
rl_keytype(&(lpt->key), &(rpt->key));
lpt->ttl = rpt->ttl;

lpt->cmd.btag rpt->cmd.bits.btag;

lpt->cmd.endc rpt->cmd.bits.end;
lpt->cmd.eom = rpt->cmd.bits.eom;
lpt->cmd.wclose = rpt->cmd.bits.wclose;

lpt->cmd.rciose = rpt->cmd.bits.rclose;

lpt->cmd.dreq rpt->cmd.bits.dreq;

lpt->cmd.sreq rpt->cmd.bits.sreq;

lpt->cmd.fastnak = rpt->cmd.bits.fastnak;

lpt->cmd.noflow rpt->cmd.bits.noflcow;

lpt->cmd.sort rpt->cmd.bits.sort;

lpt->cmd.res = rpt->cmd.bits.res;

lpt->cmd .multi rpt->cmd.bits.multi;

lpt->cmd.noerr rpt->cmd.bits.noerr;

lpt->cmd.nocheck = rpt->cmd.bits.nocheck;
lpt->cmd.offset = rpt->cmd.bits.offset;

rl_ptype(lpt, rpt->cmd.bits.pformat);

lpt->sync = rpt->sync;
lpt->seq = rpt->seq;

lpt->dseq = rpt->dseq;
lpt->sort = rpt->sort;
lpt->dlen = rpt->dlen;

void rl_address_seg(lpt, rpt)

register laddress_segment_type *1lpt;

register raddress_segment_type *rpt;

{
lpt->descriptor.control_field.alen =

rpt->descriptor.control.descr_cntl.alen;

rl_service(lpt, rpt—>descriptor.control.descr_cntl.service);
rl_aformat(lpt, rpt->descriptor.control.descr_cntl.aformat);
lpt->descriptor.rate_request = rpt->descriptor.rate_req;
lpt->descriptor.burst_request = rpt->descriptor.burst_req;
lpt->descriptor.maxdata = rpt->descriptor.maxdata;
lpt->descriptor.id = rpt->descriptor.id[0];
lpt->destination.host_identifier = rpt->address([0];

lpt->destination.selector rpt->address[1];

lpt->source.host_identifier rpt->address[2];

lpt->source.selector = rpt->address[3];

99

void rl_control_segment(lpt, rpt)
register lcontrol_segment_type *1lpt;
register rcontrol_segment_type *rpt;
{
int 1,
lpt->rate = rpt->rate;
lpt->burst = rpt->burst;
lpt->rsvdl = rpt->rsvdi;

lpt->echo = rpt->echo;

lpt->time = rpt->time;
lpt->techo = rpt->techo;
rl_keytype(&(1pt->xkey), &(rpt->xkey));
rl_routetype(&(lpt->xroute), &(rpt->xroute));
lpt->rsvd2 = rpt->rsvd2;
lpt->alloc = rpt->alloc;
lpt->rseq = rpt->rseq;
lpt->nspan = rpt->nspan;
for (i =0; i < rpt->nspan &% i <= Max_nb_of_span; i++)
{
lpt->spans[i].lowest_seq = rpt->spans[i].lowest_seq;

lpt->spans[i] .highest_seq = rpt->spans[i].highest_seq;
}

unsigned int checksum(buf,n) /* simplified version */
register unsigned char *buf;
int n;
{
unsigned short *pt;

unsigned short oddbyte,answer;

100

unsigned int sum,ans;
pt = (unsigned short *)buf;
sum = 0;
while (n > 1) {
SUmM += kpt++;
n -= 2;
}
if (n == 1) {
oddbyte = 0;
*((unsigned char *)&oddbyte) = *(unsigned char *)pt;
sum += oddbyte;
}
sum = (sum >> 16) + (sum & OxFFFF);
sum += (sum >> 16);
answer = “sum;
ans = answer;

return(ans);

void rl_diag_segment(lpt, rpt)
register diag_info_type *1pt;
register rdiag_info_type *rpt;
{

switch (rpt->code)

{
case INVAL_CONTEXT : lpt->code = invalid_context; break;

101

case REF_CONTEXT : 1pt->code = context_refused; break;

case UN_DEST : lpt->code = unknown_destination; break;
case DEAD_HOST : 1pt->code = dead_host; break;

case INVAL_ROUTE : 1pt->code = invalid_route;break;

case REDIRECT : lpt->code = 1invalid_route; break;

case NO_ROUTE : 1pt->code = cannot_route; break;

case NO_RESOURCE : lpt->code = no_resource; break;
case ERR_PROTOCOL : lpt->code = protocol_error; break;
case ERR_MAXDATA ! lpt->code = maxdata_error; break;

case REL_ROUTE : 1pt->code = release_route; break;

case REL_ACK : lpt->code release_acknowledge; break;
case GOOD : 1lpt->code = good; break;
default : { printf(" invalid code number\n");
ex1t(1);
}
}
lpt->value = rpt->val;

copydata(lpt->message, rpt->message, Diag_message_max_length);

void rl_rrcntl_segment(lpt, rpt)
register rcntl_segment_type *1pt;

register rcontrol_segment_type *rpt;

{
lpt->rate = rpt->rate;
lpt->burst = rpt->burst;
rl_routetype(&(lpt->xroute), &(rpt->xroute));
}

102

void rl_first_packet(lpt, rpt)
register 1lfirst_packet *1pt;

register FIRST *rpt;

{
rl_header(&(lpt->header), &(rpt~>header));
rl_address_seg(&(lpt->address_segment), &(rpt->address_seg));
copydata((rpt->data_segment), (lpt->data_segment),
lpt->header.dlen - addr_ma:_len);
}

void rl_data_packet(lpt, rpt)
register ldata_packet *1pt;
register DATA *rpt;
{
rl_header(&(lpt->header), &(rpt->header));

copydata((rpt->data_segment), lpt->data_segment.data_seg);

void rl_control_packet (1lpt, rpt)
register lcontrol_packet *lpt;

register CNTL *rpt;

rl_header{&(lpt->header), &(rpt->header));

rl_control_segment(&(1lpt->control_segment), &(rpt->control));

void rl_diag_packet(lpt, rpt)
register ldiag_packet *1pt;

103

register DIAG *rpt;

{
rl_header(&(lpt->header), &(rpt->header));
rl_diag_segment (&(1pt->info), &(rpt->info));

void rl_path_packet (lpt, rpt)
register lpath_packet *lpt;
register PATH *rpt;

rl_header(&(lpt->header), Z(rpt->header));
rl_address_seg(&(lpt->address), &(rpt->address));

void rl_rcntl_packet(lpt,rpt)
register lrcntl_packet *lpt;
register RCNTL *rpt;
{
rl_header(&lpt->header, &rpt->header);

rl_rrcntl_segment(&lpt->rcntl_segment, &rpt->control);

}
void rl_route_packet(1lpt, rpt)

register lroute_packet *1pt;

register ROUTE *rpt;

rl_header(&(1lpt->header), &(rpt->header));
rl_diag_segment (&(1pt->info), &(rpt->info));

104

void fetch_data(dat)
data_type *dat;
{
register int i = 0;
register unsigned char x*ch;

ch = dat->data;

while (((i + nextread) < mdata) && (i < datapt)) {

*ch = arraydatal[nextread + i];

i++;

ch++;

nextread += i;
dat->nb_data = i;
¥
void displaydata(datap)
data_type datap;
{
int i;
printf("amount ¥%d\n",datap.nb_data);
tor(i = 0; i < datap.nb_data;q++)
printf("Yc",datap.datalil]);
printf("\n");
}
void store_data(dat)
data_type dat;
{

int s,1;

s = nextwrite;

for (1 = 0; 1 < dat.nb_data;i++)
rbuff{1 + s] = dat.datal[i];

nextwrite += 1i;

void init_data() /* init data storage */
{
int j,k,i,s;
for (1 =0,5=0; i < mdata;i++,s++) {
1f (s >= 25)
s = 0;
arraydatali] = ’a’ + s;
}

outdata.count = 0;

double proba()

{ /* use time to generate a random seq number
struct timeval tt;
if (gettimeofday(&tt, (struct timezome *)0) != 0) {

printf("time error");

exit(1);
}
return((tt.tv_usec & OxF) * 0.01);
}
double local_time() /* get time in milliseconds */

106

*/

double s,v;
struct timeval tvi;
gettimeofday(&tvi, (struct timezone %) 0);
if ((tvi.tv_usec -= tvO.tv_usec) < 0) {
tvi.tv_sec--;
tvl.tv_usec += 1000000;
}
tvl.tv_sec ~-= tv0.tv_sec;
v = tvl.tv_sec * 1000 + tvl.tv_usec * 0.001;

return(v);

void send_data(datap,src,dst)
bit_spring datap;
int src;
int dst;
{
xtp_header *xpt;
int dlen,dsize,i,1flag,adlen,s;
unsigned char *addrpt,*ch;
unsigned char sbuff[BUFSIZE];
unsigned int *pt;
unsigned char *chO;
switch(datap.ptype) {
case First_pak :
1r_first_packet(&datap.pack.first,(FIRST #)sbuff); dsize
case Data_pak
1r_data_packet (&datap.pack.data, (DATA *)sbuff); dsize =

107

first_len;break;

data_len;break;

case Diag_pak :

1r_diag_packet(&datap.pack.diag, (DIAG *)sbuff);dsize = diag_len;break;

case Path_pak :

1r_path_packet (&datap.pack.path, (PATH *)sbuff);dsize = path_len; break;

case Rentl_pak :

1r_rcontrol_packet(&datap.pack.rcntl, (RCNTL *)sbuff); dsize = rcntl_len; break;

case Cntl_pak

1r_control_packet(&datap.pack.cntl, (CNTL *)sbuff) ;dsize = cntl_len;break;

case Route_pak :

1r_route_packet(&datap.pack.route, (ROUTE *)sbuff) ;dsize = route_len;break;

default : return;
}
xpt = (xtp_header *)sbuff;
xpt->hcheck = checksum(&sbuff[8],28);

option[0] = 131; /* code no. for loose source routing */
option[1] = 15; /* length =*/

option[2] = 4; /* pointer */

option[3] = 132; /* 132.206.3.3 intermediate router */
option[4] = 206;

option([5] = 3;

option[6] = 2;

option[7] = 128; /* 128.143.8.99 */
option[8] = 143;

option[9] = 8;

option[10] = 99;

option[11] = 133; /* 133.155.192.3 */

option[12] = 155;
option[13] = 192;
option{14]

i
w

i = option(1];

option[i - 4] = 132;

option[i - 3] = 205;

switch(dst) { /* assign predefined final destination */
case 1 : option[1 - 2] = 62; option[1 - 1] = 2;break;
case 2 : option[i - 2] = 45; option[1 - 1] = 24;

}
option[i] = 0;
/* set IP option */
if (setsockopt(sockfd,IPPRDTU_IP,IP_OPTIONS,opt10n,32) 1= 0)
{
printf("error set IP options");
exit(-1);
}
bzero((char *)&serv_addr, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = inet_addr("132.206.3.3"); /* set first hop */
i = sendto(sockfd,sbuff,dsize,0, (struct sockaddr *)&serv_addr,sizeof(serv_addr));
if (i <0) {
if (errno != EWOULDBLOCK) {
perror("send error socket");

exit(1);

/* receive packet from the IP socket */

void receive_data(datap,src,dst,flag)

bit_string *datap;

109

int *src,

int *dst;

int *flag;

{
bit_string datp;
ipheader *iph;
xtp_header *xtph;
int alen,i,minp,dsize,t,s;
unsigned int hlen;
unsigned int *dcheck,*pt;
unsigned char rbuff[300];
unsigned char *ppt;
*flag = 0;

alen = sizeof(saddr);

/* receive data from IP socket */

1 = recvfrom(sockfd,rbuff,300,0, (struct sockaddr *)&saddr,&alen) ;

if (1 < 0) {
if (errno !'= EWOULDBLOCK) {
perror('rec socket error");
exit(-1);
}
else

return;

}
if (i < 20)

{ printf("minimum ip header error\n");

return;

110

iph = (ipheader *)rbuff;
hlen = IP_HEADERLEN(aph);
if (i < hlen + 44) { /* ip header + xtp header + trailer */
printf("'packet size too small\n");
return;
}
xtph = (xtp_header *)&rbuff[hlen];
/* recompute the checksum and verify the validity of the packet */
if (xtph->hcheck != checksum(&rbuff[hlen + 8], 28))
{
printf("invalid checksum\n");
return;
}
switch(xtph->cmd.bits.pformat) {

case p_first : dsize = first_len;break;

case p_data : dsize = data_len;break;
case p_cntl : dsize = cntl_len; break;
case p_path : dsize = path_len; break;
case p_diag : dsize = diag_len; break;

case p_route : dsize = route_len;break;

case p_rcntl : dsize = rcntl_len;break;
if (i < hlen + dsize) {
printf ("packet size small\n");
return;
}
/* convert from real to logical representation */

switch(xtph->cmd.bits.pformat) {

111

case p_first :
rl_first_packet(&datap->pack.first, (FIRST *)&rbuff[hlen]);
datap->ptype = First_pak;break;
case p_data
rl_data_packet(&datap->pack.dita, (DATA *)&rbuff [hlen]);
datap->ptype = Data_pak;break;
rl_data_packet(&datap->pack.data, (DATA *)&rbuff [hlen]);
case p_cntl
rl_control_packet(&datap->pack.cntl, (CNTL *)&rbuff[hlen]);
datap->ptype = Cntl_pak;break;
case p_path :
rl_path_packet(&datap->pack.path, (PATH *)&rbuff [hlen]);
datap->ptype = Path_pak;break;
case p_diag :
rl_diag_packet(&datap->pack.diag, (DIAG *)&rbuff [hlen]);
datap->ptype = Diag_pak;break;
case p_route :
rl_route_packet(&datap->pack.route, (ROUTE *)&rbuff[hlen]);
datap->ptype = Route_pak;break;
case p_rcntl :
rl_rcntl_packet(&datap->pack.rcntl, (RCNTL *)&rbuff[hlen]);
datap->ptype = Rentl_pak;break;
default : printf("invalid packet"); return;

}

flag = 1; / set valid data flag =*/
}
void open_socket() /* open ip socket */
{

if ((sockfd = socket (AF_INET,SOCK_RAW,36)) < 0) {

112

perror("error open socket");

exit(-1);

/* set asynchronous I/0 */
if (fcntl(sockfd,F_SETFL,FNDELAY) < 0) {
perror("error set socket F_SETFL");
exit(-1);

/* initialize time */
void int_time()
{
if (gettimeofday(&tvO, (struct timezone *) 0) < 0) {
printf("time error");

exit(1);

void final_time()

{
int 1i;
if (gettimeofday(&tvi, (struct timezone *) 0) < 0) {
printf("time error");
exit(1);
}
}

void printtime(n)

unsigned int n;

113

printf(" time %d\n",n);

int checkdata() /* 1f there is data from the medium */

{

int nread,slen;

unsigned char buff[300];
nread = 0;

slen = sizeof(saddr);
nread = recvfrom(sockfd,buff,300,MSG_PEEK, (struct sockaddr *)&saddr, &slen) ;

return(nread) ;

114

