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Abstract

Feature Extraction and Reconstruction
of Two Dimensional Patterns using
Autoregressive Moving Average Models and Fourier Descriptors

Siu Yun Leung

The analysis of closed boundaries of arbitrary shapes on a plane is discussed. Specif-
ically, the problems of representation and reconstruction are considered. In the first
part, circular autoregressive moving average model is suggested for the representa-
tion of the sequence of numbers derived from the closed boundary. The stochastic
model] is invariant to transformations such as scaling, translations, and shifts of the
starting point. A method for estimating the parameters of the model is given and a
decision rule for choosing the appropriate order is also included. In the second part,
modifications and improvements of Fourier descriptors, which are defined by Zahn
and Roskies are proposed. The amplitudes of the Fourier descriptors are shown to
be invariant under rotations, translations, scaling, mirror reflections and shifts of the
starting point. For both parts, reconstruction of curves are discussed and the results

of simulation is also presented.
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Chapter 1

Introduction and Summary

In many applications of pattern recognition and digital image analysis, the shape of a
simple connected object is represented by its contour. Different approaches have been
proposcd for two dimensional contour analysis, they include statistical approaches {9),
[29], Fourier descriptors approaches (8], [18], [24], [25], [26], [27], [37], [45] and syntac-
tic approaches [14], for a complete review refer to Mantas [30]. This thesis contains
two parts. In the first part, the statistical approach is discussed. The given contour is
approximated by a series of straight line segments and the coordinates on the contour
are used for the representation. One of the characteristic of the data is its circularity.
The observations are represented by an appropriate stochastic model belonging to the
family of circular autoregressive moving average models. Every model is characterized
by a set of unknown parameters and independent noise sequence. The parameters of
the model corresponding to a given boundary are invariant to transformations of the
boundary such as translations and shifts of the starting point. By suitable assump-
tions about the noise. expressions are obtained for the maximum likelihood estimates
of the parameters of the model for the given boundary, see Chapter 3. In actual
applications, the least squares estimates are used. The estimates are invariant to the
transformations of the boundaries. An algorithm is presented to generate a closed
boundary from the stored estimates of the parameters of the model. The main aim of
the approach developed here is to demonstrate that stochastic models can be useful in
representation a class of closed boundaries. Kashyap and Chellappa [21] used circular

autoregressive models (CAR) to represent closed contours. By using Akaike Infor-



mation Criterion (AIC), we found that, in practice, the boundary sequences would
be represented by the circular autoregressive moving average model (CARMA). That
motivated us to consider CARMA models of general order for contour coding and
reconstruction. CAR models of [21] are special cases cf our model. Ini Chapter 4, we
show that parameters of the models are invariant to translations, scaling and shifts of
the starting point which are multiple of L/N, where L is the perimeter of the contour
and N is the number of observations obtained from the boundary.

In the second part, the Fourier series approach for contour coding is discussed.
Fourier descriptors are distinguished by their invariance to affine shape transfor-
mations such as scaling, rotations, translations, mirror reflections and shifts of the
starting point. In the literature, the popularity of Granlund descriptors [18] far ex-
ceeds that of the Zahn and Roskies descriptors [45]. The reason is the discontinuity of
the polygonal signature resulting from Zahn and Roskies method (ZR) which causes
the Fourier coefficients to decrease slowly. The major drawbacks of Fourier descrip-
tors lie in their insensitivity to spurs on the boundary (for instance, it is difficult to
distinguish O from Q) by using Fourier descriptors alone). On the other hand, this
property may be useful in filtering out noise on the boundary. In order to improve the
rate of decline of Fourier coefficients, we smooth the polygonal boundary and derive
new SZR and LSZR type descriptors [24], [26]. ZR descriptors of Zahn and Roskies
[45] are derived from an angular bend function signature of a contour. The signature
for the polygonal contours has jump discontinuities corresponding to the vertices of
the polygon but is simpler than the signature for ZR descriptors which is linearized
so that ¢*(27) = ¢*(0) = 0 but still has jump discontinuities corresponding to the
vertices, where ¢* is the linearized step signature. It is well known that the partial
Fourier series derived from the discontinuous function does not converge uniformly
due to Gibb’s phenomenon at the jump points, therefore signature with a controlled
degree of smoothing is introduced. The smoothed signature, ¢, for SZR descriptors is
obtained by smoothing the step polygonal signature resulting in absence of jump dis-
continuities at the vertices but we still have J)(Zn’) # ¢(0). The lincarized, smoothed

signature, ¢=, for LSZR descriptors is obtained by linearizing the SZR signature so



that ¢"(2r) = ¢°(0), and in effect ¢* is continuous everywhere. As a result, the
LSZR descriptors are the best among four different kinds of descriptors, see Chap-
ter 6. These conclusions are not surprising. The negative effect of discontinuities
in polygonal signatures is removed from LSZR signature and resulting descriptors.
In particular the Gibb’s phenomenon does not occur in é°, since it is continuous
everywhere and the corresponding Fourier series converges to #* uniformly. The in-
variance of amplitudes of all kinds of descriptors to translations, scaling and shifts of
the starting point are shown in Chapter 5.

Two kinds of shape descriptors considered in this thesis based on stochastic mod-
els and Fourier coefficients share invariance properties. The choice of descriptors
should be based on particular application. If considered contours contain substantial
amount of noise stochastic approach is recommanded. On the other hand, Fourier
descriptors are recommended in case of smooth shapes with slowly varying bound-
aries. The shape descriptors studied in this thesis will be applied in the future to

classification of two dimensional objects.



Chapter 2

Stochastic Approach

In this chapter, statistical approach for time series modeling of closed contours is
presented. We only consider discrete systems, that is the observations are available
at discrete, equispaced instants of time. The time series is denoted by 2,...,zn,
where N is the total number of observations and z; is the value of the observation at

time z.

2.1 Representation of Closed Boundaries

The given closed boundary is represented by a finite sequence of real numbers, the
time series. It is assumed that the boundary has no crossovers and is approximated by
a polygon of N sides. The integer N is large enough to obtain the desired accuracy
of the approximation. Among many methods to obtain the time series from the
boundary, we will consider the onc -iescribed below.

Consider a Cartesian coordinate system such that the centroid of the object is at
the origin as shown in Figure 2.1. Let the perimeter of the polygon be L and let us
take N equispaced points on the boundary with coordinates (z,,y,),z = 1,..., N, and
the distance (L/N) between any two consecutive points. The resulting time serics is
{(ziyyi),t =1,..., N}

Another possible representation for closed smooth boundaries is the tangent angle

versus arc length [24], [25], [26], [45], which will be disscussed in Chapter 5.
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Figure 2.1: Two Dimensional Representation.
2.2 Mathematical Modeling of Boundaries

In the following section, we will define a number of quantities essential for our stochas-

tic model.

2.2.1 Stochastic Process

A statistical phenomenon that evolves in time according to probabilistic laws is called
a stochastic process. A special class of stochastic processes useful for describing time
series is stationary process, that is the process which remains in equilibrium about a

constant mean level.

Stationary Process

The stationary process is assumed to be in a specific form of statistical equilibrium,
and in particular, to vary about a fixed mean. A stochastic process is said to be
strictly stationary if its properties are unaffected by the change of time origin or

more precisely

Definition 2.1 The process {W,} is said to be strictly stationary if, for any ad-
massible £y, ...,t, andk, the joint probability distribution of Wy,,..., W, is identical
with the joint probabilily dis ribution of Wy, 4iy. ..y Wi 4k

5



Strict stationarity is, however, a severe restriction, we therefore introduce the notion
of ‘stationarity up to order 2’, which is a weaker condition but nevertheless describes

roughly the same type of physical behaviour. This leads to the following definition

Definition 2.2 The process { W,} is said to be stationary up to order2 if for any
admissible t,,...,t, and any k, all the joint moments up to order?2 of {W,,,...,W,}

exist and equal the corresponding joint moments up to order 2 of {(Wey 4ky.- oy Wi sk}

Since multivariate Normal distribution is fully characterized by its first and second

order momeuts, thus, an assumption of Normality plus second order stationarity, is

sufficient for sirictly stationarity.

Mean, Variance and Autocovariance

When n = 1, the strict stationarity assumption implies that the probability distribu-
tion of W, is the same for all { so that the stochastic process has a constant mean,
i, and variance, o3,.

The mean defines the level about which the process fluctuates and the variance
measures its spread about this level. The strict stationarity assumption also implies
that the joint probability distribution of W, and W, is the same for all times t,t+k

for any constant k.
Definition 2.3 The autocovariance at lag k is defined by
= E[(W, = p)(Wisx — p))-

Stationarity implies that -~ is indcpendent of ¢ but not of k and it measures the

covariance between W, and W,,.

Definition 2.4 The autocorrelation at lag k is defined by
=2
Yo



A utocovariance Generating Function

The definitions of backward and forward shift operators are given below

Definition 2.5 The backward shift operator is defined by
B'W,=W,_; for dllintegers j.

Definition 2.6 The forward shift operator is defined by

FiIW,=W,y; for dllintegers j.

Definition 2.7 The autocovariance generating function is defined by
o0
AB)= 3 wB*
== 00

where v, the autocovariance of lag k, is the coefficient of both B’ and B~3 = FJ.

For a given linear process

Wt = Z 1/’th—;’
y=0

where Z,’s are uncorrelated random variables with E[Z,] =0, var|Z;] = o} and ;’s

are constants with )y =1, the autocovariance at lag k of the process is
v = E[W Wyl
oo o
= ED_ Y YivnZi-j Zesk-i]

7=0h=0
2 [=.¢]
= 07 > bi¥ien
3=0
Substituting this result into the autocovariance generating function, we have

0o 0
Y(B) = of 3 Y ¥
k==o0co 7=0

o7y > Yiti+xB*
=0 k=—j
because i, =0for h <0. Writing 7 + k= h, sothat k=h— 7,
vB) = o%). 2 vhB*
=0 h=0

c% Y. ¥nB'Y ¥;B7,
h=0

j=0

]

7



¥(B) = o39(B)¥(B™!) = o3%(B)¥(F) (2.1)
where

Y(B) = i PnB".

h=0
This shows that the generating function can be expressed as a function of forward

and backward shift operators.

Linear Models for Time Series

There are several types of stochastic processes which are useful in setting up a model
for time series such as autoregressive process, moving average process and autore-

gressive moving average process. The definitions are given below

Definition 2.8 The process {Z;},t = 0,+1,%2,... is called a purely random
process if it consists of a sequence of uncorrelated random variables, i.e., if for all

s#t, covlZ,, Z,)=0.

Definition 2.9 {W} is an autoregressive process of order p (denoted by
AR(p)) if it satisfies
Wt - ¢1Wz-1 e = ¢th-—p = Zt

where @y, ..., P, are constants and {Z,} is a purely random process.
The equation can be written concisely in the form
¢(B)W, = Z,

where
H(B) =1~ B~ -~ $,B°

and the process is stationary if zeroes of the characteristic equation ¢(B) = 0 lie

outside the unit circle.

Definition 2.0 {W,} is a moving average process of order q (denoted by
MA(q)) if it satisfies
W= Z, "oth-l e 0th—q

where 0y,...,0, are constants and {Z,} is a purely random »rocess.

8



The equation can be written in the form
Wt = 0(B)Zg
where
6B)=1-6B~--.-0,B7

and the process is invertible if zeroes of the characteristic equation §(F) = 0 lie
outside the unit circle. It is natural to combine the autoregressive and moving average
models to construct a more general model which is known as autoregres:ive moving

average process

Definition 2.11 {W,} is an autoregressive moving average process of order

(p,q) (denoted by ARMA(p,q)) if it satisfies
Wi—Wyy =+ — ¢th—p =Z1 =024y~ — qut—q
where ¢y,...,¢, and 0y,...,0, are constants and {Z,} is a purely random process.

Equivalently, the model may be written in the form
¢(B)W,; = 0(B)Z,
where
$(B)=1—-$B—---—¢,B",
6(B)=1-66B—-.--0,B?

and the conditions for stationarity and invertibility of the process are zeroes of the

characteristic equations ¢(B) = 0 and §(B) = 0 lie outside the unit circle.

Uniqueness of Autoregressive Moving Average Model

With the assumption of Normality, knowledge of the first and second moments of the
probability distribution implies complete knowledge of the distribution. In particular,
knowledge of the mean and its autocovariance function can uniquely determine the

probability structure of the model. Although this unique probability structure can



be represented by a multiplicity of linear models, nevertheless, uniqueness is achieved
in the model when the appropriate stationarity and invertibility restrictions are in-

troduced [4].

Suppose that {W,}, with covariance generating function 4(B), is represented by

the linear model

$(B)W, = 6(B)Z, (2.2)

where zeroes of ¢(B) and 0(B) lie outside the unit circle. Then this linear model

may also be written as
14 9

(1-G:BYW, = [](1 - H,;B)Z,

1 =1

where the G;? are the zeroes of ¢(B) = 0 and H;! are the zeroes of 6(B) = 0, and
both G, H, lie inside the unit circle. Using the equation (2.1)

¥(B) = oZp(B)(B™)
oz (B)Y(F).

The covariance generating function for {W,} is
P g
¥(B) = [I(1 - G:B)~ (1 = GiF)™ [I(1 — H;B)(1 - H; F)o%.
i=1 =1

Since

(1- H,B)(1 - H;F) = H}(1 - H7'B)(1 - H]'F),

it follows that any one of the stochastic models
P q
[11-G.BW, = [[(1- H¥'B)kZ,
=1 =1
can have the same covariance generating function, if the constant k is appropriately
chosen. If a real root H is inside the unit circle, H~! will lie outside, or if a complex
pair, say H, and H,, are inside, then the pair H;'! and H;' will lie outside. It follows

that there will be only one stationary invertible model of the form (2.2) which has

a given autocovariance function.

10



2.2.2 Circular Model

In this thesis we only consider boundaries which are simple closed curves.

Definition ¢.12 A curve is a simple closed curve if and only if the initial point

and the terminal point coincide and the curve does not intersect itself.

Since the contour is closed, the observed boundary points satisfy circular condition :
Wu(N+t)=Wut, t=1,...,N, u=z,y

where W, = {W,,W,,}, {Wz} and {W,,} are the X and Y coordinates of the
boundary points.
The time series, {Wy},u = z,y, is fitted to a particular circular autoregressive

moving average model of order (p, ¢) as follows

¢u(B)Wut=0u(B)Zuh t=1,...,N, u=2z,y

where
¢u(B) = 1- ¢ulB -t = ¢upoa
0.(B) = 1-0,4B~---—0,,B7
and
Zu(N+t) = Zut

where {Z,} is independent, identical N(0,0% ) and the parameters @u1,..., Gup,
Ou1y..., 044, 0%, are unknown for u = z,y.

The procedures for estimating the unknown parameters of the time series {W,}
and {IV,} of order (p, q) are the same, therefore, we consider the following circular

model:

11



$(B)\W, =0(B)Z,, t=1,...,N

where

WN-H = Wh ZN+: = Zt,

MB) = 1= ¢:B—-- — 4B,
6B) = 1—6;B—---—6,B

and {Z,} are independent identical N(0, 0%).

Let us assume that the process is stationary. The parameters 6,,...,0, are chosen
so that the roots of the equation §(B) = 0 lie outside the unit circle, implying that
the model is both stationary and invertible. It is also assumed that no zeroes lie on
the unit circle. The method of maximum likelihood and AIC, Akaike's Information

Criterion {2], [6], [39], are used to estimate the parameters and the order of the model

respectively.

12




Chapter 3

Estimation of Parameters

The method to estimate the unknown parameters of the circular model from
Chapter 2 will be discussed. The estimation procedure is divided into two stages.
First, we find the initial values for the CARMA parameter estimates and then we use

these initial values to estimate the parameters iteratively.

3.1 Estimation of Mean, Variance and Autoco-
variance of the Time Series

In practice, a finite number of observations of the time series, w;,...,wy, is provided
from which the mean, variance and autocovariance are estimated. The mean, u, of

the process is zero and the variance, ow?, of the process is estimated by

The autocovariance at lag k is estimated by

1 N
== We Wik (3-1)
N

where £k =0,1,...,K and K < N.
The parameters of the model are estimated for different orders and the corre-
sponding AIC values are calculated by using these estimates. The appropriate order

of the model is determined by the values of p and g at which AIC attains its minimun.

13



3.2 Initial Estimation

The calculation of the initial values for the CARMA (p,¢) parameter estimates is

based on the first (p + ¢ + 1) autocovariance 4,,7 = 0,1,...,p+ q of W, and proceeds
in two stages [4].
3.2.1 Stage 1. Estimation of Autoregressive Parameters

The model is in the form
¢(B)W, = 0(B)Z,
which can be written as

Wt = ¢11'Vt—1 + e + ¢p”’t—p + Zt - 01 Zg..l '''' - 0qZ¢_q. (32)

On multiplying throughout equation (3.2) by W,_, and taking expectation, it follows
that

Ve = OVk-1t+ -+ G+
‘sz(k) - 017w2(k - 1) e oq'sz(k - q) (3.3)
where ywz(k) is the cross covariance function between W,_; and Z,, defined below
’sz(k) = E[LV‘_kZ‘].

Since W,_x depends only on the Z,’s which have occured up to time t = k, it follows

that

‘sz(k) = 0 for k> 0,
Ywzlk) # 0 for k<O.
Therefore, from equation (3.3), we have
Ve =01T-1+ STy, N>EZg+1 (3.4)

Using the above equation (3.4), initial values for the autoregressive parameters

#1,...,¢p can be obtained by solviag the following system of linear equations
Ye+1 = 01¥q + 2590 + -+ GV pe1s

14



Y42 = f?’l’?qﬂ + o2+ + ¢p:fq—P+2a

;7q+p = &1")\'0-!-?—1 + &2'?:1-0-11-—2 +.- 4+ &p%’qa
where the estimates of -y, are given in equation (3 1).
3.2.2 Stage 2. Estimation of Moving Average Parameters
Let W/ = ¢(B)W,, the process can be written in the form of moving average process
W/ = 0(B)Z,. (3.5)

Expressing the autocovariance 4, of W/ in terms of the autocovariance 3 and ¢i’s,
we have

E[M/tl-kw,t,] = E[¢(B)1’Vt—k¢(B)Wt]
E[(Wik — $1Wik—1- - — $pWick-p)

("Vt - ¢l I'Vt—l == ¢vat-p)]~

Consider the terms with autocovariances v, ; and ~,.;. We have

P P
Vi = W Z ¢ + o Z(d’od’: + 011+ + Dpmithy)
1=1

i=0
where
kK =0,1,...,q,
Ok = Vg + Vk—is
¢ = —1.
Therefore, the estimates of the autocovariance of W/ = 8(B)Z, are
Yi = ”0 ¢? + G .e:(é’o(;’l + ¢‘51¢‘5i+1 + 4+ &p—i&p)
where i )
k= 0,1,...,q,
Qi = Fegr + Vo1
¢ = —1;

15



which is equivalent to
5 = { ;f’:o oo $u0Bioiktio for p>0 (oo = -1),
for p= 0.
Using the autocovariance estimates 4; from above, the initial values for the moving
average parameteis in equation (3.5) can be obtained by the following.
Consider the moving average process, W, = 8(B)Z;. The autocovariance function

at lag k is

’f;’: = E[(Zt ~0Zyy =~ 0th—q)
(Ztek =1 Zyopr — -+ = 0qZ1_—4)).

Hence, the variance of the process is
To=(1+6 4+ +0)0%

and
' ("0k + 010k4r + - + 0q-k0q)0'22 for k= 1,...,q,
=] 0 for k> q.

Substituting 7o, 71, - -» ¥4 by the corresponding estimates 45,41, . ..,%; the following

equéations are obtained

~2 Yo
oy — = — =0, 3.6
2140244 82 (3.6)
A - -
ek —+ '&T - 010k+1 - 020k+2 —r— 0q~-k0q =0 for k= 0,1,...,(1.
z
The initial values of the parameters, ém, e ,éqo, are obtained by solving the above
set of nonlinear equations with ;g = --- = éqO = ( as starting values by using the

Newton Raphson method [38], see Appendix Al. Unlike the corresponding autore-
gressive estimates, the resulting estimates may not have high statistical efficiency.
However, they can provide useful starting values for an iterative procedure discussed
in the next section and they will converge to the maximum likelihood estimates.

Once the initial estimates of parameters é,o, ... 050 are calculated, these values

are substituted into the equation
14 0,0B+ - +0,0B7=0
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which is solved by the Laguerre’s method [38], see Appendix A2. Any of the real
or complex roots that lie inside the unit circle, are replaced by their reciprocals and
then the new values of 6,,i = 1,...,q are calculated. All the roots should lie outside
the unit circle because there is only one stationary invertible model corresponding to

a given autocovariance function.

3.2.3 Estimation of the Residual Variance

The variance of the residuals is estimated by the following formulas

52 = [ Ao — T b for g=0,
z 6% for ¢> 0 from equation (3.6).

Indeed, when ¢ = 0, we have
Wy= ¢1Wie1 + -+ ¢pWip + Z4.
On multiplying throughout by W, and taking expection, we obtain
Yo = ¢17-1+  + GpY-p + 07

Since 4, = 4-, that implies we have the estimate
2 2
&7 = J0— ) ¢:Hi-
1=0

3.3 Model Estimation

One way to estimate the parameters of the model is the method of maximum like-
lihood. This method usually produces good estimates but is time consuming. In
most situations, the maximum likelihood estimates -re closely approximated by the
least squares estimates, which are casier to obtain. In our application, both methods

~roduce the same estimates.

3.3.1 Maximum Likelihood Function of the Model
The circular model of order (p, q) with N observations w,...,wyn, is represented by
¢(B)W, = 6(B)Z,, t=1,...,N,

17



where

WN+: = Wts ZN-H = Zn

#B) = 1-$B—... - ¢,B?,

6(B) = 1-6,B—...-6,B9,
the mean is zero and the Z,’s are independent identical N(0,0%).

Since the model is stationary and invertible, therefore the model can be written
in the form
Z. = 07(B)¢(B)W,
~ Wi—tpiWig—--- = pWip

where the y’s are functions of ¢’s and 6’s. The last equality is only approximate

since infinite series is replaced by a finite truncation at the term h + 1. The value of

h,0 £ h < N, is chosen so that the autocorrelation, p(h), between W, and W,_, is

negligible. Substituting the observations W = (w,, ..., wn) into the above equation,
we have

21 = wy —YPwe — - — YrWwyp,

23 = wp—tw — - — Yrwr_p,

ZIN = WN = PiWNoy — -~ PrWN_p,
where W, = (wj—p,...,wp) are observations before the commencement. of the series.

Since the Z,’s are N(0,0%), so the joint conditional probability density function of

2's given wy-p,..., Wy is
N
1 2 Z'Z
Z|W.) = ( ) -
p(Z|W.) 2roz? exp{ 2032}
where Z! is the vector (zy,...,2x) and Z' is the transpose of Z. It is easily seen

that the transformation has unit Jacobian, therefore the joint conditional probability

density function of wy,...,wn given wy_p,...,wp is

p(W|W.)=( ! )gexp{_w}

2ro 72 2072
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N

S(y) = Z(wz —thwpy —-— ¢hw¢-h)2
t=1

and v is the vector (¥4,...,%s). The log likelihood function is

InL(v,07) = —-g,-ln(27razz) -

S(+)

2022 ’

The observations, W, before the commencement of the series can be: obtained by

the relationship Wy, = W,. Since

zp = wy— W —r— VrWe—p
& wy - Grwyg — = PpWip + 0y 21 + -+ 0524,
therefore
S(y) ~ 5(¢,9)

M=

1

L
1l

(wy — rwimy — -+ = Gpwpp + 1241 + - + aqzt-q)z'

With the knowledge of ¢,0,W and by the circularity, the residuals can be calculated

by solving the set of equations which will be discussed in next section. In order

to estimate the parameters, the log likelihood function is maximized or S(¢,8) is

miminized resulting in the least squares estimates of parameters.

Residuals

Once the parameters are estimated, the residuals can be

system of linear equations

-

1 00 0 0 -9 —dp

—¢y 10 0 0 0 -9

0 00 -0 0 —4, —Bp1 —&ps
1 00 -0 0 -6 -,
-6, 10 .-

calculated by solving the

—4?1 [ w,
—¢2 wa
1 jJLwn
- T,
_03 ¥4
-0, 23
1 JLan




which can be rewritten as

Aw = Bz

where A, B are the N x N matrices and w,z are N x 1 matrices. Thus, for any

given set of parameters and observations, the residuals can be calculated.

3.3.2 Linearization of the Model

Since the model contains the moving average part, z, is nonlinear function of the
parameters. As a result, iterative approach of the least squares method is used to

estimate the parameters of the circular model so that the sum

N
3a
t=1
is miminium.
Expanding 2, into Taylor series about its value corresponding to the set of initial

values of the parameters, {,((10,-..,Ck0),k = p + ¢, where { = (¢, @) and ignoring
terms of order 6¢? and higher, it follows that

k
2t = 2y — E((- = Cio)Tit (3.7)
i=1
where
p = 02
it~ act C=C°

Now if X is the N x k matrix {z;}, N equations of the form (3.7) are combined into
the system

zo=X(C"Co)+z

where 2z, and 2 are column vectors with N elements. The partial derivative can
be calculated numericaliy by using the method from Appendix Al. The adjustment

¢ — ¢,, can be obtained by the method of linear least squares
8 =C—Co=(XX)" X'z,

where X' is the transpose of the matrix X and (X‘X)~! is the inverse of the matrix
(X'X).
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Since the 2,’s are not linear in the parameters ¢, a single adjustment will not
immediately produce the least squares values. Instead, the adjusted values are sub-
stituted as new values and the process is iterated until S(¢,0) reaches minimum.
Convergence is assumed if S(¢™¥) < S(¢)y and (P — (24| < efori=1,...,p+gq,
or a specific number of iterations, k, has been taken. When divergence occurs, the

set of parameters is chosen as the best result in the first % iterations.

3.3.3 Estimation of the Residual Variance

The log likelihood function is

InL(¢,0z) = InL(¢,0,07)

N, 2
= const — —Inoy

_ 5(@8)
k .

20%
Taking partial derivative of the above equation with respect to oz, and equating it

to zero, the estimate of the variance is

S(¢, 9)
N

6% =
3.3.4 Order of the Model

In the preceding section, the problem of parameter estimation is discussed under
the assumption that the orders of the autoregressive and moving average parts are
known. In practice, these orders are unknown. A criterion to determine the order of
the model will be described below.

The order of the model is determined by the AIC, Akaike’s Information Criterion
[2], [6], [39], which can be used for a statistical model identification in a wide range
of situations and is not restricted to the time series context. The AIC is defined as

follows
Definition 3.1

AIC(p,q) = —2In[mazimum likelihood] + 2(p + q).
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From the previous section, it is shown that when the log likelihood function is maxi-
mized with respect to ¢ and 8, the estimate of the variance is given by

S(9,6)
T

5 =
Subsitiuting the above into the log likelihood function and omitting the terms which
are independent of ¢, @, p and g, the AIC criterion becomes

AIC(p,q) = N1lné% + 2(p + q).

The appropriate order of the model is determined by the value of p and ¢ at which

AIC(p, q) attains its minimum.
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Chapter 4

Properties and Reconstruction

In this chapter, the properties of the parameters and their estimates will be discussed.
The reconstruction of the closed curves using different numbers of quantization levels

of residuals and the results of simulation are prescnted.

4.1 Invariance

It is customary to regard the shape of a boundary as invariant to translations, ro-
tations and scaling of the boundary. As a result, more than one set of sequences
{Wu},u = z,y, would correspond to the same shape. The following specifies the
conditions under which the sequences {W,,} and {W,y} correspond to the same

shape.

Definition 4.1 Consider two circular boundary sequences {Wy,} and {W,u},
u = z,y. The boundaries corresponding to {W,,} and {W,n} have the same shape if

the following condition is satisfied
Wap = bVVu(H—c)a u==1I,Yy
where b> 0,c is an integer and |c| < N — 1 for all integers t.

When ¢ = 0, the sequence {W,+},u = z,y, is obtained from {W,} by scaling.
When b = 1 and c is a nonzero integer, the boundary represented by {W,u} is a
rotated version of the boundary {W,,} or equivalently {W,+} and {W,,} are obtained

from the same boundary but with different starting points. The coordinates of the
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boundary points, are obtained relative to the centroid of the boundary, therefore
the sequences {W,,} are invariant to translation of the boundary. The relationship
between the parameters of different sequences which correspond to identical shapes,

is given in the following theorem

Theorem 4.1 Consider two circular boundary sequences of order (p,q) :
{Wu}, v = z,y, such that ¢,(B)W,: = 6.(B)Zy and {Wypr},u = z,y, such that
¢ (B)W!, = 8,(B)Z.,, where {Z.} and {Z.,} are independent identical N(0, 0%,)
and N(0,0%.,) respectively and

¢u(B) = 1- ¢u1B Tl d’upov
6u(B) = 1—0,B—...—6,,B,
¢$(B) = 1~¢,B—...~¢,,B,
0(B) = 1—0,B—...—0, b

Let @, be (dy1y---101), Dy be (Burs- -y bup), 6, be (0,,,...,0,,) and 8, be
(Ou1y--10uq). {W.} and {W,} have the same shape if ¢, = ¢,, 6, = 8, and

2., = kZ,(41) where k is a positive real number and l and t are infegers.

Proof Without loss of generality, identity of the shape is obtained by showing
W), =kW, for k>0

and
thll = Wu(t+l) for lll S N
where u = z, 9.

The model is stationary and invertible, therefore

¢u(B)W, = 0,(B)Z,

i.e. W, = ¢;l(B)0u(B)kZ,,(,+,).
Choosing k£ = 4,1 = 0, we have
W.',g = b¢:1(B)0u(B)Zut
= b"Vuh
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choosing k = 1,1 = ¢, we have

W‘l'lt = ¢;1 (B)au(B)Zu(tH)

= Wi+

This ends the proof.

The significance of this theorem lies in the following. Suppose (¢.,8.),u = z, ¥y, cor-
responds to a boundary P and (¢/,8.),u = z,y, corresponds to another boundary
Q, where Q is obtained from P by scaling, translation and variation in the starting
point. Then ¢, = ¢/ and 6, = 8., i.e. given two identical closed shapes, the corre-
sponding values of ¢, and 8, are the same. This suggests the use of the vector ¢,
and @, for classification purposes.

We obtained three types of invariance for the vector ¢, and 8,, u = z,y as follows

1. invariance to scaling of the boundary,
2. invariance to variation of the starting point,

3. invariance to translation of the boundary.

An effective normalization is done with respect to the center of gravity of the shape,

so that ¢, and 8,, u = z,y, obey property 3.

Theorem 4.2 Let (c}&u,éu),u = r,y, denote the estimates of the parameters of
the circular model ¢,(B)Wy = 0,(B)Zy,t = 1,...,N. Then ((}u,éu) satisfy the
properties 1 and 2.

The estimates of parameters are also invariant to translations because the boundary
sequences are obtained relative to the centroid. The proof is similiar to the proof of

theorem 4.1 and is omitted.

4.2 Reconstruction

The boundary sequences are represented by the model ¢,(B)Wy: = 0,(B)Zy,
t=1,...,Nu = z,y, where W, is the observation at time ¢ and Z,, is the corre-

sponding residual. The information contained in the original correlated observations
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is split in the model into two sets, the statistical information contained in the set ¢,,
0. and the information in the uncorrelated residuals {z,;}. A curve identical to the
original one will be obtained if the original sets of residuals are used to reconstruct
the curve. Quantized residuzls [17], [31], {24}, are used to reconstruct the closed
curve to test the statistical information contained in the vectors ¢, and 6.. From
the information of 65“ and 0, and {2.:}, a boundary which is close to the original one
can be obtained.

———

The boundary sequences, W,,u = z,y, can be obtained by minimizing the norm
|IB(¢u)Wu - B(OU)ZU”2)

where
oy 4

Zu=(éuls-"séuN)7 Wu=(tbuh"'$wuN)a

1 00 -0 0 -4 —dms ~¢1
By = |"m 1000 0 —6y ~d |
0 0 0 "‘&p "‘%p-l —$p-2 1
. 0 o 0 -§ -b,, -0,
B, = -6 10 0 0 0 ~6, ~0,
0 00 - 0 -4, —o’.,,_, —pp -+ 1

Different number of quantization levels are used for the reconstruction and the results

are presented in next section.

4.3 Simulation

The experiments are performed on several digitized characters chosen from Suen’s
database [27] as shown in Figure 4.1 and denoted as characters ‘1’,'3',’5" and '9'. The
number of points obtained from the boundary is 100, the values for both p and ¢ vary
from 0 to 5 for both {W,,} and {W,,}. For initial values and model estimation, the
value of € is 0.001, the value of § for calculating the derivative numerically is 0.01 and

the number of iteration, k, is 20. The value of AIC is calculated for each order (p, ¢)
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and the optimal order is chosen as the minimum value of AIC. The exact residuals
are quantized using the Max quantizer [31] assuming a Gaussian distribution for the
residuals. The experiments were performed on Sun 3/50 workstation. Some of the
AIC values and the corresponding orders are shown in tables 4.1 and 4.2 for {W,}
and {W,} respectively.

Order gy '3’ 5! 9’
1,1 —213.73 | —59.00 | —162.01 | —155.19
2,1 —373.35 | —108.32 | —241.49 | ~-316.98
2,4 —389.66 | —111.00 | —254.65 | —313.12
2,5 —388.80 | —112.70 | —246.11 | —328.67
3,2 —357.49 | —103.63 | —249.06 | —300.72
4.0 —379.53 | —~106.55 | —244.21 | —324.14
4,5 —342.16 | —102.38 | —242.57 | -332.57
5,1 —-379.51 | —101.43 | -205.50 | -271.30

Optimal 2,4 2,5 2,4 4,5

Order

Table 4.1: AIC Values For Time Series {W,,}.

For Characters ‘1", ‘3, ’5' and '9’.

Order 1’ 3! 5’ 9’
1,1 —-280.35 | 15.21 -7.91 | -210.62
2,0 —330.72 | —128.70 | —272.28 | —256.84
2,1 —331.13 | —127.52 | —270.82 | —256.39
2,2 —346.45 | —125.63 | —269.12 | —267.95
3,2 —326.56 | —122.84 | —265.72 | —266.07
4.0 —340.55 | —125.56 | —269.58 | -268.60
4,2 —-331.29 | —=117.51 | —267.29 | —265.32
5,2 —-305.86 | ~125.76 | —266.01 | —263.32

Optimal 2,2 2,0 2,0 4,0

Order

Table 4.2: AIC Values For Time Series {W,}.

For Chaiacters ‘1’, ‘3’, '5' and '9’.
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For the reconstruction, lilierent levels of quantized resdiuals are used. Figure 4.2,
Figure 4.3 and Figure 4.4 show the reconstructed characters by using quantized resid-
uals with 36, 26 and 16 output levels with the corresponding optimal orders from the
given tables. The reconstructions shown in Figure 4.2 are quite good for all the
characters because most of the information is preserved during quantization. As the
number of quantization levels decreases, the quality of reconstruction also decresases,
see Figure 4.3 and Figure 4.4, but not substantially. It can be seen from these results
that estimates of the parameters carry significant statistical information about the
shapes because as the number of quantization levels decreases, the quality of the re-
constructed characters remains good enough for recognition. This suggests that the
parameters are good candidates for character recognition and classification.

Figure 4.5 shows the reconstructed characters using CARMA model of order (2,1)
for both {W;,} and {W,,} and Figure 4.6 shows the recorstructed characters using
model of order (3,2) for both {W,,} and {W,}. All of the characters are rcecon-
structed by using quantized residuals with 16 output level. The reconstructed char-
acters can still be recognized, implying that the reconstruction process is not very
sensitive to the model order as long as that order does not differ much from the

optimal order.
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/359

Figure 4.1: Original Shapes:Characters 'l’, ‘3’, '5’, and '9’.

/3 5N

Figure 4.2: Reconstructed Shapes:Optimal order and 36 output quantization levels.
Characters '1’, '3’, '5', and '9'.
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/) 359

Figure 4.3: Reconstructed Shapes:Optimal order and 26 output quantization levels.
Characters '1’, '3, '5/, and '9’.

J 354

Figure 4.4: Reconstructed Shapes:Optimal order and 16 output quantization levels.
Characters 1, '3’, ’5', and '9'.
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/359

Figure 4.5: Reconstructed Shapes:Order (2,1) and 16 output yuantization levels.
Characters ‘1, '3', '5/, and '9’.

03 54

Figure 4.6: Reconstructed Shapes:Order (3,2) and 16 output quantization levels.
Characters 1/, '3’, '5’, and ‘9’.
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Chapter 5

Fourier Series Approach

Another approach for coding the two dimensional pattern is the method of Fourier
descriptors. The amplitudes of Fourier descriptors are shown to be invariant under

rotations, translations, scaling, mirror reflections and shifts of the starting point.

5.1 Fourier Descriptors

Different kinds of Fourier descriptors for polygonal curves are obtained from different
approaches, some examples are from Granlund [18], Persoon and Fu [37], Zahn and
Roskies [45]. The Fourier descriptors defined in Zahn and Roskies [45], as well as

their improvements and modifications will be discussed.

5.1.1 Linearized Step Signature

Zahn and Roskies [45] define Fourier descriptors of a curve as follows. Let 4 be
a clockwise oriented simple closed smooth curve of perimeter L with parametric
representation Z(I) = (x(!),y(l)) where [ is the arc length along the boundary from
the chosen starting point, Zy, and 0 < [ < L. Denote the angular direction of v at
point { by the function 6(!) and let 6y = 6(0) be the absolute angular direction at the
starting point Zo. The cumulative angular bend function ¢(!) is defined as the net
amount of angular bend between starting point Z, and the point Z(!) as shown in
Figure 5.1a. So ¢(l) = 6(1) — 6(0) except for possible multiples of 27, ¢(L) = —27
and ¢(0) = 0. The domain [0, L] is normalized to the interval [0, 27] which is standard

for periodic function.
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-’

8(0) = éo

I X

(a) Parametric representation of a (b) Description of a simple closed
plane curve with tangential direc- planar polygon in terms of edge
tion (1) and cumulative angular lengths Al; and vertex bends
bend ¢(1). Ao,

Figure 5.1: (a)Parametric representation.(b)Description of a simple closed polygon.

A linearized step signature is defined as
. Lt
s =6 (5) +1
and $*(1) is invariant under rotations, translations and scaling, making it a good
candidate for shape signature. Expand ¢* as a Fourier series
oo
" (t) = po + Z(an cosnt + b, sin nt).
n=1
In polar form, the expansion is
o0
#*(t) = o+ D_ Ay cos(nt — ay)
n=1
where (A,,a,) are polar coordinates of (a,,b,). The numbers A, and a, are the
Fourier descriptors for the curve 4 and are known as the nth harmonic amplitude

and phase angle respectively.

33



Formulas for the Fourier coefficients, a,, by, n = 1,..., N, and puo are derived
when v is a polygonal curve. Assuming that the curve, 4, has m vertices V4, ..., V.1,
Vi = Vo, und that the edge (Vi-1, V;) has length Al;, Aly = 0. The change in angular
direction at vertex V; is A¢; (negative in clockwise direction and positive in counter
clockwise direction) and L = Y7, Al;. With this definition (Figure 5.1b), it is not
hard to verify that

k k+1
(1) =D D¢ for EAI SISy AL
i=1 i=1 i=1
and
#(0)=0 for 0<I< AL

Expanding ¢* in a Fourier series, we have

¢°(t) = po + }:(a,. cos nt + b, sinnt)

n=1

where

L/ g vt
Ho = 5’;/0 ¢( ’
1 2r .
a, = ;/(; @ (t) cosntdt,

1 2n . .
b, = ;/; ¢*(t) sinntdt.

Remembering that
Lt
s =6(5) ++

and changing variables

VI
2r
we obtain
1 L
o= 7 [ e+,
2 (L 2w\ 2rnA
a, = Z/o ((/\)+-—L—)cos 7 —d), (5.1)
2 2rA\ . 27n)
b, = Z./o (¢(/\)+-——) sin — d).



Exploiting the fact that ¢(!) is a step function, the formulas for the Fourier coefficients

are
1 m
Ho = —W—_ZlkA¢k,
27rnlk
a, = —;—;;A:ﬁk sin I (5.2)
27rnlk
b, = mr,;Acﬁkcos I

k
where I = ZAI,-.

g=1
The proof is given in the Appendix Bl.

5.2 Modifications and Improvements

Fourier descriptors introduced by Zahn and Roskies are derived from the signature
#(1) linearized in the interval [0, 27] to ¢"(t), where linearization means adding the
term t to ¢(Lt/27). Note that linearization ensures the continuity of ¢*(¢) at £ = 0 and

= 27 but does not remove discontinuity of ¢(!) inside the interval [0, L]. Instead of
linearizing, which does not improve things much, Fourier descriptors can be derived
from the step signature 4(I), STZR, normalized in the interval [0,27]. The STZR

descriptors are invariant to affine transformations.

5.2.1 Step Signature

Let v be a polygonal curve with m vertices Vo, V4,..., V-1,V = Vp and edges
(Vi-1, Vi) of length Al;,i = 1,...,m(Alp = 0). Let the angular change of direction
at vertex V, be Ag; (negative in clockwise direction and positive in counter clockwise
direction) as shown in Figure 5.1b and L = 37, Al;. Define I; = Z:;-=1 Alj,ly = 0.
Since the tangent line is undefined at the vertices of the polygon, the value

lim,y, §(s) + lim,; §(s)
2

is assigned to ¢ at the values of / corresponding to the vertices and this 1s the value
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(a) Smoothed signature @(I). (b) The Step signature ¢(!).

Figure 5.2: Step and Smoothed signature.

to which the Fourier series of ¢ converges at the vertices. It is also assumed that

A R A A¢0 _
0(0) = 1’11%10(1) - T = 50
and
&(l)— —-é-z‘é‘l for —6<l<,
- —27r+é,‘f~b‘l for l,<l<l,+6

as shown in Figure 5.2b. Exploiting the fact that ¢(I) is a step function

&(t) = jlo + Z(&n cosnt + b, sinnt)

n=1

where ¢t = 2nl/L. STZR descriptors are obtained after tedious but straightforward

calculations as follows

4 22 | % X b, .
A, = (&2 +82)?, &, = arctan -—, @, # 0,
an
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n 1 Z A A
o = —2”—'L'ElkA¢k+'—2¢'—o=ﬂ0—7r+'%)‘a
k=1
a, = —n—lw-kgl Ay sin 2"]’;”‘ = a,, (5.3)
- 1 & 2anl, 2 2
bn = nw;A(ﬁkCOS I +n—bn+n,

where g, a, and b, are Fourier coefficients of ¢* from previous section. The proof of
equation (5.3) is similiar to the proof of equation (5.2) and is omitted.

One of the most important justifications for the use of Fourier descriptors is the
invariance of harmonic amplitudes, A,, under affine transformations and shifts of
the starting point. The algebraic properties of STZR descriptors are summarized in
the following theorem. It is clear that closed curves which differ only in position,
orientation and size, but have analogous starting points are mapped into the same
angular bend function and therefore have identical Fourier descriptors. For that

reason, only shifts in the starting point and mirror reflections are considered.

Theorem 5.1 If v and 4’ are two curves which only differ by Al in the starting
points Zy and Z}, the Fourier descriptors (An,dn) and (A’ &l) for v and +' satisfy

A Y

1. A:.‘ = An,

&, = &, —nAt,

E\?

3. b = jio+b—8,
where
At—-2—7-£Al
=T AL

If v and ' have identical starting points but are mirror reflections of one another

then

LA = An,
&:t = _dm
3. b = —2r— jo
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Proof If ¥ and ' differ by Al in the starting point ( in units of arc length
clockwise from Z to Z' ) then &(I) = (I + Al). This implies that &'(l) + &, =
#(! + Al) + & Define 4., the normalized version of ¢ to the interval [0,2x], as
é.(t) = ¢(Lt/2r), we have

$L(t) + & = u(t + At) + . (5.4)

Expanding both ¢’ and &.(t + At) as a Fourier series

$(t) = o+ Y, Apcos(nt — &),
n=l
St + D) = fio+ Y Acos(nt — (G, — ulit)).
n=1

Equation (5.4) and the above equations imply the first part of the theorem.

In order to show the second part, notice that the curvature of v at Z(!l) is equal
to the curvature of 4’ at Z'(L ~ 1) because reflection of the curve changes the sign
of curvature but the change of orientation also changes the sign resulting in no net
change. Therefore the cumulative angular change between 0 and [ on v is the same

as between L and L — 1 on 4. So
(L -1+ () = —2m
This in turn implies that
PL(2r — t) + du(t) = —2m. (5.5)
Since qASL is periodic, 43:(2# -t) = qAS’,(—t) and equation (5.5) may be written as
(1) + §.(1) = —2m. (5.6)
Expanding ¢,(—t) and @.(t) as a Fourier series

¢ (-t) = jo+ Y Al cos(—nt—dal),

n=1

d.(t) = fio+ z /in cos(nt — &),

n=1

equation (5.6) and the above equations imply the second part of the theorem.
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Vi1 Visr

Figure 5.3: A polygonal curve and its smoothed quasipolygonal version.

5.2.2 Smoothed Signature

Both the ZR and STZR descriptors discussed so far are derived from discontinuous
signature, resulting in the lack of uniform convergence of the Fourier series. To

remedy this situation, a smoothed signature, SZR, is considered as follows

Definition 5.1 Consider a closed polygonal curve v with vertices Vy,..., V-1,
Vim = Vo as shown in Figure 5.3. Smoothing of v of order § is obtained by inserting
circular ares T; = A;V/B;, i = 0,...,m — 1 of length Al; = §|Ad;|cot(|A¢;|/2)
into angular corners so that the resulting quasipolygonal curve 4’ is differentiable

everywhere.

The arc centers V; are arbitrary assumed corresponding to the polygonal vertices
Vioi = 0,1,...,m — 1. The equation of the circle containing the circular arc T; is
determined as follows. The circle has radius 7, = § cot(|A¢i|/2), with center (g;, f;)-
Notice that lines (V,—1, Vi) and (V;, V;41) are tangent to the circular arc T; at points
P = (r,,y,) and @ = (z4,y,) respectively, where
(Al = 8)x; 4 bziy

Al ’

_ (Al = 8)y; + byi
yP - Al,

Tp
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and

(Aliyy = 8)xi + x4y

i Aliyy ’
_ (Bliyy = 8)yi + byis
% Dl
and .
Vi:(zi,yi)a 55'(-@%%2', for 0<i<m-1.

The equations of the tangents from the point V; touching the circle at P and Q are

TiTp + Yilp — Tigi — Tpgi — Yifi — Ypfi t € =0
and
TiTq + YiYy — Tigi — Toi — Yifi — Yofi + i =0
where
ci=g;+f7 -

Substracting the above equations, we get

('Tp - xq)gi + (yp - yq)fi = _'x:(xq - zp) - y:(yq - yp)-

The slope of the tangent at Q is —(z, — ¢:)/(y, — fi), therefore
(i = 2g)gi + (i — o) fi = —yqg(yy — ¥i) — zo(zq — ).

Solving the last two equations for f; and g;, the equation of the required circle which

contains the circular arc T; is
2 2 —
'+ y° -2z —-2fiy+ci=0.

The lengths of the inserted circular arcs T;,7 = 0,...,m — 1 are smaller then the
lengths of the corresponding angular corners A,V,B;. Consequently, a closed contour
4" of length L' = L — 2mé + -7, All, which is less than the length L of =, is
obtained. The signature ¢(l) of the smoothed polygon can be obtained by smoothing
the cumulative angular bend ¢(). The signature é in Figure 5.2a is obtained by
applying a smoothing operator S[f] of order 6, as defined below, to ¢ in Figure 5.2.
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Operator S cannot be defined by a single equation since smoothing at the jump

discontinuity requires scaling due to the change of length of the resulting curve.

Scaling is not required outside the interval. Let 6§ < (minAl;)/2 fir 1 <4 < m, then

for T € [li-1 + 6,1; — 6], i=1,...,m,

Slé(z)] = é(="), (5.7)
where
=l_+6_+z—-1li1-9, 8 = -/:\2—!:,
for z€[0,8]U[L—6,l;+ 8]U [lm —5lm]i—1,...,m—1,
St =) = 55 [ $0)dl (58)
where
o =ale- (-4 (G-8),  a=3

The degree of smoothing is controlled by §, the large the § is, the greater is the degree

of smoothing [10].
Lemma 5.1

Proof

5(¢] =

The case ¢ € [li-y + 6,1; — §] is trivial and will be omitted. The case

€ [0,8)U[li — 6+ 6)U[ln—6,1,),t=1,...,m -1 is proved.
When z € {0, 4],

When z € [I; —

26
= A¢o(§5)

Bé
N

$z) = —1—[/: A‘75"<11+ / A%dl]

6s li + 6]3
A¢o

) 1| & A
¢(z) = 2—6L_6§(A¢j ¢° dl+[ Z(A¢J+——-le

Ddo 1D,
= ¢°+ZA¢, STEU )
—_ A¢! I A¢l A¢t !
T AT T2 ZA¢J o TAL
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When z € [lm - 63 lm]a

~ r+6

d(z') = 216[ (=27 - A¢"‘ )dl + / A¢m —)dl
= —2r - %%ﬂ(lm + )
— A¢m ! A¢m ’
= _Al:nm - (27 + —— Al —1).

This ends the proof.
SZR is a continuous function in the interval 0 < [ < L', where L' is the length
of the quasipolygonal curve. The Fourier descriptors {/in. Cen} are calculated for the

polygonal contours by expanding $(!) as a Fourier series in the amplitude-phase form

q~5(1) = jig + Z A, cos(nt — ay)

n=1

which is equivalent to

() = jio + Y (@n cosnt + b, sin nt)

n=1

where .

/in=(&,2l+i)§)é, Gn, = arctan -2—", n=12...,
provided that &, # 0.
The coefficient fig,a, and b, are given by

. 1 &, D¢

fo = ——,El.‘Ad’: 27 + —(ﬁ—

JAY ¥ s ..7rnl’ . A\l

a, = ! 5.6

n T nr [mr 2 Al’ M ] ' (5.9)

s 1 AdJ, 21mlf . mAll

b, = — [ g Al’ 7 sin —7 +27r} .

The proof is given in the Appendix B2. SZR descriptors behave similiarily to STZR
descriptors under affine transformations. The results are summarized in next theo-

rem. The proof is similar to the proof of theorem 5.1 and is omitted.
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Theorem 5.2 If v and 4' are two curves which differ by Al in the starting
points Zy and Z} then (A,,6,) and (A!, &) for v and 7' satisfy

1. A =
2. & =
3. fp =
where
At =

-~

Aﬂ’
&y, — nt,
fio + o — 85,
2 Al

L

If ¥ andy' are mirror reflection of one another then

1. A
2. &
3. i

SZR has one disadvantage, its periodic extension into the whole real line still has
jump discontinuities at multiplicities of L’ because ¢(0) = 0 # @(L’) = —2x. To

remove these discontinuities, a linearized, smoothed signature, LSZR, normalized in

the interval [0, 27} is introduced.

~

Am
—Qy,

-—ﬂo -~ 27.

5.2.3 lLinearized Smoothed Signature

The linearized smoothed signature, LSZR, is defined as follow

Signature &S"(t) is invariant under translations, rotations and scaling. Expand ¢" as

a Fourier series

o0
&"(t) = g + D_(@s cosnt + b} sinnt).

n=1

In polar form, the expansion is

(1) = i+ D A; cos(nt — &)
n=1
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where the Fourier coefficients of the signature are calculated by the following formulas

~n _1_ 2 Tw
i = o [ e,

1 27
ar = - *(t tdt
an 7r/o @"(t) cos nidt,
B lfh & (1) sin ntdt
=) (t)sin ntdt.

After straightfroward calculations, we obtain the following relationships between the

Fourier coefficients of 55 and q~5'

. . 9
R ae .
jig = fig + 7, a, = ay,, b, = b, — —

[l

Obviously, & and 8 are functions of § and they converge to ZR Fourier coefficients
as § — 0. Fourier descriptors corresponding to LSZR are defined as follows
- ~t2 Fu? % i ~:1
A = (a, +b,)%, @, = arctan =, n=12,...,
n

provided that &}, # 0.

LSZR descriptors behave similiary to STZR descriptors under affine transforma-
von. The result are summarized in the next theorem, where the proof is similiar to

the proof of theorem 5.1 and is omitted.

Theorem 5.3 Ifv and 4 are two curves which differ by Al in the starting poinl
Zo and Z} then (AZ%,&%) and (A% ,&%) for v and 4’ satisfy

1. AY = A

’

— nit,
3. 5 = pp+by-& -

S

2. & = &

3 »

where
At = 2’}?‘1.
If v and 4' are mirror reflection of one another then
1. A:: = /i;,
2. &l = -a,
3. By = -




In order to see how much information that the Fourier descriptors contain, different
number of Fourier descriptors are used to reconstructed the closed polygonal curve

and the results are presented in next chapter.
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Chapter 6

Examples and Reconstructions

An example illustrating derivation of formulas for different types of Fourier coeffi-
cients is given. The reconstruction formulas for the polygonal curve are derived.
Experiments are performed to test how much information is contained in the first

few Fourier descriptors contain and the results are presented.

6.1 Example

Formulas for different Forrier cocflicients are derived for an equilateral triangular con-
tour as shown in Figure 6.1a and Figure 6.1b. Figure 6.1b is the smoothed equilateral
triangular contour of Figure 6.1a. Figure 6.2a and Figure 6.2b show the cumulative
angular bend functions é and ¢ for the contours from Figure 6.1a and Figure 6.1b
respectively. The perimeters of the triangle and the smoothed triangle are 3a and 3«
respectively, where

f)
3¢’ =3a— 66+ if—&

V3

According to equation (5.3), the STZR Fouricr coefficients are given by the formulas

Ho = —T7,

a, = 0,
) Z(2+ cos &) when n is odd
b, = for n=1,2,....

2(9 _ ar i
3o(2 — cos ) when n is even
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(a) Equilaterial triangle. (b) Smoothed equilaterial triangle.

Figure 6.1: Equilaterial and smoothed equilaterial triangles.

From equation (5.2), the ZR Fourier coefficients are given by the formulas

o
Ho = 3a
a, = 0,
—2(1 — cos 2) when n is odd
b, = for n=1,2,....
Z(1 + cos 2) when n is even

By equation (5.9), the SZR Fourier coeflicients are given by the formulas

ﬂO = -,

a, = 0,

X 2(1 — £(1 — cos %) sin 2F) when n is odd

b, = for n=1,2,....
(1 - (1 + cos &) sin &) when n is even

From the relationship between SZR and LSZR descriptors, the formulas for LSZR

Fourier coefficients are

o = 0,
-~ -
a, = 0,
—=2-(1 - cos &) sin 2% when n isodd
L]
b, = for n=1,2,..
(1+cos ) sin 5F when n iseven
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-2x L -2r
(a) Step signature of the triangle. (b) Smoothed signature of the triangle.

Figure 6.2: Step and smoothed signature of equilaterial triangles.
6.2 Reconstruction

Having developed the descriptors, it is of interest to know how easily the curve might
be reconstructed from these descriptors. The following theorem gives the reconstruc-

tion formula.

Theorem .1 If v is described by 0(1) and the starting point Z(0), the position
of the point Z(l) can be obtained from the expression

Z(l) = Z(0) + /olexp(z'O(A))d/\ (6.1)
which is equivalent to
!
2(1) = =(0) + /0 cos 6(A)dA,
y(l) = y(0) + /0' sin 0(A)d).

Proof By definition #(!) measures the direction of the velocity vector ¥'(l) =

(z(1),y'(1)) which is tangent to v at I. Whenever a curve is parameterized by its arc
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length the speed |y'(!)| is always 1 and z'(l) = cos 8(1), ¥'(1) = sin@(l). The result

follows by substituting these values into the fundamental theorem of integral calculus

() - 2(0) = [ 2/,
y(l) — y(0) = /ol y'(\)dA.

Using Theorem 6.1, we obtain the following reconstruction formula for the lin-

carized signature approximated by the first N terms of the Fourier expansion

L % . N .
Z(l)=2(0) + ’“/ expqyt —t+5o+llo+z(akcos kt + by sin kt)| o dt.
27 Jo k=1

Similiarily, the reconstruction formula for non linearized signature is

2nt

2n N
Z(l) = Z(0) + ELE/  exp {i [60 + po + D _(ax cos kt + by sin kt)] } dt.
0

k=1

A number of experiments on a set of digitized handwritten characters selected
from Suen’s database [27] was performed using ZR and LSZR descriptors. The num-
ber of points for reconstruction was 100. The experiments were performed on Sun
3/50 workstation. The characters ‘'l’, ‘3, '5’ and ‘9’ were used. Different number
of Fourier descriptors were used for reconstruction. Figure 6.3 through Figure 6.6
show reconstructed characters using 5, 13, 25 and 65 ZR descriptors respectively and
Figure 6.7 through Figure 6.10 show reconstructed characters using 5, 13, 25 and 65
LSZR descriptors. It can be seen that LSZR descriptors contain more informations
about contours than ZR descriptors. This is due to the fact that LSZR descriptors
are derived from continuous signatures. Therefore, the LSZR descriptors are well
suited for the reconstruction and the encoding of shape features and for applications

in shape (lassification. For more details on LSZR and other descriptors refer to [24]
[25] [26].
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/799

Figure 6.3: Reconstructed Shapes:Using 5 ZR descriptors.
Characters ‘1’, '3, '8/, and '9’.

/35N

Figure 6.4: Reconstructed Shapes:Using 13 ZR desrriptors.
Characters '1', '3, '%’, and '9'.
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/35N

Figure 6.5: Reconstructed Shapes:Using 25 ZR descriptors.
Characters ‘1, ’3’, '5’, and '9'.

/I I N

Figure 6.6: Reconstructed Shapes:Using 65 ZR descriptors.
Characters ‘1/, '3, '5’, and '9’.
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Figure 6.7: Reconstructed Shapes:Using 5 LSZR descriptors.
Characters '1’, '3, 5, and '9’.

/3 I

Figure 6.8: Reconstructed Shapes:Using 13 LSZR descriptors.
Characters ‘17, '3, ’5’, and '9’.
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/3 I

Figure 6.9: Reconstructed Shapes:Using 25 LSZR descriptors.
Characters ‘1", '3, '5’, and '9'.

/ 359

Figure 6.10: Reconstructed Shapes:Using 65 LSZR descriptors.
Characters '1’, '3', ’5', and '9'.
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Conclusion

In this thesis, we studied coding and reconstruction of two dimensional closed con-
tours using statistical and deterministic descriptors. First, we applied circular
ARMA model to encode discrete boundary points. We estimated parameters of the
model and chose its optimal order. This approach generalizes the approaches based
on the circular AR models. We found out that the parameters and their estimates
of the model are invariant to scaling and shifts of the starting point. The results
of simulation show that the estimates of the parameters carry significant statistical
information about the shapes. As the number of quantization levels decreascs, the
quality of the reconstructed characters remains good. Simulation also show that the
reconstruction process is not vary sensitive to the model order as long as the order
does not differ much from the optimal order. Next, we applied Fourier descriptors to
contour coding. New descriptors were derived and their properties were investigated.
We tested both types of descriptors, ZR and LSZR descriptors, on handwritten nu-
merals collected from the dead letter envelopes by the United States Post Office.
We proved that the amplitudes of the Fourier descriptors are invariant to rotations,
translations, scaling, mirror reflection and the shifts of the starting point. From the
results of simulation, it can be seen that the LSZR descriptors contain more infor-
mation about the contour than ZR descriptors because LSZR descriptors are derived
from the continuous signatures. In the future, the boundary descriptors developed in

this thesis will be applied to the classification of planar shapes.
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Appendix A
Some Useful Methods

A.1 Newton Raphson Method

Suppose we want to find a solution of a system of nonlinear equations
filz1,... an) =0, i=1,...,N.

T.et X denotes the entire vector of values z, then, in the neighbourhood of X, cach

of the functions f; can be expanded into Taylor series

fi(X +6X) = +§: af‘ax,+0(&x2)

=1

By neglecting terms of order §X? and higher, a set of linear equations for the correc-

tions 6X is obtained N
Z a,, 6z, = (A.1)

where

a/,
Q,; = a_f'v 61 = —fv

Z;
After equation(A.1) is solved, corrections are added to the current estimate of the
solution

new __ ,old S 14
™ =1 + bz, t=1,...,N

after equation(A.1) is solved.
Iterations are containued until convergence is reached. That is until absloute dif-

ference between z™* and z° is less than ¢ or until a specificed number of iterations,
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k, has been taken. The partial derivatives needed in equation(A.1) can be calculated

numerically by

./}(zla"'azj+6a'~'aIN)_fi(xl""sta"'va)
5 .

Q,; =
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A.2 Laguerre’s Method

Laguerre’s method [38] is used to determine the roots of a polynomial. The method
requires complex arithmetics (even while the roots are real}, but it is guaranteed to
converge to a root from any starting point.

The relations between the polynomial, its roots and derivatives are
P"(il') = (;l‘ - 1‘1)(1’— 1‘2) (‘T - J’n)a

In|Pa(z)|=In|z — 2] +Injr — 29|+ -+ +In|x — 2,|,
d 1 1 1 P

Elnlpﬂ(x)l=l‘—-xl+$—:l'2+“.+:r-:t"=Fn= ) (A.2)

i 1 1 1 P Py
-_— = — e S = (AL
T n|P,(z)| (r—x1)2+(:r—:tg)2+ +(m—:r,,)2 [P,,] P, H. (A.3)

The root z; is assumed to be located some distance a from the current guess,

while all other roots are assumed to be located at a distance b, where
a=71-— 14, b=r-1x,, 1=2,3,...,n.

Equations (A.2) and (A.3) can be expressed as

1 n-1
- = G, (A.4)
1 n—1
o) o H, (A.D)
which yield the solution for a, where
o - (A.6)

e Vo =)(nll - G?)

The sign in equation(A.6) is taken to yield the largest magnitude for the denominator.
Since the factor inside the square root can be negative, a can be complex. The method
operates iteratively : for a trial value z, a is calculated by equation (A.6). Then r —«

becomes the next trial value. This process is continued until a is sufficiently small.



Appendix B

Proof of the Lemmas

B.1 ZR Descriptors

Lemma B.1 Let 4 be a polygonal curve. The Fourier coefficients of ¢ are
1 m
o = z' Z A¢k -,
k=1
1 & . 2nrl
a, = —; ; l. Sinl 7 k,
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B.2 SZR Descriptors

Lemma B.2 Let v be a polygonal curve. The Fourier coefficients of ¢ are
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Proof Let 4" be the quasipolygenal curve corresponding to the smoothed sig-

nature ¢ with points V,...,V/_, located in the middle of the circular arcs. The

Fourier coefficients of ¢ are calcul: ted as follows
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where S is the cumulative area under constant pieces of SZR and S is the cumu-

lative arca under linear pieces of SZR. Now
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