National Library

l * l of Canada

du Canada

Bibliothéque nationale

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

l{ pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and
subsequent amendments.

NL-JI9 (¢ 88/04) ¢

AVIS

La qualité de cette microforme dépend grandement de fa
qualité de la thése soumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc -
tion.

Sl manque des pages, veuillez communiquer avec
l'université qui a contéré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées i l'aide d'un ruban usé ou si f'université nous a fan
parvenir une photocopie de quahté inférieure

La reproduction, méme partielle, de cette microforme es!
soumise 4 la Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents

fel

Canadi

Fault Tolerance Approaches For
3-Data Flow Systolic Arrays

Tarek Rizkallah Boulos

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada

May 1991

© Tarek Rizkallah Boulos, 1991

Ry

National ! " -ary

Bibliothéque nationale
of Canada

du Canada

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1 A ON4

The author has granted an irrevccable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

L'auteur a accordé une licence irrévocable et
non exclusive permettant & la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d'auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN ©-315-68784-3

Canadi

ABSTRACT

Fault Tolerance Approaches For

3-Data Flow Systolic Arrays

Tarek Rizkallah Boulos

This thesis presents techniques to achieve fault tolerance for three directional data
flow (3-data flow) systolic arrays both at run-time and at compile-time. Two run-time
schemes are suggested. The first one is based on space-time mapping. This scheme,
named 3DFT (three directional fault tolerant), is a fault tolerance approach based on fault
masking, and it is applicable to a class of rectangular 3-data flow systolic arrays of latency
greater than or equal to three. The main advantage of the scheme is its tolerance to the
occurrence of multiple faults (permanent and transient). In addition, the overhead in
hardware is minimal. A processing element (PE) supporting the concept is suggested. The
fault assumption is that only one PE out of the three involved in doing the same
computation can be faulty. The technique is not applicable in all cases; however, in the
specific cases where it applies, fault tolerance can be achieved with a very low overhead.
The technique can be easily extended to linear systolic arrays.

Another run-time fault tolerance scheme based on reconfiguration for
unidirectional 3-data flow systolic arrays is also proposed. This distributed
reconfiguration algorithm enables the cells of a processing array to dynamically
restructure themselves based on local information. No a priori cell programming is
required. The approach ailows the reconfiguration of the three data flow paths (horizontal,
vertical and diagonal). Transient faults can be tolerated provided there are sufficient spare

processors to replace the faulty ones.

iii

For compile-time fault tolerance, an extension of the RCS-cut approach (static
reconfiguration) is presented to cover the case of unidirectional 3-data flow systolic
arrays.

The RCS-cut approach may be used to reconfigure the array before applying any
of the run-time techniques. The 3DFT approach can be applied to computational problems
that map naturally on hexagonal arrays (matrix multiplication, transitive closure, etc.).
The dynamic reconfiguration approach is more general and can be applicable at run-time

on any computation that require 3-data flow systolic arrays.

iv

ACKNOWLEDGMENTS

I would like to express my greatest gratitude to my thesis supervisor, Dr. R.
Jayakumar for his guidance and encouragement throughout the course of this research. He
made great contributions in its development.

I would also like to thank Dr. H. F. Li for his useful advice, criticism and for
giving me the opportunity to do this work.

I am also grateful to Mr. Derek Pao for his very useful comments, criticism,

helpful discussicns and proofreading that helped me on final completion of this thesis.

Table of Contents

List of figures
List of tables
Chapter 1. INTRODUCTICN
1.1 Run-time =T
1.1.1 Fault-masking
1.1.2 Concurrent Error Detection and Correction
1.1.3 Transient Faults
1.2 Reconfiguration
Chapter 2. RUN-TIME FAULT TOLERANCE FOR THREE
DIRECTIONAL DATA FLOW SYSTOLIC ARRAYS
2.1 Mapping Data Flow Computation Into Systolic Arrays
2.2 Latency
2.3 Concurrent Redundant Computation in Systolic Arrays
2.4 Conditions of the applicability of the fault tolerant approach (3DFT)
2.4.1 Min-Overhead CRC
2.4.2 Different Mappings
2.5 PE Design and Functionality
2.5.1 Example
2.6 Tolerated faults in 3DFT
2.6.1 Fault tolerated in a single stage
2.6.2 Fault tolerated in two stages
2.6.2.1 Both links and voting units are fault free
2.6.2.2 Only links are fault free
2.6.2.3 Links are faulty
2.7. Adavntages of 3DFT

vi

viii

00O W W N NN

10
11
12
14
24

26
26
28
28
28
30
30

2.7.1 Comparison between Reddy’s Approach for LU-Decomposition

and 3DFT

2.7.2 Comparison between Cosentino’s Approach and 3DFT

Chapter 3. RECONFIGURING UNIDIRECTIONAL 3-DATA FLOW

SYSTOLIC ARRAYS
3.1 Survey of reconfiguration techniques
3.2 RC- and RCS-cut approaches for unidiretional 2-Data flow
systolic arrays
3.3 RCS for unidirectional 3-data flow systolic arrays
3.3.1 Vertical Cut
3.3.2 Horizontal Cut
3.4 Comparison of restructuring techniques for Hexagonal Arrays
3.4.1 Gordon’s Technique (GT)
3.4.2 Kumar'’s technique

3.4.3 RCS approach for hexagonal arrays

Chapter 4. DYNAMIC RECONFIGURATION FOR UNIDIRECTIONAL

3-DATA FLOW SYSTOLIC ARRAYS
4.1 Introduction
4.2 Distributed Reconfiguration Approach
4.3 Cell Architecture
4.4 Routing strategy

4.5 Comments on special cases

Chapter 5. CONCLUSION
REFERENCES

vii

36
39
45
60
60
61
61

Fig. l.a
Fig. 1.b

Fig. 1.c

Fig.

2.2

Fig. 2.b

Fig.
Fig.
Fig.
Fig.

3
4
5
6

Fig.7
Fig. 8.a

Fig.

8.b

Fig. 8.c

Fig.9.a

Fig.9.b

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

10.a
10.b

11.b
12.a
12.b
13.a
13.b
14.a
14.b
15.a

List of Figures

Systolic Array for matrix multiplication (C = A x B)
CRC Systolic Array of a redundant computation (S”)
Systolic Array of another redundant computation (S™)
At time =2, the matrix multiplication problem

Active PEs at time =3

Rectangular array of size 5x5

Cluster of radius one

Matrix multiplication problem with new mapping
Processing element block diagram

PE design for the matrix multiplication problem
Architecture of processing elements for RC-cut approach
Architecture of processing elements for RCS-cut approach
Architecture of processing elements for RCS-cut approach
Vertical cut with outputs reaching a good cell(1)

Vertical cut with outputs reaching a fauity cell(1)
Vertical cut with outputs reaching a good cell(2)
Vertical cut with outputs reaching a faulty cell(2)
Vertical cut with outputs reaching a good cell(3)
Vertical cut with outputs reaching a faulty cell(3)
Vertical cut with outputs reaching a good cell(4)
Vertical cut with outputs reaching a faulty cell(4)
Vertical cut with outputs reaching a good cell(5)
Vertical cut with outputs reaching a faulty cell(5)
Horizontal cut with outputs reaching a good cell(1)
Horizontal cut with outputs reaching a faulty cell(1)

Horizontal cut with outputs reaching a good cell(2)

viii

15
16
17
18
19
20
22
23
24
27
37
37
38
40
40
41
41
42
42
43
43

46
46
47

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

15.b
16.a
16.b
17.a
17.b
18.a
18.b
19

Fig. 20

Fig.2l.a
Fig. 21.b
Fig. 21.c

Horizontal cut with outputs reaching a faulty cell(2)
Horizontal cut with outputs reaching a good cell(3)
Horizontal cut with outputs reaching a faulty cell(3)
Horizontal cut with outputs reaching a good cell(4)
Horizontal cut with outputs reaching a faulty cell(4)
Horizontal cut with outputs reaching a good cell(5)
Horizontal cut with outputs reaching a faulty cell(5)
A reconfigured array with 2 vertical cuts (1)

A reconfigured array with 2 vertical cuts (2)

A 5x5 hexagonal array with a vertical and a horizontal cut
The reconfigured array after applying the vertical cut

The reconfigured array after applying the horizontal cut

Fig. 22.a - f A 2x2 matrix multiplication problem on hexagonal array

Fio, 23

Fig. 24

Fig. 25
Fig. 26
Fig. 27

A reconfigured 7x 2 hexagonal array with horizontal cut
Logical Structure of processing cell

Only (v2h2d2d5) available [entry from table 10]

A reconfigured array of type-A cells

A reconfigured array showing the case where three diagonals

ix

Table 1

Table 2-17 Routing Functions

List of Tables

13
75-90

Chapter 1

INTRODUCTION

Systolic arrays [KuHT82] are most desirable for VLSI implementation because of
their regularity and locality of data communications. As the integration scale increases
dramatically, it is inevitable that there are faults (permanent or temporary) in the system.
Hence fault-toierant design is necessary. Yield and reliability are the two major concerns
for fault-tolerance: in VLSI. The fault-tolerance schemes should not only improve the yield,
but also ensure correctness of the computation performed.

Faults in VLSI can be classified into two categories:

1. Production faults: faults introduced during the manufacturing process.

2. Operational faults: faults that arise during the operation of the circuit. These include
aging, soft-error caused by alpha particles, coupling of signals, and hot electrons, etc.
These can be further divided into two sub-classes, namely, permanent faults and
transient faults.

One consequence of the scaling down of device dimensions is that V1.5I circuits are more

susceptible to operational faults. Hence, fault-tolerance schemes that can tolerate

operational faults are desirable.

Fault-tolerance (FT) schemes can be classified as:

1. Fabrication-time FT: Yield is the major concern.

2. Compile-time FT: When faults occur after installation, the array is reconfigured to
function properly, very often with degraded performance.

3. Run-time FT: In this case, the emphasis is on dependable computation. The effects of
faults should be masked off or compensated with minimal time delay.

There are two fault-tolerance approaches proposed in the literature, namely,

reconfiguration which is used for fabrication-time and compile-time FT, and fault-masking

or concurrent error dctection and correction for run-time FT.

1.1 Run-time FT
1.1.1 Fault-masking

Fault masking stands for immediate recovery without noticing the occurrcnce of
faults. In this approach, extra components are used to mask off the effect of a fault
instantaneously. A common technique employed is the Tripte Modular Redundancy (TMR)
[Ball69]. Three copies of the same computation are performed by three processors. Voting
among the three will determine the correct result if only one of the three processors can fail.
Direct implementation of this method often requires expensive duplications. Kim and
Reddy {KimJ85] proposed a scheme that can reduce the number of processors required by
a factor of two while tolerating only a limited class of fault distributions and presented the
design of a linear array to perform matrix (A = [aij]) vector (X) multiplication. The vector
X is duplicated over two consecutive time instances and the matrix A is triplicated spatially.
Three copies of the computed result can be obtained at the same time by proper design of
the interconnection links between the processing elements.
1.1.2 Concurrent Error Detection and Correction

Chan and Wey adapted the approach of recomputation with shifted operands in
their design of fault-tolerant systolic arrays for band matrix multiplication [ChSW88].
Gulati and Reddy [Gula86], and Cosentino [Cose88] proposed another approach based on
temporal redundancy. Gulati and Reddy presented a concurrent error detection (CED)
scheme using ‘Comparison with Concurrent Redundant Computation’ (CCRC) which is
based on a more appropriate cell level functional model, and its basic theme is to duplicate
(and compare) the (sub) computaticns done in every cell of the array. The area overhead in
CCRC is limited to one computational unit of the array and some additional error detection
logic in every cell. Application of CCRC reduces the throughput io half, if the original

implementation is capable of delivering one result every cycle. Cosentino presented a

concurrent error correction scheme for systolic arrays in which the cells retain partial
results rather than pass them to the neighbors.

Abraham et al [Huan84] proposed an algorithm based fault-tolerance scheme for
matrix operations employing the row and column checksum technique. The algorithm is
redesigned to operate on the encoded data and produces encoded output. The result vector
also preserves the weighted checksum property which is used to cormrect error(s).
Discrepancy in the checksums produced by the algorithm and calculated from the output
data indicates an error. The located error can be easily corrected based on the checksum
produced by the algorithm.

All of the above fault tolerance schemes are ad ho~ designs. Recently, Li et al
[LiHF89] characterized the CED capability of a systolic array in terms of the latency of
computation which is determined by the space-time mapping. Latency is the time delay
before a processor performs a computation after it has just completed one. They also
proposed a way of achieving CED in systolic arrays by incorporating redundancy
systematically.

1.1.3 Transient Faults

It is worth mentioning that transient faults are tolerated mostly at run-time. It is
reported in [Siew82] that the occurrence of transient faults, mainly due to temporary
environmental changes, is ten times more frequent than that of permanent faults. In
addition, with the present possibility of reduced voltage levels for VLSI devices and the
subsequent reduction in noise margins [Barb81], susceptibility of dense VLSI circuits to

transient faults also increases.

1.2 Reconfiguration
A common approach for fabrication-time and compile-time fault tolerance is
reconfiguration. Reconfiguration is equivalent to finding an embedding of the logical array

onto the physical array such that faulty PEs do not participate in the computation. Several

reconfiguration algorithms have been proposed. Leighton and Leiserson [Leig85] proposed
a reconfiguration algorithm for wafer scale integration of systolic arrays based on divide
and conquer method. The interconnection wires are programmed by laser beams. In
Rosenberg’s method [Rose83], the processing cells are fabricated with uncommitted
interconnection wires and controllable switches. Processing cells which are non-faulty are
connected together to obtain the desired array.

Kung and Lam [KuHT84] proposed a systolic fault-tolerance scheme (RCS-cut)
which maintains the original data flow patterr. and wire length. In this scheme, data move
through all the cells. At faulty cells, data items are simply delayed with bypass registers for
one cycle and no computation is performed. The processor array is modelled as a directed
graph, with the nodes denoting the processing cells and the edges denoting the
communication links. A cut is defined as a set of edges that “partition” the nodes into two
disjoint sets, namely, the source and the destination sets, with the property that these edges
are the only ones between these sets, and are directed from the source to the destination set.
Two designs are equivalent if given an initial state of one design, there exists for the other
design an initial state such that (with the same input from the host) the two designs produce
the same output values (although possibly with different delays). The restructuring of the
faulty array is carried out by choosing a sequence of cuts whose edges cover all the faulty
cells in the array.

Koren [Kore81] presented a distributed reconfiguration algorithm to restructure
two-dimensional processor arrays. Restructuring is done by distributing the following type
of structuring messages:

M (structure code, level within the structure, direction).

The header of the message M is the code of the desired structure, such as LA for linear
array. The level number indicates the position of the processor receiving the message M in
the array. The direction d (d is an element of {N, E, S, W}) indicates the neighbor to which

the next structuring message should be transmitted. A processing cell receiving a

structuring message will transmit either another structuring wessage or an
acknowledgment (a positive acknowledgment if the construction is completed or a negative
acknowledgment if it is impossible to complete the construction) to its neighbor(s). As the
structuring messages percolate through the physical array, the corresponding data switches
are programmed accordingly. To avoid using a faulty cell, the cells in the row and column
containing faulty cell(s) are programmed to function as connecting cells. In case of
unsuccessful reconfiguration (receiving a negative acknowledge), backtracking is required.
There are two drawbacks to this method.
1. Even though the reconfiguration algorithm is distributed, setting of the data switches
cannot be changed without interrupting the computation.
2. Utilization of non-faulty cells is low because each faulty cell may cause the removal of
one whole row and one whole column of cells.

All of the above mentioned reconfiguration schemes are “static” in the sense that
the interconnection links are externally enforced (laser programmed or controllable data
switches). Once the array is reconfigured, the setting of the interconnection links cannot be
changed without interrupting the computation. Hence, they cannot tolerate transient faults.
A review and more details concerning the previous two approaches will be given in chapter
3.

A special type of the 3-data flow systolic arrays is the hexagonal array where the
processors communicate with each other through a hexagonal array network [KuHT79,
Rote86]. The hexagonal array structure enjoys the property of symmetry in three directions.
An example of algorithms that use the hexagonal array as the communication geomeiry is
the matrix multiplication problem [Mead80]. It is worth mentioning that algorithms
employing multi-directional data flow can realize complex computations without violating
the simplicity and regularity constraints. Moreover, these algorithms do not require
separate data loading or results unloading phases. Notice that hexagonal connection

supports data flows in more directions than square connections and the two structures are

of about the same complexity as far as implementation is concerned.

Gordon et al [Gord87] extended the concept described above [Kore81] in order to
achieve fault tolerance in hexagonal arrays. Kumar [Kuma91] proposed two
reconfiguration designs for hexagonal systolic arrays, one for compile-time and the other
for fabrication-time.

Pao [PaoD87, LiHF87] presented a run-time fault tolerance scheme based on
reconfiguration, for uni-directional 2-data flow systolic arrays. In this approach, the data
paths are set up dynamically during the computation and faulty PEs are bypassed
systolically.

This thesis presents techniques to achieve fault tolerance for 3-data flow systolic
arrays both at run-time and at compile-time. Two run-time schemes are suggested. The
first one is based on space-time mapping. This scheme named 3DFT (three directional
fault tolerant), is a fault tolerance approach based on fault masking and it is applicable to a
class of rectangular three directional data flow systolic arrays of latency greater than or
equal to three. Informally, latency characterizes the rate at which data of a problem
instance can be bumped into the systolic array. The main advantage of the scheme is its
tolerance to the occurrence of multiple faults (permanent and transient). In addition, the
overhead in hardware is minimal. A processing element (PE) supporting the concept is
suggested. The fault assumption is that only one PE out of the three involved in doing the
same computation can be faulty. The technique is not applicable in all cases; however, in
the specific cases where it applies, fault tolerance can be achieved with a low overhead.
The technique can be easily extended to linear systolic arrays.

Another run-time fault tolerance scheme based on reconfiguration for
unidisectional 3-data flow systolic arrays is also proposed. This distributed
reconfiguration algorithm enables the cells of a processing array to dynamically
restructure themselves based on local information. No a priori cell programming is

required. Transient faults can be tolerated provided there are sufficient spare processors to

replace the faulty ones.

For compi’z-time fault tolerance, an extension of the RCS-cut approach [KuHT84,
LamC89] (static reconfiguration) is presented to cover the case of unidirectional 3-data
flow systolic arrays.

Chapter 2 reviews the space-time approach and the conditions to get a systolic
mapping. The notions of latency, concurrent redundant computation (CRC) and
concurrent error detection (CED) are presented. The conditions of applicability of the
3DFT approach are explained. A processing element (PE) supporting the design is
suggested. The effects of different mappings are discussed. The fault model and the types
of tolerated faults is covered. The advantages of using the 3DFT, followed by a
comparison with Kim and Reddy’s technique [KimJ87a] for getting a fault-tolerant
systolic array to the LU decomposition problem is presented. Also, a comparison with
Cosentino’s approach is discussed. Chapter 3 discusses the extension of the application of
the RCS cut approach to unidirectional 3-data flow systolic arrays. It also includes a
comparison of restructuring techniques for hexagonal arrays, like Gordon’s approach
[Gord87], Kumar’s technique [Kuma91] and the RCS-cut approach. Chapter 4 presents a
dynamic, distributed algorithm for unidirectional 3-data flow systolic arrays which
restructure the processing array based on local information only. Chapter 5 is the summary

of the thesis.

Chapter 2

RUN-TIME FAULT TOLERANCE FOR
THREE DIRECTIONAL DATA
FLOW SYSTOLIC ARRAYS

2.1 Mapping Data-flow Computation Into Systolic Arrays

Systolic arrays have been used to implement iterative data flow computations
successfully. A three-dimensional data flow computation involves a set of computation
sites {Cp = (i,j,k)} such that at each site s = (i,jk) €Cp a set of computations
f1(i,j,k)....f(ij.k) are performed. In order for a computation structure to be implementable
in a systolic array, the conceptual computation sites { Cp = (i,j,k) } must be mapped into Cg=

(txy) < 73 (where Z denotes the 1-dimensional integer space, t denotes time and

(x,y) represents the two-dimensional space normally available for VLSI systolic array

embedding). The general idea of space-time mapping is as follows:

1. The algorithm is formulated as a system of linear uniform recurrence equations. If a
variable propagates without being modified, it is called a used variable, otherwise it is
called a generated variable.

2. Data dependency vectors derived from the loop indices are organized as a dependency
matrix D = {dI, d2,...,dr}.

3. A linear transformation T is then applied to the dependency matrix D to obtain a new
dependency matrix (systolic matrix) A = TD whose first row is strictly negative while
the elements in the other rows are one of {0,1, -1} in case of a universal systolic array.

When D is mapped into a systolic array using a one-one transformation, T = [t), it
yields S = (A, Cg), written A = TD, where Cg = {(t,x,y)} is spanned by
t i

x=Tj.
k

Systematic procedures to derive valid transformations have been proposed in
[Mold83; Fort85; LiGJ85], which involve an exhaustive search. Zhang and Li
[LiHF89b]studied the problem of mapping a general iterative algorithm with non-unity
increment/decrement steps onto a systolic array using a space-time transformation. They
have developed the following necessary and sufficient conditions for the existence of such

a space-time mapping;:

Transformation T = [tj;} correctly transforms D into a systolic computation §
[LiHF89b] if and only if
LITI = 0,
2. 51j <Oforaltj,1 < j < r(where“r” number of dependency vectors), and
3. lem (p13.p21.p3)! AL Iem (p12,022.p32)! Aj; lem (py3,p23.p33)! Ak (“lem” denotes *
least common multiple”, “I”” denotes “divides relation and Ai, Aj and Ak are the step

sizes) where t;; = q;/ p;j, and gy, p;; are relatively prime.

They also presented a heuristic procedure to determine T.

It is possible to verify if there is a transformation matnx T = [t;;] that correctly
transforms D into a specific systolic computation A in cases where D is a non-singular
square matrix of integers since T=A D1, where D1 is the inverse of D and T should satisfy
the conditions stated above. It is worth mentioning that in this case the nansformation

matrix T is unique.

2.2 Latency

Latency is one of the most important parameters in embedding a data flow
computation into a systolic array. Informally, latency characterizes the rate at which data of
a problem instance can be bumped into the systolic array. Consider the case of mapping a

3-dimensional iterative computation D = (D, Cp) with Cp = {(i,j,k)} into a systolic array S

10

= (A, Cg) with Cg = {(t,x,y)}. Conceptually, latency is the time delay Atp;, beforea
computational site (x,y) will be used again to perform another operation after it has just
completed one. We know that a computation in \(1,j,k)} is mapped into corresponding sites
in {(t,x,y)}. In [LiHF89b] the latency of a systolic computation At,;, was characterized in

terms of the linear transformation T and the increment/decrement step sizes Ai, Aj, Ak as

_ IMAiIAjAk
min — - - — 1)
gcd(ITl 1|AjAk, |T12|AiAk, | T13]AiA))

where [Tijl is the (i,j)-th co-factor of T.
Using the concept of latency, Li et al developed the following theory for concurrent error

detection (CED) in systolic arrays using concurrent redundant computation (CRC).

2.3 Concurrent Redundant Computation (CRC) in Systolic Arrays
Suppose (D,C’p) is a redundant version of (D, Cp). Consider
(D, Cp) ------ T-----> (A, Cg) where Cg = {(t, x, y)} and
(D, C'p) -=--T-----> (A,C’g) where C’g = {(t + dt, x +dx, y +dy)}.

We have
dt di
dx =T d_] . (2)
dy dk

The computations (A,C’g) and (A, C”g) are concurrent redundant computations
(CRC) of (A, Cg) in a systolic array implementation if and only if

+C'g ¢ ZPandC’y c 23,

+Csgn Cg Nn Csg=0,and

* dt, dx and dy are constants.
Note that in general

«dt # 0 original computation and the corresponding redundant computation

11

are performed at different time,

* dx = 0 and dy = 0: original computation and the corresponding redundant
computation are performed at the same PE,

*dx # 0(y =# O} the distance between original computation and the
corresponding redundant computation in x (y) direction is dx (dy)- additional rows of PE’s
(columns of PE’s).

Concurrent error detection (CED) using concurrent redundant computation (CRC)
was first proposed by Gulati and Reddy [Gula86]. This approach is algorithm independent
and can be applied to a class of systolic arrays. Wu [WuCC87] preserited a similar
approach which is applicable to unidirectional data flow linear systolic arrays. Cosentino
[Cose88] proposed a concurrent error correction scheme which is based on the CRC
approach. The latter scheme is restricted to a class of systolic arrays whose latency is 2 in

which the generated varigbles must stay in the cell.

2.4 Conditions of applicability of the 3-Directional data flow fault tolerance approach
(3DFT)

Our technique (3DFT) is based on space-time mapping to achieve run-time fault
tolerance for three directional data flow systolic arrays. Many computational problems fall
into this category and map naturally on hexagonal systolic arrays [KuHT79,Mead80}, e.g.
matrix multiplication, LU decomposition, transitive closure [Rote85], etc. The scheme is
based on fault masking and hardware redundancy under the assumption that the latency of
computation is equal to or greater than three. The main advantage of the scheme is its
tolerance to the occurrence of multiple faults (permanent and transient). The 3DFT
technique is applicable to a class of rectangular three-data flow systolic arrays whose
latency is equal to or greater than 3 (every processor will be idle for at least two cycles)
and where the generated variable is non-stationary. Two redundant computations can be

done concurrently with the original one. The fault assumption is that only one of three

12

computation sites can be faulty.
2.4.1 Min-Overhead CRC

If Atgin 2 3, then there are two CRCs (A, C’g) and (A,C) of (A, Cg), both
with (dt=0,dx =+ 1, dy =0) or with (dt =0, dy = = 1, dx = 0). As from the definition
of latency above, every processor on the array will be idle for at least two cycles. The two
redundant computations will take place during these two cycles.

This is equivalent to doing the three computations concurrently in three neighbor
processors. The execution timie will be the same as that of the original algorithm plus two
extra time units due to the increase in array size. The array size will increase by only two
extra rows (columns) of PEs. Hence this configuration, which results in having the
minimum increase in the number of processors, is named Min-Overhead CRC. Notice also

that this choice will result in minimum communication between the processors.

Example: Matrix multiplication
FOR i:=0 TO N STEP 1 DO
FOR j:=0 TO N STEP 1 DO
FOR k:=0TON STEP 1 DO

BEGIN
AL,k = A(1j-1,k);
B(i,j,k) := B(i-1,j,k);
C(,j,k) = C(,j,k-1) + A@i,j,k) * B(i,j,k)

END

For this computation, A and B are the used variables, while C is the generated variable.

0-10 111 -1-1-1
D={-10 0 T=|-110 A=1-11 of
0 0 -1 -1-11 11 -1

Using this transformation matrix Tand Ai= Aj= Ak =1, the latency At;, can

13

be calculated using (1) to be Aty = 4.

It is advantageous to solve this problem using a hexagonal array rather than a
rectangular array [KimJ87a]. Table 1 gives a summary of the comparison. The size of the

hexagonal array depends on the bandwidth of the matrices A and B.

Table 1. Comparison of PE complexity and time taken to solve matrix multiplication

problem (C=A x B)

A = Full Matrix A = Band Matrix A = Band Matrix
B = Full Matrix B = Full Matrix B = Band Matrix

Rectangular #PE(A) NxN NxN NxN
Amay Time (T) ~ O(4N) O(4N) O(4N)
AxT O(4N?) O(4N3) O(4N°)
Hexagonal #PE(A) (2N-1)x (2N-1) Px (2N-1) PxQ
Array Time (T) O(3N) O(2N) O(N)
AxT O(12N3) O(4PN?) O(QPN)

A and B are NxN matrices.
For band matrix A (B), assume that bandwidth is P (Q) << N.

In our example, let us assume that both A and B are full matrices of size 3. This results in
a hexagonal array of size 5x5. Fig 1.a shows the original data flow in the hexagonal array.
Note that in any row or column of the network, only one out of three consecutive processors
is active at any given time.

Choosing the Min-Overhead CRC dt =0,dx = 1,dy = 0 (di =-0.5, dj = 0.5, dk = 0) the first
redundant computation is as in Fig 1.b; and withdt=0,dx =-1,dy =0 (di =0.5,dj = - 0.5,
dk = 0) the second redundant computation is as in Fig 1.c.SinceC’g n C’g n Cg=

0 and the three input sequences do not overlap, a fault tolerant systolic amray can be

14

constructed by merging the three computation sites. Two snapshots (at time =2 and time =3)
showing the computations performed by the processor is presented in Fig 2.a and Fig 2.b,
respectively. The new hexagonal array size is 7x 5.

Note that a hexagonal array can be remapped to a rectangular array with diagonal
input and output. For the hexagonal array in Fig 1.a, the equivalent rectangular array is

shown in Fig 3.

111 -1-1-1
ForT=|1 0 -1 A=|{0 -1 1/|,and Atp;, =3.
01-1 =101

We can choose the Min-Overhead CRC such thatdt =0, dx = 1,dy = 0 (di = 2/3, dj =-1/3,
dk = -1/3) for the first redundant computation and dt = 0, dx =-1,dy =0 (di =-2/3,dj = 1/
3, dk = 1/3) for the second.

2.4.2 Different Mappings

It is easy to see that with the Min-Overhead CRC a cluster of radius one cannot be
tolerated since that will result in having two or three of the PEs involved in doing the same
computation being in the faulty cluster. Assume that the center of the cluster is the PE at
(x,y), then for a cluster of radius 1 the following PEs are assumed faulty:

(x-1,y - 1), (x-1,y), (x,y-1), (x,y+1), (x+1,y) and (x+1,y+1)

as shown in Fig. 4.

15

Fig 1.a Systolic Array for matrix multiplication (C = A x B)

16

Fig 1.b CRC Systolic array of a redundant computation (S’)

17

NN N ¥ v ¥
'n "'i L Eb"zx by, by

Fig 1.c Systolic array of another redundant computation (S”)

20

= : o B o
e - 0 D*;I',h,,m |
_— >0 oo l;r]az,t:l
-}:’l O xzD O 2y
o
?313 fasz
pas

Fig 3. Rectangular array of size 5 x 5 with diagonal input
and diagonal output showing the data fiow for the matrix
multiplication problem (N = 3).

-

21

In order to choose a mapping other than the Min-Overhead CRC, equation 2 in

section 2.3 has to be solved for the values of (dt, dx, dy) such that the conditions of CRC

in section 2.2 are satisfied for the two redundant computations. To have the three

computations done concurrently, dt should be equal to zero as discussed in section 2.3. The

effects of choosing different mappings are:

longer communication lines,

array size will increase drastically,

types of tolerated faults will change depending on the locations of the redundant
computation sites, and

ifeitherldxl 2 R+ 1lorldyl 2 R+ 1,then asingle fault cluster of radius R may

be tolerated at run time,

EXAMPLE

In the matrix multiplication problem given previously, other possible redundant

computation sites that satisfy the conditions described in section 2.3 can be found by

choosing (dt=0,dx =% 2,dy==% 1). Note that this will result in having an array of size

11x7. Fig. 5 shows a snapshot (at time = 3) of the computation that can tolerate a cluster of

radius 1 with this mapping.

22

of the Cluster

PE (x,y) Center

of PE(x,y)

PE affected on radius one

=

of radius one.

Fig. 4 Cluster

Staresars
Sasicasatacse
S10 o atarets
T
Seduseteduted
B
et latetss
"b‘s‘v" <

ion problem with the new mapping

of radius one.

“‘;‘

9100
o“{o

ISise
AT

lic array for the matrix multiplicati

to overcome a fault cluster

Fig 5. The systo

2.5 PE Design and Functionality

Each processing element (PE) can be considered to have two parts: a Computation Unit
(CU) that includes both the necessary elements to do the computation and the latches, and
a Voting Unit (VU) which includes three identical voters, a decoder and an OR gate. Fig.6

shows a block diagram of the processing element.

IP1 /P2 1/P3

OP1
4 - COMPUTATION | o OFP2
UNIT
\Y \', \'
O/P3 ol O (o) o)
- <——T T T
R E E E
TR R R
1 2 3
DECODER
VOTING UNIT

Fig. 6 Processing element block diagram (three inputs, three
outputs, one generated variable).

Only one of the three voters is active during a clock cycle depending on the type of
computation. There are 3 types of computations, the original and the two redundant ones.

A binary code can be associated with each type of computation, for example, 10 for the

25

original computation, 01 for the first redundant computation and 11 for the second
redundant computation. This code is a control signal for the (2 x 4) decoder and can be sent
with any of the inputs or outputs and enables one of the voters. Every voter geis one of the
inputs from the computation unit output, which is denoted as c (the output of the adder in
the case of the matrix multiplication example). As for the other two inputs, it will get them
from the output of the next or previous computation units depending on the type of
computation occurring in the PE and also on the locations of the computation sites. An OR
gate collects the output of the three voters and outputs the final value which will propagate
to the next stage to continue the computation.

The overhead in the necessary hardware is the Voting Unit (VU) which includes
three identical voters, the 2 x 4 decoder and an OR gate. All of these elements are simple
combinational circuits which are easy to design. Keeping in mind that only one of the three
voters will be active at any time, then the delay of the voting unit is the sum of the
propagation delays through the decoder, a single voter and an OR gate.

2.5.1 Example

The design discussed below is for the Min-Overhead CRC case (dt=0,dx =% 1,
dy = 0). A deviation from this configuration will require the adjustment of the inputs to
every voter.

Going back to the matrix multiplication problem, the computation unit includes a
multiplier, an adder and three latches. For the voting unit the other two inputs to the voters
are denoted as c(PE-1), c(PE+1), c(PE-2) and c(PE+2) incase of (dt =0,dx = % 1,dy =
0). Fig. 7 shows the design of the processing element for this problem.

To show which voter on the different PEs gets activated, the snapshots presented
earlier will be used. At a certain clock cycle the following scenario will take place. In Fig
2.a PE 1 does the first redundant computation. The decoder receives control signal 01 and
enables voter 1 of PE 1. Voters 2 and 3 are both not active. Simultaneously, PE 2 performs

the original computation and has only voter 2 active and PE 3 does the second redundant

26

computation and has only voter 3 active. During the next clock cycle (Fig 2.b}, PE 1 is not
used at all, PE 2 performs the first redundant computation and has voter 1 active and PE3
does the original computation and has voter 2 active.

NOTE: The lines that carries the code identifying the type of computation are not shown in

the figures for simplicity.

2.6 Tolerated faults in 3DFT

An appropriate way to deal with failures in VLSI circuits is at the functional level.
Therefore, we assume that the effects of faults will be seen only at small parts of a large
network in the form of altered values of the outputs. The functional level chosen is a cell of
the array and is thought to include the output links emanating from the cell. No fault-free
assumption of any of the elements of either the CU or the VU is made. The following
discussion considers the case of Min-Overhead CRC (dt =0, dx = % 1, dy = 0), that is,
CRC is done on the left and right processors of the original one.

Each cell in the proposed array can be considered to have two parts - a computation
unit (CU) and a voting unit (VU). The hexagonal array can be modelled as multiple stages
of linear arrays and the output of one stage is fed as input to the following stage. The basic
assumption of 3DFT is that no two computation sites, on any stage, out of the three
involved in doing the same computation can be faulty simultaneously; otherwise the fault
cannot be tolerated. Also a fault in the decoder or the OR gate can be modelled as a faulty
voting unit.

2.6.1 Faults tolerated in a single stage:
1. If only one CU out of every three consecutive ones is faulty, the fault is masked off by
the voters and will result in having three correct outputs that will propagate to the next

stage. This type of fault is tolerated.

27

boul -
Aout
>
L L
din A A bin
— é ™ Multiplier [gﬁ‘—
c: L
in A
—_—t T B —— Addef
C
H
c
—l— PE+D) y l
ciret c(PE+1) PE-1)
cui |V de—o \% v el
coﬂ- <cl._.o Cv2 -— o Cv3 - o
OR |2|T lo T V3 <
E E M— E jg——
“c‘v3 R |c(PE+2) 121 ¢(PE-1) R |c(PE-2)
l Ev2 |
Evl | T I Ev3
2x4
Decoder

il

Fig 7. PE design for the matrix multiplication problem.

5—_

28

2. If only one VU out of every three consecutive ones is faulty, the output of this voting
unit is faulty. The fault may be tolerated and masked off depending on the fault
distribution of the following stage. This will be discussed in more detail in the next
section.

3. Ifonly one VU and one CU out of every three consecutive PEs are faulty, this will lead
to a faulty output from the PE which have the faulty voting unit only. This will be same
as case 2 above.

2.6.2 Faults tolerated in two stages:

Notice a failure in two CU or two VU out of three consecutive PEs on any of the
stages cannot be tolerated by the 3DFT approach.

2.6.2.1 Both links and vouing units are fault free.

This guarantees that inputs and outputs from each stage are fault free. Only one CU
in the first stage and one in the following stage in any three consecutive cells can be fauity.

Assuming that for every stage PEs with numbers (O + 3p) are faulty, where 0. =1,
2or3andp=0,1, 2,..,F(wmax -1) /31, then the maximum number of tolerated faults can
reach up to one third of the array size.

Assume that the size of the original hexagonal array is (Wy,, X Wypin), then the size
of the fault-tolerant hexagonal array will be (Wpax + 2) X Wi, The maximum number of
tolerated faults per row is (1 + quotient (W« +1) / 3)) and the maximum number of
tolerated faults in the array is (1 + quotient (Wyax +1) / 3)) x Wpin.

Example

Assume that CU of both PE 1 and PE 4 are faulty in Fig 2.a. The outputs of PEs 1, 2 and 3
will be the output of the voting unit of these PEs. The faulty result calculated by PE 1 will
be masked off. Then PEs 4 and 5 will receive the correct input. Same scenario will be
repeated in PEs 4, 5 and 6.

2.6.2.2. Only links are fault free,

Different scenarios may take place:

29

. If only onc CU in the first stage and one CU in the following stage are faulty, then the
scenario in section 2.6.2.1 will take place.

Faults in one CU of the first stage and one VU of the second stage. This will result in
having one of the outputs (of the faulty VU) of the second stage being faulty. This type
of faults can be masked off in the following stage depending on the fault distribution of
this stage.

. Faults in one VU of the first stage and one VU of the second stage. This will result in
having one of the outputs (of the faulty VU) of the second stage being faulty. This type
of fault can be masked off in the following stage depending on the fault distribution of
this stage.

. Faults in one VU of the first stage and one CU of the second stage.Two cases should be
considered:

(a) If the VU in the first stage is faulty and the corresponding computation in the
next stage is also faulty, the faults can be tolerated. The three outputs of this final
stage will be correct. For example, if the VU of PE 2 is faulty and the CU of PE
5 is faulty in Fig 2.a, the final output from PEs 4, 5 and 6 will be correct.

(b) If a VU in the first stage is faulty and any of the other two CUs (other than the
corresponding one) of the following stage is faulty, the fault cannot be tolerated.
This is equivalent to having two successive faulty PEs on the second stage,
which violates the condition to tolerate the faults (only one of every three
consecutive PEs can be faulty). For example, assume that the VU of PE 2 is
faulty and the CU of PE 4 (Fig 2.a) is faulty. This type of fault is not tolerated.
The fault in the VU of PE 2 will feed the CU of PE 5 with wrong input, which in
turn will result in a false output of the voting unit because the computation unit
of PE 4 will also give a wrong output. When the voting is done the outputs from
PE 4, 5 and 6 will be false, and this false output will be propagated to the next

stage.

30

2.6.2.3 Links are fauity.

1. Faults in output links. This would be equivalent to having the VU of the first stage and
the corresponding CU of the second stage being faulty. This fault can be tolerated as
discussed in section 2.6.2.2.

2. Faults in input links. This would be equivalent to having the CU which have that link

as input being faulty.

Example
Assume that the link between PE 1 and PE 2 (in Fig 2.a) is faulty (either the “a” path

or “b” path), this would be equivalent to having computation unit of PE2 faulty.

2.7 Advantages of 3DFT
The following advantages are for the Min-Overhead CRC (dt=0,dx =% 1,dy =

0). Other configurations will have a major impact on the increased array size. The original

hexagonal array size is assumed to be (Wyip X Wax), where Wi and W, are the

minimum and the maximum bandwidths of the multiplied matrices.

1. The overhead in hardware using the 3DFT approach is equal to (2 x W), and the rate
of increase in hardware compared to the original array size is (2 / Wyy,,), which means
that the increase in hardware is minimal with the increase of the array size.

2. Both permanent and transient faults can be masked off by the technique if the fault
assumption is satisfied.

3. The time complexity is the same as for the original problem since only the idle cycles
of the processors are used to do the redundant computations.

2.7.1 Comparison between Reddy’s Approach for LU-Decomposition and 3DFT

Kim and Reddy [KimJ87a] remapped the LU-decomposition problem from a
hexagonal systolic array to a rectangular bidirectional systolic array. For detailed

explanation about this algori...m see [Mead80]. They also proposed a scheme to detect and

31

locate permanent faulty cells. They adopted the concurrent error detection scheme called
Comparison with Concurrent Redundant Computation (CCRC) proposed by Gulati and
Reddy [Gula86].

Scope of CCRC: VLSI implementation of systolic algorithms can be classified into two
main categories. The first includes those implementations in which dasa or (sub) results stay
in specific cells during the entire course of computation. and the second consists of
realizations in which data as well as (sub) results keep moving from cell to cell during
computation. The second category of implementations fall under the scope of the proposed
CED approach called CCRC.

Proposed Method: CCRC is based on the observation that there is inherent spatial
redundancy in the array which could be exploited to perform a concurrent redundant
computation. Two computations can be performed in different regions of the array. Then,
at the time when the computational wavefront of the required computation reaches a faulty
cell, the shadow (redundant) computation reaches a fault-free cell and this computation
would be confined to a fault-free region of the array; and thus, a comparison of the
corresponding results would lead to the detection of the fault. For duplicating any
computation, the two cells involved must receive the same inputs. CCRC proposed earlier
can only detect faults but cannot locate faults. By adding additional logic, a single faulty
cell among three consecutive cells can be located from the outcome of two consecutive
comparisons under permanent fault assumptions.

Assumptions and Hardware overhead: Kim and Reddy assume that the error detection
logic is fault free and that at most one PE in every three consecutive PEs in a row is faulty,
which is similar to our assumption in the Min-Processor CRC case. The hardware overhead
in their technique to achieve CCRC is one extra column of PEs, three multiplexers wl ch
are driven by a modulo 2 counter and the error detection logic required in every cell. The
error detection logic includes two comparators, a memory element and an OR gate. If fault

location is also desired the following extra elements will be needed for every cell: two extra

32

multiplexers, one memory element and one OR gate.

Our proposed 3DFT would handle this problem more efficiently and easily on the
original hexagonal array with the following additional advantages:
1. transients faults are ulso tolerated, and
2. fault correction by masking the faulty PE is achieved.

2.7.2 Comparison between Cosentino’s Approach and 3DFT

Cosentino proposed an approach based on temporal redundancy [Cose88] to detect
and correct single faults in linear and rectangular systolic arrays in which the cells retain
partial results rather than pass them. The cost of the method is halving the maximum
throughput rate of the array. As for hardware overhead, the scheme needs monitoring and
correction circuits that can be placed on-chip or off-chip and embody the logic for detecting
and correcting errors. In addition, an extra accumulator is added to every PE to
accommodate the second calculations.

Assuming an original computation of latency equal to three for a rectangular two
data flow systolic array, every PE will have three accumulators to accommodate for the
three computations and only one computation unit, according to Cosentino’s approach. The
output will be flushed after the computations are done and voting circuits on the output of
every row will be needed.

To do a fair comparison with 3DFT, we will assume that the redundant
computations will be mapped with dx =% 1. This means that the three computations will
be done on the same PE. The problems in this approach are the followings:

1. Ifany of the computation units fails, the three outputs of this PE will be faulty. The fault
cannot be tolerated.

2. If any of the input links fails, this will be equivalent to having the computation unit
which has that link as input being faulty. The fault is fatal.

3. Ifany of the output links fails, this will result in having a faulty output. This fault is also

fatal.

33

Even though we assume that the links may not fail as they are simple wires, the
failure of a single computation unit will be disastrous. However, a major advantage of this
technique is that the overhead in hardware is only two additional accumulators. While
3DFT has three voters in every PE. In addition, every PE has its own computation unit in
the 3DFT approach. Another difference between Cosentino’s approach and 3DFT is that
the voting in 3DFT is done in every PE, while in Cosentino’s technique it is done after the
computation is complete.

Cosentino’s approach is applicable to a class of systolic arrays whose latency is 2
in which the generated variable must stay within the cell. While, the 3DFT approach is
applicable to a class of rectangular 3-data flow systolic arrays whose latency is greater than
or equal to three and where the generated variable flows out of the processor. The extra
latency required by 3DFT, compared with Cosentino’s technique, allows us to mask off the
faults on every partial result of a computation as long as only one PE out of every three
involved in doing this computation is faulty without having to wait till the whole
computation is completed. In addition, the 3DFT technique gives the possibility to tolerate

more faults, compared with a single fault in the whole array of Cosentino’s technique.

Chapter 3

RECONFIGURING UNIDIRECTIONAL 3-DATA
FLOW SYSTOLIC ARRAYS

3.1 Survey of reconfiguration techniques
Reconfiguration techniques are used to address the fundamental problem of fault
tolerance, both at production and at run time. The former type includes faults in a wafer or
a chip, as soon as it comes off the production line. The latter type occurs during the normal
operation of the array. Reconfiguration introduces fault-tolerance in the array and
produces a functional array even in the presence of multiple faults.
Reconfiguration techniques can be divided into three specific categories [John89]:
1. Fabrication-time reconfiguration which is performed immediately after
manufacturing.

2. Compile-time reconfiguration which is performed before each use of the array, but not
during the normal operations of the array, and

3. Real-time reconfiguration which is performed while the array is in operation and
continucs to provide uninterrupted performance.

This chapter is concerned with the first two types of reconfigurations. Issues
concermning compile-time and fabrication-time reconfiguration have many similar
attributes. For example, both the schemes do not have any restriction on the amount of
time required to perform the reconfiguration, although system availability is extremely
important to a real-time application. In addition, external fault-detection algorithms are
used to locate the faulty cells in both cases. The fault pattern is then used to find an
interconnection pattern that could use the fault-free elements to provide a fully functional
target array. Thus, the same reconfiguration algorithm could be used for both fabrication

time and compile-time reconfiguration.

35

The key differences between fabrication-time and compile-time reconfiguration
are the time at which the reconfiguration is performed and the reversibility of the
reconfiguration decisions. Fabrication-time reconfiguration is usually irreversible or
permanent, since the interconnection pattern is established using hard switches or fusible
links, so the array, once reconfigured, cannot be changed or modified again. In compile-
time reconfiguration, the decisions are reversible, allowing the system to be reconfigured

numerous times.

3.2 RC- and RCS-cut approaches for unidirectional 2-Data flow systolic arrays

It is generally assumed that only the computational section of the cells can fail and
all other components (registers, interconnections, etc.) in the array are failure-free. For
reconfiguration, the computational section of a faulty cell is bypassed and the cell (a pass
cell) is made to pass the data without processing. Note that the reconfiguration must
bypass all faulty cells and it may also bypass some nonfaulty cells. The reconfiguration is
performed by selecting a sequence of cuts. A cutis a set of cells such that bypassing them
leads to an array with one less data flow path. A cut is horizontal (vertical) if it leads to the
removal of one horizontal (vertical) data flow path. A cut covers the cells contained in it.
Thus, for successful reconfiguration, a sequence of cuts covering all the faulty cells should
be selected.

In the classical approach [Kore81], for every faulty cell all the cells in the same
row or column are taken to be in a cut. Thus, an entire row or an entire column containing
at least one faulty cell constitutes a cut, and these cuts are referred to as the RC cuts. In
this case, a horizontal cut is also referred to as a row cut and a vertical cut as a column cut.
The structure of a cell suitable for this RC-cut approach is shown in Fig.8.a. The classical
approach is simple (and leads to easy reconfiguration procedures) but provides poor
utilization of nonfaulty cells. In Kung and Lam’s approach [KuHT84], the cells in a cut

(referred to as RCS cut, S denoting slanted cut) may not be from the same row or column

36

but satisfy the following conditions.

Necessary Condition: A cut must contain one cell per row (vertical cut) or one cell per
column (horizontal cut) and the slope of the line connecting successive cells in the cut
must be nonnegative.

Sufficient Condition (Reachability Condition): The inclination of the line connecting the
cells in the cut between successive columns must be 0 or 45 degrees for horizontal cuts, or
90 or 45 degrees between successive rows for vertical cuts.

The bypassing is done with data rerouting so that the horizontal input may be sent
to the horizontal or the vertical output and the vertical input undergoes similar rerouting.
Kung and Lam’s approach requires more complicated processor architectures and more
involved reconfiguration algorithms but it provides a better utilization of nonfaulty cells.
A cell architecture supporting the RCS-cut approach is shown in Fig. 8.b.

LLam et al presented a critical study of Kung’s approach and the basic row-column
elimination approach [LamC89]. Notice that these two approaches have been applied to
two directional data flow (one horizontal and one vertical). This thesis extends the RCS-
cut approach to cover the case of havinz a diagonal input and a diagonal output. A cell

architecture supporting this case is shown in Fig 8.c.

3.3 RCS-cut approach for unidirectional 3-data flow systolic arrays

The proposed scheme follows Kung and Lam’s approach in that the faulty cells are
bypassed systolically. The same RCS cuts suggested above for the unidirectional 2-data
flow systolic arrays are applied for the unidirectional 3-data flow systolic arrays; that is,
the same necessary and sufficient conditions have to be satisfied. Not more than one cut
will be selected at a time. Once a cut is identified, data rerouting has to be achieved. It will
be assumed, as previously, that only the computational section of the cells can fail and all
other components in the array are failure-free. For reconfiguration, the computational

section of a faulty cell is bypassed and the cell is made to pass the data without processing.

S a g s v o

R A T Sy e St AT S 7 (It S8 S e, o o

=3

37

hi h0

Fig. 8.a Architecture of processing elements
for RC-cut approach

Fig. 8.b Architecture of processing elements
for RCS-cut approach

38
d5v} bl dl
d
d6 d7
V2 ——> v3
h2—> > h3
o d3
T o
d8 Vvd hd'as

Fig. 8.c Architecture of processing elements for RCS-cut approach
with diagonal input and diagonal output.

39

For either a vertical or a horizontal cut, the flow path for the horizontal and the vertical
data will be exactly the same as in the case of 2-data flow. Only, the diagonal path needs to
be modified to flow along the horizontal or vertical paths.

3.3.1 Vertical Cut

Generally, the diagonal path will flow diagonally once the computation is
performed. Otherwise, it will be redirected towards the right cell along with the horizontal
path.

1. Cell in a cut (faulty or good) has horizontal input h; coming from left and diagonal
input dy coming diagonally. The two inputs will be redirected together to the right cell.
Fig.9.a shows the flow path if the right cell is good and Fig.9.b shows the flow path if
the right cell is faulty. Notice that in all the following figures, a shaded cell represents
a cell in a cut (faulty or good) and a black one represents a faulty cell.

2. Cell in a cut (faulty or good) has the three inputs available in the regular way
(horizontal input h; coming from left, vertical input v; coming from top and diagonal
input dy coming diagonally). The three inputs will be redirected together to the right
cell. If the latter is good, the computation will be performed among the three
redirected inputs. As shown in Fig.10.a, the horizontal output flows to the right, the
vertical output flows downward and the diagonal output flows diagonally. The other
diagonal input to this cell will flow to the right with the horizontal output. If the right
cell is faulty, all its inputs will be redirected to the right cell as shown in Fig. 10.b.
Notice that when a cell receives two diagonal inputs, the first redirected diagonal has
higher priority over the other one when it comes to computation.

3. Cellin a cut (faulty or good) has both horizontal input h; and diagonal input dy coming
from left. The vertical input is absent. The two inputs will be redirected together to the
right cell. Fig.11.a shows the flow path if the right cell is good and Fig.11.b shows the
flow path if the right cell is faulty.

40

di vl1
\ dl
ﬁ
h hl
hl
vl
dl

Fig 9.a Vertical cut with outputs reaching a good cell (1)

dl

h\ P . |
Q@——m——"_—. hl

Fig. 9.b Vertical cut with outputs reaching a faulty cell (1)

41

di vl do

NN

h Ko

TN

vl dl

Fig.10.a Vertical cut with outputs reaching a good cell (2)

Fig. 10.b. Vertical cut with outputs reaching a faulty cell (2)

42

vl
d1 d1
__> ﬁ
hl
hl
dl1
vl

Fig.11.a Vertical cut with outputs reaching a good cell (3)

dl

d1
_..@——-».——»dl
hl
hl

Fig.11.b Vertical cut with outputs reaching a faulty cell (3)

4. Cell in a cut (faulty or good) has two diagonal inputs, one coming from left
(redirected) and the other coming diagonally. In addition, both the horizontal and
vertical inputs are coming from left. Fig.12.a shows the flow path if the right cell is
good and Fig.12.b shows the flow path if the right cell is faulty.

5. Cell in a cut (faulty or good) has two diagonal inputs, both coming from left. In
addition, both the horizontal and vertical inputs are coming from left. Fig.13.a shows
the flow path if the right cell is good and Fig.13.b shows the flow path if the right cell
is faulty.

43

do
N
b — .__>¢d0
T T™WY \ h1
vl di1

Fig.12.b Vertical cut with outputs reaching a faulty cell (4)

44
do
dl — - pesememmarn do
hl LN
_—— \ hi
vl dl

Fig.13.a Vertical cut with outputs reaching a good cell (5)

d1 do d0
hl » g%
'__-_——-7r' vl

Fig.13.b Vertical cut with outputs reaching a faulty cell (5)

45

3.3.2 Horizontal Cut

Generally, the diagonal path will flow diagonally once the computation is
performed. Otherwise, it will be redirected towards the bottom cell along with the vertical
path.

1. Cell in a cut (faulty or good) has vertical input vj coming from top and diagonal input
dy coming diagonally. The two inputs will be redirected together to the bottom cell.
Fig.14.a shows the flow pati if the bottom cell is good and Fig.14.b shows the flow
path if the bottom cell is faulty.

2, Cell in a cut (faulty or good) has the three inputs available in the regular way
(horizontal input h; coming from left, vertical input v; coming from top and diagonal
input d coming diagonally). The three inputs will be redirected together to the bottom
cell. If the latter cell is good, the computation will be performed among the three
redirected inputs. As shown in Fig.15.a, the horizontal output flows to the right, the
vertical output flows downward and the diagonal output flows diagonally. The other
diagonal input to this cell will flow downward with the vertical output. If the bottom
cell is faulty, all its inputs will be redirected to the bottom cell as shown in Fig. 15.b.

3. Cell in a cut (faulty or good) has both vertical input v; and diagonal input dy coming
from top. The horizental input is absent. The two inputs will be redirected together to
the bottom cell. Fig.16.a shows the flow path if the bottom cell is good and Fig.16.b
shows the flow path if the bottom cell is faulty.

4, Cell in a cut (faulty or good) has two diagonal inputs, one coming from top
(redirected) and the other coming diagonally. In addition, both the horizontal and
vertical inputs are coming from top. Fig.17.a shows the flow path if the bottom cell is

good and Fig.17.b shows the flow path if the bottom cell is faulty.

vl
dl
vl d1l
hl
g h1
d1

v vl

Fig 14.a Horizontal cut with outputs reaching a good cell (1)

vl
dl
vi di
vl dl

Fig.14.b Horizontal cut with outputs reaching a faulty cell (1)

y dO

dl vl
hl
do \
hl
dl
N
vl
Fig.15.a Horizontal cut with outputs reaching a good cell (2)
dl vl
1 B
N
do l i ‘ dl
v

vl hl

Fig. 15.b. Horizontal cut with outputs reaching a faulty cell (2)

48
vl d1
hl i i hl
dl
v vl

Fig 16.a Horizontall cut with outputs reaching a good cell (3)

vl d1
vl dl
vl dl

Fig 16.b Horizontal cut with outputs reaching a faulty cell (3)

49

h1 vl dl

hi

d1

vl ! do

Fig. 17.a Horizontal cut with outputs reaching a good cell (4)
vl hl dl

\

v

vidl'hl

do

Fig.17.b Horizontal cut with outputs reaching a faulty cell (4)

5.

S0

Cell in a cut (faulty or good) has two diagonal inputs, both coming from top. In
addition, both the horizontal and vertical inputs are coming from top. Fig.18.a shows
the flow path if the bottom cell is good and Fig.18.b shows the flow path if the bottom

cell is faulty.

EXAMPLES

1.

Fig. 19 shows a reconfigured hexagonal array with two vertical cuts. It illustrates the
redirection of two diagonals reaching a good cell

Fig. 20 shows another example of a reconfigured hexagonal array with vertical cuts. It
illustrates the redirection of two diagonals reaching a faulty cell.

Fig. 21.a shows a 5 x 5 hexagonal array with both horizontal and vertical cuts. Fig.
21.b shows the array after applying the vertical cut and Fig.21.c shows the array after
applying the horizontal cut.

An example of a 2 x 2 matrix multiplication on a hexagonal array with a vertical cut is
presented in Fig.22.a. Snapshots of the different computations are shown in Fig. 22.a

v 221,

51

h1 di

— o hl

vl do

Fig.18.a Horizontal cut with outputs
reaching a good cell (5)

h1l

Fig.18.b Horizontal cut with outputs
reaching a faulty cell (5)

52

<
(75

«-ll!}““mmm
-al!I"“mm

oL
W

o
Y.

)
N

ES

:ullllmuum ' -um“"anmm . -t

<
A w
u""'"mmm
b}
.olll"“umm .
I
h

w

H5 —» @ "-----lluu-»
(P 1\ /

<.l
[%]
N
< «
W

Fig. 19 A reconfigured array with 2 vertical cuts(1)

53

<
<
(N

(9.}
(=)

’ -ml“mnnmn <
(%]

CUT 1 CUT 2

-nlllllmlmmu

nullllmnmmn

S

=)
|||||“mm
~

ll|||'||||||||||

5

» &

N2y e
PR

w

|l||"m"l“ 0 -llllummmu
M1 flesn '
-
I
[}

/

ull“"umm:

H3

(Y-
4

[y
19,

ull""um

\ ' . . H4
(D=0 O
1 '] ING I N\
\ T 2t 3T
' ’ H5
= (2
I 2\ i \
T H 3
H 2
Vi V2 V3

Fig. 20 A reconfigured array with 2 vertical cuts (2)

54

Fig. 21.a A 5x5 hexagonal array with a vertical cut and a horizontal cut

and failures circles are hashed.

55

<

ey
<
w

.z
o

' |||||mnmnn . »mll““umml §

R
/

e
w

‘ . . s f [
ht

4

-|l|||||“|m|||

e
=

(
&
{.

W

..||||||“mnm

w

4

""""“""l"' .

3

-ull“l“lmmn.llll““mmnn'||||||“mmm -‘ -lﬂll““nm@-ulll““mmuO "“III"“"I“II“
.ll!llmmu .-ﬂﬂllm-mm-‘ any

=
<"
™o

wff ‘ | e s
P's
N

3
/:I:

< wfﬂml"lmm
EeN
<

N
6 -nlllllmmmm

Fig. 21.b The reconfigured array after applying the vertical cut.

56

PN
=

Hl

w

5
y 4
g --umll}-m@-ullll|l""'" O ot e

e
3%

fifif{ifoone
..al“l"“llum (g o 6 i lﬂl

\ ““.mlml o «lllll“"nnmu §
k

N

H3

A \
3
w;%

w

w

-ull“l“'nnm e anll}
a n)
W

4

N
AR unuu“"[lllo--
Y,
+
-"‘.
i *

)
¥

(v
/m

4
3

—

o)
>
.r.:\.‘c' b .
A X
-nl"“"mllmi «uﬂm'nmm, fors

=<
<
%)
5 cttff[ff s
W
-|||||||“mlm
g
=N

Fig. 21.c The reconfigured array after applying the horizontal cut.

C2 a2 ax
%731

cn ag 0 ap

b 1.1 WX
" @v\&

N
e =

Fig 22.a A 2 x 2 matrix multiplication using a hexagonal
array.

Cn

58

Fig 22.4

59

- - hool
I o e
-

Q

Fig 22.f

60

3.4 Comparison of restructuring techniques for Hexagonal Arrays
3.4.1 Gordon’s Technique (GT)

Gordon et al [Gord87] suggested a scheme for fault-tolerance in hexagonal arrays.
When some PEs or connections become faulty, the other PEs were restructured into a
hexagonal array (of smaller size). Fault tolerance is achieved in two basic stages, the testing
stage and the reconfiguration stage. In the testing stage, the PEs test their neighbors and
themselves, in order to identify faulty PEs or connections. In the reconfiguration stage, the
PEs with neighboring faults tum into connecting elements (CEs) and initiate messages
which tum some other PEs into CEs. These CEs cease to perform processing per se and
behave like connectors between pairs of neighboring PEs. Each remaining PE is not aware
of the presence of the CEs and continues to communicate with six neighbors as before the
reconfiguration occurred, using the same links as it did before (i.e., the neighbor in a given
direction is still accessed in that direction). It is possible, however that some of its
neighbors are not physically the same as before, and the PE reaches them throngh some
CEs.

The main advantage of this approach is that it makes the restructured array
(following the identification of the faulty PE or communication link) transparent to the
various algorithms utilizing the hexagonal array. Assuming an initial (n x n) Hexagonally
connected array(HCA), if p connections and q PEs become faulty in sequence, then the
result.ng configuration will contain an (n -p - 2q) x (n - p - 2q) HCA. In addition, the
approach does not have any underlying failure-free assumption as many other schemes
(like switching elements and communications links are almost failure free and only
processors can fail). One major disadvantage is that the utilization would be poor.

Assuming only q PEs may fail for an original (n x n) HCA, that is, the resulting
array size will be (n - 2q) x (n - 2q). The number of unused good PE equals 4q (n - q)

which can be approximated to 4n, implying poor utilization of good cells.

61

3.4.2. Kumar’s Approach

Recently, Kumar and Agrawal [Kuma91] introduced a design for compile-time
reconfigurable hexagonal systolic arrays. A new concept of processing element
reachability has been introduced to provide the basis of their reconfiguration algorithm.
The reachability R of a processor is defined as the maximum number of PEs to which a PE
can directly route its data to. Higher the reachability, higher would be the survivability of
the array. R is defined for the three emanating data paths in a hexagonal systolic array:
horizontal, vertical and diagonal.

The fault assumption is that only PEs can fail but not the links. Presence of spare
rows and spare columns is also assumed. In case of multiple faults, Kumar and Agrawal’s
reconfiguration approach keeps a fault count for each row of the (N + SR) x (N + SC)
original array (where SR and SC are the number of spare rows and spare columns,
respectively) in nondecreasing order and always bypasses the first SR rows with
maximum number of faults. Thus, the resulting N x (N+SC) array has minimum possible
number of faults. This causes much higher utilization of available good cells. Once an N x
(N+SC) array is formed, it is then used to form an N x N fault free logical array.

The major disadvantage of this approach is that the reconfiguration depends
heavily on the value of reachability R. To overcome the problem, the reachability R should
be increased but this will also means longer communication lines which is not desirable.
The approach would be suitable if the faulty cells are sparsely distributed in the array
rather than clustered. The performance of the reconfiguration approach depends heavily
on the fault distribution.

Fig. 23 shows an example of a reconfigured hexagonal array with a horizontal cut.
Kumar’s approach will fail to reconfigure such an array due to the presence of five
consecutive faulty PEs (if the reachability is limited to 5).

3.4.3 RCS-cut approach for hexagonal arrays

In contrast to the previous approach which will behave better in case of sparsely

62

10 feiuozUoy & M Aesre euoSexay gx/ painSyuosary ¢z Su

w4 Wb _‘__

.%

.__ \ i

63

distributed faulty cells, the RCS-cut approach would handle better the case of clustered
faults (successive faulty cells in a row, column or diagonally). The disadvantage of the
proposed RCS-cut approach is that the PE needs nine inputs and nine outputs.

On the other hand, it provides the possibility to reconfigure the array without any
restrictions on horizontal, vertical or diagonal reachability, like Kumar’s approach. Also, it
gives higher utilization of good PEs compared with Gordon’s approach.

Assuming only one PE failed for an original (n x n) HCA, the resulting array size
will be (n - 1) x n if we apply the RCS cut approach. The number of unused good PE
equals (n - 1), which can be approximated to n, compared with 4n unused good cells for

Gordon’s technique.

Chapter 4

DYNAMIC RECONFIGURATION FOR
UNIDIRECTIONAL 3-DATA FLOW
SYSTOLIC ARRAYS

4.1 Introduction

As discussed previously, one approach to achieve fault-tolerance is by masking off
the faults using the conventional TMR method [KimJ85] as in our approach (3DFT)
presented earlier. One drawback of this method is that only limited classes of fault patterns
can be tolerated. Another approach to handle this problem is the run-time dynamic
reconfiguration which configures the processing array based on local information only.
Reconfiguration can be done automatically without interfering with the computation.

This chapter presents a distributed reconfiguration scheme that can tolerate
permanent as well as transient faults. The proposed scheme follows Kung and Lam’s
[KuHT84] approach in that the faulty cells are bypassed systolically. The reconfiguration
algorithm uses the data-driven concept, that is, instead of being assigned a fixed path, the
data tokens will find their own ways through the processing array. When a fault is
detected, the concerned data tokens are re-routed to an adjacent cell to retry the
computation. Consequently, some rippling effect may be imposed on the successor cells.
So long as there are enough spare cells to replace the faulty ones, a correct computation
can be obtained. To achieve this, the systolic array should possess the following two
capabilities.
1. Concurrent fault detection: The processing cell should be able to determine

concurrently with the normal operation whether the performed computation is correct
or not.

2. Self-reconfiguration: The systolic array should manage its own reconfiguration

65

without global knowledge about the fault distribution. Reconfiguration is done locally
at the cells and can be changed at any time, subject to local status detected.

Pao [PaoD87, LiHF87] presented a distributed reconfiguration approach based on
local invariants technique. The re-routing of data flow paths is based on local information
only, and can be done without interfering with the computation. He presented designs of
two self-reconfigurable uni-directional 2-data flow systolic arrays. In the first design, both
the horizontal and vertical paths are reconfigurable, whereas in the second design, only the
vertical paths can be reconfigured.

He has also extended the concept to universal systolic arrays in which the diagonal
paths are fixed to flow diagonally but the horizontal (vertical) paths are reconfigurable. In
this chapter, a dynamic reconfiguration approach for universal systolic arrays in which all

the three paths are reconfigurable is presented.

4.2 Distributed Reconfiguration Approach

Distributed reconfiguration is characterized by local d “cision making at individual
processing cells. No global knowledge of the fault distribution is required in restructuring
the array. A reconfiguration is successful if an emabedding of the required array is
constructed in the faulty array; otherwise it is unsuccessful.

In a universal systolic array, three data streams, namely, horizontal (H;, H,,...,
Hp), vertical (Vy, Vj..., V) and diagonal (Dy, Ds.,..., Dyyn.1), meet at a cell. The
horizontal paths are numbered from top to bottom and the vertical paths are numbered
from left to right and the diagonal paths are numbered bottommost diagonal to topmost
diagonal.

In this distributed reconfiguration approach, the routing of data is based only on
local information and can be changed at any time subject to local status detected. No fixed
path is assigned to data tokens. Alignment of the data tokens to arrive at the active

processing cells is ensured by an invariant technique. A set of local invariants of the

66

reconfiguration algorithm is identified. Intelligence is then incorporated into the
processing cells to enforce these invariants.

A path, P1, is said to have crossed another path, P2, if it is extended from one side
of P2 to the other side and vice versa. The dynamic routing in a self-reconfigurable atray
is obtained by enforcing the following two invariants:

1. Two successive horizontal (vertical) (diagonal) data paths H; and H;,; (Vj and VJ-+1)
(Dy and Dy, 1) do not cross. Touching at a cell is, however, allowed.

2. The data in horizontal path H;, in vertical path V;, and in diagonal path Dy do not cross
until they have been processed.

The above two invariants and the following theorem are direct extensions of the original

work in [PaoD87].

Theorem 4.1

If an M x N array is reconfigured (with data re-routing) into a smaller array of size
m x n in such a way that the two invariants are satisfied, and every horizontal path H; (i
=1,2,...,m) has crossed every vertical path Vj and diagonal path D, +j-i (= 12,..,nand
(m +) -1) is greater or equal to 1), and vice versa, then the reconfiguration is successful.
Proof

Since the horizontal path H; does not cross H;,; (invariant 1), the vertical path V;
cannot cross H;, j before crossing H; and the diagonal path Dy, ,;_; also cannot cross Hi,
before crossing H;. Similarly, the diagonal path Dy, 4; ; cannot cross Vj, before crossing
V;. When V; crosses H; and Dy, ,; . j at a common good cell, the required computation
among them should have been completed (invariant 2).

If the reconfiguration is successful, data on V; will meet and be processed with
data on the horizontal and diagonal paths (H,, Dm+j-l)v (Hs, Dm+j_2),(....,...), Hps DJ-)
successively in some common good cells.

The same argument applies to the horizontal and diagonal paths. QE.D

67

4.3 Cell Architecture

There is one processing unit in each cell together with a self-testing circuit. The
self tester will check the result of the computation in each cycle. In the following
discussion, we assume that only the processing unit can fail. The architecture of the
processing cell (type-A) is shown in Fig. 24. Two horizontal and two vertical paths are
allowed to traverse a cell at the same time. If there are more than one horizontal paths
entering the cell, then the path associated with the local I/O port hl precedes that
associated with h2. Similarly, if there are two vertical paths entering the cell, then the path
associated with v2 precedes that associated with v1. Also, there are three diagonal paths
allowed to traverse a cell at the same time. If there are more than one diagonal paths
entering the cell, then the path associated with d2 precedes that associated with d5, and d5

precedes dl.

4.4 Routing strategy
The cells in the array will route the data paths according to tables 2 to 15. It can be
observed that the horizontal path H; should meet the vertical path V;and the diagonal path

D+ j.j at a common good cell. The routing strategy can be explained as follows:

1. The routing strategy of the horizontal and vertical paths is the same as suggested in
[PaoD87]. A brief description of this strategy follows: The cells in the array route the
data paths depending upon whether the cell is faulty or not. Basically, the routing
strategy 1s to greedily extend the horizontal path toward the right boundary of the
array. The horizontal path will make a turn and go one step downward if (a) it meets
another horizontal path coming down from the cell above, or (b) it is moving together
with a vertical path to find a good cell to perform the computation and it meets another
vertical path coming from the cell above at a faulty cell. A vertical path Vv, will be
greedily extended downward to meet H;. It will then move along with H; to find an

unused good cell to do the computation. Afterward, it will cross H, and extend to H, ,

68

and so on. V; will take a step to the right if (a) it is moving along with a horizontal path
to find an unused good cell, or (b) it meets another vertical path coming from the left.

2. If H; meets Dy only, then H; and Dy will move together either to the right or down
(depending on the routing strategy of the horizontal path) till meeting the vertical path
V; and the computation is done.

3. If V; meets Dy only, then V; and Dy will move together either to the right or down
(depending on the routing strategy of the vertical path) till meeting the horizontal path
H; and the computation is done.

4. When H; meets V; and Dy at a common good cell, the corresponding computation will
be performed and the three paths H;, V; and Dy will be routed to the right, downward
and diagonally, respectively. If other paths meet with the one above on a good cell,
priority is for the three paths flowing all together.

5. When H; meets V; and Dy at a faulty cell, the three paths will be routed all together
along H; or V; (depending on the routing strategy of the horizontal and vertical paths)
to find a good cell to perform the required computation. Once the computation is
performed the three paths H;, V; and Dy will be routed to the right, downward and

diagonally, respectively.

4.5 Comments on special cases and tables

Going back to the type-A cell shown in Fig. 24, we can see the presence of seven
inputs and seven outputs. All of the routing tables have been constructed under the
assumption of the existence of spare cells that will enable to reconfigure an M x N array
into m x n array (m < M, n < N). By grouping the horizontal and vertical inputs, we will
be left with the three diagonal inputs, namely, d1, d2 and d5, respectively.

The diagonal inputs (d1d2dS5) can have eight possible combinations which are
presented with both the horizontal and vertical inputs in tables 2 to 15. For every possible

combination, two tables are needed, one if the cell is faulty and the other if the cell is

69

good. The case of (000) represents 2-data flow systolic arrays which is already covered in
[PaoD87] and presented in tables 16 and 17. Some of the entries of the tables will be
explained below and the rest can be understood easily by following the same reasoning.
For example, in table 10, consider the entries for (h1h2) as (01) and for (v1v2) as (01)
which results in inputs and outputs as shown in Fig. 25. The computations will be
performed between (h2v2d2). Once, the computation is performed, then h2 will flow to
the right, v2 downward and d2 diagonally. The diagonal input d5 will flow horizontally to
the right cell. The remaining entries of the different tables can be interpreted similarly.

Fig. 26 shows a reconfigured array. We will look at some interesting cases. For
instance PE3 has (h2v2d2v1d5), the data routing will be done according to table 10 as
follows: (h2v2d2) will be computed and h2 then flows to the right (PE4), v2 flows
downward (PE8) and d2 flows diagonally (PE9). The other two inputs will flow to the
right cell (PE4).

Now consider PE4 which has only three inputs (h2v2d2) and is faulty. It will be
routed according to table 5. Then, the three inputs will pass unchanged to PES. PE5 is also
faulty and a boundary PE. Then, its three inputs will be redirected to PE10, according to
the same table.

Finally, looking at PE12 which has (hlvlid1h2d2), the routing will be done
according to table 8. The computations will be performed between (hlvidl), then hil
flows to the right (PE13), v1 flows downward (PE17), d1 flows diagonally (PE18) and h2
and d2 will flow downward (PE17).

Fig. 27 illustrates the case of three diagonals (d1d2d5) reaching a cell. The inputs
are routed according to tables 14 and 15.

Correctness of the reconfiguration follows from the following theorem and theorem 4.1.
Theorem 4.2

The routing tables satisfy the two invariants.

70

Proof

Tables 10 and 11 will be used to demonstrate the proof and similar proofs for other
tables follow the same reasoning. If there are more than one diagonal (vertical) data
received at the input ports of a cell, the diagonal path associated with d2 precedes that
associated with d5 (the vertical path associated with v2 precedes that associated with v1).
At the output ports, v3 goes to the right and v4 goes downward (e.g. entry h2v1lv2d2d5).
Also, d3 goes to the right, d4 goes downward and d6 goes diagonally. Hence, v4 precedes
v3 and d4 or d6 precedes d3 at the output ports. Whenever there are two diagonal (one
coming diagonally and the other coming from left) data entering a cell, d5 (the one coming
diagonally) will be routed to d3 and d2 (the one coming from left) will be routed to d6 (if
the cell is good and a computation was performed (e.g. entry h2vlv2d2dS). Otherwise, d2
will be routed to d4 (e.g. entry vlv2d2d5). Also, vl will be routed to v3 and v2 routed to
v4. Hence, the order of the paths are preserved when they pass through the cell and the
first invariant is satisfied.

Consider the table for faulty cell (table 11). If originally h;, v; and dy are to be
processed at the faulty cell, then they will move together (in this case downward). Hence,
the routing table 11 satisfies the second invariant.

For the good cell, the routing of data is the same as that of the faulty cell, except
that the computation will be performed. If h;, v; and dy have been processed, they will
cross and h; will move to the right, v; downward and dy diagonally (e.g. entry
h2v1v2d2d5). Hence, routing table 10 satisfies the second invariant.

Q.ED.

!

vl h} 41
V2__..__9 T — e v3
h2 = h3
e\ () @
dé
v4 h4 d4

P: Processing Unit
T: Self-tester

Fig.24 Logical Structure of processing cell

—
h h2
d2 £

Fig. 25 Only (v2h2d2d5) available [entry from table 10]

72

<
w

-«|l|||“mmu

H1

A% ummlm"lnn.

||||||mmn

D

£

lw)
Db
llll"“lnmm-'
S
A "'lll““'nmne ;-ll ““um '@
*...: -

< -cllm"nnml
-ull||“"mmm

<
N
<
w

Fig. 26. A reconfigured array of type-A cells.

73

=
<
w

D3

-aummmmm
v)
ES

w)

W

-ll!lllmmumu

Hi1

HI

-nll““um -' .-||||||“|mnm 5

3)
|l|||“|mumu '

AL X
L

Bt .ul"""nnm»
s": i

(LT I 3
' ""' Q "l""““ e
2
~
‘ nnlllll“"“h

-t “mmn

p—
llll““ummm

Illl"“l"lll' -mmn““lllh

&
Y- .

) O

4

w

Lo

N,

.ulll““lmmn ‘
' l“"“llllllllll
‘ .“ll
-
w

=
<..n||||"“mmm|
ull""lmnm

D3

<
N
)
o
<
W

Fig. 27 A reconfigured array showing the case where three diagonals
(d1d2d5) reach a cell.

74

The outputs specified in the box are:

v3 h3 1 d3 | dé

v4 h4 d4

In the routing tables of non faulty cells:
*: do the computation
-: cells at the right boundary.

In the routing tables of faulty cells:

+: cells at the right boundary

Empty slots in the tables mean that these combinations will not happen.

» Comments written on the top of a table for a good cell also apply to

the corresponding table for a faulty cell.

75

(100 2seo) wasaid ¢p AJuo Yim 135 A3nej uou jo uonounjy 3unnoy d|qe L

0 1 I I I 0 0 0
*9[qe1 3y} ut Anud (ZATA) Joj spjoy Juswingre swes ay], ‘usddey Jou ued aseI SIYI UIY) “yuIsqe

410q 218 ZP pPue [P SV "ZP 10 [P [euoReIp 9yl ARy PINOYS WY} JO JUO ISBI] B ‘A[SNOSUBINUIS INJ20 TY PUB [Y JI »

(4!

A

Ia

76

(100 9sea) wasaid ¢p Ajuo im (132 Aney jo uonouny Sunnoy ¢ 9qe

*SP | xCH | 1A P IA
SP Iy IA P | Ia
cp (4
P 14 A P} T4 A
cp 1Y SP| Y cp
0 I I 1

A

14

77

(010 @seo) wasaid zp A[uo Yim {22 Anej uou jo uonounjy Sunnoy § dqel

01
I 1
I 0
0 0
A
0 I I I I 0 0 0
‘Kidwa are sreadde 1y a1oym satnus syl pue uaddey 1ou ued ased sy U “WUISqe St a IA
Y

1P SV “(IP1ATY) [P PUE [A 410G yiia JO (IPTY) [P yita patuedwodse aq prnoys 1t uay ‘susddey 1y usym

78

(010 9s®9) wasaid gp Ajuo yum [[20 L&iney Jo uonounj Sunnoy ¢ qeL

[4

A

L}

1A

79

{001 2580) wasaid [p AJuo Y []22 AIfnej Uou jo uonduny unnoy 9 IJqe],

0 1 1 ! [0 0 0
‘Kidwo are sreadde za a1aym sarnua oYy pue uaddey jou ued 95O SIY) U WUISqE SI

TP SV “(TPTATY) TP PUB TY Yioq Yiim 10 (TPZA) TP Yim patuedwodse aq proys 1t ‘suaddey ga usyp

A

1Y

A

80

(001 2sed) wasad [p Ajuo Y (120 Lnej Jo uonouny Sunnoy / Jqel

(A}

A

1Y

A

81

(011 9seo) 1uasaid Zp pue [P WOQ YIM [{29 Ai[nej uou Jo uonduny Sunnoy g 21qe L

(4% x[A 4] 7y | #IA
»[P »1Y x|P L
(4%
1P 14
Ip 14 *CP IP | *C4
0 1 I

“ISIX9 p[NOYS S A,,
ay3 Jo auo 1589 18 ‘Aprernuis "uaddey jou Aew 1uasqe Yloq are 7y pue [Y JO 958D 3y} ‘Usy], *A391ens Sunnal Ino
01 SuIpIOooR. IGO0 1SAW (ZY JO 1Y) S,.U,, 24 JO U0 1se3] e Jey sanduwt Syl “Indd0 TP pue [P Yioq UaYM »

A

L

82

(011 9seo) wasaid Zp pue [P YIOq YIm 120 Ayjney Jo uonouny 3unnoy 6 9jqelL

[43 w rAl
P | 1a P | 1A
(4% (4 [42% (4 A rd)] rd!| A
1P 4| 14 1P L} [A 4% [A
w| | e 2| | za
P} 1y P
0 1 I ! I

(A

A

1L

IA

83

(110 9s©2) wasaid gp pue Zp Yoq YA [[39 Ayney uou Jo uonounj 3unnoy Of AqeL

x[A cp 1A
*CP P «CU Sp
P A
Sp 1A
™ -
*CP | SP | xTY sp
(4% (4
cpP
0 1 1 1 I

-£1dws 9q [1Y JO SILIUD AU} USY) JUISqR ST [P SV ‘1P Aq parueduiodoe aq [jim 3t udy) ‘suaddey [y J]

(Al

A

1y

A

(110 95e0) 1uasard Gp pue Zp Yoq YA [[39 Aijnej jo uonounj Sunnoy 1 9[qelL

(4

A

L}

(161 2sed) 1uasaud P pue [P POq i [[9 Aljnej uou Jo uonduny 3unnoy Z1 dlqel

sP x[A P | TH | #]A sp *1A Y
|
1Y 3L =[P *Y *1P *xCH 1% 1A
%
SP Sp (4]
IP L 1% 1Y
0 1 I 0
“A1dwd 9q [[14 ZA JO SLQUD dY) UdY) Juasqe SI ZP SY "ZP Aq patuedioooe 3q pinoys it uay ‘suaddey ga I .

g&i« e e S 2o i

BRI R NP

P R e

A

Y

(107 2s80) ussad Gp pue [P [HOq s [[20 Auney Jo uonouny Supnoy €1 AqeL

(4!

-t

7A

Y

1A

87

(111 9sed) Juasaxd Gp pue Zp ‘1P Yim 199 L1fnej uou Jo uonsunj Sunnoy 41 3[qe],

) .ammxu vﬂzozw m:>3

P P 4| (43 A
|1 L A P 4 1A P 1A
[4Y TA (4% (A A Yy Ul A
SpP Ip | 1Ia 1P 1Y | & 1p 1A
(4% TA Wl | TA Wl W] TA
sl 1P 1Yy P} Iy 1P
0 1 I I I 0 0

ap Jo

QUO ISBI[1B pUe N30 1SN (7Y IO [Y) S..4,, Y JO U0 ISBI] I8 By} Sar[duir SIf) “INd20 Gp PUB ZP ‘[P UM »

(Al

A

14

=

88

(111 9se2) Juasaud Gp pue Zp ‘Ip YIm [[39 Ljniej jo uonouny 3unnoy ¢ d|qz,

(4% r4Y a (4.0 B4
P 19| IA IP] I8 [a sp p Ia
cp A Py T T 4 ul za
IP 14 IA iP 4 1A sp 1P IA
(4% N>. (433 IA A Pl T A
IP| T P} 14 spi 1P

0 1 I 1 1 0

4

A

L]

{A

89

The outputs are specified in the square : | v3 h3
v4 h4
h1
N2 6 0 0 1 1 1 1 0
v2
h2 hl hl
h2+ hl hl
0 1 v2 v2 + v2+ h2+ § v2
vl vi+ hil+
1 1 Cc A*
v2 v2
h2* hl+
1 0 B*
vl vl* vi+
*: do the computation.
+: do the computation if done flag = 0. vl hi
A:if f1 =0 compute hlvl v2 h2
else if f2 = 0 compute h2v2
else do not process
(f1 and £2 are flags accompanying the hl
pair of data tokens on each side)
B: if f1 = 0 compute hlvl vl h2
else compute h2vl
vl h2
C: if f2 = 0 compute h2v2
else compute h2vl 5
\Y

Table 16 Routing function of non-faulty cell (case 000) from [PaoD87].

e

Thie outputs are specified in the square ;: | v3 h3

v4 h4
. hl
1
Vi"'NXbP2 0 0 0 1 1 1 10
v2
h2 hl hi
v2+ h2+ hl hl
0O 1 v2 v2 v2 h2 v2
vl vl h2 | vi hl vl hil
1 1
v2 v2 h2+§ v2 h2 v2
vl h2 | vi+ hl vi+ hl
1 O
vl vl* h2*3 vl h2 vl

+: if the incoming pair is not done

* : cells at the right boundary.

Table 17 Routing function of faulty cell (case 000) from [PaoD87].

CHAPTER 5

CONCLUSION

Techniques to achieve fault tolerance for three data flow systolic arrays both at
run-time and at compile-time are presented. A run-time fault tolerance technique (3DFT)
based on space-time mapping and hardware redundancy under the assumption that the
latency of the computation is equal to or greater than three and the generated variables
flow through the processing element has been proposed. The fault assumption is that only
one PE of every three involved in doing the same computation can be faulty. The scheme
can tolerate the occurrence of multiple faults (permanent and transient) under this
condition. No assumption about any fault free elements or links is made. A processing
element (PE) supporting the concept is proposed. The advantages of using 3DFT and the
types of tolerated faults are discussed. The technique is not applicable in all cases;
however, in the specific cases where it applies, fau!t pierance can be achieved with a very
low overhead.

Another run-time fault-tolerance scheme based on reconfiguration for
unidirectional 3-data flow systolic arrays is also proposed. The distributed reconfiguration
algorithm enables the cells of a processing array to dynamically restructure themselves
based on local information. No a priori cell programming is required. A cell architecture is
proposed and studied. The approach allows reconfiguration of the three data flow paths
(horizontal, vertical and diagonal). Transient faults can be tolerated provided there are
sufficient spare processors to replace the faulty processors.

For compile-time fault tolerance, an extension of the RCS-cut approach (static
reconfiguration) is presentea to cover the case of unidirectional 3-data flow systolic
arrays. Also, comparisons with current reconfiguration techniques for hexagonal arrays is

discussed showing the pros and cons of every scheme.

92

An interesting problem would be to simplify the cell architecture pror- sed in the
RCS-cut approach for the 3-data flow systolic arrays, as the current design needs a cell of
nine inputs and nine outputs.

The distributed algorithms described in chapter 4 work for uni-directional 3-data
flow systolic arrays. Extending the algorithms for bi-dircctional data flow systolic arrays
will be an interesting problem.

As for the two run-time approaches suggested, the 3DFT approach would be easy
to implement and very efficient in the specific problems where it can be applied (matrix
multiplication, transitive closure, etc.). While the dynamic reconfiguration approach is

more general, it is more expensive in terms of hardware.

Abra87

Ball69

Barb81

ChSWS§8

Chen84

93

REFERENCES
J.A. Abraham, P. Banerjee, C. Chen, W. Fuchs, S. Kuo and A. Reddy, “Fault
tolerance techniques for systolic arrays”, IEEE Computer, July 1987, pp 65-74.
M. Ball, H. Hardie, “Majority Voter Design Consideration for TMR
Computers”, Computer Design, April 1969, pp 100-104.
D.F. Barbe, “VHSIC Systems and Technology”, IEEE Computer, Feb 1981, pp
13-22.
S. W. Chan, C. L. Wey, “The design of concurrent error diagnosable systolic
arrays for band matrix multiplications”, IEEE Trans. CAD Integr. Circuits and
Syst, 7(1), 1988, pp 21 - 37.
W-T. Cheng and J. Patel, “Concurrent Error Detection in Iterative Logic

Arrays”. Int. Symp. Fault Tolerant Computing, June 84, pp 10- 15.

ChHD85a H.D. Cheng, K.S. Fu, “Algorithm partition for a fixed-size VLSI architecture

Choi88

Cose88

Fort85

Fort85a

Fort86

using space-time domain expansion”, Int Symposium Circuits and Systems,
1985, pp 126-132.

Y-H. Choi, M. Malek, “A Fault-Tolerant Sys:olic Sorter’”’, IEEE Trans. on
Computers, 37(5), 1988, pp 621- 624.

R. J. Cosentino, “Concurrent error correction in systolic architectures”, IEEE
Trans. CAD Integr. Circuits and Syst, 7(1), 1988, pp 117- 125.

J. A. B. Fortes, D. I. Moldovan, “Parallelism detection and algorithm
transformation techniques useful for VLSI architectures design”, Journal of
Parallel and Distributed Computing, 1985, pp 277-301.

J. A. B. Fortes, C. S. Raghavendra, “‘Gracefully degradable processor arrays”,
IEEE Trans. on Computers, 34(11), 1985, pp 1033-1044.

J. Fortes, “Algorithm reconfiguration techniques for gracefully degradable
processor arrays’’, Int. Workshop on Systolic Arrays (Systolic Arrays, Will

Moore et al eds., Adam Hilger, 1987), pp 259-268.

Fuss84

Guib79

Gord84

Gord87

Gula86

Hell85

Huan84

Hwan82

John89

Jou86

Karp67

KimJ85

Kim]J87

94

D. Fussell, P. Varman, “Designing systolic algorithms for fault-tolerance”, Proc.
Int. Conf. Computer Design, 1984, pp 616-622.

LJ. Guibas, H.T. Kung, C.D. Thompson, “Direct VLSI implementation of
combinatorial algorithms”, Caltech Conf. on VLSI, 1979, pp 509-525.

D. Gordon, I. Koren and G. M. Silberman, “Embedding tree structures in VLSI
hexagonal arrays”, IEEE Trans. on Computers, 33(1), 1984, pp 104-107.

D. Gordon, I. Koren and G. M. Silberman, “Restructuring Hexagonal Arrays of
Processors in the presence of faults”, Journal of VLS!I and Computer Systems,
vol. 2 no. 1- 2, 1987, pp 23-35

R.K. Gulati and S. M. Reddy, “Concurrent error detection in VLSI array
structures”, Proc. Int. Conf. Computer Design, 1986, pp 488-491.

D. Heller, “Partitioning big matrices for small systolic arrays”, VLSI and
Modem Signal Processing. S.Y. Kung (eds), Prentice-Hall, 1985, pp 764-767.
K. H. Huang and J. A. Abraham, “Algorithm-based fault-tolerance for matrix
operations”, IEEE Trans. on Computers, 33(6), 1¢84, pp 518-528.

K.Hwang and Y. H. Cheng, “Partitioned matrix algorithms for VLSI arithmetic
systems”, IEEE Trans. on Computers, 31(12), 1982, pp 1215- 1224,

B. Johnson, “Design and Analysis of Faul, Tolerant Digital Systems”, Addison-
Wesley, 1989.

J. Y, Jou and J. A. Abraham, *“‘Fault-Tolerant matrix arithmetic and signal
processing on highly concurrent computing structures”, Proc. IEEE, 1986, pp
732-741.

R.M. Karp et al, “The organization of computations for uniform recurrcnce
equations”, J. ACM, 14, 1967, pp 563-590.

J. H. Kim and S. M. Reddy, “A fault-tolerant systolic array design using TMR
method”, Proc. Int. Conf. Computer Design, 1985, pp 769-773.

J. H. Kim and S. M. Reddy, “On easily testable and reconfigurable two-

KimJ87a

KimJ89

Kore81

Kuma88

Kuma89

Kuma91

KuHT79

KuHT82

KuHT84

KuSY87

95

dimensional systolic arrays”, Proc. Int. Conf. Parallel Processing, 1987, pp 101-
109.

J. H. Kim and S§. M. Reddy, “Fault-Tolerant LU-Decomposition in a Two
Dimensional Systolic Array”, Concurrent Computations, Algorithms,
Architecture and technology Edited by S. Tewksbury, B. Dickinson, S.
Schwartz, 1987 Plenum Press, Chapter 29.

J. H. Kim and S. M. Reddy, ““On the design of fault-tolerant two-dimensional
systolic arrays for yield enhancement”. IEEE Transaction on Computers, 38(4),
1989, pp 515- 525.

L. Koren, “A reconfigurable and fault-tolerant VL SI multiprocessor array”, Proc
of the Eighth Annual Symp. on Comp. Arch, 1981, pp425-441.

V. K. P. Kumar, Y.C. Tsai, “Marping two dimensional systolic arrays to one
dimensional arrays and applications”, Proc. Intemational Conference on
parallel processing, 1988, pp 39-46.

V. K. P. Kumar, Y.C. Tsai, “On mapping algorithms to linear fault-tolerant
systolic arrays”, IEEE Trans. on Computers, 38(3), 1989, pp 470-478.

Sanjeev Kumar and Dharma P. Agrawal, “Design and analysis of highly
reconfigurable hexagonal systolic arrays™, Private Communication.

H. T. Kung, *“Let’s design algorithms for VLSI systems™, Proc. Caliech Conf.
on VLSI, 1979, pp 65-90.

H. T. Kung, ““Why systolic architectures?”’, IEEE Computer, 15(1), 1982, pp 37-
46.

H. T. Kung and M.S. Lam, “Wafer-scale integration and two level pipelining
implementations of systolic arrays”, Journal of Parallel and Distributed
Computing, 1984, pp 32-63.

S. Y. Kung. VLSI array processors. Prentice-Hall, 1987.

KuSY87a S.Y. Kung, S.C. Lo, PS. Lewis, “Optimal systolic design for the transitive

Kuo86

Lala85

LamC89

Leig85

LiGJ85

LiHF87

LiHF89a

LiHF89b

LiHF89c

Maju90

Mead80

96

closure and the shortest path problems”, IEEE Transaction on Computers,
36(5), 1987, pp 603.

S. Y. Kuo and W. K. Fuchs, “Efficient spare allocation in reconfigurable arrays”,
Proc. Design Automation Conf., 1986, pp 385- 390.

P. Lala, Fault Tolerant & Fault Testable Hardware Design. Prentice-Hall, 1985

C. W. H. Lam, H. F Li, R. Jayakumar, “A study of two approaches for
reconfiguring fault-tolerant systolic arrays”, IEEE Trans. on Computers, 38(6),
1989, pp 833.

F. T. Leighton, C. E. Leiserson, “Wafer-scale integration of systolic arrays”,
IEEE Trans. on Computers, 34(5), 1985, pp 307-311

G. J. Li, B. W. Wah, “The design of optimal systolic arrays”, IEEE Trans. on
Computers, 34(1), 1985, pp 66-77.

H.F. Li, D. Pao, and R. Jayakumar, “Dynamic Reconfiguration for fault-tolerant
systolic arrays”, Int. Conf. Parallel Processing, 1987, pp 110- 113.

H. E Li, R. Jayakumar, C. Lam, Restructuring for fault-tolerant systolic arrays.
IEEE Trans. on Computers, 38(2), 1989, pp 307-311.

H.F. Li, C. N. Zhang, R. Jayakumar, “Latency of computational data-flow and
concurrent error detection in systolic arrays”, Canadian Conf. VLSI, 1989,
Vancouver, Oct 89, pp 251 -258

H. F. Li, D. Pao, and R. Jayakumar, “Systolic Arrays: Present State and Issues”,
Int Symp. on Computer Architecture and Digital Signal Processing, Hong
Kong, Oct 1989, pp 69-74.

A. Majumdar, C. S. Raghavendra, and M. A. Breuer, “Fault Tolerance in Linear
Systolic Arrays using Time Redundancy”, IEEE Trans. on Computers, 39(2),
1990, pp 269-276.

C. Mead and L. Conway, Introduction to VLSI Systems. Addison-Wesley,
Reading, MA, 1980.

Mira84

Mold83

Mold84

Mold85

Mold85a

Mold87

Nava87

Neli88

OKee86

PaoD87

Pate82

97

W. L. Miranker, “Space-time representations of computational structures”,
Computing, 32, 1984, pp 93-114.

D. I. Moldovan, “On the design of algorithms for VLSI systolic arrays”, Proc.
IEEE, 71(1), 1983, pp 113-120.

D. 1. Moldovan, C. 1. Wu, J. A. B. Fortes, “Mapping an arbitrarily largc QR
algorithm into fixed-size systolic array”, Int. Conf. Parallel Processing, 1984, pp
365 - 373.

D. 1. Moldovan, “Tradeoffs between ti11e and space characteristics in the design
of systolic arrays”, Proc. Int. Symp. Circuits and Systems, 1985, pp 1685-1688,
D. 1. Moldovan, J. A. B. Fortes, “Partitioning and mapping algorithms into fixed
size systolic arrays”, IEEE Trans. on Computers, 35(1), 1985, pp 1- 12.

D. I. Moldovan, “ADVIS: A software package for the design of systolic arrays”,
IEEE Trans. CAD Integr. Circuits and Systems, 6(1), 1987, pp 33-40.

J. J. Navaro, J. M. Llaberia and M. Valero, ‘“Partitioning: An essential step in
mapping algorithms into systolic array processors”, IEEE Computer, 20(7),
1987, pp 77-89.

H. W. Nelis, E. F. Deprettere, “Automatic design and partitioning of systolic /
wavefront array”, Circuits, Systems and Signal Processing, 1988, 7(2), pp 235
- 252,

M. T. O’Keefe, J. A. B. Fortes, “A comparative study of two systeinatic design
methodologies for systolic arrays™, Proc. Int. Conf. Parallel Processing, 1936,
pp 672-675.

Derek Pao, “A Distributed Reconfiguration Approach for Transient Fault
Tolerant Self-Reconfigurable Systolic Arrays and Performance Evaluations”
Master thesis, 1987 Depariment of Computer Science, Concordia University.
J. H. Patel and L. Y. Fung, “Concurrent Error Detection in ALU‘s by
Recomputing with Shifted Operands”, IEEE Trans. on Computers, 31(7), 1982,

Piuri88

Prad86

Quin84

Renn84

Rose83

Rote85

Rote86

Russ89

Sami86

Sami89

Shan88

Shom87

Pp 589-595.

V. Piuri, “Fault-tolerant hexagonal arithmetic array processors”,
Microprocessing and Microprogramming 1988, vol 24, no. 1- 5, 1988, pp 629-
636.

D. K. Pradhan, Fault-Tolerant Computing Theory and Techniques, Vol 1 & 2,
Prentice-Hall, 1986.

P. Quinton, “Automatic synthesis of systolic arrays from uniform recurrent
equations”, Int. Symp. Computer Architecture, 1984, pp 208-214.

D. A. Rennels, “Fault-Tolerant Computing -- Concepts and Examples”, IEEE
Trans. on Computers, 33(12), 1984, pp 1116-1129.

A. L. Rosenberg, “The diogenes approach to testable fault-tolerant arrays of
processors”, IEEE Trans. on Computers, 32(10), 1983, pp 902-910.

G. Rote, “A systolic array algorithm for the algebraic path problem (shortest
path; matrix inversion)”, Computing, vol 34, no 3, 1985, pp 191 - 219.

G. Rote, “On the connection between hexagonal and unidirectional rectangular
systolic arrays”, Agean Workshop on Computing, 1986, pp 70-83.

G. Russel and I. Sayers, Advanced Simulation and Test Methodologies for
VLSI Design, Van Nostrand Reinhold (International), 1989.

M. G. Sami, R. Stefanelli, “Reconfigurable architectures for VLSI processing
arrays”, Proc. IEEE, 74(5), 1986, pp 712-722.

M. G. Sami, R. Stefanelli, R. Negrini, Fault-Tolerance through Reconfiguration
of VLSI and WSI Arrays. MIT Press, 1989.

W. Shang and J. A. B. Fortes, “Time optimal linear schedules for algorithms
with uniform dependencies”, International conference on systolic arrays, 1988,
pp 393-402.

L. A. Shombert, D. P. Siewiorek, “Using redundancy for concurrent testing and

repairing of systolic arrays”, Int. Conf Systolic Arrays, 1987, pp 393-402.

Siew82

Varm86

Varm89

Wong85

Wong88

WuCCS87

Zhan89

99

D. P. Siewiorek and R.S Swaz, The theory and practice of reliable system
design, Digital Press, 1982.

P. J. Varman, 1. V. Ramakrishnan, “Synthesis of an optimal family of matrix
multiplication algorithms on linear arrays”, IEEE Trans. on Computers, 35(11),

1986, pp 989-996.

P. J. Varman, 1. V. Ramakrishnan, “Optimal matrix multiplication on fault-
tolerant VLSI arrays”, IEEE Trans. on Computers, 38(2), pp 278-283. Intl.
Symp. on Fault-Tolerant Computing, 1989, pp 244-249.

Y. Wong, J. M. Delosme, “Optimal systolic implementations of N-dimensional
recurrences’’, Int. Conf. Computer Design, 1985, pp 618-621.

Y. Wong, J. M. Delosme, “Broadcast removal in systolic algorithms”, Int. Conf
Systolic Arrays, 1988, pp 403-412,

C-C. Wu, T-S. Wu, “Concurrent Error Correction in Unidirectional Linear
Arithmetic Arrays”, Proc. 17-th Intl. Symp. on Fault-Tolerant Computing,
1987, pp 136-141.

C. N. Zhang, H. F. Li, “Mapping data flow computation into universal systolic
arrays”, Technical Report, Department of Computer Science, Concordia

University, 1989.

