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ABSTRACT

Fast and Efficient Carrier Synchronization for Burst-Mode Comniunications

Rocco Di Girolamo

Every coherent communication system requires some form of carrier phase
and frequency synchronization. These synchronizers play an even greater role when
transmission occurs in bursts, since the receivers must regularly reacquire lock. Since
most of the synchronizers proposed in the literature possess some form of feedback,
they tend to have high acquisition times, and are therefore inappropriate for burst-
mode communications. Consequently, open-loop estimators are highly sought after.

At the foundation of most synchronizers is the Maximum Likelihood (ML)
estimate, which leads to digital topologies. As it turns out, the estimate of the
phase and the frequency are linked. Therefore, it is difficult to proceed with the
independent optimization of either synchronizer. To circumvent this problem, non-
linear open-loop estimators are used. Synchronizers developed from this technique
are classified as a sub-category of ML-type synchronizers. The Viterbi and Viterbi
phase synchronizer is an example of a nonlinear estimator. However, it has the
drawback of being greatly influenced by frequency errors (difference in frequency
between the transmitter and receiver oscillators). By contrast, the nonlinear phase
estimator with modulation and frequency error removal (a new synchronizer) oper-
ates independently of this parameter. Furthermore, if frequency error is zero and all
other factors are the same, the two phase estimators offer comparable performance

in terms of variance, phase ambiguity resolution, and cycle skipping.

i



For frequency estimation. the ML estimate reduces to aleast squates frequency
estimator, under very restrictive conditions. Tn fact, these conditions are violated for
most typical transmission channels, and the estimate becomes biased. Fortunately,
nonlinear estimation can be applied to frequency This new syuchronizer produces
estimates which are unbiased, but whose variance does not approach the Crame

Rao lower bound.
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Chapter 1

Introduction

1.1 Background

Communication systems are characterized by the transmission of information from
one user to another, over a link. Since most links have a passband channel, the
transmitters are required to modulate the information bearing baseband signal onto
a sinusoidal carrier. This would convert the original basehand signal to a passhand
signal, which could then be transmitted over the link. At the receiver, the effects
of the carrier signal must be removed by carrier demodulation, which reconverts
the signal back to baseband. These two processes are achieved by means of vscilla-
tors operating at a certain frequency and initial phase. Ideally, the two oscillators
are completely synchronized (in terms of phase and frequency) and therefore their
presence does not degrade the end-to-end performance. In practice, however, Lwo
oscillators in different locations cannot be identical. Consequently, the received sig-
nal is a function of the transmitted information, the noise introduced by the link,
and some unknown parameters which arise owing to the discrepancies between the
oscillators. This latter term introduces a performance degradation which we wish to
reduce by synchronization. Essentially, synchronization involves the estimation of

the unknown and unwanted parameters from the received signal. These estimated



parameters are then used by the receiver to improve performance.

The purpose of this thesis is to propose and analyze some of these carrier
synchronization strategies. The transmission system considered involves communi-
cation between [J users, via a central receiving station. In addition, transmission
is over an additive white Gaussian noise (AWGN) channel, using a time-division
multiple access (TDMA) scheme. In such an accessing scheme, each user trans-
mits a burst of data in his assigned slot of the TDMA frame. Consider three user
stations ¢, j, and &, all transmitting information in consecutive slots, as shown in
Figure 1.1. Since these stations are dispersed geographically, it is improbable that
their oscillators have the same carrier frequency (f,, # Jo3 # fox), or initial phase
(0os # 0o, # 6,4x). Consequently, with respect to the receiving station oscillator,
cach transmitted burst is corrupted by a phase and frequency error (Af and A6 re-
spectively), resulting in a degradation in performance for every received burst. This
implies that the quantities Af and Af are different from one transmitted burst to
another, as shown in Figure 1.2

It will further be assumed that these quantities are slowly varying, possibly
as a result of Doppler shifts. This occurs when the transmitter or the recejver are
moving with respect to each other, as for example in satellite channels. Estimation
of unwanted parameters is thus required multiple times per burst. Generally, before
proper detection can proceed, symbol timing must also be estimated at the recejver.
However, since this thesis focuses solely on carrier synchronization, it will be assumed
that symbol timing is known exactly. This assumption is valid if any timing offset
is removed prior to carrier frequency and phase synchronization. For instance, this
can be accomplished by using the Gardner algorithm [1].

In the past, most synchronization techniques had as input the received analog
signals. These original techniques could be categorized under two broad headings:
waveform regenerators and analog trackers. The waveform regenerators passed the

received random waveform through a nonlinear operation, producing a deterministic
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Figure 1.1: TDMA System Block Diagram

signal at the carrier frequency, or one of its harmonics. A bandpass filter or phase
locked loop (PLL) could then be used to track this deterministic signal. The most,
common example of such a synchronizer is the X-M (times M) analog multiplicr,
applicable to M-ary phase shift keying (MPSK). Most other synchronizers went,
under the heading of analog trackers. These were devices which inherently involved
PLL’s, and attempted to track the carrier phase by forcing an error signal to zero.
The most common of these synchronizers include the remodulator and the Costas
loop. A thorough analysis of the three techniques just mentioned can be found in
numerous texts, notably [2, 3]. It soon became apparent that these original ad hoe
techniques could not be applied to all signalling formats. Furthermore, no general
method of finding synchronizers for new formats had been found. To this end,

Franks applied the Maximum Likelihood (ML) estimation procedure to the problem
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Figure 1.2: Phase and Frequency Errors from Burst to Burst

of carrier phase and found that the original ad hoc techniques were approximations
of the ML estimate [4] . Thereafter, Booth, Del Re, and Fantacci found analog
synchronizers of carrier phase which did not arise from simplification of the ML
estimate [5, 6].

The one unifying drawback of all the techniques mentioned thus far is that
they are all closed-loop feedback structures, and thus they all require some sort of
voltage controlled oscillator (VCO). Consequently, all these techniques suffer from a
phenomenon dubbed hang-up, resulting in possible high acquisition times (the time
to acquire the estimate)[7]. To counter the effects of hang-up, open loop analog
topologies were developed, such as the feedforward tracking filter (FTF) [8, 9].

With the advances in digital signal processing, the current trend is towards

digital synchronizers. There are a host of factors which have led to the gain in



significance of digital versus analog st ategies, A few are listed helow.

e Originally, proressing speed was slow and digital synchrouization techniques
could not keep up with the incoming signal. ‘This is no longer a problem in
today’s systems. Iu fact, digital signal processing allows implementation o
strategies which would be too complicated to be implemented in an analog,

form.

o With the importance of digital communications, both in satellite and in modem
channels, one can envisage veceivers with greatly reduced complexity, owing
to the sharing of operations between the synchronization, equalization, and

decoding processes.

o Whereas storage and memory pose a very serious problem in analog stratepies,

they are easily implemented digitally.

e Certain synchronizers require the received signal path to be delayed. These

dalays are much easier to implement for digital synchronizers.

¢ As will be shown in Chapter 2, there may be an advantage in using digital
sampled techniques versus analog time continuous ones. In fact, it will be

shown that the ML estimate results inherently in sampled topologies.

It is hoped that the above factors convincingly show the reason for analyzing

digital synchronization techniques in this thesis.

1.2 Scope of Thesis

This chapter shows the importance of synchronization in communication systems,
as well as the evolution of synchronization strategies, leading to the ones analyzed
in Chapters 3 and 4. Chapter 2 focuses on the Maximum Likelihood estimate of

phase and frequency error (A0 and Af), and finds the Cramer-Rao lower bound



(CRLB) for the variance of these estimates. This chapter also includes a classifi-
cation of current digital estimators into categories. It further highlights which of
these structures are best suited for the TDMA transmission scheme being consid-
ered. Morcover, a new class of estimator is identified (nonlinear estimator) which
results in synchronizers whose performance is quite good.

The thesis presents an analysis of four open-loop digital estimators - two for
phase error and two for frequency error. Chapter three deals specifically with phase
estimation. One of the estimators stndied is the Viterbi & Viterbi phase estima-
tor, which we refer 1o as the nonlinear phase estimator with modulation removal
(NPE/M). The justification for this new name will be given in Chapter 2. The
drawbacks of this technique are presented, and a modified version is proposed. These
two estimators are subsequently compared on the basis of three criteria, including
variance, phase ambiguity resolution, and cycle skipping. Chapter four presents a
similar analysis for frequency error estimation. A novel estimator, referred to as
a nonlinear frequency estimator (NFE), is compared to the least-squares frequency
estimator. Conclusions and suggestions for further research are given in Chapter 5.

Numerical results for QPSK are given as an illustrative example.

1.3 Contributions of Thesis

The major objective of this work is to present both a phase error and frequency error
estimator for rapid and efficient synchronization in an AWGN environment, and for
burst-mode MPSK modulation. Existing techniques suitable for such a transmission
system are compared to two novel techniques. This results in the proposal and study
of a new digital phase estimator and a new digital frequency estimator. In addition

to the above research, other contributions include

e asystematic review of the Maximum Likelihood (ML) estimation procedure.lp

until recently, the information concerning digital synchronization techniques



was not unified and was scattered throughout the literature. Thaunks to the
work of Gardner, Moenccleay, Jesupret, and Ascheid [10, 11], a fonndation

upon which most of the techniques are based, was found - namely the ML

estimate.

a method of variance analysis applicable to the Viterbi & Viterhi phase esti
mator (NPE/M), as well as to the new phase and fregueney estimators. This
method seems to be more generally applicable than the approximate analysis

presented in the paper by Viterbi and Viterhi [12].

an analysis of phase ambiguity resolution by wunique word preambles. This

analysis does not seem to be in any of the literature.

a proof showing that the least-squares frequency estimator is in fact the ML

estimate of frequency error.



Chapter 2

General Estimator Properties

In this chapter we will determine the Maximum Likelihood estimate for the carrier
phase error (Af) and the carrier frequency error (Af), as well as the Cramer-Rao
lower hound on the variance of these estimates. It will be shown that many of the
common digital estimators have the ML estimate at their origin. To reduce the
complexity of the analysis, the channel will be assumed to have infinite bandwidth,
thus allowing the transmitters to use rectangular pulse shaping. More importantly,
this implies that there is no intersymbol or interburst interference. Further, we will
assume that there is no fading. As a result, only a single burst need be considered,

say from the 2'th user. The MPSK signal transmitted for the entire burst is of the

form
s+R~1
S(LASAG {g)) = V2Es S sin(2m(fo+ Af) 4 p2n/M + 0, + AB)p(t — kTs)  (2.1)
k=s

where accurate timing is assumed, and so the burst extends from (s —1/2)Ts <1 <

(s + R - 1/2)Ts, and where

Es = energy per symbol

R = number of symbols per burst (R >> 1)

fo = mnominal value of carrier frequency; known at receiver
Af = unknown frequency error
6, = nominal value of carrier phase; known at receiver



Af = unknown phase error
gr = transmitted symbol for the A’th interval
= 0,1,2,.., M — 1 (M=4# of signalling elements)
{9} = sequence of transmitted symbols

1/Ts = symbol rate

p(t — kTs) = pulse shaping function of unit energy
[ 1VTs  =Tsf2<t= kTs < To)2
0 elsewhere

For proper colierent detection, the values of A8 and Af must be estimated
by a synchronization device (or synchronizer) to produce estimates A0 and A, re-
spectively. Since the parameters to be estimated have been assnmed to be slowly
varying within a burst, they may be regarded as constant for small windows of dura-
tion Tobs, encompassing /X symbols from say, k = [to k= {4+ K — 1. Hence, a single
estimate for Af and A is required for each window, providing a form of tracking
(See Figure 2.1). Since the estimates from window to window are independent, we
need only focus on one particular observation window (say the one beginning with
symbol I). Note that it is assumed that Af and A0 are unknown, but nonrandom.
Random parameter estimation uses a Maximum A Posteriori (MAP) procedure to
determine estimates. It is shown in [13] that if the parameters to be estimated are

uniformly distributed, then the MAP and ML estimates are identical.

2.1 Maximum Likelihood Estimation

There are generally two reasons for studying the ML estimation procedur for non-
random unknown parameters (13, 14]. Firstly, if an eflicient estimator for a parame-
ter exists, then the ML estimate is efficient. This property ensures that the variance
of the estimate is equal to the CRLB. Moreover, if an efficient estimate does not

exist, the ML estimate is assured to be at least asymptotically efficient (i.e. for large

9
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Figure 2.1: Description of Observation Windows in Single Burst from User i

observation window size 7). The second important feature of the ML estimate is
that it is consistent. This implies that the ML estimate converges, in probability, to
the correct value of the unknown parameter, for K large. For instance, the phase
estimate is such that

Ilim Pr[|AG — Af| < ¢] = |

for some constant e.

Before proceeding, we first define the vector A*, which consists of all the
unknown parameters at the receiver- A, Af, and {gx}. If this vector were known,
the signal s(f, A} would be completely defined. However, the received signal is not
only a function of the unknown A, but it is also corrupted by an AWGN process

(N(1))! with two sided power spectral density of N,/2. Therefore, the received signal

*Bolded symbols represent vectors.

"Random processes and random variables will be generally denoted by upper case symbols,
with the specific sample functions denoted by the corresponding lower case version. In cases where
no convenient upper case symbol exists, the same character will be used to designate both. The
context should specify whether the symbol denotes a specific sample or a random variable.

10



is given by
r(t) =s(t. A) + n(t)  for t iu the observation window., (2.2

Trial values of the vector A, denoted A, make s(f, A) deterministic.

Estimates of Af and Af are obtained after the signal is observed for the
entire observation window. In addition, keep in mind that the ¢ are sample values
of discrete random variables. Therefore, even though we refer to the estimate of the
gk, the problem of determining gx is really a problem in decision theory, and not
estimation theory. As is shown in Appendix A, the ML estimate of A is that value

of A which maximizes the likelihood function

L(Z) = exp [-—-/—i,— A‘ . RO s(f,;l)"!(ll] . (2.9)

If we expand the integrand, we obtain the sum of three terms. That is,

(1) ~ s(1, AP = (r(t) = s(t, A))(r(1) - s(1, A))*
= () (t) + s(t, A)s"(1, A) — r(1)s"(1, A) = v (1)s(1, A)
()2 + Is(1, A)|* = 2R[r(t)s" (¢, A)]

i

where R[X] denotes the real part of complex quantity X. Using this result in

equation (2.3),

L(A) = exp [———/ | ()2t ~ ———/ s(t, )2t + N‘: /Fnh.?R[r(l.)s‘(l,,Z)]fll. .
(2.4)
Each of the terms in the exponent of equation (2.4) can be treated separately, The
first term represents the energy of the received signal in the observation window,
and so is independent of the trial value A. The second term represents the energy
of the transmitted waveform, with the unknown parameters fixed at A. If symbol
timing is accurately known and modulation is MPSK, it is shown that this term is

also a constant.

(I4+K =1/2)T. _ —
/ 2 = / s(t, A)s"(t, A)dt
7obs (

1-1/2)T

11



(14K =1/2)Ts {+h -1 —_ _—

= /( SEs S sin(2r(fo+ A+ Ge2n /M + B+ 0,)p(t — kTs) o
k=l

I+K -1 __ —

V2Es S sin(2r(f, + A+ g2n /M + A8+ 6,)p(t — jTs)dt
a=l
/(1+1\'—1/-z)’rS 4R-114+K-1

U

e 2Bs 22 X sin(2m(fo+ AT) +Gi2n /M + A8 +06,) e
- g k=l

1=1/2)T,

3=l

sin(27(fo + At + G327 /M + A0+ 8,)p(t — kTs)p(t — jTs)dt

RV k-1 — — :
= 2B5 3 /“ 02 (fo+ BT )+ Gizn /M + B0+ 8,)p*(t — kTs)dt
k=t JU=12Ts

= KEg (for f, large).

Combining these two integrals into a single constant, we can rewrite equation (2.4)
as
L(A) = Cy exp [—?- / R[r(t)s"(¢, A)]dt (2.5)
| No JTops
where ('} is independent of A. Maximizing the likelihood function given in equation

—

(2.5) is equivalent to maximizing the log-likelihood function A(A) of (2.6), whick is

further equivalent to maximizing R(Tob,,Z) given below.

A(A)

9 _
InCh+ 5 / [ Rlr()s"(s A (2.6)

9 —
InC, + ']—V:R(Tob,, A)

where
R(Tus, &) = [ RI(0)s(0 K.

For the specific case of MPSK,

_ +K=1 ~ .
s(t, A) = 2Es Y sin(2r(fo+ Af)t+gi2r/M + 0, + Ab)p(t — kTs)
k=l
and therefore
_ 1+K -1 . .
R(Toss. A) = / r()VREs Y sin(2n(fo+ Af)t+Gk2n/M + 6, + A8)p(t - kTs)dt
obs k=l
1+K =1 — .
= Z V2Es [/]‘ r() sin(27 fot + 8,) cos(2r A ft + gr2r /M + AB8)p(t — kTs)dt+
k=! obs
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[1‘ r(t) cos(2x f,t + 0(,)sin(27r§fl + gr27 /A4 A0)p(t - kl'_\-)u'!]

obs

LSy
- § V 2

(k4+1/2)T< . ~
-/(L - () sin(27 fot + 0,) cos(2n A ft + gi2m/ M + Af)dt+
—1/2)T

(k+1/2)Ts _ —

/ r(t) cos(27 fol + 6,) sin(2n A ft + gi2n /M + AG)dt} .
(k=1/)Ts

If we assume that Af is a small fraction of the symbol rate (1/7%), then the terms

COS(27TEft+f]I27T/M+E9) and sin(‘Z’;rEfi-ffﬁZ‘:r//W—}-EO) are almost constant over

the region of integration. Conditions under which this approximation is justified are

given in Section 2.2. Therefore,

R(Tos, A) ~

(k+1/)Ts
S cos(2r AJkTs + gi2n /M + B0) / (1) $in(27 fol + 0,)dl
k=1/2)Ts
— — [ (k41/2)Ts
S sin(2rA fhTs + gidn /M + Af) / »(£) cos(2m fof + 0,)dt| .
(k=1/2)Ts

The reader should note the similarity between the integrals above and the
integrate-and-dump (I & D) samples of a regular MPSK receiver. Redefining these

as ) and y, where

ey [UHVATs 2
/ (t) sin(27 fol + 0,)dt
~1/9)Ts J/Ts

de) [T /2
e /L 1(f)ros(27rf,,f+0)(ll

-1/2)Ts .s
yields
- 4+ ~-1
R(Toss, A) = Z VEs (cos(2nATkTs + Gi2n /M + B0)z +

sin(2n ATkTs + g2 /M + B0)y;) (2.7)

+K -
— K ]\/.E_(R[P—JAO —'Jlﬂ'Af’\T\ -J.qJ.hr/M ] (28)

k=1

def .
where 2z, = i + JYs-
Four interesting properties are noted from equation (2.8). First, the received

signal (r(t)) enters the maximization procedure only in a sampled form. That is,

13



Decision

Vector
(k4+1/2)T, Tk Ph T"k AllPl)]})li;;lpity Decisi

0 - Phase —{Decision]__,

f(k 1/2)Ts Ot Delay —iRotator—=* Resolution [~ Device | {g;}
Ykl Device
V2/Tssin(2r fut + 6,)
(1))
Ab Af
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(k=1/2)Ts of A and Af

Yi

V2[Tscos(2x f,t + 6,)
Figure 2.2: Typical Receiver

only the integrate-and-dump samples are required for ML estimation. Although it
has long been established that I & D samples are sufficient for symbol detection,
Gardner was the first to point out that they were also sufficient for ML estimation
[2]. This statement has very important consequences. Essentially, it implies that no
matter how good the original analog synchronization techniques were, they could
never outperform the best digital ML based techniques. Therefore, the tendency
towards transforming analog techniques to equivalent digital versions likely leads to
suboptimum estimators. In fact, equation (2.8) suggests that it would be better to
find digttal estimators, and then convert these to analog, rather than the other way
around.

Secondly, since ML estimators require only the I & D samples, it can be con-
cluded that certain aspects of detection and synchronization can be combined. This
reduces the overall receiver hardware, leading to a structure as shown in Figure 2.2.
The only inputs to the synchronizer are the integrate-and-dump samples.

Equation (2.8) further suggests that the estimates of Af and Af are inter-
twined, leading to joint estimation strategies. That is, maximization of (2.8) in-

volves the simultaneous maximization with respect to both parameters, where A8

14



is restricted to be between —r and 7, and where Af must be a small fraction of
the symbol rate (1/75). In Section 2.2, it is shown that A f must be such that
—0.1/Ts < Af < 0.1/Ts. On the other hand, independent estimation produces
isolated structures which estimate one parameter independently of the other. In
these independent estimators, this other parameter becomes an unknown, and will
generally result in a degradation in the estimator performance. Therefore, unless an
efficient method of removing the effects of this other parameter is found, these inde-
pendent estimators cannot be optimum. The resulting synchronizers can be thought
of as using a pseudo-ML technique, and are classified as nonlinear estimators This
name is chosen to reflect the fact that in most cases, a nonlinear operation is used
to deal with the unknown parameter. Note that the identification of the nonlinear
estimator as a separate sub-class of the ML estimator, seems Lo be novel. Sinee
this thesis will deal only with independent estimation, a great deal of effort. will be
devoted to finding the methods of eliminating this other parameter.

Lastly, R(Tobs,;{) is a function of all the transmitted symbols {gk} in the
ohservation window. As a result, the following question arises. How do we maximize
R(Tps, Z) when we don’t know the values of {gi}? After all, the whole purpose of
maximizing R(To(,,,;{) is to determine A f and A0, which could then be used to find
{g:} (See Figure 2.2)! This problem is resolved hy one of three methods, resulting

in one of the estimation strategies discussed bhelow.

Data-Aided (DA) Estimation: This method requires the use of a preamble. At
the receiver this preamble is known and so the effects of the modulation ({gx}) can
be removed. The problem with this method is that the preamble uses up valuable
data symbols in the TDMA frame (since a preamble would be required for every

observation window within every burst) reducing TDMA efficiency.



Decision-Directed (DD) Estimation: Rather than using known values of {gx},
the estimators employing this strategy use the decoded values, denoted {gr}. Ob-
viously this method requires some starting values for Ab and Ef Generally, the
performance of these estimators approaches that for the DA versions, particularly
when signal-to-noise ratio (SNR)is high. This result is expected since decision errors

should be rare at high SNR.

Non Data-Aided (NDA) Estimation: This method resolves the problem by
averaging out the effects of G, from the likelihood function L(X) (the likelihood
function is taken to be a function of AJ A®, and modulation gi). This results in
an NDA likelihood function LI(X,), where L1(Z,) = E{a;)[L(A)), and where A s
vector denoting the two unknowns Af and AT,

Since our communication system is such that an estimate is needed for every
observation window, the synchronizers are required to have short acquisition times.
In addition, a large preamble devoted strictly for estimation is to be avoided in
TDMA systems. This latter criteria eliminates any DA estimation method from
further study. Moreover, since the DD methods have decision feedback, they suffer
from a phenomenon resembling hang-up. Hence, the NDA estimation strategy is
the only method which can satisfy the two objectives stated above. Therefore, in
the remainder of this chapter the log-likelihood function Ax(zl) will be solved, in

~

order to find NDA open-loop estimators. First, we recall that L(A) is given by

L(A) = Cexp [Tj—R(TO,,,,Z)]

I

20, {+K-1 — —
Cyexp [ 5 Z %[e“JAae-JZ?rAfkTSe_Jsklﬂ‘/Mzk]
o k=l

I+ -1 2(72 — o~ .
- Cl H exp [ ~ %[G—JAoe—ﬂwA]kTse—Jyklr/Mzk]]
k=l 4

(2.9)

where we notice that C; absorbs the energy, and that the equation is a function of
the sample values gi. This likelihood function must be made independent of {gx}.

To accomplish this, we average over all possible (i in the observation window (for
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I < k<14 K —1). The symbals ge are samples from uniform, independent, and

. . . . . “ . !
identically distributed random variables. To find Li(A) we proceed as follows,

Li(A) = E,lL(A)
M-1 M-1 M -1

= Y% 0 3 =gl PrGun-r = g nalL(A)
91=0 g1 =0 N4 I =0
I4+K-1 M=

= H Z C‘v] oxp [ NIER[ —JABe—J2ﬂAfk7s —yundnfAl k]] l,l'[(r'[‘ — ”]
k=l u=0 [ m=n
I+l\ 1 M-1
= H z ("XP[ 2?’\‘.[ —]AO —]ZﬂAjkT-. —JuZn/AI~ ]]
u=0
For MPSK, e=2@m/M — _e=a(u+M22r/M 4,4 50
—t l+l\ 1 M/2-1 920,
Li(A) = H > (Pxp[ 2R e ~1B8 =127 AfKT |, = ju2n[M ]]
u=0

207, . i .
+ exp [_ 7 2Re —JABG—JZNAJKTS(,—_WZN/Mzk]])

I

1+K-1 M/[2-1 20 — —
H > cosll[ 2 [e”’Aoc'“"Af“-*("‘J"“/Mzk]]. (2.10)

u=0

In some cases, the log-likelihood function given below is more useful

4K -1 M/2-1 20, o~ ~ .
A(A ) =InCi+ >, | ) cosh [ .SR[e'JM0"’”“““("“””1 zk]]
k=l u=0 NO
(2.11)
At this point, it is possible to draw a tree showing the relative placement, of

all the ML estimation techniques mentioned (See Figure 2.3).

2.1.1 ML Phase Error Estimation

For the purpose of finding the ML estimate of A8, the unknown AT will be assumed
to be zero. Substituting Af = 0in equation (2.1 1),

— I+ K -1 . M[2-1 2(v
MA) = mCi+ D I Y cosh N, “2Re ~aBl=gutnM ]] - (2.12)
k=l u=0

= A1(Z—0).
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As noted by Gardner, there are three strategies to Ainding the maximum of (2.12)
with respect to A. The first of these is by a brute force search technique. Values
over the entire space of A0 arc substituted into A;(Af), and A8 is selected as the
A0 which produces the maximum. One can foresee that this technique has very long
acquisition times, owing to the number of computatiens which may be required to
find the absolute maximum. Presentation and analysis of this technique is given in
[15].

The second method of maximization actually reduces to a tracker. At the
maximum, the derivative of the log-likelihood function (with respect to A0) reduces
to zero. Therefore, we can set (lA,(KO)/dKO = 0 and use this as an error sig-
nal, resulting in a digital closed-loop tracker. However, since this estimator would
have feedback, it is unlikely to meet the speed requirements of our TDMA systen.
Interestingly, some authors do not consider the resulting synchronizer a true ML
estimator [16].

The last method of maximization is by direct computation. This method
involves setting (lAl(N))/dTﬂ) to zero, making some simplifying assumption, and

directly solving for AB. The result of this differentiation is shown below:

—_ . M/2-1 . 203 [, —180 ,—gu2n /M, 1| |2C —180 ,~ju2n /M
(IAI(AO) B +K -1 Eu=0 sinh [WZ‘SR[( 18%e7J / ~k]] [7\73(3[0 18%e=In n/ ~;_]]

2-1 20 —aAD . — g
dAf k=1 ZuMJO cosh [27\(,—0251%[(, 188, J‘“’-’T/Mzk]]

(2.13)
where 3[X] denotes the imaginary part of X. The ML estimate of phase error (A0)

is the solution to

21 . w7 - ~n ey 2o - .~ - .
I+K -1 ZM/Z sinh [%3%[6 180, "‘2"/Mzk]] [%oz\s[e 180, J“l"/Mzk]]

u=0

=0. (2.14)

~M/[2-1 20, 2D g

k=l u=/0 cosh [%Z.SR[E-JAOC'J“”/MZ&]]
0

Owing to the nonlinear nature of (2.14), no obvious and simple solution for Af

is possible. To arrive at one, approximations to sinh() and cosh() are required. For

high signal-to-noise ratio, Gardner showed that the solution to (2.14) produces an

estimator with a feedback loop [10]. Even more interesting, the resulting structures
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for BPSK and QI’SK are identical to the decision-directed tracker estimators. Ironi-
cally, solving for a NDA estimator by direct computation leads to a decision-directed
tracking loop. Gardner then speculated that this implied the decision-directed es-
timator was the optimum estimator at high SNR. Since he proved the results only
for M = 2 and M = 4, no generalization is possible. However, the result is ex-
pected to be applicable for all M. Therefore at this SNR extreme, no estanator can
outperform the decision-directed tracking loop.

At low signal-to-noise ratio, we can safely say that 2C;/N, is low (recall (%,
absorbs energy term). Therefore, we can replace sinh(z) and cosh(z) by their low z
approximations given below:

1133 T ot

sinh(z) =~ x4+ T + = + ) + ... (2.15)

cosh(z) =~ 1. (2.16)

o

Using (2.15) and (2.16) in (2.14) produces

4] -1 M[2-1 <216402§R[e—jA96—Ju27r/M:k])

2

k=l u=0

-~ 3
(;}&:;R[e-moe-;uzn/M 3&])
+

1! 3!

- 5
(2/\(702 R[c B0 gu2r/M zk])
+

+ 5!

[sz/i S[e_,@e_mﬂ/mzk]] =0.  (2.17)

The above equation can be solved for all M. The solution is stated below ([10] see

Appendix B).

o 1 I+ K -1 < sz]
A = — arctan [ b=l . (2.18)
M el Rz

This estimator is referred to as the digital X-M multiplier circuit.

Equation (2.18) represents an estimator which meets our two objectives - it
does not require a large preamble, nor does it have feedback. Unfortunately, since
approximations (2.15) and (2.16) were used, the estimator is optimum only at low

SNR. At higher SNR, this estimator cannot outperform a decision-directed tracking
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loop, and therefore the X-M multiplier should result in some loss of performance,
when compared to the tracking loop. This loss is almost negligible for M = 2
or M = 4, but becomes more pronounced for M > 4. This degradation has been
termed nonlinear loss, and is studied in [15, 17]. Consequently, this open- loop digital
technique can not be used for all M. To deal with this possibility, Viterbi and
Viterbi proposed a new estimator, with equation (2.18) as their starting point [12].
This new estimator fits under the class of nonlincar estimator shown in Figure 2.3.
Essentially, one can argue that the purpose of the M’th power in equation (2.18)
is modulation removal. Therefore, the M’th power can be replaced by another
nonlinearity which multiplies the phase of z; by M (Lo remove the effects of the
{g+}), and then performs a separate nonlincar operation on the magnitude of zy.
For this reason, this estimator has been renamed for this thesis as the nonlincar

phase estimator with modulation removal (NPE/M). The value of the estimate is

(2.19)

L 1 ii-:ll(—-l L\"f[F(IZkI)CJM“rg(Zk)]
M >

Af = — arctan 5;;[(—1 R[F(|z4]) e?M 61|
where F'() represents some nonlinear operation on |z;]. The advantage of this tech-
nique over the X-M digital multiplier emerges because the F(|2;]) can be chosen to
optimize the variance . In fact, it has been shown that the optimum () produces
results which approach the CRLB even at high SNR [18]. Note that when we select,
F(|z&]) = |2&]M, the NPE/M reduces to a X-M digital multiplier.

The concept of nonlinear estimation can be expanded further. The main results
so far have assumed that the frequency error is zero. If this were not the case, the
Af can be expected to severely degrade A0, even for the NPE/M. However by
carefully choosing a nonlinearity, the effects of A f can be climinated. T'hercfore, a
nonlinear estimator with modulation and frequency error removal is possible (will
be denoted NPE/MF). This new proposed estimator, as well as the NPE/M, are
analyzed in Chapter 3.
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2.1.2 ML Frequency Error Estimation

As was the case for ML phase error estimation, numerous ‘lata-aided and decision-
directed strategies exist for frequency error estimation [19, 20]. For the same reasons
outlined before, these estimators can not be used for burst-mode communications.
As a result, the emphasis in this section will be on open-loop topologies.

For the purpose of finding the ML estimate for A f, we will assume that A6 = 0.

Hence, the likelihood function (2.11) becomes

~1 k-1 M/2-1 20, o R )
MA) = mCi+ Y In| D cosh [—]v—%[e"’z"MT"'ke"“z"/Mzk]] (2.20)
k=l u=0 o
= M(A]).

We can now proceed to find the ML estimate of A fTs (T's is included in the estimate,
and may be considered a normalizing constant). Firstly, we differentiate (2.20) with
respect to KfT_q, replace AfTs by AJTs, and set the result equal to zero. The

outcome of these steps is

IR =1 EM/‘Z—I sinh [%fv:':m[e—ﬂrrAfTske—ju‘Zn/Mzk]] [%%2#k‘\‘s[e'”"“ﬁske‘-’"z"/Mzk]]

u=o

= 0.

i M/2-1 coq)) [ 2Cs ffe=s2mA Tk g—yuan/M zk]]

(2.21)
In order to solve this equation for Zi\f Ts, approximations to the hyperbolic func-
tions are again needed. Therefore, using the low SNR approximations to sinh(x)
and cosh() given in equations (2.15) and (2.16), and following the same inductive

reasoning that led to (2.18), we can reduce (2.21) to

l+K-1

3 kS[e—JzﬂK{TskMsz] =0,
k=l
which implies that
1+ -1 o
Y ksinfarg(2M) - 27 AfTskM] = 0. (2.22)
k=1

To solve explicitly for Zi\ng, one further assumption is made. Namely, we will

assume that the estimate is very close to the unknown parameter (57 ~Af).
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the resulting estimate is efficient, then this assumption is justified. As a result, the
sine function can be approximated by a first order expansion. That is, sin(r) = ¢

and so
1+K -1

3 [karg(zM) — 20 ASTsk* M) = 0.
k={

The A fTs term can now be isolated, such that

(h ! karg(=M)

AjTs = :
s = e T 12

(2.23)

As will be shown later, the resulting open-loop frequency error estimator is identical
to the least-squares frequency estimator. Its analysis is presented in Chapter 4,
where it will be shown that the estimate is efficient, justifying our assumption.
However, the conditions for efficiency are casily violated. Note that it had not heen
shown in the literature that the least-squares estimate of A [T’ is in fact a low SNR
approximation to the ML estimate.

One final note on frequency estimation is appropriate. In order to solve for
EfTs, it was assumed that there was no phase error (A8 = 0). Consequently, this
allowed us to use a first order approximation to siu(c). However, it is possible to
use the concept of nonlinear estimation to obtain a pseudo-ML estimate for A ST,
even when Af is not zero. This nonlinear frequency estimator (NFE) is modelled
after the Intermediate Frequency (IF) version proposed by Simon and Divsalar [21].
Two consecutive samples are used to convert the frequency error into a phase error.
Thereafter, a nonlinear phase type estimator, similar to the NPE/MF, is used to
solve for Z\fT-, Since the technique results in an open-loop topology, it will also be

studied in Chapter 4.

2.2 Cramer-Rao Lower Bound

The Cramer-Rao lower bound on the variance of the estimated parameters is known

to be equal to the diagonal elements of the inverse of Fisher’s information matrix
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J{14]. Since the matrix is defined for discrete-time observations, we cannot apply it
direetly to our analog received waveform. Instead, we apply it to the I & D samples.

The first step is to find the probability density function (pdf) of these samples.
These results are extremely important and are used quite often in the thesis. The
results are derived assuming that the transmitted symbols ({gx}) are given (in a
probabilistic sense). If so, 7(t) is a sample function of a Gaussian process, and the
Zi and yi are samples of Gaussian random variables. This last property is due to the
fact that &y and y, are outputs of a linear transformation operating on a Gaussian
input. Solving for the in-phase component (zy),

(k+1/2)Ts
o = /( r(t)\/2/ Ts sin(27 [, + 0,)dt

k=1/2)Ts

(k+1/2)Ts 1Hh 1
= /( S V2EssinQ2r(fo+ Af)t+ g2 /M + 0, + A0)p(t — jTs) e

- (k+1/2)Ts : o
V2/Ts sin(2m f,t + 6,)dl + et/ 217 n(t)y/2/Ts sin(2x f,t + 0,)dt
(k4+1/2)Ts

- /(k r (VEs/Ts) cos(2r At + gu27 M + Ab)dt + nl,

‘ sinTA Ty
= /Escos(2rAfkTs + 27 |M + A())%{f +
~  /Escos(2nAfETs + gu2n /M + A8) + ni, (2.24)
Yo+ I<Sk<I+K -1

The above approximation holds for sin(7A fTs)/7#AfTs = 1. From Figure 2.4, we
sce that this restricts the A fTs to be less than 0.1, which is well within the limits for
most communication oscillators. Therefore, it will be assumed that this condition
is always satisfied.

A similar result holds for the quadrature component (yi). Namely,

ye = /Essin(2rAfkTs + g2n /M + AG) + nf (2.25)
Y B+l I<Sk<I+K-1.
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The values of n}, and n] are given below:

(k+1/2)Ts
n, = n(2/ Essin(2r [t + 0,)dt
b= S, OV EssinCr o+ 0)
(k+1/2)Ts
ni = / n(t)2/Escos(2n [t 4 0,)dt.
k (o1 /20T (/2] Escos(2m [ )e

To find the joint pdf of X and Y}, namely fx, v, (€1, y1), the moments of the
noise samples must be determined. We first note that the random variables N and

N{ are Gaussian. Their mean and variance are determined by using properties of

N(t). That is, E[N(t)] = 0 and E[N(t)N(})] = (N,/2)64(t = ). Therefore,

E[N} = E[N/] = 0 (2.26)
0k
E[NIN!] = E[NJN] = 73 (2.27)
N,J2 k=
EINiNZ = {) (2.23)

1§(x) is the Dirac deita function



The above results imply that N} and N} are independent random variables with

zero mean and variance o = N, /2.
Given the transmitted symbols ({gx}), ax and Bi are constant. As a result,

Xy and Y} are Gaussian, with moments

E[XiH{o}] = (2.29)
VAR[X[{@:}] = No/2 (2.30)
ElYiHa)]l = B (2.31)
VAR[Yi[{ze)] = No/2 (2.32)
EXvYil{oe}] = awf (2.33)
COVIXeYil{me})] = O. (2.34)

Since X, and Y, are Gaussian and uncorrelated, they are also independent.
This ensures that their joint pdf can be written as

fxon(oud{ad) = frled{o ) v (yel{ge})
1 exp [—,Ek'l + yk2 (T A 4 /}kyk _ ak2 + /3k2]

7TN0 No jvf-"/2 N°
R S _ ety owrt Bk Es
= 7N, N, N./2 N,

—00 < Tg,Yr < 00 (2.35)

where the substitution Eg = ak2+ﬂk2 was made, Since the samples are independent
for different &, the joint pdf of all random Xi’s and Yi’s, denoted by vectors X and

Y respectively, is given by
(+K=-1
Ixy@uliad) = I frn(eeyl{od)
k=l

| HESV (o2 +y2) + Bs . ank + Pryi
——exp | 3 |- +
(ﬂNo)l‘ [ k=l ( )]

N, N,/2
—00 < Vg, yr < o0. (2.36)
Taking the natural logarithm,
+K -1
nfx y(zyl{a}) = D+ 4 > (cwri+Bryr) — 00 < Vg, yx < 0o (2.37)
o k=l
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where D includes all terms which are independent of Af or Af. The three remaining

unknowns in equation (2.37) are Af, Af, aud {g¢}. In determining the Cramer-

Rao lower bound, it will be assumed that modulation is absent. Since most of the
literature uses this unmodulated bound, the above assumption is generally accepted.
In fact, any modulation is expected to introduce degradation, and therefore thi.
estimate cannot have a variance lower than the unmodulated bound. In accordance,
all the estimators in this paper will be compared to this lower bound.

The elements of J (as defined on page 20 of [14]) are given by

Jin = eclement (1,1) of matrix J
_ & [0l fx y(X,Y|{gs}) 0ln fx y (X, Y|{{gx})] (2.38)
i s JaY, AN’
Jz» = element (2,2) of matrix J
_ gy (X Yool fxy (X Yieh)] o
YN PYNG i
Jy=ty = E dlnfxydgj(f YI{JL})dlnfx};Axa Yo D) (2.40)

Noting that all g, are zero, equations (2.38) to (2.40) can be solved, generating the

folowing matrix

9 | Esk 2rTsEs TN k (2.41)
N, 27TT§ESZ£+=II"—] k 4An*Ts*Es Zitll‘—] k? . .
The inverse of (2.41) is
71 = 6N, AP Es TN -1 k2 o ToEs T EN -1k
- 4W2T52E,521(2(l\’2 - 1) _27,.7 E" ZH-]\ -1 k ES’\’
(2.42)

As shown in the text !y Van Trees, the lower bound on the variance of the estimates
is given by
COV[[A®, AF|[AO,AF)S) > J.

§()7 denotes transpose
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Therefore,

A 6 I+K-1
vaRasl z k? 9.43
a0l 2 (Es/N,)K*(K?* - 1) é (2.43)
3 I+K-1 ,

: k S 2.44
= (Ey/N,)K2(K?—1) L§=:I for QPSK (2.44)

AT 6
VAR[AFTS] > ”
AT 2 SR (BTN (2.45)

3

for QPSK. 2.46
R —1)(EyN,) or Pk (2.46)

Note that the bound on the variance of 57:‘7’5 is independent of the initial
starting point of the samples. On the other hand, the bound for the variance of
A© is dependent on this initial starting point. In fact, there is an optimum value
of [ which produces the lowest bound, as was noted by Rife and Boorstyn [22].
Mimimizing equation (2.43) with respect [ yields the optimum [ as

K-1

l= 5

(2.47)

With this value of I, the lower bound on the variance of the phase error estimate

rediices to
1
2K(Es/N,)

The fact that the lowest bound is obtained for | = —(K —1)/2 isa very impor-

VAR[AO] = (2.48)

tant result. It implies that a phase estimator employing discrete time observations
will have a minimum variance if the frequency error of the observations (27kA fTs)
is symmetric about a zero frequency error. Obviously our samples do not fall into
this symmetric structure. However, if we were to redefine the phase error per window

as A@', where

K-
AB' = AB + 2 AfTs(l+ —2—1) = A0+ 2x AfTs(l + N) (2.49)

then the samples could be denoted as

oy = \[Escos(2rAfTo(k — 1 - N)+ A0 + g2 /M) +ni, (2.50)
ye = VEssinrAfTy(k —1-- N) + A0 + g1 2n /M) +nl. (2.51)
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Figure 2.5: Redefinition of Phase Error per Window

In the above, N = (I — 1)/2. Note that the frequency error of these modified

samples does meet the symmetry requirements (See Figure 2.5). However in such
a case, the synchronizer no longer estimates A, but rather A@'. This is permitted
since 2w A fTs(l + N) is constant for every window. The reader should also note
that this redefinition would have no effect on the bound for AFTs, since equation
(2.45) is independent of 1. It is now possible to conclude that every window can he
made symmetric, simply by redefining the phase error per window as Af0'.

The CRLB for both phase and frequency error are shown in Figures 2.6 and
2.7. The results are plotted for QPSK, and for various levels of £,/N,. The phase
error is assumed to have been redefined, and so the observation window is symmetric
(1= —(K —1)/2). Since this is the lowest variance attainable, all estimates should
have variance close to this bound. Furthermore, these estimates should be unbiased.

That is, the mean of the estimate should be equal to the parameter which is Leing
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estimated.

E[AO] = A¥ (2.52)
Af. (2.53)

E[AF)

For an estimator to be useful, it must possess both these properties. In such a case,

the estimate is said to be efficient.
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Chapter 3

Techniques for Phuse Estimation

Two of the more important results of the last chapter are listed below:

¢ Integrate-and-dump samples are sufficient for phase error and frequency erior

estimation.

o Symmetric observation windows yield minimum variance for phase error esti-

mates.

In accordance with these two results, the phase estimate (as well as the frequency

estimate ) should be determined from the samples

xr = \Escos(2rAfTs(k—1—N)+ A0 + gi2n M) + n},
w = VEssin2rAfTs(k—1—N)+ A0 + g 2w /M) + nf
ISk<I+ K -1 (3.1)

These samples generate a complex quantity z;, such that

ze = o+ Iy
= ,/E_“,J(-szrq(k—t-N)+Aa'+mzﬂ/M;+n,k+].nz

d_;f pkej(')wAf’I‘_q(k-—l—N)+A0'+gk21r/M+(;,-)
= pre’Ph I<k<I+ K -1 (3.2)
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Figure 3.1: Nonlinear Phase Estimator with Modulation Removal (NPE/M)

We introduce the polar forin, since it simplifies the analysis presented in this chapter.
Note that the random variables p; and ¢, completely characterize the noise Ni and

N{.

3.1 Presentation of Techniques

The two estimation techniques studied in this chapter, both fall under the category
of nonlinear phase estimators. These were the only synchronizers mentioned in
Chapter 2 which were open-loop, and thus were appropriate for burst-mode TDMA
systems. The major difference between the two techniques is the manner in which
the samples x; and yx are manipulated. For the NPE/M (Figure 3.1), the samples
are converted to polar form (pkej’/’k), after which the phase is multiplied by M (to
remove the dependence on the modulation) and the magnitude is passed through

some nonlinearity p1(pi). The result is then reconverted back to rectangular form,
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yielding

X = (o)UY
= py(p)?RTAITS == NMEM A0+ M Chtga2n)

)
)
= Py (pp)e?BTAITs(=1= MMM A0 +MCL)
= pi(py) cos(2rASTs(k—1 — N)M + MAO' + Mey)
+ipi(px) sin(2e A fTs(k— 1 = N)M + MAG' + Mcy). (3.3)

An estimate of MA', denoted MAE', is then found by averaging the K complex
samples Vs, and determining the corresponding argument of this mean.

If noise were absent, .U’z would be given by

:1' A

i

p1(yf Es)ed CrafTs(k=1=N)tor 2n[M+A0") M

Py (yf Es)e?@raiTs(h=l-NM+MAT)

|

Therefore,
o 1 4+ K-
MAY = arg [-—; > '\'k]
K =
A= L arctan L TN =1 py (v Ez)sin (20 AfTs(k — 1 — N)M + MAO’)]
= — arcla
M T z';;’,‘ Ui (v Ez)cos (27A[Ts(k — | — N)M + MAY)

After using the trigonometric identity

x sin(a) + y cos(a)]

a + arctan [E/_] = arctan -
T x cos(a) — ysin(a)

the above equation reduces to

— b, 1 LK1y (VEs)sin (20AfTs(k—1— N)M)
AP = A4 Ma”'ta“[ I+K ’p,(\/——E«,)cos (2r AT (k-1 — N)M)

= Af.

The last equality is due to the fact that the numerator of the arctan function evalu-
ates tozero. Surprisingly, even though the samples on which the estimate is based

are a function of Af, the final estimate isnot. This property is attributed directly to



the symmetry of the frequency error for samples at opposite ends of the observation

window (Vyg, and Xpyprq). That is,

m(VEs)sin(2nA fTs(r — N)M) = —pi(\ Es)sin (20 A fTs(N — r)M) .
However as soon as noise is considered, the above relation no longer holds since each
sample is corrupted by independent random noise. That is,

P(prer)sin (20 A fTs(r — N)M 4+ Mey,.,)
# =n(pirr—r-1)sin 2rAfTs(N — )M + Metyn—r-1),

and as a result, the final estimate would be a function of both noise and frequency

crror.

= ket 7' pa(pi)sin s(k—1=-N MAG + M,
A()’:—]Il/l—arctan " Li=i__P1(py)sin (2mASTs( )M + + M) (3.4)

Zl+l\ I pi(pr) cos(2rAfTs(k — 1 - N)M + MAG' + Me;)

=00 + L arctan | & EIH‘ __pilpy)sin (30 fTslk = L= N)M + Mer) (3.5)
M R (k) cos 2T A fTs(k — L = N)M + Me)
=A0' + degradation(AfTs, pr, ex for (S k< I+ K~ 1). (3.6)

In the next section, it will be shown that even a small A fTs severely degrades
the performance of the estimator. Hence, a method of generating samples 1, in-
dependent of Af would be beneficial. The NPE/MF, shown in Figure 3.2, pro-
duces such samples. Essentially, the estimator periorms a second operation on
the z2;’s, prior to averaging. The output of this operation should be independent
of Af, but should still be a strong function of the parameter to be estimated -
A0'. The reasoning behind the particular choice of operation, lies in the fact that
the frequency error for sample .Vyy,, is the negative of that for Vi r_,_1 - i.e.
2rA fTs(r = N)M = =27 A fTs(N —r)M. Adding the arguments of these two sam-

ples by complex multiplication, produces an output which is only a function of noise

and Af'. Namely,
-\': = '1'l+r'1'l+l\'—r—-l
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Figure 3.2: Nonlinear Phase Estimator with Modulation and Frequeney Error Re-
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—_ pz(pl_“)ej(QwAfT_q(r-N)M+MA0'+M(1+r).

Pa(prafizror ) @ETAITs(N-I)M+MAV+MELy 1 r1)

— ])z(pl+r)])2(pl+l‘._r_l)eJ(2MA9'+M('l+r+M('l+l(—r-l) f()l‘ 0 S s S N . (3'7)

Special consideration must be paid to the middle symbol of the observation win-
dow, corresponding to r = N. This sample, .Vi,n, is characterized as having a
counterpart which corresponds to itself (i.e. Viyny = Xigx-n-1 ), and by be
ing already independent of Af. Therefore for » = N, equation (3.7) becomes
XYy = p2(prpn )e?BMATHIM En) which is simply V4w squared.

The estimate is then found from these X' for 0 < r» < N, using the same

averaging technique as used by the NPE/M.
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T SN p2 (o1 92 (P h—em ) sin (ZMAG + Meyy, + M:«H\-_,-,)J 8)

a8’ = ;—]——arct.all v -
M T Doreo P2{PI4r)P2(014 1 —r =1 ) cOS (ZMAS' + Metyr + My jory)

o Yo p2(ong e W2 (pig s —r 1) sin (Mg r + Mepg e —r ) (39)
Yl z:":o P2(Pi4r)P2(pig 10 —r—1)cos (Mepyr + My g —roi)
= A0+ degradation( py, e for! < k< I+ K =1). (3.10)

= A0+ ﬁ arctan [

Notice that there is no A fTs dependent degradation and that Af = AO' for the
noiscless case.

At first glance, comparison of equations (3.4) and (3.8) may suggest that the
NPE/MF is placed at an immediate disadvantage with respect to the NPE/M,
since the process of multiplying Uy, and X p_,-; effectively doubles the noise
(Mayr + Megpp ~r—1 as compared to Me,). However, the fact that these .V have
twice the signal level of the wanted parameter (2M A’ versus MAG') compensates
for the increased noise.

At this point we can deterraine the processing times (Tp) of both estimators in
terms of the number of real addition operations, real multiplication operations, and
ROM look-up operations. If the time for each of these operations is known (T4, Tr
and T’ s, respectively), then the absolute time required to determine the estimates
can be obtained. However, we will not attempt to substitute values for these times,
since they are strongly dependent on the technology used for implementation.

All the operations of the two estimators can be reduced to some combination

of the three base operations:

o 1. real addition: addition of two real quantities
e 2. real multiplication: multiplication of two real quantities

e 3. Table look-up: input is index to a ROM table and value of table is the

required output.

For the NPE/M, for instance, the generation of the .V'x as well as the arctangent

operation can both be implemented by table look-ups. Furthermiore, the K term
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complex addition corresponds to 2(A = 1) real additions (A — 1 additions for R{.V]
and A — 1 additions for S[.V4]) where we recall that o sumumation of two terms
requires only a single addition. Lastly, the multiplication of the complex sum by
1/ K requires 2 real multiplications. Therefore, the processing, time for the NPii/M

is given by
Tp=2(K~ D)Ta+2Tn + 2T NP /M,

A similar reasoning holds for the NPE/MF. The only extra feature of this estimator
is that it requires (K +1)/2 complex multiplications. Each complex multiplication
can be implemented by 4 real multiplications and 2 real additions (a4 Jb){(e + jd) --
((ac = bd) + j(ad + be)). Using this last result, the processing time for the NPE/MI

is given by

Tp = 2KTs+ (2[\’ + 4)7‘M + 2T : NI’E/M"‘.

3.2 Comparison of Techniques

In this section, we find the pdf of the random estimates (AQY). We note from

equations (3.5) and (3.9) that both estimators are of the form

A = A0 +6 (3.11)
where § is a random degradation component dependent on the randomn variables py
and ey, for all k. It turns out that the pdf of & is all that is required for a comparison
of the two techniques. To find this function, we first require the joint pdf of pg and
éx. The steps involved are outlined below. First, we recall the joint pdf of Xy and

Y: given in equation (2.35).

ka,Yk(Jlk, yr|modulation) =

1 ox _($k2+yk2) apri+ Peyn Es
7l'No P No Nu/2 No

:l ~00 < Lp, Y < 0o . (3.12)
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where

o = \[Escos2rAfTs(k =1 = N)+ g2 /M + A?')
Ao = JEssin(2rAfTs(k—1— N)+ g2r/M + A6')

and where the redefined A0’ is used. We proceed with the following transformation
of variables

¢, = (arctan(Yi/Xy) — 2rAfTs(k =1 — N) — A0' — gi27 /M )mod(2r) .
(3.13)
The final result of the transformation is
P pi2 VEspicose, Ey’ 0< pp<o0
”NOGX)[__AZ-{- No/2 —.N_o —7r§q.<7r.
(3.14)

f/)k.u(/’k,fk“!lk}) =

Notice that (3.14) is not explicitly dependent on the modulation. Furthermore, the
same pdf is obtained for all I <k < I+ K — 1. Therefore, we may rewrite the pdf

without the modulation condition, and without the k’th sample subscript. That is,

foclp€) = = exp (3.15)

-t Ipcose 4 0<p<>
N;,+,\/No/2 —E} —-r<e<m
where the substitution ¥ = 2E¢/N, was made. This v is a measure of the channel
signal-to-noise ratio.

The pdf of 6§ can now be found from application of the central limit theorem
(CLT). The method described below is an expansion to the procedure put iorth by
Hagmann and Hubermann [24}, which was applied to the unmodulated (M = 1)
Viterbi and Viterbi phase estimator (equivalent to the NPE;M). For this estimator,

we recall that & is defined as,
+ TR py (o) sin QA fTs(k — 1= NYM + Mey)
SR b (pr) cos (27 A [Ts(k — 1= N)M + Meg)|

Since pg, e are independent from py, ¢ (k # 1), both numerator and denomina-

1
= -— arctan
A.

tor of the arctangent function are sums of independent random variables. By the
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1 . . .
CLT, these sums, denoted as € and 1, can be assumed to be Gaussian distributed.

Therefore,
! €
6 = — arctan [-—] and 3.16)
M - (16
1 +K-1
§ = T > i) sin (2rAfTs(k =1 = NYM + Mey)
k=l
1 1+K-1
=% > pi(pi)cos (2r AfTs(k =1 = N)M + Me,) .
k=l

The moments of ¢ and 7 are derived in Appendix C, and shown below:

pe = 0 (3.17)

o7 = E[J;l']“gﬂ)] E{p,* (/));Xs(ll‘lt)] S (ZMASTy) -
E? [”‘(”)25‘,” M‘)]{l K (2MASTS)] (3.18)
ty = E[pi(p) cos (Me)]Sk(MASTs) (3.19)

ol = E[l;l;‘fﬂ)] + E[”‘z(”);]“’f(2M‘)].9',\-(2M ASTs)
Hh (”ii? MM+ sx@mar)] (20

COV[p,¢é] = 0 and where

SK(2ZMA[Ts) = ;:iﬁt:ij}g{%)) (3.21)

If we define random variables Z; and Z, as,

Z, = —}%/I—arctau [—ﬂ ~-n/M < Z,<nIM (3.22)
Z: = € 49? 0<Z, < o, (3.23)

then it is possible to find fz,,z,(z1, 22) from f,¢(n, €) by transformation of variables.
We can then determine fg(6) by noting that Z; = §, and solving for the marginal
probability distribution of Z;. These steps are carried out in Appendix D, where

the desired pdf is obtained.
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—pen? f202 o2 cos? (M$§
8y = Me i - kA - 1+ == /7 Ten2 ; sl
27 o2sin? (M§) + ng cos? (M &) V2o, ofsin? (Mé) + ag cos? (M 6)

2 o2 cos? (M 6) a2 cos? (M6)
exp Ln_ £ 1 +erf En £
203 o sin® (M5) + 0} cos? (M6) V2ay \[ 02sin? (M6) + 0 cos? (M6)

-n/M <6< /M (3.24)

where g1, 02, and o} arc as defined in equations (3.18) - (3.21).
A similar analysis is possible for the NPE/MF. The degradation § and the

random variables ¢ and 5 are defined below.

1 4
6 = marrtan [—}

n
1 N
£ = == PoApir)P2prin—r=1)sin (Meryr + Metprmra)
N+14
1 N
T = NFT Y P2(pir )2 prawi—r—1) 08 (Meyr + Mepyr—py) .

r=0

The moment derivations are again shown in Appendix C.

e = 0 (325)
52 — NEn?(p)] — NE’[p*(p) cos (2Me)] + E[p,*(p)]
¢ 2N +1)?
E[p2*(p) cos (4M¢)] s
T AN ¥ 1) (3.26)
NE?[pa(p) cos (Me)] + E[p*(p) cos (2M)] 0
fy (NF 1) (3.27)
o2 NEUp2(p)] + NE’[pa*(p) cos (2Me)] — 2NE*[pa(p) cos (M e)]
" 2(N + 1)
L Elp"(0)] + Elp2*(p) foz ((7VA1 t‘)1])2— 2E°[p2%(p) cos (2M )] (3.28)
COV[y, € =

Using the same method as was used for the NPE/M, the pdf of § is obtained as



2
2M it 1205 ayag LH 2 cos? (M)

1s(8) = it
s(6) 2 a?sin? (2M6) + ng cos? (20 8) { \/-n,, v V alsm? .Mn’r)+ ag cos? (2019)

n? ag cos? (2M 6) " n( cosd (2018)
exp 2.2 2 2 1 + erf !
2075 aysin® (2M6)+ af cos? (2M6) V2ay \| 0} sin® (2M8) + n? cos? (2A18)

—n/2M < < nf2M (3 29)

where i, o7, and o7 are defined by (3.26) - (3.28). Note that the only difference in
J5(8) between the two estimators ((3.24) and (3.29)) is in the definitions of p,, ol
and o’é, and in the factor of 2 attached to the M for the NPE/MFE. At this point,
we can draw the following conclusion — £ and 5 are sums of A random variables
for the NPE/M, but only N + 1 random variables for the new proposed estimator
Since application of the CLT is justified if the sums are taken over many random

variables, the Gaussian approximation is better suited for the NPE/M, particularly

if observation window size (/) is small.

3.2.1 Moment Analysis

The mean of the estimates can be obtained from (3.11), as
EAQ'] = AG + E[8]. (3.30)

Notice from the definitions of fg(6) in (3.24) and (3.29), that fg(é) = fg(--6). Since b
is symmetrically distributed about § = 0, it’s mean evaluates to zero. Consequently,
both estimators produce unbiased results. This further implies that the variance of

A0 is equal to the variance of 6. That is,
VAR[A®) = E[(A®' — A0)"] = E[&*). (3.31)

The problem has now been reduced to finding this latter variance for a given M,
observation window size (K), and channel signal-to-noise ratio (v = 2E5/N,). When
hes ¢ ; are specified, tl ts 2 | 6 be ‘onstant. T
these parameters are specified, the moments u,, 0, and of become constant. “lo

determine their values, expectations of the form E[L"(p)] and E[L"(p) cos (UM ()]
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must be evaluated, where h(p) is py(p) for the NPE/M and py(p) for the NPE/MF.
Analytic expressions for these expectations were derived in [12] for nonlinearities of

the form h(p) = p', where I < M and even. The results are presented here without

proof,
RIf2 :
Lot Rl/2 .
E[k™(p)] = (No/2)1 3 / Piply R 2 forall I (3.32)
n=0 n
" e suosit ea ) (OSUM=1) = - )O.SUMA D)
B[l {r)cos (UMA) = | (No/2)° *!'ty Z 050 (M=) = )O0sUM + )= m)tmt 2/
n=0

0 5U(M~i)=1

—(ND)D 51”(,—‘1/2(2/7)0 FIUEY Z

n=

(0.5U(M + 1) + u)!
(0.5U(M = 1) = n=1)In!

2/7)"

ISM~2  (3.33)

(Nof2)0 SUL 0 UL l=M. (3.34)

The variance of § can then be found by integrating 6%f5(8) over |6 < 7/uM,
where u = 1 for the NPE/M, and u = 2 for the NPE/MF. Since p; and p; can
be any function of p, it is very difficult to compare the two estimators on a fair
basis when the nonlinearities are chosen randomly. Therefore, only the nonlinearity
m(p) = pAp) = p° = 1 will be considered. For this case, the estimates are based
solely on the phase of the received samples (zx + jyi), and consequently neither is
placed at a disadvantage.

Owing to the nonlinear nature of fg(6), the evaluation of ff,/r'/‘yM o f5(x)de
cannot be carried out analytically. However, variance curves can be obtained by
numerical integration. Figures 3.3 and 3.4 show the results for variance plotted
versus the observation window size, for various channel Ey/N, and for Af = 0.
The Cramer-Rao lower bound is also plotted on these graphs. Since all graphs are

plotted for QPSK, vy = 2E5/N, = 4E,/N,. The graphs show that both estimators
are eflicient for Ey/N, > 10dB..
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A side-by-side comparison of the variance of the two estimators for Af = 0, is
shown in Figure 3.5. Apparently for Af = 0, the NPE/MF is as good as its NPE/M
counterpart for Ey/N, > 8dB. and for E;/ N, < 0dB.. This advantage at low SNR
is not considered, since neither estimator is efficient at this SNR. An additional
comment must be made concerning the variance of the NPE/M. We notice from
Figure 3.5 that the curve has a knee at low E,/N,. This phenomenon has been
observed through simulation, and has been docnmented in numerous articles [12, 25].
However the theoretical analysis presented in the paper by Viterbi and Viterbi fails
to show such a characteristic. This may be attributed to the lincarizing assumptions
made in that paper. We therefore conclude that the method of variance analysis
proposed in this thesis is more generally applicable and seems to provide resalts
which are closer to simulation.

The true advantage of this new estimator is best displayed when considering
the variance for environments where a small frequency error exists (AfTs < 0.1).
These results are presented in Figure 3.6, for two levels of SNR. In both cases, the
variance is plotted against the normalized frequency error (A fT's) for an observation
window size of K = 25. Notice that at both levels of Ey/N,, the variance of the
NPE/M iucreases steeply with AfTs. In contrast, for a fixed K and £,/N,, the
variance of the new estimator remains constant, regardless the frequency error. In
other words, a crossover point exists, denoted C,, for which the new estimator
outperforms the traditional NPE/M, when A fTs > C,. One also concludes that (/,
decreases as the signal-to-noise ratio increases, implying that this advantage is even

more pronounced at this higher SNR.

3.2.2 Phase Ambiguity Resolution

The problem of phase ambiguity is due to the multiplication of the received phase by
M, and then division in equations (3.4) and (3.8) by uM (recall that u =1 for the

NPE/M and u = 2 for the new estimator). To see why this problem occurs, consider
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a simple example where all angles are modilo 27 (=7 < angle < 7), and where ¢
is linear in time (See Figure 3.7). Multiplication of ¢ by 4, and subsequent division
by 4, results in the ¢’ shown. Since 4¢ is modulo 2, ¢' exists only in [—7/4,7/4).
Therefore, ¢' is no longer equal to gmod(2r) but rather to ¢mod(n/2). Notice
that this implies that ¢ = (¢' + 2rm /4)mod(2n), where m = 0,1,2,0r 3. The
above is an example of 4-fold phase ambiguity. A similar situation applies to both
phase error estimators. Essentially, the unknown phase (A0") is multiplied by M,
and then divided by uM. Hence, the phase that is being estimated is in reality
Af'mod(2r /uM), and not A6'mod(2r). This is intuitively satisfying, since close
examination of Figures 3.1 and 3.2 shows that the obtained esi!mates cannot assume
values outside —x/uM < A0 < T/uM (output of the arctangent operation must

liein [—m,m)). Therefore the estimate obtained can be written as

AG = (A0'mod(27 /uM) + émod(27/uM)) mod(27 /uM)
= (A6 + &)mod(2r/uM). (3.35)

The modulo 27 estimate (denoted Aé’a) is then a phase rotated version of A@',

where
2rm

A, = (A0 + W) mod(2) (3.36)
and where

m=0,1,2,3,...,or M= 1 &u=1 for the NPE/M
m =0,1,2,3,...,or 2M =1 & u= 2 for the NPE/MF.

Notice that the new estimator exhibits 2M-fold ambiguity, while the NPE/M ex-
hibits only M-fold phase ambiguity.

If the ambiguity is resolved correctly, then the variance results obtained in
the last section apply also to the estimate Ad', (i.e. VAR[AO',] = VAR[A®] =
VAR[6]). Once the estimate Af' is obtained, A8', is found from (3.36) by determin-

ing the value of m. This procedure is referred to as ambiguity resolution.
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Before analyzing the different resolution techniques, it will prove helpful to
see the effect of an ambiguons phase on a received symbol. To investigate this
situation, consider the &’th symbol output of the phase rotator of Figure 2.2, which
is referred to as the decision vector (DV). Since we are assuming no phase ambiguity
resolution, decisions are based on this DV. The phase rotator is a device which
rotates the input vector (zx + jyx) by an amount determined by the estimators
(M’ + ZwEfTs(k — 1 = N)). It will be assumed that there is no noise, and as a
result both estimators are exact, except for a possible phase ambiguity error which
is present after phase estimation. As will be shown in Chapter 4, the frequency

estimators do not suffer from ambiguity problems. Therefore,

Zh 4 gyl = /Esej(gLZn/M+A0’+21rAfTs(k—l-—N))e—j(ﬁ’+2r§j‘7‘s(k—l—N)).

We know from equations (3.35) and (3.36) that for this noiseless case,

AO = A0’ mod(2x [uM)
AY, = Ab0'mod(27)
= (Af'+ 2rmfuM)mod(2r)

and so

ol 4yl = /Esej(m-zw/M-;-(&3’+2mn/uM)mod(-zw)—A’(?')

— /E,qej(g‘2”/A1+2”1]‘/uM). (337)

The last equality holds since the mod(27) condition can be removed from the expo-
nential. If the transmitted symbol was g, = ¢, where ¢ = 0,1, 2,0r 3, then the DV
should have phase 27¢/M. However the phase ambiguity pushes the decision vector
by 2rm/uM, leading to an error if m is nonzero.

One difference between the two estimators is apparent at this point. First, let
us define the received signal constellation as the possible locations of the DV’s in the

(&}, yt) signal space, when noise is absent. For the NPE/M, the possible shifts of
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the decision vectors are multiples of 27 /A, and so the received signal constellation
retains its original shape, regardless the value of m (See Figure 3.8a). On the other
hand, for the NPE/MF the shifts are multiples of m/M. ‘The signal constellation
can therefore assume one of two shapes (Figure 3.8b). The expected constellation is
obtained for m = 0,2,4,0r 6, while a new suape is exhibited for 1 = 1,3,5, or 7.
When noise is considered (e), the overall effect is to rotate the the DV
randomly about their nominal location, shown in Figure 3.8. The pdf of this random
noise is easily determined by finding the marginal density of ¢4, from the joint pdf

of ¢ and py, given in equation (3.14). The result of this operation is

fq.(fk) = / fpk(k(Pl.,(L dpy,

C—Es/No
= { \/ \/7_rcosqoxp [——(os rk]
[1 + erf (\/W—ros q)]} -1 < <. (3.38)

A plot of this pdf is shown in Figure 3.9, for various £, /N,
The two methods of resolving phase ambiguity, namely by differential detection

and by unique word preambles, are analyzed below.

Differential Detection: In this first technique, the ambiguity resolution is re-
solved indirectly. First, the modulation is restriclted to be differentially colierent
PSK (DCPSK), where information is transmitted via phase changes rather than
absolute modulo 27 phases . Since the phase ambigunity error is constant for every
symbol within the observation window, it has no effect on the phase difference he-
tween two consecutive DV’s. For differentially coherent QPSK, for example, cach
input symbol corresponds to a specific phase change. Therefore, all input symbols
can be encoded in a phase change if an initial preamble symbol is sent. Such an
encoding scheme is specified in Table 3.1.

At the receiver, a corresponding decoding scheme is required. For the encoding

scheme of Table 3.1, the decoding scheme required is shown in Table 3.2. Decisions
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Table 3.1: Typical Encoding Scheme for QPSK System

Previous Encoded | Input | New Encoded
Symbol Symbol Symbol
0 0 3
0 | 1
0 2 0
0 3 2
1 0 0
1 1 2
1 2 1
] 3 3
2 0 1
2 1 3
2 2 2
2 3 0
3 0 2
3 l 0
3 2 3
3 3 |

-t
-1



Table 3.2: Typical Decoding Scheme for QPSK System

Previous Received | Current Received | Decoded
Symbol Symbol Symbol
0 0 2
0 1 1
0 2 3
0 3 0
1 0 0
1 i 2
1 2 1
1 3 3
2 0 3
2 ) 0
2 2 2
2 3 1
3 0 1
3 ] 3
3 2 0
3 3 2
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Figure 3.9: Plot of pdf of ¢, (for QPSK)

are made by means of a phase discriminator, and are based on the location of the DV
in the receiver signal space. A QPSK phase discriminator is shown in Figure 3.10.
The ML decision rule is as follows: decide transmitted symbol is g,, if DV fallc in
Region i. Notice that for QPSK (as well as for any other MPSK signalling format)
only the phase of the DV is important for decisions. For the moment, consider a
receiver using a NPE/M producing an estimate with ambignity m = 2. Furthermore,
assume that the signal-to-noise ratio is quite high (¢ = 0). As aresult of ambiguity,
two consecutive transmitted symbols (g, and g,41) are demodulated as (g, 4+2)mod(4)
and (gi4 +2)mod(4). Although the absolute values of the symbols are incorrect, the
relative difference hetween the two remains intact. That is, the output of decoder
is independent of m (c.g. decoder output is 3 il consecutive input symbols are (0,2
or (1,3) or (2,0) or (3,1)).

Special consideration must be given to the NPE/MF. Depending on the valne



Figure 3.10: Phase Discriminator for QPSK

of m, different phase discriminators may be required. When m is even, the phase
discriminator with characteristic shown in Figure 3.10 is appropriate. However when
m is odd, Figure 3.8 suggests that a 7/M shifted version is needed. Since the
state of m (m even or odd) is not known, the receiver does not know which phase
discriminator to apply when it first receives the data. To resolve this problem, the
state of m must be determined. For instance, if the state is known to be even,
then the phase dis riminator of Figure 3.10 can be used. Similarly, if the state
is known to be odd, then the DV’s can be phase rotated by an additional /M,
essentially adding a known phase ambiguity. After rotation, the resulting receiver
signal constellation must be one of the m even ones. Therefore, if the state can be
correctly determined, only a single phase discriminator is required.

The problem for the NPE/MF then reduces to determining the state of m.
Since this procedure uses random quantities, there is always a probability of making

an error. This event will be denoted as E, and its probability as Pg.

Pe = Pr[Deciding the wrong state of m]

= Pr[Decide m is even|m is odd]

Tl



Location of DV 1if m ts odd

Figure 3.11: Determining State of 1 (for QPSK)
= Pr[Decide m is odd |m is even).

To deterinine the state we examine the location of the (2N +1) received DV's. "The
phase of these vectors is randomly located anywhere on the received signal space.
Owing to noise, we see that each DV is rotated from its nominal point by an angle
€x, whose pdf is given by (3.38). This pdf suggests that the phase of the received DV
is likely to be close to the nominal point. As a result, if a received DV falls in one
of the the shaded regions of Figure 3.11, then it is likely that m is odd. Obviously
if € is large, then it is possible that noise has pushed the DV into this region, and
an error is made. To improve the chances of determining state, we examine the
location of all (2N + 1) received DV’s, and then apply a majority decision rule. If
more than N +1 DV’s fall into the shaded region, we say that i is odd. Otherwise,
we say that m is even. An error is made on a symbol if ¢4 is such that it pushes the

DV into a region with opposite m state. This event is denoted as A, where

A {n/2M < e < 3n[2M or 5n[2M < ei| < Tn/2M or ...
(2M = 3)m [2M < |ex| < (2M — 1)m [2M }.
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Given the pdf of ¢, Pi[A] can be casily evaluated by numerical integration. That

18,

p=PrlA] = Pr[r/2M <|) <3n/2M] + Pr[vn [2M < |} < Tx/2M] 4 -
+ Pr[(2M = 3)7/2M < lex] < (2M — 1)m[2M]). (3.39)

If more than N +1 out of the i DV’s result in event A, then a wrong decision about
state is made. This probability is given by
2N+1
Y~ Prlevent A oceurs for k DV’s]
k=N+1

i [N 41
2

Pg = Pr[E]

pH(1 = p)PNHI-k, (3.40)

k=N+1 k

The results for Pg as a function of K are shown in Figure 3.12.

Since Pg is rather small for E,/N, > hdB., we can safely assume that de-
termining the state will not affect the results of the decoding. Consequently, the
only difference between the two estimators is in the added processing required to
determine the state. One final note on differential detection for ambiguity resolution
is required. Namely, every symbol demodulation error gives rise to two transition
errors upon differential decoding. This results in an approximate doubling of the bit
error rale (BER) as compared to conventional PSK systems. Thus, if one wishes to
use DCPSK and obtain the same BER performance of a conventional PSK system,

the transmitted signal energy must be increased by about 3 dB..

Unique Word Preamble: The second method of ambiguity resolution entails
appending a small preamble to the observation window, which could then be used
to uniquely determine the value of m. Consider transmitting the symbol g = 0 in
a noiseless system. Depending on the value of m, the DV will land on one of its
uM possible locations (See Figure 3.8a and 3.8b). For instance, if the NPE/M is

employed and the DV has an angle of 7, then it is known that m = 2. Rotating the
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Figure 3.12: Probability of Incorrectly Determining State of m (for QPSK)
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vectors of the observation window by an additional —27m/uM would correct the
ambiguity problem, and allow for coherent detection.

Clearly, if phase noise is zero (¢, = 0), then a one symbol preamble is sufficient
to unequivocally determine the value of m for each observation window. Unfortu-
nately, the noise has the effect of rotating the DV’s about their nominal locations.
Consider the same example mentioned in the previous paragraph. The received DV
should fall somewhere in region 2. However, the noise may be such that it pushes
the DV into regions 0,1,0or 3. In either case, the phase noise causes a region error. In
addition, if the preamble includes only this symbol, then the wrong choice for m is
made, leading to an ambiguity resolution error. Since every symbol is corrupted by
independent noise, we could foresee transmitting an L symbol preamble per observa-
tion window, and choosing m on the basis of a majority decision, much as was done
to determine the state of m. For instance, consider sending an all zero preamble. If
the largest number of DV’s fall into region &, we can decide that m = k. The in-
crease in performance will be reflected in a decrease in the probability of ambiguity
resolution error (P4ang) for larger values of L.

In order to find expressions for Pypg, we make the following assumption -
random phase noise (¢;) is such that only adjacent region errors are permitted (i.e.
=3r /M < |ex| < 37 /M). This assumption is made quite often in the literature, and
seems quite acceptable for QPSK when E,/N, > 5dB.. Figure 3.9 implies that at
this SNR, ¢ is only significant for |ex] < /3.

The L symbol preamble is decoded by the ambiguity resolution device. Of
these L symbols, n. will have —7n/M < ¢, < m/M and will not produce a region
error, 1y will have 7/M < ¢, < 3r/M and will produce a region error, and n,; will
have —37/M < ¢ < —m/M also producing a region error. Since it was assumed
that only adjacent region errors are possible, |e] is never in [3x/M, 7). The value
of m will be determined correctly if n, > max(ne1, n.2). Note that correction is also

possible for n. = max{1ne,n.). However when we have this equality, the correct m
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is only chosen half the time, and so this case is not considered i the evaluation of
Psre. The final expression for the NPE/M is detived in Appendin Fand the pesnlt

is shown below.

L!
Pare = Z — Lyl gyt :NPE/M (3.41)
Nl
VILe<max(Mley Tley) o7 beT te2
where
p. = probability of a specific adjacent region error

/3W/M f ]
= A.r)dr. 3.42
/M fk( ) ( )

For the NPE/MF, the state of m is first required prior to applying the tech-
nique outlined ahove. Given the state is correctly determined (event 14), then
Pr[Ambiguity resolution error|E] is as found for the NPE/M. If the state is in-
correctly determined, then it will be assumed that an ambignity resolution error
definitely occurs - PriAmbiguity resolution error|E]} = 1. Consequently, by the total

probability theorem,

Pare = Pr{Ambiguity resolution error|E) Pr{E]
+ Pr[Ambiguity resolution error|E] Pr{E]

= Pr[Ambiguity resolution error|E}[1 = Pg] + Pr. (4.43)

Therefore,

P = ———r
ARE netrier Ing!

pler+iie(] 2];,)”"] (1-Pg)+ Pi :NPE/MF.
Yie<max(Ne1Mle2)

(3.44)

The results for Page for both estimators are shown in Figure 3.13 for two values of

Ey/N,, and for I{ =25. Givena channel SNR, these graphs can be used to determine

the required L to meet a probability of ambiguity resolution error specification.

It becomes apparent from the graphs that the two estimation techniques provide

essentially the same performance for small preamble lengths. The only drawback
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of our new estiiator is the added processing required to determine the state. Note
that at both levels of SNR, the curves begin to diverge as L is increased (for L > 8
at I5y /N, = 5dB. and for L > 6 at E,/N, = 15dB.) For these ranges of L, Pg in
equation (3.44) hecomes the dominant term. In fact, the Pg places a floor on the
minimum 4re which can be obtained for the NPE/MI—’.

Given an L and a K, the useful information throughput per observation win-

dow can be defined as follows

useful number of information symbols per observation window

Throughpnt = : -
total number of symbols per observation window

K—-L

K
The throughput reflects the fraction of the window which is used to transmit in-
formation, and should be kept as high as possible. Therefore, even though Psrg
decreases as L increases, this gain must be weighted against the corresponing loss
in throughput.
The probability of symbol error ( Ps) for coherent QPSK transmission is given

by [3],

Ps = erfc <\/Eb/No)

= 1.2x107? for Ey/N, = 5db.
= 1.8x 107"  for E,/N, = 15db.
Therefore for L > 10, Psrg is so low that it would have no effect on the symbol error

probability and as a result, such high values of L are not expected to be required.

3.2.3 Cycle Skipping

Cycle skipping is a phenomenon which has received a great deal of attention for
analog PLL type synchronizers [26]. On the other hand, cycle skipping for the

nonlinear phase estimator has only received minor consideration in the literature.
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The results which have been obtained were derived empirically, and thus they will
not be considered here [27, 28] Instead, the probability of cycle skipping (FPes) will
be found for both estimators, and then compared.

For nonlinear phase estimators, cycle skipping arises only when there are mul-
tiple estimates per burst. Essentially a cycle skip occurs when the value of m changes
from one observation window to another. If some form of ambiguity resolution is
used on a per window basis, then the value of 1n is known for every window, and no
cycle skipping may occur. As a result, cycle skipping could be avoided if one of the
two resolution techniques described in the last section were used for each window
(Sce Figure 3.14)

From this figure, one may conclude that a large portion of a burst may be
devoted to ambignity resolution if a preamble is appended to every observation
window. Therefore, we may inquire as to the probability of cycle skipping, given
that a preamble is used only for the first window in the burst. This implies that the
value of m determined for the first window is used to correct ambiguity resolution
for all subsequent windows (See Figure 3.15). To determine Pcg, we first assume
that the phases to be estimated are uncorrelated from one observation window to
another. This assumption is justified, particularly when we discuss the redefined
phase error Al Owing to the 27AfTs(l + N) term added to each A8 for every
observation window (equation (2.49)), each of the phases AY' can assume any value
in the interval [—x, 7). For convenience, let us also assume that these phases are
uniformly distributed. This assumption is made in much of the literature, and does
seem acceptable.

Therefore, the pdf of A®’ is

faer (AE') = -21_7r -7 <Af < 7. (3.45)

Lastly, assume that m was determined to be zero for the first window. The estimate
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for this window is therefore.
A1) = A1) + (1) (3.46)

where —mfuM < E(I'(l) < m/uM, and where the index denotes the window number.
Since me= 0, any subsequent estimate will also lie in [—7/uM,=/uM). For the
second window ¢ def (A0'(2) + 6(2)) can take any value. If —-mfuM < p < 7/uM,
then no cyele skip occurs since the value of m from window 1 is also valid for this
window. If ¢ is outside this range, then a cycle skip will occur. To solve for the
probability of this event, we need only find the pdf of the random variable . Since
AO" and § are independent, the pdf of their sum can be found by convolving their

respective pdf’s [29].

Jolr) = faer () * fg(x) (3.47)
where faer(r) is given by (3.45), and fg(x) is given by equation (3.24) for the
NPE/M and by equation (3.29) for the NPE/MF. We need to evaluate the following

integration

w/uM
/ fo(@)de. (3.48)

-mfuM
Therefore, we only require f,(x) inside the interval [~ /uM, 7 /uM). In this inter-

val,

r+mfuM |
fole) = [ S ste = A
1 a4nmfuM
- ‘_2;~/1"—1r/uhl Jg(e = A)dAr
I .
= 3 (3.49)

The probability of cycle skipping is equal to one minus the probability that ¢ is in

[=x/uM, x/ull). Therefore,
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Prlcycle skip|m = 0 for window 1] = | = Pr[-x/ud < ¢ < n/udl]

mjud ]
I - / .—-(IJ‘
Je-nfubl 2r

1

uM’

il

The same resnlt applies for all assumed m for window 1, and so

Pos = Prlcycle skip|m = 0 for window 1]
1
= | ——. 3.50
uM (3.50)

If modulation is QPSK, the probability of cycle skipping is 0.75 for the NPE/M
and 0.875 for our new estimator. Although the result is somewhat better for the
NPE/M, it remains too high to he acceptable. Consequently we have shown that
both estimators require ambiguity resolution for all windows. Since this would

ensure no cycle skips, neither estimator has an advantage.

3.3 Summary

When comparing the two estimators, the following points shonld be noted.

e In terms of cycle skipping, both estimators require ambiguity resolution for

every window, and so the two estimators both have P = 0.

o In terms of phase ambiguity resolution, the NPE/MF performs about, the
same as the NPE/M. However, it does require some additional processing to
determine the state of m (regardless which resolution technique is selected).
For resolution by unique word, the NPE/M shows an advantage for very large
L, but such large preambles are not expected to be required to meet the

specifications for Pare.

69



o In termsof variance, it has heen shown that the new estimator performs almost
as well as the NPE/M when Af = 0. However. it outperforms this same

estunator by a wide margin if a frequency error is present.

From the points listed above, we conclude that the NPE/MF seems to be

better suited for the burst-mode TDMA transmission scheme proposed.
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Chapter 4

Techniques for Frequency

Estimation

As mentioned in Chapter 2, the two open-loop methods for frequency error esti-
mation to be studied in this thesis include the least-squares frequency estimator
(LSFE) and the nonlinear frequency estimator (NFE). The analysis of the latter is
very similar to the analysis of the phase estimators presented in the last chapter,
and so the results will paralle]l those already shown. Since the same samples are to
be used for both frequency and phase synchronizers, the frequency estimate is to be

based on g and yx (I K k< 1+ K — 1), given by (3.1).

4.1 Presentation of Techniques

The LSFE has already been shown to be an approximation to the ML estiinate
of Af, under the condition that the estimate has small variance  The origing of
this technique can be traced back to Kay, who found the LSI'E for an unmodulated
signal corrupted by AWGN [30]. The results were than extended by a host of others,
including Bellini and Molinari, to cases with modulation [31].

With the samples as defined in (3.1), we see that because of redefinition, the
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20 [T M termn is multiplied by (=1 - N) rather than simply & (as was the case

when deriving the ML estimate). Adjusting equation (2.23) to take this redefinition
into acconnt,
ATy = SHRNE — 1= N)arg(zM)
T oMY RN k- 1= N)?
if__’,“l(k [ — N)Y(M)mod(2r)
M TR (e 1= N2

The modulo operation is required since the argument of =M is restricted.

To show that this estimator is in fact a LSFE, we examine (M)mod(27).

(M )mod(2r) = (MQ2rAfTs(k =1~ N) — gi2n/M + e, + A0'))mod(27)
= (2rAfTs(k —=1— N)M + Me, + MAG )mod(2r).

These (M )mod(2n) can be considered random points about a straight line with

slope 2rAfM. Consequently, from [13], an estimate of the slope of this line is given

by
ZH'" Yk = 1= N)( M )mod(2r)
i} A -
27r fM 71s {+l‘—](lv l_ N)z
and so
AST TR 1k = 1 = N)(Mpy)mod(27)
5 = )

2rM NNk -1~ N)2
Notice that this equation agrees exactly with that of the ML estimate of A fT.
To proceed, we expand the summation in the denominator. Therefore
K71 = TNk — 1 — N)(M1py)mod(2r)
i Z,TML‘LU_‘Z;Q

T k-1 - )(M?/)k)mod('lvr) (4.1)
= TMEK(K? 1) '

From this equation, the block diagram of Figure 4.1 becomes obvious.

We can now expand oy as (2rAf(k -1 — N)Ts + e, + A8'), and substitute
this in equation (4.1).
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AfTs = - k=1 — NY2rAf(k—1— N)MTs + M,
ITs TMK(K?—1) LZ::,( J2rAf( JMTs + M
+M A0 Ymod(27)
6 +R -1

B WA/]K(]"Z - ]) ; ((k —i- N)(ZWAf(k — 1= N)/WT-*' + M‘k)lil()(](zﬁ)
+(k =1 = N)(MAO )mod(2r))
6 I+ K -1

TIME(K? 1) STk=1— N)2rAf(k=1— N)MTs+ Mo )mod(2r)(4.2)

k=

Even though the (Mx)mod(2r) are dependent on the phase error, from equation
(4.2) we see that the estimate of the normalized frequency error is not. Amazingly,
symmetric windows remove the dependence on A@'. Therefore, this implies that,
the ML estimate of frequency reduces to the LSF estimate not only in cases where
A6 = 0, but in any and every case, provided the samples are symmetrically redefined.

At this point, we will assume that (M )mod(27) has no phase jumps. There
fore, M1, is restricted to [—, 7), and so we can remove the mod(27) operation. A

discussion about the validity of this assumption appears at the end of this section.
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Feaquation (4.2} reduces to

o 6M Hh 2 M‘—]A [ - N
T. = - — N)*In FTs el J
1Ty TR kzzjl(l | — N)urAjTs + f‘:‘,( )éx
6 l+l\—]
ITs 4 Ty & Na (4:3)

This is the equation which will be used to determine the moments of A F'Ts.

In contrast, the NFE (Figure 4.2) operates on a totally different principle.
Essentially, the frequency error is converted to a constant phase error by some
noulinear operation. First, the samples are passed through a rectangular-to-polar
conversion block (again) . Then the phase is multiplied by M while the magnitude
undergoes some nonlinear transformation (p3()). The use of ps reflects the fact that
this operation need not be the same as that used by either phase estimator. The

tesultis then converted back into rectangular form yielding .Yy, where

.1’,(. = ]);3(/)k)€JM ?/)k

ps(p) cos(Mipr) + jps(pr) sin(Mapy). (4.4)

A second operation is then performed on Vg, in order to generate samples X'} which
are dependent only on 27 A fTsM and noise. To determine this operation, consider

two consecntive Ug’s. That is,

ll;k —= p;(pk)(’J(Z’YAITS(L_I—N)JW+MAGI+M(.L)

Nigr = pa(pigy ! CrAITShk=l=NIM 420 A TSM+MAC'+MEL )
Notice that a suitable V7 could be obtained by multiplying Viy,41 with the complex
conjugate of Vo, . The result of this multiplication is,

.1':,’ = ’1';+2r‘1'l+27'+1

]):3('(,1+2r)1,,}(p1+2r+1)el(zﬁAfTSh1+Alfl+2r+l"A”tH-Zr) 0<r<N. (4.5)

i

Sinee 20 A fTsM can be treated as a constant for all r, we can use an averaging

technique similar to the one used for the phase estimators. Namely
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Nonlinearity

Ty D )
" Rectangular . Mo Polar to i
to Polar Hectangular D D 8] D D n Al 1A 8}
Yi_lconversion [ Vi XM Converston
Multiplies . . . .
Vg2 | Vi -4 Vi bt X, Ao Ul v
X x x x
X =R[]
Y = 3]
D is a one symbol delay
— Denotes complex Y e

+ Denotes complex conjugate \‘/‘

»
ix by

T;rlx"\“h\ll (YN} £;I I

Figure 4.2: Nonlinear Frequency Estimator
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","7 Efl:ul 7”!(/’!+2r)7”l(pl+2r+l )FUS(MHH-“ - Mfl+2v)

N1 .
& 505 paleigarIpa(pigar 1) sin (Megary 1 = Mugay)

— 1 .

AfTs = AfTs + —-— arctan — (4 4)
” anM L N paleigar )ps(pigzeg 1) s (Merpa 1 = Metgay)

= AfTs+ degradation{py, ¢y for L < k<14 KN - 1) (17)

Notice that equation (4.6) bears a strong similarity to equation (3.6) for the NPE/MF.

As with the phase estimators, expressions for the total processing time can
also be obtained. Note that the NFE has a complex conjugate operation, which

can be combined with the complex multiplication operation ((e + jb)(c -+ yd)* =



(ac+bd) + 3(be — ad)). Therefore, the total processing times are shown below

Tp = (K= 1)Ty+ (K + )Ty + Ty :LSFE
Te = (2K -~ 4Ty 4+ 2KTy + 2T :NFE

4.2 Comparison of Techniques

4.2.1 Moment Analysis

For the LSFE, the moment analysis is straightforward. The mean of Lﬁ'Ts is

calculated below.

o 6 14+ K ~1
E[AFTs] = E|AfTs+ —m—— S (k== N)es
T AK(K?T 1) §
6 +K =1
= Affs‘*'m § (k—l—-N)E[q]
= AfTs. (4.8)

The last step is possible since the expected value of random variable ¢, is zero.
Equation (4.8) suggests that the LSFE is unbiased. Owing to results which will be

presented later, we do not state this with certainty. The variance of the estimate is

VAR[AFTs] = E[(AFTs - AfTs)}

36 l+ 1 1+K -1 '
= TR El_ 2 (k—=1— N)ex ; (j = 1—=N)e,
3 H4KN~-114K-
= = ]\,2 g g (k=1=N)(j =1~ N)E[exe;]
T Tk (}3\6 —-1)2 i k—1=N)o¢
L - (4.9)

K (K% - 1)
where o is the variance of each of the ;. This variance can be found from numerical

integration of fe, (¢x). Substitution into (4.9) would then give us the desiied quantity.
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A plot of this variance for various Fy /N, is shown in Figure 1.3, The graph also shows
a plot of the CRLB, and as expected, the LSFE has a variance very close to this
bound. Note that this ensures that the variance is sinall, and so the approximation
made in Chapter 2 (Af ~ Af) is justified.

To determine the variance of the NFE, we return to the analysis techmigue

presented in Chapter 3. First, the degradation is defined as

1 ¢~N-1 )
N = 2r 2r 5 M . - M 2r
arctan |:IIVZT_0 P3(pi+2:)P3(pra2rs1) S0 (Meqpar gy €2 )_ |

]
% ZN3 pa(praar)pa(pryarsn) cos (Magargn — Mayay)

2rM
Again the CLT is invoked and both the numerator and denominator of the arctan-
gent function are treated as Gaussian random variables, denoted respectively as €

and 7. Therefore,

6 = 271']/\/[ arctan [%] (1.10)
1 N-1

£ = N Y~ Pa(prrar )Ps(prezesr) sin (Merg e — M) (4.11)
r=0
1 N=-1

=N 3" ps(prgar)s(praaesa) cos (M gy o = Mayy) (4.12)
r=0

The moments of £ and 5 are found in Appendix C. The results are

pe = 0 (1.13)
, _ ElpP(p)]  E’[ps*(p) cos(2M¢)]
062 = 9N - IN (1.14)
py = E’[pa(p)cos(Md)] (1.15)
. E¥[ps2(p)] = E*[pa(p) cos(2Mc)]  E*{pa(p) cos(M ()] .
0',2) = 9N + oN - N (1.16)
COVIe,n] = 0. (4.17)

The pdf of § is found to be

2 a? cos? (2n M 6)
f6(6) - Mr"l‘q’/?d,' i 0710(2 1+ Hn \/; . 5 [4 3 4
a?, sin? (2rM &) + o cos? (2nM6) Via, oy smé (2nMb) 4 af cos? (2nMb)

ptn? a? cos? (27 M §) U n'z cos? (2nM )
exp o 1+erf > B
202 o sin? (2rM6) + ﬂg cos? (2rMé) V2ay \[ afsin? (2nME) + a7 cos? (2nMb)

-1/eM < &1 2M {4 18)
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where ge,, o, and a¢ are defined in equations (4.14) to (4.16).

The mean and vatiance of AFTs can be obtained by noting that
AFTs = AfTe+ 6.
Therefore,

BIAFTs) = AJTs + E[f]

= A_ITS .

Consequently, the variance of .&7’7’5 is equal to the variance of §. This latter variance
can he determined by numerically integrating :n""f(g(;z:) over the entire range of 6.
Recall that the three terms p,), a‘fl, and a"é are given by equations((3.32)-(3.34)).
Numerical results are obtained only for the case p3(p) = p° . The variance is shown
in Figure 4.4,

A side-by-side comparison of the two estimators is shown in Figure 4.5, for
observation window lengths of 15 and 45.

In terms of variance, the better estimator seems obvious, since Figure 4.5
sugpgests an advantage for the LSFE (by almost three orders of magnitude). However,
these results are somewhat misleading since much of this advantage is often lost.
Recall that in deriving the LSF estimate, we assumed that the Mlﬁk(d;j W) did not
exhibit phase jumps. However, this assumption is violated for most systems. Over
the entire observation window, the phase ;' changes by about 27 A fTsM K. Even
if AfTs is small, the multiplication by K M will almost always ensure at least one
phase jump. When phase jumps do occur, the " must be corrected prior to using
the technique of Figure 4.1 (See Figure 4.6). Unfortunately the noise in the ;' can
be so large (Mc,), that no correction procedure is full proof.

To examine the effects of an incorrect 2r phase jump, consider a single error

for symbol & = I+ K — 1 (last symbol in window). The estimator of Figure 4.1
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produces an estimate A fT's based on v}, ,_,, where

o 6 I+ K -1
Ty = s L= Ny,
AT = R @ (k== Ny

. + .
On the other hand, the true LSFE requires the sample 9, ;. _,—2r, and this true

estimate is given by
6 14K -1

6
MrK(K?-1) g_;, (k=
+ 6

I+ .
S v e (I

Ef TS‘ Jtrue

= AT yRm T

We see that the estimate obtained by Figure 4.1 is not correct, since it is off by
6/(MK(K + 1)) . For this simple example, the moments of AFTy are evaluated

below.

6

E[AFTs) = AfTs + m
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5
MK(K = 1)

VAR[AFTS] = VAR |AFTs . +

VAR[AFTs o).

Therefore, a single incorrect phase jump produces a biased estimate. Since biased

estimators are Lo be avoided |, the attractiveness of this technique is greatly reduced.

4.2.2 Other Considerations

We recall from Chapter 3 that the phase estimators had an a ambiguity resolution
problem. Since the NFE uses a technique very similar to the nonlinear phase esti-
mators, there is a question concerning possible ambiguity of AJTs. The value of

the estimate is repeated below

¥ Zf]__._ol Pa(pit2r )3 (Pryarsr )sin QrA fTsM + Meayorq — Megar)
1 SN i (pra2e)palisar 1 Veos 2 A fTSM + Maygarsr — Mugar)

2#577‘5/” = arctan

Since the arctangent function is modulo-27, the estimate of A fTs becomes modulo
(1/M), where —1/2M < AfTs < 1/2M. If the actual frequency error (AfTs) can
take a value outside this range, then ambiguity problems can occur. For QPSK this
range evaluates to —1/8 < AfTs < 1/8. Considering that we restricted |A fTs| to

he less than 0.1, we sec that there is no ambiguity problem.

4.3 Summary

From the analysis of this chapter, we conclude that the NFE seems better suited
for frequency error estimation, than does the LSFE of Figure 4.1. Although the
latter has a lower variance, its output is likely to be biased, rendering the estimate

ineffective. Therefore, for our particular TDMA scheme, the NFE should be selected.
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Chapter 5

Conclusions and Suggestions for

Further Research

5.1 Conclusions

The major ohjective of this research was to propose fast and efficient phase error
and frequency error estimation techniques. To do so, we studied the ML estimate

and made three conclusions.
e ML estimation is achieved from the sampled received signal.
o Observation windows should be symmetric for minimum phase error varianee.
e Nonlinear estimation can be considered a sub-class of ML estimation.

The techniques presented in this thesis are all open-loop digital topologies. For
phase estimation, the existing Viterbi and Viterbi synchronizer (which we renamed
as the NPE/M) was analyzed and compared to a new estimator , the NPE/MF.
The new estimator was shown to possess a marked advantage in terms of variance,
when a frequency error is present. Even in cases where Af = 0, the variance of the

new estimator is comparable to that of the NPE/M.
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The two techniques were also contrasted for two additional criteria. The ac-
cepted methods of phase ambiguity resolution were presented and applied to each of
the synchronizers. Except for some additional processing required by the NPE/MF
to determine the state of m, the two estimators exhibited similar perferimances. For
ambiguity resolution by unique word preambles, expressions for P4rg were obtained.
Plots suggest an advantage for the NPE/M for large preamble sizes (L). However,
as was mentioned, it may not be necessary to require such large L, and so this ad-
vantage rarely manifests itself. The estimators were also compared in terms of cycle
skipping. The probability of cycle skipping was determined and shown to be high
for both estimators (for QPSK: Pps = 0.75 for the NPE/M and Pgs = 0.875 for
the NPE/MF). Consequently, we established that ambiguity resolution is required
for cach window within a burst, effectively eliminating any chance of cycle skipping.
On the basis of these findings, we concluded that the NPE/MF is better suited for
TDMA burst-mode communications.

For frequency estimation, it was shown that the LSFE is in fact the ML esti-
mate of A S if (M) mod(27) exlibits no phase jumps. In such a case, the resulting
estimator is efficient, even for relatively small observation window sizes. Unfor-
tunately, the no phase jump condition is easily violated by most communication
systems. Therefore, the estimate obtained by the LSFE of Figure 4.1 becomes bi-
ased, and as a result it is no longer efficient. Consequently, a nonlinear frequency
estimator was propused and shown to be unbiased. Although its variance is high,
in comparison to that of the LSFE, it is expected that this may be the lesser of two
evils. That is, the bias of the estimators is more significant than their variance.

In regards to the general receiver of Figure 2.2, we suggest using the NPE/MF
and the NFE in tandem. Since the performance of these estimators is as good or
better than the currently existing estimation techniques, the performance of the

overall receiver should be improved.



5.2 Suggestions for Further Research

The major results of this thesis clearly show the reasons for selecting the NPE/ME
over the NPE/M and the NFE over the LSFE. However, this conclusion is hased
solely on a theoretical analysis. Therefore, before any definitive conclusions can
be made more work must be undertaken. The aspects which remain to be studied

include:

Simulation To get a complete comparison in terms of variance, ambiguity, efe.
simulation results are Lo be studied. Initially, the channel model used in
the thesis should be simulated to justify the theoretical results. Afterwards,
the model may be expanded to include effects sueh as digital quantization of

sampled signals, fading, efe..

Bandlimited Channels The results presented in this report are applicable to

channels with infinite bandwidth. Since bandlimitation can introduce IS,
the effects of this form of interference should be studied. This 1S will inval
idate the assumption of Gaussian noise (N} and NJ) in equations (2.24) and
(2.25), which will then alter the joint pdf of pi,cp given in (3.14). The ISI
would further introduce dependence between the .Uy, making our method of

variance analysis unapplicable. Therefore, a new method for determining the

moments of the estimates would have to be obtained.

Gliding Window Accumulator All estimators considered in this work were of
the block type. That is, every unique block of & symbols was used to deter-
mine A0’ and Af. 1t is possible to convert each of these into a gliding version,
where each new input sample is used with the previous K — 1 to obtain AY
and Af. This technique offers excellent tracking capabilitics, but has large
processing time. For such estimators, the probability of cycle skipping would
become a very important performance measure. However, since the phases

in each window would be correlated, the cycle skipping analysis proposed in
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this thesis would have to be extended (recall that we assumed uncorrelated
phase errors per window). There is also a good chance that these gliding type

estimators may require new performance measures.

Nonlinearities p;(p), p2(p),p3(p) For all three nonlinear estimators, these nonlin-
carities were chosen such that pi(p) = p2(p) = ps(p) = p° = 1. Generally, it
is possible Lo select thesc nonlinearities in order to minimize the variance, as
was shown in [18]. It is very diflicult to determine this optimum nonlinearity
analytically since we have no explicit expression for the variance of the three
estimators (all our variance results were obtained from numerical integration).
Therefore, before proceeding with the optimization problem, expressions for
the variance of the estimators as a function of signal-to-noise ratio and ob-
servalion window size (K) must be obtained. One may have to resort to a

two-dimensional curve fitting.
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Appendix A

Derivation of the Time
Continuous Likelihood Function

for White Gaussian Noise

The likelihood funetion is derived in [14] from classical estimation theory, and for a

discrete set of observations. Given a setl of received observations
re=5(A)+n 1=1,2,3.. K (A.1)

the likelihood function L(7,A) is defined as leA(r|A). In the above, » = 11,0, 7]
denotes the vector of received observations, A represents the unknown parameters
to be estimated, and the n; denote sample values of independent. Gaussian random

noise with mean zero and variance N,/2. Therefore,

L(r, A) = [R,4(r|A). (A-2)

To proceed, we notice that

E[R,]A] = 5.(4)

VAR[R|A] = VAR[N]= N,/
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Owing to the form of the 12,7 we conelude that they are Ganssian and independent

for different 2. Therefore,

1
flf.lA(T‘IA) = \/—7r_/\/0

. < 2
exp [_lv. ;;U(A)l]’

and, as a result

\/‘_N_ exp [_“_—L(i)ﬁ] (A.3)

N
JRiA(T|A) = I_I N,

= (WN])A/IQXP[ atzl:lu—-. ] . (A.4)
The ML estimate of A corresponds to the A which maximizes L(,A4). Notice
that the factor 1/(xN,)"/? has no effect on this maximization, and can therefore be
excluded from further consideration. The likelihood function can then be redefined

s

.
L(r, A) = exp [—-lé— Sy - .S',(A)|2] : (A.5)

0 1=1

The problem is now to apply equation (A.5) to time continuous signals
r(t) = s(t, A) + n(t)

where n(1) is a sample function of a white Gaussian noise process with mean zero
and autocorrelation E[N(1)N(A)] = (N,/2)é(t — A). To do this, we use the concept

of random series expansion. That is, we refer to random process R(t) by

_ Lim.$ Z R.i(t (A.6)

where # is in observation window, and where 1.i.m. refers to the limit in the mean. In
addition, the ¢;(t) refer to a complete orthonormal set of expansion functions. The
R.’s can be used to completely describe the random process R(t). Unfortunately, an
infinite number is required for exact representation. For the moment, limit the ex-
pansion to only I{' terms, producing a vector Ry = [Ry, R,,. .., Rx]. Furthermore,
denote the random process that uses this limited expansion as Ry (t). When Ry (2)

is represented by Ry, the problem is essentially a classical estimation problem.
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Denote the N series expansion of 1) (1), where

I
INOED A Pl (A7)

1=1

where the R, are found by

R, = / Nedl 1= 1.2.. . k.

Similarly, K term expansions of s(f, A) and N(1) can be found.

K
3 5,(A)B(1) 1T s,
1=1

S,(A) =/T s(LA)GNE = 1,2 K,

ob

Z Nd) Y ubh

N, = / N(t)e,(1)dt = 1,2,.. N

.Q/\'(i, A)

H

=
“,
—
—~
~——
i

The above can be used to relate R, to S,(A) and N,.

R, = /1 R(1)du(t)dt
- [l".(s(f,A)-FN(I))(/)( )t
= S(A)+ N,

Ideally, the orthonormal expansion functions should be sclected so that the N, are
uncorrelated. Since the random noise process is white Gaussian, this condition is
satisfied for any set of ¢,(¢). Therefore,
E[N] = E[N({)=0 (A.8)
VAR[N] = E [/ (1)l (u/ N (A (M)A

- /7 /, E[N(1)N (A)]dh(£) doa(A)dtdA
= N,/2 (A.9)
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This would then nply that E[F,]A] = S,(Aj and VAR[FJA] = N,/2. The likeli-

hood function for the Ky can then be written direetly from (AL5).

] A
L(rk, A) = exp [—A—,Zh, ~.S',(A)|‘]. (A.10)
0 1=
From Parseval’s theorem,
l" . ¥
er-,—.S',-(A)V:/r () = sie(t, A)[dt
1=1 obe
and so

N
Z|R,-.S’,~(A)|"'=/T IR (1) — s (t, A)|dt.
1=} ob+

Taking the limit in the mean as K — oo, yields

. N i
',;';‘Q'ZIR,—.S'.(A)I" = Kim, [ IRk(2) - skt A)Pde
= obe

= /n |R(t) — s(t, A)|dL.

In terms of sample processes, we can write (A.5) in the required time continuos

form. Namely

L(r(t), A) = exp [——jg]—/r 5 [#(t) — s(t, A)[*dt] . (A.11)
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Appendix B

Derivation of Equation (2.18) for
General v

The starting point of this derivation is equation (2.17), found by setting the deriva
tive of the log-likelihood function to zero and substituting the approximations of the
hyperbolic functions. The equation is repeated helow:

— )
I+ -1 M/2-1 (izSR[e-JM —su2n/M, L]) (%}}R[c—mocﬁu‘l"//\l:k])
_+.

k=l  u=0 I 3!
(z(‘ [ A8, ~ju2n/M ] °
22 Ple=180g—juln zk> .
No 207y .
+ 5 [qu [ .—JA0 —)ulrr/M ]] = 0. (};l)

The solution of the above equation can be found for all M.

BPSK - M =2: Substituting M = 2 into (B.1), and using only the first term i

the infinite sum,

+K -1 2(‘2

Z e

Rle —wu]}[” 3Bz = 0

0

PR [e 122,370 2] 0.

>

k=l

7]
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. e I
Define uy, ‘Y =180, LY ay + jby. Therefore,

(B
Z aphy = 0.
k={
By expanding u?,

up = ai - b} + 2ja,by,

we note that

S[uil
D = .
.0y 2
Applying this result,
I‘Hil Sujl
k=l 2
I+ -1 e~
Z ‘:Y[C—JZABZA.Z] —
k=l
o~ 1+ -1
3 [e—J-on Z [zk'z]J -
K- 1+1\-1
cos(240) 5 J{z?] - sin(240) Z Rlz =

k=l

Z\g 1 4+ K -~1 w.\[ 2]
= - arct :
5 arctan [Z’H‘ 3 %[~k2]]

Solving for Z\O,

QPSK - M = 4: Equation (B.1) reduces to

+K-1 1 ‘ 2C. nYY —ju2nf4, 1\3
ool [CC R R A il
[2]5’23[ —JA0 —Ju27r/4zL]] =0
Therefore,
(B | ' Y 3 — EYad
20", ~15b,, (2(-2) 13 ;&8 [262(\ ~ja8 ]
kz=:1 [N Re™2%2z} + N, 651‘ [e77%%2] A S22 )| -

o

k=l
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A=l ¢
g2, () L [X2a) - o
k=l NO ¢ Nu Gk V “ - ’

After multiplication and some reduction, we are left with

4K -1 ‘
Y akby(af — b)) = 0.
k=l
Consider uj,
up = uiul
= (a} = bp + 25axb)(a? = b2 + 2ja,bp)
= (a}=b2)? - 4}l + japby(al - b}).
Therefore,
Y 14
awbr(aZ = b?) = “[4“*]
and
l+K -1
> Q] =0.
k=
—JAO

Replacing ux by e 2. and solving for AD results in

—

l+l\ 1(\[., 4]
2l+l\ ]%[~k4]

——

Al =

(B.3)

—arctan
4 [

General M: A similar result is obtained for M = 8 and for M = 16, and so by

induction, equations (B.2) and (B.3) can be extended for all M. The result is

— 1 I+ - 1(3[,, M]
A = Marctan [Zl_”‘ TRk M]} . (B.4)
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Appendix C

Derivation of the moments of ¢
and n for NPE/M, NPE/MF, and
NFE

The moments for these random variables must be calculated for three estimators:
1. NPE/M
2. NPE/MF‘

3. NFE.

NPE/M: For this estimator,

] 4K -1 .
¢ = = X mlp)sinrAfTs(k =1 = N)M + Mey)
k=l
def ] +K -1
of = A(k) (C.1)
K E‘,
1 4K -1
N = F z pl(pk)(‘OS('zﬂAqu(k—l—N)M+Mfk)
k={
de 1 I+K -1
= = X Bk (C.2)

k=l
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The moments of A(k) and B(k) are shown below.

pa(k) = E[A(K)] = E[pi(pe) sin (20 fTs(h = 1= N)M + M)
= Elp (o) sin 27 A[fTs(k — 1 = N)M)cos (Mey)
+ pulon)cos (2mA [Tk — 1 = NYM)sin (M)
= sin 2rAfTs(k — 1 = NYM)E[pi(pi) cos (M)
+ cos (2rAfTs(k — 1 = NYM)E[p(p)sin (M¢,)]. (C.3)
Owing to the independence of the random variables, we can drop the subseript &
in the expectations (this will be done for all expectations in this appendix). In

addition, E[py(pr) sin (Me¢)] evaluates to zero. In fact, for general nonlinearity ¢(p)

and even R,
Elg(p)sin (R)] = [ [ g(p)sin (Re).c(p,e)dedy

co pn 2 0S8
= /0 /;ng(p) sin (Rf)wlf)\/o exp [—-p——— + —@—(—0—”— - ;} dedp

No * \[N,/2
= [l _p
= /0 (J(p)wNonp[ N, 2]*

/1r sin (Re) exp VP Cose dudp
- v/ No/2

= 0.
The last equality holds since
sin (Rf)e‘ﬁ”“’“/\/ﬁ;ﬁ = —~sin (—-Rf)c\/‘—"’m‘(“)/\/m.
Using this result in (C.3) yields
pa(k) =sin (2eAfTs(k — 1 = N)M)E[p(p) cos (M )] (C.4)
Similarly,
oh(k) = E[A*(k) - E’[A(K)]
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and
(k)
ag(k)
E[A(k), B(k))

Blp 2 (pr)sin? A fTs(k — 1= NYM + Me))

~E*[A(k))
Em®(py)]  Elpi*{pe) cos (4nA fT5(k = 1= N)M +2Mey)]

2 2

~E*[A{k)]

Elm?(p)] _E[pi*(p)cos (2Me)] cos (4n A fTs(k ~ 1 - N)M)

2 2
—sin? (2rAfTs(k =1 — NYM)E?*[p,(p) cos (Me)) (C.5)
= E[B(k)]
= Elpi(pc)cos 2rAfTs(k -1 — N)M + Me,)]
= E[pi(p)cos (Me)|cos (2rAfTs(k — 1 — N)M) (C.6)

= El[p(pi) cos® @nAfTs(k — I — N)M + Mex)] — EX[B(k)]
Elp:%(p)) 4 E[pi*(p) cos (2M€)]cos (47AfTs(k — |~ N)M)

2 2
— cos? (21 A fTs(k — 1 — NYM)E*[p; (p) cos (Me)) (C.7)

= Elpi(p)sin(2rAfTs(k -1 — NYM + Me)

pi{px) cos(2rAfTs(k —1 — N)M + Me)]
E[pi3(pi) sin(4rAfTs(k =1 — N)M + 2Me,.))
2

sin(4rA fTs(k — 1 = N)M). (C.8)

E[p:?(p) cos(2M¢)]
2

If we note that all samples for & and j are independent, then the moments of ¢ and

n can be easily determined.

1 +K -1

pe=Elf] = & 3 pa(k)

it=El¢ =

k=l
E[pi(p) cos (Me)) HE?

- - > sin(2rAfTs(k—1— N)M)
K k=l

= 0 (€.9)

1 I+ NK-1 I+Kh -1 .
7(_’E Y Ak Y AQG)
k=!

J:l
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l +Rh =11+ h -1

= = > 5_‘ E[A(A)A()
A=l =l

-
1 I+ A -1 I+ K -1
= 15 ; E[A*(K)] + E[A(K)] Y E[A()]
= 1=
L 3#h R
} k- 3 . 1+h-1 .
=L E[A*(R)] + E[A(K)] D E[AQ)] - EHA(K)]
1 {4+ -1 -. l
= LZ{ o4 (k)
E[pi*(p)] _ E[pi?(p) cos (2M )] !
= T cos (4rA fTs(k— L — N)M)
2K 2IC? Z‘, s(
_E*fpi(p) cos (Mo)] _ EXfpi(p) cos (Mo)] |
2K 212
+K-1
> cos(dnAfTs(k—1— N)M). (C.10)
k=i

The finite summation can be evaluated using equation (1.342.1) in [32], and the

result is shown below.

l+l\'—] . . ’
sin (2KrA fTsM)
os (47 A fTs(k — | — _ sinl
kz::, cos (4mASTs( N)M) sin (2nD [ Ta M)
YRS EMASTS) . (C.11)

The final expression for o2 is given b
13

2 _ E[p®(p)] _ Elpi*(p) cos (2Me)]

% 2K QI S @MASTs) -
2
E b)l(p?c?S(Mf)]ll C(MA[TS)] . (C.12)
2K

In a similar manner,

1 +K -1
py=Ell = — > wa(k)

I( k=l

, +h -1
= Elodeos NS o (amd 5tk — 1 N )
k=l
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= E[p(p)cos (Me))Sy (MAJTS) (C.13)

Urf = E[(’?“/‘u)zl
1+ -1 I+h-1
= BT L (B0 a3 (BG)= k(i)
k= =
{+K-1
= a0 X (BB - ko)) + BIB(E) - o (b
I+K -1
Y- EIB() - 1s(5)]
1=1
1#k
1 {+K-1 i
= Z og(k)
=l
. E[l;llz‘ ﬂ)] E[pl p)zclo" ZME)] (ZMAfTs) _
B ["‘(”2;\"“ MOl 4 s 2MA TS ) (C.14)
1 [+N -~ | A1
COVp¢ = E ™ ; (B(k)~ pa(k)) ZI (A(J')-uA(J'))]
1+N-1
= 5 X BB~ kal)(AC) - kalk)] + EIBH) — palh)] o
+h -1
Y. E[A() = p8(j)) = E[B(k) — ps(k)]E[A(k) — #A(k)]}
=l
1 +K-1
= 7 L [EBOAE] - ks(k)ua(b)]
_ 1 [EW(/») cos(2Me)] _ E[p(p) cos(Me)]
= e 2 2
4+ K -1
Y sin(drAfTs(k — [ - N)M)
k=l
= 0 (C.15)

This last result implies that € and 7 are uncorrelated. This fact also establishes

their independence, which was required for the application of the CLT.
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NPE/MF: For the nonlinear phase estimator with modulation and {requency
error removal,

R
6 = N+ 1 Zpl pl+r)]’2(/’l+l\ -r— l)ﬂll(‘”t(.H -} ”(1”\ ' - ])

= N+]ZA(7 (C.16)

r—O

i
T = N¥1 Z]’2(Pl+r)7’2(/’l+l\ e} cos (Mepg, + Mgpnpoy)

r—O

= N+1ZB(’ (C17)

r=0
For this estimator, special consideration is given for the » = N term in the sums
(the middle symbol of the observation window). All A(7) and B(r) (r #£ N), are
a function of four random variables — pir, pran —re1) €igr ki —r—1. However, the

term in question is a function of only two, py, en, and consequently this affects the

derivation of the moments. The moments of A(7) and B(r) are given helow,

pa(r) =10 r#N
L0 r=N
() = PE?[p;’(p)] _ E’[pz'l(/));os CL20) R
Elp'(p)] _Elpa*(p)cos (4Mq))
L 2 2
un(r) = [E*[p(p) cos(Me)] r# N
| E[p2*(p) cos(2M ¢))] r=N
(E2[p,2(p)] 2[n,2(p) cos (2M € 4
) = [, Boeos YO gy gy g
E[pz:(p)] + Elpa"(r) ;OS (aMc)] — E*[p,*(p) cos (2M )] r=N

The moments of ¢ and 7 are determined to be,
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. NEpA(p)] = NE[pa(p) cos (2M )] + Elp.*(p))

= 4 2(N +1)2
_Elp, 2((/)/3/ r:sl()tM )] (C.19)
= NE?[py(p) cos (M(f[)\} 1 113)[;)22(,0) cos (2M€)] (C.20)
o = NE*[p*(p)] + NE*[p,*(p) cos (2M )] = 2NE*[p;(p) cos (Me)]
" 2N +1)?
B )]+ B p)es ML 20 ) s M) (o

CoOvp,é = 0.

NFE: For the nonlinecar frequency estimator, 7 and £ are as defined below:

=
.

P3(pis2r )P3(pryarsr) sin (Merargr — Mergar)

5]

=

4
N
<
<

(C.22)

.,,
I
(=)

=
L

N o= Pa(pig2r)P3(prgarsr) cos (Mepargr — Mergy)

Tit

2= 2= zZ|- z=|-

o
—

=
N’

(C.23)

-
il
=]

The moments of A(r) and B(r) are given below:

= 0

)
1y = Ello)] _ Elpa(p)cos(2Me)]
2 2
)
)

= E2fp(p) cos(Mo)]
E*ln*(p)] | E'lpa’(p) cos(2M )]
2 7

— E*[ps(p) cos(Me)].

The moments of £ and 7 are shown below:

e = 0 (C.24)

2 _ Em’(p)]  E*[ps’(p) cos(2M¢))
2N 9N

(C.25)
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ty = Elm{p) cos(M )] (C.26)

ol = E.z[{);z(p)) + Ez[p,;z(/)‘) (‘(,m('._’A\lt_)] ] EL}?_&(!D((—)\(\Ii)] (C27)
2N 2N AN
COV[€ = o (C.28)
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Appendix D

Probability Density Function of
the Degradation for NPE/M

Although this analysis is presented for the NPE/M, it can be easily extended to the
two other nonlinear estimators. To do so, merely change the value of M to 2M for
the NPE/MF, and to 27 M for the NFE. In addition, use the definitions of u,, 0';2,,
and a} which apply to the correct estimator.

For the NPE/M, we know that y and € are independent Gaussian random
variables with moments g,, o2, p¢, and of. Their joint pdf can be written as

NSRS o

202 207

Jog(n,€) =

27“”1"5
where we have made the substitution g = 0. We can now apply the following

transformation

1 §
2 = —Ma,rctan [;]
Z; = €47

Solving for 5 and £ (sample values) in terms of z; and z,,

€ = zsin(Mzn) (D.2)
1 = zcos(Mz). (D.3)
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The joint pdfof Zy and Z, is given from [29]

fZ[,Z;(lez‘Z) = Itrflf’l-f(]] = I (‘()S(I‘IS]).E = 29 Sill(/‘[:l)) (l)l)
where
oy
j — (l(‘t. dzy EE2)
og g
2y dzp

and therefore

J| = Mz,. Using (D.2) and (D.3) in (D.4) results in

. Z3 COSN g = —— 2 >, 31 12 2
Fonza(zn,22) = Mz, exp [_(..2(().\(/\1..1) p)®  (z2sin(M ]))]

. . 2 ‘)
2mo,0¢ 20, 20

reone

)

_ Me-:l‘ﬂ?/zo-r] ) ('052(M:l) Sin (Al ) Ity ('()S(AIZ|)

= X0Xp | —2; =3 + - + 1.
210, 0¢ 20, 20 T

We need the marginal distribution of Z,.

fZ| / fZl.Zz\‘v])“Z)(L'Z

—Ha? 1208 o 2( M~ , el A ~
_ Me I/ zpexp [ 22 (cos (Mzy) 4 sin (1”..])) 4 z2/l,, u).s(M_~Q] &
0

-—
- ¢ 2 (S P 2
2mo, 0 20, 20} s,

S

To solve this integral, we use the result

o0
/ 2y expl—zja + zbldz, =
0

el aaron () | 4o ()

Substituting the correct values of a and b,

fzi(e1) = ]V’t—ﬂvy’ﬁa2 oq0; ty \/_ cos? (Mzy)
=)= 2 o} sin® (Mz)) + 0F cos? (M=) \/—a,, ansin® (Mz1)+ 0] cos? (M)
2 cos’ (M=z) a? cos? (Mz,)
exp En_ 14 erf - ¢ .
202 2 o2 sin? (M.))+a cos? (Mz)) \/_a,, alsin? (Mzy) + ng cos? (Mz;)
-nfM <z < nlM (D 5)

The desired pdf is obtained by noting that fg(é) = fz,(8)],, _s
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Appendix E

Derivation of P,pr for NPE/M

We will define the following three events, possible for every symbol:

G —=m/M < ¢, < /M - symbol does not produce a region error
Ei: #/M < e < 3m/M - symbol produces a region error

Ey =37/M < ¢, < —7 /M - symbol produces a region error

The event of a particular region error (E; or E;) is independent from symbol to
symbol and given by,
3n/M
Pr = De; = Peg =/ Je(ex)dey . (E.1)
m/M
Since fe, («i) is known (3.38), p. can be found from numerical integration.
Each transmitted symbol produces as an outcome, one of these three events.

Event C occurs n. times, event E; occurs n.; times, and event E, occurs n.; times.

The probability of such a set of L received symbols is given by,

Prlevents C, E,, and E; occur n.,nq, and n., times respectively] =

L!
(1- 2Pr)ncprne] Prne.‘2 ) (E.2)

ety nes!
where the term L!/(n lne1!ng,!) represents the total number of ways that events (/,

E, and E; can occur n,, n., and n,; times, respectively [33}.
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Using Maximum Likelihood principles. it can be shown that a correct decision

is made if n. > n and n. > n,,. That is.
Ne > MaX (Ney, 1ey) . (15.3)

Consequently to find Parg, we sum over all the nimtually exclusive events such that

ne < max (ne1,ne). Therefore,

L!

Pyre = 7
NNy iNen.

VIl .<max M.1,Ne2)

pltert ez (1 2p e, (1.4)
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