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ABSTRACT . - - '

Extended M-Matrices N - .

Michael Tsatsonmeros
< B

Let K be a proper cone in R" and let A be a real nxn
matrix which is K-regulari that is = B—-al for an a>® and a
K-nonnegative matrix B. Then if the” spectral ragius of B is

.less than a, ~A is called an M-Matrix.

The purpose of the present work is to generalize , "

ceﬁ%ain results on M-Matrices, when the structural cbﬂiition

of K-regularity is replaced by the weaker condition of
very .

t 2 @, This results to the introduction of a new class of
matrices, the "Extended M-Matrices®. R

‘ The absence of regularity is being ofercome by the
use of the concept af subtangentialitu. Consider the vector
differential equation % = Ax. Then the velocity vector Ax is

“tangent or points into a positive invariant set®, for each " _
% on the boundary of that set. This geometric condition is i
also used here for the proof of some further results, such ' &

as a characterization of an arbitrary matrix as being an .‘\//)

Extundgd M-Matrix.
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[ 1. INTRODUCTION /. ‘ R /

i ! T - "
a _ . et X C R" be o proper cone, and let 1 be a real nxn

o . N
\ matrix which is A-reguler; that is, A=D -l for some « > O and
some matrix B which is: A ponnegative (le. BX C &) . Then -A
r 9
is called an M-matrix with respect to the cone/ & provided that the

spectral radius of B fs less than o .

»

3
f : M-matrices is Berman and Plemmons [1], which also contains further

bibliographic information. :

M-matrices presented in [1], when the gondition of A-regularity is

mplaced.bg the weaker condition & ; that is,

el C & Vt20. Uilike sevéra} vell known results on

n—matrices‘, in the présent work', ondit}ons on “extended” M-matrices
-\ involving spéctral redii are not/relevant, as regularitg*mag not hold.

Also, in viev of the absence of regularity, it is not surprising that the

i

present work involves “operator theoretic’ pmperties (spectral -

Ta ey T et AT b oy s L L

conditions, types of mory onicity and seminegativity, etc.) as opposed
. 1o properties involving / internal structure® as are knovn in particular

for A =« R" (e.g. cy‘dmons involving diagonal dominance principal

minors, etc.)

ur general reference on

The pu'rpo‘se of the present work is to generalize certain results on

s

o

ve
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The next section contains definitions and preliminary resuus

Then in Section 3, the co%ept of an extended M-matrix is introduced

tn the main resuit & thot section, Theorem 3.5, we obtain a - J
characteﬁzauon of extended I‘r-n( trices which generahiﬁs L result in B
stern [4] that dealt with the nonsingular case. In the present work, as
in [4], the Yack of regularity is overcome by m/aking use of the concept
of gubtangentiality, which is § cértain geometric condition imposed by
exponential nonnegatlviig. Some further results, which generalize:

results in [1], are given in Section d4; these also make use of -

"subtangentiality. Examples and a conjecture are presented in Section 5.

2. DEFINITIONS AND PRELIHMINARY RESULTS

A nonempty set & C R" is said to be a gope if
ak C A Va2 0. Thecone A is polyhedral if it is the
Intersecuon of a finite number of closed halfspaces (or equwalently i7*
it is generated by a finte set of vectors). A cone X s nmp_g[ if it
‘s closed, convex, pointed (1.e. £ N {-A‘) = {0)) and solid (1. has 2
nonempty interior, denoted by int &°).-
Nov we introduce the terminology to be used, ghere A ls a real

matrix of order- n. In prackete are the notational equlwolents; ' : f\\)

oo 2 ,
.
'
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DEFINITIONS 2.1. Let + c R"be a 4mmer cone and et

wheré ‘ '3

(21.1)

(2.1.2)

(21.3)

m
- Sa= N RAT)

F et

e
00

~ m=0

| “«

¢ |
denote; range. Then A is | 1
X-ponnegative If AX C X . \[A € n( £)]
K-reqular if there exist .50 and B € n(4) such that

A=B-al. [Aer(r) (r)]
#-gxponentially_nonnegative if e‘AA’cA’ vtz 0.

" [A € e(4); (o))

(2.1.4)

(215) -

(2.1.6)

A’-nggnmﬂu_mnmms_on SA i
Ax € K, X¢€ SA- xe k. [Aem(k’) (m))/“

unmsmum if Re[SDectrum (A s 0. [A ¢ a;(a)]
x-geminegative on £, 1f there exists xe & N Sa

- such that ~Ax € {int 4} Sp o [A € stx); (§))

(21.7)

¥-yeakly seminegative on & 1f there exists
x€ AN §, suchthat -Ax /f: n s,/{0}.

(A estar @ .
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(218) (XN $,)zemoedif e K N §,: Ave K (0}
- ) C ' ~_ ' )

A e'z(k');(g)] | R

S G . n
(219) ((£*,N SAT);Z_QEQ_QQ if xe A£*N SAT: Alx g_A"*} = {0).

[A € z(4*), (2)*} where

2
* )—f - - ’ ‘g
R K= e {xy) 20, Vg £} 4
a ‘
. is the dual cone of A. Here A' denotes the transpose of -

A and {.,.) denotes the inner product on R" .

REMARKS 2.2

.~

\ C (221 If A is e nonsingular matnx,\irien SA-R" and (2.1.4),

(2.15), (2,1.6), (2.1.8), (2.1.9) become respectively

1

/ . .
‘ (2.1.4) -Ax € A = x¢€k,
S N
e
o ‘. 2 ‘
© (215 . RelSpectrum () <0,
" ' ,
(216) Ix € £ such that -Ax e int £,
g o g / ‘ -
U @18 ke & Axe A ={0), L
f i N . N N
e
; d
‘1 3
e g «
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219 e k" ATx e A*) =0}, as in [4].

‘ (2.2.2) If A= R2 ) the'nonriegative.orthant, then A er{4k) is
. equlvalentto A being gssentially nomegativef.e. & > 0

for i mj.

(2.2.3) It vas proven in [4] that (r) = (e) , vith equivalence for '
golghedral X |

@ ,
Now we reviev some required basic definttions and results on

generalized inverses. The indeR¥of a square matrix A f{s the smauz{\

. nonnegative integer k such that rank(AK*") = rank(a¥). Then

k
Sa= N RA™ . Amatrix ¥ € R™M which satisfies XAX=¥,
m=0> -

AX = KA , APy - AP Vp 2 index(A) , exists uniquely and is ‘called the:
Drazin inverse of A , denoted by AL A square matrix V isa

generalized left inverse of A 1f VAx=x VX € 5, - The Drazin

inverse of A {s edsily recognized to be a generalized left inverse of

A, since for x € §, and p 2 index(A) there exists y e R" such

that- x = APy , whence APAx = ADA"Q' = APy = x . We also note that if

Y X € 5, N M(A) (¥ denoting null space), then Ax = 0 _and at the

&
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same time there exists y € R" such that A%y = aDaK*ly 0, where:
-

r
R S
r -
<
-
' »

t

k = index(A) . Therefore

23 ? N M(A) = {0} (and similarly 57N #AT)= (0} )

i

J . . . . - L .
DEFINITION 2.4. Let A be an (nxn) matrix and let .& € R"

be a proper cone. Then & genéralized left inverse of A , say v, is

seid to be A Sy AN SHC K

. The folloving result parallels Theorem 5.4.24 in (1], where

A= R'l. We include the proof for completeness.

THEOREM 2.5. Foran (nxn) motrix A and:oroper cone
rcr, v nts ar !

'9)’ ‘A hos o generalized left inverse ¥ suchthat ¥ fs
K-nonnegative on S, -

(i) Enr_emmhzmmm.tmm A,sy L,-L is

K-qamegativeon S, . lwsrticiler 4%k 0 Sy € £

(i) A is A-fiegatively monotoneon S

Qs



: m;s.bﬁ: Let L be a geperalized left inverse of A, whfle (i) -

holds. Let x € £ N '§ £ \Then there exists. z € R" such that

“x= A2 |k = index(a) ,for yhicﬁ

Kz« gkl ek

Then -Lx =-LAK*1z = -aKz ¢ &, and therefore (1) holds.
. | o Ry
. ' . . # -
) B
(ii) = ;jij): Assume' that (ii) holds and % ¢ SA R A

.S

SInce ~A% € £ N sA , w6 hdve X = LAX = -L(-A%) € k‘ Hence (1it) .

holds

u, .

.(jm m Let -Ax e K, Xe SA implu that e,A‘ and let
vekn SA It is enough to shov that -A(-Abv) e K and

-ADw € ,}3- A But this 1s true slnce aD and, A 'commute.

o
- . . [ 4 %
. -

-

COROLLARY 2.6. myuﬁumadm A ii.nnnﬂngu]m:..mn

A Jﬁk-negﬂ_e.y_mmolﬂ.nzﬁe -Axek:*»e k) - j:gngglgn <A



N :g ! .
A ; N : , i
{\ . /l~ ' ¢ ) n’
. ~ 4 I Voo o ‘
\/ ' %C B - .
'Le, K-verse positive (e -AT(kZOB.CmbA). . . %
»~ ) o b Co. * ' :
\ LN ’ L S
» PROOF: This follovs immediately from Thearem 2.5 and thedpct

thet if A- is nonsingular, then aD. '] end § )- RN

» s R A 3
- T BN
Following now is a summary of required results on positive

k4

A\

invariar;ce.

DEFINITION 2.7. For an. (nxn) real matrix A, cunsider the

Ty . . . a "
Hnear autnnomous dmerenual OQUBUOH .- ) ~

Q1D xO-AxD) .
'

Aset TC R 15 said to be p_g_s_lmg_\g_m!m_qm vith respect to (271)
if %(0) € T implies that x(t) = e'Px(0) ¢ r Vi3 0 ; that is, i’

. recr viao. . :
’ J .

‘.

H.TCrR" 1s closea qfd convex. we define the set of nonzeres
gymm_nmmmmam I’ at a point x € oF , (the boundaru)

-, as . ) . . , i . “"’ . X ‘ Py

by




- . J

| | : L 2 ‘ |
‘o 7 Npladve RY: {v,yx)s0 VYyeT,|vil=1} o
where ||.1] denotes the euelidean norm.
. - DEFNITION ZB or c]bsed convex set T C R", a vector .

:‘z_eR" is subtangential to /T at x € o {f '(z,v)so‘ Yy € Nplx). |

(

4 Y '

o L : " . 'The follovfhg theorem characterizes positive invariance of &

/, closed convex set with respect to (2.7.1) as 'gquivélent to the “velocity"

" . veciér,’b, Ax , being “tangent to or nointihg into the set" for each point
S s - ¥ ‘ ‘ ' i
'V T Ron the.bh'u?ndqry of the set. L ,
l | X f / . " N ’ ' /
~  THEOREM 2.9. A closed convex 88t T C R" is positively

" inverient 1f and only if Ax is sublengentiol to T - for every % € F .

We-also shall require the folloving lemma..-
| oo . - ' ’
> / . !

LEMMA 2.10. Let A < R" e o proper cone Then .

(2101) (v, %) “0 Vx g.afﬁ, Vv € Ny(x)

/

L
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(2102)  if Aee(k) and x €R" fssuch that .Ax € X
then the shifted set {x + X'} is positively nvariant, k
- ' 4
The proofs of the “above _méults can be found in [4). Some fq;thar
deﬁmtions?are req'ulrea.\' '

-

w
.

DEFINITION 2.11. A proper cone & < R"is sirictly positively

invariant (vith respect to (27.1) if. etAL4/(0}] C int ¥ Vt>0 .
. ’ . \ :

. DEFINITION 2.12. Let . & C R" be a proper cone and let A be

areal (nxn) motrix. Then A 1s A-irreducible If A has no’

eigenvector in 047 - = ~

p)

e | .
"~ ° (¥ 4
[SN '

THEOREM 2.13 (Elsner [2], Schneider and Vidyasagar [3]). Let
¥ CR" be aorocer cone, |

. sl

(213.1) . It & Is positively fnvariant. then

7

A= max{Re A: X € Spectrum{A)} R

is an efgenvalye of A
‘ A

and hag an assoctated eigenvector in 4 .
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e g et ot g A, 3 g 0 g By Bernenn, i e

N
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(2132) 4 s strictly positively invarfant If and only if A
is positively invariont ond A fs A-irreducible, |

(2133) - I 4 fs strictly posttively invarfant, then X, 52
sim lnle eigenyolue of A and an associated eigenvector lies in the
interfor of & . Furthermore, A has only one efgenvector (up to
scalar multiples) in A.. .

\:Ie conclude this section with a needed lemma. The proof {which

' can be found in [4]) follows readily from the fact that

Y ol t™ K. ‘ !

s c 8 ".1
«

o LEMMA 243 Let & C R be2 orooer cone Thén

Aee(k)c—ATee(/(*).

9]

3. EXTENDED M-MATRICES ‘ .

In the following theorem we will use the fact that if

Re[Spectrum(A)] < 0 , then the origin is & stable equilibrium of the

~

i



differential equation (2.7.1); that 1s, e

' Tnen (2.13.1) implies that there exists 0 » x € A such that

\ [

“‘x—.o as t— oo for every

x € R,

THEOREM 3.1. Let & c.R" be 2 proper cgne and let A € oK) .
N “ * . N

4

(2) = (2) o= (M) o= (2)* .

~1

PROOF:

I

PR y
¢ . -

{2) =°(a) Let £2) hold and suppose (a) does not tiold. Then

* there exists X ¢ Spectrum(A) such thiat Rel >0 , vhence %, >0 ..

Ax = hax.  Nownote that A™x=2x ¥m=0,,2.... Hence

Ax € 5, ond therefore Ax € A N 5, , %= 0, viclating (2).

~

(= (m): H AN F,={0) then (m) holds trivially. Hence

ve assume A N Sy {0} and that (a) holds. Suppose that (m) .

does ot hold. Then there exists x ¢ R" such that -ax € X',
x€ S ond x ¢ A. Let X=-x. Then by Lemma 210, (% + &} fs
-7 . \ , 12
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\

positively fnvariant, vhile 0 ¢ (X + A} due to the pointness of 4.

it follows that emi —+ 0 as t — o0 . Therefore there exists-an

sigenvalue of A such that Re) 2 O . This implies that: X, 2 O

Nov, viewing & N S, as.a proper cone 1n the A-invartant subspace

S, . ond letting A be the restriction of A to 5, , (2131). plies
:

that there exists an eigenvector 0 » X € & N S, “such that

! :
AR=2 0. 1f 2 =0, then X € 5, N #(A)={0} (by (23)). Hence
. v

"3, > 0, contradicting (a) . e

\

(ml= (2 If AN §,=(0), then (2) holds trivially
Therefore assume that A 1 5, = {0} while (m) holds. Suppose.

that (z)\ does not hold. Then there exists O w x € & N 5, such -

that Ax € & . Nov conslder X=-Xx. Then % €S, -AX € 4, and . \

therefore X € A . Inother vords x € & N (<) = {0}, a,

contradiction to % » 0 .
L 3 ~

.~ In viev of Lemma 213.and the fact.that A ¢ 3 == AT €2, the

1}
proof is completed. d

o

13



DEFINITION 3.2.;let 4 C R" be a proper cone. If A € e{&")

satisfies any.of the equivalent conditions in Theorem 3.'1, then -A fis-

called an extended M-matrix with respect to k (it A also
satisfies the stronger: condltion A €r(A), then -A is slmplu an

n:mmmmmm_mk-)
| X {

REMARKS 3.3.-

(3.31) Theorem 31 is trivially valid in case & N S, ={0}. It

vill be seen _1n Theorem 3.5 below that when this intersection is
nonzero, tnen' the st of equlvblences fn Theorsm 3.1 can be extended R /

to include weak seminegativity. /

, (3.3.2) Theorem 31 is & known result on M-matrices for J
A e r(4) ; see eg. [1). Hence, in view of Remark 2.2.3, the theor/m is

of most interest for (non-polyhedral) proper cones A such that

" Ace(k) but A ¢ r(4). Our examples vill fllustrate such cases.

*
- ' d=
h o
.- .

THEOREN 3.4. Let + CR" pe a proper cone and let A € e(K).

p
( . . q
/
-, .

/

4
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(M= &= @,

PROOF:

()= (s} Let (m) hold. Thenby Theorem 25, -A° is -
A-nonnegative on‘\lg‘A. let Owde £ N §, . Then

N v
% Tl

\

/ R "\
’ x=-Alde XN Spw -AxeADAd=g .-

-,

Therefore there exists an x € 4 N 8, such that

-ax ¢ (£ N $,)/10) ; that is (s) hoids.* -

jE)‘_-»_(;):: Let x € & N Sa be such that -AX ¢ {@/{0}.
If (2)* is not true, then there exists O w u € &™* N SA, such that

ATue # . But then {Ax,u) ¢ 0 since -Ax € A . Also, u ¢ ')V(AT)

]

»

‘,\.

-

15
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¥ by (2.3). Furthermors,: {Ax,u} = (x, ATY) 2 0 since x e A and

g T : - * ' B
A'u € A, vhich is a contradiction. RN
. , ( ) ' (\-@%
o /

Putting toggther'Theoréms 31 and 34, we state the extension of

Theorem 31 which results vhen (3.4) holds.

» -

THEOREM 35. Let & C R be o oroper cone, and let A e€ea(4).

- ~

Assurne that (3.4)) holds, Then

(2) o (2) ot (M) omt (5) o=t ()"
REMARK 3.6. As-ve can see from Theorem 35, if |
, , .
NS A" {0} , then -A can be characterized as an extended
M—matﬁx by - A"-exponentially nonnegativity in conjunction with weak

seminegativity. Note that if {int &} N SA » @, then by choosing

GefintklN 5, In th?ﬁ?'aof of Theorem 3.4, (8) can be réplaced ' ‘

F

by (s) (“true” semi'negativitg on 5,)in characierizlng an extended,

‘M-matrix.

REMARK 3.7. In viev of Remark (2.2.1), Theorem 35 ylelds

/Tﬂe?em 1.7 of [4] as 3 speclal‘ case. ‘ 1'
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4. FURTHER RESULTS EMPLOVING SUBTANGENTIALITY
\

-

-

In the theorem to follow ve give & necessary and sufficient

condition which characterizes an arbitrary real matrix as 'bai'ng on

‘extended M-matrix with respect to a proper cone A" , wittout assuming

positive invariance.. First we require the following.

LEMMA 4.1. -A s an extended M-matrix with respect to the
oroper cone A C R 4f and only If (-A + e!) 1 @ nonsingular

Onlyif: Let A € a(4) and A € a; that is, Re[Spectrum(A)] ¢ O.
Then (A-el) € e(K) Ve>0, while Re[Spectrum(A-€l)] ¢ 0

Ve ,o‘. Therefore (-A + ¢l) is an extended nonsingular M-matrix

VeyoO.

If: Letting € approch zero we have that Re[Spectrum({A)] s 0,
and since (A - €l) ¢ o) lmpliés (XX V2P we conclude that -A
18 an. extended rM-matrix. '

17



et

The following result generalizes part of Theorem 6)\ in 1,
vhere it was assumed that 2" = R_‘;'_;, and regularily was-explicitly

employed. We circumvent the lack of regularity by using the concept

of subtangentiality.

THEOREM 4.2, Lot A ¢R™ andlet & c R" e 3 proper
cone. Then -A 1is an extended M-matrix with recpect to &
only if (-4 +el) is A-inverse positive Ve> O .-

| N\

PROOE:

- Only if: Let -A be an extended M-matrix with respect to &’ .
Then according to Lemma 4.1, (-A R el) 1s a nonsingular extended
M-matrix Ve> 0, and consbquentlg A-el is A‘-nebativelg monotone.

Then by Corollary 2.6 (-A + €l) 18 A-inverse positive Ve>O0.

It: Let B =-A and assume that (B + €1) 1s A'-inverse positive’
fo} every €> 0. First we will prove that -B € e(4) . Suppose not.

Then by Theorem 2.9 there exists g € 84" such that {v, -Bg)> 0 for a

- normal v € NK(g) . For sufficiently small €> 0, (I + ¢B) isg

nonsingular and the second term dominates the \sgies expansion

1
e

-

F:

. 18
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(1568 = 1-0B+(cB)-(eBY+....
g 4
.- butthen w8+ 1/ erT(r 4 eB) g

s[rTg -rT e Bg + 282 ..1>0,since v g -0 (by Lemma 210)
and so evTBg »0 . Therefore {r, (B-+'1/e)" g) >0, and so
(B + l/e) g ¢ K ; s‘contradiction Hence A =-B € e(4) . Nov it

v follovs that (A - eﬁ'€ e(4) , and since (A - €l) is A-negatively

montone Ve >0 (by Lemma 4.1) , we have that <A {s an extended

T e RS vy

M-matrix with respect to A . 2

Next.we-will employ subtangentiality in order to obtain
generalizations of certain results of Varga [5] (see also [1]) which vere
obtained for &' = Rf:_ (in which case (r) e=e (e)) by using p}operties

. of completely monotonic functions.

7~
.. THEDREM 4.3. Lot A b.u_mps.mgum.ml (nxn)_mﬂnunn -«
: let & c R" pe a proper cone. Then o
L ‘ .
;‘ ) .. . oj g ",
(431) Alethr cx Vir0 e & fspositivey 0 °
g \ . 19
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432)  AtetAancksion C Mtk VE>0 == £ is strlclly
, .

PROOF OF (43.1): . ' o >

.Y
() For geR" and t 20 wve define

2° .
x(t;g) = A"[e’é-l]g .
We must show thaia x(t;g) € A Vge -k_’, Vt 2 0. Note that
x(t;g) = etAg and x(0,9) =0 . Therefore x(t;g) = ]; eSAg ds . Now
' . -

we write

K=freR': (x50, veN .
where N is the set of outward normals’ to hyperplanes which support

" k. since_et®x c & Wt 2.0, it follovs that {v,e'%g) 5 0
Vge £, Vt20, VveN. Hoice {v,[' eAgus)co vge &,

Vt'z 0, VveN, &nd conse}quenug xt;g) e £ Vt20, Vge R

{=) Suppose thet & is not positively-invariant. Then by Theorem
29 there exists g € ok “such that Ag is pot subtangential to" 4" at ’

d

)‘Lg- “ - E " '




.
) ‘ o
Co
' »

g . This maans that there exists V an outer normal- 1.0 a ngperplane

vhich supports A at g , such that {v. Ag)>0 . Then ’

0 &
- (U’- {v, etAg) v, z (ld) g) (V > (ta) 9)
. j -£0 _|l o J,

¢

since {v,g)=0 by (é.lo.l). Therefore (I/t)vg'(t’)y-' ‘

. | - ,
{v, Ag) + {v, (etg < tAg - g)/t) , and (v, (et‘}- tAg - g)/t) =

{v, (e“‘g - tAg)/t) — 0 as t 50, Hence v (t) >0 Vt ¢ (0,6)

for some 6>0. But (v, x(t g) = ]t vg(s)is > 0 Vi e (0, 8,

“whence’ A Je'Ag ¢ X Vi € (0,8 Then the left-hand-side of (431)

,does not hold, which is a contradiction.

Y L]

PROOF OF (4.3.2):

@

el

: From (4.33) ve know that ‘st xc ¥ V20, Suppose A
is not f—irreducime Then there exist % € R .and 0 » g€ 34 such

that Age2g. But then x(t; g) = ll SAgds- ]t s"gds Therefore
either x(t; g) = (l/h)eng incase (A »0) or x(t g) tg in case  *

(X'= 0, and in both cases x(t, gieot Vt20. But lhen the

left-hand-side of (4.3.2) does not pold.

e

2
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S o) L6t 0w ge A . Thenforevery v eN we have

4 (v x(t;)) = ]t {v, e”‘g)ds <0, since e”g € int £ Vs> 0, implies
"y, e“g)ﬁ 0 Vs >0, Vv eN. Therfore x(t;g) € int & V>0 ;

<

T that 1, Ae'A- KK/OD C im & V>0,

-

REMARK 44. It A is 'slngulag then the fact that ADAg =0

Vg € 5, enables us to vork with & N Sa ‘as a proper céne in
) > A ; :
8§, - .Then, referring to the relative interior inty (A" N 5,),

1

Theorem 4.3 can immediately be extended in an obvious way:
(@3 Ahaen spc kv o e dthan spC i
g . . Yosee ‘ "y B E Vtz 0.

F @3 AP n syzon cmgensy o -
i ’ . ' .

- — oMt N 5, C kand A fs (KN S,imeducible. ;

ry T

E ]

Finally, we present a result on A-irreducible singular extended

o

M-matrices. - ‘ . ‘ .
» \ . |
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‘THEOREM 4.5. Let A.-'n's_n_amsum A-jrreducible extended |
Mﬁﬂm.znn_mm_uu_mum # CR". Then -A is olmost

-mnnmmmn_cesnm_m#mm

AR € K m AX=0:

)

PROOF: - The hypotheses imply that - & Is strictly positively

‘invariant ‘with respect to (2.7.1). ‘;rhen A* . is eesily seen to. be

strictly positively 1n§anant with respect to the dual differential

equation x(t) « ATx(t) . Since Al is also a singular extended
H—mctrix} we conclude that 2 AT 0 and that thers éxists"-
0 » g € int #* such that ATg 0. Nov let x e R" be such that

AX € K. If Ax m 0 then yTax » 0 (slnce y € int A" 8

contradiction.

5. EXAMPLES u :

&

EXAMPLE 5.1. Lot A ={x € R%: %2+ x2 s 2, uy2 0} ang

| .o 10 - | e
‘A=|-1 00 B L
» 000 e , e

<
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" It i3 readily noted that A € e(4) , either by checking subtangentiality

or by working directly with the powver series e' . Since Ap=0,-A

is a singuler extended Mrmatrix. Furthermore, A ¢ r{£) ; that is, -A

s not en M-matrix. Note aiso that in this example & N S, = {0} .

(=4

,  ERAMPLES2 fovlet K =ieRE:xGnfselnga,

Xq ¢ 0} and . _
' 0100 ,,
4+ 000
A=10 00 O
\o 004

Themagain -A is a singulaf"‘extended M-matrix vhich is not an

. M-matrix, but now £ N Spm (0}

- REMARK 5.3\. it see;‘ns that examples with all the features of

¢ .,
‘Example 5.2 do not exist in three dimensions. (Note that the

three-dimensional Examplé 5.1 did not sa{isfg (341)) It is conjevcturad
that If A s 2 singular extended M-matrix with respect to & proger

:me & C R" guch that A ¢ r(k‘) and ‘such that (3.4.1) holds, then.
/ .
n>3 .

24



T s et P Sy @
. ”~ .

TR

MNO_

REFERENCES

{11 A. Berman and R. Plemmons, umnggmmmmlm
Mathematical Sciences Academic Press, 1979. =

[2] L Elanér, "Monotonie und randspektrum bei vollstetigen operatoren®,
Arch. Rat. Mech.’Anal. 36: 356-365 (1970).

E "[3] H. Schnetder and M. Yidyasagar, "Cross-positive motrlcés', SIAM

. J. Numer. Anal. 7: 508-519 (1970).

[4) R Stern, "Generaitzed M-matFices”, Linsar Alg. Appl. di: 201208,
(gsl). . . ‘ :

El

[5] "Varga, RS., "Nonnegatively posed problems and completely
* monotonic functions®, Linear Alg. Appl. I: 320-347, (1968).

25



