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ABSTRACT

Finite Element Vorticity-Based Methods for the Solution of the
Incompressible and Compressible Navier-Stokes Equations

Grant Guevremont, Ph.D.
Concordia University, 1993

Finite element vorticity-based methods are applied to the analysis of viscous
flows. This is carried out in terms of a stream function-vorticity formulation
for 2-D flows and a velocity-vorticity formulation for 2-D and 3-D flows.
Second order equations are obtained for the variables and the discretization

is based on the weak-Galerkin weighted residual method.

The stream function-vorticity approach proposed in this thesis reverses the
traditional imposition of wall boundary conditions. The finite element
method is used to naturally impose the no-slip condition on the stream
function equation accurate for complex geometries. This method is extended
to two-dimensional subsonic external lifting flow. The unknown stream
function value on the airfoil, for lifting flow, is obtained by enforcing a
continuous pressure distribution over the entire airfoil. This is imposed

naturally through the finite element discretized vorticity transport equation.

The velocity-vorticity scheme proposed in this thesis was the first to use a
finite element weak-Galerkin method. This method is extended beyond
incompressible flow to two- and three-dimensional subsonic internal flow.

A new accurate wall vorticity boundary condition is also proposed. The



iv

finite element discretization is chosen to have equal order interpolation for

the vorticity and the first derivatives of velocity.

The stream function and vorticity or the velocity and vorticity are solved
simultaneously using a Newton method. At each iteration, the linear
algebraic system is solved by either a direct or an iterative matrix solver. For
subsonic flows, the iteration is completed by obtaining the pressure,
temperature, density and viscosity. Although it was found necessary in
some cases to obtain solutions at intermediary Reynolds numbers, no

artificial viscosity was required to stabilize the iteration algorithm.

The schemes demonstrate the advantages of the finite element method in

providing natural boundary conditions for such problems.
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1. Introduction

1.1  Historical Development of Vorticity-based Methods for the Navier-

Stokes Equations

Viscous fluid flow, under the assumption of a continuum, is governed by a
set of differential equations known as the Navier-Stokes equations. Strictly
speaking, the Navier-Stokes equations refer only to those representing the
conservation of momentum but generally also include the equations
representing the conservation of mass and energy. Any numerical
formulation requires the selection of the variables to be used as well as a
discretization scheme. Since the governing equations, in any form, are
generally non-linear, an iterative algorithm must also be selected. The
choice of variables determines the form of the governing equations and

greatly influences the choice of discretization and iterative algorithm.

For the two-dimensional incompressible Navier-Stokes equations, the most
often used sets of variables have been either the primitive variables, i.e.,
velocity and pressure, the stream function and vorticity, or the stream
function. The governing equations, in primitive variables form, consist of
the continuity equation, a first order differential equation, and two
momentum equations, each a second order differential equation. The energy
equation is decoupled for incompressible flow. The prcssure variable is not
present in the continuity equation and is only present as a first order
derivative in each momentum equation. If no special treatment is

introduced into the numerical formulation, the solution will exhibit the
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classical "checkerboarding” of the pressure [1]. Most primitive variables
algorithms have attempted to avoid this phenomena through modification
of the governing equations and/or through a non-standard discretization.
Among the modifications of the governing equations are:

1) replacing the continuity equation with a Poisson pressure equation (2],

2) adding a pressure time derivative to the continuity equation (artificial

compressibility [3]),

3) projection methods [4], and

4) penalty methods [4].
Discretization schemes include staggered finite difference grids where the
velocity component and the pressure nodes are at different locations {2].
Similarly, for finite element discretizations, the pressure and velocity are

represented by different interpolation functions [5].

The governing equations, in stream function-vorticity form, consist of two
second order differential equations. The first equation is formed from the
definitions of the vorticity and of the stream function and thus does not
contain the pressure. The second equation is derived from the curl of the
momentum equations which decouples the pressure variable from the
governing system. After the stream function and vorticity have been
converged upon, the pressure is recovered from a Poisson equation which is
the divergence of the momentum equations. The major advantage of using
the stream function is that it automatically satisfies the corntinuity equation

through its definition.

The governing equations, in stream function form, reduce to only one fourth

order differential equation. As with the stream function-vorticity equations,



this equation is derived from the curl of the momentum equations which
decouples the pressure variable from the governing system. After the stream
function has been converged upon, the pressure is recovered from a Poisson
equation which is the divergence of the momentum equations. The
continuity equation is also automatically satisfied which is a major
advantage with respect to primitive variables. Solving for the stream
function alone, compared to solving for both the stream function and the
vorticity, has the advantage of only having to solve for one variable but has

the disadvantage of having to solve a fourth order differential equation.

For the three-dimensional incompressible Navier-Stokes equations, most of
the numerical formulations have been in terms of either primitive variables,
stream functions (or vector potential) and vorticity, or velocity and vorticity.
Vorticity-based methods form the vorticity transport equations by taking the
curl of the momentum equations thus eliminating the pressure term. The
pressure variable is not present in the governing equations for the stream

function-vorticity and velocity-vorticity systems.

The compressible Navier-Stokes equations, in both two- and three-
dimensions, have been formulated numerically almost exclusively using
primative variables. The governing equations, in primitive variables form,
consist of the continuity equation, the momentum equations, the energy

equation, an equation of state and an empirical relation for viscosity.

For vorticity-based methods, the vorticity transport equations are formed by
taking the curl of the momentum equations and thus, as for incompressible

flows, the pressure term is eliminated. As a result, the pressure is not



explicitly present in the governing equations. For compressible flow,
however, the pressure is implicitly coupled through the presence of the
density. As for incompressible flow, the pressure is recovered from a Poisson
equation which is the divergence of the momentum equations. Unlike
incompressible flow, the pressure must be updated during the iteration
process. As with primitive variables formulations, the thermodynamic
variables are updated during the iteration process using the energy equation,

equation of state and viscosity relation.

The numerical formulation of the Navier-Stokes equations, by means of the
stream function-vorticity approach, has traditionally suffered from some

drawbacks, among them:

e The need to calculate vorticity at solid walls, which can only be done
approximately and iteratively,

e The need for upwind discretization of the convective terms in the
vorticity transport equation, in order to stabilize the iteration algorithm at
high Reynolds numbers,

e The non-uniqueness of mass flow versus Mach number for transonic
flows,

e The complexity of applying stream function formulations to three-

dimensional flows.

For viscous flows, the stream function-vorticity approach has been efficiently
applied to two-dimensional incompressible flows [6-8]. Despite the
advantage of guaranteeing mass conservation, stream function-vorticity

formulations have received limited attention for three-dimensional flows [9-



19] and have rarely been applied to subsonic flows [20,21]. Transonic stream

function solvers have only been developed for inviscid flows [22].

Traditionally, for 2-D incompressible flows, the vorticity and the stream
function were solved separately. The physical boundary conditions of no-
penetration and no-slip velocities, when translated to stream function and
vorticity variables, produce two boundary conditions on the stream function
variable but none on the vorticity variable. The vorticity transport equation
requires, however, a boundary condition on walls. By solving the two
variables separately, it was only natural to impose the Dirichlet stream
function boundary condition (no-penetration) on the stream function
equation and use the Neumann stream function boundary condition (no-
slip) to estimate the vorticity at a wall. Roache even goes as far as to claim
that this is "the only correct distribution of these conditions" [23].
Traditionally, therefore, in finite difference methods, a Taylor's expansion
for the stream function normal to the wall is formed. This series is modified
by imposing the no-slip boundary condition and is used to obtain a wall
vorticity formula. This vorticity value, which must be evaluated at each
iteration, is then imposed as a Dirichlet boundary condition for the solution
of the vorticity transport equation. This segregated solution method has
been the source of instabilities at high Reynolds number requiring the use of
upwinding, or artificial viscosity, to obtain convergence. Second order wall
vorticity formulae have not produced better solutions than first order wall
vorticity formulae [23,24] and have even worsened stability when the

equations are solved in a segregated manner [23].



Although upwinding or artificial viscosity stabilizes such segregated
schemes, the accuracy of the final solution will be affected. Strikwerda shows
that the solution to a problem with upwinding on a given geometry is
equivalent to the same problem with no upwinding but with the length
scales of the geometry changed [25]. It can also be shown to be equivalent to
lowering the effective Reynolds number [23]. Upwinding has also been used
to suppress wiggles in the final solution. These wiggles, however, are a sign
that the grid is too coarse and that it is preferable to refine the grid than

suppress them artificially [23,26].

The cure to the instability problem with respect to the wall vorticity
boundary condition is the coupling of the vorticity and the stream function
equations. The two equations cannot be treated in isolation. The stream
function appears to be over-specified and the vorticity under-specified. This
is not the case when one views the entire stream function-vorticity system
together. There are two boundary conditions on the wall which are indeed
sufficient for the solution of the problem [27]. High Reynolds number
solutions have been obtained in this thesis, without any use of upwinding or
artificial viscosity, by solving the stream function and the vorticity

simultaneously [7,8,21,28].

The extension of such alternative formulations to primitive variables, for 3-
D flows, has been made but is, to a large degree, not simple. For example,
either a vector potential [9,10,16,17,19], a scalar and vector potential
[11,12,13,18], or a two-stream function [14,15] approach is used to represent
arbitrary three-dimensional flows. The imposition of the boundary

conditions, especially for internal flows, is quite complicated.



A logical extension of the stream function-vorticity approach could,
however, be done through the velocity-vorticity formulation, initially
suggested by Markham and Lewis [29] and Fasel [30] for two-dimensional
flows and by Cook [31] and Dennis et al. [32] for three-dimensional Navier-
Stokes equations. The boundary conditions for velocity-vorticity
formulations remain simple for three-dimensions, which is not the case for

stream function-vorticity formulations.

Among the advantages of the velocity-vorticity approach, over primitive

variables, one should mention:

e Boundary conditions implementation is simpler for second order
equations,

e For incompressible flows, the pressure does not need to be solved for as
one of the variables and non-inertial effects do not change the form: of the

equations [33].

This last point is encouraging for turbomachinery applications for which it is
desirable to solve an entire stage simultaneously. A turbomachinery stage is
comprised of both a stator (stationary frame of reference) and a rotor (rotating
frame of reference). Speziale [33] shows that, contrary to primitive variable
formulations, the velocity-vorticity equations do not change form for a
rotating frame of reference and hence the numerical formulation can be

independent of the frame of reference.

The velocity-vorticity formulation has since become an attractive alternative

and incompressible velocity-vorticity approaches using finite difference



[29,34-50], finite element [51-57], boundary element [58,59], vortex-particle
[60,61] and other schemes [62] have been proposed.

There are two sets of differential equations that use velocity and vorticity

variables for the Navier-Stokes equations. The first set is comprised of;

e Vorticity transport equation ( second order PDE )
¢ Continuity equation ( first order PDE)

e Definition of vorticity ( first order PDE)

while the second set is comprised of;

e Vorticity transport equation ( second order PDE )

e Poisson velocity equations ( second order PDE )

Both sets include the second order vorticity transport equations. The
difference is in the choice of equations for the velocity vector. The first set
includes the first order differential equations; the continuity equation and
the definition of vorticity. The second set includes the second order Poisson
equations derived from the continuity equation and the definition of
vorticity. It has been shown that if the proper boundary conditions are used,
the second order set of partial differential equations will give back the same
solution ~s the first order set [46,50]. On the discrete level, however, this is
not necessarily the case. This constitutes a major problem, especially with
respect to the conservation of mass. Second order partial differential

equations are, however, preferable to solve numerically.



For two-dimensional problems, there are three governing equations for the
velocity-vorticity system. The first order set of equations include the
continuity equation, the definition of vorticity and the vorticity transport
equation. The second order set of equations include two Poisson equations,

one for each velocity component, and the vorticity transport equation.

For three-dimensional problems, there are six variables, three velocity
components and three vorticity components, and thus six independent
equations. The first order set of equations include the continuity equation, a
vector equation defining vorticity and three vorticity transport equations.
There is also an additional constraint on the vorticity vector; the vorticity
must be solenoidal. This last constraint is a direct consequence of the
definition of vorticity. This is redundant on a differential level, but may not
be exact on a discrete level. This leaves a total of eight equations for six
unknowns and requires either an elimination of two equations or a merging
of some of the equations to form six. The second order set of equations
merge the continuity equation and the three vorticity definitions into three
Poisson equations for velocity. This still leaves a total of seven equations
including the three vorticity transport equations and the vorticity vector
constraint. Some authors start with the first order set of equations and then
use a least-squares method to merge the continuity equation and the three
definitions of vorticity. Hafez et al. [55] and Gunzburger and Peterson [52]
have shown that the least-squares finite element equations using the original
first order differential equations are identical to the Galerkin finite element
equations using the second order Poisson equations for velocity. The
vorticity remains solenoidal if the conservative form of the unsteady

vorticity transport equation is used, assuming the flow at the initial time has



10

a solenoidal vorticity [39,46,49]. As a result of the vorticity vector being
solenoidal, Osswald et al. eliminate one of the components of the definition
of vorticity [39]. Gunzburger and Peterson [52] use the non-conservative
form of the steady vorticity transport equation and impose the solenoidal
condition on vorticity at the boundaries and show that this ensures a
solenoidal vorticity in the field on the differential level. Gatski et al. solve a
Poisson equation for a scalar potential to project the vorticity onto a

solenoidal field at each time step [36).

The first papers on velocity-vorticity used the second order Poisson equations
for velocity discretized by finite differences on regular (non-staggered) grids
[30-32,34,35,37]. These formulations, although not acknowledging it, suffer
mass loss for through-flow problems (41]. Daube explains that the gradient of
the continuity equation, which is set to zero in the derivation of the second
order Poisson equations, is not discretized correctly on a non-staggered grid
[50]. Dacles and Hafez explain that the discretization of the divergence of the
curl must be exactly zero [46]. Osswald et al. [39] introduced a scheme using
the first order equations on a staggered grid where the velocities and
vorticities nodes are not at the same location. This allows ‘exact’ mass
conservation locally based on a finite volume analysis [40,42]). Several
authors used the second order Poisson velocity equations on a staggered grid
and obtained 'exact’ or machine accurate mass conservation locally [42-
44,46,47,50]. Napolitano and Catalano [45] found that the staggered grid
results using the Poisson velocity equations recovered the definition of
vorticity exactly for two-dimensional flows but not for three-dimensional
flows. The experience with finite difference schemes using regular grids is

that the final solution is very sensitive to the discretization of the vorticity
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boundary condition and may not even obtain second order accuracy with
respect to mass conservation [44]. A major disadvantage with using finite
difference staggered grids is the discretization of the convective terms of the
vorticity transport equation. The scheme must use velocities at points where
they are not computed [43,50]. A similar problem arises at boundaries where
not all the variables are defined and may cause inaccuracies in implementing
known boundary conditions. For example, Osswald et al. [39] impose the
normal velocity (no-penetration) explicitly at walls, but impose the no-slip
condition implicitly through the tangential vorticities definition imposed at

the walls.

The Galerkin finite element method, when applied to the velocity-vorticity
system using the second order Poisson equations, experiences the same
problem as with the finite difference methods on regular grids. The
discretization of the vorticity boundary condition is critical for any success

with this method [54].

The same conclusion concerning the importance of the vorticity boundary
condition is reached by those using other methods of discretization such as

the boundary element method (59] and the pseudo-spectral method [62].

In conclusion, it should be remarked that very few authors to date have
solved the velocity-vorticity equations and only for moderate Reynolds
number (3 000 - 7 000) flows. The unsteady equations have also been solved
for, but require a restrictive time step [38,40,42,44,45], with convergence to
steady-state requiring thousands of time steps. As examples, Orlandi [38] and

Huang et al. [40] use a second order time stepping scheme with the intention
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of accurately modeling unsteady flows, while Napolitano uses upwinding on
the convective operator only such that the final steady-state solution is free

of any upwinding or artificial viscosity [44,45].

1.2 Advantages of Proposed Stream Function-Vorticity Scheme

The proposed approach eliminates two of the traditional difficulties with the
stream function-vorticity method mentioned in the previous section. It is
based on a coupled solution of the equations, with the following

consequences:

e The natural boundary conditions of a finite element formulation
eliminate the need for explicit wall vorticity formulae and are ideal for
the solution of the pressure equation,

e The upwinding required for the stabilization of the iterative procedure at

high Reynolds numbers is unnecessary in this formulation.

Coupled stream function-vorticity solution schemes were initiated by
Campion-Renson and Crochet [6] and Dhatt et al. [7]. Dhatt et al.
demonstrated stable solutions at high Reynolds numbers without using
upwinding, but their scheme still requires the use of wall vorticity formulae
and hence leads to important, if not impossible, approximations in
implementing the no-slip condition for complex geometries. Campion-
Renson and Crochet, on the other hand, suggested that the Dirichlet
boundary condition on the stream function replace the vorticity transport
equation at solid wall boundaries, with the no-slip condition satisfied

naturally by the stream function equation. This provided the key to
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avoidance of wall vorticity formulae, but their results, somewhat
erroneously, indicated that stability problems existed even at low Reynolds

numbers.

Mizukami extended Campion-Renson's method to multiply connected
domains but did not attempt a moderate or high Reynolds number problem
[63). Gunzburger also suggested a method for multiply connected domains
[64] but is more difficult to implement. Tezduyar later used a method for
multiply connected domains similar to that of Mizukami but for unsteady

flows [65].

Peeters et al. first extended Campion-Renson's method to high Reynolds
number incompressible flows without any need for upwinding or artificial
viscosity and showed that the key was in the selection of the element
discretizations for the stream function and the vorticity [8]. This part of the
thesis is an extension of these methods to subsonic, high Reynolds number

external lifting flows [21].

For vorticity-based methods, the pressure is generally solved from a Poisson
equation. The boundary conditions for this equation are difficult and may
lead to inaccuracies. A finite element formulation for this Poisson equation
for pressure whose natural boundary conditions automatically satisfy the
momentum equations is presented. For incompressible flows, the pressure is
decoupled from the vorticity and is obtained as a post-processing exercise. It
proves to be particularly useful for compressible flows, wliere pressure must

be repeatedly solved for.
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1.3  Advantages of Proposed Velocity-Vorticity Scheme

A finite element formulation is presented in this thesis for 2-D and 3-D,
incompressible and subsonic flows [66-71]. Artificial viscosity, which is not
present in any form in this formulation, would have to be added in order to
be applied to transonic flows. Second order Poisson equations, derived from
the continuity equation and the definition of vorticity, are used for the
velocity vector. Satisfying the continuity equation, the definition of vorticity
and a solenoidal vorticity relies on grid refinement and on an accurate

implementation of the wall vorticity boundary condition.

Based on the experience of stream function-vorticity methods, the vorticity
should be solved simultaneously with the velocity for stability at high
Reynolds number. The wall boundary conditions, i.e., no-penetration and
no-slip, are imposed directly on the velocities as Dirichlet boundary
conditions. The vorticity at the walls is evaluated directly from the
definition of vorticity in terms of velocity first order derivatives. The
accuracy of this vorticity boundary condition is critical to the accuracy of the
final solution. The numerical vorticity boundary condition is derived from a
variational principle for the kinematics of the flow, i.e., the velocity
equations, by minimizing it with respect to the unknown nodal vorticities at
the walls. The choice of element, based on the stream function-vorticity
experience and the need for an accurate vorticity boundary condition, is done
such that the order of approximation for the vorticity and the first order

derivatives of velocity are the same [53,66-71].
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The numerical method for obtaining the pressure is the same as for the

stream function-vorticity formulation with the stream function replaced by

the velocity vector.

1.4 Brief Overview of Thesis

The second chapter describes in detail the stream function-vorticity finite
element algorithm for solving two-dimensional subsonic flows. The
governing differential equations and the associated boundary conditions in
terms of stream function and vorticity are first derived. The finite element
equations are derived including boundary condition implementation. A
detailed discussion on the treatment of wall boundary conditions is then

done. Finally, the overall subsonic iterative algorithm is shown.

The third chapter describes in detail the velocity-vorticity finite element
algorithm for solving three-dimensional subsonic flows. The structure of

this chapter is similar to that of Chapter 2.

The fourth chapter describes the finite element algorithm for solving the
pressure for vorticity-based methods. The energy equation and
thermodynamic relations necessary to complete the numerical model for

subsonic flow are shown and/or derived.

The fifth and sixth chapters present the results for the stream function-
vorticity and velocity-vorticity methods respectively. The stream function-

vorticity method is tested for 2-D laminar subsonic external flows. The
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velocity-vorticity method is tested for 2-D and 3-D laminar incompressible

and subsonic internal flows.

The seventh and final chapter states the major conclusions and briefly
describes some ideas on future work for both 2-D stream function-vorticity

and 3-D velocity-vorticity methods.
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2. Stream Function-Vorticity Formulation

21 Governing Equations

2.1.1 Governing Equations in Primitive Variables

The governing equations for two-dimensional, steady, compressible subsonic

viscous flow, in terms of the primitive variables (u, v, p, p), are:

Continuity:
dpu)  dpv) _
o + 3y =0 2.1)
Momentum:
u  Jou)_%, 1[0 2 [u oV
"“ax+vay‘ax+eax[zax ke Bx+ay}
(2.2a)
P2
dy| ldy  ox
ov ov ap ., 1]2 a au av}
p(u— + V| = - — +
ox Re oax
% ay ay (2.2b)
0 av 2 dJu dv
_2 _— - p...__+_
Tyltey M Ty

where Re is the Reynolds number. The external body forces are assumed
negligible. For compressible flows, these equations are complemented by tne

energy equation, an equation of state and a relation for the viscosity.




18

The energy equation under the assumption of constant total enthalpy along

streamlines takes the form:

Ho = CpT + %(uz + v2) (2.3)

The equation of state for an ideal gas is:

p =L 2.4)

The empirical Sutherland's law for air [72] is used for the viscosity relation:

B o_ (TS T.. +110°I()
M. ( ’ (T + 110°K @)

2.12 Definition of Stream Function and Vorticity

The stream function is defined to identically satisfy the continuity equation:

a¥ ¥

— = pu X.

= -pvV (2.6)
3 p

The vorticity is defined as the curl of the velocity vector. For two-

dimensional flow, the vorticity is the z-component of the vorticity vector:

2.7

(O]

|

v _
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2.1.3 Stream Function-Vorticity Equations

The stream function equation is obtained by substituting the definition of the

stream function (equation 2.6) into the definition of vorticity (equation 2.7):

3 (1%

1%
2[12%)., 212), . 29

The vorticity transport equation is obtained by taking the curl of the
momentum equations (2.2a,b), thus eliminating the pressure term. After
substituting the definition of the stream function (equation 2.6) and the
definition of the vorticity (equation 2.7), the vorticity transport equation is:

Viuw) - Re {B‘P@ _ e, sP} +S =0 29)

dy x  ox %

where

-2l st
[ o du auau 0 [opdv oJudv

— n . — — . ) ——

dx \ox oy ayax ayaxay dy ox
9 (1 d

oo-fE] (¢

The detailed derivation is shown in Appendix A. The incompressible

laminar equations are obtained by setting the density and viscosity to unity
(p=p=1) for which the compressibility source term SP and the viscosity source

term SH are both zero. No additional assumptions are made in deriving the
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stream function-vorticity system of equations (2.8,2.9) from the primitive
variable system of equations (2.1,2.2). Both equations (2.8) and (2.9) contain
the stream function and the vorticity and are thus fully-coupled. The
convective term, although linear in terms of one variable, is highly

nonlinear for the coupled system.

For subsonic flows, this system is incomplete since the density and viscosity
are variables that each require an extra relation. Although the pressure is
explicitly decoupled from the stream function-vorticity equations, it is
implicitly coupled through the density. The numerical solution of the
pressure thus becomes crucial for the solution of the stream function and the
vorticity. A method for recovering the pressure which takes advantage of

natural boundary conditions will be presented in Chapter 4.
2.2  Finite Element Method : Method of Weighted Residuals

The finite element method first breaks up a given domain into a number of
elements. Within each element, the unknown variable is approximated by a
simple function, usually a polynomial, with a finite number of
undetermined coefficients. For example, in two-dimensions, the variable

could be represented with a bilinear polynomial distribution:

¢°(x,y) =af + afx + afy + ajxy (2.10)

where

0" (x,y) is the variable approximation inside element e
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a are the unknown coefficients of the distribution

inside element e

These simple functions are usually expressed in terms of shape functions
with the unknown coefficients being the variable ¢ at the nodal points of a

given element:

0°(cy) = N(xy) ¢ + Ni(xy) 02 + Ni(xy) 63 + Ni(xy) ¢
ndper! (2.11)
= 2 NGy o
i=1
where
Ni(x,y) is the shape function corresponding to node i of
element e
o is the variable at node i of element e (unknown)
ndperl is the number cf nodes per element (4 in this case)

The shape funcuons have certain properties in order to be consistent with

the prescribed variable distribution within the element:

ndperl
1. Y, Nfxy) = 1.0 (2.12)
i=1

at any point (x,y) in the element, This property follows from the

special case of ¢°(x,y) = constant = 0 -

[1.0 j=i

(2.13)
| 00 j=i

e =
2. Ni (xi,yj) =
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where (x;,y;) are the coordinates of node j. This property follows

from the definition of ¢ = ¢e(xi,yi).

The weighted residual method orthogonalizes the discrete governing

equation with a finite set of weight functions:

Iwi(x,y) Llo(xy) dA = 0 (2.14)
A

where
Lol =0 is the governing equation
¢ (x,y) is the unknown variable to be solved for

W; (xy) is the weight function associated with global node i

Each governing discrete integral equation (2.14) is evaluated element by

element:
E
Y ’I £(xy) L[6° (xy)] dA\ =0 (2.15)
S\ |
where
E is the number of elements
WE(xy) is the weight function corresponding to node i of
element e

!

The number of weight functions per element, whick equals the number of
equations in a given element, must equal the number of unknown

coefficients of the variable ¢. These weight functions must form an
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independent set in order to produce a set of independent equations. For the

Galerkin weighted residual method, the weight functions are the shape

functions:
WExy) = Nf(x,y) (2.16)
2.2.1 Stream Function Equation

The weighted residual form of the stream function equation can be written

as:

R I PRSI

where Wi“' is the weight function at node i, selected to correspond to the

finite element shape function, N;.

The integration by parts of equation (2.17) yields the weak-Galerkin form:

owYaor owYovw o¥
1 i i - wY - Vil =
[p( =+ ) A (n]dA A [p = ] ds = 0 (2.18)
A C

2.2.2 Vorticity Equation

The Galerkin weighted residual form of the vorticity transport equation can

be written as:
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we Vz( - R ___a*_._am - _a__*.a_m SP SHidA =
i [ p(o) e{E : = 3 + + =0 (2.19)
A

where WP is the weight function at node i, selected to correspond to the

finite element shape function, N;.

The integration by parts of equation (2.19) yields the weak-Galerkin form:

dW{" (d(uw) 1. oo (Paf @ 1)
L[ax(ax"LSu Rezayp)+
WP (AH0) | 2 , 5. (PDP 3 11) o }aiam_a\vam}
ay(ay + S + Re zax—p— +W,Re\ay-é-x— —aT-é-y— dA
d woldum) | g g af 3 -
iw,[an + " - Re asHo\s_o (2.20)
where

ghn = (o1 + sM2j)eR

Details of the integration by parts of the compressibility source term is given

in Appendix B.

2.2.3 Element Discretization
J
In [8) numerical experiments were carried out with several combinations of
weight functions and elements and it was concluded that bilinear shape

functions should preferably be used for the vorticity, while the stream
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function representation should be biquadratic. For accuracy, the geometry is

described with curvilinear biquadratic elements. Hence:

8 4
v = Y N'(en)¥ o= Y NPEn)o (2.21ab)
j=1 j=1
8 8 v
x = 3, NY(&n)x y = 3, NY{en)y, (2.22a,b)
j=1 j=1

where (£,17) are the non-dimensional coordinates of the undistorted element.

These same numerical experiments [8] also demonstrated that the selection
of the weight functions for the finite element governing equations (2.18,2.20)

should be;

wY = NY WP = NP (2.23a,b)

i i
23  General Boundary Conditions

2.3.1 Inlet, Infinite and Symmetry Boundaries

On the inlet for internal flows, the normal velocity and the density are
prescribed profiles and the tangential velocity is assumed zero. For the case
where the inlet normal is in the x-direcfion, the stream function and

vorticity are :

y
¥ = ¥(y) = J ply) U(y) dy (2.24a)
0
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_du(y)

&y (2.24b)

® = wly) =

For external flows, the actual domain of influence is infinite. For most
computational models, the far-field boundary is set at a finite distance away
from the body. On this boundary, free stream velocity and density are

assumed, hence:

¥ = y cos{a) - x sin(o) (2.25a)

=0 (2.25b)

On symmetry boundaries, the normal velocity, its tangential derivative and

the tangential velocity's normal derivative are all zero, hence:

Y=Y (2.26a)

=0-0=0 (2.26b)

All these boundaries have Dirichlet boundary conditions for both the stream
function and the vorticity. These are very easy to implement for any chosen

numerical algorithm and discretization.



27

2.3.2 Exit Boundary

On the exit, the streamlines are parallel and the normal derivative of most

quantities are assumed zero:

¥ _o (2.272)
on
d _, (2.27b)
on

Physically, the first boundary condition assumes zero transverse velocity
while the second boundary condition assumes zero normal derivatives of
the velocities. Since in reality the flow gradients are zero only at infinity, the
above boundary conditions are approximate. Outflow or exit boundary
conditions are a source of ongoing debates [27], especially for flows where
recirculation reaches the exit. To avoid such a case, the exit is placed far
downstream of the disturbance (airfoil) such that the gradients of the flow

quantities are very low.

The first boundary condition (2.27a) is implemented by not evaluating the
contour integral of the stream function equation (2.18). The second boundary
condition (2.27b) is implemented by not evaluating the first term in the
contour integral of the vorticity transport equation (2.20). It is assumed that
the normal derivative of the viscosity is also zero. The second term in the
vorticity transport contour integral (S*") is neglected as a result of assuming
zero normal derivatives (see Appendix C). The third term in the vorticity

transport contour integral only contains a tangential derivative and is
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evaluated analytically. Implementing Neumann boundary conditions for
finite element methods is usually done naturally through the contour
integral of the governing equations. For zero Neumann boundary
conditions, which is often the case, the implementation is done very easily by
not evaluating the contour integral.
24 Wall Boundary Conditions
For viscous flows, the boundary conditions on a stationary wall are;

u=0 v=0 (2.28a,b)
or in local coordinates

Vel =Ves =0 (2.29a,b)

Translating into stream function and vorticity variables;

no-penetration : %‘g = p(V-h’) =0 or ¥ = constant (2.30a)
no-slip : g—‘: =-p(Ves) =0 (2.30b)

There are two boundary conditions on the siream function and none on the
vorticity. This is perfectly consistent with respect to the overall systemn of
equations. If either variable is taken in isolation, then the stream function is

over-specified and the vorticity under-specified.
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2.4.1 Segregated Methods for Stream Function-Vorticity

Traditionally, the two equations were solved sequentially [27]. The Dirichlet
boundary condition for the stream function representing no-penetration was
imposed on the Poisson stream function equation. The Neumann boundary
condition for the stream function representing no-slip was used to create a
formula to evaluate the vorticity at a wall node. This wall vorticity value
was imposed as a Dirichlet vorticity boundary condition to solve the vorticity

transport equation.

For demonstration purposes, the most basic first order wall vorticity formula
is derived here [23]. A Taylor's series expansion for the stream function node

adjacent to the wall results in;

¥ (An)z o2y
Yos1= P A + ce 231
w+1 w + ( n)(an)w 21 anz)w + ( )

The no-slip boundary condition is imposed on this expansion by eliminating
the first derivative term. The second derivative of stream function is
replaced with the definition of vorticity using the no-penetration condition

to remove tangential derivatives;

v ¥ e F i 4
Y R R

Higher derivatives ze removed which forms the truncation error. After

rearranging, this results in a first order accurate wall vorticity formula;
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= 2 (\ywﬂ - \Pw)

"+ 0 (an) (2.33)
An

- Ow

By using more points, second order wall vorticity formulae can be derived.
Many authors have found that these second order formulae do not create
more accurate final solutions than the first order formulae and may even
cause instability [23,24]. The wall vorticity boundary condition, unlike the
two boundary conditions on the stream function, changes in value every

iteration.

The procedure is to first solve for the stream function in the field using the
Poisson stream function equation, then evaluate the vorticity at walls and
then solve for the vorticity in the field using the vorticity transport equation.
The lagging of the wall vorticity is thought to be the main culprit in
preventing convergence at high Reynolds number flows [6-8,27,28].

The wall vorticity formulae derivation requires that the grid line be normal
to the wall boundary. For complex geometries, this would require a global

grid transformation or association to more neighboring points.

2.42 Simultaneous Methods for Stream Function-Vorticity Using

Finite Elements

To eliminate the stability problem associated with the lagging of the iterative
vorticity wall boundary condition, the stream function and the vorticity can
be solved simultaneously [6-8,27,28]. This statement is independent of the

discretization (finite difference or finite element) of the governing equations
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and boundary conditions. Although this increases the stability of the
scheme, the computational cost per iteration increases due to the larger size
of the matrix. It is felt that the overall computational cost will be lower for
moderate Reynolds number and that convergence can be obtained for high

Reynolds number which may not be the case for segregated methods.

The stream function-vorticity system of two second order differential
equations requires two independent boundary conditions at the wall. There
is no need that one boundary condition be on the stream function and one
on the vorticity. The two boundary conditions replace the two unknowns at
the wall. The stream function is known from the Dirichlet no-penetration
condition. This leaves the no-slip condition to be imposed in place of the

wall vorticity unknown.

Dhatt et al. [7] simply set the discrete version of the normal derivative of the

stream function at the wall node to zero;

z I:.l. 2 BN,] at wall node i (2.34)
j

where

E is the number of elements connected to node i

and places this equation in the matrix row of the unknown wall vorticity.
Since the stream function-vorticity system is solved simultaneously, the
absence of the wall vorticity unknown in its own equation does not prevent
a solution of the problem. Dhatt's discretization is however inaccurate due
to two reasons; 1) derivatives are less accurate on the sides of elements and

least accurate at the corners, and 2) for curved geometries, there will be a
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discontinuity in slope between elements at the nodes on the boundary and

thus a singularity in the normal direction.

Campion-Renson and Crochet [6] use the stream function equation to impose
the Neumann stream function no-slip boundary condition by simply

neglecting the contour integral at walls;

oW; ¥ JdW; ¥ . _ . é_‘!’_ _
> 3 + 3y W,o|dA = Wlands—o (2.35)
A o

The stream function equation at the wall is placed in the matrix row of the
unknown wall vorticity. This is more accurate than Dhatt’s method and
doesn't require any treatment for complex geometries as this is handled by
the finite element discretization directly. The mathematical reasoning

behind this choice will be given in the next section.
2.4.3 Variational Principle for Stokes Flow
The scheme is first discussed for Stokes flow (Re=0) to illustrate the proper
imposition of boundary conditions. The governing stream function-vorticity
equations for two-dimensional incompressible flow are:
V¥ + @ =0 (2.36)

Vo = 0 (2.37)

where
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¥ _ ¥ _
vy ot T
o=V . 0u
N

Multiplying (2.36) by o and (2.37) by ¥, summing and integrating by parts

leads to the variational principle:

I(‘{’,m)=j[-Va)-V‘P + %—mz]dA + [m%+‘l’g—ﬂds (2.38)
A

C

Taking the variation of (2.38):

ol = [_d&ﬂ)iﬁi_ a(&o)aw + co&o]dA + So)all-ds +

ox ox dy oy on
A c
(2.39)
-9—(28(——8\?) - gg)___a(a\v) dA + ¢ ¥ a—‘-”—ds
ox ox dy oy . on
A
Using Green's theorem, the governing equations can be recovered:
8l = I 50[V¥ + w|dA + j 5¢[v20]dA = 0 (2.40)
A A

Since the variations 8¥ and 3w are arbitrary, both integrals will have to be

zero. The governing variational equations are therefore:



i m&o} dA = ¢ 502X ds (2.41a)

[6(80)) ¥ dAdw) 3w
on

ox ox dy oy

A C

> o ay 3 (2.41b)

der, il _{ i,
A o
The variations 8'¥ and 3w are arbitrary except that 8¥=0 when ¥ is specified
and dw=0 when o is specified. At solid walls ¥ is specified thus equation
(2.41b) becomes trivial since 3%¥=0 and is replaced by the Dirichlet condition
¥=¥(s). The second boundary condition, ¥, = 0 or ¥ =¥, (s), is satisfied
naturally by the contour integral of equation (2.41a). The key to the
avoidance of wall vorticity formulae is seen therefore to be the reversal, as
compared to traditional methods, of applying the no-slip and no-penetration
stream function boundary conditions to the governing equations. Since the
(W-w) system is solved in a coupled manner there is no need to identify
which boundary condition applies to which equation. The coupled approach
thus dispenses with the evaluation of complex wall vorticity formulae and

all their associated inaccuracies and instabilities.
2.4.4 Present Method for Navier-Stokes Equations

For the full compressible stream function-vorticity system of equations, there
exists no variational principle. It is assumed that the reasoning behind th.e
application of the wall boundary conditions for the incompressible Stokes

flow analysis remain the same for subsonic viscous flows.
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The wall boundary conditions are imposed without wall vorticity formulae.
At solid walls, the vorticity transport equation (2.20) is ignored and replaced
by the no-penetration cendition (2.30a). Neglecting the contour integral in
the stream function equation (2.18) implicitly satisfies the no-slip condition
(2.30b). Should the velocity of the wall not be zero, for example along a

moving wall, the contour integral is evaluated analytically for such contours;

Wiv[%%%]ds = § WY U(s)ds (2.42)
C

c
2.5 Multiply Connected Domains

For simply connected domains such as symmetric airfoils at zero angle of
attack, the stream function along walls is constant and its value is known.
For multiply connected domains such as asymmetric airfoils or symmetric
airfoils at non-zero angles of attack, the stream function along walls is also
constant but its value is unknown. This requires one extra constraint in the
domain to determine this value. This constraint requires the pressure,

which is not solved for directly, to be continuous along the airfoil:

f dp = 0 (2.43)
C

The pressure gradients are replaced using the momentum equations (2.2).
Assuming a stationary airfoil, the convective terms are removed since the
integration is only along the airfoil. The viscous terms are recast using the

definition of vorticity (equation 2.7) giving:



0= §Cdp = £[%%dx + %dy}

o{uw) . ouov oau av]
_ |- A) | H(HOV MOV (2.44)
ﬂ dy dy ox  ox dy
Huw) , (009 3u du]
e Uy x|V

Mizukami introduced a method for implementing this constraint into a
finite element stream function-vorticity incompressible formulation [63].
The same ideas are used to implement this constraint into the present

subsonic formulation.

All the derivatives in equation (2.44) must be evaluated at the wall.
Derivatives of finite element distributions are considered more accurate
inside the element than on the boundary of elements for C° elements. For C°
elements, only the variable itself is required to be continuous between
elements. The normal derivatives of the variable are generally
discontinuous between elements. Mizukami, for incompressible flows,
replaced the line integral with an area integral using the weak-Galerkin form
of the vorticity transport equation (2.20). The vorticity shape function must
be introduced into the line integral of equation (2.44) to make it compatible
with the contour integral of equation (2.20). This is achieved by using the
property that the summation of all the finite element shape functions at a
given point is unity (equation 2.12). As a consequence of equation (2.13), the
only shape functions that are non-zero along a boundary are those whose
zorresponding nodes are on the boundary. Equation (2.43) is thus modified

as follows:
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f(l)dp =
C
C

§ N{dp
c

nnodea

]

i=1

%

nnodea

2, NP

o

(2.45)

where nnodea is the number of vorticity nodes on the airfoil.

Replacing equation (2.44) into equation (2.45) gives a finite element form of

the constraint:

nnodea Opov  Ou av)
0 fo’ [-M+2_&_-__dx
o ox ox
i=1 C ay ay 5 ay (246)
opw) o du uau
+ [_ax + 2 3% 3y ayax dy

The above line integral for the subsonic

formulation is the contour integral

of the weak-Galerkin form of the vorticity transport equation (2.20) for walls

with zero velocity. Replacing equation

(2.20) into equation (2.46) gives the

final form of the constraint equation which is implemented in the present

subsonic finite element formulation:

0 - nnodeaI laNi a(u(o)
i=1 J4l ox ax

, ONP (a(pm)
dy \ dy

+N,‘°Re{

+ i1 _ gePY (qu d (_1_))

4+ ReT- (pq,z : (l)) (2.47)

¥ dw

dy ox

¥ odw
x@ﬂ aA
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This equation connects all the nodes along the isolated body (airfoil). This
requires the use of a matrix solver with skyline storage, with this particular
equation placed in the last row to minimize the memory requirements. This
last unknown in the matrix system is the stream function value on the

airfoil surface.
2.6 Newton Linearization
The nonlinear system of equations (2.18,2.20) is linearized by a Newton
method. The stream function and the vorticity are solved simultaneously.
Each variable is expressed in A form as follows:

AY = ™ - y" (2.482)

Aw = @™ - @° (2.48b)

After neglecting second order terms, the Newton-Galerkin form of the

governing finite element equations can be written as:

aWY aawy) owy a(zw))
1( i + 2 - WYAw|dA = -RY (2.49)
L[p x  dx dy 9y '

[awi‘" (a(uAa)) H(a\{' a(A‘P) av aaw)

ox oy oy
aw, (a(uAa) re 2 (1 (a\v Aaw) awg(_éi) .
5{( ) > ox dy oy (2.50)
® ’B‘P Aw) om a(w) ¥ a(Ao)) dw B(A‘P)\ ®
WiRe oy o Tax oy o oy oy ax [0 TR
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where Ri“' and R are the residuals, at node i, of equations (2.18) and (2.20),
respectively. Substituting the shape functions of equation (2.21), one obtains

the following discretized matrix equations (i=row, j=column) :

E 8
21 LZ [kys A¥; + Z [kyas Am,] -RY @.51)
e= =1 ]-
where
v
b= [[3E + BT
M RCARC dy oy
[y = L-[wi‘v Nj|dA
and
E 8 4
g LX [kayls A¥;j + Z [kl ij] = -Rf (2.52)
where




x 1T ax y T Yy
oge 2¢ N7 2w N7
+ W.°Re 3 o x 3y dA

The integrals are evaluated numerically by Gauss-Legendre quadrature, using

a 3x3 grid in each element.
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3. Velocity-Vorticity Formulation

31 Governing Equations
3.1.1 Governing Equations in Primitive Variables

The governing equations for three-dimensional, steady, compressible

subsonic viscous flow, in terms of the primitive variables (V, p, p), are [73]:

Continuity:
VelpV) =0 @3.1)

Momentum:

(pV-V)V:-Vp +—R15{V[§u(V-\_/:)+V-Vu]-{’.[vzu] 62
3.2
- [veV] R + Vux[vx V] - vx[vx(uV]]

where Re is the Reynolds number. The external body forces are assumed
negligible. For compressible flows, these equations are complemented by the

energy equation, an equation of state and a relation for the viscosity.

The energy equation under the assumption of constant total enthalpy along

streamlines takes the form:

Hy = CpT + LV .V (3.3)

N =
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The equation of state for an ideal gas is given by equation (2.4) while the
empirical Sutherland's law for air [72] is used for the viscosity relation

(equation 2.5).

3.1.2 Velocity-Vorticity Equations

The vorticity vector is defined as the curl of the velocity vector:

Q=VxV (3.4)

Using the vorticity definition and the continuity equation, a second order

form of the velocity-vorticity equations, appropriate for a finite element

formulation, can be obtained. For the velocity equations:

vx(pa) = Vx(pvx V) = vx[vx(pV) - vpx 7]
= v[v(pV)] - vHpV) - vx{vp = V)
= -Vz(p\_f) - Vx(Vpx_\;)
Vz(p{’.) + Vx(pa) + Vx(Vp x _\7) =0 (3.5)

The vorticity transport equation can be derived by taking the curl of the
momentum equations, hence eliminating the pressure as a variable. After
substituting the definition of the vorticity (equation 3.4), the vorticity

transport equation takes the form:

viu) - Re{(pV-v)a - (@.¥)(p¥) + &} + & = 0 (3.6)
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where:
P = %Vpx(VVz)
§ = - 2vx|(VeV)vp + (Vov)Wy] - vig.vy)
il “n2 M3
= agx + a§y + asz in Cartesian coordinates

The detailed derivation is shown in Appendix D. The incompressible
laminar equations are obtained by setting the density and viscosity to unity
(p=p=1) for which the compressibility source term SP and the viscosity source
term S* are both zero. No additional assumptions are made in deriving the
velocity-vorticity system of equations (3.5,3.6) from the primitive variable
system of equations (3.1,3.2). As with the stream function-vorticity system,

the velocity-vorticity system is coupled and highly nonlinear.

For subsonic flows, this system is still incomplete since the density and
viscosity are variables that each require an extra reiation. Although the
pressure is explicitly decoupled from the velocity-vorticity equations, it is
implicitly coupled through the density. The numerical solution of the
pressure, as with the stream function-vorticity system, becomes crucial for

the solution of the velocity and the vorticity and will be shown in Chapter 4.

3.2  Finite Element Method : Method of Weighted Residuals

3.21 Velocity Equations

The weighted residual form is obtained by minimizing the residuals of the

system of equations over the solution domain. The velocity equation (3.5) is
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multiplied by a weight function, Wj, and integrated over the domain as

follows:

I W?[Vz(pV) + Vx(pa) + VX(VpXV)] do =0 3.7
8

The weak form of equation (3.7) is obtained after integration by parts of

second order terms:

I [ww¥ v (ov) - wi(vxlpa) + vw¥ x(vp x¥) do

-}wi—‘;[h’-v(p{/’)+ HX(VpXV)]dS =0 (3.8)
s

3.22 Vorticity Equations

The vorticity transport equation (3.6) is multiplied by a weight function, Wj,

and integrated over the domain as follows:

Iwﬁ[vz(u?z) - Re{(pV-v)Ei (Qv)pV) + ) + ?las = 0 (9

The weak form of equation (3.9) is obtained after integration by parts of

second order terms:
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I[vw.a-V(ufz) + WhRe [V - V)@ - (@ V)(p¥) + 7}

a a a
Tox ay oz

: f wh[ .+ v(ua)ds + 'dydz + %dzdx + $dxdy] = 0 (310
S

S

3.2.3 Element Discretization

For equal degree of approximation of vorticity and derivatives of velocity,
the former is represented by trilinear shape functions, while the velocity is
approximated by triquadratic shape functions. The advantage of using this
element discretization over trilinear interpolation for both vorticity and
velocity is higher accuracy of the wall vorticity boundary condition which
derives from the definition of vorticity (equation 3.4). For some preliminary
through-flow cases in two dimensions, the mixed interpolation was
compared, on the same grid, to equal order trilinear interpolation. The error
in conservation of mass was significantly greater for the equal order trilinear

element than for the mixed element.

Hence for the velocity and vorticity vectors:

-

8 - -
NY(En.0) Vi Q=Y NPEngQ  @Gllab)

1 j=1

<
MB

j

The geometry discretization is based on curvilinear twenty node elements:



D - D
x = ;Nf(é,n,C)X; y = 21 NY(En.0)y;
1= )=
D -
z= Y NY(EnYz (3.12a,b,0)

j=1

The weight functions in the Galerkin finite element scheme are chosen to be

the corresponding shape functions:
wy = NY f = Nf (3.13a,b)
3.3 Boundary Conditions
3.3.1 Inlet Boundary

For through-flow type problems, the velocity distribution is specified at inlet

and the vorticity is therefore known:

v

vV (y2) (3.14a)

Q= Q(y2) (3.14b)

These are very easy to implement for any chosen numerical algorithm and

discretization.
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3.3.2 Symmetry Boundary

The boundary conditions for a symmetry boundary are that the normal
velocity and the normal derivative of scalar quantities are zero. In terms of

velocity and vorticity, this translates to;

Vet = 0 Qxit = 0 (3.15a,b)
AV &) _ 0 da-) =0 (3.16a,b)
on on

The first set, equations (3.15a,b), are Dirichlet boundary conditions and are
very easy to implement no matter what discretization method is chosen.
The second set, equations (3.16a,b), are Neumann boundary conditions which
happen to be present in the boundary surface integrals of the velocity and
vorticity transport equations (3.8,3.10). These boundary conditions are
implemented by simply neglecting these boundary integrals, i.e. treating the

boundary as any other point in the field.

3.3.3 Exit Boundary

In the derivation of the second order velocity equations (3.5), while it has
been implicitly recognized that the gradient of the continuity equation is
zero, the continuity equation itself is no longer part of the system. Mass
continuity is thus accounted for only to within an arbitrary constant [41] and
must therefore be explicitly imposed, at least at one point, to remove the
arbitrariness of the solution. This can be done by using the continuity

equation to modify the original surface integral of the normal velocity
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equation at exit (equation 3.8). For example, for an exit normal aligned with

the x-axis, the original surface integral ot the x-velocity equation:

§Wy[ﬁ-V(pV) + h’x(Vpr)]dS oi = §w:‘7
3 ax

S

Apy) o] dydz (3.17)

is modified using the continuity equation, to yield:

S

For the transverse velocity equations, the exit boundary condition is that the

dpu) _ v|dpv) . dpw)
-t O]dydz = £W, [ v * =5 ]dydz (3.18)

normal derivative vanishes. This is accounted for by dropping the first term
in the surface integral of the transverse velocity equations (3.8). The second
term, however, only contains transverse derivatives and must be evaluated

at exit.

The vorticity boundary condition is applied by dropping the first term of the
surface integral of equation (3.10), since on the exit boundary the normal

derivative of the vorticity is assumed zero:

Aua) _ 0 (3.19)
on

The remaining viscosity source terms in the surface integrals are neglected at

the exit.
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The assumption of zero normal derivatives is only exact if the exit is placed
at an infinite distance downstream of the disturbance. In practice, the exit is
placed at a finite distance cownstream where the flow quantities no longer

change significantly.

3.34 Wall Boundary

On walls, no-slip and no-penetration are implemented as Dirichlet

conditions on the velocity components:

u=0 or u = U(s) (3.20a)
v=0 or v = V(S) (3.20b)
w=0 or w = WI(S) (3.20¢)

The vorticity has no explicit wall boundary condition and is derived from the
kinematics of the flow. Hafez et al. show that the <inematics can be

governed by a least-squ~res variational principle [55};

Iw=I[|V-V|2+|a-Vx\7|2]dﬁ (3.21)
d

Minimizing with respect to the interior nodal velocities will give the same
finite element governing equations as using the Galerkin weighted residual
method applied to the second order Poisson velocity equations [52,55].
Minimizing the least-squares variational with respect to a wall vorticity node

i results in the vorticity definition applied in the following manner at walls:
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E —r.
Yy I‘Nf’[ﬂ - VxV]ds = o (3.22)

e=1

where E; is the total number of elements connected to wall node i. As
mentioned in the introduction, the discretization of the wall vorticity
boundary condition is critical for success in the velocity-vorticity system.
This is the main reason for the choice of element discretizations (equations
3.11) for the velocity and vorticity vectors. The advantage of equation (3.22)
is that the derivatives of velocity are evaluated in the interior of the element
and not on its boundary. Since normal derivatives are not continuous
between elements, they are not formally defined and thus least accurate at

element boundaries.
34 Newton Linearization
The nonlinear system of equations (3.8,3.10) is linearized by a Newton

method. All three velocity components with all three vorticity components

are solved simultaneously. Each vector is expressed in A form as follows:

AV =V - (3.23)
- -n+l —n
AQ = - (3.24)

Upon substitution in equations (3.8,3.10} and retaining only first order terms,

the system of equations can be re-expressed as follows:

I[vw?-v(p aV) - Wi v (o ag)) + vw¥x(vpxaV)]ds = -RY (.25
0
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I[VW?-V(;LAB) + Wia Re ‘(pV- V)Aa + (p AV-V);I
- {2+ v)(p aV) - (a2+v)(pV) + o)

H [} -
oW \3 ., awf WE A2+ W 230 s = -RP (3.26)

ox ER 0z

where:
A§p = Vp XV(VOAV)

A% = 2|V x(u VAaV) + Vx(VueV)aV - VA ag) + v (vu.ag)

_aas™ a8 aa8¥
™ dy oz

and R;'s are the residuals, at node i, of the discretized governing equations.

Substituting the shape functions (equation 3.11) and weight functions
(equations 3.13) and assembling over the elements, one obtains the following

set of discretized equations for the velocity vector:

ZE" [Z kvl AV + i[kV"uAai] - -RV (3.27)

e=1 = ]=1
where, for example, for the w-velocity component:

aN,
[kwulij = [ =~ gp N,Jdﬁ

v
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[kwv]l) |: 3y aZN :ldﬂ
] [enFony  anFony  andony|  anVap )
[k = [p(ax % "y oy e )

(NP
[kwali NY[p D0 4 2 Nt ao
) ay ay )
9
sl N 3
[kwadij = - ( NiV(P ax’ az N,n do

),

[kwayij = 0

The following set of discretized equations is obtained for the vorticity vector:

E [ 8 - 2 - -
> [2 liaaliany + 2 [eadly Avi} = -RP (3.28)
’=

e=1

where, for example, for the Q1-vorticity component:



r

o

= | a0 aNY  3p .y aNY  ap .3
[kauij = NPRE‘P-a%N, & p—#+£—va - p—a-y—’—+—a-ye-N,V)
Q ( ava apN ap aN,-. +_8_3N§ ap uaN;‘; +§B-N'V
WPz Tz )Tyt oz ) Bz\" oy oy |
. zaN,ﬂ(@_aNi" _a_u_aNiV) ‘o
dy oz oz oy
a o op aNyY av . v
[kﬂnv]i,j=J N{'Re\p =—— 3 NV ay("a_z] + =N
J
v S a v v
_op[, N é!Niv)‘ , N (_a_EaN, _aiaw,)d13
z\' oy oy ) "oy \y ez azdy
o ' oz ' T y\" ez "oz )
0
v - a v v
_a_p(waN, +9‘1Ni") , o ONBlawaNy auaNy)
az\ oy = 9y dy 9z 9z dy
ang aNQ NP o Ju) 3l
kaaki = | [NPRejpunL 4+ o DL 4 o O (%P —) P
| nln,],, e\pu 3 + pv 3 + pw 32 axu + pax N,j
)/

- Q —r
aN,ﬂuaN, , NP uaN,“ , Wan
=M x Ty My Ty

oNf aN) au Q
2z P oz Ty )| 9P
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a. |0 d 5 oNfPo
[ka,q:lij = - {NP Re gp a; NP + ax‘ a;NP} dv
)
ao [P du oN{? op
k ii = - Q —_ 9 il B f
[le]m [ lRe{i)zu‘kpaz N ox azN}dﬁ
9

The integrals are evaluated numerically by Gauss-Legendre quadrature, using

a 3x3x3 grid in each element.
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4. Solution Procedure

4.1  General Algorithm

The iterative procedure is outlined in the flowchart of Figure 4.1. At every
iteration, a coupled system is solved. For the stream function-vorticity
formulation, the stream function and vorticity are solved simultaneously.
For the velocity-vorticity formulation, the velocity vector and the vorticity
vector are solved simultaneously. For subsonic flow, the thermodynamic
variables are then evaluated in the following sequence;

1) the pressure is solved for from the divergence of momentum,

2) the temperature is solved for from the energy equation,

3) the density is obtained from the equation of state,

4) the viscosity, ther nal conductivity and specific heat coefficients are

obtained from empirical relations.

For the stream function-vorticity forinulation, the velocities and their first
derivatives must be evaluated from the updated stream function and the
previous density before solving for the pressure. The velocities are first
evaluated at the Gauss integration points inside the element from the stream
function and density. These values are then extrapolated to the nodes and
finally the nodal values are averaged between the elements connected to that
given node [74]. The first derivatives of the velocity are obtained at the nodes
in the same manner. The first derivatives of the velocity are necessary at the
nodes in order to evaluate the second derivatives inside the element. Note

also that the thermodynamic variables do not have to be solved for at every
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iteration since the coupled stream function-vorticity or velocity-vorticity

systems are themselves internally nonlinear.

Stokes flow (Re=0) is used as an initial guess for flows at all Reynolds
numbers. For high Reynolds numbers, obtaining solutions at progressively
increasing Reynolds numbers may be required. Since the solution at an
intermediary Reynolds number is only used as a better initial guess for the
next higher Reynolds number, the convergence criteria for these
intermediary steps can be somewhat relaxed. The initial incompressible
Stokes flow is a linear problem and therefore machine accuracy is achieved

after one matrix solution.

Convergence is considered obtained when the sum of the squares of the
residuals of all the equations is less than a prescribed value. For the stream

function-vorticity system, equations (2.49,2.50), the convergence criterion is;

nnode nnodev
Z (Rl‘v)z + 2 (R’(o)Z < Rcritcrion (4-1)
i j

where
nnode is the total number of stream function nodes in the
domain
nnodev is the total number of vorticity nodes in the
domain

Rriterion is the convergence criterion
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4?2 Pressure

To complete the iteration, for subsonic flow, the density needs to be updated
and this requires the solution for the pressure. This is obtained from a
Poisson equation derived by taking the divergence of the momentum

equations:
VeVvp + F) =0 42)
where F is the remainder of the momentum equations (2.2,3.2).

The weighted residual form of the pressure equation is:

Iwi[v-(vp + Fldo = 0 4.3)
)

Upon integration of the entire equation by parts, one obtains:

L[vwio(vp + Fdo = L[wi (vp + F)eit)ds 4.4)

It is seen that the surface boundary integral contains the normal momentum
equation. Hence, by neglecting this surface integral on boundaries where
pressure is unknown, the normal , omentum equation is automatically
satisfied. Such natural boundary conditions of finite element methods are an
advantage over schemes where unknowns at a wall, such as pressure, may

have to be extrapolated from their values in the field.
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To avoid the arbitrariness of the pressure Poisson problem, the pressure level

is set by specifying its value at one poirt of the flow.
4.3 Energy Equation

The temperature is updated using the energy equation once the pressure has
been determined. For most of the test cases, the assumption of constant total

enthalpy along streamlines is used:

H, = GT + %Vo\? (3.3)
This simplified energy equation is a reasonable approximation for the
viscous energy equation in the absence of heat exchange. This particular

relation is only valid for an ideal gas.

The complete energy equation is solved for in a few test cases, in the form :

Re(pV - ¥)(GT) = LV+(k VT) = © - Re(p¥-V) 45)
where

Re is the Reynolds number

Pr is the Prandtl number

G is the constant volume specific heat

k is the thermal conductivity

o is the viscous dissipation term

The weighted residual form of the complete energy equation, after

integration by parts of the second order terms, is :
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I [wi Re(pV - V)(CT) + PLrVW‘ o(k VT)] do

- L[wi(d» - Re(pV+V]]ao + iwii}r-[ﬁ-(kvr)]ds 4.6)

The boundary conditions are that either the temperature or the heat flux is
specified. The surface integral contains the heat flux allowing a natural
implementation of the latter boundary condition. All the temperature

unknowns in the domain are solved simultaneously.
4.4 Thermodynamic Variables

The density is evaluated from the updated pressure and temperature using

the equation of state for a perfect gas;

P (2.4)

The viscosity is obtained from the updated temperature using the empirical

Sutherland’s law for air (72]:

B TS T.. + 110°K
Moo (T..) (T + 110°K (2:5)

The thermal conductivity and specific heat coefficients are assumed constant

for the given test cases.
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It is recognized that more accurate relations for all the thermodynamic
properties can be used. Since the primary purpose of this research concerns
the continuity and momentum ejuations, the simplest thermodynamic

relations are used for completion.

4.5 Element Discretization

4.5.1 Stream Function-Vorticity

Recalling from section 2.2.3, the stream function and geometry are discretized
using biquadratic eight node elements (equations 2.21a, 2.22a,b) and the
vorticity using bilinear four node elements (equation 2.21b). The velocities,
pressure, temperature, density and viscosity are all chosen to follow

biquadratic eight node elements;

8 8

u = Z N;"(&,T]) yj = z Niw(ﬁ,n) vj (4.7a,b)
j=1 j=1
& v 3 v

p =2 N'(En)p T =Y, N'n)T (4.8,b)
j=1 =1

-~ & v = 3 v

p = 2 NY(en)p; w=2 NYlen)y (49a,b)
j=1 j=1

where

o
n
o o

The inverse of the density is discretized since it consistently shows up in this

form in the stream function-vorticity equations.
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4.52 Velocity-Vorticity

Recalling from section 3.2.3, the velocity vector and geometry are discretized
using triquadratic twenty node elements (equations 3.11a, 3.12a,b,c) and the
vorticity vector using trilinear eight node elements (equation 3.11b). The
pressure, temperature, density and viscosity are all chosen to follow

triquadratic twenty node elements;

B

p.\]

p = 2 NY(Enp; T = 21 NY(End T (4.10a,b)
’= ]=
p.{] - 2

p = X NY(Entp ) NV (g (4.11a,b)

-

—.
—
—
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5. Stream Function-Vorticity Results

51  Summary of Test Cases

To illustrate the application of the method to external aerodynamics, laminar

flow over a symmetric NACA 0012 airfoil is computed for the following

three flow conditions;

B

1) Re.. =10 000 M. =02 o=0°
2) Re.. =10 000 M. =05 o =0°
3) Re.. =5 000 M. =05 a=3°

The free stream Reynolds number Re.. is defined as follows:

PoalUxC
He

Re., =

(5.1

where U.., p. and L. are, respectively, the dimensional velocity, density and

viscosity of the undisturbed free stream flow. The reference length, c, is the

dimensional chord length of the airfoil.

The geometry and boundary conditions of the airfoil test cases are shown in

Figure 5.1. These test cases have the desired properties of a curved geometry,

flow separation, a moderate Reynolds number to test iterative stability, a

moderate subsonic Mach number and a non-zero angle of attack to test the

multiply connected domain algorithm.
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Comparison to experiments requires the implementation of a turbulence
model. If turbulence is introduced, then the numerical results depend on the
turbulence model chosen. Any inaccuracy in the final solution could be due
to the stream function-vorticity discretization or the turbulence model or
both. It would be very difficult, if not impossible, to determine which is the
case. Turbule-ce also produces a much higher effective viscosity which
tends to stat..ze any stream function-vorticity iterative scheme, so that even
a 'bad' scheme might converge for turbulent flows. Laminar cases show the
true stability and accuracy properties of a given stream function-vorticity

formulation.

C-type grids are preferred for the isolated NACA 0012 airfoil. The leading
edge elements are not skewed with respect to the surface as with H-type grids.
Unlike O-type grids, the exit boundary of a C-type grid is a straight line
normal to the flow which is better suited for viscous flow exit boundary
conditions. The C-grid of Figure 5.2 is generated by a method, programmed

by the author, similar to the one outlined in Rizzi [75].

All flow and thermodynamic variables are non-dimensionalized with
respect to free-stream values and the geometry with respec to the airfoil

chord.
52 Test Case #1 : Re=10000, M=0.20,0a=0°
The outer boundary is taken 8 airfoil chords away from the leading edge to 10

chords radially from the trailing edge. The exit boundary is placed 2 chords

from the traiiing edge. The exit boundary condition of parallel streamlines



64

allows the exit boundary to be placed closer to the airfoil than the outer
boundary. Due to the symmetry of the problem, only half the domain is
solved for.

There are 35 elements in the radial direction, including 15 placed within the
estimated boundary layer thickness of 0.050 from the airfoil. The estimate is

taken from flat plate boundary layer theory;

5 ~ ——%5— (5.2)
Re™

The radial length of the elements expand from 0.0013 at the leading edge to
2.2 at the outer boundary. There are 30 elements along the upper half of the
airfoil surface expanding in length from 0.0065 at the leading edge to 0.050 at
the trailing edge. There are 16 columns of elements downstream of the
airfoil expanding in length from 0.050 at the trailing edge to 0.26 at the exit
bouncary. A total of 1610 elements are used, yielding 6685 degrees of

freedom for the half-problem.

Among the attempts that diverged, only  he following two are significant for
establishing approximately the stability limits for this particular test case. For
the first attempt, incompressible Stokes flow (Re=0) was solved during the
first iteration. The iterative Reynolds number was increased to 1 000 from
“e second iteration until the L residual reached the intermediary
ronvergence criteria of 100. The iterative Reynolds number was then
increased to the solution Reynolds number of 10 000. No under-relaxation
was used for this attempt. The second attempt first solved for incompressible

Stokes flow and then jumped directly to the solution Reynolds number of
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10 000 where an under-relaxation of 0.6 was imposed. Both attempts

diverged rapidly at the target Reynolds number.

The third attempt first solved incompressible Stokes flow and then increased
to an intermediary Reynolds number of 1 000 with no under-relaxation.
After the L, residual decreased below 109, the iterative Reynolds number was
increased to 10 000 and an under-relaxation of 0.6 was imposed. Convergence
to machine accuracy was obtained after a total of 42 iterations, including 35

iterations at the final Reynolds number.

The fourth attemp. was identical to the third attempt except that at the final
Reynolds number, under-relaxation was removed as soon as the L; residual
reached below 109. A savings of 17 iterations was obtained. The convergence

history for the successful attempts are shown in Figure 5.3.

The C, distribution over the airfoil surface is shown in Figure 5.4. The
results compare well to those of Steger [76]. The vorticity distribution over
the airfoil surface is shown in Figure 5.5. The separation point on the surface
of the airfoil is clearly identified by the point of zero vorticity. The absolute
vorticity increases dramatically towards the eading edge stagnation point
due to the reduction of the boundary layer thickness. At the leading edge
itsei , there is, in theory, a singularity in vorticity. Due to the symmetry of

the problem, however, the vorticity at the leading edge node was set to zero.



53 TestCase #2 : Re=10000, M =0.50, 0 =0°

The numerical domain and the grid are identical to those chosen for the

previous test case.

The first attempt at convergence was to repeat what had been successful for
the previous test case at Re = 10 000 and M = 0.20. Incompressible Stokes flow
was obtained during the first iteration. The iterative Reynolds number was
increased to 1 000, with no under-relaxation, from the second iteration until
the L; residual reached 100. The iterative Reynolds number was then
increased to the solution Reynolds number of 10 000, with an under-

relaxation factor of 0.6, where the run quickly diverged.

The second attempt was to repeat the first attempt with an added
intermediary Reynolds number of 5 000 after the intermediary Reynolds
number of 1 000 was solved to an L, residual of 10-3. No under-relaxation
was used for either intermediary Reynolds number. This attempt quickly

diverged at the intermediary Reynolds number of 5 000.

The third attempt was to start again with incompressible Stokes Flow
followed by an intermediary Reynolds number of 1 000 with no under-
relaxation. After the L; residual reached 10-3, the intermediary Reynolds
number was again increased to 5 000 but with an under-relaxation of 0.6.
After the L, residual reached 10-3, the iterative Reynolds number was
increased to the solution Reynolds number of 10 000 keeping an under-
relaxation of 0.6. When the L, residual got down below 109, the under-

relaxation was removed. Convergence to machine accuracy was obtained
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after a total of 43 iterations, including a total of 21 iterations at the final
Reynolds number. The convergence history for this final attempt is shown

in Figure 5.6.

No attempt was made in any of the test cases to find an optimum under-
relaxation factor. The value of 0.6 was chosen based on the experience of
Peeters et al. with the incompressible driven cavity problem [8]. For the
external flows tested, there is no need to impose under-relaxation at the
intermediary Reynolds number of 1 000. For Reynolds numbers of 5 000 and

10 000, under-relaxation is required to stabilize the iterative process.

The C, distribution over the airfoil surface is shown in Figure 5.4. Due to
compressibility of streamlines, the values are slightly higher than for the
results at M = 0.20. The streamlines and recirculation zones are shown in
Figure 5.7. The vorticity distribution over the airfoil surface is shown in
Figure 5.5. At the higher Mach number, the separation point, indicated by
zero vorticity, moves further upstream than the M = 0.20 case. The lower
surface pressure and the larger separation zone are consistent with higher
compressibility, which results in higher velocities and thus greater

acceleration.

54 TestCase #3 : Re=5000,M=0.50, o =3°

Due to the expected larger separation zone than in the previous cases, the
outer boundary is taken 15 airfoil chords away from the airfoil. The exit
boundary is placed 5 chords from the trailing edge. The exit boundary

condition of parallel streamlines allows the exit boundary to be placed closer
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to the airfoil than the outer boundary. Unlike the zero angle of attack cases,

there is no symmetry in this problem and the full domain is solved for.

There are 35 elements in the radial direction, including 15 placed within a
distance of 0.040 from the airfoil. The radial length of the elements expand
from 0.0011 at the airfoil surface to 4.5 at the outer boundary. There are 50
elements along the upper and lower halves of the airfoil surface expanding
in length from 0.0044 at the leading edge to 0.030 at the trailing edge. There
are 24 columns of elements downstream of the airfoil expanding in length
from 0.030 at the trailing edge to 0.70 at the exit boundary. The exit boundary
is a straight line at an angle of 3° with respect to the y-axis and is thus normal
10 the free stream flow for ease of application of the exit boundary conditions.

A total of 5180 elements are used, yielding 20 751 degrees of freedom.

The first and only attempt repeated what was successful for the zero angle of
attack test cases. Incompressible Stckes flow was first obtained followed by an
increase to an intermediary Reynolds number of 1 000 with no under-
relaxation. After the L; residual decreased below 10-3, the iterative Reynolds
number was increased to the target value of 5 000 and an under-relaxation of
0.6 was imposed. At this final Reynolds number, under-relaxation was
removed as soon as the L; residual reached below 10-1. Figure 5.8 shows that
convergence to machine accuracy was obtained after a total of 34 iterations,

including 24 iterations at the final Reynolds number.

The C, distribution over the airfoil surface is shown in Figure 5.9 and
naturally indicates lower pressure values on the top surface than on the

lower surface, resulting in a lifting force on the airfoil. Figure 5.10 shows the
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streamline patterns over the airfoil including the large separation zone near
the trailing edge. The results compare well to those of Venkatakrishnan [77],
who used Roe's flux difference splitting technique with a GMRES iterative
matrix solver on a 128+32 grid. The vorticity distribution over the airfoil
surface is shown in Figure 5.11. The separation point on the top surface of
the airfoil is clearly identified by the point of zero vorticity. Unlike the
symmetric cases (zero angle of attack), the stagnation point, again indicated by
zero vorticity, occurs on the bottom surface. On either side of the stagnation
point are regions of very high vorticities (opposite signs) as a result of the

thin boundary layers in this region.
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6. Velocity-Vorticity Results

6.1 Summary of Test Cases

Results have been obtained for laminar two-dimensional incompressible and
subsonic flows. The cases investigated are: flow in a driven cavity, over a
trough and through a nozzle. Flow in a driven cavity is then analyzed for
three-dimensional flows, both incompressible and subsonic, and compared to
the results of other numerical methods. Incompressible results for all the
test cases were obtained by explicitly setting the density and viscosity to unity

everywhere in the domain. The Reynolds number is defined as:

Re = PreUreflrer 6.1)
Href
where the reference values are defined for each test case in Table 6.1:
Test case Uref Pref Href Lot
“Cavity Lid velocity |Lid density at| Lid viscosity | Cavity
(2-D and 3-D) Pref height
Nozzle average inlet|inlet density|inlet viscosity [Inlet height
velocity at U, at U,
Trough average inlet|inlet density|inlet viscosity|Inlet height
velocity at U, at U,

Table 6.1 Reference Values

For the compressible cases, the stagnation temperature (298°K), reference

pressure (p,os = 101 325.0 Pa), Reynolds number, and the Mach number are all
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specified. The remaining reference values are derived from these specified

quantities.

6.2 Test Case #1 : 2-D Driven Cavity

The two-dimensional driven cavity problem is tested for incompressible flow
at a Reynolds number of 400. Figure 6.1 shows the geometry, boundary
conditions and the grid used for the problem. There is a discontinuity in
velocity at the two upper corners. As a result, the vorticity has a singularity
at these two points. For this test case, the discontinuous velocity is arbitrarily

chosen to be unity at these two corner nodes.

Figure 6.2 shows that convergence to machine accuracy is attained in 9
iterations on the (15+15) element grid. The first iteration is the solution of
Stokes flow (Re=0) followed by quadratic convergence at the target Reynolds
number. Figures 6.3 and 6.4 compare equi-vorticity contours and center-line
velocities of the present solution to results using the stream function-
vorticity method [8). The difference between the center-line velocity profiles
at the point of minimum velocity may be due to a slight difference in
vorticity at the bottom wall. This would result in slightly different velocity
gradients at the wall which eventually creates a difference in the two profiles
at the point of minimum velocity. This is not too surprising as the wall
vorticity is obtained from different approaches in the two formulations. The
difference in the velocity in the upper region of the profile is a direct result of

the difference in the lower region as mass must be conserved.
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Figure 6.3 shows that the vorticity values are quite high at the upper corners
due to the presence of a singularity in vorticity. The zero vorticity contours
near the two lower corners, indicating the presence of secondary corner
vorticities, compare very well with the stream function-vorticity results.
Both formulations seem to indicate the faint presence of a very small vortex
at the two corners. This is consistent with the findings of Ghia et al. [78]. The
concentration of the highest vorticity value contours occurs near the lid,
which is the region of highest shear, while the relatively lower value
contours are within the large vortex in the center of the cavity. The lid
drives the fluid toward the right stationary wall where the flow must turn
abruptly down into the lower part of the cavity. This creates a second region
of high vorticity along the upper right wall. It is reasonable to expect some
differences in the vorticity contours between the two formulations in these
regions of high vorticity and vorticity gradients, especially due to the
coarseness of the grid. It can be somehow concluded, after the fact, that the

stream function-vorticity values are probably more accurate.

6.3  TestCase #2 : 2-D Trough

Flow over a trough is selected to test the stability of the method for high
Reynolds number separated flows. Figure 6.5a shows the geometry,
boundary conditions and the grid used for the problem. The bottom wall

geometry is given by;

i} 0.15 .
Y = o 62ix- xg)-1]) ©.2)
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where x, is the x-coordinate value at the start of the trough. The trough has a
length of one inlet height and the y-coordinate is explicitly set to zero at the
two ends of the trough. The inlet and exit are placed three channel heights

from the trough.

For a Reynolds number of 10 000, convergence is attained in 7 iterations to
machine accuracy on the 420 element grid and is shown in Figure 6.6. The
initial guess of uniform flow is close enough to the solution to achieve
quadratic convergence. The velocity vectors are shown, in the region of the
trough, in Figure 6.5b. As expected at such a high Reynolds number, a
recirculation zone is contained within the trough. The results are meant to
be only illustrative since at such a Reynolds number the flow would actually

be turbulent.

6.4 Test Case #3 : 2-D Nozzle

For subsonic flow, a converging-diverging nozzle with an inlet Mach
number of 0.2 and a Reynolds number of 100 is tested. Figure 6.7 shows the
geometry, boundary conditions and the grid used for the problem. The upper
boundary is set at the symmetry line so that only half the problem need be
solved. The Reynolds number is based on the full inlet channel height
(diameter) so that the non-dimensional distance from the wall to the
symmetry line is 0.5. The inlet and exit sections are both of constant cross-
sectional area and are 20 diameters long. The nozzle length is one diameter

and the bottom wall geometry is given by;

y = 0.2[ 1- cos(2n(x - x,)) ] (6.3)
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where x, is the x-coordinate value at the start of the nozzle. The cross-

sectional area at the throat is 60% of the inlet cross-sectional area.

Convergence is attained in 23 iterations to machine accuracy on the 930
element stretched grid and is compared, in Figure 6.8, to the convergence of
the incompressible case, with the same initial guess. As expected,
convergence is quadratic for the incompressible case and drops to linear for
the subsonic case, since density is lagged one iteration. Despite this, the
convergence is quite fast, justifying the solution strategy chosen for subsonic
flows, at least for this test case. Figure 6.9 shows the velocity vectors in the
nozzle region for incompressible flow, including the separation zone and
reattachment after the nozzle, while Figure 6.10 compares the incompressible
and subsonic results. The length of the separation zone for the
incompressible and subsonic cases are 0.53 and 0.55 diameters respectively.
The maximum Mach number in the subsonic flow case was 0.54. The results
indicate, as expected, that compressibility raises the levels of velocity and
thus creates a larger separation zone and higher levels of vorticity than for

the corresponding incompressible case.

The continuity equation is not solved for explicitly, as shown in section 3.1.
To assess the error in mass conservation, the mass flux was calculated at each
grid station and is shown for the incompressible case in Figure 6.11. The
mass flux at the exit is 1.28% lower than at the inlet. For the subsonic case,
the mass flux is 1.22% lower at the exit than at the inlet. The incompressible
case was tested using bilinear elements for both velocity and vorticity on
exactly the same grid (930 elements) and also on a grid twice as fine in both

the axial and tangential directions (3720 elements). The mass flux at exit is



75

99.91% and 99.20% lower than at inlet for the 930 and 3720 element grids,
respectively! This clearly indicates the inadequacy of the equal order bilinear
element for this formulation. To estimate the effect of grid size on the mass

flux error, four uniform grids were tested for incompressible flow;

Grid Ax Ay Mass Flux Error
at Exit (%)
88+4 0.1250 0.1250 28.5
88+8 0.1250 0.0625 16.9
176+4 0.0625 0.1250 16.9
13246 0.0833 0.0833 9.1

Table 6.2 Mass Flux Error

The mass flux error is approximately second order with respect to grid size in
both directions. This observation cannot be extended to other geometries

and other Reynolds numbers.

6.5 Test Case #4 : 3-D Driven Cavity

The three-dimensional driven cavity problem is analyzed at a Reynolds
number of 100. This is carried out for incompressible flow and for lid Mach
numbers of 0.2, 0.5 and 0.8. This problem is also analyzed at a Reynolds

number of 400 for incompressible flow.

Figure 6.12 shows the geometry of the problem, with one side wall removed
for visualization purposes, and the grid used for the Reynolds number 100
test cases. The top boundary is a moving lid with unity velocity from left
("back" wall) to right ("front” wall) while the back wall, front wall, two side

walls and bottom wall are all stationary. The x-coordinate is in the direction
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of motion of the lid, the y-coordinate is in the direction perpendicular to the
lid, and the z-coordinate is in the direction normal to the symmetry plane.

The pressure is specified at one corner point on the lid at the back wall.

For both the incompressible and subsonic cases, the initial iteration is for
incompressible Stokes flow, while subsequent iterations are at the target
Reynolds number of 100. Figure 6.13 compares the convergence history for
the incompressible and compressible cases. For incompressible flow,
quadratic cénvergence is attained and machine accuracy is ceached in 6
iterations. For compressible flow, the pressure, density, temperature and
viscosity are updated in a lagged manner from the velocity-vorticity system
and linear convergence ensues. It must be remarked, however, that the

convergence history is still impressive.

In Figure 6.14, the convergence history is compared for two grids, with the
finer one containing eight times the number of elements of the coarse grid.
The convergence rate is affected by grid refinement, requiring three

additional iterations to reach machine accuracy.

Figure 6.15 shows the cavity centerline velocities on the symmetry plane for
the two- and three-dimensional incompressible cases and compares the 3-D
results to Ku et al. [79]. The effect of the third dimension is evident but is
relatively weak at the Reynolds number of 100. The vortex is located higher
in the cavity plane of symmetry than in two dimensions. Figure 6.16 shows
the effect of compressibility on the cavity centerline velocities on the
symmetry plane. For the compressible three-dimensional case, the velocity

vectors are shown in Figure 6.12 and the density contours in Figure 6.17. The
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trends in the velocity vectors are similar to those presented for
incompressible flows. The centerline velocities show the trend of decreasing
velocities with increasing compressibility, which is opposite of the usual
behavior. The density contours of Figure 6.17 indicate, however, that the
density is higher than unity for almost the entire domain. This is a result of
specifying the reference pressure at the corner point of the back wall on the
lid, at which the density will be unity. Since the pressure will be highest near
the upper part of the front wall, towards whirh the lid moves, this will also
be the region of highest density, as shown in Figure £.17. Since the density is
actually higher than unity, the velocities will be lower rather than higher as
is usually the case. Figure 6.18 shows the normal vorticity contours for the
three mid-planes in the incompressible three-dimensional case. These
compare very well with the results presented by Osswald et al. [39], who used
a velocity-vorticity finite difference fully implicit algorithm on a 17+17+17
uniformly distributed staggered grid. The vorticity contours in the
streamwise plane indicate a small vortex at the bottom corners of the front
and back walls. As in two dimensions, there is a discontinuity in velocity
and thus a vorticity singularity at the upper corners. The velocity along the
intersection of the lid with the stationary walls is arbitrarily set to unity. The
vorticity contours in the spanwise plane indicate vortices have formed in the
third dimension. The energy required for these secondary vortices reduce

the strength of the primary vortex.

The compressible three-dimensional cases were carried out again using the
energy equation instead of the constant total enthalpy assumption. A
constant temperature is specified on the moving lid and zero heat flux is

imposed on the stationary walls. A Prandtl number of 0.72 is used for all
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cases. The convergence history is shown in Figure 6.19. Compared to the
constant total enthalpy cases (see Figure 6.13), convergence is slower and less
affected by compressibility. The slower convergence is due mostly to solving
a differential equation that not only couples all the temperatures in the field,
but also contains the velocity, density, pressure and viscosity. The constant
enthalpy relation, on the other hand, is an explicit algebraic relation that only
relies on the nodal temperature and velocity. Figure 6.20 shows the effect of
compressibility on the cavity centerline velocities on the symmetry plane.
The trends in the centerline velocities are similar to those for the constant
total enthalpy cases (see Figure 6.16). Temperature contours in the symmetry
plane are compared to those of the constant total enthalpy cases in Figure
6.21. The temperature contours in Figure 6.21 indicate a more complex
distribution of temperature than for the constant enthalpy case, which may
also contribute to the slower convergence. The temperature contours for the
total enthalpy case indicate that the temperature has the same value in most
of the cavity as a result of the low absolute velocity in most of the flow. The
energy equation, however, contains a diffusion term which can create
temperature gradients in regions of low velocity. Figure 6.21a shows that the
temperature contours are normal to the three stationary walls, consistent
with the zero heat flux boundary condition. The same physical reasoning
that applied to the constant enthalpy case still applies for the energy equation
case to explain the reduction of the centerline velocities for compressible
flows. The temperature distribution has changed using the energy equation,
but only by a few percent on the centerline of the symmetry plane. The
density is influenced more by the pressure than by the temperature for this
test case and is therefore, as with the constant enthalpy cases, greater than

unity in most of the domain.
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For the three-dimensional driven cavity problem for incompressible flow at
a Reynolds number of 400, a finer grid is required. For comparison, this
problem is solved using three different grids comprised of 8+8+4, 14+14*7 and
30+30+15 elements. For higher wall vorticity accuracy, the 14+14+7 element
grid has a geometric expansion in each of the three directions with an
element size of 0.0552 at walls to 0.09 at the center of the cavity. The 30+30+15
element grid has a geometric expansion from 0.0206 at walls to 0.05 at the

center.

For the two finer grids, the memory required for the direct solver is listed in
Table 6.3. Due to this high memory requirement, an iterative solver is used.
There is no direct interaction between the iterative solver and the governing
non-linear equations. The iterative solver was directly used as developed in
[80] for the solution of the Euler and Navier-Stokes equations. The solver is
based on Arnoldi's method, a Krylov subspace method for large non-
symmetric linear algebraic systems of equations. It uses the Gram-Schmidt
procedure, rather than the modified Gram-Schmidt procedure, to construct
the required orthonormal basis of the Krylov subspace, relying on two
applications of reorthogonalization to ensure the accuracy and stability of the
orthogonalization process. For this particular iterative solver, only the non-
zero entries are stored and the reduction in required memory is quite

substantial as shown in Table 6.3:
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Grid Number of Half Matrix Required |CPU Time for
Unknowns | Bandwidth| Solver Memory |1 Matrix Soln.
(1 Processor)

144147 19 159 1500 direct 51138 845 279 sec
14+14+#7 19 159 1500 iterative 2338179 479 sec
30+30+15 195615 6 796 direct | 2659 000 000 n/a

30+30+15 195615 6796 iterative 26 159 923 5 740 sec

Table 6.3 Required Memory and CPU Time on CRAY-YMP

It must be noted, however, that three arrays of this size are required; the
matrix must be stored twice and the matrix column indices must be stored

once.

The two finer grids were run on a CRAY-YMP/8-128 (8 processors and 128
MegaWords of memory). The memory on this machine was enough for the
direct solver to be used on the 14*14*7 element grid but clearly not enough
for the 30+30+15 element grid. The iterative solver was also used for one
iteration on the 14#14#7 element grid to compare CPU times. From Table 6.3,
it is seen that the iterative solver takes almost twice the CPU time as the
direct solver. The direct solver, developed by V-N. Nguyen, is highly
optimized for use on the CRAY-YMP in terms of both vectorization and
parallelization [81]. All CPU times listed in Table 6.3 are for 1 processor. For
these particular runs, it was rare that more than one processor was accessed at
once. For the finer 30+30+15 element grid, the direct solver cannot even be
attempted on this or any other machine today. The CPU time required for

this case with the direct solver, if it were possible, can be estimated using;

L = N—( 6.4)
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where
N is the number of unknowns in the matrix system
b is the matrix bandwidth
t is the CPU time for one matrix solution
n is the exponent with which the CPU time increases with
respect to the matrix bandwidth (usually 1<n <?2)

o reference values

In the usual range of the exponent n, the CPU time would be from 13 000 to
58 500 seconds, or from twice to ten times the CPU time of the iterative

solver.

The two coarser grids (8+8+4 and 14+14+7 elements) are solved using the
direct solver and the finer grid (30#30+15 elements) using the iterative solver.
The convergence history for all three grids is shown in Figure 6.22. Since the
iterative solver is not made to converge completely at each Newton iteration,
the overall stability of the method changes. For this particular case, obtaining
solutions at intermediary Reynolds numbers of 100 and 200 were required

before starting at the final Reynolds number of 400.

Figure 6.23 shows the cavity centerline velocities on the symmetry plane for
the three grids and clearly indicates the inadequacy of the two coarser ones.
Figure 6.24 compares the centerline velocities of the finest grid to the two-
dimensional case and to the 3-D results of Ku et al. [79] and Agarwal [34]. The
centerline velocities are much lower in three dimensions than in two
dimensions, indicating significant transverse flow in the third dimension.

Comparing the centerline velocities to the two other sets of numerical
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results, there is a discrepancy from the point of minimum velocity to the
point of zero velocity. Judging by the significant changes in solution from
the two coarser grids to the finer grid in Figure 6.23 and the differences with
respect to other numerical results in Figure 6.24, the adequacy of the finest
grid (30+30+15 elements) using the present formulation is still in question.
Figure 6.25 shows the normal vorticity contours for the three mid-planes.
The vorticity contours in the s'reamwise plane are very similar to those in
two dimensions (see Figure 6.3a), except that the vortex strength is slightly
weaker. This as shown in Figures 6.25b and 6.25c, is caused by the formation
of vortices in the third dimension that draw away energy from the primary

vortex.

The continuity equation is not solved for explicitly, as shown in section 3.1.
To assess the error in mass conservation for each element in the domain the

following measure was evaluated;

B = f [V 5] ds 6.5)
sl

The maximum absolute error from all the elements is tabulated for each test

case;
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Re M Grid Energy Max. Mass Location
Error

100 | incomp. 8+8+4 0.274E-03 | 96, .86, 42
100 0.2 8+8+4 H=constant 0.296E-03 | 96, .86, 42
100 0.5 8+8+4 H=constant 0.408E-03 | .96, .86, 42
100 0.8 8+8+4 H=constant 0.594E-03 96, .86, 42
100 0.2 8+8+4 Energy equation | 0.283E-03 | .96, .86, .42
100 0.5 8+8+4 Energy equation | 0.392E-03 | .96, .86, .42
100 0.8 8+8+4 Energy equation | 0.576E-03 | .96 ,.86, .42
400 | incomp. 8+8+4 0.288E-C3 | 96, .86, .42
400 | incomp. | 14#14%7 0.962E-04 | .03,.97,.03
400 | incomp. | 30+30+15 0.144E-04 | .01,.99, 48

Table 6.4 Maximum Absolute Mass Error

The trends show that the mass conservation error increases with Mach
number, increases slightly with Reynolds number, decreases with grid size
and is slightly lower for the energy equation than for the constant total

enthalpy assumption.

For the 3-D lid driven cavity, experimental laminar results are available at a
Reynolds number of 3200 [82]. The experimental results clearly show that the
flow in the symmetric plane is three-dimensional and cannot be accurately
predicted with 2-D numerical methods. Experimental results are also
available for flow through a 90 degree bend with a square cross-section [83] at
a Reynolds number of 790. Secondary flow effects are present in the bend
that prevent an accurate comparison to two-dimensional analysis. The goal
of testing the three dimensional formulation against one of these two test
cases was not achieved. Higher Reynolds numbers were not attempted since
access to the CRAY-YMP was ended upon completion of the Reynolds

number 400 test case. It is doubtful, however, that the 30+30+15 element grid
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would have been fine enough to obtain an accurate solution at a Reynolds
number of 3200. Since the present velocity-vorticity formulation cannot
solve a finer grid on the CRAY-YMP, a change in iterative strategy, namely
solving all six variables simultaneously in the entire field, would be
necessary. A similar conclusion is reached for the above through-flow test
case. Only coarse grids were attempted (e.g. 43#12+6 elements) for a Reynolds
number of 100, resulting in unacceptable levels of mass loss of as much as

18%.
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7. Discussion

71 Conclusions

Finite element vorticity-based methods have been shown to be suited to the
formulation of the Navier-Stokes equations. The natural boundary
conditions of the finite element method eliminate the need for explicit wall
vorticity formulae in the stream function-vorticity formulation and for
pressure extrapolation to the walls. The accuracy of imposition of boundary
conditions and geometry approximation is improved through the use of

quadratic elements.

The stream function-vorticity method is extended first to compressible
subsonic symmetric external flows and then to lifting flows. Convergence for
laminar flow at a Reynolds number of 10 000 was achieved without any
upwinding or artificial viscosity. The chosen solution procedure of solving
the stream function and vorticity simultaneously by a Newton method and
lagging the pressure, density, temperature and viscosity leads to a fast
convergence rate for the test cases shown. It should be noted that extending
this procedure to transonic flow would most likely result in very slow
convergence due to the expected high coupling of the density and the flow

(stream function and vorticity).

A velocity-vorticity approach using Poisson equations for velocity is
developed for incompressible and compressible subsonic flows. A new finite

element implementation of the wall vorticity boundary condition has been
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demonstrated. The element discretizations for velocity and vorticity are set
up to maximize the accuracy of the wall vorticity boundary condition. The
method was first applied in two-dimensions and showed good accuracy for
the driven cavity, good stability for the trough at high iaminar Reynolds
number and a fast linear convergence for subsonic nozzle flow. For the 3-D
cavity at a Reynolds number of 100, the formulation compared well to other
numerical methods for incompressible flows and exhibited a fast linear
convergence for high subsonic flows. For the 3-D cavity at a Reynolds
number of 400, a much finer grid was required and an iterative solver was
used. The convergence rate was linear and fast but required Reynolds
number stepping for stability. In all the test cases attempted in both two- and
three-dimensions, no artificial viscosity was required to stabilize the iterative

process or to smooth the solution.

The formulation and the boundary conditions of this velocity-vorticity
method make it simpler to apply to three-dimensional flows than stream
function methods. For two-dimensional flows, the relative advantages and
disadvantages of the stream function-vorticity and velocity-vorticity
formulations are;

1) The mass is conserved exactly, locally and globally, for stream
function-vorticity formulations. For velocity-vorticity this has
proven to be a source of difficulty. For example, for enclosed flows
mass is conserved globally, but the scheme cannot guarantee local
mass conservation. For through-flows the scheme has shown
difficulties at the local and global levels.

2) There are two variables for stream function-vorticity, compared to

three for velocity-vorticity, to solve for.
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3) Since vorticity is defined in terris of gradients of velocity or
alternatively in terms of the second derivatives of stream function,
it is clear that the use of elements having only one order
interpolation difference between the variables, is more appropriate
for the velocity-vorticity formulation.

Overall, it is preferable to use the stream function-vorticity method for two-

dimensional flows.

72 Recommendations for Extending the Current Work

Current work concerns extending the stream function-vorticity formulation
to transonic external flow. It has already been attempted to solve the inviscid
equations by lagging the density, pressure and temperature. Artificial
compressibility and upwinding on the operator matrix have been introduced
for transonic flow. The convergence, however, is very slow. The
recommended strategy that is presently being implemented is to solve the
pressure simultaneously with the stream function and vorticity. The density
and temperature could be eliminated through the equation of state and

assuming a constant total enthalpy, respectively.

When solving the velocity-vorticity system using the second order Poisson
equations for velocity, the first order continuity equation and definition of
vorticity are assumed to be satisfied to within a reasonable error. On coarse
grids, this error will be quite large and the grid must be refined until these
errors are judged reasonable. In this formulation, reducing these errors to
reasonable levels relies solely on grid refinement. It must be noted that even

if the continuity equation and the definition of vorticity are solved for
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directly, there will still be a discretization error present. Any error analysis
done with the present formulation must separate the errors due to solving
the second order Poisson equation and the discretization errors that would be
present if solving the first order equations. The question is whether these
errors are reasonable for realistic grids. The answer depends on the
definition of reasonable, which is subjective in nature, and may also depend
on the geometry and flow conditions. Apart from grid refinement, there are
presently two options that address the mass conservation problem; 1) solving
the continuity equation directly instead of the Poisson velocity equations,
and 2) using a staggered finite difference discretization. If the answer to the
above question is that unreasonably fine grids are required for the present
formulation, it is recommended for finite element formulations to solve the
continuity equation directly. As for obtaining a solenoidal vorticity, there are
two methods available in the literature for incompressible flow; 1) using the
conservative form of the vorticity transport equation with an initial
solenoidal vorticity field, and 2) introducing a potential to project the
vorticity on to a solenoidal field. The second method, unlike the first, can be
extended to subsonic flow but has the disadvantage of introducing an extra
unknown into the system. Before introducing this inconvenience, it must be
clearly established that the error is unreasonable for realistic grids, which is

not an easy task.

Current work also concerns extending the 3-D velocity-vorticity formulation
to higher Reynolds number inflow-outflow problems. The grids necessary
for these types of flows will be larger than the grids used for the driven
cavity. The memory limit of the CRAY-YMP/8-128 was nearly reached for

the driven cavity at Re=400 using an iterative solver in which only the non-
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zeroes were stored. Since this is the lower limit for memory use solving the
velocity and vorticity simultaneously for the entire domain, another strategy
will have to be selected to solve these problems on today's computers.
Domain decomposition methods, on parallel computers, are being studied.
Another possible reduction of the required computer memory is to solve
only a selected number of variables simultaneously, say one velocity and one
vorticity in a block. The selection would be made with both the non-linear
convective terms and the vorticity wall boundary condition as the major
considerations. For either strategy, since the coupling of the entire velocity-

vorticity system is reduced, convergence is expected to be slower.



90

References

Sani, R.L., Gresho, P.M.,, Lee, R.L. and Griffiths, D.F., "The Cause and
Cure (?) of the Spurious Pressures Generated by Certain FEM Solutions
of the L.compressible Navier-Stokes Equations: Part 1%, International

Journal for Numerical Methods in Fluids, Vol. 1, pp. 17-43, 1981.

Harlow, F.H. and Welch, J.E., "Numerical Calculation of Time-
Dependent Viscous Incompressible Flow of Fluid with Free Surface”,

Physics of Fluids, Vol. 8, pp. 2182-2189, 1965.

Chorin, A.J., "A Numerical Method for Solving Incompressible Viscous
Flow Problems", Journal of Computational Physics, Vol. 2, pp. 12-26,
1967.

R. Peyret and T.D. Taylor, Computational Methods for Fluid Flow,
Springer-Verlag, 1983.

Hood, P. and Taylor, C., "Navier-Stokes Equations Using Mixed
Interpolation”, Finite Element Methods in Flow Problems: International
Symposium on Finite Element Methods in Flow Problems, Swansea,
(Eds. Oden, ].T., Zienkiewicz, O.C., Gallagher, R.H. and Taylor, C.), UAH
Press, Huntsville, Alabama, pp. 121-132, 1974.



10.

11.

91

Campion-Renson, A. and Crochet, M.J,, "On the Stream Function
Vorticity Finite Element Solutions of Navier-Stokes Equations”,
International Journal for Numerical Methods in Engineering, Vol. 12,

pp- 1809-1818, 1978.

Dhatt, G.,, Fomo, B.K. and Bourque, C.A.,, "A ¥-o Finite Element
Formulation for the Navier-Stokes Equations", International Journal

for Numerical Methods in Engineering, Vol. 17, pp. 199-212, 1981.

Peeters, M.F., Habashi, W.G. and Dueck, E.G., "Finite Element Stream
Function-Vorticity Solutions of the Incompressible Navier-Stokes
Equations”, International Journal for Numerical Methods in Fluids,

Vol. 7, pp. 17-27, 1987.

Aziz, K. and Hellums, J.D., "Numerical Solution of the Three-
Dimensional Equations of Motion for Laminar Natural Convection”,

Physics of Fluids, Vol. 10, pp. 314-324, 1967.

Hirasaki, G.J. and Hellums, ].D., "A General Formulation of the
Boundary Conditions on the Vector Potential in Three-Dimensional
Hydrodynamics", Quarterly of Applied Mathematics, Vol. 26, No. 3, pp.
331-342, 1968.

Hirasaki, G.J. and Hellums, ]J.D., "Boundary Conditions on the Vector
and Scalar Potentials in Viscous Three-Dimensional Hydrodynamics",

Quarterly of Applied Mathematics, Vol. 28, No. 2, pp. 293-296, 1970.



12.

13.

14.

15.

16.

17.

92

Richardson, S.M. and Cornish, A.R.H., "Solution of Three-Dimensional
Incompressible Flow Problems", Journal of Fluid Mechanics, Vol. 82, pp.
309-319, 1977.

Aregbesola, Y.A.S. and Burley, D.M., "The Vector and Scalar Potential
Method for the Numerical Solution of Two- and Three-Dimensional
Navier-Stokes Equations", Journal of Computational Physics, Vol. 24,

pp- 398-415, 1977.

Sherif, A. and Hafez, M.M., "Computation of Three-Dimensional Flows
Using Two Stream Functions”, AIAA Paper 83-1948-CP, 1983.

Davis, R.L., Carter, ]J.E. and Hafez, M.M., "3-D Viscous Flow Solutions
with a Vorticity-Stream Function Formulation", AIAA-Paper-87-0601,
1987.

Wong, A.K. and Reizes, J.A., "An Effective Vorticity-Vector Potential
Formulation for the Numerical Solution of Three-Dimensional Duct
Flow Problems", Journal of Computational Physics, Vol. 55, pp. 98-114,
1984.

Lin, A., de Vahl Davis, G., Leonardi, E. and Reizes, ]J.A., "Numerical
Study of the Three-Dimensional Incompressible Flow Between Closed
Rotating Cylinders", Lecture Notes in Physics no. 218 : 9th Internationai
Conference on Numerical Methods in Fluid Dynamics, Saclay, France,

pp. 380-387, 1984.



18.

19.

20.

21.

24.

93

Yang, H. and Camarero, R., "An Improved Vorticity-Potential Method
for Three-Dimensional Duct Flow Simulations", International Journal

for Numerical Methods in Fluids, Vol. 6, pp. 3545, 1986.

Hamed, A. and Abdallah, S., "Internal Three-Dimensional Viscous Flow
Solution Using the Streamlike Function", Journal of Fluids
Engineering, Transactions of the ASME, Vol. 108, No. 3, pp. 348-353,
1986.

Agarwal, R.K,, "A Fourth-Order-Accurate Compact Differencing Scheme
for Steady Navier-Stokes Equations”, AIAA Paper 82-0977, 1982.

Habashi, W.G., Peeters, M.F., Guevremont, G. and Hafez, M.M., "Finite
Element Solutions of the Compressible Navier-Stokes Equations”,

AIAA Journal, Vol. 25, No. 7, pp. 944-948, 1987.

Habashi, W.G. and Hafez, M.M., "Finite Element Stream Function
Solutions of Transonic Rotational Internal and External Flows", Journal
of Numerical Methods for Partial Differential Equations, Vol. 1, pp. 127-
144, 1985.

P.J. Roache, Computational Fluid Dynamics, Hermosa Publishers, 1976.

Luchini, P., "An Adaptive-Mesh Finite-Difference Solution Method for

the Navier-Stokes Equations”, Journal of Computational Physics, Vol.

68, pp. 283-306, 1987.



26.

27.

28.

29.

30.

31.

94

Strikwerda, J. C., "Upwind Differencing, False Scaling, and Nonphysical
Solutions to the Driven Cavity Problem", Journal of Computational

Physics, Vol. 47, pp. 303-307, 1982.

Ghia, K.N., Osswald, G.A. and Ghia, U., "Analysis of Two-Dimensional
Incompressible Flow Past Airfoils Using Unsteady Navier-Stokes
Equations”, Numerical and Physical Aspects of Aerodynamic Flows,

Vol. I, (Ed. Cebeci, T.), Springer-Verlag, pp. 318-338, 1986.

Gresho, P.M., "Incompressible Fluid Dynamics: Some Fundamental
Formulation Issues", Annual Review of Fluid Mechanics, Vol. 23, pp.

413453, 1991.

Rubin, S.G. and Khosla, P.K., "Navier-Stokes Calculations with a
Coupled Strongly Implicit Method-I", Computers and Fluids, Vol. 9, pp.
163-180, 1981.

Markham, D.M. and Lewis, C.H., "A Numerical Model for a Turbulent
Buoyant Jet in a Shallow Open Channel", Progress in Astronautics and

Aeronautics, vol. 36 : Thermal Pollution Analysis, pp. 203-218, 1975.

Fasel, H., "Investigation of the Stability of Boundary Layers by a Finite-
Difference Model of the Navier-Stokes Equations", Journal of Fluid

Mechanics, Vol. 78, pp. 355-383, 1976.

Cook, R.N., "Numerical Solutions of the Navier-Stokes Equations in 3

Dimensions", Ph.D. Thesis, University of Western Ontario, 1976.



32

33.

35.

37.

95

Dennis, S.C.R., Ingham, D.B. and Cook, R.N., "Finite-Difference
Methods for Calculating Steady Incompressible Flows in Three
Dimensions", Journal of Computational Physics, Vol. 33, pp. 325-339,
1979.

Speziale, C.G., "On the Advantages of the Vorticity-Velocity
Formulation of the Equations of Fluid Dynamics", Journal of

Computational Physics, Vol. 73, pp. 476-480, 1987.

Agarwal, R.K., "Third-Order-Accurate Upwind Scheme for Navier-
Stokes Solutions in Three Dimensions", Computers in Flow Predictions
arid Fluid Dynamics Experiments, (Eds. Ghia, K.N., Mueller, T.]. and
Patel, B.R), ASME, New York, pp. 73-82, 1981.

Gatski, T.B., Grosch, C.E. and Rose, M.E., "A Numerical Study of the
Two-Dimensional Navier-Stokes Equations in Vorticity-Velocity

Variables", Journal of Computational Physics, Vol. 48, pp. 1-22, 1982.

Gatski, T.B., Grosch, C.E. and Rose, M.E., "The Numerical Solution of
the Navier-Stokes Equations for 3-Dimensional, Unsteady,

Incompressible Flows by Compact Schemes", Journal of Computational

Physics, Vol. 82, pp. 298-329, 1989.

Farouk, B. and Fusegi, T., "A Coupled Solution of the Vorticity-Velocity
Formulation of the Incompressible Navier-Stokes Equations”,
International Journal for Numerical Methods in Fluids, Vol. 5, pp. 1017-
1034, 1985.



39.

40.

41.

42.

43.

96

Orlandi, P., "Vorticity-Velocity Formulation for High Re Flows",
Computers and Fluids, Vol. 15, No. 2, pp. 137-149, 1987.

Osswald, G.A., Ghia, K.N. and Ghia, U., "A Direct Algorithm for
Solution of Incompressible Three-Dimensional Unsteady Navier-Stokes
Equations”, Proceedings of the AIAA 8th Computational Fluid
Dynamics Conference, Honolulu, pp. 408-421, 1987.

Huang, Y., Ghia, U., Osswald, G.A. and Ghia, K.N., "Unsteady Three-
Dimensional Flow Simulation Using Vorticity-Velocity Form of
Navier-Stokes Equations and ADI+MG-DGS Method", Proceedings of
the AIAA 10th Computational Fluid Dynamics Conference, Honolulu,
AIAA Paper 91-1562-CP, pp. 380-392, 1991.

Toumi, A. and Ta Phuoc Loc, "Numerical Study of Three-Dimensional
Viscous Incompressible Flow by Vorticity and Velocity Formulation”,
Numerical Methods in Laminar and Turbulent Flow, Vol. V, (Eds.
Taylor, C., Habashi, W.G. and Hafez, M.M.), Pineridge Press, pp. 595-606,
1987.

Guj, G. and Stella, F., "Numerical Solutions of High-Re Recirculating
Flows in Vorticity-Velocity Form", International Journal for Numerical

Methods in Fluids, Vol. 8, pp. 405-416, 1988.

Stella, F. and Guj, G., "Vorticity-Velocity Formulation in the
Computation of Flows in Multiconnected Domains", International

Journal for Numerical Methods in Fluids, Vol. 9, pp. 1285-1298, 1989.



45.

47.

49.

97

Napolitano, M. and Pascazio, G., "A Numerical Method for the
Vorticity-Velocity Navier-Stokes Equations in Two and Three
Dimensions”, International Symposium on Computational Fluid

Dynamics, Nagoya, Japan, pp. 590-595, 1989.

Napolitano, M. and Catalano, L.A., "A Multi-Grid Solver for the
Velocity-Vorticity Navier-Stokes Equations”, International Journal for

Numerical Methods in Fluids, Vol. 13, pp. 49-59, 1991.

Dacles, J. and Hafez, M.M, "Numerical Methods For 3-D Viscous
Incompressible Flows Using Velocity / Vorticity Formulation”, AIAA-
Paper-90-0237, 1990.

Stremel, P.M., "Calculation of Flow About Two-Dimensional Bodies by
Means of the Velocity-Vorticity Formulation on a Staggered Grid",
ATAA-Paper-91-0600, 1991.

Murata S., Satofuka, N. and Kushiyama, T., "Parabolic Multi-Grid
Method for Incompressible Viscous Flows Using a Group Explicit
Relaxation Scheme", Computers and Fluids, Vol. 19, No. 1, pp. 33-41,
1991.

Hansen, M.O.L., Sorensen, J.N. and Barker, V.A.,, "A Numerical
Investigation of 3-D Flow Past an Infinite Cylinder", Proceedings of the
First European Computational Fluid Dynamics Conference, Brussels,
(Eds. Hirsch, C., Periaux, J. and Kordulla, W.), Elsevier Science
Publishers, pp. 375-381, 1992.



50.

51.

52.

53.

98

Daube, O., "Resolution of the 2-D Navier-Stokes Equations in Velocity-
Vorticity Form by Means of an Influence Matrix Technique", Journal of

Computational Physics, Vol. 103, pp. 402-414, 1992.

Gunzburger, M.D. and Peterson, J.S., "Finite Element Methods for
Vorticity Formulations of Incompressible Viscous Flow", Numerical
Methods in Laminar and Turbulent Flow, Vol. V, (Eds. Taylor, C,,
Habashi, W.G. and Hafez, M.M.), Pineridge Press, pp. 170-181, 1987.

Gunzburger, M.D. and Peterson, J.5.,, "On Finite Element
Approximations of the Streamfunction-Vorticity and Velocity-Vorticity
Equations”, International Journal for Numerical Methods in Fluids,

Vol. 8, pp. 1229-1240, 1988.

Gunzburger, M., Mundt, M. and Peterson, J., "Experiences with Finite
Element Methods for the Velocity-Vorticity Formulation of Three-
Dimensional Viscous Incompressible Flows", Computational Methods

in Viscous Aerodynamics, (Ed. Brebbia, C.A.), Springer-Verlag, 1990.

Du, Q., Gunzburger, M.D. and Meir, A.J., "Vorticity Constraints in
Velocity-Vorticity Formulations of Steady, Viscous, Incompressible
Flow", Numerical Methods in Laminar and Turbulent Flow, Vol. VII,
(Eds. Taylor, C., Chin, ].H. and Homsy, G.M.), Pineridge Press, pp. 774
781, 1991.



53.

57.

59.

60.

99

Hafez, M.M., Dacles, J. and Soliman, M., "A Velocity/Vorticity Method
for Viscous Incompressible Flow Calculations”, Lecture Notes in Physics
no. 323 : 11th International Conference on Numerical Methods in Fluid

Dynamics, Williamsburg, VA., pp. 288-296, 1988.

Nicolaides, R.A., "Triangular Discretization for the Vorticity-Velocity
Equations”, Finite Element Analysis in Fluids : Proceedings of the
Seventh International Conference on Finite Element Methods in Flow
Problems, (Eds. Chung, T.J. and Karr, G.R.), UAH Press, Huntsville,
Alabama, pp. 824-829, 1989.

Choudhury, S. and Nicolaides, R.A., "Discretization of Incompressible
Vorticity-Velocity Equations on Triangular Meshes", International

Journal for Numerical Methods in Fluids, Vol. 11, pp. 823-833, 1990.

Brebbia, C.A. and Wrobel, L.C., "Viscous Flow Problems by the
Boundary Element Method", Recent Advances in Numerical Methods

in Fluids, Vol. 5, pp. 1-21, 1986.

Wang, C.M. and Wu, J.C,, "A Numerical Method for Three-
Dimensional Viscous Flows", AIAA-Paper-90-0236, 1990.

Stremel, P.M., "Aerodynamic Interaction Between Vortical Wakes and

the Viscous Flow about a Circular Cylinder", AIAA-Paper-85-4063, 1985.



61.

62.

63.

65.

100

Stremel, P.M., "The Calculation of Rotor/Fuselage Interaction for Two-
Dimensional Bodies", 16th European Rotorcraft Forum, Glasgow,

Scotland, pp. 1.11.3.1-11.11.3.32, 1990.

Ku, H.-C. and Hatziavramidis, D., "Solutions of the Two-Dimensional
Navier-Stokes Equations by Chebyshev Expansion Methods",
Computers and Fluids, Vol. 13, pp. 99-113, 1985.

Mizukami, A., "A Stream Function-Vorticity Finite Element
Formulation for Navier-Stokes Equations in Multi-Connected
Domain", International Journal for Numerical Methods in Engineering,

Vol. 19, pp. 1403-1420, 1983.

Gunzburger, M.D. and Peterson, ].5., "On the Finite Element
Approximation of the Streamfunction-Vorticity Equations”, 5th IMACS
International Symposium on Computer Methods for Partial Differential

Equations, pp. 47-56, 1984.

Tezduyar, T.E., Glowinski, R. and Liou, J., "Petrov-Galerkin Methods on
Multiply Connected Domains for the Vorticity-Stream Function
Formulation of the Incompressible Navier-Stokes Equations”,
International Journal for Numerical Methods in Fluids, Vol. 8, pp. 1269-
1290, 1988.



67.

69.

70.

101

Guevremont, G., Habashi, W.G., Hafez, M.\M. and Peeters, M.F., "A
Velocity-Vorticity Finite Element Formulation of the Compressible
Navier-Stokes Equations", Proceedings of the 4th International
Conference on Computational Engineering Science, Atlanta, (Eds.

Atluri, S.N. and Yagawa, G.), Springer-Verlag, pp. 51.x.1-51.x.4, 1988.

Habashi, W.G., Guevremont, G. and Hafez, M.M., "Finite Element
Solution of the Navier-Stokes Equations by a Velocity-Vorticity
Method", First International Conference on Computational Methods in
Flow Analysis, Okayama, Japan, (Eds. Kawahara, M. and Niki, H.), pp.
312-319, 1988.

Habashi, W.G., Guevremont, G., Peeters, M.F., Przybytkowski, S.M. and
Hafez, M.M., "Finite Element Vorticity-Based Methods for the Solution
of the Compressible Navier-Stokes Equations”, Computational Methods

in Viscous Aerodynamics, (Ed. Brebbia, C.A)), Springer-Verlag, 1990.

Guevremont, G., Habashi, W.G. and Hafez, M.M., "Finite Element
Solution of the Navier-Stokes Equations by a Velocity-Vorticity
Method", International Journal for Numerical Methods in Fluids, Vol.

10, pp. 461475, 1990.

Guevremont, G., Habashi, W.G., Kotiuga, P.L. and Hafez, M.M., "Finite
Element Solution of the 3-D Compressible Navier-Stokes Equations by a
Velodity-Vorticity Method", AIAA-Paper-90-0404, 1990.



71

73.

74.

75.

76.

102

Guevremont, G., Habashi, W.G., Kotiuga, P.L. and Hafez, M.M., "Finite
Element Solution of the 3-D Compressible Navier-Stokes Equations by a
Velocity-Vorticity Method", Journal of Computational Physics, Vol. 107,
pp. 176-187, 1993.

H. Schlichting, Boundary Layer Theory, McGraw-Hill, 7th Edition, p.
328, 1979.

R.H.F. Pao, Fluid Dynamics, Charles E. Merrill Books, Columbus, Ohio,
p. 280, 1967.

Hinton, E., Scott, F.C. and Ricketts, R.E., "Local Least Squares Stress
Smoothing for Parabolic Isoparametric Elements”, International Journal

for Numerical Methods in Engineering, Vol. 9, pp. 235-256, 1975.

Rizzi, A., "Computational Mesh for Transonic Airfoils", Numerical
Methods for the Computation of Inviscid Transonic Flows, (Eds. Rizzi,
A. and Viviand, H.), Vieweg and Sohn, 1981.

Steger, J.L., "Implicit Finite-Difference Simulation of Flow about
Arbitrary Two-Dimensional Geometries", AIAA Journal, Vol. 16, No. 7,

pp. 679-686, 1978.

Venkatakrishnan, V., "Preconditioned Conjugate Gradient Methods for
the Compressible Navier-Stokes Equations", AIAA-Paper-90-0586, 1990.



78.

80.

81.

82.

103

Ghia, U., Ghia, K.N. and Shin, C.T., "High-Re Solutions for
Incompressible Flow Using the Navier-Stokes Equations and a
Multigrid Method", Journal of Computational Physics, Vol. 48, pp. 387-
411, 1982.

Ku, H.C.,, Hirsh, RS. and Taylor, T.D., "A Pseudospectral Method for
Solution of the Three-Dimensional Incompressible Navier-Stokes

Equations", Journal of Computational Physics, Vol. 70, pp. 439-462, 1987.

Strigberger, J., Baruzzi, G., Habashi, W.G. and Fortin, M., "Some Special
Purpose Preconditioners for Conjugate Gradient- Like Methods Applied
to CFD", International Journal for Numerical Methods in Fluids, Vol.
16, pp. 581-596, 1993.

Habashi, W.G., Nguyen, V-N. and Bhat, M.V., "Efficient Direct Solvers
for Large-Scale Computational Fluid Dynamics Problems”, Computer
Methods in Applied Mechanics and Engineering, Vol. 87, pp. 253-265,
1991.

Koseff, ].R. and Street, R.L., "The Lid-Driven Cavity Flow: A Synthesis of
Qualitative and Quantitative Observations”, Journal of Fluids

Engineering, Transactions of the ASME, Vol. 106, pp. 390-398, 1984.

Humphrey, ].A.C., Taylor, AM.K. and Whitelaw, J.H., "Laminar Flow in
a Square Duct of Strong Curvature”, Journal of Fluid Mechanics, Vol. 83,

pp. 509-527, 1977.



104

Appendix A

Derivation of the 2-D Subsonic Vorticity Transport Equation in
Stream Function-Vorticity Variables

1) Conventions

a. subscripts x and y refer to partial derivatives

2) Definitions of Stream Function, Vorticity and Inverse Density

¥, = pu ¥, = -pv (A.1a,b)

® = Vy - Uy p= [JJ_ (A.2a,b)
therefore

u=pY¥ v =-pW¥ (A.3a,b)

3) Governing Equations

x-Momentum Equation

puuy + pvuy = -px + MZux - %(ux + vy))L + [Wuy + vx)ly (A.4a)
y-Momentum Equation

puvy + pvvy = -py + [u(Zvy - %(ux + vy))]y + [u(uy + vx)]x (A.4b)
Vorticity Transport Equation

—a—(y-momentum) - 2 (x-momentum)
ox dy



4)

5)
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Convective Terms

replacing the definition of the stream function (equations A.1) into the
convective terms of the vorticity transport equation (LHS):

LHS = (‘l’yvx - ‘I-’xvy),( - (‘Pyux - ‘quy)y
= Wuyy - vyx) + ‘Py(vxx - Uyy) - Yy - Wyyuyx
+ W{vx + uy) (A.5)
replacing the velocities using the inverse density (equations A.3):
LHS = Wy{vy - uyk - ¥ufx - Uyl - Pd- P ¥y
- Wl Wk + Wall- Pk + [Py (A.6)
replacing the definition of vorticity (equation A.2a) and expanding:
LHS = Wyoy, - Wy + p WP - Wy - ¥ux + ¥y
- PA¥ Yy + Byy) + PP + WyWy)

= Wyay - Py - %—E,(‘Yf + ‘Py)y lpy(‘i’x + ‘Py (A.7)

Viscous Terms

taking the curl of the viscous terms of the momentum equations to form
the right hand side of the vorticity transport equation (RHS):

RHS = [2uvyln - (2t )]+ [y + v
- [2nus)y + [%“(ux + "y)Ly - [ (uy + vily (A.8)
replacing the definition of vorticity (equation A.2a) and rearranging:
RHS = [2uvylyx + [H2uy + 0)x - [2huxy - M- 0 + 2vk)ly

Vipw) + [(2uugk - (2uudk + [(20vk - Ruvly

Vz(p,m) + 2[pxuy - Hylx)x + 2 [Mxvy - HyVxly (A.9)
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6) Vorticity Transport Equation

equating the right and left hand sides (equations A.7 and A.9):
Re {¥yox - Yooy - L5 + ¥l + Lt + vl

= VZ(W”) + 2[pxuy - Hyuxlx + 2[Mxvy - HyVxly (A.10)
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Appendix B

Integration Parts of the Compressibili urce Term of the 2-D Subsoni

Vorticity Transport Equation in Stream Function-Vortici ariabl

1) Conventions

a. subscripts x,y, and s refer to partial derivatives

2) Definitions

@ =u?+ v2 f= Jzn(pq)z W = - WPRe (B.1a,b,c)

3) Galerkin Weighted Residual Form : Compressibility Source Term

Lwi@[- Re {L5y[(paPk - 15:l(paf) | aa

4) Integration by Parts

I W [fxpy - fypy dA
A

.

[(W £ pyk - Waf Dy - WEpyx - (W Epdly + Wyfpx + WEpgy]dA
JA

r
= | [-Wifpy + Wyfp,|dA + I[Wfaydy + W f pydx]
JA C

f
= | [f(Wypx - Wxpy]|dA + j [W f psds] (B.2)
JA C
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Appendix C

Transformation of the Viscosi urce Term in the Contour Integral

of the 2-D Subsonic Vorticity Transport Equation

in am Function-Vorticity Variables

1) Conventions

a. subscripts x,y,s, and n refer to partial derivatives

2) Definitions

s represents the tangential direction along the bcundary
n represents the normal direction to the boundary
(v represents the angle between the n and x axes

3) Viscosity Source Term in the Contour Integral in Cartesian Coordinates

I Wi2(2 (xuy - pyu)dy - 2(Hxvy - Hyvx)dx]
C

4) Transformation to s-n Coordinates

Uy = UgSx + UpNy = - UgSiNOL + upcosa (C.1a)
Uy = UsSy + UpNly = UgCOSAL + UpSinQ (C.1b)
replacing equations (C.1) into the first viscosity source term:

HxUy - Hyux = (HsSx + HnNy) (ussy + unny)

- (p.ssy + Hnny)(ussx + Upny)
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= (MsUs - HsUssxSy + (Hsln - HaUsksxny
+ (HnUs - Msup)Synx + (Hnln - Hpupicny

= (Mnlts - istin) (SyNx - Suy)
= (Mpus - usun)(cosza + sinza)

= HnpUs - UsUp (C.2)
similarly for the second viscosity term:
UxVy - HyVx = HnVs - UsVn (C3)

replacing equations (C.2,C.3) back into the contour integral:
"I Wlm[z (Mnus - Hsup)dy - 2(Havs - usVn)dx]
c

Thus at exit planes where zero normal derivatives are zero, this entire
term is equal to zero.
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Appendix D

Derivation of the 3-D Subsonic Vorticity Transport Equation in

Velocity-Vorticity Variable

Conventions

a. subscripts x,y, and z refer to partial derivatives

Definition of Vorticity

;2 = VxV and therefore \% -5 =0 (D.1a,b)
Governing Equations
Continuity Equation

ve[pV) =0 (D.2)
Momentum Equation

(pV V)V = -vp + fz1(;{V[f§u(v-\7) + Vevy] - V [v2y]

-[veV]vn + Vux[VxV] - vx[vx(uV)]]  ©3

Vorticity Transport Equation

V x(Momentum)

Convective Terms

modifying the convective terms of the momentum equations:

(pV-V)V: %—pV(V-V)-p\?x(VxV) (D.4)



5)
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taking the curl of the convective terms to form the left hand side of the
vorticity transport equation (LHS):

LHS = Vx[%-pV(\_/.o\—/.)] - Vx[pVx(VxV)] (D.5)

expanding each term and using the definition of vorticity (equations D.1)
and the continuity equation (equation D.2):

Vx[pv(V.V] = Vpr(V-V + p[VxV(VoV)]
= VpxV(VeV) + 0 (D.6)
-VX[pVx 5] = -(BOV)pV + a[V-(pV)] + (pV-V)a - pV[V-a]
= -[2+9)p¥ + Q[0] + (pV-V)a - pV 0] (D7)

replacing equations (D.6,D.7) back into equation (D.5):

LHS = LVpxV(V.¥) - (@.v)pV + (pV-v)a (D)

Viscous Terms

take the viscous terms of the momentum equations (VTERM):
VTERM = v[%u(v-\"i) + Vevy] - V[V - [v 7] v
+ W x[VxV] - vx[vx(uV]] D.9)
expanding the last term:
-Vx[Vx(uV])] = -vx[vpxV + p(vxV] (D.10)

replacing equation (D.10) back into equation (D.9) using the definition of
vorticity (equation D.1a):

VIERM = V[4p(V+V) + V.vy) - V(v - [v V] v

+ Vp,x[VXV] - VX[VuXV] - VX[ua] (D.11)

combining terms and modifying:



6)

Vp.x[VxV] -V X[VuXV] = V[Vp-{i] - Z[V-V]Vu + V[Vzp]
- vu[veV] - Vx[vxwy] (D12)
replacing equation (D.12) back into equation (D.11):
VTERM = V[g‘u(VoV) + ZV-Vu] - 2[V-\7] Vu

-2[Vev]Vp - v <[] (D.13)

taking the curl of the viscous terms (equation D.13) to form the right hand
side of the vorticity transport equation (RHS):

RHS = 0 - 2Vx[[VeV]Vu + [Vev] vy} - v x [V x[ug]] (D.14)

expanding the last term:
vx[vxfua) = -v[v-(ua] + viual

- -v[vu-a + ulvea)] + viug

= -V_Vu°5] + v{uﬁ] (D.15)

replacing equation (D.15) back into equation (D.14):

RHS = -2Vx[(VeV)Vp + (Vev)vy] - v[vu.o] + viual @16
Vorticity Transport Equation
equating the right and left hand sides (equations D.8 and D.16):

Re (pV-V)a - (B-V)pv + ]2~Vp><V(\—/.°\—/.)}

= viug] - 29[[veV) v + (Vo¥) Vi) - V]Vieg) (D.17)
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7) Viscosity Source Term in Cartesian Coordinates

viscosity source term in vector form:

§ = - 2Vx|[VeV)Vu + (VeV) W] - ¥[vu-q (D.18)
expressing the terms inside the curl in Cartesian coordinates:
(VeV) Vi + (Vov)Vp = (ux + vy + w) Vi
+ u(Vih + v(Vip + w(vp),
= (uvph + (v vyl + (wvp), (D.19)
expanding the curl term:
~2Vx[(VeV)Vp + (Vev) vy
= -2{(WHzhy + (VB2 + (Whthy - (Whyhe = (V Byl - (Whyke) i
- 2{(u ke + (VEdyz + (W - (U H2 - (V Balye - (W )
= 2{(uhtgho + (V By + (W ity - (8 by - (V iy - (W iy} K
= -2 [(u kaly - (gl + [(v iy - (vIykly + (Wit - (Wityhh)i
- 2{[(u b - (0 pahde + (VIR - (v 2Ry + [(W k) - (W itahb)
- 2 {[(u kg - (@ iteble + [(VRyk - (v Rehly + [(Whyh - (Wb}
= -2 [uyhz - uzty + [vyhz - Vallyly + [Wykte - Waltyls) T
- 2 ([uzbty - btz + [Vabbx - Vitzly + [Wobts - Wattz))j
- 2 ([udty - ugitae + [Vably - Vyidy + [Waky - Wyids) k (D.20)

expressing the gradient term in Cartesian coordinates:
-V [Vu . Q]

= -l + 1y + w1 - 1+ % + )
- ([ + ny + pa3L) (D21)
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adding the curl and gradient terms (equations D.20 and D.21) to obtain the
viscosity source term in Cartesian coordinates:

S = -([2(uphe - uay) + Quie + Quity + Qe
+ 2[vyh - Valbyly + 2[Wykte - Watylo}§

- {[2 (Vzhx = Vailz) + Sapx + Sopy + 93%]}’
+ 2[uzpy - uxzlx + 2[watx - lelz]z};

- {[2(wxuy - Wyl + Qi + Qalty + Qaitz)

+ 2[uxly - Uyple]x + 2[VxHy - vyux]y} k (D.22)
or
§”-—a§m+a§“2+a§‘13 (D.23)
T oox dy 0z '
where
1 A
,'511 = ‘{2 (uyuz - uz!-ly) + ux + Sy + QBIJz}i
- {2 (uzpx - uxp.z)}f - {2 (uy - uyux)}'lz (D.24a)
2 2
S = ‘{z(vzux - Vxllz) + ik + oty + QB“Z})
- {Z(Vyuz - vZuy)}li\ h ‘2 (quy = VY“x)’iz (D.24b)
—ous ~
S = -[2(wuty - wy) + Quix + Qaity + Qap)k

- {2 (wyhz - wzuy)}f - {2 (wahx - wxuz)}f (D.24¢c)
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Figure 4.1 Flowchart of iterative procedure
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Figure 5.1 Geometry and boundary conditions for airfoil.
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Figure 5.3  Convergence history for NACA-0012 airfoil,
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Figure 56  Convergence history for NACA-0012 airfoil,
Re =10000, M=0.5, o =0°.
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Figure 5.7  Streamline plots for NACA-0012 airfoil,
Re=10000,M = 0.5, a = 0°.



123

10

1) L] LI T L] T i T T

0 5 10 15 20 25 30 35 40 45 S50

ITERATION

Figure 58 Convergence history for NACA-0012 airfoil,
Re=5000,M=0.5,a=3°.
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Figure 6.1 Geometry, grid and boundary conditions for the 2-D driven

cavity.
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Figure 6.2 Convergence history for 2-D driven cavity, Re = 400.
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Figure 6.5 2-D trough, Re = 10 000.
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b) Geometry and grid in region of nozzle

Figure 6.7  2-D nozzle, Re = 100.
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Figure 6.8  Convergence history for 2-D convergent-divergent nozzle,
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Figure 6.9

Velocity vectors for 2-D convergent-divergent nozzle, Re = 100.
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Figure 6.17 Density contours for 3-D driven cavity, Re = 100, M = 0.5.



145

N //
0.0 0.0

Figure 6.18a 3-D driven cavity, Re = 100,

Mid-plane normal vorticity lines, Streamwise.
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Figure 6.18b 3-D driven cavity, Re = 100,

Mid-plane normal vorticity lines, Spanwise.
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Figure 6.18c 3-D driven cavity, Re = 100,

Mid-plane normal vorticity lines, Horizontal.
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Figure 6.19 Convergence history for 3-D driven cavity,

Energy equation, Re =100, Pr=0.72.
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Figure 6.21b 3-D driven cavity, Constant total enthalpy, Re =100,

Constant temperature lines, Symmetry plane.
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Figure 6.23 Centerline velocities for 3-D driven cavity,

effect of grid size, Re = 400.
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Figure 6.24 Centerline velocities for 3-D driven cavity, Re =400.
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Figure 6.25a 3-D driven cavity, Re = 400,

Mid-plane normal vorticity lines, Streamwise.
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Figure 6.25b 3-D driven cavity, Re = 400,

Mid-plane normal vorticity lines, Spanwise.
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Figure 6.25¢ 3-D driven cavity, Re = 400,

Mid-plane normal vorticity lines, Horizontal.





